Science.gov

Sample records for impact assessment models

  1. Underwater noise modelling for environmental impact assessment

    SciTech Connect

    Farcas, Adrian; Thompson, Paul M.; Merchant, Nathan D.

    2016-02-15

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  2. Beyond citation analysis: a model for assessment of research impact

    PubMed Central

    Dubinsky, Ellen K.; Holmes, Kristi L.

    2010-01-01

    Question: Is there a means of assessing research impact beyond citation analysis? Setting: The case study took place at the Washington University School of Medicine Becker Medical Library. Method: This case study analyzed the research study process to identify indicators beyond citation count that demonstrate research impact. Main Results: The authors discovered a number of indicators that can be documented for assessment of research impact, as well as resources to locate evidence of impact. As a result of the project, the authors developed a model for assessment of research impact, the Becker Medical Library Model for Assessment of Research. Conclusion: Assessment of research impact using traditional citation analysis alone is not a sufficient tool for assessing the impact of research findings, and it is not predictive of subsequent clinical applications resulting in meaningful health outcomes. The Becker Model can be used by both researchers and librarians to document research impact to supplement citation analysis. PMID:20098647

  3. National Built Environment Health Impact Assessment Model ...

    EPA Pesticide Factsheets

    Behavioral (activity, diet, social interaction) and exposure (air pollution, traffic injury, and noise) related health impacts of land use and transportation investment decisions are becoming better understood and quantified. Research has shown relationships between density, mix, street connectivity, access to parks, shops, transit, presence of sidewalks and bikeways, and healthy food with physical activity, obesity, cardiovascular disease, type II diabetes, and some mental health outcomes. This session demonstrates successful integration of health impact assessment into multiple scenario planning tool platforms. Detailed evidence on chronic disease and related costs associated with contrasting land use and transportation investments are built into a general-purpose module that can be accessed by multiple platforms. Funders, researchers, and end users of the tool will present a detailed description of the key elements of the approach, how it has been applied, and how will evolve. A critical focus will be placed on equity and social justice inherent within the assessment of health disparities that will be featured in the session. Health impacts of community design have significant cost benefit implications. Recent research is now extending relationships between community design features and chronic disease to health care costs. This session will demonstrate the recent application of this evidence on health impacts to the newly adopted Los Angeles Regional Transpo

  4. National Built Environment Health Impact Assessment Model ...

    EPA Pesticide Factsheets

    Behavioral (activity, diet, social interaction) and exposure (air pollution, traffic injury, and noise) related health impacts of land use and transportation investment decisions are becoming better understood and quantified. Research has shown relationships between density, mix, street connectivity, access to parks, shops, transit, presence of sidewalks and bikeways, and healthy food with physical activity, obesity, cardiovascular disease, type II diabetes, and some mental health outcomes. This session demonstrates successful integration of health impact assessment into multiple scenario planning tool platforms. Detailed evidence on chronic disease and related costs associated with contrasting land use and transportation investments are built into a general-purpose module that can be accessed by multiple platforms. Funders, researchers, and end users of the tool will present a detailed description of the key elements of the approach, how it has been applied, and how will evolve. A critical focus will be placed on equity and social justice inherent within the assessment of health disparities that will be featured in the session. Health impacts of community design have significant cost benefit implications. Recent research is now extending relationships between community design features and chronic disease to health care costs. This session will demonstrate the recent application of this evidence on health impacts to the newly adopted Los Angeles Regional Transpo

  5. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  6. Oil spill fishery impact assessment modeling: The fisheries recruitment problem

    NASA Astrophysics Data System (ADS)

    Reed, Mark; Spaulding, Malcolm L.; Lorda, Ernesto; Walker, Henry; Saila, Saul B.

    1984-12-01

    A model to assess the impact of oil spill on fisheries, consisting of an oil spill fates model, a continental shelf hydrodynamics model, an ichthyoplankton transport and fates model, and a fish population model, has been applied to the Georges Bank-Gulf of Maine region to estimate the impact of oil spills on several important commercial fisheries. The model addresses direct impacts of oil on a fishery through hydrocarbon-induced egg and larval mortality. This early life stage mortality is estimated by dynamically mapping the spatial intersection of the surface and subsurface oil concentrations resulting from the spill with the developing eggs and larvae. Ichthyoplankton entering an area with hydrocarbon concentrations in excess of a specified threshold are assumed lost. Model output is given in terms of differential catch, comparing the non-impacted and the hydrocarbon impacted fisheries. Difficulties in establishing stock-recruit relationships, and the inability to predict first year survival even one year ahead make the quantification of absolute catch losses impossible. Output of the model system discussed here is therefore limited to relative rather than absolute catch losses. The paper is organized to demonstrate first the importance of the recruitment question to impact estimation, second that a modeling methodology is necessary to evaluate impacts given the magnitude of unexplained observed recruitment variability, and third a stochastic solution to the problem which places impact estimates in the context of a probability distribution. Lastly, the model system is applied to the problem of attaining better early life history mortality estimates, to ultimately improve impact estimation capabilities.

  7. An airport community noise-impact assessment model

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1980-01-01

    A computer model was developed to assess the noise impact of an airport on the community which it serves. Assessments are made using the Fractional Impact Method by which a single number describes the community aircraft noise environment in terms of exposed population and multiple event noise level. The model is comprised of three elements: a conventional noise footprint model, a site specific population distribution model, and a dose response transfer function. The footprint model provides the noise distribution for a given aircraft operating scenario. This is combined with the site specific population distribution obtained from a national census data base to yield the number of residents exposed to a given level of noise. The dose response relationship relates noise exposure levels to the percentage of individuals highly annoyed by those levels.

  8. Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

    2012-11-01

    This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

  9. Ecohydrological modeling for large-scale environmental impact assessment.

    PubMed

    Woznicki, Sean A; Nejadhashemi, A Pouyan; Abouali, Mohammad; Herman, Matthew R; Esfahanian, Elaheh; Hamaamin, Yaseen A; Zhang, Zhen

    2016-02-01

    Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (cold, cold-transitional, cool, and warm) of streams that broadly dictate the distribution of aquatic biota in Michigan. The Soil and Water Assessment Tool (SWAT) was used to simulate streamflow and water quality in seven watersheds and the Hydrologic Index Tool was used to calculate 171 ecologically relevant flow regime variables. Unique variables were selected for each thermal class using a Bayesian variable selection method. The variables were then used in development of adaptive neuro-fuzzy inference systems (ANFIS) models of EPT, FIBI, HBI, and IBI. ANFIS model accuracy improved when accounting for stream thermal class rather than developing a global model.

  10. Assessment of Modeling Capability for Reproducing Storm Impacts on TEC

    NASA Astrophysics Data System (ADS)

    Shim, J. S.; Kuznetsova, M. M.; Rastaetter, L.; Bilitza, D.; Codrescu, M.; Coster, A. J.; Emery, B. A.; Foerster, M.; Foster, B.; Fuller-Rowell, T. J.; Huba, J. D.; Goncharenko, L. P.; Mannucci, A. J.; Namgaladze, A. A.; Pi, X.; Prokhorov, B. E.; Ridley, A. J.; Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Zhu, L.

    2014-12-01

    During geomagnetic storm, the energy transfer from solar wind to magnetosphere-ionosphere system adversely affects the communication and navigation systems. Quantifying storm impacts on TEC (Total Electron Content) and assessment of modeling capability of reproducing storm impacts on TEC are of importance to specifying and forecasting space weather. In order to quantify storm impacts on TEC, we considered several parameters: TEC changes compared to quiet time (the day before storm), TEC difference between 24-hour intervals, and maximum increase/decrease during the storm. We investigated the spatial and temporal variations of the parameters during the 2006 AGU storm event (14-15 Dec. 2006) using ground-based GPS TEC measurements in the selected 5 degree eight longitude sectors. The latitudinal variations were also studied in two longitude sectors among the eight sectors where data coverage is relatively better. We obtained modeled TEC from various ionosphere/thermosphere (IT) models. The parameters from the models were compared with each other and with the observed values. We quantified performance of the models in reproducing the TEC variations during the storm using skill scores. This study has been supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) for the space science communities to use.

  11. Coupled Dynamic Modeling to Assess Human Impact on Watershed Hydrology

    NASA Astrophysics Data System (ADS)

    Mohammed, I. N.; Tsai, Y.; Turnbull, S.; Bomblies, A.; Zia, A.

    2014-12-01

    Humans are intrinsic to the hydrologic system, both as agents of change and as beneficiaries of ecosystem services. This connection has been underappreciated in hydrology. We present a modeling linkage framework of an agent-based land use change model with a physical-based watershed model. The coupled model framework presented constitutes part of an integrated assessment model that is being developed to study human-ecosystem interaction in Missisquoi Bay, spanning Vermont and Québec, which is experiencing high concentrations of nutrients from the Missisquoi River watershed. The integrated assessment approach proposed is comprised of linking two simulation models: the Interactive Land-Use Transition Agent-Based Model (ILUTABM) and a physically based process model, the Regional Hydro-Ecological Simulation System (RHESSys). The ILUTABM treats both landscape and landowners as agents and simulates annual land-use patterns resulting from landowners annual land-use decisions and Best Management Practices (BMPs) adaptations to landowners utilities, land productivity and perceived impacts of floods. The Missisquoi River at Swanton watershed RHESSys model (drainage area of 2,200 km2) driven by climate data was first calibrated to daily streamflows and water quality sensor data at the watershed outlet. Simulated land-use patterns were then processed to drive the calibrated RHESSys model to obtain streamflow nutrient loading realizations. Nutrients loading realizations are then examined and routed back to the ILUTAB model to obtain public polices needed to manage the Missisquoi watershed as well as the Lake Champlain in general. We infer that the applicability of this approach can be generalized to other similar watersheds. Index Terms: 0402: Agricultural systems; 1800: Hydrology; 1803: Anthropogenic effects; 1834 Human impacts; 6344: System operation and management; 6334: Regional Planning

  12. A Model for Assessing Impact of Institutional Studies.

    ERIC Educational Resources Information Center

    Willett, Lynn H.

    A three-dimensional model was developed to assist researchers in conceptualizing the research-study-impact process. Drawing on communication and decision making literature, the model relates time, action, and audience dimensions. The results of these relationships is labeled "institutional study impact." Impact is viewed as the outcomes…

  13. Avian collision risk models for wind energy impact assessments

    SciTech Connect

    Masden, E.A.; Cook, A.S.C.P.

    2016-01-15

    With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measure of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector. - Highlights: • We highlighted ten models available to assess avian collision risk. • Only 4 of the models included variability or uncertainty. • Collision risk models have limitations and can be ‘data hungry’. • It is vital that the most appropriate model is used for a given task.

  14. Watershed Model Parameterization for Assessing Impacts due to Climate Change

    NASA Astrophysics Data System (ADS)

    Yactayo, G. A.; Bhatt, G.

    2014-12-01

    The Chesapeake Bay (CB) Total Maximum Daily Load (TMDL) program drives water quality policy and management in parts of six states — Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia — along with the District of Columbia to achieve water quality standards in the Bay through reductions in nutrient and sediment pollution. The HSPF Watershed Model (WSM) is used as an accounting tool in the development of the TMDL to track progress and guide implementations of best management practices. Published research has shown that precipitation has increased in the US during 20th century by about ten percent, and half of the increase is due to changes in frequency and intensity in the upper tenth percentile of the distribution. Projections from global climate models suggest that these trends are anticipated to continue over the next century. Our analysis of climate data over the last three decades show similar trends in observed precipitation in the CB Watershed. The impact of climate change on the CB TMDL will be examined in a 2017 assessment of progress in the State and Federal partnership of the Chesapeake Bay Program. This is consistent with the CB Executive Order of May 12, 2009 mandates assessment of the impacts of climate change on the CB TMDL. The WSM has a simulation period of more than 3 decades from 1985 to 2011. Over the simulation period precipitation intensity, temperatures, and CO2 levels are increasing. A study conducted by Najjar et al. (2010) that included regional climate projections suggests that pollutant loads in the CB region will increase over the next century. Butcher et al. (2014) demonstrated that a watershed model parameter needs to be adjusted to compensate for the effect of elevated CO2 concentrations on plant transpiration in climate projection applications. This raises the question of whether parameters within a watershed model calibrated using historical climate data are sufficient for assessing hydrologic and water

  15. A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment.

    PubMed

    Cucurachi, S; Borgonovo, E; Heijungs, R

    2016-02-01

    The life cycle assessment (LCA) framework has established itself as the leading tool for the assessment of the environmental impact of products. Several works have established the need of integrating the LCA and risk analysis methodologies, due to the several common aspects. One of the ways to reach such integration is through guaranteeing that uncertainties in LCA modeling are carefully treated. It has been claimed that more attention should be paid to quantifying the uncertainties present in the various phases of LCA. Though the topic has been attracting increasing attention of practitioners and experts in LCA, there is still a lack of understanding and a limited use of the available statistical tools. In this work, we introduce a protocol to conduct global sensitivity analysis in LCA. The article focuses on the life cycle impact assessment (LCIA), and particularly on the relevance of global techniques for the development of trustable impact assessment models. We use a novel characterization model developed for the quantification of the impacts of noise on humans as a test case. We show that global SA is fundamental to guarantee that the modeler has a complete understanding of: (i) the structure of the model and (ii) the importance of uncertain model inputs and the interaction among them. © 2015 Society for Risk Analysis.

  16. Assessing climate change impact by integrated hydrological modelling

    NASA Astrophysics Data System (ADS)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  17. A probabilistic asteroid impact risk model: assessment of sub-300 m impacts

    NASA Astrophysics Data System (ADS)

    Mathias, Donovan L.; Wheeler, Lorien F.; Dotson, Jessie L.

    2017-06-01

    A comprehensive asteroid threat assessment requires the quantification of both the impact likelihood and resulting consequence across the range of possible events. This paper presents a probabilistic asteroid impact risk (PAIR) assessment model developed for this purpose. The model incorporates published impact frequency rates with state-of-the-art consequence assessment tools, applied within a Monte Carlo framework that generates sets of impact scenarios from uncertain input parameter distributions. Explicit treatment of atmospheric entry is included to produce energy deposition rates that account for the effects of thermal ablation and object fragmentation. These energy deposition rates are used to model the resulting ground damage, and affected populations are computed for the sampled impact locations. The results for each scenario are aggregated into a distribution of potential outcomes that reflect the range of uncertain impact parameters, population densities, and strike probabilities. As an illustration of the utility of the PAIR model, the results are used to address the question of what minimum size asteroid constitutes a threat to the population. To answer this question, complete distributions of results are combined with a hypothetical risk tolerance posture to provide the minimum size, given sets of initial assumptions for objects up to 300 m in diameter. Model outputs demonstrate how such questions can be answered and provide a means for interpreting the effect that input assumptions and uncertainty can have on final risk-based decisions. Model results can be used to prioritize investments to gain knowledge in critical areas or, conversely, to identify areas where additional data have little effect on the metrics of interest.

  18. The modelling and assessment of whale-watching impacts

    USGS Publications Warehouse

    New, Leslie; Hall, Ailsa J.; Harcourt, Robert; Kaufman, Greg; Parsons, E.C.M.; Pearson, Heidi C.; Cosentino, A. Mel; Schick, Robert S

    2015-01-01

    In recent years there has been significant interest in modelling cumulative effects and the population consequences of individual changes in cetacean behaviour and physiology due to disturbance. One potential source of disturbance that has garnered particular interest is whale-watching. Though perceived as ‘green’ or eco-friendly tourism, there is evidence that whale-watching can result in statistically significant and biologically meaningful changes in cetacean behaviour, raising the question whether whale-watching is in fact a long term sustainable activity. However, an assessment of the impacts of whale-watching on cetaceans requires an understanding of the potential behavioural and physiological effects, data to effectively address the question and suitable modelling techniques. Here, we review the current state of knowledge on the viability of long-term whale-watching, as well as logistical limitations and potential opportunities. We conclude that an integrated, coordinated approach will be needed to further understanding of the possible effects of whale-watching on cetaceans.

  19. Quantifying the CV: Adapting an Impact Assessment Model to Astronomy

    NASA Astrophysics Data System (ADS)

    Bohémier, K. A.

    2015-04-01

    We present the process and results of applying the Becker Model to the curriculum vitae of a Yale University astronomy professor. As background, in July 2013, the Becker Medical Library at Washington Univ. in St. Louis held a workshop for librarians on the Becker Model, a framework developed by research assessment librarians for quantifying medical researchers' individual and group outputs. Following the workshop, the model was analyzed for content to adapt it to the physical sciences.

  20. Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea

    SciTech Connect

    Jang, Minho; Hong, Taehoon; Ji, Changyoon

    2015-01-15

    The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using the developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C{sub 6}H{sub 6} eq.) calculated by the previous model was much lower (1965 kg C{sub 6}H{sub 6} eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings.

  1. A numerical assessment of simple airblast models of impact airbursts

    NASA Astrophysics Data System (ADS)

    Collins, Gareth S.; Lynch, Elliot; McAdam, Ronan; Davison, Thomas M.

    2017-08-01

    Asteroids and comets 10-100 m in size that collide with Earth disrupt dramatically in the atmosphere with an explosive transfer of energy, caused by extreme air drag. Such airbursts produce a strong blastwave that radiates from the meteoroid's trajectory and can cause damage on the surface. An established technique for predicting airburst blastwave damage is to treat the airburst as a static source of energy and to extrapolate empirical results of nuclear explosion tests using an energy-based scaling approach. Here we compare this approach to two more complex models using the iSALE shock physics code. We consider a moving-source airburst model where the meteoroid's energy is partitioned as two-thirds internal energy and one-third kinetic energy at the burst altitude, and a model in which energy is deposited into the atmosphere along the meteoroid's trajectory based on the pancake model of meteoroid disruption. To justify use of the pancake model, we show that it provides a good fit to the inferred energy release of the 2013 Chelyabinsk fireball. Predicted overpressures from all three models are broadly consistent at radial distances from ground zero that exceed three times the burst height. At smaller radial distances, the moving-source model predicts overpressures two times greater than the static-source model, whereas the cylindrical line-source model based on the pancake model predicts overpressures two times lower than the static-source model. Given other uncertainties associated with airblast damage predictions, the static-source approach provides an adequate approximation of the azimuthally averaged airblast for probabilistic hazard assessment.

  2. Assessing dengue vaccination impact: Model challenges and future directions.

    PubMed

    Recker, Mario; Vannice, Kirsten; Hombach, Joachim; Jit, Mark; Simmons, Cameron P

    2016-08-31

    In response to the sharp rise in the global burden caused by dengue virus (DENV) over the last few decades, the WHO has set out three specific key objectives in its disease control strategy: (i) to estimate the true burden of dengue by 2015; (ii) a reduction in dengue mortality by at least 50% by 2020 (used as a baseline); and (iii) a reduction in dengue morbidity by at least 25% by 2020. Although various elements will all play crucial parts in achieving this goal, from diagnosis and case management to integrated surveillance and outbreak response, sustainable vector control, vaccine implementation and finally operational and implementation research, it seems clear that new tools (e.g. a safe and effective vaccine and/or effective vector control) are key to success. The first dengue vaccine was licensed in December 2015, Dengvaxia® (CYD-TDV) developed by Sanofi Pasteur. The WHO has provided guidance on the use of CYD-TDV in endemic countries, for which there are a variety of considerations beyond the risk-benefit evaluation done by regulatory authorities, including public health impact and cost-effectiveness. Population-level vaccine impact and economic and financial aspects are two issues that can potentially be considered by means of mathematical modelling, especially for new products for which empirical data are still lacking. In December 2014 a meeting was convened by the WHO in order to revisit the current status of dengue transmission models and their utility for public health decision-making. Here, we report on the main points of discussion and the conclusions of this meeting, as well as next steps for maximising the use of mathematical models for vaccine decision-making. Copyright © 2016.

  3. Model-Driven Paediatric Cardiomyopathy Pathways - A Clinical Impact Assessment.

    PubMed

    Stroetmann, Karl A; Thiel, Rainer

    2017-01-01

    Intermediate results from an ongoing health technology assessment exercise of a simulation model of paediatric cardiomyopathy are reported. Comprehensive data on paediatric cardiomyopathy/heart failure, treatment options, incidence and prevalence, prognoses for different outcomes to be expected were collected. Based on this knowledge, a detailed clinical pathway model was developed and validated against the clinical workflow in a tertiary paediatric care hospital. It combines three disease stages and various treatment options with estimates of the probabilities of a child moving from one stage to another. To reflect the complexity of initial decision taking by clinicians, a three-stage Markov model was combined with a decision tree approach - a Markov decision process. A Markov Chain simulation tool was applied to compare estimates of transition probabilities and cost data of present standard of care treatment options for a cohort of children over ten years with expected improvements from using a clinical decision support tool based on the disease model under development. Early results indicate a slight increase of overall costs resulting from the extra cost of using such a tool in spite of some savings to be expected from improved care. However, the intangible benefits in life years saved of severely ill children and the improvement in QoL to be expected for moderately ill ones should more than compensate for this.

  4. Environmental health impact assessment: evaluation of a ten-step model.

    PubMed

    Fehr, R

    1999-09-01

    "Environmental impact assessment" denotes the attempt to predict and assess the impact of development projects on the environment. A component dealing specifically with human health is often called an "environmental health impact assessment." It is widely held that such impact assessment offers unique opportunities for the protection and promotion of human health. The following components were identified as key elements of an integrated environmental health impact assessment model: project analysis, analysis of status quo (including regional analysis, population analysis, and background situation), prediction of impact (including prognosis of future pollution and prognosis of health impact), assessment of impact, recommendations, communication of results, and evaluation of the overall procedure. The concept was applied to a project of extending a waste disposal facility and to a city bypass highway project. Currently, the coverage of human health aspects in environmental impact assessment still tends to be incomplete, and public health departments often do not participate. Environmental health impact assessment as a tool for health protection and promotion is underutilized. It would be useful to achieve consensus on a comprehensive generic concept. An international initiative to improve the situation seems worth some consideration.

  5. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM).

    PubMed

    Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej

    2013-11-01

    Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned.

  6. Impact Assessment of Pine Wilt Disease Using the Species Distribution Model and the CLIMEX Model

    NASA Astrophysics Data System (ADS)

    KIM, J. U.; Jung, H.

    2016-12-01

    The plant disease triangle consists of the host plant, pathogen and environment, but their interaction has not been considered in climate change adaptation policy. Our objectives are to predict the changes of a coniferous forest, pine wood nematodes (Bursaphelenchus xylophilus) and pine sawyer beetles (Monochamus spp.), which is a cause of pine wilt disease in the Republic of Korea. We analyzed the impact of pine wilt disease on climate change by using the species distribution model (SDM) and the CLIMEX model. Area of coniferous forest will decline and move to northern and high-altitude area. But pine wood nematodes and pine sawyer beetles are going to spread because they are going to be in a more favorable environment in the future. Coniferous forests are expected to have high vulnerability because of the decrease in area and the increase in the risk of pine wilt disease. Such changes to forest ecosystems will greatly affect climate change in the future. If effective and appropriate prevention and control policies are not implemented, coniferous forests will be severely damaged. An adaptation policy should be created in order to protect coniferous forests from the viewpoint of biodiversity. Thus we need to consider the impact assessment of climate change for establishing an effective adaptation policy. The impact assessment of pine wilt disease using a plant disease triangle drew suitable results to support climate change adaptation policy.

  7. National Built Environment Health Impact Assessment Model: Creation and Application

    EPA Science Inventory

    Behavioral (activity, diet, social interaction) and exposure (air pollution, traffic injury, and noise) related health impacts of land use and transportation investment decisions are becoming better understood and quantified. Research has shown relationships between density, mix,...

  8. National Built Environment Health Impact Assessment Model: Creation and Application

    EPA Science Inventory

    Behavioral (activity, diet, social interaction) and exposure (air pollution, traffic injury, and noise) related health impacts of land use and transportation investment decisions are becoming better understood and quantified. Research has shown relationships between density, mix,...

  9. Assessment of the Value, Impact, and Validity of the Jobs and Economic Development Impacts (JEDI) Suite of Models

    SciTech Connect

    Billman, L.; Keyser, D.

    2013-08-01

    The Jobs and Economic Development Impacts (JEDI) models, developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), use input-output methodology to estimate gross (not net) jobs and economic impacts of building and operating selected types of renewable electricity generation and fuel plants. This analysis provides the DOE with an assessment of the value, impact, and validity of the JEDI suite of models. While the models produce estimates of jobs, earnings, and economic output, this analysis focuses only on jobs estimates. This validation report includes an introduction to JEDI models, an analysis of the value and impact of the JEDI models, and an analysis of the validity of job estimates generated by JEDI model through comparison to other modeled estimates and comparison to empirical, observed jobs data as reported or estimated for a commercial project, a state, or a region.

  10. Using climate model output to assess the impacts of climate change on water resources

    SciTech Connect

    Cushman, R.M.

    1990-01-01

    The use of general circulation models (GCMs) to provide climate data for regional assessments of the impacts of changing climate on water resources stretches the limits of what the models were designed for. Problems that must be addressed include disagreement on a regional scale among GCMs and between the modeled and observed climate; coarse spatial resolution of the models; and simplistic representation of surface hydrology. It is important that continued progress be made in developing the methodology for using GCM output in climate-impact assessments. 18 refs.

  11. Assessing climate impacts

    PubMed Central

    Wohl, Ellen E.; Pulwarty, Roger S.; Zhang, Jian Yun

    2000-01-01

    Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fundamental driving-response interactions associated with climate variability, increasingly powerful measurement and modeling techniques make assessing climate impacts a rapidly developing frontier of science. PMID:11027321

  12. Impact assessment of abiotic resources in LCA: quantitative comparison of selected characterization models.

    PubMed

    Rørbech, Jakob T; Vadenbo, Carl; Hellweg, Stefanie; Astrup, Thomas F

    2014-10-07

    Resources have received significant attention in recent years resulting in development of a wide range of resource depletion indicators within life cycle assessment (LCA). Understanding the differences in assessment principles used to derive these indicators and the effects on the impact assessment results is critical for indicator selection and interpretation of the results. Eleven resource depletion methods were evaluated quantitatively with respect to resource coverage, characterization factors (CF), impact contributions from individual resources, and total impact scores. We included 2247 individual market inventory data sets covering a wide range of societal activities (ecoinvent database v3.0). Log-linear regression analysis was carried out for all pairwise combinations of the 11 methods for identification of correlations in CFs (resources) and total impacts (inventory data sets) between methods. Significant differences in resource coverage were observed (9-73 resources) revealing a trade-off between resource coverage and model complexity. High correlation in CFs between methods did not necessarily manifest in high correlation in total impacts. This indicates that also resource coverage may be critical for impact assessment results. Although no consistent correlations between methods applying similar assessment models could be observed, all methods showed relatively high correlation regarding the assessment of energy resources. Finally, we classify the existing methods into three groups, according to method focus and modeling approach, to aid method selection within LCA.

  13. Catastrophe Models: Some Illustrations and Potential for Social Impact Assessment.

    ERIC Educational Resources Information Center

    England, J. Lynn; Hooper, Douglas A.

    Catastrophe theory may provide a possible model for describing and explaining the boom town phenomena at a generalized level; catastrophe models deal with phenomena in which changes in continuous independent variables lead to sudden, or abrupt, discontinuous changes in a dependent variable. Rural energy boom towns are the result of sudden, abrupt…

  14. High-resolution assessment of land use impacts on biodiversity in life cycle assessment using species habitat suitability models.

    PubMed

    de Baan, Laura; Curran, Michael; Rondinini, Carlo; Visconti, Piero; Hellweg, Stefanie; Koellner, Thomas

    2015-02-17

    Agricultural land use is a main driver of global biodiversity loss. The assessment of land use impacts in decision-support tools such as life cycle assessment (LCA) requires spatially explicit models, but existing approaches are either not spatially differentiated or modeled at very coarse scales (e.g., biomes or ecoregions). In this paper, we develop a high-resolution (900 m) assessment method for land use impacts on biodiversity based on habitat suitability models (HSM) of mammal species. This method considers potential land use effects on individual species, and impacts are weighted by the species' conservation status and global rarity. We illustrate the method using a case study of crop production in East Africa, but the underlying HSMs developed by the Global Mammals Assessment are available globally. We calculate impacts of three major export crops and compare the results to two previously developed methods (focusing on local and regional impacts, respectively) to assess the relevance of the methodological innovations proposed in this paper. The results highlight hotspots of product-related biodiversity impacts that help characterize the links among agricultural production, consumption, and biodiversity loss.

  15. A Model for the Assessment of Community College Employee Workload Impact.

    ERIC Educational Resources Information Center

    Wyman, Frank J.

    1995-01-01

    Uses input-output analysis to develop a model that assesses the effect of changes in final-demand work on employees at a South Carolina community college. Model uses matrices and the Leontief inverse function to monitor employee workload impact and analyze simulated scenarios. (YKH)

  16. A model for probabilistic health impact assessment of exposure to food chemicals.

    PubMed

    van der Voet, Hilko; van der Heijden, Gerie W A M; Bos, Peter M J; Bosgra, Sieto; Boon, Polly E; Muri, Stefan D; Brüschweiler, Beat J

    2009-12-01

    A statistical model is presented extending the integrated probabilistic risk assessment (IPRA) model of van der Voet and Slob [van der Voet, H., Slob, W., 2007. Integration of probabilistic exposure assessment and probabilistic hazard characterisation. Risk Analysis, 27, 351-371]. The aim is to characterise the health impact due to one or more chemicals present in food causing one or more health effects. For chemicals with hardly any measurable safety problems we propose health impact characterisation by margins of exposure. In this probabilistic model not one margin of exposure is calculated, but rather a distribution of individual margins of exposure (IMoE) which allows quantifying the health impact for small parts of the population. A simple bar chart is proposed to represent the IMoE distribution and a lower bound (IMoEL) quantifies uncertainties in this distribution. It is described how IMoE distributions can be combined for dose-additive compounds and for different health effects. Health impact assessment critically depends on a subjective valuation of the health impact of a given health effect, and possibilities to implement this health impact valuation step are discussed. Examples show the possibilities of health impact characterisation and of integrating IMoE distributions. The paper also includes new proposals for modelling variable and uncertain factors describing food processing effects and intraspecies variation in sensitivity.

  17. A new assessment method for urbanization environmental impact: urban environment entropy model and its application.

    PubMed

    Ouyang, Tingping; Fu, Shuqing; Zhu, Zhaoyu; Kuang, Yaoqiu; Huang, Ningsheng; Wu, Zhifeng

    2008-11-01

    The thermodynamic law is one of the most widely used scientific principles. The comparability between the environmental impact of urbanization and the thermodynamic entropy was systematically analyzed. Consequently, the concept "Urban Environment Entropy" was brought forward and the "Urban Environment Entropy" model was established for urbanization environmental impact assessment in this study. The model was then utilized in a case study for the assessment of river water quality in the Pearl River Delta Economic Zone. The results indicated that the assessing results of the model are consistent to that of the equalized synthetic pollution index method. Therefore, it can be concluded that the Urban Environment Entropy model has high reliability and can be applied widely in urbanization environmental assessment research using many different environmental parameters.

  18. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments.

    PubMed

    Jönsson, Anna Maria; Anderbrant, Olle; Holmér, Jennie; Johansson, Jacob; Schurgers, Guy; Svensson, Glenn P; Smith, Henrik G

    2015-04-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science-stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science-stakeholder communication. By this, we hope to stimulate a discussion among the science-stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models.

  19. Assessing the impact of modeling limits on intelligent systems

    NASA Technical Reports Server (NTRS)

    Rouse, William B.; Hammer, John M.

    1990-01-01

    The knowledge bases underlying intelligent systems are validated. A general conceptual framework is provided for considering the roles in intelligent systems of models of physical, behavioral, and operational phenomena. A methodology is described for identifying limits in particular intelligent systems, and the use of the methodology is illustrated via an experimental evaluation of the pilot-vehicle interface within the Pilot's Associate. The requirements and functionality are outlined for a computer based knowledge engineering environment which would embody the approach advocated and illustrated in earlier discussions. Issues considered include the specific benefits of this functionality, the potential breadth of applicability, and technical feasibility.

  20. Failure of sewage pumps: statistical modelling and impact assessment.

    PubMed

    Korving, H; Geise, M; Clemens, F

    2006-01-01

    Sewage pumping stations are directly responsible for affecting performance, i.e. failing pumps may result in combined sewer overflows or flooding. However, failures of sewage pumps are not yet incorporated in sewer assessments due to lack of knowledge and data. This paper presents the analysis of pump failure data provided by two sewer management authorities in The Netherlands. Pump failures have been studied accounting for the nature of the failures, the operation and maintenance procedures of the management authority, the ageing of the pumps and the changes in the environment of pumps. The analysis shows that sewage pumps fail relatively often due to the composition of sewage and the discontinuous operation of the pumps. The interarrival time and the duration of failures are highly variable and independent of the pump type and the specific function of the pump. The results also indicate that the serviceability of sewer systems is significantly affected by failing pumps. As a consequence, part of the environmental damage due to CSOs (combined sewer overflows) can be avoided by improving maintenance of pumping stations.

  1. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    DOE R&D Accomplishments Database

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  2. Assessing impacts of climate change on forests: The state of biological modeling

    SciTech Connect

    Dale, V.H.; Rauscher, H.M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  3. Quantitative assessment of biological impact using transcriptomic data and mechanistic network models

    SciTech Connect

    Thomson, Ty M.; Sewer, Alain; Martin, Florian; Belcastro, Vincenzo; Frushour, Brian P.; Gebel, Stephan; Park, Jennifer; Schlage, Walter K.; Talikka, Marja; Vasilyev, Dmitry M.; Westra, Jurjen W.; Hoeng, Julia; Peitsch, Manuel C.

    2013-11-01

    Exposure to biologically active substances such as therapeutic drugs or environmental toxicants can impact biological systems at various levels, affecting individual molecules, signaling pathways, and overall cellular processes. The ability to derive mechanistic insights from the resulting system responses requires the integration of experimental measures with a priori knowledge about the system and the interacting molecules therein. We developed a novel systems biology-based methodology that leverages mechanistic network models and transcriptomic data to quantitatively assess the biological impact of exposures to active substances. Hierarchically organized network models were first constructed to provide a coherent framework for investigating the impact of exposures at the molecular, pathway and process levels. We then validated our methodology using novel and previously published experiments. For both in vitro systems with simple exposure and in vivo systems with complex exposures, our methodology was able to recapitulate known biological responses matching expected or measured phenotypes. In addition, the quantitative results were in agreement with experimental endpoint data for many of the mechanistic effects that were assessed, providing further objective confirmation of the approach. We conclude that our methodology evaluates the biological impact of exposures in an objective, systematic, and quantifiable manner, enabling the computation of a systems-wide and pan-mechanistic biological impact measure for a given active substance or mixture. Our results suggest that various fields of human disease research, from drug development to consumer product testing and environmental impact analysis, could benefit from using this methodology. - Highlights: • The impact of biologically active substances is quantified at multiple levels. • The systems-level impact integrates the perturbations of individual networks. • The networks capture the relationships between

  4. The AgMIP Wheat Pilot: A multi-model approach for climate change impact assessments.

    NASA Astrophysics Data System (ADS)

    Asseng, S.

    2012-12-01

    Asseng S., F. Ewert, C. Rosenzweig, J.W. Jones, J.L. Hatfield, A. Ruane, K.J. Boote, P. Thorburn, R.P. Rötter, D. Cammarano, N. Brisson, B. Basso, P. Martre, D. Ripoche, P. Bertuzzi, P. Steduto, L. Heng, M.A. Semenov, P. Stratonovitch, C. Stockle, G. O'Leary, P.K. Aggarwal, S. Naresh Kumar, C. Izaurralde, J.W. White, L.A. Hunt, R. Grant, K.C. Kersebaum, T. Palosuo, J. Hooker, T. Osborne, J. Wolf, I. Supit, J.E. Olesen, J. Doltra, C. Nendel, S. Gayler, J. Ingwersen, E. Priesack, T. Streck, F. Tao, C. Müller, K. Waha, R. Goldberg, C. Angulo, I. Shcherbak, C. Biernath, D. Wallach, M. Travasso, A. Challinor. Abstract: Crop simulation models have been used to assess the impact of climate change on agriculture. These assessments are often carried out with a single model in a limited number of environments and without determining the uncertainty of simulated impacts. There is a need for a coordinated effort bringing together multiple modeling teams which has been recognized by the Agricultural Model Intercomparison and Improvement Project (AgMIP; www.agmip.org). AgMIP aims to provide more robust estimates of climate impacts on crop yields and agricultural trade, including estimates of associated uncertainties. Here, we present the AgMIP Wheat Pilot Study, the most comprehensive model intercomparison of the response of wheat crops to climate change to date, including 27 wheat models. Crop model uncertainties in assessing climate change impacts are explored and compared with field experimental and Global Circulation Model uncertainties. Causes of impact uncertainties and ways to reduce these are discussed.

  5. Multimedia Environmental Pollutant Assessment System (MEPAS{reg_sign}): Exposure pathway and human health impact assessment models

    SciTech Connect

    Strenge, D.L.; Chamberlain, P.J.

    1995-05-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) provides physics-based models for human health risk assessment for radioactive and hazardous pollutants. MEPAS analyzes pollutant behavior in various media (air, soil, groundwater and surface water) and estimates transport through and between media and exposure and impacts to the environment, to the maximum individual, and to populations. MEPAS includes 25 exposure pathway models, a database with information on more than 650 contaminants, and a sensitivity module that allows for uncertainty analysis. Four major transport pathways are considered in MEPAS: groundwater, overland, surface water, and atmospheric. This report describes the exposure pathway and health impact assessment component of MEPAS, which provides an estimate of health impacts to selected individuals and populations from exposure to pollutants. The exposure pathway analysis starts with pollutant concentration in a transport medium and estimates the average daily dose to exposed individuals from contact with the transport medium or a secondary medium contaminated by the transport medium. The average daily dose is then used to estimate a measure of health impact appropriate to the type of pollutant considered. Discussions of the exposure pathway models include the assumptions and equations used to convert the transport medium concentrations to exposure medium concentrations. The discussion for a given exposure pathway defines the transport pathways leading to the exposure, the special processes considered in determining the pollutant concentration in the exposure medium, and the exposure model used to estimate the average daily dose. Models for the exposure pathway and health impact assessments require definition of several parameters. A summary of the notation used for these parameters is provided.

  6. Assessment of aircraft emissions impacts on air quality at multiple model scales

    NASA Astrophysics Data System (ADS)

    Vennam, Lakshmi Pradeepa

    Aviation activity has grown steadily, and will likely continue to grow in the future. Aviation-related air pollutants occurring during full-flight (landing and takeoff, as well as cruise) can impact air quality, human health and climate. The overall goal of this dissertation is to study the air quality impacts of aviation at local, regional and global scales. The central hypothesis of this study is that fine scale modeling provides better characterization of aviation emissions impacts on air quality and health. To test this hypothesis, a model-based assessment of aviation emissions impacts was conducted at multiple scales ranging from local (4 x 4 km2) to hemispheric (108 x 108 km2) scales. (Abstract shortened by ProQuest.).

  7. Oil spill fishery impact assessment model: Sensitivity to spill location and timing

    NASA Astrophysics Data System (ADS)

    Spaulding, Malcolm L.; Reed, Mark; Anderson, Eric; Isaji, Tatsusaburo; Swanson, J. Craig; Saila, Saul B.; Lorda, Ernesto; Walker, Henry

    1985-01-01

    An oil spill fishery impact assessment model system has been applied to the Georges Bank-Gulf of Maine region to assess the sensitivity of probable impact on several key fisheries to spill location and timing. Simulations of the impact on the fishery of tanker spills (20 million gallons released over 5 days), at two separate locations for each season of the year, and blowout spills (68 million gallons released over 30 days) at one location, with monthly releases and at six other locations with seasonal spills have been studied. Atlantic cod has been employed as the principal fish species throughout the simulations. Impacts on Atlantic herring and haddock have also been investigated for selected cases. All spill sites are located on Georges Bank with the majority in the general region of OCS leasing activity. The results of these simulations suggest a complex interaction among spill location and timing, the spatial and temporal distribution of spawning, the population dynamics of the species under study, and the hydrodynamics of the area. For the species studied, spills occurring during the winter and spring have the largest impact with cod being the most heavily impacted followed by haddock and herring. In all cases, the maximum cumulative loss to the fishery of a one time spill event never exceeded 25% of the annual catch with the exact value depending on the number of ichthyoplankton impacted by the spill and the compensatory dynamics of the population.

  8. Evaluating impact level of different factors in environmental impact assessment for incinerator plants using GM (1, N) model.

    PubMed

    Pai, T Y; Chiou, R J; Wen, H H

    2008-01-01

    In this study, the impact levels in environmental impact assessment (EIA) reports of 10 incinerator plants were quantified and discussed. The relationship between the quantified impact levels and the plant scale factors of BeiTou, LiZe, BaLi, LuTsao, RenWu, PingTung, SiJhou and HsinChu were constructed, and the impact levels of the GangShan (GS) and YongKong (YK) plants were predicted using grey model GM (1, N). Finally, the effects of plant scale factors on impact levels were evaluated using grey model GM (1, N) too. According to the predicted results of GM, the relative errors of topography/geology/soil, air quality, hydrology/water quality, solid waste, noise, terrestrial fauna/flora, aquatic fauna/flora and traffic in the GS plant were 17%, 14%, 15%, 17%, 75%, 16%, 13%, and 37%, respectively. The relative errors of the same environmental items in the YK plant were 1%, 18%, 10%, 40%, 37%, 3%, 25% and 33%, respectively. According to GM (1, N), design capacity (DC) and heat value (HV) were the plant scale factors that affected the impact levels significantly in each environmental item, and thus were the most significant plant scale factors. GM (1, N) was effective in predicting the environmental impact and analyzing the reasonableness of the impact. If there is an EIA for a new incinerator plant to be reviewed in the future, the official committee of the Taiwan EPA could review the reasonableness of impact levels in EIA reports quickly.

  9. Assessing potential health impacts of waste recovery and reuse business models in Hanoi, Vietnam.

    PubMed

    Winkler, Mirko S; Fuhrimann, Samuel; Pham-Duc, Phuc; Cissé, Guéladio; Utzinger, Jürg; Nguyen-Viet, Hung

    2017-02-01

    In resource-constrained settings, the recovery of nutrients and the production of energy from liquid and solid waste are important. We determined the range and magnitude of potential community health impacts of six solid and liquid waste recovery and reuse business models in Hanoi, Vietnam. We employed a health impact assessment (HIA) approach using secondary data obtained from various sources supplemented with primary data collection. For determining the direction (positive or negative) and magnitude of potential health impacts in the population, a semiquantitative impact assessment was pursued. From a public health perspective, wastewater reuse for inland fish farming, coupled with on-site water treatment has considerable potential for individual and community-level health benefits. One of the business models investigated (i.e. dry fuel manufacturing with agro-waste) resulted in net negative health impacts. In Hanoi, the reuse of liquid and solid waste-as a mean to recover water and nutrients and to produce energy-has considerable potential for health benefits if appropriately managed and tailored to local contexts. Our HIA methodology provides an evidence-based decision-support tool for identification and promotion of business models for implementation in Hanoi.

  10. Process notebook for aquatic ecosystem simulation. [Evaluation of fish models for impact assessment

    SciTech Connect

    Swartzman, G.; Smith, E.; McKenzie, D.; Haar, B.; Fickeisen, D.

    1980-01-01

    This notebook contains a detailed comparison of 14 models of fish growth, energetics, population dynamics, and feeding. It is a basic document for the evaluation of thes models' usefulness for impact assessment. Model equations are categorized into 18 subprocesses comprising the major processes of consumption, predation, metabolic processes, growth, fecundity, and mortality. The model equations are compared in a standard notation and the equation rationales are considered and put into a historical framework with historical precedence charts. Model parameters are computed in standard units and data sources and techniques used for parameter estimation are identified. A translator compares standard notation with the notation used in the models. The major contribution of this work is that, for the first time, fish models are arrayed with their assumptions laid bare and their parameter values compared, allowing elucidation of model differeances and evaluaton of model behavior and data needs by using the process notebook as a base for further simulation comparison.

  11. Assessing the hydrological impacts of Tropical Cyclones on the Carolinas: An observational and modeling based investigation

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Prat, O. P.; Blanton, B. O.

    2012-12-01

    During the warm season, the Carolinas are particularly prone to tropical cyclone (TC) activity and can be impacted in many different ways depending on storm track. The coasts of the Carolinas are the most vulnerable areas, but particular situations (Frances and Ivan 2004) affected communities far from the coasts (Prat and Nelson 2012). Regardless of where landfall occurs, TCs are often associated with intense precipitation and strong winds triggering a variety of natural hazards (storm surge, flooding, landslides). The assessment of societal and environmental impacts of TCs requires a suite of observations. The scarcity of station coverage, sensor limitations, and rainfall retrieval uncertainties are issues limiting the ability to assess accurately the impact of extreme precipitation events. Therefore, numerical models, such as the Weather Research and Forecasting model (WRF), can be valuable tools to investigate those impacts at regional and local scales and bridge the gap between observations. The goal of this study is to investigate the impact of TCs across the Carolinas using both observational and modeling technologies, and explore the usefulness of numerical methods in data-scarce regions. To fully assess TC impacts on the Carolinas inhabitants, storms impacting both coastal and inner communities will be selected and high-resolution WRF ensemble simulations generated from a suite of physic schemes for each TC to investigate their impact at finer scales. The ensemble member performance will be evaluated with respect to ground-based and satellite observations. Furthermore, results from the high-resolution WRF simulations, including the average wind-speed and the sea level pressure, will be used with the ADCIRC storm-surge and wave-model (Westerink et al, 2008) to simulate storm surge and waves along the Carolinas coast for TCs travelling along the coast or making landfall. This work aims to provide an assessment of the various types of impacts TCs can have

  12. Evaluating water management strategies with the Systems Impact Assessment Model: SIAM version 4

    USGS Publications Warehouse

    Bartholow, John M.; Heasley, John; Hanna, Blair; Sandelin, Jeff; Flug, Marshall; Campbell, Sharon; Henriksen, Jim; Douglas, Aaron

    2005-01-01

    The apparent disparity between restoration benefits and costs for the Klamath River may suggest to some that water resources on the Klamath be reallocated to environmentally friendly nonmarket uses. The economic analysis rests in part on the information made available to the survey designers by the biological, hydrologic, and water quality data incorporated in The System Impact Assessment Model (SIAM). It is our hope that SIAM can be used to improve the river's water quality and fishery, and strengthen the important regional economy.

  13. Assessing the impact of marine wind farms on birds through movement modelling

    PubMed Central

    Masden, Elizabeth A.; Reeve, Richard; Desholm, Mark; Fox, Anthony D.; Furness, Robert W.; Haydon, Daniel T.

    2012-01-01

    Advances in technology and engineering, along with European Union renewable energy targets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to carbon emission reductions, but there is a need to ensure that these structures do not adversely impact the populations that interact with them, particularly birds. We developed movement models based on observed avoidance responses of common eider Somateria mollissima to wind farms to predict, and identify potential measures to reduce, impacts. Flight trajectory data that were  collected post-construction of the Danish Nysted offshore wind farm were used to parameterize competing models of bird movements around turbines. The model most closely fitting the observed data incorporated individual variation in the minimum distance at which birds responded to the turbines. We show how such models can contribute to the spatial planning of wind farms by assessing their extent, turbine spacing and configurations on the probability of birds passing between the turbines. Avian movement models can make new contributions to environmental assessments of wind farm developments, and provide insights into how to reduce impacts that can be identified at the planning stage. PMID:22552921

  14. Assessing the impact of marine wind farms on birds through movement modelling.

    PubMed

    Masden, Elizabeth A; Reeve, Richard; Desholm, Mark; Fox, Anthony D; Furness, Robert W; Haydon, Daniel T

    2012-09-07

    Advances in technology and engineering, along with European Union renewable energy targets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to carbon emission reductions, but there is a need to ensure that these structures do not adversely impact the populations that interact with them, particularly birds. We developed movement models based on observed avoidance responses of common eider Somateria mollissima to wind farms to predict, and identify potential measures to reduce, impacts. Flight trajectory data that were collected post-construction of the Danish Nysted offshore wind farm were used to parameterize competing models of bird movements around turbines. The model most closely fitting the observed data incorporated individual variation in the minimum distance at which birds responded to the turbines. We show how such models can contribute to the spatial planning of wind farms by assessing their extent, turbine spacing and configurations on the probability of birds passing between the turbines. Avian movement models can make new contributions to environmental assessments of wind farm developments, and provide insights into how to reduce impacts that can be identified at the planning stage.

  15. Uncertainty and Evaluation of Impacts Modeling at Regional Scales in Integrated Assessment: the Case of Buildings

    NASA Astrophysics Data System (ADS)

    Clarke, L.; Zhou, Y.; Eom, J.; Kyle, P.; Daly, D.

    2012-12-01

    Integrated assessment (IA) models have traditionally focused on the evaluation of climate mitigation strategies. However, in recent years, efforts to consider both impacts and mitigation simultaneously have expanded dramatically. Because climate impacts are inherently regional in scale, the incorporation of impacts into IA modeling - which is inherently global in character - raises a range of challenges beyond the already substantial challenges associated with modeling impacts. In particular, it raises questions about how to best evaluate and diagnose the resulting representations of impacts, and how to characterize the uncertainty surrounding associated projections. This presentation will provide an overview of the challenges and uncertainties surrounding modeling climate impacts on building heating and cooling demands in an integrated assessment modeling framework - the Global Change Assessment Model (GCAM). The presentation will first discuss the issues associated with modeling building heating and cooling degree days in IA models. It will review research using spatially explicit climate and population information to inform a standard version of GCAM with fourteen geopolitical regions. It will discuss a new subregional version of GCAM in which building energy consumption is resolved at a fifty-state level. The presentation will also characterize efforts to link GCAM to more technologically resolved buildings models to gain insights about demands at higher temporal resolution. The second portion of the presentation will discuss the uncertainties associated with projections of building heating and cooling demands at various scales. A range of key uncertainties are important. This includes a range of uncertainties surrounding the nature of changes to global and regional climates, with particular emphasis on the uncertainty surrounding temperature projections. In addition, the linkage in this research between human and Earth systems means that the projections are

  16. Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis

    NASA Astrophysics Data System (ADS)

    Li, Bofeng

    2016-07-01

    Stochastic models are important in global navigation satellite systems (GNSS) estimation problems. One can achieve reliable ambiguity resolution and precise positioning only by use of a suitable stochastic model. The BeiDou system has received increased research focus, but based only on empirical stochastic models from the knowledge of GPS. In this paper, we will systematically study the estimation, assessment and impacts of a triple-frequency BeiDou stochastic model. In our estimation problem, a single-difference, geometry-free functional model is used to extract pure random noise. A very sophisticated structure of unknown variance matrix is designed to allow the estimation of satellite-specific variances, cross correlations between two arbitrary frequencies, as well as the time correlations for phase and code observations per frequency. In assessing the stochastic models, six data sets with four brands of BeiDou receivers on short and zero-length baselines are processed, and the results are compared. In impact analysis of stochastic model, the performance of integer ambiguity resolution and positioning are numerically demonstrated using a realistic stochastic model. The results from ultrashort (shorter than 10 m) and zero-length baselines indicate that BeiDou stochastic models are affected by both observation and receiver brands. The observation variances have been modeled by an elevation-dependent function, but the modeling errors for geostationary earth orbit (GEO) satellites are larger than for inclined geosynchronous satellite orbit (IGSO) and medium earth orbit (MEO) satellites. The stochastic model is governed by both the internal errors of the receiver and external errors at the site. Different receivers have different capabilities for resisting external errors. A realistic stochastic model is very important for achieving ambiguity resolution with a high success rate and small false alarm and for determining realistic variances for position estimates. To

  17. Quantifying the trade-off between parameter and model structure uncertainty in life cycle impact assessment.

    PubMed

    van Zelm, Rosalie; Huijbregts, Mark A J

    2013-08-20

    To enhance the use of quantitative uncertainty assessments in life cycle impact assessment practice, we suggest to quantify the trade-off between parameter uncertainty, i.e. any uncertainty associated with data and methods used to quantify the model parameters, and model structure uncertainty, i.e. the uncertainty about the relations and mechanisms being studied. In this paper we show the trade-off between the two types of uncertainty in a case of maize production with a focus on freshwater ecotoxicity due to pesticide application in The Netherlands. Parameter uncertainty in pesticide emissions, chemical-specific data, effect and damage data, and fractions of metabolite formation of degradation products was statistically quantified via probabilistic simulation, i.e. Monte Carlo simulation. Model structure uncertainties regarding the concentration-response model to be included, the selection of the damage model, and the inclusion of pesticide transformation products were assessed via discrete choice analysis. We conclude that to arrive at a minimum level of overall uncertainty the linear concentration-response model is preferable, while the transformation products may be excluded. Selecting the damage model has a relatively low influence on the overall uncertainty. Our study shows that quantifying the trade-off between different types of uncertainty can help to identify optimal model complexity from an uncertainty point of view.

  18. A Novel in Vivo Model for Assessing the Impact of Geophagic Earth on Iron Status.

    PubMed

    Seim, Gretchen L; Tako, Elad; Ahn, Cedric; Glahn, Raymond P; Young, Sera L

    2016-06-13

    The causes and consequences of geophagy, the craving and consumption of earth, remain enigmatic, despite its recognition as a behavior with public health implications. Iron deficiency has been proposed as both a cause and consequence of geophagy, but methodological limitations have precluded a decisive investigation into this relationship. Here we present a novel in vivo model for assessing the impact of geophagic earth on iron status: Gallus gallus (broiler chicken). For four weeks, animals were gavaged daily with varying dosages of geophagic material or pure clay mineral. Differences in haemoglobin (Hb) across treatment groups were assessed weekly and differences in liver ferritin, liver iron, and gene expression of the iron transporters divalent metal transporter 1 (DMT1), duodenal cytochrome B (DcytB) and ferroportin were assessed at the end of the study. Minimal impact on iron status indicators was observed in all non-control groups, suggesting dosing of geophagic materials may need refining in future studies. However, this model shows clear advantages over prior methods used both in vitro and in humans, and represents an important step in explaining the public health impact of geophagy on iron status.

  19. A Novel in Vivo Model for Assessing the Impact of Geophagic Earth on Iron Status

    PubMed Central

    Seim, Gretchen L.; Tako, Elad; Ahn, Cedric; Glahn, Raymond P.; Young, Sera L.

    2016-01-01

    The causes and consequences of geophagy, the craving and consumption of earth, remain enigmatic, despite its recognition as a behavior with public health implications. Iron deficiency has been proposed as both a cause and consequence of geophagy, but methodological limitations have precluded a decisive investigation into this relationship. Here we present a novel in vivo model for assessing the impact of geophagic earth on iron status: Gallus gallus (broiler chicken). For four weeks, animals were gavaged daily with varying dosages of geophagic material or pure clay mineral. Differences in haemoglobin (Hb) across treatment groups were assessed weekly and differences in liver ferritin, liver iron, and gene expression of the iron transporters divalent metal transporter 1 (DMT1), duodenal cytochrome B (DcytB) and ferroportin were assessed at the end of the study. Minimal impact on iron status indicators was observed in all non-control groups, suggesting dosing of geophagic materials may need refining in future studies. However, this model shows clear advantages over prior methods used both in vitro and in humans, and represents an important step in explaining the public health impact of geophagy on iron status. PMID:27304966

  20. Activities of NASA's Global Modeling Initiative (GMI) in the Assessment of Subsonic Aircraft Impact

    NASA Technical Reports Server (NTRS)

    Rodriquez, J. M.; Logan, J. A.; Rotman, D. A.; Bergmann, D. J.; Baughcum, S. L.; Friedl, R. R.; Anderson, D. E.

    2004-01-01

    The Intergovernmental Panel on Climate Change estimated a peak increase in ozone ranging from 7-12 ppbv (zonal and annual average, and relative to a baseline with no aircraft), due to the subsonic aircraft in the year 2015, corresponding to aircraft emissions of 1.3 TgN/year. This range of values presumably reflects differences in model input (e.g., chemical mechanism, ground emission fluxes, and meteorological fields), and algorithms. The model implemented by the Global Modeling Initiative allows testing the impact of individual model components on the assessment calculations. We present results of the impact of doubling the 1995 aircraft emissions of NOx, corresponding to an extra 0.56 TgN/year, utilizing meteorological data from NASA's Data Assimilation Office (DAO), the Goddard Institute for Space Studies (GISS), and the Middle Atmosphere Community Climate Model, version 3 (MACCM3). Comparison of results to observations can be used to assess the model performance. Peak ozone perturbations ranging from 1.7 to 2.2 ppbv of ozone are calculated using the different fields. These correspond to increases in total tropospheric ozone ranging from 3.3 to 4.1 Tg/Os. These perturbations are consistent with the IPCC results, due to the difference in aircraft emissions. However, the range of values calculated is much smaller than in IPCC.

  1. An Integrated Hydro-Economic Model for Economy-Wide Climate Change Impact Assessment for Zambia

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Thurlow, J.; Diao, X.

    2008-12-01

    Zambia is a landlocked country in Southern Africa, with a total population of about 11 million and a total area of about 752 thousand square kilometers. Agriculture in the country depends heavily on rainfall as the majority of cultivated land is rain-fed. Significant rainfall variability has been a huge challenge for the country to keep a sustainable agricultural growth, which is an important condition for the country to meet the United Nations Millennium Development Goals. The situation is expected to become even more complex as climate change would impose additional impacts on rainwater availability and crop water requirements, among other changes. To understand the impacts of climate variability and change on agricultural production and national economy, a soil hydrology model and a crop water production model are developed to simulate actual crop water uses and yield losses under water stress which provide annual shocks for a recursive dynamic computational general equilibrium (CGE) model developed for Zambia. Observed meteorological data of the past three decades are used in the integrated hydro-economic model for climate variability impact analysis, and as baseline climatology for climate change impact assessment together with several GCM-based climate change scenarios that cover a broad range of climate projections. We found that climate variability can explain a significant portion of the annual variations of agricultural production and GDP of Zambia in the past. Hidden beneath climate variability, climate change is found to have modest impacts on agriculture and national economy of Zambia around 2025 but the impacts would be pronounced in the far future if appropriate adaptations are not implemented. Policy recommendations are provided based on scenario analysis.

  2. A Hydro-Economic Approach to Representing Water Resources Impacts in Integrated Assessment Models

    SciTech Connect

    Kirshen, Paul H.; Strzepek, Kenneth, M.

    2004-01-14

    Grant Number DE-FG02-98ER62665 Office of Energy Research of the U.S. Department of Energy Abstract Many Integrated Assessment Models (IAM) divide the world into a small number of highly aggregated regions. Non-OECD countries are aggregated geographically into continental and multiple-continental regions or economically by development level. Current research suggests that these large scale aggregations cannot accurately represent potential water resources-related climate change impacts. In addition, IAMs do not explicitly model the flow regulation impacts of reservoir and ground water systems, the economics of water supply, or the demand for water in economic activities. Using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model of the International Food Policy Research Institute (IFPRI) as a case study, this research implemented a set of methodologies to provide accurate representation of water resource climate change impacts in Integrated Assessment Models. There were also detailed examinations of key issues related to aggregated modeling including: modeling water consumption versus water withdrawals; ground and surface water interactions; development of reservoir cost curves; modeling of surface areas of aggregated reservoirs for estimating evaporation losses; and evaluating the importance of spatial scale in river basin modeling. The major findings include: - Continental or national or even large scale river basin aggregation of water supplies and demands do not accurately capture the impacts of climate change in the water and agricultural sector in IAMs. - Fortunately, there now exist gridden approaches (0.5 X 0.5 degrees) to model streamflows in a global analysis. The gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with national boundaries. This combined with GIS tools, high speed computers, and the growing availability of socio-economic gridded data bases allows assignment of

  3. Application of Water Resources System Dynamics Modeling to Climate Change Impact Assessment for Sustainable Rural Community

    NASA Astrophysics Data System (ADS)

    Li, Y.; Tung, C.

    2013-12-01

    Under the impact of climate change, water resources management meets seriously problems. In order to response the impacts on water resources caused by climate change, the research topic regarding multiple water resources receives many attentions. In addition to traditional water resources, new water resources may raise the water use efficiency and reduce the demand loadings on the external water supply systems. Therefore, sustainable rural community can install reuse system and constructed wetland to provide harvested rainwater and reclaimed water as a distributed water supply system. For managing the water resources system in a rural community, the development of simulation model can provide information on water resources management. In this study, the water resource system dynamics model is applied to impact assessment of climate change, and the indicator system is used in evaluating the vulnerability and resilience of water resources system under climate change. The factors lead model uncertainty and high sensitively is identified. Overall, they are further used to evaluate the adaptive capacity of a rural community installing reuse system and constructed wetland under climate change. According the results, adaptation measures can be provided for adjusting water management strategies, which can let sustainable rural community have stable water supply under climate change. Besides, the results provide suggestions regarding an appropriate water resources distribution in a rural community. At last, this study also addresses the requirements for the future research to assess the optimal design for sustainable rural community.

  4. A statistical concept to assess the uncertainty in Bayesian model weights and its impact on model ranking

    NASA Astrophysics Data System (ADS)

    Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang

    2015-09-01

    Bayesian model averaging (BMA) ranks the plausibility of alternative conceptual models according to Bayes' theorem. A prior belief about each model's adequacy is updated to a posterior model probability based on the skill to reproduce observed data and on the principle of parsimony. The posterior model probabilities are then used as model weights for model ranking, selection, or averaging. Despite the statistically rigorous BMA procedure, model weights can become uncertain quantities due to measurement noise in the calibration data set or due to uncertainty in model input. Uncertain weights may in turn compromise the reliability of BMA results. We present a new statistical concept to investigate this weighting uncertainty, and thus, to assess the significance of model weights and the confidence in model ranking. Our concept is to resample the uncertain input or output data and then to analyze the induced variability in model weights. In the special case of weighting uncertainty due to measurement noise in the calibration data set, we interpret statistics of Bayesian model evidence to assess the distance of a model's performance from the theoretical upper limit. To illustrate our suggested approach, we investigate the reliability of soil-plant model selection following up on a study by Wöhling et al. (2015). Results show that the BMA routine should be equipped with our suggested upgrade to (1) reveal the significant but otherwise undetected impact of measurement noise on model ranking results and (2) to decide whether the considered set of models should be extended with better performing alternatives.

  5. A model for the rapid assessment of the impact of aviation noise near airports.

    PubMed

    Torija, Antonio J; Self, Rod H; Flindell, Ian H

    2017-02-01

    This paper introduces a simplified model [Rapid Aviation Noise Evaluator (RANE)] for the calculation of aviation noise within the context of multi-disciplinary strategic environmental assessment where input data are both limited and constrained by compatibility requirements against other disciplines. RANE relies upon the concept of noise cylinders around defined flight-tracks with the Noise Radius determined from publicly available Noise-Power-Distance curves rather than the computationally intensive multiple point-to-point grid calculation with subsequent ISO-contour interpolation methods adopted in the FAA's Integrated Noise Model (INM) and similar models. Preliminary results indicate that for simple single runway scenarios, changes in airport noise contour areas can be estimated with minimal uncertainty compared against grid-point calculation methods such as INM. In situations where such outputs are all that is required for preliminary strategic environmental assessment, there are considerable benefits in reduced input data and computation requirements. Further development of the noise-cylinder-based model (such as the incorporation of lateral attenuation, engine-installation-effects or horizontal track dispersion via the assumption of more complex noise surfaces formed around the flight-track) will allow for more complex assessment to be carried out. RANE is intended to be incorporated into technology evaluators for the noise impact assessment of novel aircraft concepts.

  6. A multi-model integrated assessment of the impacts of climate change in Washington State

    NASA Astrophysics Data System (ADS)

    McGuire Elsner, M.; Salathe, E. P.; Hamlet, A. F.; Lettenmaier, D. P.; Miles, E. L.

    2008-12-01

    In April 2007, the State of Washington passed legislation mandating a comprehensive statewide assessment of the impacts of climate change over the next 100 years. The Climate Impacts Group (CIG) at the University of Washington Joint Institute for the Study of the Atmosphere and Ocean (JISAO) is working with Washington State University, Pacific Northwest National Laboratory, and state agencies to perform an integrated assessment on the effects of climate change for eight statewide sectors: public health, agriculture, the coastal zone, forest ecosystems, salmon, infrastructure, energy, and water supply and management. An additional Climate Scenarios Working Group serves the eight other sectors by providing projections of future regional climate, downscaled to 1/16th degree spatial resolution over the state of Washington. We utilize projections from A1B and B1 greenhouse gas emissions scenarios, as simulated by the full suite of 20 GCMs, archived in the 2007 Fourth Assessment Report of the IPCC. In this approach, we apply 40 ensembles of statistically downscaled future climate to drive hydrologic model simulations. Each sector incorporates the projections of climatic and hydrologic variables in their evaluations of the impacts of climate change. Here we present impacts on hydrologic variables (such as snowpack and streamflow), as well as related implications for several of the sectors listed above, over the State of Washington for three periods: the 2020s, 2040s and 2080s. We also discuss CIG's collaboration with multi-stakeholder adaptation working groups to identify potential barriers to adaptation and strategies to address the projected impacts in each sector.

  7. Impact-GMI Model

    SciTech Connect

    2007-03-22

    IMPACT-GMI is an atmospheric chemical transport model designed to run on massively parallel computers. It is designed to model trace pollutants in the atmosphere. It includes models for emission, chemistry and deposition of pollutants. It can be used to assess air quality and its impact on future climate change.

  8. Assessing the impact of policy changes in the Icelandic cod fishery using a hybrid simulation model.

    PubMed

    Sigurðardóttir, Sigríður; Johansson, Björn; Margeirsson, Sveinn; Viðarsson, Jónas R

    2014-01-01

    Most of the Icelandic cod is caught in bottom trawlers or longliners. These two fishing methods are fundamentally different and have different economic, environmental, and even social effects. In this paper we present a hybrid-simulation framework to assess the impact of changing the ratio between cod quota allocated to vessels with longlines and vessels with bottom trawls. It makes use of conventional bioeconomic models and discrete event modelling and provides a framework for simulating life cycle assessment (LCA) for a cod fishery. The model consists of two submodels, a system dynamics model describing the biological aspect of the fishery and a discrete event model for fishing activities. The model was run multiple times for different quota allocation scenarios and results are presented where different scenarios are presented in the three dimensions of sustainability: environmental, social, and economic. The optimal allocation strategy depends on weighing the three different factors. The results were encouraging first-steps towards a useful modelling method but the study would benefit greatly from better data on fishing activities.

  9. Multi-model assessment of hydrologic impacts of climate change in a small Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Perra, Enrica; Piras, Monica; Deidda, Roberto; Paniconi, Claudio; Mascaro, Giuseppe; Vivoni, Enrique R.; Cau, Pierluigi; Marras, Pier Andrea; Meyer, Swen; Ludwig, Ralf

    2017-04-01

    Assessing the hydrologic impacts of climate change is of great importance in the Mediterranean region, which is characterized by high precipitation variablitity and complex interactions within the water cycle. In this work we focus on the hydrological response of the Rio Mannu catchment, a small basin located in southern Sardinia (Italy) and characterized by a semi-arid climate. Specifically, we investigate inter-model variability and uncertainty by comparing the results of five distributed hydrologic models, namely CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration eXtended (TOPKAPI-X), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter flow and balance SIMulation (WASIM), that differ greatly in their representation of terrain features, physical processes, and numerical complexity. The hydrological models were independently calibrated and validated on observed meteorological and hydrological time series, and then forced by the output of four combinations of global and regional climate models (properly bias-corrected and downscaled) in order to evaluate the effects of climate change for a reference (1971-2000) and a future (2041-2070) period. Notwithstanding their differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages. The multi-model framework allows estimation of the uncertainty associated with these hydrologic simulations and this aspect will also be discussed.

  10. Assessing the Impact of Policy Changes in the Icelandic Cod Fishery Using a Hybrid Simulation Model

    PubMed Central

    Sigurðardóttir, Sigríður; Johansson, Björn; Margeirsson, Sveinn; Viðarsson, Jónas R.

    2014-01-01

    Most of the Icelandic cod is caught in bottom trawlers or longliners. These two fishing methods are fundamentally different and have different economic, environmental, and even social effects. In this paper we present a hybrid-simulation framework to assess the impact of changing the ratio between cod quota allocated to vessels with longlines and vessels with bottom trawls. It makes use of conventional bioeconomic models and discrete event modelling and provides a framework for simulating life cycle assessment (LCA) for a cod fishery. The model consists of two submodels, a system dynamics model describing the biological aspect of the fishery and a discrete event model for fishing activities. The model was run multiple times for different quota allocation scenarios and results are presented where different scenarios are presented in the three dimensions of sustainability: environmental, social, and economic. The optimal allocation strategy depends on weighing the three different factors. The results were encouraging first-steps towards a useful modelling method but the study would benefit greatly from better data on fishing activities. PMID:24778597

  11. Life cycle impact assessment of terrestrial acidification: modeling spatially explicit soil sensitivity at the global scale.

    PubMed

    Roy, Pierre-Olivier; Deschênes, Louise; Margni, Manuele

    2012-08-07

    This paper presents a novel life cycle impact assessment (LCIA) approach to derive spatially explicit soil sensitivity indicators for terrestrial acidification. This global approach is compatible with a subsequent damage assessment, making it possible to consistently link the developed midpoint indicators with a later endpoint assessment along the cause-effect chain-a prerequisite in LCIA. Four different soil chemical indicators were preselected to evaluate sensitivity factors (SFs) for regional receiving environments at the global scale, namely the base cations to aluminum ratio, aluminum to calcium ratio, pH, and aluminum concentration. These chemical indicators were assessed using the PROFILE geochemical steady-state soil model and a global data set of regional soil parameters developed specifically for this study. Results showed that the most sensitive regions (i.e., where SF is maximized) are in Canada, northern Europe, the Amazon, central Africa, and East and Southeast Asia. However, the approach is not bereft of uncertainty. Indeed, a Monte Carlo analysis showed that input parameter variability may induce SF variations of up to over 6 orders of magnitude for certain chemical indicators. These findings improve current practices and enable the development of regional characterization models to assess regional life cycle inventories in a global economy.

  12. The impact of uncertainty in satellite data on the assessment of flood inundation models

    NASA Astrophysics Data System (ADS)

    Stephens, E. M.; Bates, P. D.; Freer, J. E.; Mason, D. C.

    2012-01-01

    SummaryThe performance of flood inundation models is often assessed using satellite observed data; however, these data have inherent uncertainty. In this study we determine the patterns of uncertainty in an ERS-2 SAR image of flooding on the River Dee, UK and, using LISFLOOD-FP, evaluate how this uncertainty can influence the assessment of flood inundation model performance. The flood outline is intersected with high resolution LiDAR topographic data to extract water levels at the flood margin, and to estimate patterns of uncertainty the gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. We find the residuals between the satellite data points and the reference line to be spatially clustered. A new method of evaluating model performance is developed to test the impact of this spatial dependency on model calibration. This method uses multiple random subsamples of the water surface elevation points that have no significant spatial dependency; tested for using Moran's I. LISFLOOD-FP is then calibrated using conventional binary pattern matching and water elevation comparison both with and without spatial dependency. It is shown that model calibration carried out using pattern matching is negatively influenced by spatial dependency in the data. By contrast, calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. Accounting for spatial dependency reduces the estimated modelled error and gives an identical result to calibration using spatially dependent data; it also has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Further, by using the variations found in the subsamples of the observed data it is possible to assess how the noisiness in these data affects our understanding of flood risk. This has highlighted the requirement for a probabilistic

  13. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    PubMed

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model.

  14. Model assessing the impact of biomass burning on air quality and photochemistry in Mexico City

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Wiedinmyer, C.; Yokelson, R. J.; Molina, L. T.

    2010-12-01

    Biomass burning is a major global emission source for trace gases and particulates. Various multi-platform measurements during the Mexico City Metropolitan Area (MCMA)-2003 and Megacity Initiative: Local and Global Research Observations (MILAGRO)-2006 campaigns suggest significant influences of biomass burning (BB) on air quality in Mexico City during the dry season, and the observations show emissions from BB impose viable yet highly variable impacts on organic aerosols (OA) in and around Mexico City. We have developed emission inventories for forest fires surrounding Mexico City based on measurement-estimated emission factors and MODIS fire counts, and for garbage fires in Mexico City based on in situ-measured emission factors and the population distribution and socioeconomic data. In this study, we will comprehensively assess the impact of biomass burning on the aerosol loading, chemical composition, OA formation and photochemistry in Mexico City using WRF-Chem. Analysis of the model results, in conjunction with concurrent field measurements, will be presented.

  15. Assessing extratropical impact on the tropical bias in coupled climate model with regional coupled data assimilation

    NASA Astrophysics Data System (ADS)

    Lu, F.; Liu, Z.; Zhang, S.; Jacob, R.

    2017-04-01

    The tropical bias of double-Intertropical Convergence Zone (ITCZ) has been a persistent feature in global climate models. It remains unclear how much of it is attributed to local and remote processes, respectively. Here we assess the extratropical influence on the tropical bias in a coupled general circulation model dynamically, systematically, and quantitatively using the Regional Coupled Data Assimilation (RCDA) method. RCDA experiments show that the model's double-ITCZ bias is improved systematically when sea surface temperature, air temperature, and wind are corrected toward real-world data from the extratropics into the tropics progressively. Quantitatively, the tropical asymmetry bias in precipitation and surface temperature is reduced by 40% due to extratropical impact from outside of 25°. Coupled dynamics, as well as atmospheric and oceanic processes, play important roles in this extratropical-to-tropical teleconnection. Energetic analysis of cross-equatorial atmospheric energy transport and equatorial net energy input are used to explain the changes in the precipitation bias.

  16. Climate and Agriculture: Model Inter-Comparison for Evaluating the Uncertainties in Climate Change Impact Assessment

    NASA Astrophysics Data System (ADS)

    Geethalakshmi, V.; Lakshmanan, A.; Bhuvaneswari, K.; Rajalakshmi, D.; Sekhar, N. U.; Anbhazhagan, R.; Gurusamy, L.

    2011-12-01

    Presence of large uncertainties in climate models (CM) and in future emission scenarios makes it difficult to predict the long-term climate changes at regional scales. Climate models do a reasonable job of capturing the large-scale aspects of current climate but still contain systematic model errors adding uncertainty to the future projections. Using CM outputs in impact models also cascade the uncertainty in climate change research. A study was undertaken with the objective of evaluating the uncertainty of climate change predictions by comparing the outputs from Regional Climate Models (RCM) and their resultant impact on rice productivity in Bhavani basin of Tamil Nadu, India. Current and future climate data were developed using RCMs viz., RegCM3 and PRECIS considering SRES A1B scenario for 130 years (1971-2100). The RCM outputs were used in DSSAT and EPIC models for assessing the impact of climate change. Results were compared to assess the magnitude of uncertainty in predicting the future climate and the resultant impacts. Comparison of predicted current climate with observed data indicated that RegCM3 under estimates maximum temperature by 1.8 °C while, PRECIS over estimates by 1.1°C over 40 years (1971 - 2010). The minimum temperature was under estimated by both the models, but with varying magnitude (3.8 °C for RegCM3 and 1 °C for PRECIS). RegCM3 over predicted rainfall (14 %), in contrast, PRECIS underpredicted (30.9 %) the same. Future climate projections indicated gradual increase in maximum and minimum temperatures with progress of time. Increase of maximum and minimum temperatures in PRECIS was 3.7oC and 4.2oC respectively and in RegCM3, it was 3.1oC and 3.7oC by 2100. No clear trend could be observed for rainfall other than increase in the quantum compared to current rainfall. Rice yield simulated over Bhavani basin for current and future climate by DSSAT, without CO2 fertilization effect, indicated reduction of 356 and 217 Kg ha-1decade-1 for

  17. Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling.

    PubMed

    Valinia, Salar; Englund, Göran; Moldan, Filip; Futter, Martyn N; Köhler, Stephan J; Bishop, Kevin; Fölster, Jens

    2014-09-01

    Quantifying the effects of human activity on the natural environment is dependent on credible estimates of reference conditions to define the state of the environment before the onset of adverse human impacts. In Europe, emission controls that aimed at restoring ecological status were based on hindcasts from process-based models or paleolimnological reconstructions. For instance, 1860 is used in Europe as the target for restoration from acidification concerning biological and chemical parameters. A more practical problem is that the historical states of ecosystems and their function cannot be observed directly. Therefore, we (i) compare estimates of acidification based on long-term observations of roach (Rutilus rutilus) populations with hindcast pH from the hydrogeochemical model MAGIC; (ii) discuss policy implications and possible scope for use of long-term archival data for assessing human impacts on the natural environment and (iii) present a novel conceptual model for interpreting the importance of physico-chemical and ecological deviations from reference conditions. Of the 85 lakes studied, 78 were coherently classified by both methods. In 1980, 28 lakes were classified as acidified with the MAGIC model, however, roach was present in 14 of these. In 2010, MAGIC predicted chemical recovery in 50% of the lakes, however roach only recolonized in five lakes after 1990, showing a lag between chemical and biological recovery. Our study is the first study of its kind to use long-term archival biological data in concert with hydrogeochemical modeling for regional assessments of anthropogenic acidification. Based on our results, we show how the conceptual model can be used to understand and prioritize management of physico-chemical and ecological effects of anthropogenic stressors on surface water quality.

  18. Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling

    PubMed Central

    Valinia, Salar; Englund, Göran; Moldan, Filip; Futter, Martyn N; Köhler, Stephan J; Bishop, Kevin; Fölster, Jens

    2014-01-01

    Quantifying the effects of human activity on the natural environment is dependent on credible estimates of reference conditions to define the state of the environment before the onset of adverse human impacts. In Europe, emission controls that aimed at restoring ecological status were based on hindcasts from process-based models or paleolimnological reconstructions. For instance, 1860 is used in Europe as the target for restoration from acidification concerning biological and chemical parameters. A more practical problem is that the historical states of ecosystems and their function cannot be observed directly. Therefore, we (i) compare estimates of acidification based on long-term observations of roach (Rutilus rutilus) populations with hindcast pH from the hydrogeochemical model MAGIC; (ii) discuss policy implications and possible scope for use of long-term archival data for assessing human impacts on the natural environment and (iii) present a novel conceptual model for interpreting the importance of physico-chemical and ecological deviations from reference conditions. Of the 85 lakes studied, 78 were coherently classified by both methods. In 1980, 28 lakes were classified as acidified with the MAGIC model, however, roach was present in 14 of these. In 2010, MAGIC predicted chemical recovery in 50% of the lakes, however roach only recolonized in five lakes after 1990, showing a lag between chemical and biological recovery. Our study is the first study of its kind to use long-term archival biological data in concert with hydrogeochemical modeling for regional assessments of anthropogenic acidification. Based on our results, we show how the conceptual model can be used to understand and prioritize management of physico-chemical and ecological effects of anthropogenic stressors on surface water quality. PMID:24535943

  19. Regional Climate Modeling at ZAMG and climate impact assessment for European ecosystems

    NASA Astrophysics Data System (ADS)

    Anders, I.; Zuvela-Aloise, M.; Matulla, C.

    2010-09-01

    The Austrian society, policy, economy and environment request information on changes in the climate during the last years and especially for the near and remote future. Floodings, landslides, snow avalanches and storms belong to the natural hazards that highly impact Austria's socio-economic and environmental systems. In addition to already applied empirical regional modeling at ZAMG there was started dynamical regional climate modeling (RCM) with the COSMOS-CLM (CCLM, http://www.clm-community.eu/) at ZAMG in 2009. The main objective of the Austrian national project "reclip:century" (in cooperation with other Austrian Institutes) is to provide high resolved data sets of climate simulations for the GAR. A one-way double nesting approach is used. The domain used in the first step is Europe with a spatial resolution of 0.44° (50km). Within this simulation the GAR domain is nested having a resolution of 0.09° (10km). The output of these simulations will be evaluated within the project EVACLIM. This is to be done by comparing the output with a variety of regional scale observational datasets. The results of the simulations will be made available to the impact community. Within the international based project HABIT-CHANGE 10km-resolution climate scenarios will be generated. The data sets produced for two different regions the GAR and the Danube Delta - shall be used as a basis for the work of hydrology modelers and for the development of strategies for adaptation and mitigation Based on the CCLM simulations at ZAMG of about 0.03° (4km) spatial resolution for the Northeast of Austria, the project DISTURBANCE aims to develop integrated models for temperate Alpine forest ecosystems. Important tasks for the forest modeling are not only the assessment of changes in temperature, drought and windstorms but also the interactions between wind damages and bark beetle development which might impact the forest structure and its composition of species. In the project DATAPHEN

  20. Development of an environmental impact assessment evaluation model and its application: Taiwan case study

    SciTech Connect

    Leu, W.S.; Williams, W.P.; Bark, A.W.

    1996-03-01

    This article describes an environmental impact assessment (EIA) evaluation model that can be used to assess the completeness and effectiveness of EIA systems. This model is based on a consideration of the fundamental components of an EIA. The EIA system in Taiwan has been used as the case study to demonstrate how the proposed EIA evaluation model can be applied. Taiwan is demonstrated to have a comprehensive EIA system, which is clearly defined legally and with guidelines available to assist proponents in implementing the system. A particular strength is the requirement for compliance and enforcement monitoring. Important reservations are the lack of an appeals system and the failure to require the consideration of no-action or alternative-action strategies and the lack of public participation at some key points in the EIA process, particularly at the decision-making stage. Training programs could be more comprehensively available to expand national EIA capability. It is concluded that the proposed EIA evaluation model provides a useful tool for the evaluation of EIA systems. National authorities can apply this model to analyze strengths and weaknesses of their EIA systems.

  1. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S> ; KramerWhite, Julie A.; KramerWhite, Julie A.; Labbe, Steve G.; Rotter, Hank A.

    2007-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  2. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    NASA Astrophysics Data System (ADS)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2016-02-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2 ), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  3. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    NASA Astrophysics Data System (ADS)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2017-07-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  4. Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies

    NASA Astrophysics Data System (ADS)

    Ito, Akihiko; Nishina, Kazuya; Reyer, Christopher P. O.; François, Louis; Henrot, Alexandra-Jane; Munhoven, Guy; Jacquemin, Ingrid; Tian, Hanqin; Yang, Jia; Pan, Shufen; Morfopoulos, Catherine; Betts, Richard; Hickler, Thomas; Steinkamp, Jörg; Ostberg, Sebastian; Schaphoff, Sibyll; Ciais, Philippe; Chang, Jinfeng; Rafique, Rashid; Zeng, Ning; Zhao, Fang

    2017-08-01

    Simulating vegetation photosynthetic productivity (or gross primary production, GPP) is a critical feature of the biome models used for impact assessments of climate change. We conducted a benchmarking of global GPP simulated by eight biome models participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) with four meteorological forcing datasets (30 simulations), using independent GPP estimates and recent satellite data of solar-induced chlorophyll fluorescence as a proxy of GPP. The simulated global terrestrial GPP ranged from 98 to 141 Pg C yr-1 (1981-2000 mean); considerable inter-model and inter-data differences were found. Major features of spatial distribution and seasonal change of GPP were captured by each model, showing good agreement with the benchmarking data. All simulations showed incremental trends of annual GPP, seasonal-cycle amplitude, radiation-use efficiency, and water-use efficiency, mainly caused by the CO2 fertilization effect. The incremental slopes were higher than those obtained by remote sensing studies, but comparable with those by recent atmospheric observation. Apparent differences were found in the relationship between GPP and incoming solar radiation, for which forcing data differed considerably. The simulated GPP trends co-varied with a vegetation structural parameter, leaf area index, at model-dependent strengths, implying the importance of constraining canopy properties. In terms of extreme events, GPP anomalies associated with a historical El Niño event and large volcanic eruption were not consistently simulated in the model experiments due to deficiencies in both forcing data and parameterized environmental responsiveness. Although the benchmarking demonstrated the overall advancement of contemporary biome models, further refinements are required, for example, for solar radiation data and vegetation canopy schemes.

  5. Assessing human impact on droughts in a tropical Vietnamese catchment using a combined modelling approach

    NASA Astrophysics Data System (ADS)

    Nauditt, Alexandra; Birkel, Christian; Ribbe, Lars; Tran Van, Tra; Viet, Trinh Quoc; Firoz, Abm; Fink, Manfred

    2015-04-01

    Historical drought frequency, drought risk and types are still poorly investigated in tropical regions and particularly in South East Asia. However, evolving drought periods during the dry season severely impact on socio economic factors such as livelihood (irrigated rice production), hydropower generation and urban water supply in such regions as in the VuGiaThuBon river basin (10,350 km²) in Central Vietnam. Besides the increasing frequency of heat waves and prolonged dry periods without rainfall, hydropower development and over-exploitation of water resources due to demographic and socioeconomic development are the main causes for drought-related disasters and subsequent salt water intrusion. Precipitation and runoff time series from 1982 to 2009 were used to assess drought severity and typology before hydropower development started in 2010. We applied different rainfall-runoff modelling approaches of increasing complexity (HBV light, J2000 and Mike NAM) as well as meteorological and hydrological drought indices such as the Standardized Precipitation Index (SPI) and its runoff homologue (SRI). In the scope of the BMBF funded research project "Land use and Climate Change interactions (LUCCi)" (www.lucci-vietnam.info), the impacts of the human-induced hydrological alterations on drought risk were quantified by integrating the distributed physically-based hydrological model J2000 with the reservoir operation tool HEC ResSim and the River basin model Mike Basin to simulate the runoff to the coastal system. The salt water intrusion behavior in the flat coastal area was represented by the hydrodynamic Mike 11 model relating low flow thresholds to salt intrusion. The different discharge simulations before and after the reservoir construction were compared and evaluated regarding their relevance for the drought severity being dominated either by meteorological dry spells or hydrological alterations. Results show a clear impact of the hydropower reservoir and resulting

  6. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed.

    PubMed

    Nerantzaki, S D; Giannakis, G V; Efstathiou, D; Nikolaidis, N P; Sibetheros, I Α; Karatzas, G P; Zacharias, I

    2015-12-15

    Mediterranean semi-arid watersheds are characterized by a climate type with long periods of drought and infrequent but high-intensity rainfalls. These factors lead to the formation of temporary flow tributaries which present flashy hydrographs with response times ranging from minutes to hours and high erosion rates with significant sediment transport. Modeling of suspended sediment concentration in such watersheds is of utmost importance due to flash flood phenomena, during which, large quantities of sediments and pollutants are carried downstream. The aim of this study is to develop a modeling framework for suspended sediment transport in a karstic watershed and assess the impact of climate change on flow, soil erosion and sediment transport in a hydrologically complex and intensively managed Mediterranean watershed. The Soil and Water Assessment Tool (SWAT) model was coupled with a karstic flow and suspended sediment model in order to simulate the hydrology and sediment yield of the karstic springs and the whole watershed. Both daily flow data (2005-2014) and monthly sediment concentration data (2011-2014) were used for model calibration. The results showed good agreement between observed and modeled values for both flow and sediment concentration. Flash flood events account for 63-70% of the annual sediment export depending on a wet or dry year. Simulation results for a set of IPCC "A1B" climate change scenarios suggested that major decreases in surface flow (69.6%) and in the flow of the springs (76.5%) take place between the 2010-2049 and 2050-2090 time periods. An assessment of the future ecological flows revealed that the frequency of minimum flow events increases over the years. The trend of surface sediment export during these periods is also decreasing (54.5%) but the difference is not statistically significant due to the variability of the sediment. On the other hand, sediment originating from the springs is not affected significantly by climate change

  7. Integrated health impact assessment of travel behaviour: model exploration and application to a fuel price increase.

    PubMed

    Dhondt, Stijn; Kochan, Bruno; Beckx, Carolien; Lefebvre, Wouter; Pirdavani, Ali; Degraeuwe, Bart; Bellemans, Tom; Int Panis, Luc; Macharis, Cathy; Putman, Koen

    2013-01-01

    Transportation policy measures often aim to change travel behaviour towards more efficient transport. While these policy measures do not necessarily target health, these could have an indirect health effect. We evaluate the health impact of a policy resulting in an increase of car fuel prices by 20% on active travel, outdoor air pollution and risk of road traffic injury. An integrated modelling chain is proposed to evaluate the health impact of this policy measure. An activity-based transport model estimated movements of people, providing whereabouts and travelled kilometres. An emission- and dispersion model provided air quality levels (elemental carbon) and a road safety model provided the number of fatal and non-fatal traffic victims. We used kilometres travelled while walking or cycling to estimate the time in active travel. Differences in health effects between the current and fuel price scenario were expressed in Disability Adjusted Life Years (DALY). A 20% fuel price increase leads to an overall gain of 1650 (1010-2330) DALY. Prevented deaths lead to a total of 1450 (890-2040) Years Life Gained (YLG), with better air quality accounting for 530 (180-880) YLG, fewer road traffic injuries for 750 (590-910) YLG and active travel for 170 (120-250) YLG. Concerning morbidity, mostly road safety led to 200 (120-290) fewer Years Lived with Disability (YLD), while air quality improvement only had a minor effect on cardiovascular hospital admissions. Air quality improvement and increased active travel mainly had an impact at older age, while traffic safety mainly affected younger and middle-aged people. This modelling approach illustrates the feasibility of a comprehensive health impact assessment of changes in travel behaviour. Our results suggest that more is needed than a policy rising car fuel prices by 20% to achieve substantial health gains. While the activity-based model gives an answer on what the effect of a proposed policy is, the focus on health may make

  8. Assessing the impact of Amazonia logging with a new ecosystem model

    NASA Astrophysics Data System (ADS)

    Huang, M.; Asner, G. P.; Keller, M.; Berry, J. A.; Bustamante, M. M.

    2006-12-01

    Old-growth Amazonian forests play a fundamental role in the global climate and carbon cycle. Land use in old- growth tropical forests contributes to the accumulation of CO2 in the atmosphere and can alter the hydrological cycle, locally, regionally, and globally. Although deforestation, largely for the conversion of land to food crops or pastures, is the major destructive force in tropical forests worldwide (Houghton et al., 2000), other forest disturbances such as the selective logging have also increased in frequency and extent. Selective logging causes widespread collateral damage to remaining trees, sub-canopy vegetation, and soils, with impacts on hydrological processes, erosion, fire, carbon storage, and plant and animal species. In this study, the impact of selective logging on the carbon budget of the Brazil Amazon region is assessed with a new 3-D version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model, which features: (1) an alternative way of estimating absorbed photosynthetically-active radiation (APAR) by taking advantage of new high-resolution maps of forest canopy gap fraction; (2) a pulse disturbance module to realistically modify the carbon pools after timber harvest; (3) a regrowth module considering changes in community composition; and (4) a radiative transfer module for charactering the dynamic 3-D light environment above the canopy and within gaps after logging. The model was calibrated and validated with field observations from the Large-scale Biosphere Atmosphere Experiment (LBA) and its sensitivity was evaluated with Monte Carlo simulations. The impacts of selected logging on regional carbon budget of the Brazilian Amazon were then assessed under different future climate change scenarios. Results from this study quantify the gross and net carbon storage effects of widespread logging practices throughout the Brazilian Amazon.

  9. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach.

    PubMed

    Luo, Yuzhou; Ficklin, Darren L; Liu, Xiaomang; Zhang, Minghua

    2013-04-15

    The assessment of hydrologic responses to climate change is required in watershed management and planning to protect water resources and environmental quality. This study is designed to evaluate and enhance watershed modeling approach in characterizing climate change impacts on water supply and ecosystem stressors. Soil and Water Assessment Tool (SWAT) was selected as a base model, and improved for the CO2 dependence of potential evapotranspiration and stream temperature prediction. The updated model was applied to quantify the impacts of projected 21st century climate change in the northern Coastal Ranges and western Sierra Nevada, which are important water source areas and aquatic habitats of California. Evapotranspiration response to CO2 concentration varied with vegetation type. For the forest-dominated watersheds in this study, only moderate (1-3%) reductions on evapotranspiration were predicted by solely elevating CO2 concentration under emission scenarios A2 and B1. Modeling results suggested increases in annual average stream temperature proportional to the projected increases in air temperature. Although no temporal trend was confirmed for annual precipitation in California, increases of precipitation and streamflow during winter months and decreases in summers were predicted. Decreased streamflow during summertime, together with the higher projected air temperature in summer than in winter, would increase stream temperature during those months and result in unfavorable conditions for cold-water species. Compared to the present-day conditions, 30-60 more days per year were predicted with average stream temperature >20°C during 2090s. Overall, the hydrologic cycle and water quality of headwater drainage basins of California, especially their seasonality, are very sensitive to projected climate change.

  10. Assessment of Three Finite Element Approaches for Modeling the Ballistic Impact Failure of Metal Plates

    NASA Astrophysics Data System (ADS)

    Mansur, Ali; Nganbe, Michel

    2015-03-01

    The ballistic impact was numerically modeled for AISI 450 steel struck by a 17.3 g ogive nose WC-Co projectile using Abaqus/Explicit. The model was validated using experimental results and data for different projectiles and metal targets. The Abaqus ductile-shear, local principal strain to fracture, and absorbed strain energy at failure criteria were investigated. Due to the highly dynamic nature of ballistic impacts, the absorbed strain energy approach posed serious challenges in estimating the effective deformation volume and yielded the largest critical plate thicknesses for through-thickness penetration (failure). In contrast, the principal strain criterion yielded the lowest critical thicknesses and provided the best agreement with experimental ballistic test data with errors between 0 and 30%. This better accuracy was due to early failure definition when the very first mesh at the target back side reached the strain to fracture, which compensated for the overall model overestimation. The ductile-shear criterion yielded intermediate results between those of the two comparative approaches. In contrast to the ductile-shear criterion, the principal strain criterion requires only basic data readily available for practically all materials. Therefore, it is a viable alternative for an initial assessment of the ballistic performance and pre-screening of a large number of new candidate materials as well as for supporting the development of novel armor systems.

  11. Utilizing geographic information systems technology in the Wyoming cumulative hydrologic impact assessment modeling process

    SciTech Connect

    Hamerlinck, J.D.; Oakleaf, J.R.

    1997-12-31

    The coal-permitting process places heavy demands on both permit applicants and regulatory authorities with respect to the management and analysis of hydrologic data. Currently, this correlation is being addressed for the Powder River Basin, Wyoming by the ongoing Cumulative Hydrologic Impact Assessment (CHIA) efforts at the University of Wyoming. One critical component of the CHIA is the use of a Geographic Information System (GIS) for support, management, manipulation, pre-analysis, and display of data associated with the chosen groundwater and surface water models. This paper will discuss the methodology in using of GIS technology as an integrated tool with the MODFLOW and HEC-1 hydrologic models. Pre-existing GIS links associated with these two models served as a foundation for this effort. However, due to established standards and site specific factors, substantial modifications were performed on existing tools to obtain adequate results. The groundwater-modeling effort required the use of a refined grid in which cell sizes varied based on the relative locations of ongoing mining activities. Surface water modeling was performed in a semi-arid region with very limited topographic relief and predominantly ephemeral stream channels. These were substantial issues that presented challenges for effective GIS/model integration.

  12. Observational techniques for constraining hydraulic and hydrologic models for use in catchment scale flood impact assessment

    NASA Astrophysics Data System (ADS)

    Owen, Gareth; Wilkinson, Mark; Nicholson, Alex; Quinn, Paul; O'Donnell, Greg

    2015-04-01

    river stem and principal tributaries, it is possible to understand in detail how floods develop and propagate, both temporally and spatially. Traditional rainfall-runoff modelling involves the calibration of model parameters to achieve a best fit against an observed flow series, typically at a single location. The modelling approach adopted here is novel in that it directly uses the nested observed information to disaggregate the outlet hydrograph in terms of the source locations. Using a combination of local evidence and expert opinion, the model can be used to assess the impacts of distributed land use management changes and NFM on floods. These studies demonstrate the power of networks of observational instrumentation for constraining hydraulic and hydrologic models for use in prediction.

  13. Assessing the Impact of Retreat Mechanisms in a Simple Antarctic Ice Sheet Model Using Bayesian Calibration

    PubMed Central

    Shaffer, Gary; Pollard, David; Guan, Yawen; Wong, Tony E.; Forest, Chris E.; Keller, Klaus

    2017-01-01

    The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks. PMID:28081273

  14. Assessing the Impact of Retreat Mechanisms in a Simple Antarctic Ice Sheet Model Using Bayesian Calibration.

    PubMed

    Ruckert, Kelsey L; Shaffer, Gary; Pollard, David; Guan, Yawen; Wong, Tony E; Forest, Chris E; Keller, Klaus

    2017-01-01

    The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks.

  15. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    NASA Astrophysics Data System (ADS)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  16. A climate robust integrated modelling framework for regional impact assessment of climate change

    NASA Astrophysics Data System (ADS)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  17. Comparison of different approaches for odour impact assessment: dispersion modelling (CALPUFF) vs field inspection (CEN/TC 264).

    PubMed

    Dentoni, Licinia; Capelli, Laura; Sironi, Selena; Guillot, Jean-Michel; Rossi, Andrea N

    2013-01-01

    Odour impact assessment has become an important environmental issue. Different approaches can be used in order to evaluate the odour impact on receptors, and therefore to regulate it. Among the different possible regulation approaches, the use of dispersion modelling is suggested or required by several national or regional legislations. The wide diffusion of this approach is probably due to the fact that odour dispersion modelling is relatively cheap and results are easily understandable. Another kind of approach attempts to evaluate the odour impact directly in the field relying on a panel of trained human assessors (field inspection). The growing importance of this odour impact assessment method is proved by the current draft of a European Standard (CEN/TC 264), which defines two different methodologies of field inspection: grid measurement and plume measurement. In this study two different approaches were compared, i.e. odour dispersion modelling and field inspection by plume measurement (with specific adaptation for the studied site), the latter consisting in using a panel of examiners for determining the absence or presence of odour downwind relative to the source, in order to evaluate the plume extent. The comparison was based on application of both methods to the assessment of the odour impact of a plant for the composting of sludge from an Italian food industry. The results show that the odour impacts assessed by the two strategies turned out to be quite comparable, thus indicating that, if opportunely applied, both approaches may be effective and complementary for odour impact assessment purposes.

  18. Water quality modeling in the systems impact assessment model for the Klamath River basin - Keno, Oregon to Seiad Valley, California

    USGS Publications Warehouse

    Hanna, R. Blair; Campbell, Sharon G.

    2000-01-01

    This report describes the water quality model developed for the Klamath River System Impact Assessment Model (SIAM). The Klamath River SIAM is a decision support system developed by the authors and other US Geological Survey (USGS), Midcontinent Ecological Science Center staff to study the effects of basin-wide water management decisions on anadromous fish in the Klamath River. The Army Corps of Engineersa?? HEC5Q water quality modeling software was used to simulate water temperature, dissolved oxygen and conductivity in 100 miles of the Klamath River Basin in Oregon and California. The water quality model simulated three reservoirs and the mainstem Klamath River influenced by the Shasta and Scott River tributaries. Model development, calibration and two validation exercises are described as well as the integration of the water quality model into the SIAM decision support system software. Within SIAM, data are exchanged between the water quantity model (MODSIM), the water quality model (HEC5Q), the salmon population model (SALMOD) and methods for evaluating ecosystem health. The overall predictive ability of the water quality model is described in the context of calibration and validation error statistics. Applications of SIAM and the water quality model are described.

  19. A dynamic species modeling approach to assess climate change impacts on California tree species

    NASA Astrophysics Data System (ADS)

    Ries, L. P.; Hannah, L.; Thorne, J.; Seo, C.; Davis, F.

    2007-12-01

    Global climate change during the 21st century is anticipated to have consequences on potential niche viability for woody plant species. Previous research on modeling bioclimatic envelopes has allowed us to predict where to find species assemblages under future climate scenarios and hence predict loss or gain of specific habitats. However, species may not identically respond to climate change. This could result in species disassembling and disagreement between predicted potential niches and realized niches. Therefore, it is critical to examine potential niche shifts at the species level. We used a spatially explicit demographic model to predict shifts in tree species of the northern Sierra Nevada mountains in the context of competition with neighboring plant functional types as well as disturbance (i.e. fire) under various climate change scenarios. Additionally, we incorporated a dispersal model to account for intermediary dispersal strategies. In particular, we were interested in modeling Pinus species found in the "checkerboard" region of the northern Sierra Nevada. These populations are of novel interest due to their disparate management strategies (private vs. public landownership). Our findings have important implications for the assessment of the impact of climate change on these high elevation Montane species.

  20. Photochemical Grid Modelling Study to Assess Potential Air Quality Impacts Associated with Energy Development in Colorado and Northern New Mexico.

    NASA Astrophysics Data System (ADS)

    Parker, L. K.; Morris, R. E.; Zapert, J.; Cook, F.; Koo, B.; Rasmussen, D.; Jung, J.; Grant, J.; Johnson, J.; Shah, T.; Pavlovic, T.

    2015-12-01

    The Colorado Air Resource Management Modeling Study (CARMMS) was funded by the Bureau of Land Management (BLM) to predict the impacts from future federal and non-federal energy development in Colorado and Northern New Mexico. The study used the Comprehensive Air Quality Model with extensions (CAMx) photochemical grid model (PGM) to quantify potential impacts from energy development from BLM field office planning areas. CAMx source apportionment technology was used to track the impacts from multiple (14) different emissions source regions (i.e. field office areas) within one simulation, as well as to assess the cumulative impact of emissions from all source regions combined. The energy development emissions estimates were for the year 2021 for three different development scenarios: (1) low; (2) high; (3) high with emissions mitigation. Impacts on air quality (AQ) including ozone, PM2.5, PM10, NO2, SO2, and air quality related values (AQRVs) such as atmospheric deposition, regional haze and changes in Acid Neutralizing Capacity (ANC) of lakes were quantified, and compared to establish threshold levels. In this presentation, we present a brief summary of the how the emission scenarios were developed, we compare the emission totals for each scenario, and then focus on the ozone impacts for each scenario to assess: (1). the difference in potential ozone impacts under the different development scenarios and (2). to establish the sensitivity of the ozone impacts to different emissions levels. Region-wide ozone impacts will be presented as well as impacts at specific locations with ozone monitors.

  1. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    USGS Publications Warehouse

    Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.

    2009-01-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  2. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    NASA Astrophysics Data System (ADS)

    Breuer, L.; Huisman, J. A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B. F. W.; Frede, H.-G.; Gräff, T.; Hubrechts, L.; Jakeman, A. J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D. P.; Lindström, G.; Seibert, J.; Sivapalan, M.; Viney, N. R.

    2009-02-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  3. Assessing the potential for fish predation to impact zebra mussels (Dreissena polymorpha): Insight from bioenergetics models

    USGS Publications Warehouse

    Eggleton, M.A.; Miranda, L.E.; Kirk, J.P.

    2004-01-01

    Rates of annual food consumption and biomass were modeled for several fish species across representative rivers and lakes in eastern North America. Results were combined to assess the relative potential of fish predation to impact zebra mussels (Dreissena polymorpha). Predicted annual food consumption by fishes in southern waters was over 100% greater than that in northern systems because of warmer annual water temperatures and presumed increases in metabolic demand. Although generally increasing with latitude, biomasses of several key zebra mussel fish predators did not change significantly across latitudes. Biomasses of some less abundant fish predators did increase significantly with latitude, but increases were not of the magnitude to offset predicted decreases in food consumption. Our results generally support the premise that fishes in rivers and lakes of the southern United States (U.S.) have inherently greater potential to impact zebra mussels by predation. Our simulations may provide a partial explanation of why zebra mussel invasions have not been as rapid and widespread in southern U.S. waters compared to the Great Lakes region. ?? Blackwell Munksgaard, 2004.

  4. A systematic impact assessment of GRACE error correlation on data assimilation in hydrological models

    NASA Astrophysics Data System (ADS)

    Schumacher, Maike; Kusche, Jürgen; Döll, Petra

    2016-06-01

    Recently, ensemble Kalman filters (EnKF) have found increasing application for merging hydrological models with total water storage anomaly (TWSA) fields from the Gravity Recovery And Climate Experiment (GRACE) satellite mission. Previous studies have disregarded the effect of spatially correlated errors of GRACE TWSA products in their investigations. Here, for the first time, we systematically assess the impact of the GRACE error correlation structure on EnKF data assimilation into a hydrological model, i.e. on estimated compartmental and total water storages and model parameter values. Our investigations include (1) assimilating gridded GRACE-derived TWSA into the WaterGAP Global Hydrology Model and, simultaneously, calibrating its parameters; (2) introducing GRACE observations on different spatial scales; (3) modelling observation errors as either spatially white or correlated in the assimilation procedure, and (4) replacing the standard EnKF algorithm by the square root analysis scheme or, alternatively, the singular evolutive interpolated Kalman filter. Results of a synthetic experiment designed for the Mississippi River Basin indicate that the hydrological parameters are sensitive to TWSA assimilation if spatial resolution of the observation data is sufficiently high. We find a significant influence of spatial error correlation on the adjusted water states and model parameters for all implemented filter variants, in particular for subbasins with a large discrepancy between observed and initially simulated TWSA and for north-south elongated sub-basins. Considering these correlated errors, however, does not generally improve results: while some metrics indicate that it is helpful to consider the full GRACE error covariance matrix, it appears to have an adverse effect on others. We conclude that considering the characteristics of GRACE error correlation is at least as important as the selection of the spatial discretisation of TWSA observations, while the choice

  5. NUMERICAL MODELS AS ENABLING TOOLS FOR TIDAL-STREAM ENERGY EXTRACTION AND ENVIRONMENTAL IMPACT ASSESSMENT

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping

    2016-06-24

    This paper presents a modeling study conducted to evaluate tidal-stream energy extraction and its associated potential environmental impacts using a three-dimensional unstructured-grid coastal ocean model, which was coupled with a water-quality model and a tidal-turbine module.

  6. Rain Impact Model Assessment of Near-Surface Salinity Stratification Following Rainfall

    NASA Astrophysics Data System (ADS)

    Drushka, K.; Jones, L.; Jacob, M. M.; Asher, W.; Santos-Garcia, A.

    2016-12-01

    Rainfall over oceans produces a layer of fresher surface water, which can have a significant effect on the exchanges between the surface and the bulk mixed layer and also on satellite/in-situ comparisons. For satellite sea surface salinity (SSS) measurements, the standard is the Hybrid Coordinate Ocean Model (HYCOM), but there is a significant difference between the remote sensing sampling depth of 0.01 m and the typical range of 5-10 m of in-situ instruments. Under normal conditions the upper layer of the ocean is well mixed and there is uniform salinity; however, under rainy conditions, there is a dilution of the near-surface salinity that mixes downward by diffusion and by mechanical mixing (gravity waves/wind speed). This significantly modifies the salinity gradient in the upper 1-2 m of the ocean, but these transient salinity stratifications dissipate in a few hours, and the upper layer becomes well mixed at a slightly fresher salinity. Based upon research conducted within the NASA/CONAE Aquarius/SAC-D mission, a rain impact model (RIM) was developed to estimate the change in SSS due to rainfall near the time of the satellite observation, with the objective to identify the probability of salinity stratification. RIM uses HYCOM (which does not include the short-term rain effects) and a NOAA global rainfall product CMORPH to model changes in the near-surface salinity profile in 0.5 h increments. Based upon SPURS-2 experimental near-surface salinity measurements with rain, this paper introduces a term in the RIM model that accounts for the effect of wind speed in the mechanical mixing, which translates into a dynamic vertical diffusivity; whereby a Generalized Ocean Turbulence Model (GOTM) is used to investigate the response to rain events of the upper few meters of the ocean. The objective is to determine how rain and wind forcing control the thickness, stratification strength, and lifetime of fresh lenses and to quantify the impacts of rain-formed fresh lenses

  7. Assessing the use of subgrid land model output to study impacts of land cover change

    NASA Astrophysics Data System (ADS)

    Schultz, Natalie M.; Lee, Xuhui; Lawrence, Peter J.; Lawrence, David M.; Zhao, Lei

    2016-06-01

    Subgrid information from land models has the potential to be a powerful tool for investigating land-atmosphere interactions, but relatively few studies have attempted to exploit subgrid output. In this study, we modify the configuration of the Community Land Model version CLM4.5 so that each plant functional type (PFT) is assigned its own soil column. We compare subgrid and grid cell-averaged air temperature and surface energy fluxes from this modified case (PFTCOL) to a case with the default configuration—a shared soil column for all PFTs (CTRL)—and examine the difference in simulated surface air temperature between grass and tree PFTs within the same grid cells (ΔTGT). The magnitude and spatial patterns of ΔTGT from PFTCOL agree more closely with observations, ranging from -1.5 K in boreal regions to +0.6 K in the tropics. We find that the column configuration has a large effect on PFT-level energy fluxes. In the CTRL configuration, the PFT-level annual mean ground heat flux (G) differs substantially from zero. For example, at a typical tropical grid cell, the annual G is 31.8 W m-2 for the tree PFTs and -14.7 W m-2 for grass PFTs. In PFTCOL, G is always close to zero. These results suggest that care must be taken when assessing local land cover change impacts with subgrid information. For models with PFTs on separate columns, it may be possible to isolate the differences in land surface fluxes between vegetation types that would be associated with land cover change from other climate forcings and feedbacks in climate model simulations.

  8. Uncertainty in Agricultural Impact Assessment

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Mearns, Linda O.; Rivington, Michael; Antle, John M.; Ruane, Alexander C.

    2014-01-01

    This chapter considers issues concerning uncertainty associated with modeling and its use within agricultural impact assessments. Information about uncertainty is important for those who develop assessment methods, since that information indicates the need for, and the possibility of, improvement of the methods and databases. Such information also allows one to compare alternative methods. Information about the sources of uncertainties is an aid in prioritizing further work on the impact assessment method. Uncertainty information is also necessary for those who apply assessment methods, e.g., for projecting climate change impacts on agricultural production and for stakeholders who want to use the results as part of a decision-making process (e.g., for adaptation planning). For them, uncertainty information indicates the degree of confidence they can place in the simulated results. Quantification of uncertainty also provides stakeholders with an important guideline for making decisions that are robust across the known uncertainties. Thus, uncertainty information is important for any decision based on impact assessment. Ultimately, we are interested in knowledge about uncertainty so that information can be used to achieve positive outcomes from agricultural modeling and impact assessment.

  9. Collaborative experiment on intercomparison of regional-scale hydrological models for climate impact assessment

    NASA Astrophysics Data System (ADS)

    Krysanova, Valentina; Hattermann, Fred

    2015-04-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) is a community-driven modelling effort bringing together impact modellers across sectors and scales to create more consistent and comprehensive projections of the impacts of climate change. This project is aimed in establishing a long-term, systematic, cross-sectoral impact model intercomparison process, including comparison of climate change impacts for multiple sectors using ensemble of climate scenarios and applying global and regional impact models. The project is coordinated by the Potsdam Institute for Climate Impact Research. An overview of this project and collaborative experiment related to the regional-scale water sector model intercomparison in ISI-MIP will be presented. The regional-scale water sector modelling includes eleven models applied to eleven large-scale river basins worldwide (not every model is applied to every of eleven basins). In total, 60-65 model applications will be done by several collaborating groups from different Institutions. The modelling tools include: ECOMAG, HBV, HBV-light, HYPE, LASCAM, LISFLOOD, mHM, SWAT, SWIM, VIC and WaterGAP. Eleven river basins chosen for the model application and intercomparison are: the Rhine and Tagus in Europe, the Niger and Blue Nile in Africa, the Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, the Upper Mississippi and Upper Amazon in America, and the Murray-Darling in Australia. Their drainage areas range between 67,490 km2 (Tagus) to 2,460,000 km2 (Lena). Data from global and regional datasets are used for the model setup and calibration. The model calibration and validation was done using the WATCH climate data for all cases, also checking the representation of high and low percentiles of river discharge. For most of the basins, also intermediate gauge stations were included in the calibration. The calibration and validation results, evaluated with the Nash and Sutcliffe efficiency (NSE) and percent bias (PBIAS), are mostly

  10. An Assessment of the CF Submarine Watch Schedule Variants for Impact on Modeled Crew Performance

    DTIC Science & Technology

    2008-03-01

    the model. The general architecture of the SAFTE model is shown in Figure 1. A circadian process influences both cognitive effectiveness and sleep ...after the fire. The results of this modeling effort (based on sleep behaviour estimates) suggested that our submariners were operating at...derived sleep data in order to more accurately model the impact of the watch schedule on crew cognitive effectiveness. Methods. Twenty-one submariners

  11. Improving models to assess impacts of climate change on Mediterranean water resources

    NASA Astrophysics Data System (ADS)

    Rocha, João; Carvalho Santos, Cláudia; Keizer, Jan Jacob; Alexandre Diogo, Paulo; Nunes, João Pedro

    2016-04-01

    In recent decades, water availability for human consumption has faced major constraints due to increasing pollution and reduced water availability. Water resources availability can gain additional stresses and pressures in the context of potential climate change scenarios. For the last decades, the climate change paradigm has been the scope of many researchers and the focus of decision makers, policies and environmental/climate legislation. Decision-makers face a wide range of constrains, as they are forced to define new strategies that merge planning, management and climate change adaptations. In turn, decision-makers must create integrated strategies aiming at the sustainable use of resources. There are multiple uncertainties associated with climate change impact assessment and water resources. Typically, most studies have dealt with uncertainties in emission scenarios and resulting socio-economic conditions, including land-use and water use. Less frequently, studies have address the disparities between the future climates generated by climate models for the same greenhouse gas concentrations; and the uncertainties related with the limited knowledge of how watersheds work, which also limits the capacity to simulate them with models. Therefore, the objective of this study is to apply the SWAT (Soil and Water Assessment Tool) hydrological model to a catchment in Alentejo, southern Portugal; and to evaluate the uncertainty associated both to the calibration of hydrological models and the use of different climate change scenarios and models (a combination of 4 GCM (General Circulation Models) and 1 RCM (Regional Circulation Models) for the scenarios RCP 4.5 and 8.5. The Alentejo region is highly vulnerable to the effects of potential climate changes with particular focus on water resources availability, despite several reservoirs used for freshwater supply and agriculture irrigation (e.g. the Alqueva reservoir - the largest artificial lake of the Iberian Peninsula

  12. Translating road safety into health outcomes using a quantitative impact assessment model.

    PubMed

    Dhondt, Stijn; Pirdavani, Ali; Macharis, Cathy; Bellemans, Tom; Putman, Koen

    2012-12-01

    The majority of traffic safety policies are limited to preventing mortality. However, non-fatal injuries also impose a significant risk of adverse health. Therefore, both mortality and morbidity outcomes should be included in the evaluation of traffic safety policies. The authors propose a method to evaluate different policy options taking into account both fatalities and serious injuries. A health impact model was developed and aligned with a transport and road safety model, calculating the health impact of fatalities and seriously injured traffic victims for two transport scenarios in Flanders and Brussels (Belgium): a base scenario and a fuel price increase of 20% as an alternative. Victim counts were expressed as disability adjusted life years, using a combination of police and medical data. Seriously injured victims were assigned an injury, using injury distributions derived from hospital data, to estimate the resulting health impact from each crash. Health impact of fatalities was taken as the remaining life expectancy at the moment of the fatal crash. The fuel price scenario resulted in a decrease of health impact due to fatalities of 5.53%--5.85% and 3.37%--3.88% for severe injuries. This decrease was however not equal among all road users. With this method, the impact of traffic polices can be evaluated on both mortality and morbidity, while taking into account the variability of different injuries following a road crash. This model however still underestimates the impact due to non-fatal injuries.

  13. Geothermal Electricity Technologies Evaluation Model DOE Tool for Assessing Impact of Research on Cost of Power

    SciTech Connect

    Greg Mines

    2008-01-01

    The U.S. Department of Energy (DOE) has developed a spreadsheet model to provide insight as to how its research activities can impact of cost of producing power from geothermal energy. This model is referred to as GETEM, which stands for “Geothermal Electricity Technologies Evaluation Model”. Based on user input, the model develops estimates of costs associated with exploration, well field development, and power plant construction that are used along with estimated operating costs to provide a predicted power generation cost. The model allows the user to evaluate how reductions in cost, or increases in performance or productivity will impact the predicted power generation cost. This feature provides a means of determining how specific technology improvements can impact generation costs, and as such assists DOE in both prioritizing research areas and identifying where research is needed.

  14. Reduced order models for assessing CO 2 impacts in shallow unconfined aquifers

    DOE PAGES

    Keating, Elizabeth H.; Harp, Dylan H.; Dai, Zhenxue; ...

    2016-01-28

    Risk assessment studies of potential CO2 sequestration projects consider many factors, including the possibility of brine and/or CO2 leakage from the storage reservoir. Detailed multiphase reactive transport simulations have been developed to predict the impact of such leaks on shallow groundwater quality; however, these simulations are computationally expensive and thus difficult to directly embed in a probabilistic risk assessment analysis. Here we present a process for developing computationally fast reduced-order models which emulate key features of the more detailed reactive transport simulations. A large ensemble of simulations that take into account uncertainty in aquifer characteristics and CO2/brine leakage scenarios weremore » performed. Twelve simulation outputs of interest were used to develop response surfaces (RSs) using a MARS (multivariate adaptive regression splines) algorithm (Milborrow, 2015). A key part of this study is to compare different measures of ROM accuracy. We then show that for some computed outputs, MARS performs very well in matching the simulation data. The capability of the RS to predict simulation outputs for parameter combinations not used in RS development was tested using cross-validation. Again, for some outputs, these results were quite good. For other outputs, however, the method performs relatively poorly. Performance was best for predicting the volume of depressed-pH-plumes, and was relatively poor for predicting organic and trace metal plume volumes. We believe several factors, including the non-linearity of the problem, complexity of the geochemistry, and granularity in the simulation results, contribute to this varied performance. The reduced order models were developed principally to be used in probabilistic performance analysis where a large range of scenarios are considered and ensemble performance is calculated. We demonstrate that they effectively predict the ensemble behavior. But, the performance of the RSs is

  15. Reduced order models for assessing CO 2 impacts in shallow unconfined aquifers

    SciTech Connect

    Keating, Elizabeth H.; Harp, Dylan H.; Dai, Zhenxue; Pawar, Rajesh J.

    2016-01-28

    Risk assessment studies of potential CO2 sequestration projects consider many factors, including the possibility of brine and/or CO2 leakage from the storage reservoir. Detailed multiphase reactive transport simulations have been developed to predict the impact of such leaks on shallow groundwater quality; however, these simulations are computationally expensive and thus difficult to directly embed in a probabilistic risk assessment analysis. Here we present a process for developing computationally fast reduced-order models which emulate key features of the more detailed reactive transport simulations. A large ensemble of simulations that take into account uncertainty in aquifer characteristics and CO2/brine leakage scenarios were performed. Twelve simulation outputs of interest were used to develop response surfaces (RSs) using a MARS (multivariate adaptive regression splines) algorithm (Milborrow, 2015). A key part of this study is to compare different measures of ROM accuracy. We then show that for some computed outputs, MARS performs very well in matching the simulation data. The capability of the RS to predict simulation outputs for parameter combinations not used in RS development was tested using cross-validation. Again, for some outputs, these results were quite good. For other outputs, however, the method performs relatively poorly. Performance was best for predicting the volume of depressed-pH-plumes, and was relatively poor for predicting organic and trace metal plume volumes. We believe several factors, including the non-linearity of the problem, complexity of the geochemistry, and granularity in the simulation results, contribute to this varied performance. The reduced order models were developed principally to be used in probabilistic performance analysis where a large range of scenarios are considered and ensemble performance is calculated. We demonstrate that they effectively predict the ensemble behavior. But, the

  16. Integrated Modeling for the Assessment of Ecological Impacts of Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Hagen, S. C.; Lewis, G.; Bartel, R.; Batten, B.; Huang, W.; Morris, J.; Slinn, D. N.; Sparks, J.; Walters, L.; Wang, D.; Weishampel, J.; Yeh, G.

    2010-12-01

    Sea level rise (SLR) has the potential to affect a variety of coastal habitats with a myriad of deleterious ecological effects and to overwhelm human settlements along the coast. SLR should be given serious consideration when more than half of the U.S. population lives within 50 miles of the coast. SLR effects will be felt along coastal beaches and in estuarine waters, with consequences to barrier islands, submerged aquatic vegetation beds, sand and mud flats, oyster reefs, and tidal and freshwater wetlands. Managers of these coastal resources must be aware of potential consequences of SLR and adjust their plans accordingly to protect and preserve the resources under their care. The Gulf Coast provides critical habitats for a majority of the commercially important species in the Gulf of Mexico, which depend on inshore waters for either permanent residence or nursery area. The ecosystem services provided by these coastal habitats are at risk from rising sea level. Our team will assess the risk to coasts and coastal habitats from SLR in a 5-year project. We will apply existing models of circulation and transport from the watershed to the sea. The ultimate prediction will be of sediment loadings to the estuary as a result of overland flow, shoreline and barrier island erosion, and salinity transport, all of which will be used to model the evolution of intertidal marshes (MEM II). Over the five-year course of our research we will be simulating hydrodynamics and transport for all three NERRS reserves, including: Apalachicola, Weeks Bay and Grand Bay. The project will result in products whereby managers will be able to assess marshes, oyster reefs, submerged aquatic vegetation, predict wetland stability and indentify restoration locations for marsh and oyster habitats. In addition, we will produce Decision Support tools that will enable managers to predict future coastal erosion rates for management-specified shorelines. Project outcomes will enable the management

  17. Modelling the Loktak Lake Basin to Assess Human Impact on Water Resources

    NASA Astrophysics Data System (ADS)

    Eliza, K.

    2015-12-01

    Loktak Lake is an internationally important, Ramsar designated, fresh water wetland system in the state of Manipur, India. The lake was also listed under Montreux Record on account of the ecological modifications that the lake system has witnessed over time. A characteristic feature of this lake is the extensive occurrence of coalesced, naturally or otherwise, vegetative masses floating over it. A contiguous 40 km2 area of Phumdis, as these vegetative masses are locally referred to, also constitutes the only natural home of the endemic and endangered species of Manipur's brow-antlered deer popularly known as Sangai. Appropriately notified as Keibul Lamjao National Park by Government of India, this natural feature is known to be the world's largest floating park. Water quality and sediment deposition on account of soil erosion in its catchments are some of the emerging concerns along with a reported enhanced frequency and duration of flooding of the shore areas, reduced fish catch within a visibly deteriorated overall natural ecosystem. Disturbances of watershed processes, command area management practices, ineffective as indeed largely absent, waste management practices and management interventions linked to the Loktak Hydroelectric Project are often cited as the principal triggers that are seen to be responsible for the damage. An effective management protocol for the Lake requires a rigorous understanding of its hydrobiology and eco-hydrodynamics. The present study is carried out to establish such a characterization of the various rivers systems draining directly into the Lake using MIKE SHE, MIKE 11 HD and MIKE 11 ECO Lab modelling platforms. Water quality modelling was limited to dissolved oxygen (DO), biological oxygen demand (BOD) and water temperature. Model calibration was done using the available measured water quality data. The derived results were then investigated for causal correlation with anthropogenic influences to assess human impact on water

  18. Assessing Watershed-Scale, Long-Term Hydrologic Impacts of Land-Use Change Using a GIS-NPS Model

    NASA Astrophysics Data System (ADS)

    Bhaduri, Budhendra; Harbor, Jon; Engel, Bernie; Grove, Matt

    2000-12-01

    Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS

  19. Community Impact Assessment Handbook.

    ERIC Educational Resources Information Center

    Northern Alberta Development Council, Peace River.

    This handbook is intended for communities that wish to undertake their own community impact assessment (CIA). The goal is to enable communities to plan for changes before they occur, so they can cope with changes when they do occur. CIA involves forecasting and evaluating the full range of unintended consequences for the community of development…

  20. Environmental Impact Assessment

    ERIC Educational Resources Information Center

    Castrilli, Joseph; Block, Elizabeth

    1975-01-01

    Increasing concern with pollution and the energy crisis surfaced the need for environmental impact assessment. Certain requirements for such statements have been identified by different Canadian groups. Among them are the need for total citizen involvement and the utilization of these statements, once completed. (MA)

  1. Impact of fault models on probabilistic seismic hazard assessment: the example of the West Corinth rift.

    NASA Astrophysics Data System (ADS)

    Chartier, Thomas; Scotti, Oona; Boiselet, Aurelien; Lyon-Caen, Hélène

    2016-04-01

    Including faults in probabilistic seismic hazard assessment tends to increase the degree of uncertainty in the results due to the intrinsically uncertain nature of the fault data. This is especially the case in the low to moderate seismicity regions of Europe, where slow slipping faults are difficult to characterize. In order to better understand the key parameters that control the uncertainty in the fault-related hazard computations, we propose to build an analytic tool that provides a clear link between the different components of the fault-related hazard computations and their impact on the results. This will allow identifying the important parameters that need to be better constrained in order to reduce the resulting uncertainty in hazard and also provide a more hazard-oriented strategy for collecting relevant fault parameters in the field. The tool will be illustrated through the example of the West Corinth rifts fault-models. Recent work performed in the gulf has shown the complexity of the normal faulting system that is accommodating the extensional deformation of the rift. A logic-tree approach is proposed to account for this complexity and the multiplicity of scientifically defendable interpretations. At the nodes of the logic tree, different options that could be considered at each step of the fault-related seismic hazard will be considered. The first nodes represent the uncertainty in the geometries of the faults and their slip rates, which can derive from different data and methodologies. The subsequent node explores, for a given geometry/slip rate of faults, different earthquake rupture scenarios that may occur in the complex network of faults. The idea is to allow the possibility of several faults segments to break together in a single rupture scenario. To build these multiple-fault-segment scenarios, two approaches are considered: one based on simple rules (i.e. minimum distance between faults) and a second one that relies on physically

  2. Utilizing an Innovative Evaluation Model To Assess Impacts of Training Adult Educators on Reaching Limited Resource Audiences.

    ERIC Educational Resources Information Center

    Safrit, R. Dale; And Others

    An interagency conference, Reading Families and Youth Who Have Limited Resources, was held in September 1992. Over a 2-day period, 186 adult educators and human service professionals participated in 27 different workshops. An innovative evaluation model was developed to assess the impacts of conference participation on reaching audiences who have…

  3. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.

    PubMed

    Notter, Dominic A

    2015-09-01

    Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dose-Response Modeling for Life Cycle Impact Assessment: Findingsof the Portland Review Workshop

    SciTech Connect

    McKone, Thomas E.; Kyle, Amy D.; Jolliet, Olivier; Olsen, StigIrving; Hauschild, Michael

    2006-06-01

    The United Nations Environment Program (UNEP)/SETAC Life Cycle Initiative aims at putting life cycle thinking into practice and at improving the supporting tools for this process through better data and indicators. The initiative has thus launched three programs with associated working groups (see http://www.uneptie.org/pc/sustain/lcinitiative/). The Task Force on Toxic Impacts was established under the Life Cycle Impact Assessment (LCIA) program to establish recommended practice and guidance for use in human toxicity, ecosystem toxicity, and related categories with direct effects on human health and ecosystem health. The workshop consisted of three elements. (A) presentations summarizing (1) the goals of the LCIA Task Force (2) historical approaches to exposure and toxic impacts in LCIA (3) current alternative proposals for addressing human health impacts. Viewgraphs from two of these presentations are provided in Appendix B to this report. (B) Discussion among a panel of experts about the scientific defensibility of these historical and proposed approaches in the context of the goals of the LCIA Task Force 3 on toxicity impacts. (C) Development of the recommendations to the LCIA program and working group for optimum short- and long-term strategies for addressing human health impacts in LCA.

  5. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    NASA Astrophysics Data System (ADS)

    Ajami, Hoori; McCabe, Matthew F.; Evans, Jason P.; Stisen, Simon

    2014-03-01

    Integrated land surface-groundwater models are valuable tools in simulating the terrestrial hydrologic cycle as a continuous system and exploring the extent of land surface-subsurface interactions from catchment to regional scales. However, the fidelity of model simulations is impacted not only by the vegetation and subsurface parameterizations, but also by the antecedent condition of model state variables, such as the initial soil moisture, depth to groundwater, and ground temperature. In land surface modeling, a given model is often run repeatedly over a single year of forcing data until it reaches an equilibrium state: the point at which there is minimal artificial drift in the model state or prognostic variables (most often the soil moisture). For more complex coupled and integrated systems, where there is an increased computational cost of simulation and the number of variables sensitive to initialization is greater than in traditional uncoupled land surface modeling schemes, the challenge is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km2 subcatchment of the Ringkobing Fjord catchment in Denmark. Various measures of spin-up performance were computed for model state variables such as the soil moisture and groundwater storage, as well as for diagnostic variables such as the latent and sensible heat fluxes. The impacts of initial conditions on surface water-groundwater interactions were then explored. Our analysis illustrates that the determination of an equilibrium state depends strongly on the variable and performance measure used. Choosing an improper initialization of the model can generate simulations that lead to a misinterpretation of land surface-subsurface feedback processes and result in large biases in simulated discharge. Estimated spin

  6. High-Resolution Gene Flow Model for Assessing Environmental Impacts of Transgene Escape Based on Biological Parameters and Wind Speed.

    PubMed

    Wang, Lei; Haccou, Patsy; Lu, Bao-Rong

    2016-01-01

    Environmental impacts caused by transgene flow from genetically engineered (GE) crops to their wild relatives mediated by pollination are longstanding biosafety concerns worldwide. Mathematical modeling provides a useful tool for estimating frequencies of pollen-mediated gene flow (PMGF) that are critical for assessing such environmental impacts. However, most PMGF models are impractical for this purpose because their parameterization requires actual data from field experiments. In addition, most of these models are usually too general and ignored the important biological characteristics of concerned plant species; and therefore cannot provide accurate prediction for PMGF frequencies. It is necessary to develop more accurate PMGF models based on biological and climatic parameters that can be easily measured in situ. Here, we present a quasi-mechanistic PMGF model that only requires the input of biological and wind speed parameters without actual data from field experiments. Validation of the quasi-mechanistic model based on five sets of published data from field experiments showed significant correlations between the model-simulated and field experimental-generated PMGF frequencies. These results suggest accurate prediction for PMGF frequencies using this model, provided that the necessary biological parameters and wind speed data are available. This model can largely facilitate the assessment and management of environmental impacts caused by transgene flow, such as determining transgene flow frequencies at a particular spatial distance, and establishing spatial isolation between a GE crop and its coexisting non-GE counterparts and wild relatives.

  7. High-Resolution Gene Flow Model for Assessing Environmental Impacts of Transgene Escape Based on Biological Parameters and Wind Speed

    PubMed Central

    Wang, Lei; Haccou, Patsy; Lu, Bao-Rong

    2016-01-01

    Environmental impacts caused by transgene flow from genetically engineered (GE) crops to their wild relatives mediated by pollination are longstanding biosafety concerns worldwide. Mathematical modeling provides a useful tool for estimating frequencies of pollen-mediated gene flow (PMGF) that are critical for assessing such environmental impacts. However, most PMGF models are impractical for this purpose because their parameterization requires actual data from field experiments. In addition, most of these models are usually too general and ignored the important biological characteristics of concerned plant species; and therefore cannot provide accurate prediction for PMGF frequencies. It is necessary to develop more accurate PMGF models based on biological and climatic parameters that can be easily measured in situ. Here, we present a quasi-mechanistic PMGF model that only requires the input of biological and wind speed parameters without actual data from field experiments. Validation of the quasi-mechanistic model based on five sets of published data from field experiments showed significant correlations between the model-simulated and field experimental-generated PMGF frequencies. These results suggest accurate prediction for PMGF frequencies using this model, provided that the necessary biological parameters and wind speed data are available. This model can largely facilitate the assessment and management of environmental impacts caused by transgene flow, such as determining transgene flow frequencies at a particular spatial distance, and establishing spatial isolation between a GE crop and its coexisting non-GE counterparts and wild relatives. PMID:26959240

  8. Models, Measurements, and Local Decisions: Assessing and Addressing Impacts from Port Expansion and Traffic Activity

    EPA Science Inventory

    This presentation includes a combination of modeling and measurement results to characterize near-source air quality in Newark, New Jersey with consideration of how this information could be used to inform decision making to reduce risk of health impacts. Decisions could include ...

  9. Numerical modeling of chemical spills and assessment of their environmental impacts

    USDA-ARS?s Scientific Manuscript database

    Chemical spills in surface water bodies often occur in modern societies, which cause significant impacts on water quality, eco-environment and drinking water safety. In this paper, chemical spill contamination in water resources was studied using a depth-integrated computational model, CCHE2D, for p...

  10. Models, Measurements, and Local Decisions: Assessing and Addressing Impacts from Port Expansion and Traffic Activity

    EPA Science Inventory

    This presentation includes a combination of modeling and measurement results to characterize near-source air quality in Newark, New Jersey with consideration of how this information could be used to inform decision making to reduce risk of health impacts. Decisions could include ...

  11. A Model Program To Assess a College's Impact by Census Tract.

    ERIC Educational Resources Information Center

    Gelfman, Arnold J.; Banacki, J. Robert

    Using figures for Monmouth County and Brookdale Community College (BCC) in New Jersey, this report presents a methodological model for using census tract data to determine the impact of a college or university on the communities it serves. Introductory material lists the types of demographic information available for each census tract and states…

  12. Best approach to impact assessment is to use empirically based or simulation models to forecast impacts. Environmental Sciences Division Publication No. 1538. [Concerning the impact at power plants on fish populations

    SciTech Connect

    Christensen, S W

    1980-01-01

    This paper advocates the utility of mathematical models, as contrasted with statistical procedures and processional judgment, for assessing environmental impacts. While it would be desirable to use statistical tests to detect and estimate impacts, this is generally difficult or impossible to do, even with existing sources of impact. Empirical modeling, supported by statistical analyses when possible, is proffered as the logical alternative. Next, for purposes of forecasting impacts, the use of models as opposed to professional judgment or experience is considered. The conclusion is reached that, while models cannot answer all of the relevant questions, they can be used effectively and can address problems that are beyond the reach of statistical methods.

  13. A Hydrologic Model Calibration Exercise for Regional Climate Change Impact Assessment of the Conterminous U.S

    NASA Astrophysics Data System (ADS)

    Oubeidillah, A. A.; Kao, S.; Ashfaq, M.

    2012-12-01

    Numerous studies have investigated the hydrological impacts of climate change in the U.S. using projections from multiple general circulation models downscaled by means of regional climate models, statistical methods, and hydrologic models. Most of these studies focused on a small number of local watersheds without consideration to larger-scale regional climate change impacts, or utilized macro-scale hydrologic models with coarser spatial resolution that are insufficient to characterize the delicate surface hydrology. To improve the results of regional hydro-climate impact assessment, there is a need for better spatial coverage as well as resolution of hydrologic models. The main challenge has been the availability of a comprehensive set of higher resolution calibrated physical parameters. Focusing on the need of regional hydro-climate impact assessment, a data-intensive hydrologic model calibration exercise is performed for over 2000 USGS hydrologic Subbasins (HUC8) in the conterminous U.S. at the resolution of 1/24th degree (~4km). Both USGS WaterWatch monthly runoff and NWIS daily gage observation are used to calibrate the baseline variable infiltration capacity (VIC) hydrologic model. Several statistical matrices are used to evaluate the model performance at each HUC8, including the Pearson correlation coefficient (R), root mean square error (RMSE), Nash-Sutcliffe model efficiency coefficient (NSEC), bias (B) and the percent bias (PB). The overall results show that the physical models simulate closely the observed values with about sixty four percent of the HUC8s having an average NSEC of 0.95 The model performance was vastly better in wet region basins than they were in arid region. The current baseline VIC model can hardly be improved in arid and desert regions (covering about twenty percent of the HUC8s) where the NSEC values are below zero. Overall, the new 4-km model implementation for the conterminous U.S. shows promising improvement over the ones

  14. An Introduction to the Value-Added Model and its Use in Short Term Impact Assessment.

    ERIC Educational Resources Information Center

    Bryk, Anthony; Woods, Elinor

    This resource book examines the value-added model approach when used in assessing early childhood Title I (ECT-I) programs. The evaluation design must be able to separate program effects from natural maturation. The basic idea behind the value-added model builds on the notion of natural maturation. The major strengths are that it does not require…

  15. Advantages and limitations of the Five Domains model for assessing welfare impacts associated with vertebrate pest control.

    PubMed

    Beausoleil, N J; Mellor, D J

    2015-01-01

    Many pest control activities have the potential to impact negatively on the welfare of animals, and animal welfare is an important consideration in the development, implementation and evaluation of ethically defensible vertebrate pest control. Thus, reliable and accurate methods for assessing welfare impacts are required. The Five Domains model provides a systematic method for identifying potential or actual welfare impacts associated with an event or situation in four physical or functional domains (nutrition, environment, health or functional status, behaviour) and one mental domain (overall mental or affective state). Here we evaluate the advantages and limitations of the Five Domains model for this purpose and illustrate them using specific examples from a recent assessment of the welfare impacts of poisons used to lethally control possums in New Zealand. The model has a number of advantages which include the following: the systematic identification of a wide range of impacts associated with a variety of control tools; the production of relative rankings of tools in terms of their welfare impacts; the easy incorporation of new information into assessments; and the highlighting of additional information needed. For example, a recent analysis of sodium fluoroacetate (1080) poisoning in possums revealed the need for more information on the period from the onset of clinical signs to the point at which consciousness is lost, as well as on the level of consciousness during or after the occurrence of muscle spasms and seizures. The model is also valuable because it clearly separates physical or functional and affective impacts, encourages more comprehensive consideration of negative affective experiences than has occurred in the past, and allows development and evaluation of targeted mitigation strategies. Caution must be used in interpreting and applying the outputs of the model, most importantly because relative rankings or grades are fundamentally qualitative in

  16. Coastal flooding impact evaluation using an INtegrated DisRuption Assessment (INDRA) model for Varna region, Western Black Sea

    NASA Astrophysics Data System (ADS)

    Andreeva, Nataliya; Eftimova, Petya; Valchev, Nikolay; Prodanov, Bogdan

    2017-04-01

    The study presents evaluation and comparative analysis of storm induced flooding impacts on different coastal receptors at a scale of Varna region using INtegrated DisRuption Assessment (INDRA) model. The model was developed within the FP7 RISC-KIT project, as a part of Coastal Risk Assessment Framework (CRAF) consisting of two phases. CRAF Phase 1 is a screening process that evaluates coastal risk at a regional scale by means of coastal indices approach, which helps to identify potentially vulnerable coastal sectors: hot spots (HS). CRAF Phase 2 has the objective to assess and rank identified hotspots by detailed risk analysis done by jointly performing a hazard assessment and an impact evaluation on different categories (population, businesses, ecosystems, transport and utilities) using INDRA model at a regional level. Basically, the model assess the shock of events by estimating the impact on directly exposed to flooding hazard receptors of different vulnerability, as well as the potential ripple effects during an event in order to assess the "indirect" impacts, which occur outside the hazard area and/or continue after the event for all considered categories. The potential impacts are expressed in terms of uniform "Impact Indicators", which independently score the indirect impacts of these categories assessing disruption and recovery of the receptors. The ultimate hotspot ranking is obtained through the use of a Multi Criteria analysis (MCA) incorporated in the model, considering preferences of stakeholders. The case study area - Varna regional coast - is located on the western Black Sea, Bulgaria. The coastline, with a length of about 70 km, stretches from cape Ekrene to cape St. Atanas and includes Varna Bay. After application of CRAF Phase 1 three hotspots were selected for further analysis: Kabakum beach (HS1), Varna Central beach plus Port wall (HS2) and Artificial Island (HS3). For first two hotspots beaches and associated infrastructure are the assets

  17. Modeling the influence of temporal and spatial factors on the assessment of impacts of pesticides on skylarks.

    PubMed

    Topping, Christopher John; Odderskaer, Peter

    2004-02-01

    Spatio-temporal factors strongly influence the population dynamics of animals; thus there have been calls to integrate these factors in environmental impact assessment of toxic compounds. To date, methodological difficulties have probably prevented this union. However, new modeling techniques that could help are available. This paper presents the construction and application of an agent-based simulation model of skylarks in agricultural landscapes and its use to assess the impact of pesticides relative to changes in landscape structure and mortality assumptions. Simulations indicated that pesticides had a negative impact on skylark population size. The annual reduction in numbers was variable and depended primarily upon migration mortality and an interaction between weather and pesticides. Altering landscape structure, crop diversity, or migration mortality assumptions resulted in a population change of approximately 37%, compared to a mean of 4% for pesticides. It was concluded that factors other than pesticides are likely to be limiting skylark numbers in most landscapes. This study demonstrates the importance of modeling the interactions between spatio-temporal environmental factors and the study organisms. Agent-based models (ABMs) are able to extract these relationships as emergent properties of their mechanistic nature. Therefore, we recommend the use of ABM models in future regulatory assessment of pesticides.

  18. Model Assessment of the Impact on Ozone of Subsonic and Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Danilin, Michael; Scott, Courtney; Shia, Run-Lie

    2000-01-01

    This is the final report for work performed between June 1999 through May 2000. The work represents continuation of the previous contract which encompasses five areas: (1) continued refinements and applications of the 2-D chemistry-transport model (CTM) to assess the ozone effects from aircraft operation in the stratosphere; (2) studying the mechanisms that determine the evolution of the sulfur species in the aircraft plume and how such mechanisms affect the way aircraft sulfur emissions should be introduced into global models; (3) the development of diagnostics in the AER 3-wave interactive model to assess the importance of the dynamics feedback and zonal asymmetry in model prediction of ozone response to aircraft operation; (4) the development of a chemistry parameterization scheme in support of the global modeling initiative (GMI); and (5) providing assessment results for preparation of national and international reports which include the "Aviation and the Global Atmosphere" prepared by the Intergovernmental Panel on Climate Change, "Assessment of the effects of high-speed aircraft in the stratosphere: 1998" by NASA, and the "Model and Measurements Intercomparison II" by NASA. Part of the work was reported in the final report. We participated in the SAGE III Ozone Loss and Validation Experiment (SOLVE) campaign and we continue with our analyses of the data.

  19. Development of Computer Models for the Assessment of Foreign Body Impact Events on Composite Structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1997-01-01

    The objective of this project was to model the 5-3/4 inch pressure vessels used on the NASA RTOP program in an attempt to learn more about how impact damage forms and what are the residual effects of the resulting damage. A global-local finite element model was developed for the bottle and the states of stress in the bottles were determined down to the constituent level. The experimental data that was generated on the NASA RTOP program was not in a form that enabled the model developed under this grant to be correlated with the experimental data. As a result of this exercise it is recommended that an experimental program be designed using statistical design of experiment techniques to generate data that can be used to isolate the phenomenon that control the formation of impact damage. This data should include residual property determinations so that models for post impact structural integrity can be developed. It is also recommended that the global-local methodology be integrated directly into the finite element code. This will require considerable code development.

  20. Assessing the impacts of 1.5°C of global warming - The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) approach

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Warszawski, Lila; Zhao, Fang

    2017-04-01

    In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine

  1. Assessing the impacts of 1.5°C of global warming - The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) approach

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Frieler, K.; Warszawski, L.; Lange, S.; Schewe, J.; Reyer, C.; Ostberg, S.; Piontek, F.; Betts, R. A.; Burke, E.; Ciais, P.; Deryng, D.; Ebi, K. L.; Emanuel, K.; Elliott, J. W.; Galbraith, E. D.; Gosling, S.; Hickler, T.; Hinkel, J.; Jones, C.; Krysanova, V.; Lotze-Campen, H.; Mouratiadou, I.; Popp, A.; Tian, H.; Tittensor, D.; Vautard, R.; van Vliet, M. T. H.; Eddy, T.; Hattermann, F.; Huber, V.; Mengel, M.; Stevanovic, M.; Kirsten, T.; Mueller Schmied, H.; Denvil, S.; Halladay, K.; Suzuki, T.; Lotze, H. K.

    2016-12-01

    In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine

  2. Mechanistic Modeling of Emergency Events: Assessing the Impact of Hypothetical Releases of Anthrax

    PubMed Central

    Isukapalli, S. S.; Lioy, P. J.; Georgopoulos, P. G.

    2011-01-01

    A modular system for source-to-dose-to-effect modeling analysis has been developed based on the modeling environment for total risk studies (MENTOR),(1) and applied to study the impacts of hypothetical atmospheric releases of anthrax spores. The system, MENTOR-2E (MENTOR for Emergency Events), provides mechanistically consistent analysis of inhalation exposures for various release scenarios, while allowing consideration of specific susceptible subpopulations (such as the elderly) at the resolution of individual census tracts. The MENTOR-2E application presented here includes atmospheric dispersion modeling, statistically representative samples of individuals along with corresponding activity patterns, and population-based dosimetry modeling that accounts for activity and physiological variability. Two hypothetical release scenarios were simulated: a 100 g release of weaponized B. anthracis over a period of (a) one hour and (b) 10 hours, and the impact of these releases on population in the State of New Jersey was studied. Results were compared with those from simplified modeling of population dynamics (location, activities, etc.), and atmospheric dispersion of anthrax spores. The comparisons showed that in the two release scenarios simulated, each major approximation resulted in an overestimation of the number of probable infections by a factor of 5 to 10; these overestimations can have significant public health implications when preparing for and responding effectively to an actual release. This is in addition to uncertainties in dose-response modeling, which result in an additional factor of 5 to 10 variation in estimated casualties. The MENTOR-2E system has been developed in a modular fashion so that improvements in individual modules can be readily made without impacting the other modules, and provides a first step toward the development of models that can be used in supporting real-time decision making. PMID:18643828

  3. Health equity impact assessment.

    PubMed

    Povall, Susan L; Haigh, Fiona A; Abrahams, Debbie; Scott-Samuel, Alex

    2014-12-01

    The World Health Organization's Commission on Social Determinants of Health has called for 'health equity impact assessments' of all economic agreements, market regulation and public policies. We carried out an international study to clarify if existing health impact assessment (HIA) methods are adequate for the task of global health equity assessments. We triangulated data from a scoping review of the international literature, in-depth interviews with health equity and HIA experts and an international stakeholder workshop. We found that equity is not addressed adequately in HIAs for a variety of reasons, including inadequate guidance, absence of definitions, poor data and evidence, perceived lack of methods and tools and practitioner unwillingness or inability to address values like fairness and social justice. Current methods can address immediate, 'downstream' factors, but not the root causes of inequity. Extending HIAs to cover macro policy and global equity issues will require new tools to address macroeconomic policies, historical roots of inequities and upstream causes like power imbalances. More sensitive, participatory methods are also required. There is, however, no need for the development of a completely new methodology. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Climate Change Impacts for Conterminous USA: An Integrated Assessment Part 2. Models and Validation

    SciTech Connect

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, R Cesar C.; Brown, Robert A.

    2005-03-01

    As CO{sub 2} and other greenhouse gases accumulate in the atmosphere and contribute to rising global temperatures, it is important to examine how a changing climate may affect natural and managed ecosystems. In this series of papers, we study the impacts of climate change on agriculture, water resources and natural ecosystems in the conterminous United States using a suite of climate change predictions from General Circulation Models (GCMs) as described in Part 1. Here we describe the agriculture model EPIC and the HUMUS water model and validate them with historical crop yields and streamflow data. We compare EPIC simulated grain and forage crop yields with historical crop yields from the US Department of Agriculture and find an acceptable level of agreement for this study. The validation of HUMUS simulated streamflow with estimates of natural streamflow from the US Geological Survey shows that the model is able to reproduce significant relationships and capture major trends.

  5. Using a Numerical Model to Assess the Geomorphic Impacts of Forest Management Scenarios on Streams

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; Eaton, B. C.

    2014-12-01

    In-stream large wood governs the morphology of many small to intermediate streams, while riparian vegetation influences bank strength and channel pattern. Forest management practices such as harvesting and fire suppression therefore dramatically influence channel processes and associated aquatic habitat. The primary objective of this research is to compare the impacts of three common forest scenarios - natural fire disturbance, forest harvesting with a riparian buffer, and fire suppression - on the volume of in-channel wood and the complexity of aquatic habitat in channels at a range of scales. Each scenario is explored through Monte Carlo simulations run over a period of 1000 years using a numerical reach scale channel simulator (RSCS), with variations in tree toppling rate and forest density used to represent each forest management trajectory. The habitat complexity associated with each scenario is assessed based on the area of the bed occupied by pools and spawning sized sediment, the availability of wood cover, and the probability of avulsion. Within the fire scenario, we also use the model to separately investigate the effects of root decay and recovery on equilibrium channel geometry by varying the rooting depth and associated bank strength through time. The results show that wood loading and habitat complexity are influenced by the timing and magnitude of wood recruitment, as well as channel scale. The forest harvesting scenario produces the lowest wood loads and habitat complexity so long as the buffer width is less than the average mature tree height. The natural fire cycle produces the greatest wood loading and habitat complexity, but also the greatest variability because these streams experience significant periods without wood recruitment as forests regenerate. In reaches that experience recurrent fires, width increases in the post-fire period as roots decay, at times producing a change in channel pattern when a threshold width to depth ratio is

  6. Environmental impact assessment of transportation projects: An analysis using an integrated GIS, remote sensing, and spatial modeling approach

    NASA Astrophysics Data System (ADS)

    El-Gafy, Mohamed Anwar

    Transportation projects will have impact on the environment. The general environmental pollution and damage caused by roads is closely associated with the level of economic activity. Although Environmental Impact Assessments (EIAs) are dependent on geo-spatial information in order to make an assessment, there are no rules per se how to conduct an environmental assessment. Also, the particular objective of each assessment is dictated case-by-case, based on what information and analyses are required. The conventional way of Environmental Impact Assessment (EIA) study is a time consuming process because it has large number of dependent and independent variables which have to be taken into account, which also have different consequences. With the emergence of satellite remote sensing technology and Geographic Information Systems (GIS), this research presents a new framework for the analysis phase of the Environmental Impact Assessment (EIA) for transportation projects based on the integration between remote sensing technology, geographic information systems, and spatial modeling. By integrating the merits of the map overlay method and the matrix method, the framework analyzes comprehensively the environmental vulnerability around the road and its impact on the environment. This framework is expected to: (1) improve the quality of the decision making process, (2) be applied both to urban and inter-urban projects, regardless of transport mode, and (3) present the data and make the appropriate analysis to support the decision of the decision-makers and allow them to present these data to the public hearings in a simple manner. Case studies, transportation projects in the State of Florida, were analyzed to illustrate the use of the decision support framework and demonstrate its capabilities. This cohesive and integrated system will facilitate rational decisions through cost effective coordination of environmental information and data management that can be tailored to

  7. Assessing Model Characterization of Single Source Secondary Pollutant Impacts Using 2013 SENEX Field Study Measurements.

    PubMed

    Baker, Kirk R; Woody, Matthew C

    2017-03-15

    Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source.

  8. Model Evaluation and Uncertainty in Agricultural Impacts Assessments: Results and Strategies from the Agricultural Model Intercomparison and Improvement Project (AgMIP)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Hatfield, J.; Jones, J. W.; Ruane, A. C.

    2012-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is an international effort to assess the state of global agricultural modeling and to understand climate impacts on the agricultural sector. AgMIP connects the climate science, crop modeling, and agricultural economic modeling communities to generate probabilistic projections of current and future climate impacts. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. This presentation will describe the general approach of AgMIP, highlight AgMIP efforts to evaluate climate, crop, and economic models, and discuss AgMIP uncertainty assessments. Model evaluation efforts will be outlined using examples from various facets of AgMIP, including climate scenario generation, the wheat crop model intercomparison, and the global agricultural economics model intercomparison being led in collaboration with the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Strategies developed to quantify uncertainty in each component of AgMIP, as well as the propagation of uncertainty through the climate-crop-economic modeling framework, will be detailed and preliminary uncertainty assessments that highlight crucial areas requiring improved models and data collection will be introduced.

  9. Assessment of Fluctuating Reservoir Elevations Using Hydraulic Models and Impacts to Larval Pacific Lamprey Rearing Habitat in the Bonneville Pool

    SciTech Connect

    Mueller, Robert P.; Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.

    2015-02-24

    This report presents the results of a modeling assessment of likely lamprey larval habitat that may be impacted by dewatering of the major tributary delta regions in the Bonneville Pool of the Columbia River. This assessment was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers Portland District (CENWP). The goal of the study was to provide baseline data about how the regions of interest would potentially be impacted at three river flows (10, 50, and 90 percent exceedance flow) for four different forebay elevations at Bonneville Dam. Impacts of unsteady flows at The Dalles Dam and changing forebay elevation at Bonneville Dam for a 2-week period were also assessed. The area of dewatered regions was calculated by importing modeled data outputs into a GIS and then calculating the change in inundated area near tributary deltas for the four Bonneville forebay surface elevations. From the modeled output we determined that the overall change in area is less sensitive to elevations changes during higher river discharges. Changing the forebay elevation at Bonneville and the resulting impact to total dewatered regions was greater at the lowest modeled river flow (97 kcfs) and showed the greatest variation at the White Salmon/Hood River delta regions followed by the Wind, Klickitat and the Little White Salmon rivers. To understand how inundation might change on a daily and hourly basis. Unsteady flow models were run for a 2-week period in 2002 and compared to 2014. The water surface elevation in the upstream pool closely follows that of the Bonneville Dam forebay with rapid changes of 1 to 2-ft possible. The data shows that 2.5-ft variation in water surface elevation occurred during this period in 2002 and a 3.7-ft change occurred in 2014. The duration of these changes were highly variable and generally did not stay constant for more than a 5-hr period.

  10. A framework for combining social impact assessment and risk assessment

    SciTech Connect

    Mahmoudi, Hossein; Renn, Ortwin; Vanclay, Frank; Hoffmann, Volker; Karami, Ezatollah

    2013-11-15

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify the common features of social impact assessment (SIA) and social risk assessment (SRA), and discuss the merits of a combined approach. A hybrid model combining SIA and SRA to form a new approach called, ‘risk and social impact assessment’ (RSIA) is introduced. RSIA expands the capacity of SIA to evaluate and manage the social impacts of risky projects such as nuclear energy as well as natural hazards and disasters such as droughts and floods. We outline the three stages of RSIA, namely: impact identification, impact assessment, and impact management. -- Highlights: • A hybrid model to combine SIA and SRA namely RSIA is proposed. • RSIA can provide the proper mechanism to assess social impacts of natural hazards. • RSIA can play the role of ex-post as well as ex-ante assessment. • For some complicated and sensitive cases like nuclear energy, conducting a RSIA is necessary.

  11. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    NASA Technical Reports Server (NTRS)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  12. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    SciTech Connect

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  13. The role of model selection in representing evapotranspiration processes in climate impact assessments

    NASA Astrophysics Data System (ADS)

    Guo, Danlu; Westra, Seth; Maier, Holger R.

    2015-04-01

    Projected changes to near-surface atmospheric temperature, wind, humidity and solar radiation are expected to lead to changes in evaporative demand - and thus changes to the catchment water balance - in many catchments worldwide. To quantify likely implications on runoff, a modelling chain is commonly used in which the meteorological variables are first converted to potential evapotranspiration (PET), followed by the conversion of PET to runoff using one or more rainfall-runoff models. The role of the PET model and rainfall-runoff model selection on changes to the catchment water balance is assessed using a sensitivity analysis applied to data from five climatologically different catchments in Australia. Changes to temperature have the strongest influence on both evapotranspiration and runoff for all models and catchments, whereas the relative role of the remaining variables depends on both the catchment location and the PET and rainfall-runoff model choice. Importantly, sensitivity experiments show that 1) distributions of climate variables differ for dry/wet conditions; 2) seasonal distribution of changes to PET differs for driving variables. These findings suggest possible interactions between PET model selection and the way that evapotranspiration processes are represented within rainfall-runoff model. For a constant percentage change to PET, this effect can lead to five-fold difference in runoff changes depending on which meteorological variable is being perturbed.

  14. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions

    PubMed Central

    Schulze, Jule; Frank, Karin; Priess, Joerg A.; Meyer, Markus A.

    2016-01-01

    Meeting the world’s growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape

  15. Integrated Modeling to Assess the Impacts of Changes in Climate and Socio Economics on Agriculture in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Malek, K.; Nelson, R.; Stockle, C.; Brady, M.; Dinesh, S.; Barber, M. E.; Yorgey, G.; Kruger, C.

    2012-12-01

    The objective of this work is to assess the impacts of climate change and socio economics on agriculture in the Columbia River basin (CRB) in the Pacific Northwest region of the U.S. and a portion of Southwestern Canada. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of CRB water with 14,000 square kilometers of irrigated area. Agriculture is an important component of the region's economy, with an annual value over 5 billion in Washington State alone. Therefore, the region is relevant for applying a modeling framework that can aid agriculture decision making in the context of a changing climate. To do this, we created an integrated biophysical and socio-economic regional modeling framework that includes human and natural systems. The modeling framework captures the interactions between climate, hydrology, crop growth dynamics, water management and socio economics. The biophysical framework includes a coupled macro-scale physically-based hydrology model (the Variable Infiltration Capacity, VIC model), and crop growth model (CropSyst), as well as a reservoir operations simulation model. Water rights data and instream flow target requirements are also incorporated in the model to simulate the process of curtailment during water shortage. The economics model informs the biophysical model of the short term agricultural producer response to water shortage as well as the long term agricultural producer response to domestic growth and international trade in terms of an altered cropping pattern. The modeling framework was applied over the CRB for the historical period 1976-2006 and compared to a future 30-year period centered on the 2030s. Impacts of climate change on irrigation water availability, crop irrigation demand, frequency of curtailment, and crop yields are quantified and presented. Sensitivity associated with estimates of water availability, irrigation demand, crop

  16. Assessment of the impact of modeling axial compression on PET image reconstruction.

    PubMed

    Belzunce, Martin A; Reader, Andrew J

    2017-07-06

    To comprehensively evaluate both the acceleration and image-quality impacts of axial compression and its degree of modeling in fully 3D PET image reconstruction. Despite being used since the very dawn of 3D PET reconstruction, there are still no extensive studies on the impact of axial compression and its degree of modeling during reconstruction on the end-point reconstructed image quality. In this work, an evaluation of the impact of axial compression on the image quality is performed by extensively simulating data with span values from 1 to 121. In addition, two methods for modeling the axial compression in the reconstruction were evaluated. The first method models the axial compression in the system matrix, while the second method uses an unmatched projector/backprojector, where the axial compression is modeled only in the forward projector. The different system matrices were analyzed by computing their singular values and the point response functions for small subregions of the FOV. The two methods were evaluated with simulated and real data for the Biograph mMR scanner. For the simulated data, the axial compression with span values lower than 7 did not show a decrease in the contrast of the reconstructed images. For span 11, the standard sinogram size of the mMR scanner, losses of contrast in the range of 5-10 percentage points were observed when measured for a hot lesion. For higher span values, the spatial resolution was degraded considerably. However, impressively, for all span values of 21 and lower, modeling the axial compression in the system matrix compensated for the spatial resolution degradation and obtained similar contrast values as the span 1 reconstructions. Such approaches have the same processing times as span 1 reconstructions, but they permit significant reduction in storage requirements for the fully 3D sinograms. For higher span values, the system has a large condition number and it is therefore difficult to recover accurately the higher

  17. Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff.

    PubMed

    Liu, Yaoze; Ahiablame, Laurent M; Bralts, Vincent F; Engel, Bernard A

    2015-01-01

    Best management practices (BMPs) and low impact development (LID) practices are increasingly being used as stormwater management techniques to reduce the impacts of urban development on hydrology and water quality. To assist planners and decision-makers at various stages of development projects (planning, implementation, and evaluation), user-friendly tools are needed to assess the effectiveness of BMPs and LID practices. This study describes a simple tool, the Long-Term Hydrologic Impact Assessment-LID (L-THIA-LID), which is enhanced with additional BMPs and LID practices, improved approaches to estimate hydrology and water quality, and representation of practices in series (meaning combined implementation). The tool was used to evaluate the performance of BMPs and LID practices individually and in series with 30 years of daily rainfall data in four types of idealized land use units and watersheds (low density residential, high density residential, industrial, and commercial). Simulation results were compared with the results of other published studies. The simulated results showed that reductions in runoff volume and pollutant loads after implementing BMPs and LID practices, both individually and in series, were comparable with the observed impacts of these practices. The L-THIA-LID 2.0 model is capable of assisting decision makers in evaluating environmental impacts of BMPs and LID practices, thereby improving the effectiveness of stormwater management decisions.

  18. A computational model for assessing high-velocity debris impact in space applications

    NASA Astrophysics Data System (ADS)

    Bergh, M.; Garcia, V.

    2017-07-01

    Man-made space debris is dominating the background meteorite environment with a growing debris population leading to increased collision risks for satellites, especially in the low Earth orbit and geostationary orbit protected environments. Here we present a computational model for estimating the effect of hypervelocity impact from debris particles on non-shielded propellant and pressurant tanks. Eulerian hydrocode simulation is utilised to model firstly penetration and shock wave formation in the propellant and secondly subsequent detonation wave propagation and interaction with the tank wall. Furthermore, reactive molecular dynamics is used to estimate the risk of detonation in a liquid hydrazine layer. We present simulations of a 3.5 mm aluminium spherical debris particle at a velocity of 14 km/s relative to a hydrazine tank. We find that the degree of damage is strongly dependent on tank temperature and hence on the satellite thermal configuration at its end of life.

  19. A computational model for assessing high-velocity debris impact in space applications

    NASA Astrophysics Data System (ADS)

    Bergh, M.; Garcia, V.

    2017-01-01

    Man-made space debris is dominating the background meteorite environment with a growing debris population leading to increased collision risks for satellites, especially in the low Earth orbit and geostationary orbit protected environments. Here we present a computational model for estimating the effect of hypervelocity impact from debris particles on non-shielded propellant and pressurant tanks. Eulerian hydrocode simulation is utilised to model firstly penetration and shock wave formation in the propellant and secondly subsequent detonation wave propagation and interaction with the tank wall. Furthermore, reactive molecular dynamics is used to estimate the risk of detonation in a liquid hydrazine layer. We present simulations of a 3.5 mm aluminium spherical debris particle at a velocity of 14 km/s relative to a hydrazine tank. We find that the degree of damage is strongly dependent on tank temperature and hence on the satellite thermal configuration at its end of life.

  20. Validity and sensitivity of a model for assessment of impacts of river floodplain reconstruction on protected and endangered species

    SciTech Connect

    Nooij, R.J.W. de . E-mail: R.deNooij@science.ru.nl; Lotterman, K.M.; Sande, P.H.J. van de; Pelsma, T.; Leuven, R.S.E.W.; Lenders, H.J.R.

    2006-11-15

    Environmental Impact Assessment (EIA) must account for legally protected and endangered species. Uncertainties relating to the validity and sensitivity of EIA arise from predictions and valuation of effects on these species. This paper presents a validity and sensitivity analysis of a model (BIO-SAFE) for assessment of impacts of land use changes and physical reconstruction measures on legally protected and endangered river species. The assessment is based on links between species (higher plants, birds, mammals, reptiles and amphibians, butterflies and dragon- and damselflies) and ecotopes (landscape ecological units, e.g., river dune, soft wood alluvial forests), and on value assignment to protected and endangered species using different valuation criteria (i.e., EU Habitats and Birds directive, Conventions of Bern and Bonn and Red Lists). The validity of BIO-SAFE has been tested by comparing predicted effects of landscape changes on the diversity of protected and endangered species with observed changes in biodiversity in five reconstructed floodplains. The sensitivity of BIO-SAFE to value assignment has been analysed using data of a Strategic Environmental Assessment concerning the Spatial Planning Key Decision for reconstruction of the Dutch floodplains of the river Rhine, aimed at flood defence and ecological rehabilitation. The weights given to the valuation criteria for protected and endangered species were varied and the effects on ranking of alternatives were quantified. A statistically significant correlation (p < 0.01) between predicted and observed values for protected and endangered species was found. The sensitivity of the model to value assignment proved to be low. Comparison of five realistic valuation options showed that different rankings of scenarios predominantly occur when valuation criteria are left out of the assessment. Based on these results we conclude that linking species to ecotopes can be used for adequate impact assessments

  1. Secondary impact hazard assessment

    NASA Astrophysics Data System (ADS)

    1986-06-01

    A series of light gas gun shots (4 to 7 km/sec) were performed with 5 mg nylon and aluminum projectiles to determine the size, mass, velocity, and spatial distribution of spall and ejecta from a number of graphite/epoxy targets. Similar determinations were also performed on a few aluminum targets. Target thickness and material were chosen to be representative of proposed Space Station structure. The data from these shots and other information were used to predict the hazard to Space Station elements from secondary particles resulting from impacts of micrometeoroids and orbital debris on the Space Station. This hazard was quantified as an additional flux over and above the primary micrometeoroid and orbital debris flux that must be considered in the design process. In order to simplify the calculations, eject and spall mass were assumed to scale directly with the energy of the projectile. Other scaling systems may be closer to reality. The secondary particles considered are only those particles that may impact other structure immediately after the primary impact. The addition to the orbital debris problem from these primary impacts was not addressed. Data from this study should be fed into the orbital debris model to see if Space Station secondaries make a significant contribution to orbital debris. The hazard to a Space Station element from secondary particles above and beyond the micrometeoroid and orbital debris hazard is categorized in terms of two factors: (1) the 'view factor' of the element to other Space Station structure or the geometry of placement of the element, and (2) the sensitivity to damage, stated in terms of energy. Several example cases were chosen, the Space Station module windows, windows of a Shuttle docked to the Space Station, the habitat module walls, and the photovoltaic solar cell arrays. For the examples chosen the secondary flux contributed no more than 10 percent to the total flux (primary and secondary) above a given calculated

  2. Secondary impact hazard assessment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A series of light gas gun shots (4 to 7 km/sec) were performed with 5 mg nylon and aluminum projectiles to determine the size, mass, velocity, and spatial distribution of spall and ejecta from a number of graphite/epoxy targets. Similar determinations were also performed on a few aluminum targets. Target thickness and material were chosen to be representative of proposed Space Station structure. The data from these shots and other information were used to predict the hazard to Space Station elements from secondary particles resulting from impacts of micrometeoroids and orbital debris on the Space Station. This hazard was quantified as an additional flux over and above the primary micrometeoroid and orbital debris flux that must be considered in the design process. In order to simplify the calculations, eject and spall mass were assumed to scale directly with the energy of the projectile. Other scaling systems may be closer to reality. The secondary particles considered are only those particles that may impact other structure immediately after the primary impact. The addition to the orbital debris problem from these primary impacts was not addressed. Data from this study should be fed into the orbital debris model to see if Space Station secondaries make a significant contribution to orbital debris. The hazard to a Space Station element from secondary particles above and beyond the micrometeoroid and orbital debris hazard is categorized in terms of two factors: (1) the 'view factor' of the element to other Space Station structure or the geometry of placement of the element, and (2) the sensitivity to damage, stated in terms of energy. Several example cases were chosen, the Space Station module windows, windows of a Shuttle docked to the Space Station, the habitat module walls, and the photovoltaic solar cell arrays. For the examples chosen the secondary flux contributed no more than 10 percent to the total flux (primary and secondary) above a given calculated

  3. Assessing the impacts of agricultural change on soil erosion over the last century: a multi-model ensemble approach

    NASA Astrophysics Data System (ADS)

    Sellami, Haykel; Smith, Hugh; Sangster, Heather; Riley, Mark; Chiverrell, Richard; Boyle, John

    2016-04-01

    Soil erosion models (SEMs) are valuable tools for understanding the links between past agricultural practices and soil erosion. Use of SEMs allows assessment of impacts from agricultural change over timescales that exceed instrumental records but correspond to periods for which considerable land use and climate information are available. Here, we develop a modelling framework to investigate the potential impacts of changes in agricultural practices and climate on soil erosion and sediment transport over the last 100 years in six lake catchments in Britain spanning upland and lowland environments. The modelling platform comprises a multi-model ensemble of derivatives of the Morgan-Morgan-Finney (MMF) and RUSLE models. Simulation of change in land use/land cover (LULC), drainage features, crop rotation and livestock grazing are accounted for by reconstructing LULC maps from 1888 to 2007. Reconstructions of climatic conditions combine multiple records using regression and artificial neural network techniques to derive long-term daily precipitation and temperature series from 1880 to present. The modelling platform uses a grid-based modelling approach to handle the spatial distribution and heterogeneity in LULC, soil and topographic information. For each soil type, a database of physical parameters was created by combining information from the literature, LandIS soil database and pedotransfer functions. At each grid cell, a rainfall-Runoff (RR) model based on saturation excess runoff generation mechanisms provides daily soil moisture content. Furthermore, the modelling platform encompasses a crop cover model (CC) based on the Heat Unit approach developed to simulate daily Leaf Area Index for each crop type. Both the RR and CC models are used to update the canopy and ground cover parameters. In the absence of long-term river monitoring data, lake sediment records are used to compare the multi-model simulations thus creating a baseline from which to project impacts from

  4. Assessment of the Impact of Zoledronic Acid on Ovariectomized Osteoporosis Model Using Micro-CT Scanning

    PubMed Central

    Shuai, Bo; Shen, Lin; Yang, Yanping; Ma, Chen; Zhu, Rui; Xu, Xiaojuan

    2015-01-01

    Purpose/Objective Prompted by preliminary findings, this study was conducted to investigate the impact of zoledronic acid on the cancellous bone microstructure and its effect on the level of β-catenin in a mouse model of postmenopausal osteoporosis. Methods and Materials 96 8-week-old specific-pathogen-free C57BL/6 mice were randomly divided into 4 groups (24 per group): a sham group, an ovariectomized osteoporosis model group, an estradiol-treated group, and a zoledronic acid-treated group. Five months after surgery, the third lumbar vertebra and left femur of the animals were dissected and scanned using micro-computed tomography (micro-CT) to acquire three-dimensional imagery of their cancellous bone microstructure. The impact of ovariectomy, the effect of estradiol, and the effect of zoledronic acid intervention on cancellous bone microstructure, as well as on the expression of β-catenin, were evaluated. Results The estradiol-treated and the zoledronic acid-treated group exhibited a significant increase in the bone volume fraction, trabecular number, trabecular thickness, bone surface to bone volume ratio (BS/BV), and β-catenin expression, when compared with those of the control group (P <0.01). In contrast, the structure model index, trabecular separation, and BS/BV were significantly lower compared with those of the model group (P <0.01). No differences were observed in the above parameters between animals of the zoledronic acid-treated and the estradiol-treated group. Conclusion These results suggest that increased β-catenin expression may be the mechanism underlying zoledronic acid-related improvement in the cancellous bone microstructure in ovariectomized mice. Our findings provide a scientific rationale for using zoledronic acid as a therapeutic intervention to prevent bone loss in post-menopausal women. PMID:26148020

  5. Review of uncertainty estimates associated with models for assessing the impact of breeder reactor radioactivity releases

    SciTech Connect

    Miller, C.; Little, C.A.

    1982-08-01

    The purpose is to summarize estimates based on currently available data of the uncertainty associated with radiological assessment models. The models being examined herein are those recommended previously for use in breeder reactor assessments. Uncertainty estimates are presented for models of atmospheric and hydrologic transport, terrestrial and aquatic food-chain bioaccumulation, and internal and external dosimetry. Both long-term and short-term release conditions are discussed. The uncertainty estimates presented in this report indicate that, for many sites, generic models and representative parameter values may be used to calculate doses from annual average radionuclide releases when these calculated doses are on the order of one-tenth or less of a relevant dose limit. For short-term, accidental releases, especially those from breeder reactors located in sites dominated by complex terrain and/or coastal meteorology, the uncertainty in the dose calculations may be much larger than an order of magnitude. As a result, it may be necessary to incorporate site-specific information into the dose calculation under these circumstances to reduce this uncertainty. However, even using site-specific information, natural variability and the uncertainties in the dose conversion factor will likely result in an overall uncertainty of greater than an order of magnitude for predictions of dose or concentration in environmental media following shortterm releases.

  6. Application of a forest-simulation model to assess the energy yield and ecological impact of forest utilization for energy

    SciTech Connect

    Doyle, T W; Shugart, H H; West, D C

    1981-01-01

    This study examines the utilization and management of natural forest lands to meet growing wood-energy demands. An application of a forest simulation model is described for assessing energy returns and long-term ecological impacts of wood-energy harvesting under four general silvicultural practices. Results indicate that moderate energy yields could be expected from mild cutting operations which would significantly effect neither the commercial timber market nor the composition, structure, or diversity of these forests. Forest models can provide an effective tool for determining optimal management strategies that maximize energy returns, minimize environmental detriment, and complement existing land-use plans.

  7. A Local to National Scale Catchment Model Simulation Framework for Hydrological Predictions and Impact Assessments Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Freer, Jim; Coxon, Gemma; Quinn, Niall; Dunne, Toby; Lane, Rosie; Bates, Paul; Wagener, Thorsten; Woods, Ross; Neal, Jeff; Howden, Nicholas; Musuuza, Jude

    2017-04-01

    There is a huge challenge in developing hydrological model structures that can be used for hypothesis testing, prediction, impact assessment and risk analyses over a wide range of spatial scales. There are many reasons why this is the case, from computational demands, to how we define and characterize different features and pathway connectivities in the landscape, that differ depending on the objectives of the study. However there is certainly a need more than ever to explore the trade-offs between the complexity of modelling applied (i.e. spatial discretization, levels of process representation, complexity of landscape representation) compared to the benefits realized in terms of predictive capability and robustness of these predictions during hydrological extremes and during change. Furthermore, there is a further balance, particularly associated with prediction uncertainties, in that it is not desirable to have modelling systems that are too complex compared to the observed data that would ever be available to apply them. This is particularly the case when models are applied to quantify national impact assessments, especially if these are based on validation assessments from smaller more detailed case studies. Therefore the hydrological community needs modelling tools and approaches that enable these trade-offs to be explored and to understand the level of representation needed in models to be 'fit-for-purpose' for a given application. This paper presents a catchment scale national modelling framework based on Dynamic-TOPMODEL specifically setup to fulfil these aims. A key component of the modelling framework is it's structural flexibility, as is the ability to assess model outputs using Monte Carlo simulation techniques. The model build has been automated to work at any spatial scale to the national scale, and within that to control the level of spatial discretisation and connectivity of locally accounted landscape elements in the form of hydrological response

  8. Assessment of the Impacts of Compensation Flow Changes Upon Instream Habitat Using 2D Modelling

    NASA Astrophysics Data System (ADS)

    Mould, D. C.; Lane, S. N.; Christmas, M.

    2004-05-01

    Many millstone-grit rivers in northern England are impounded. In such cases the water company in the area has to release compensation flows from the reservoirs, traditionally to meet industrial needs: these flows are rarely set with ecology in mind; and have commonly involved constant flow. Dam overtopping may create spates, but spawning in many fish species is prompted by a spate flow in the early autumn when dams are rarely full enough to overtop. Such flows are important for fine sediment flushing and controlling the wetted useable area for spawning. Classical physical habitat modelling for instream habitat has been largely reliant upon 1D approaches, such as the Instream Flow Incremental Methodology (IFIM). Here we use a 2D finite element model (FESWMS), to simulate changes in instream habitat with variations in the compensation flow regimes. The spatial resolution of 2D models can be adapted to the scale of fish habitats so providing better representation of the reach-scale flow processes (such as slack water in the margins, wetting and drying) than the 1D case. The model is applied to the Rivers Rivelin and Loxley in Sheffield, Northern England. At the confluence of the two rivers, the compensation flow level is set at 30.6 Thousand Cubic Metres per Day (TCMD). Due to historical reasons, the compensation is not divided equally, as the Loxley receives 28 TCMD whilst the Rivelin receives only 2.6 TCMD. The model is used to simulate a transfer of 6 TCMD from the Loxley to the Rivelin. After validation, model predictions are combined with available habitat requirement data (e.g. velocity and depth needs) to develop an index of change in habitat suitability in terms of first order variables (e.g. velocity, depth and wetted useable area). This suggests that the change in compensation may significantly improve instream ecology in relation to macroinvertebrates, brown trout (Salmo trutta) and bullhead (Cottus gobio) in the Rivelin without causing detrimental impacts

  9. Assessment Of The Impact Of ESA CCI Land Cover Information For Global Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Khlystova, Iryna G.; Loew, A.; Hangemann, S.; Defourny, P.; Brockmann, C.; Bontemps, S.

    2013-12-01

    Addressing the issues of climate change, the European Space Agency has recently initiated the Global Monitoring of an Essential Climate Variables program (ESA Climate Change Initiative). The main objective is to realize the full potential of the long-term global Earth Observation archives that ESA has established over the last thirty years. Due to well organized data access and transparency for the data quality, as well as long-term scientific and technical support, the provided datasets have become very attractive for the use in Earth System Modeling. The Max Plank Institute for Meteorology is contributing to the ESA CCI via the Climate Modeler User Group (CMUG) activities and is responsible for providing a modeler perspective on the Land Cover and Fire Essential Climate Variables. The new ESA land cover ECV has recently released a new global 300-m land cover dataset. This dataset is supported by an interactive tool which allows flexible horizontal re-scaling and conversion from currently accepted satellite specific land classes to the model- specific Plant Functional Types (PFT) categorization. Such a dataset is an ideal starting point for the generation of the land cover information for the initialization of model cover fractions. In this presentation, we show how the usage of this new dataset affects the model performance, comparing it to the standard model set-up, in terms of energy and water fluxes. To do so, we performed a number of offline land-system simulations with original standard JSBACH land cover information and with the new ESA CCI land cover product. We have analyzed the impact of land cover on a simulated surface albedo, temperature and energy fluxes as well as on the biomass load and fire carbon emissions.

  10. Asteroid Impact Deflection and Assessment (AIDA) mission - Full-Scale Modeling and Simulation of Ejecta Evolution and Fates

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene G.; Yu, Yang; Hamilton, Douglas P.; Schwartz, Stephen; Stickle, Angela; Miller, Paul L.; Cheng, Andy F.; Michel, Patrick; AIDA Impact Simulation Working Group

    2016-10-01

    The proposed Asteroid Impact Deflection and Assessment (AIDA) mission includes NASA's Double Asteroid Redirection Test (DART), whose impact with the secondary of near-Earth binary asteroid 65803 Didymos is expected to liberate large amounts of ejecta. We present efforts within the AIDA Impact Simulation Working Group to comprehensively simulate the behavior of this impact ejecta as it moves through and exits the system. Group members at JPL, OCA, and UMD have been working largely independently, developing their own strategies and methodologies. Ejecta initial conditions may be imported from output of hydrocode impact simulations or generated from crater scaling laws derived from point-source explosion models. We started with the latter approach, using reasonable assumptions for the secondary's density, porosity, surface cohesive strength, and vanishingly small net gravitational/rotational surface acceleration. We adopted DART's planned size, mass, closing velocity, and impact geometry for the cratering event. Using independent N-Body codes, we performed Monte Carlo integration of ejecta particles sampled over reasonable particle size ranges, and over launch locations within the crater footprint. In some cases we scaled the number of integrated particles in various size bins to the estimated number of particles consistent with a realistic size-frequency distribution. Dynamical models used for the particle integration varied, but all included full gravity potential of both primary and secondary, the solar tide, and solar radiation pressure (accounting for shadowing). We present results for the proportions of ejecta reaching ultimate fates of escape, return impact on the secondary, and transfer impact onto the primary. We also present the time history of reaching those outcomes, i.e., ejecta clearing timescales, and the size-frequency distribution of remaining ejecta at given post-impact durations. We find large numbers of particles remain in the system for several

  11. Coupling hydrological and impact assessment models to explore nutrient cycling in freshwater systems

    NASA Astrophysics Data System (ADS)

    Bouwman, Lex; van Beek, Rens; Beusen, Arthur; Mogollón, José; Middelburg, Jack

    2016-04-01

    The IMAGE-Global Nutrient Model (GNM) is a new globally distributed, spatially explicit model in which the hydrology model PCR-GLOBWB is coupled to the integrated assessment model IMAGE to simulate nitrogen (N) and phosphorus (P) delivery, and then with a spiraling ecological approach to simulating instream biogeochemistry. Routing the water with dissolved and suspended N and P from upstream grid cells occurs simultaneous with N and P delivery to water bodies within grid cells from diffuse and point sources (wastewater). IMAGE-GNM describes the following diffuse sources associated with the water flow: surface runoff, shallow and deep groundwater, riparian zones. Depending on the landscape features, all these flows may be present within one grid cell. Furthermore, diffuse N and P inputs occur through allochtonous organic matter inputs via litterfall in (temporarily) inundated river floodplains, and atmospheric deposition. In the spiraling concept, the residence time of the water and nutrient uptake velocity determine N and P retention in water bodies. Validation of model results with observations yields acceptable agreement given the global scale of the uncalibrated model. Sensitivity analysis shows shifts in the importance of the different sources, with decreasing importance of natural sources and increasing influence of wastewater and agriculture. IMAGE-GNM can be employed to study the interaction between society and the environment over prolonged time periods. Here we show results for the full 20th century.

  12. Impact assessment of non-indigenous jellyfish species on the estuarine community dynamic: A model of medusa phase

    NASA Astrophysics Data System (ADS)

    Muha, Teja Petra; Teodósio, Maria Alexandra; Ben-Hamadou, Radhouan

    2017-03-01

    Non-indigenous jellyfish species (NIJS) Blackforida virginica have recently been introduced to the Guadiana Estuary. A modelling approach was used for the assessment of the species-specific impact on the native community, during the medusa phase. The novel interactions between NIJS and the native community are assessed through biomass variation including hydrodynamic and climatic variables. Sensitivity analysis shows that both native species, as well as NIJS highly depend on the water discharge regime, nutrient contribution and the amount of detritus production. Abiotic factors such as the Northern Atlantic Oscillation, water discharge, nutrient load and detritus production are the most influential factors for the dynamics of the estuarine ecosystem demonstrated by the model. Low water discharge and low nutrient retention rate appear to be the most favourable conditions for B. virginica. The species is a non-selective predator able to integrate into the system effectively and has caused a decrease in the biomass of other organisms in the estuarine ecosystem throughout the summer after dam removal. The B. virginica significant impact can be evaluated only when the jellyfish detritus food pathway is involved. The B. virginica predatory impact potential, as well as food preference, appears to be the most influential factors for the overall biomass variation. On the contrary, winter freshwater pulses reduce the survival rate of jellyfish polyps which results in a decrease of medusa during summer. The model presents a strong ecohydrology movement where the fluctuation of organism biomass strongly depends on the hydrological conditions including the amount of nutrient load.

  13. The global impact of sutures assessed in a finite element model of a macaque cranium.

    PubMed

    Wang, Qian; Smith, Amanda L; Strait, David S; Wright, Barth W; Richmond, Brian G; Grosse, Ian R; Byron, Craig D; Zapata, Uriel

    2010-09-01

    The biomechanical significance of cranial sutures in primates is an open question because their global impact is unclear, and their material properties are difficult to measure. In this study, eight suture-bone functional units representing eight facial sutures were created in a finite element model of a monkey cranium. All the sutures were assumed to have identical isotropic linear elastic material behavior that varied in different modeling experiments, representing either fused or unfused sutures. The values of elastic moduli employed in these trials ranged over several orders of magnitude. Each model was evaluated under incisor, premolar, and molar biting conditions. Results demonstrate that skulls with unfused sutures permitted more deformations and experienced higher total strain energy. However, strain patterns remained relatively unaffected away from the suture sites, and bite reaction force was likewise barely affected. These findings suggest that suture elasticity does not substantially alter load paths through the macaque skull or its underlying rigid body kinematics. An implication is that, for the purposes of finite element analysis, omitting or fusing sutures is a reasonable modeling approximation for skulls with small suture volume fraction if the research objective is to observe general patterns of craniofacial biomechanics under static loading conditions. The manner in which suture morphology and ossification affect the mechanical integrity of skulls and their ontogeny and evolution awaits further investigation, and their viscoelastic properties call for dynamic simulations. 2010. © 2010 Wiley-Liss, Inc.

  14. Assess Climate Change's Impact on Coastal Rivers using a Coupled Climate-Hydrology Model

    NASA Astrophysics Data System (ADS)

    Xue, Z. G.; Gochis, D.; Yu, W.; Zang, Z.; Sampson, K. M.; Keim, B. D.

    2016-12-01

    In this study we present a coupled climate-hydrological model reproducing the water cycle of three coastal river basins along the northern Gulf of Mexico for the past three decades (1985-2014). Model simulated climate condition, surface physics, and streamflow were well validated against in situ data and satellite-derived products, giving us the confidence that the newly developed WRF-Hydro model can be a robust tool for evaluating climate change's impact on hydrological regime. Trend analysis of model simulated monthly and annual time series indicates that local climate is getting hotter and dryer, specifically during the growing season. Wavelet analysis reveals that local evapotranspiration is strongly correlated with temperature, while soil moisture, water surplus, and streamflow are coupled with precipitation. In addition, local climate is closely correlated with large-scale climate dynamics such as AMO and ENSO. A possible change-point is detected around year 2004, after which, the monthly precipitation decreased by 14.2%, evapotranspiration increased by 2.9%, and water surplus decreased by 36.5%. The implication of the difference between the water surplus (runoff) calculated using the classic Thornthwaite method and river discharge estimated using streamflow records to the coastal environment is also discussed.

  15. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    NASA Astrophysics Data System (ADS)

    De Simone, Francesco; Artaxo, Paulo; Bencardino, Mariantonia; Cinnirella, Sergio; Carbone, Francesco; D'Amore, Francesco; Dommergue, Aurélien; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Landis, Matthew S.; Sprovieri, Francesca; Suzuki, Noriuki; Wängberg, Ingvar; Pirrone, Nicola

    2017-02-01

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improvement when considering a fraction of HgP from BB. The set of sensitivity runs also showed how the quantity and geographical distribution of HgP emitted from BB has a limited impact on a global scale, although the inclusion of increasing fractions HgP does limit Hg0(g) availability to the global atmospheric pool. This reduces the fraction of Hg from BB which deposits to the world's oceans from 71 to 62 %. The impact locally is, however, significant on northern boreal and tropical forests, where fires are

  16. Multi-model assessment of health impacts of air pollution in Europe and the U.S.

    NASA Astrophysics Data System (ADS)

    Im, Ulas; Brandt, Jørgen; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Andersen, Mikael S.; Solazzo, Efisio; Hogrefe, Christian; Galmarini, Stefano

    2017-04-01

    According to the World Health Organization (WHO), air pollution is now the world's largest single environmental health risk. Assessments of health impacts and the associated external costs related to air pollution are estimated based on observed and/or modelled air pollutant levels. Chemistry and transport models (CTMs) are useful tools to calculate the concentrations of health-related pollutants taking into account the non-linearities in the chemistry and the complex interactions between meteorology and chemistry. However, the CTMs include different chemical and aerosol schemes that introduce differences in the representation of the processes. Likewise, will differences in the emissions and boundary conditions used in the models add to the overall uncertainties. These uncertainties are introduced also into the health impact estimates using output from the CTMs. Multi-model (MM) ensembles can be useful to minimize these uncertainties introduced by the individual CTMs. In the present study, the simulated surface concentrations of health related air pollutants for the year 2010 from fifteen modelling groups participating in the AQMEII exercise, serve as input to the Economic Valuation of Air Pollution model (EVA), in order to calculate the impacts of these pollutants on human health and the associated external costs in Europe and U.S. In addition, the impacts of a 20% global emission reduction scenario on the human health and associated costs have been calculated. Preliminary results show that in Europe and U.S., the MM mean number of premature deaths due to air pollution is calculated to be 400 000 and 160 000, respectively. Estimated health impacts among different models can vary up to a factor of 3 and 1.2 in Europe and U.S., respectively. PM is calculated to be the major pollutant affecting the health impacts and the differences in models regarding the treatment of aerosol composition, physics and dynamics is a key factor. The total MM mean costs due to health

  17. Assessment of impacts of land use changes on surface water using L-THIA model (case study: Zayandehrud river basin).

    PubMed

    Mirzaei, M; Solgi, E; Salmanmahiny, A

    2016-12-01

    Land use changes in a basin are the most important factors affecting its hydrology and water quality. A hydrological model is an effective tool in assessing the effects of land use change on surface water. In this study, the effects of land use changes in the Zayandehrud basin are estimated using long-term hydrologic impact assessment model. This model is applicable using long-term data on climate, soil hydrological groups, and land use maps. The study covered three land uses across 18 years (from 1997 to 2015), and we used data on 30 years of precipitation (from 1985 to 2015) in the model. The results of modeling revealed that the average runoff volume increased from around 5,765,034 m(3) in 1997 to 8,894,525 m(3) in 2015. The results also showed an increase in runoff depth. Land use changes over the study period showed an increase of residential areas, bare land, and agricultural lands and a decrease of pasture and forests. The results can be used to make decisions and monitor changes in land use to control the depth and volume of runoff. Using output maps helps in delimitation of the areas that have high runoff average and in implementation of the management plans for controlling the amount of runoff in these areas. Appropriate land use design can decrease impacts of land use changes including hydrologic effects.

  18. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique.

    PubMed

    Wang, Shuxiao; Xing, Jia; Jang, Carey; Zhu, Yun; Fu, Joshua S; Hao, Jiming

    2011-11-01

    Ammonia (NH(3)) is one important precursor of inorganic fine particles; however, knowledge of the impacts of NH(3) emissions on aerosol formation in China is very limited. In this study, we have developed China's NH(3) emission inventory for 2005 and applied the Response Surface Modeling (RSM) technique upon a widely used regional air quality model, the Community Multi-Scale Air Quality Model (CMAQ). The purpose was to analyze the impacts of NH(3) emissions on fine particles for January, April, July, and October over east China, especially those most developed regions including the North China Plain (NCP), Yangtze River delta (YRD), and the Pearl River delta (PRD). The results indicate that NH(3) emissions contribute to 8-11% of PM(2.5) concentrations in these three regions, comparable with the contributions of SO(2) (9-11%) and NO(x) (5-11%) emissions. However, NH(3), SO(2), and NO(x) emissions present significant nonlinear impacts; the PM(2.5) responses to their emissions increase when more control efforts are taken mainly because of the transition between NH(3)-rich and NH(3)-poor conditions. Nitrate aerosol (NO(3)(-)) concentration is more sensitive to NO(x) emissions in NCP and YRD because of the abundant NH(3) emissions in the two regions, but it is equally or even more sensitive to NH(3) emissions in the PRD. In high NO(3)(-) pollution areas such as NCP and YRD, NH(3) is sufficiently abundant to neutralize extra nitric acid produced by an additional 25% of NO(x) emissions. The 90% increase of NH(3) emissions during 1990-2005 resulted in about 50-60% increases of NO(3)(-) and SO(4)(2-) aerosol concentrations. If no control measures are taken for NH(3) emissions, NO(3)(-) will be further enhanced in the future. Control of NH(3) emissions in winter, spring, and fall will benefit PM(2.5) reduction for most regions. However, to improve regional air quality and avoid exacerbating the acidity of aerosols, a more effective pathway is to adopt a multipollutant

  19. Changing Arctic Snow Cover: A Review of Recent Developments and Assessment of Future Needs for Observations, Modelling, and Impacts

    NASA Technical Reports Server (NTRS)

    Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jonsdottir, Svala Ingibjorg; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A.; Terzago, Silivia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qui, Yubao; Callaghan, Terry V.

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  20. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts.

    PubMed

    Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W; Brown, Ross D; Ehrich, Dorothee; Essery, Richard L H; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A; Terzago, Silvia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V

    2016-09-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  1. Changing Arctic Snow Cover: A Review of Recent Developments and Assessment of Future Needs for Observations, Modelling, and Impacts

    NASA Technical Reports Server (NTRS)

    Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; hide

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  2. Assessing the impact of antidrug advertising on adolescent drug consumption: results from a behavioral economic model.

    PubMed

    Block, Lauren G; Morwitz, Vicki G; Putsis, William P; Sen, Subrata K

    2002-08-01

    This study examined whether adolescents' recall of antidrug advertising is associated with a decreased probability of using illicit drugs and, given drug use, a reduced volume of use. A behavioral economic model of influences on drug consumption was developed with survey data from a nationally representative sample of adolescents to determine the incremental impact of antidrug advertising. The findings provided evidence that recall of antidrug advertising was associated with a lower probability of marijuana and cocaine/crack use. Recall of such advertising was not associated with the decision of how much marijuana or cocaine/crack to use. Results suggest that individuals predisposed to try marijuana are also predisposed to try cocaine/crack. The present results provide support for the effectiveness of antidrug advertising programs.

  3. Assessing the Impact of Antidrug Advertising on Adolescent Drug Consumption: Results From a Behavioral Economic Model

    PubMed Central

    Block, Lauren G.; Morwitz, Vicki G.; Putsis, William P.; Sen, Subrata K.

    2002-01-01

    Objectives. This study examined whether adolescents’ recall of antidrug advertising is associated with a decreased probability of using illicit drugs and, given drug use, a reduced volume of use. Methods. A behavioral economic model of influences on drug consumption was developed with survey data from a nationally representative sample of adolescents to determine the incremental impact of antidrug advertising. Results. The findings provided evidence that recall of antidrug advertising was associated with a lower probability of marijuana and cocaine/crack use. Recall of such advertising was not associated with the decision of how much marijuana or cocaine/crack to use. Results suggest that individuals predisposed to try marijuana are also predisposed to try cocaine/crack. Conclusions. The present results provide support for the effectiveness of antidrug advertising programs. (Am J Public Health. 2002;92:1346–1351) PMID:12144995

  4. Integrating mechanistic and empirical model projections to assess climate impacts on tree species distributions in northwestern North America.

    PubMed

    Case, Michael J; Lawler, Joshua J

    2017-05-01

    Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate-driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species-specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate-driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over-predict suitable environmental space under future climatic conditions. © 2016 John Wiley & Sons Ltd.

  5. Impacts of urbanization on summer climate in China: An assessment with coupled land-atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Yu, Deyong; Georgescu, Matei; Wu, Jianguo

    2016-09-01

    China has experienced unprecedented urbanization since the 1980s, resulting in substantial climatic effects from local cities to broad regions. Using the Weather Research and Forecasting model dynamically coupled to an urban canopy model, we quantified the summertime climate effects of urban expansion in China's most rapidly urbanizing regions: Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD). High-resolution landscape data of each urban agglomeration for 1988, 2000, and 2010 were used for simulations. Our results indicated summertime urban warming of 0.85°C for BTH, 0.78°C for YRD, and 0.57°C for PRD, which was substantially greater than previous estimates. Peak summer warming for BTH, YRD, and PRD was 1.5°C, 1°C, and 0.8°C, respectively. In contrast, the loss of moisture was greatest in PRD, with maximum reduction in 2 m water vapor mixing ratio close to 1 g/kg, followed by YRD and BTH with local peak humidity deficits reaching 0.8 g/kg and 0.6 g/kg, respectively. Our results were in better agreement with observations than prior studies because of the usage of high-resolution landscape data and the inclusion of key land-atmospheric interactions. Our study also demonstrated that the warming impacts of polycentric urban forms were less intense but more extensive in space, whereas large concentrated urban aggregations produced much stronger but localized warming effects. These findings provide critical knowledge that improves our understanding of urban-atmospheric interactions, with important implications for urban landscape management and planning to alleviate the negative impacts of urban heat islands.

  6. A stochastic bio-economic pig farm model to assess the impact of innovations on farm performance.

    PubMed

    Ali, B M; Berentsen, P B M; Bastiaansen, J W M; Oude Lansink, A

    2017-10-12

    Recently developed innovations may improve the economic and environmental sustainability of pig production systems. Generic models are needed to assess the impact of innovations on farm performance. Here we developed a stochastic bio-economic farm model for a typical farrow-to-finish pig farm to assess the impact of innovations on private and social profits. The model accounts for emissions of greenhouse gases from feed production and manure by using the shadow price of CO2, and for stochasticity of economic and biological parameters. The model was applied to assess the impact of using locally produced alternative feed sources (i.e. co-products) in the diets of finishing pigs on private and social profits of a typical Brazilian farrow-to-finish pig farm. Three cases were defined: a reference case (with a standard corn-soybean meal-based finishing diet), a macaúba case (with a macaúba kernel cake-based finishing diet) and a co-products case (with a co-products-based finishing diet). Pigs were assumed to be fed to equal net energy intakes in the three cases. Social profits are 34% to 38% lower than private profits in the three cases. Private and social profits are about 11% and 14% higher for the macaúba case than the reference case, whereas they are 3% and 7% lower for the co-products case, respectively. Environmental costs are higher under the alternative cases than the reference case suggesting that other benefits (e.g. costs and land use) should be considered to utilize co-products. The CV of farm profits is between 75% and 87% in the three cases following from the volatility of prices over time and variations in biological parameters between fattening pigs.

  7. Limitations to the Use of Species-Distribution Models for Environmental-Impact Assessments in the Amazon.

    PubMed

    Carneiro, Lorena Ribeiro de A; Lima, Albertina P; Machado, Ricardo B; Magnusson, William E

    2016-01-01

    Species-distribution models (SDM) are tools with potential to inform environmental-impact studies (EIA). However, they are not always appropriate and may result in improper and expensive mitigation and compensation if their limitations are not understood by decision makers. Here, we examine the use of SDM for frogs that were used in impact assessment using data obtained from the EIA of a hydroelectric project located in the Amazon Basin in Brazil. The results show that lack of knowledge of species distributions limits the appropriate use of SDM in the Amazon region for most target species. Because most of these targets are newly described and their distributions poorly known, data about their distributions are insufficient to be effectively used in SDM. Surveys that are mandatory for the EIA are often conducted only near the area under assessment, and so models must extrapolate well beyond the sampled area to inform decisions made at much larger spatial scales, such as defining areas to be used to offset the negative effects of the projects. Using distributions of better-known species in simulations, we show that geographical-extrapolations based on limited information of species ranges often lead to spurious results. We conclude that the use of SDM as evidence to support project-licensing decisions in the Amazon requires much greater area sampling for impact studies, or, alternatively, integrated and comparative survey strategies, to improve biodiversity sampling. When more detailed distribution information is unavailable, SDM will produce results that generate uncertain and untestable decisions regarding impact assessment. In many cases, SDM is unlikely to be better than the use of expert opinion.

  8. Limitations to the Use of Species-Distribution Models for Environmental-Impact Assessments in the Amazon

    PubMed Central

    Carneiro, Lorena Ribeiro de A.; Lima, Albertina P.; Machado, Ricardo B.; Magnusson, William E.

    2016-01-01

    Species-distribution models (SDM) are tools with potential to inform environmental-impact studies (EIA). However, they are not always appropriate and may result in improper and expensive mitigation and compensation if their limitations are not understood by decision makers. Here, we examine the use of SDM for frogs that were used in impact assessment using data obtained from the EIA of a hydroelectric project located in the Amazon Basin in Brazil. The results show that lack of knowledge of species distributions limits the appropriate use of SDM in the Amazon region for most target species. Because most of these targets are newly described and their distributions poorly known, data about their distributions are insufficient to be effectively used in SDM. Surveys that are mandatory for the EIA are often conducted only near the area under assessment, and so models must extrapolate well beyond the sampled area to inform decisions made at much larger spatial scales, such as defining areas to be used to offset the negative effects of the projects. Using distributions of better-known species in simulations, we show that geographical-extrapolations based on limited information of species ranges often lead to spurious results. We conclude that the use of SDM as evidence to support project-licensing decisions in the Amazon requires much greater area sampling for impact studies, or, alternatively, integrated and comparative survey strategies, to improve biodiversity sampling. When more detailed distribution information is unavailable, SDM will produce results that generate uncertain and untestable decisions regarding impact assessment. In many cases, SDM is unlikely to be better than the use of expert opinion. PMID:26784891

  9. Using Different Spatial Scales of Climate Data for Regional Climate Impact Assessment: Effect on Crop Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Trabucco, A.; Montesarchio, M.; Mercogliano, P.; Spano, D.

    2015-12-01

    The high vulnerability of the agricultural sector to climate conditions causes serious concern regarding climate change impacts on crop development and production, particularly in vulnerable areas like the Mediterranean Basin. Crop simulation models are the most common tools applied for the assessment of such impacts on crop development and yields, both at local and regional scales. However, the use of these models in regional impact studies requires spatial input data for weather, soil, management, etc, whose resolution could affect simulation results. Indeed, the uncertainty in projecting climate change impacts on crop phenology and yield at the regional scale is affected not only by the uncertainty related to climate models and scenarios, but also by the downscaling methods and the resolution of climate data. The aim of this study was the evaluation of the effects of spatial resolutions of climate projections in estimating maturity date and grain yield for different varieties of durum wheat, common wheat and maize in Italy. The simulations were carried out using the CSM-CERES-Wheat and CSM-CERES-Maize crop models included in the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, parameterized and evaluated in different experimental sites located in Italy. Dynamically downscaled climate data at different resolutions and different RCP scenarios were used as input in the crop models. A spatial platform, DSSAT-CSM based, developed in R programming language was applied to perform the simulation of maturity date and grain yield for durum wheat, common wheat and maize in each grid cell. Results, analyzed at the national and regional level, will be discussed.

  10. Impact Assessment of Repeated Exposure of Organotypic 3D Bronchial and Nasal Tissue Culture Models to Whole Cigarette Smoke

    PubMed Central

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V.; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C.

    2015-01-01

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers. PMID:25741927

  11. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using Coupled Model Intercomparison Project Phase 5 earth system models.

    PubMed

    Tompkins, Adrian M; Caporaso, Luca

    2016-03-31

    Using mathematical modelling tools, we assessed the potential for land use change (LUC) associated with the Intergovernmental Panel on Climate Change low- and high-end emission scenarios (RCP2.6 and RCP8.5) to impact malaria transmission in Africa. To drive a spatially explicit, dynamical malaria model, data from the four available earth system models (ESMs) that contributed to the LUC experiment of the Fifth Climate Model Intercomparison Project are used. Despite the limited size of the ESM ensemble, stark differences in the assessment of how LUC can impact climate are revealed. In three out of four ESMs, the impact of LUC on precipitation and temperature over the next century is limited, resulting in no significant change in malaria transmission. However, in one ESM, LUC leads to increases in precipitation under scenario RCP2.6, and increases in temperature in areas of land use conversion to farmland under both scenarios. The result is a more intense transmission and longer transmission seasons in the southeast of the continent, most notably in Mozambique and southern Tanzania. In contrast, warming associated with LUC in the Sahel region reduces risk in this model, as temperatures are already above the 25-30°C threshold at which transmission peaks. The differences between the ESMs emphasise the uncertainty in such assessments. It is also recalled that the modelling framework is unable to adequately represent local-scale changes in climate due to LUC, which some field studies indicate could be significant.

  12. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.

    2005-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  13. Characterizing Emissions from Prescribed Fires and Assessing Impacts to Air Quality in the Lake Tahoe Basin Using Dispersion Modeling

    NASA Astrophysics Data System (ADS)

    Malamakal, Tom M.

    A PM2.5 monitoring network was established around Lake Tahoe during fall 2011, which, in conjunction with measurements at prescribed burns and smoke dispersion modeling based on the Fire Emission Production Simulator and the Hybrid Single Particle Lagrangian Integrated Trajectory (FEPS-HYSPLIT) Model, served to evaluate the prescribed burning impacts on air quality. Emissions from pile and understory prescribed burns were characterized using a mobile air monitoring system. In field PM2.5 emission factors showed ranges consistent with laboratory combustion of wet and dry fuels. Measurements in the smoke plume showed progression from flaming to smoldering phase consistent with FEPS and PM2.5 emission factors generally increased with decreasing combustion efficiency. Model predicted smoke contributions are consistent with elevated ambient PM2.5 concentrations in three case studies, and high meteorological model resolution (2km x 2 km) seems to produce accurate smoke arriving times. In other cases, the model performance is difficult to evaluate due to low predicted smoke contributions relative to the typical ambient PM2.5 level. Synergistic assessment of modeling and measurement can be used to determine basin air quality impact. The findings from this study will help land management agencies better understand the implications of managing fire at the wildland-urban interface.

  14. Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Mateo, Cherry May; Hanasaki, Naota; Komori, Daisuke; Tanaka, Kenji; Kiguchi, Masashi; Champathong, Adisorn; Sukhapunnaphan, Thada; Yamazaki, Dai; Oki, Taikan

    2014-09-01

    A catastrophic flood event which caused massive economic losses occurred in Thailand, in 2011. Several studies have already been conducted to analyze the Thai floods, but none of them have assessed the impacts of reservoir operation on flood inundation. This study addresses this gap by combining physically based hydrological models to explicitly simulate the impacts of reservoir operation on flooding in the Chao Phraya River Basin, Thailand. H08, an integrated water resources model with a reservoir operation module, was combined with CaMa-Flood, a river routing model with representation of flood dynamics. The combined H08-CaMa model was applied to simulate and assess the historical and alternative reservoir operation rules in the two largest reservoirs in the basin. The combined H08-CaMa model effectively simulated the 2011 flood: regulated flows at a major gauging station have high daily NSE-coefficient of 92% as compared with observed discharge; spatiotemporal extent of simulated flood inundation match well with those of satellite observations. Simulation results show that through the operation of reservoirs in 2011, flood volume was reduced by 8.6 billion m3 and both depth and area of flooding were reduced by 40% on the average. Nonetheless, simple modifications in reservoir operation proved to further reduce the flood volume by 2.4 million m3 and the depth and area of flooding by 20% on the average. By modeling reservoir operation with a hydrodynamic model, a more realistic simulation of the 2011 Thai flood was made possible, and the potential of reducing flood inundation through improved reservoir management was quantified.

  15. Towards a climate impact assessment of the Tarim River, NW China: integrated hydrological modelling using SWIM

    NASA Astrophysics Data System (ADS)

    Wortmann, Michel

    2014-05-01

    The Tarim River is the principle water source of the Xinjiang Uyghur Autonomous Region, NW China and the country's largest endorheic river, terminating in the Taklamakan desert. The vast majority of discharge is generated in the glaciated mountain ranges to the north (Tian Shan), south (Kunlun Shan/Tibetan Plateau) and west (Pamir Mountains) of the Taklamakan desert. The main water user is the intensive irrigation agriculture for mostly cotton and fruit production in linear river oases of the middle and lower reaches as well as a population of 10 Mil. people. Over the past 40 years, an increase in river discharge was reported, assumed to be caused by enhanced glacier melt due to a warming climate. Rapid population growth and economic development have led to a significant expansion of area under irrigation, resulting in water shortages for downstream users and the floodplain vegetation. Water resource planning and management of the Tarim require integrated assessment tools to examine changes under future climate change, land use and irrigation scenarios. The development of such tools, however, is challenged by sparse climate and discharge data as well as available data on water abstractions and diversions. The semi-distributed, process-based hydrological model SWIM (Soil and Water Integrated Model) was implemented for the headwater and middle reaches that generate over 90% of discharge, including the Aksu, Hotan and Yarkant rivers. It includes the representation of snow and glacier melt as well as irrigation abstractions. Once calibrated and validated to river discharge, the model is used to analyse future climate scenarios provided by one physically-based and one statistical regional climate model (RCM). Preliminary results of the model calibration and validation indicate that SWIM is able simulate river discharge adequately, despite poor data conditions. Snow and glacier melt account for the largest share in river discharge. The modelling results will devise

  16. Application of Non-Deterministic Methods to Assess Modeling Uncertainties for Reinforced Carbon-Carbon Debris Impacts

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Fasanella, Edwin L.; Melis, Matthew; Carney, Kelly; Gabrys, Jonathan

    2004-01-01

    The Space Shuttle Columbia Accident Investigation Board (CAIB) made several recommendations for improving the NASA Space Shuttle Program. An extensive experimental and analytical program has been developed to address two recommendations related to structural impact analysis. The objective of the present work is to demonstrate the application of probabilistic analysis to assess the effect of uncertainties on debris impacts on Space Shuttle Reinforced Carbon-Carbon (RCC) panels. The probabilistic analysis is used to identify the material modeling parameters controlling the uncertainty. A comparison of the finite element results with limited experimental data provided confidence that the simulations were adequately representing the global response of the material. Five input parameters were identified as significantly controlling the response.

  17. Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model

    SciTech Connect

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2015-10-01

    In this paper, an integrated assessment model (IAM) uses a newly-developed Monte Carlo analysis capability to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The paper finds that aggressive building-energy codes and equipment standards are an effective, cost-saving way to reduce energy consumption in buildings and greenhouse gas emissions in U.S. states. This conclusion is robust to significant uncertainties in population, economic activity, climate, carbon prices, and technology performance and costs.

  18. Development and Testing of a Simple Calibration Technique for Long-Term Hydrological Impact Assessment (L-THIA) Model

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, S.; Harbor, J.

    2001-12-01

    Hydrological studies are significant part of every engineering, developmental project and geological studies done to assess and understand the interactions between the hydrology and the environment. Such studies are generally conducted before the beginning of the project as well as after the project is completed, such that a comprehensive analysis can be done on the impact of such projects on the local and regional hydrology of the area. A good understanding of the chain of relationships that form the hydro-eco-biological and environmental cycle can be of immense help in maintaining the natural balance as we work towards exploration and exploitation of the natural resources as well as urbanization of undeveloped land. Rainfall-Runoff modeling techniques have been of great use here for decades since they provide fast and efficient means of analyzing vast amount of data that is gathered. Though process based, detailed models are better than the simple models, the later ones are used more often due to their simplicity, ease of use, and easy availability of data needed to run them. The Curve Number (CN) method developed by the United States Department of Agriculture (USDA) is one of the most widely used hydrologic modeling tools in the US, and has earned worldwide acceptance as a practical method for evaluating the effects of land use changes on the hydrology of an area. The Long-Term Hydrological Impact Assessment (L-THIA) model is a basic, CN-based, user-oriented model that has gained popularity amongst watershed planners because of its reliance on readily available data, and because the model is easy to use (http://www.ecn.purdue.edu/runoff) and produces results geared to the general information needs of planners. The L-THIA model was initially developed to study the relative long-term hydrologic impacts of different land use (past/current/future) scenarios, and it has been successful in meeting this goal. However, one of the weaknesses of L-THIA, as well as other

  19. Policies to Reduce Influenza in the Workplace: Impact Assessments Using an Agent-Based Model

    PubMed Central

    Grefenstette, John J.; Galloway, David; Albert, Steven M.; Burke, Donald S.

    2013-01-01

    Objectives. We examined the impact of access to paid sick days (PSDs) and stay-at-home behavior on the influenza attack rate in workplaces. Methods. We used an agent-based model of Allegheny County, Pennsylvania, with PSD data from the US Bureau of Labor Statistics, standard influenza epidemic parameters, and the probability of staying home when ill. We compared the influenza attack rate among employees resulting from workplace transmission, focusing on the effects of presenteeism (going to work when ill). Results. In a simulated influenza epidemic (R0 = 1.4), the attack rate among employees owing to workplace transmission was 11.54%. A large proportion (72.00%) of this attack rate resulted from exposure to employees engaging in presenteeism. Universal PSDs reduced workplace infections by 5.86%. Providing 1 or 2 “flu days”—allowing employees with influenza to stay home—reduced workplace infections by 25.33% and 39.22%, respectively. Conclusions. PSDs reduce influenza transmission owing to presenteeism and, hence, the burden of influenza illness in workplaces. PMID:23763426

  20. Economic Assessment of Correlated Energy-Water Impacts using Computable General Equilibrium Modeling

    NASA Astrophysics Data System (ADS)

    Qiu, F.; Andrew, S.; Wang, J.; Yan, E.; Zhou, Z.; Veselka, T.

    2016-12-01

    Many studies on energy and water are rightfully interested in the interaction of water and energy, and their projected dependence into the future. Water is indeed an essential input to the power sector currently, and energy is required to pump water for end use in either household consumption or in industrial uses. However, each presented study either qualitatively discusses the issues, particularly about how better understanding the interconnectedness of the system is paramount in getting better policy recommendations, or considers a partial equilibrium framework where water use and energy use changes are considered explicitly without thought to other repercussions throughout the regional/national/international economic landscapes. While many studies are beginning to ask the right questions, the lack of numerical rigor raises questions of concern in conclusions discerned. Most use life cycle analysis as a method for providing numerical results, though this lacks the flexibility that economics can provide. In this study, we will perform economic analysis using computable general equilibrium models with energy-water interdependencies captured as an important factor. We atempt to answer important and interesting questions in the studies: how can we characterize the economic choice of energy technology adoptions and their implications on water use in the domestic economy. Moreover, given predictions of reductions in rain fall in the near future, how does this impact the water supply in the midst of this energy-water trade-off?

  1. Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction.

    PubMed

    Baruffi, F; Cisotto, A; Cimolino, A; Ferri, M; Monego, M; Norbiato, D; Cappelletto, M; Bisaglia, M; Pretner, A; Galli, A; Scarinci, A; Marsala, V; Panelli, C; Gualdi, S; Bucchignani, E; Torresan, S; Pasini, S; Critto, A; Marcomini, A

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life+ project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced

  2. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    SciTech Connect

    Quinn, John J.; Greer, Christopher B.; Carr, Adrianne E.

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  3. Assessing the Impacts of Flooding Caused by Extreme Rainfall Events Through a Combined Geospatial and Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Santillan, J. R.; Amora, A. M.; Makinano-Santillan, M.; Marqueso, J. T.; Cutamora, L. C.; Serviano, J. L.; Makinano, R. M.

    2016-06-01

    In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the

  4. Combining Satellite Data and Models to Assess the Impacts of Urbanization on the Continental US Surface Climate

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.; hide

    2013-01-01

    Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate

  5. Assessing the Impact of the 4MAT Teaching Model across Multiple Disciplines in Higher Education

    ERIC Educational Resources Information Center

    Nicoll-Senft, Joan M.; Seider, Susan N.

    2010-01-01

    Much attention has focused on learning styles and their impact on the teaching and learning process; however, little has been done to systematically incorporate learning style theory into actual teaching, nor to systematically examine its potential impact on student learning in higher education. As part of a Scholarship of Teaching and Learning…

  6. Assessing the Impact of the 4MAT Teaching Model across Multiple Disciplines in Higher Education

    ERIC Educational Resources Information Center

    Nicoll-Senft, Joan M.; Seider, Susan N.

    2010-01-01

    Much attention has focused on learning styles and their impact on the teaching and learning process; however, little has been done to systematically incorporate learning style theory into actual teaching, nor to systematically examine its potential impact on student learning in higher education. As part of a Scholarship of Teaching and Learning…

  7. A system dynamics modelling approach to assess the impact of launching a new nicotine product on population health outcomes.

    PubMed

    Hill, Andrew; Camacho, Oscar M

    2017-03-22

    In 2012 the US FDA suggested the use of mathematical models to assess the impact of releasing new nicotine or tobacco products on population health outcomes. A model based on system dynamics methodology was developed to project the potential effects of a new nicotine product at a population level. A model representing traditional smoking populations (never, current and former smokers) and calibrated using historical data was extended to a two-product model by including electronic cigarettes use statuses. Smoking mechanisms, such as product initiation, switching, transition to dual use, and cessation, were represented as flows between smoking statuses (stocks) and the potential effect of smoking renormalisation through a feedback system. Mortality over a 50-year period (2000-2050) was the health outcome of interest, and was compared between two scenarios, with and without e-cigarettes being introduced. The results suggest that by 2050, smoking prevalence in adults was 12.4% in the core model and 9.7% (including dual users) in the counterfactual. Smoking-related mortality was 8.4% and 8.1%, respectively. The results suggested an overall beneficial effect from launching e-cigarettes and that system dynamics could be a useful approach to assess the potential population health effects of nicotine products when epidemiological data are not available.

  8. A simplified model for assessing the impact to groundwater of swine farms at regional level

    NASA Astrophysics Data System (ADS)

    Massabo, Marco; Viterbo, Angelo

    2013-04-01

    Swine manure can be an excellent source of nutrients for crop production. Several swine farms are present in the territory of Regione Umbria and more than 200.000 of swine heads are present yearly in the whole territory while some municipalities host more than 30.000 heads over a relatively limited land. Municipality with elevated number of swine heads has registered particularly higher Nitrate concentration in groundwater that requires a management plan and intervention in order to determine the maximum allowed N loads in the specific region. Use of manure and fertilizers in agricultural field produce diffuse nitrogen (N) losses that are a major cause of excessive nitrate concentrations in ground and surface waters and have been of concern since decades. Excessive nitrate concentrations in groundwater can have toxic effects when used as drinking water and cause eutrophication in surface waters. For management and environmental planning purposes, it is necessary to assess the magnitude of diffuse N losses from agricultural fields and how they are influenced by factors such as management practices, type of fertilizers -organic or inorganic - climate and soil etc. There are several methods for assessing N leaching, they span from methods based on field test to complex models that require many input data. We use a simple index method that accounts for the type of fertilizer used - inorganic, swine or cattle manure- and hydrological and hydrogeological conditions. Hydrological conditions such as infiltration rates are estimated by a fully distributed hydrological model. Data on inorganic and organic fertilization are estimated at municipal level by using the nutrient crops needs and the statistics of swine and cattle heads within the municipality. The index method has been calibrated by using groundwater concentration as a proxy of N losses from agriculture. A time series of three years of data has been analyzed. The application of the simple index method allowed to

  9. Scale issues in the assessment of ecological impacts using a GIS-based habitat model - A case study for the Stockholm region

    SciTech Connect

    Gontier, Mikael . E-mail: gontier@kth.se

    2007-07-15

    Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) provide two interlinked platforms for the assessment of impacts on biodiversity caused by human developments. Although it might be too early to draw conclusions on the efficiency of SEA to assess such impacts, a number of persistent problems have been identified in the case of EIA. Some of these shortcomings concern the lack of proper prediction and impact quantification, and the inadequate/insufficient assessment of cumulative effects. A number of problems are related to the scale(s) at which the assessment is performed. SEA may provide a more adequate framework than EIA to discuss scale-related issues (i.e. cumulative impacts) but it also requires the use of adapted tools. This paper presents a case study where a GIS-based habitat model for the lesser spotted woodpecker is tested, validated and applied to a planning scenario in the Stockholm region in Sweden. The results show that the method adopted offers great prospects to contribute to a better assessment of biodiversity-related impacts. Even though some limitations remain in the form of data requirement and interpretation of the results, the model produced continuous, quantified predictions over the study area and provided a relevant basis for the assessment of cumulative effects. Furthermore, this paper discusses potential conflicts between different scales involved in the assessment - related to administrative boundaries, ecological processes, data availability, the method adopted to perform the assessment and temporal aspects.

  10. Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex.

    PubMed

    Seangkiatiyuth, Kanyanee; Surapipith, Vanisa; Tantrakarnapa, Kraichat; Lothongkum, Anchaleeporn W

    2011-01-01

    We applied the model of American Meteorological Society-Environmental Protection Agency Regulatory Model (AERMOD) as a tool for the analysis of nitrogen dioxide (NO2) emissions from a cement complex as a part of the environmental impact assessment. The dispersion of NO2 from four cement plants within the selected cement complex were investigated both by measurement and AERMOD simulation in dry and wet seasons. Simulated values of NO2 emissions were compared with those obtained during a 7-day continuous measurement campaign at 12 receptors. It was predicted that NO2 concentration peaks were found more within 1 to 5 km, where the measurement and simulation were in good agreement, than at the receptors 5 km further away from the reference point. The Quantile-Quantile plots of NO2 concentrations in dry season were mostly fitted to the middle line compared to those in wet season. This can be attributed to high NO2 wet deposition. The results show that for both the measurement and the simulation using the AERMOD, NO2 concentrations do not exceed the NO2 concentration limit set by the National Ambient Air Quality Standards (NAAQS) of Thailand. This indicates that NO2 emissions from the cement complex have no significant impact on nearby communities. It can be concluded that the AERMOD can provide useful information to identify high pollution impact areas for the EIA guidelines.

  11. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    PubMed

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  12. Hydrological and nitrogen distributed catchment modeling to assess the impact of future climate change at Trichonis Lake, western Greece

    NASA Astrophysics Data System (ADS)

    Dimitriou, Elias; Moussoulis, Elias

    2010-03-01

    According to regional climatic models, climate change may affect Mediterranean lakes significantly in terms of water availability and quality. Trichonis Lake catchment covers a semi-mountainous area of 403 km2 including the largest Greek lake by volume (2.6 × 109 m3), located in western Greece. The impact of climate change on the hydrology and water quality of the lake, in terms of lake water level and nutrient concentrations, has been assessed. Water balance estimates and geographical information system tools were then used to set up a physically based, spatially distributed model. The calibrated model was simulated for two future scenarios specified by the Intergovernmental Panel on Climate Change: A2 (pessimistic) and B2 (more optimistic), which involved temperature/evaporation/evapotranspiration increase and small precipitation decrease. The model was calibrated efficiently for the 1990-1992 period. The two basic climatic scenarios illustrated that the responses of the lake water levels will show a decrease of 24.2 and 12 cm, respectively, and an increase of total nitrogen concentrations by 3.4 and 10%, in relation to the early 1990s values. These important findings suggest that mitigation and optimum management plans should be developed to eliminate the aforementioned climate change impacts and further research should follow.

  13. Environmental Impact Assessment: A Procedure.

    ERIC Educational Resources Information Center

    Stover, Lloyd V.

    Prepared by a firm of consulting engineers, this booklet outlines the procedural "whys and hows" of assessing environmental impact, particularly for the construction industry. Section I explores the need for environmental assessment and evaluation to determine environmental impact. It utilizes a review of the National Environmental Policy Act and…

  14. Environmental Impact Assessment: A Procedure.

    ERIC Educational Resources Information Center

    Stover, Lloyd V.

    Prepared by a firm of consulting engineers, this booklet outlines the procedural "whys and hows" of assessing environmental impact, particularly for the construction industry. Section I explores the need for environmental assessment and evaluation to determine environmental impact. It utilizes a review of the National Environmental Policy Act and…

  15. Scoping for Social Impact Assessment

    SciTech Connect

    Branch, Kristi M.; Ross, Helen

    2000-12-01

    Social assessment combines research, analytic, and participatory processes to identify, describe, and interpret changes in the ?human environment? that result from any of a wide variety of change agents -- projects, policies, or planning activities. Scoping for social impact assessment draws upon these same three processes - research, analysis, and participation - to: - Disclose information about the proposed action, preliminary estimates of impacts, and plans for the decision making and assessment effort - Initiate dialogue with the interested and potentially affected publics and decision makers - Establish the focus and level of detail of the assessment, identify particular issues that need to be addressed, and clarify how potentially affected publics will be consulted and involved. This chapter describes the function and key objectives of the scoping process, explains the assessment framework and the conventions and issues that set the context for the scoping process, provides some suggestions about how to plan and conduct scoping for a social assessment, and discusses some of the key issues that must be addressed in designing an effective scoping process for social impact assessment. Our approach recognises that social scientists may be involved in assessment tasks that involve other disciplinary areas. This may be an Environmental Impact Assessment (EIA), Strategic Environmental Assessment (SEA, the analysis of the impacts of policies or plans, or the combination of impact assessment with planning), or a planning process.

  16. The impact of alkenone degradation on U37K' paleothermometry: A model-derived assessment

    NASA Astrophysics Data System (ADS)

    Freitas, Felipe S.; Pancost, Richard D.; Arndt, Sandra

    2017-06-01

    The U37K' proxy for past sea surface temperature (SST) is based on the unsaturation ratio of C37 alkenones. It is considered a diagenetically robust proxy, but biases have been invoked because the index can be altered by preferential degradation of the C37:3 alkenone, resulting in higher reconstructed SST. However, alkenone degradation rate constants are poorly constrained, making it difficult to evaluate the plausibility of such a bias. Therefore, we quantitatively assessed the effect of (1) different alkenone degradation rate constants; (2) differential degradation factors between diunsaturated and triunsaturated C37 alkenones; (3) and initial U37K' values on the U37K' paleothermometer for two depositional environments (shelf and upper slope), by means of a reaction-transport model (RTM). RTM results reveal that preferential degradation of C37:3 can potentially alter the original signal of the U37K' paleothermometer, but SST biases (ΔSST) are largely within U37K' calibration error (ΔSST <1.5°C) assuming realistic model parameters. The magnitude of ΔSST is largely determined by the degradation rate constant, but it also increases with higher differential degradation factors. Additionally, initial U37K' values exert a nonlinear influence on the extent of potential SST bias, with midrange values (0.4 < U37K' < 0.6) being most sensitive. The most significant changes occur in the shallowest sediment layers and are attenuated with burial time/depth. Scenarios where ΔSST >1.5°C are associated with marked downcore decreases in alkenone concentration. Consequently, we caution against the interpretation of U37K' indices when extensive degradation results in very low alkenone concentrations (<5 ng g-1).

  17. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    PubMed

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  18. Development of a time-stepping sediment budget model for assessing land use impacts in large river basins.

    PubMed

    Wilkinson, S N; Dougall, C; Kinsey-Henderson, A E; Searle, R D; Ellis, R J; Bartley, R

    2014-01-15

    The use of river basin modelling to guide mitigation of non-point source pollution of wetlands, estuaries and coastal waters has become widespread. To assess and simulate the impacts of alternate land use or climate scenarios on river washload requires modelling techniques that represent sediment sources and transport at the time scales of system response. Building on the mean-annual SedNet model, we propose a new D-SedNet model which constructs daily budgets of fine sediment sources, transport and deposition for each link in a river network. Erosion rates (hillslope, gully and streambank erosion) and fine sediment sinks (floodplains and reservoirs) are disaggregated from mean annual rates based on daily rainfall and runoff. The model is evaluated in the Burdekin basin in tropical Australia, where policy targets have been set for reducing sediment and nutrient loads to the Great Barrier Reef (GBR) lagoon from grazing and cropping land. D-SedNet predicted annual loads with similar performance to that of a sediment rating curve calibrated to monitored suspended sediment concentrations. Relative to a 22-year reference load time series at the basin outlet derived from a dynamic general additive model based on monitoring data, D-SedNet had a median absolute error of 68% compared with 112% for the rating curve. RMS error was slightly higher for D-SedNet than for the rating curve due to large relative errors on small loads in several drought years. This accuracy is similar to existing agricultural system models used in arable or humid environments. Predicted river loads were sensitive to ground vegetation cover. We conclude that the river network sediment budget model provides some capacity for predicting load time-series independent of monitoring data in ungauged basins, and for evaluating the impact of land management on river sediment load time-series, which is challenging across large regions in data-poor environments.

  19. Conceptualising the effectiveness of impact assessment processes

    SciTech Connect

    Chanchitpricha, Chaunjit; Bond, Alan

    2013-11-15

    This paper aims at conceptualising the effectiveness of impact assessment processes through the development of a literature-based framework of criteria to measure impact assessment effectiveness. Four categories of effectiveness were established: procedural, substantive, transactive and normative, each containing a number of criteria; no studies have previously brought together all four of these categories into such a comprehensive, criteria-based framework and undertaken systematic evaluation of practice. The criteria can be mapped within a cycle/or cycles of evaluation, based on the ‘logic model’, at the stages of input, process, output and outcome to enable the identification of connections between the criteria across the categories of effectiveness. This framework is considered to have potential application in measuring the effectiveness of many impact assessment processes, including strategic environmental assessment (SEA), environmental impact assessment (EIA), social impact assessment (SIA) and health impact assessment (HIA). -- Highlights: • Conceptualising effectiveness of impact assessment processes. • Identification of factors influencing effectiveness of impact assessment processes. • Development of criteria within a framework for evaluating IA effectiveness. • Applying the logic model to examine connections between effectiveness criteria.

  20. Atmospheric dispersion modeling with AERMOD for comparative impact assessment of different pollutant emission sources in an Alpine context

    NASA Astrophysics Data System (ADS)

    Antonacci, Gianluca; Giovannini, Lorenzo; Tomasi, Elena; Zardi, Dino

    2015-04-01

    High-resolution simulations are performed with the AERMOD model to analyze the impact on air quality of different pollutant emission sources in the area surrounding the town of Vipiteno in the northeastern Italian Alps. In this area the environmental burden of pollutant emissions is particularly high because of both its complex terrain and the presence of specific pollutant sources. In this study the effects of the main sources are analyzed and compared: the A22 motorway, which leads to the Brenner pass, the town of Vipiteno, mainly characterized by intensive use of biomass for house heating, three major plants with high emission rates, and a parking lot located near the motorway, offering park spaces for up to 260 trucks and 50 cars. To assess the impact of these pollution sources the AERMOD model is run with a spatial resolution of 25 m and with meteorological input data obtained from different datasets, such as annual series of standard meteorological variables taken from local weather stations and a set of vertical soundings. During the simulations the sources are modeled in different ways depending on the type of the emissions: the motorway is modeled as a linear source, the village as a diffuse source, the local companies as point sources and the parking lot is modeled as a composition of a diffuse source, representing the idling vehicles inside the park, and of a linear source, representing the access routes to the parking. For each type of source, specific emission factors are chosen, and hourly and seasonal emission patterns are set with particular attention to the analysis of idling vehicle emission factors. The results of the simulations are analyzed in terms of NO2 and PM10 and the impact of each source is discussed.

  1. IMPACT fragmentation model developments

    NASA Astrophysics Data System (ADS)

    Sorge, Marlon E.; Mains, Deanna L.

    2016-09-01

    The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss

  2. Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

    NASA Astrophysics Data System (ADS)

    Ardilouze, Constantin; Batté, L.; Bunzel, F.; Decremer, D.; Déqué, M.; Doblas-Reyes, F. J.; Douville, H.; Fereday, D.; Guemas, V.; MacLachlan, C.; Müller, W.; Prodhomme, C.

    2017-02-01

    Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992-2010 period performed by five different global coupled ocean-atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land-atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.

  3. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  4. Modeling and measuring snow for assessing climate change impacts in Glacier National Park, Montana

    USGS Publications Warehouse

    Fagre, Daniel B.; Selkowitz, David J.; Reardon, Blase; Holzer, Karen; Mckeon, Lisa L.

    2002-01-01

    A 12-year program of global change research at Glacier National Park by the U.S. Geological Survey and numerous collaborators has made progress in quantifying the role of snow as a driver of mountain ecosystem processes. Spatially extensive snow surveys during the annual accumulation/ablation cycle covered two mountain watersheds and approximately 1,000 km2 . Over 7,000 snow depth and snow water equivalent (SWE) measurements have been made through spring 2002. These augment two SNOTEL sites, 9 NRCS snow courses, and approximately 150 snow pit analyses. Snow data were used to establish spatially-explicit interannual variability in snowpack SWE. East of the Continental Divide, snowpack SWE was lower but also less variable than west of the Divide. Analysis of snowpacks suggest downward trends in SWE, a reduction in snow cover duration, and earlier melt-out dates during the past 52 years. Concurrently, high elevation forests and treelines have responded with increased growth. However, the 80 year record of snow from 3 NRCS snow courses reflects a strong influence from the Pacific Decadal Oscillation, resulting in 20-30 year phases of greater or lesser mean SWE. Coupled with the fine-resolution spatial snow data from the two watersheds, the ecological consequences of changes in snowpack can be empirically assessed at a habitat patch scale. This will be required because snow distribution models have had varied success in simulating snowpack accumulation/ablation dynamics in these mountain watersheds, ranging from R2=0.38 for individual south-facing forested snow survey routes to R2=0.95 when aggregated to the watershed scale. Key ecological responses to snowpack changes occur below the watershed scale, such as snow-mediated expansion of forest into subalpine meadows, making continued spatially-explicit snow surveys a necessity. 

  5. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    NASA Technical Reports Server (NTRS)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  6. Current use of impact models for agri-environment schemes and potential for improvements of policy design and assessment.

    PubMed

    Primdahl, Jørgen; Vesterager, Jens Peter; Finn, John A; Vlahos, George; Kristensen, Lone; Vejre, Henrik

    2010-06-01

    Agri-Environment Schemes (AES) to maintain or promote environmentally-friendly farming practices were implemented on about 25% of all agricultural land in the EU by 2002. This article analyses and discusses the actual and potential use of impact models in supporting the design, implementation and evaluation of AES. Impact models identify and establish the causal relationships between policy objectives and policy outcomes. We review and discuss the role of impact models at different stages in the AES policy process, and present results from a survey of impact models underlying 60 agri-environmental schemes in seven EU member states. We distinguished among three categories of impact models (quantitative, qualitative or common sense), depending on the degree of evidence in the formal scheme description, additional documents, or key person interviews. The categories of impact models used mainly depended on whether scheme objectives were related to natural resources, biodiversity or landscape. A higher proportion of schemes dealing with natural resources (primarily water) were based on quantitative impact models, compared to those concerned with biodiversity or landscape. Schemes explicitly targeted either on particular parts of individual farms or specific areas tended to be based more on quantitative impact models compared to whole-farm schemes and broad, horizontal schemes. We conclude that increased and better use of impact models has significant potential to improve efficiency and effectiveness of AES. (c) 2009 Elsevier Ltd. All rights reserved.

  7. The Human Exposure Model (HEM): A Tool to Support Rapid Assessment of Human Health Impacts from Near-Field Consumer Product Exposures

    EPA Science Inventory

    The US EPA is developing an open and publically available software program called the Human Exposure Model (HEM) to provide near-field exposure information for Life Cycle Impact Assessments (LCIAs). Historically, LCIAs have often omitted impacts from near-field sources of exposur...

  8. SWAT Model Application to Assess the Impact of Intensive Corn‐farming on Runoff, Sediments and Phosphorous loss from an Agricultural Watershed in Wisconsin

    EPA Science Inventory

    The potential future increase in corn-based biofuel may be expected to have a negative impact on water quality in streams and lakes of the Midwestern US due to increased agricultural chemicals usage. This study used the SWAT model to assess the impact of continuous-corn farming o...

  9. The Human Exposure Model (HEM): A Tool to Support Rapid Assessment of Human Health Impacts from Near-Field Consumer Product Exposures

    EPA Science Inventory

    The US EPA is developing an open and publically available software program called the Human Exposure Model (HEM) to provide near-field exposure information for Life Cycle Impact Assessments (LCIAs). Historically, LCIAs have often omitted impacts from near-field sources of exposur...

  10. SWAT Model Application to Assess the Impact of Intensive Corn‐farming on Runoff, Sediments and Phosphorous loss from an Agricultural Watershed in Wisconsin

    EPA Science Inventory

    The potential future increase in corn-based biofuel may be expected to have a negative impact on water quality in streams and lakes of the Midwestern US due to increased agricultural chemicals usage. This study used the SWAT model to assess the impact of continuous-corn farming o...

  11. A Community-Scale Modeling System to Assess Port-Related Air Quality Impacts

    EPA Science Inventory

    Near-port air pollution has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at the ports may impact local air quality within several hun...

  12. A Community-Scale Modeling System to Assess Port-Related Air Quality Impacts

    EPA Science Inventory

    Near-port air pollution has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at the ports may impact local air quality within several hun...

  13. Chemical Transport and Reduced-Form Models for Assessing Air Quality Impacts of Current and Future Energy Scenarios

    NASA Astrophysics Data System (ADS)

    Adams, P. J.

    2015-12-01

    Though essential for informed decision-making, it is challenging to estimate the air quality and public health impacts associated with current and future energy generation scenarios because the analysis must address the complicated atmospheric processes that air pollutants undergo: emissions, dispersion, chemistry, and removal. Employing a chemical transport model (CTM) is the most rigorous way to address these atmospheric processes. However, CTMs are expensive from a computational standpoint and, therefore, beyond the reach of policy analysis for many types of problems. On the other hand, previously available reduced-form models used for policy analysis fall short of the rigor of CTMs and may lead to biased results. To address this gap, we developed the Estimating Air pollution Social Impacts Using Regression (EASIUR) method, which builds parameterizations that predict per-tonne social costs and intake fractions for pollutants emitted from any location in the United States. Derived from a large database of tagged CTM simulations, the EASIUR method predicts social costs almost indistinguishable from a full CTM but with negligible computational requirements. We found that the average mortality-related social costs from inorganic PM2.5 and its precursors in the United States are 150,000-180,000/t EC, 21,000-34,000/t SO2, 4,200-15,000/t NOx, and 29,000-85,000/t NH3. This talk will demonstrate examples of using both CTMs and reduced-form models for assessing air quality impacts associated with current energy production activities as well as a future deployment of carbon capture and sequestration.

  14. Assessing the Clinical Impact of Risk Prediction Models With Decision Curves: Guidance for Correct Interpretation and Appropriate Use

    PubMed Central

    Brown, Marshall D.; Zhu, Kehao; Janes, Holly

    2016-01-01

    The decision curve is a graphical summary recently proposed for assessing the potential clinical impact of risk prediction biomarkers or risk models for recommending treatment or intervention. It was applied recently in an article in Journal of Clinical Oncology to measure the impact of using a genomic risk model for deciding on adjuvant radiation therapy for prostate cancer treated with radical prostatectomy. We illustrate the use of decision curves for evaluating clinical- and biomarker-based models for predicting a man’s risk of prostate cancer, which could be used to guide the decision to biopsy. Decision curves are grounded in a decision-theoretical framework that accounts for both the benefits of intervention and the costs of intervention to a patient who cannot benefit. Decision curves are thus an improvement over purely mathematical measures of performance such as the area under the receiver operating characteristic curve. However, there are challenges in using and interpreting decision curves appropriately. We caution that decision curves cannot be used to identify the optimal risk threshold for recommending intervention. We discuss the use of decision curves for miscalibrated risk models. Finally, we emphasize that a decision curve shows the performance of a risk model in a population in which every patient has the same expected benefit and cost of intervention. If every patient has a personal benefit and cost, then the curves are not useful. If subpopulations have different benefits and costs, subpopulation-specific decision curves should be used. As a companion to this article, we released an R software package called DecisionCurve for making decision curves and related graphics. PMID:27247223

  15. Environmental Mission Impact Assessment

    DTIC Science & Technology

    2008-01-01

    System Agency’s (DISA) Federated Search service. The mission impacts can be generated for a general rectangular area, or generated for routes, route...that respond to queries (format- ted according to DISA’s Federated Search specifi- FIGURE 2 EVIS service-oriented architecture design, illustrating the

  16. Developing Conceptual Models for Assessing Climate Change Impacts to Contaminant Availability in Terrestrial Ecosystems

    DTIC Science & Technology

    2015-03-01

    aspects of climate change can impact contaminant availability and threatened, endangered , and at-risk species (TER-S) of terrestrial habitats on military...Threatened and endangered species (also top-level predators and other keystone species ) • Wetlands • Grassland/Rangeland plant communities • Microbial...contaminants as well as emerging contaminants (e.g., nanomaterials), and invasive species /pathogens What are the mechanisms by which aspects of climate

  17. Impact Assessment of Mikania Micrantha on Land Cover and Maxent Modeling to Predict its Potential Invasion Sites

    NASA Astrophysics Data System (ADS)

    Baidar, T.; Shrestha, A. B.; Ranjit, R.; Adhikari, R.; Ghimire, S.; Shrestha, N.

    2017-05-01

    Mikania micrantha is one of the major invasive alien plant species in tropical moist forest regions of Asia including Nepal. Recently, this weed is spreading at an alarming rate in Chitwan National Park (CNP) and threatening biodiversity. This paper aims to assess the impacts of Mikania micrantha on different land cover and to predict potential invasion sites in CNP using Maxent model. Primary data for this were presence point coordinates and perceived Mikania micrantha cover collected through systematic random sampling technique. Rapideye image, Shuttle Radar Topographic Mission data and bioclimatic variables were acquired as secondary data. Mikania micrantha distribution maps were prepared by overlaying the presence points on image classified by object based image analysis. The overall accuracy of classification was 90 % with Kappa coefficient 0.848. A table depicting the number of sample points in each land cover with respective Mikania micrantha coverage was extracted from the distribution maps to show the impact. The riverine forest was found to be the most affected land cover with 85.98 % presence points and sal forest was found to be very less affected with only 17.02 % presence points. Maxent modeling predicted the areas near the river valley as the potential invasion sites with statistically significant Area Under the Receiver Operating Curve (AUC) value of 0.969. Maximum temperature of warmest month and annual precipitation were identified as the predictor variables that contribute the most to Mikania micrantha's potential distribution.

  18. Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO₂ emission assessment.

    PubMed

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Water shortages and water pollution are a global problem. Increases in population can have further acute effects on water cycles and on the availability of water resources. Thus, wastewater management plays an important role in mitigating negative impacts on natural ecosystems and human environments and is an important area of research. In this study, we modelled catchment-scale hydrology, including water balances, rainfall, contamination, and urban wastewater treatment. The entire water resource system of a basin, including a forest catchment and an urban city area, was evaluated synthetically from a spatial distribution perspective with respect to water quantity and quality; the Life Cycle Assessment (LCA) technique was applied to optimize wastewater treatment management with the aim of improving water quality and reducing CO₂ emissions. A numerical model was developed to predict the water cycle and contamination in the catchment and city; the effect of a wastewater treatment system on the urban region was evaluated; pollution loads were evaluated quantitatively; and the effects of excluding rainwater from the treatment system during flooding and of urban rainwater control on water quality were examined. Analysis indicated that controlling the amount of rainwater inflow to a wastewater treatment plant (WWTP) in an urban area with a combined sewer system has a large impact on reducing CO₂ emissions because of the load reduction on the urban sewage system.

  19. On the assessment of urban land-surface impacts on climate in regional climate model simulations over Central Europe

    NASA Astrophysics Data System (ADS)

    Huszar, Peter; Belda, Michal; Halenka, Tomas

    2016-04-01

    When aiming higher resolution in dynamical downscaling, which is common trend in CORDEX activities, the effects of land use and land use changes are playing increasing role. This is especially true for the urban areas, which in high resolution can occupy significant part of a single gridbox, if not being even bigger in case of big cities or megacities. Moreover, the role of cities will increase in future, as the population within the urban areas is growing faster, with the estimate for Europe of about 84% living in cities. For the purpose of qualifying and quantifying the impact of cities and in general the urban surfaces on climate, the surface parameterization in regional climate model RegCM4 has been coupled with the Single Layer Urban Canopy Model (SLUCM), which can be used both in dynamic scale within BATS scheme and in a more detailed SUBBATS scale to treat the surface on a higher resolution subgrid. A set of experiments was performed over the period of 2005-2009 over central Europe, either without considering urban surfaces and with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer), on the boundary layer height (ZPBL, increases up to 50 m). Additionally, the version of land-surface scheme using CLM is tested and effect of the urban environment, which is included in the CLM scheme, will be assessed. Both versions will be compared and validated using EOBS data.

  20. Global Geometric Properties of Martian Impact Craters: An Assessment from Mars Orbiter Laser Altimeter (MOLA) Digital Elevation Models

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.; Schnetzler, C.

    2000-01-01

    Global geometric characteristics of topographically fresh impact craters have been assessed, for the first time, from gridded MOLA topography. Global trends of properties such as depth/diameter differ from previous estimates. Regional differences are observed.

  1. Global Geometric Properties of Martian Impact Craters: An Assessment from Mars Orbiter Laser Altimeter (MOLA) Digital Elevation Models

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.; Schnetzler, C.

    2000-01-01

    Global geometric characteristics of topographically fresh impact craters have been assessed, for the first time, from gridded MOLA topography. Global trends of properties such as depth/diameter differ from previous estimates. Regional differences are observed.

  2. Assessment in the Cooperative Classroom: Using an Action Research Enhanced Version of the Train the Trainer In-service Model To Impact Teacher Attitudes and Practices.

    ERIC Educational Resources Information Center

    Rolheiser, Carol; Ross, John A.; Hogaboam-Gray, Anne

    This research investigated the impact of combining two approaches to inservice teacher education (action research and train the trainer) on teacher attitudes and practices. The inservice developed assessment approaches aligned with cooperative learning instructional approaches. Teachers were introduced to a model of collaborative assessment aimed…

  3. Deep Impact: How a Job-Embedded Formative Assessment Professional Development Model Affected Teacher Practice

    ERIC Educational Resources Information Center

    Stewart, Thomas A.; Houchens, Gary W.

    2014-01-01

    This study supports the work of Black and Wiliam (1998), who demonstrated that when teachers effectively utilize formative assessment strategies, student learning increases significantly. However, the researchers also found a "poverty of practice" among teachers, in that few fully understood how to implement classroom formative…

  4. Assessing Model Characterization of Single Source Secondary Pollutant Impacts Using 2013 SENEX Field Study Measurements

    EPA Science Inventory

    Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting...

  5. Assessing Impact, DIF, and DFF in Accommodated Item Scores: A Comparison of Multilevel Measurement Model Parameterizations

    ERIC Educational Resources Information Center

    Beretvas, S. Natasha; Cawthon, Stephanie W.; Lockhart, L. Leland; Kaye, Alyssa D.

    2012-01-01

    This pedagogical article is intended to explain the similarities and differences between the parameterizations of two multilevel measurement model (MMM) frameworks. The conventional two-level MMM that includes item indicators and models item scores (Level 1) clustered within examinees (Level 2) and the two-level cross-classified MMM (in which item…

  6. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis

    USGS Publications Warehouse

    Huisman, J.A.; Breuer, L.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.; Willems, P.

    2009-01-01

    An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions. ?? 2008 Elsevier Ltd.

  7. Integrating plant science and crop modelling: Assessment of the impact of climate change on soybean and maize production.

    PubMed

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-09-15

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop models inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modelling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. However, when CO2 fertilisation effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarise the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author(s) 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  8. Impacts of cool cities on air quality: A preliminary modeling assessment for Nashville TN, Dallas TX and Atlanta GA

    SciTech Connect

    Taha, Haider

    1998-06-15

    Previous atmospheric modeling efforts that concentrated on the Los Angeles Basin suggested beneficial and significant air quality impacts from cool cities strategies. This paper discusses an extension of similar modeling efforts to three regions, Atlanta GA, Dallas - Ft. Worth TX, and Nashville TN, that experience smog and air quality problems. According to the older ozone air quality standard (120 ppb), these regions were classified as serious, moderate, and marginal, respectively, but may be out of compliance with respect to the newer, 80-ppb/8-hours standard. Results from this exploratory modeling work suggest a range of possible impacts on meteorological and air quality conditions. For example, peak ozone concentrations during each region's respective episode could be decreased by 1-6 ppb (conservative and optimistic scenarios, respectively) in Nashville, 5-15 ppb in Dallas - Fort Worth, and 5-12 ppb in Atlanta following implementation of cool cities. The reductions are generally smaller than those obtained from simulating the Los Angeles Basin but are still significant. In all regions, the simulations suggest, the net, domain-wide effects of cool cities are reductions in ozone mass and improvements in air quality. In Atlanta, Nashville, and Dallas, urban areas benefiting from reduced smog reach up to 8460, 7350, and 12870 km{sup 2} in area, respectively. Results presented in this paper should be taken as exploratory and preliminary. These will most likely change during a more comprehensive modeling study to be started soon with the support of the US Environmental Protection Agency. The main purpose of the present project was to obtain the initial data (emission inventories) for these regions, simulate meteorological conditions, and perform preliminary sensitivity analysis. In the future, additional regions will be simulated to assess the potential of cool cities in improving urban air quality.

  9. Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods

    NASA Astrophysics Data System (ADS)

    Ali, A. Md; Solomatine, D. P.; Di Baldassarre, G.

    2015-01-01

    Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (spaceborne or airborne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the light detection and ranging (lidar), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30 to 90 m). On the other hand, the lidar technique is able to produce high-resolution DEMs (at around 1 m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of 1-D hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. To test model selection, the outcomes of the 1-D models were also compared, in terms of flood water levels, to the results of 2-D models (LISFLOOD-FP). The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicate that the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. lidar 1 m) to lower resolution is much less than the loss of model accuracy due

  10. Assessing Cross-Media Impacts

    ERIC Educational Resources Information Center

    Reiquam, Howard; And Others

    1975-01-01

    Using 1000 MW coal-fired central power stations as an example, the impacts upon other media (land, air, water) are analyzed when controls are imposed on one medium. The development of a methodology for assessing the cross-media impact of specific control technologies or strategies is illustrated. (Author/BT)

  11. Assessing Cross-Media Impacts

    ERIC Educational Resources Information Center

    Reiquam, Howard; And Others

    1975-01-01

    Using 1000 MW coal-fired central power stations as an example, the impacts upon other media (land, air, water) are analyzed when controls are imposed on one medium. The development of a methodology for assessing the cross-media impact of specific control technologies or strategies is illustrated. (Author/BT)

  12. Assessing the Impact of Landscape Evolution on Carbon Dynamics: A Coupled Physically-Based Modelling Approach

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Bastola, S.; Billings, S. A.; Bras, R. L.

    2014-12-01

    Soil erosion and deposition play an important role in the global carbon (C) cycle, constituting an important driver of atmospheric CO2. Clarification of the net effect of landscape evolution on the C cycle may be achieved using coupled fully-distributed modelling of hydro-geomorphic and biogeochemical processes. We developed a distributed model of soil organic C (SOC) dynamics within an existing coupled physically-based hydro-geomorphic model (tRIBS - Erosion) to simulate the effects of soil erosion and deposition on C dynamics at basin scale. The SOC mass balance is analytically formulated at each cell using temporally variant, continuous vertical profiles of SOC content and SOC production and oxidation rate constants derived from SOC turnover characteristics. Landscape evolution feedbacks on C dynamics include the redistribution of eroded SOC, and the alteration of the SOC production and oxidation throughout the corresponding vertical profiles due to geomorphic perturbations. At each time step, model outputs include lateral and vertical C fluxes, and SOC content, at each soil column. We applied the model to the Calhoun Experimental Forest in South Carolina, which constitutes a forest recovering from agricultural land degradation prior to the mid-20th century. To test performance we carried out a point comparison against a spreadsheet-based model, SOrCERO (Soil Organic Carbon, Erosion, Replacement, and Oxidation) of SOC dynamics, which estimates effects of SOC erosion and altered SOC production and oxidation on CO2 release at an eroding profile. At a point, time integrated results from the two models were comparable. The proposed model has the additional advantage of being able to quantify C sinks and sources across the landscape in a spatially explicit manner, by systematically accounting for topographic controls on C dynamics. Sensitivity analysis suggested that the alteration of SOC production and oxidation due to landscape evolution and management practices

  13. Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Uvo, C. B.; Berndtsson, R.

    2015-10-01

    The effect of future climate scenarios on surface and groundwater resources was simulated using a modeling approach for an artificial recharge area in arid southern Iran. Future climate data for the periods of 2010-2030 and 2030-2050 were acquired from the Canadian Global Coupled Model (CGCM 3.1) for scenarios A1B, A2, and B1. These scenarios were adapted to the studied region using the delta-change method. A conceptual rainfall-runoff model (Qbox) was used to simulate runoff in a flash flood prone catchment. The model was calibrated and validated for the period 2002-2011 using daily discharge data. The projected climate variables were used to simulate future runoff. The rainfall-runoff model was then coupled to a calibrated groundwater flow and recharge model (MODFLOW) to simulate future recharge and groundwater hydraulic heads. As a result of the rainfall-runoff modeling, under the B1 scenario the number of floods is projected to slightly increase in the area. This in turn calls for proper management, as this is the only source of fresh water supply in the studied region. The results of the groundwater recharge modeling showed no significant difference between present and future recharge for all scenarios. Owing to that, four abstraction and recharge scenarios were assumed to simulate the groundwater level and recharge amount in the studied aquifer. The results showed that the abstraction scenarios have the most substantial effect on the groundwater level and the continuation of current pumping rate would lead to a groundwater decline by 18 m up to 2050.

  14. Using portfolios in the assessment of learning and competence: the impact of four models.

    PubMed

    Endacott, Ruth; Gray, Morag A; Jasper, Melanie A; McMullan, Mirjam; Miller, Carolyn; Scholes, Julie; Webb, Christine

    2004-12-01

    This paper discusses the diversity of portfolio use highlighted in a study funded by the English National Board for Nursing, Midwifery and Health Visiting exploring the effectiveness of portfolios in assessing learning and competence (). Data collection was undertaken in two stages: through a national telephone survey of Higher Education Institutions (HEIs) delivering nursing programmes (stage 1); and through four in-depth case studies of portfolios use (stage 2). Data collection for stage two was undertaken through field work in four HEIs purporting to use portfolios as an assessment strategy, and their associated clinical placement settings. Four approaches to the structure and use of portfolios were evident from the stage 2 case study data; these were characterised as: the shopping trolley; toast rack; spinal column and cake mix. The case study data also highlighted the evolutionary nature of portfolio development and a range of additional factors influencing the effectiveness of their use, including language of assessment, degree of guidance and expectations of clinical and academic staff.

  15. Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods

    NASA Astrophysics Data System (ADS)

    Ali, A. Md; Solomatine, D. P.; Di Baldassarre, G.

    2014-07-01

    Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (space-borne or air-borne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the Light Detection and Ranging (LiDAR), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30-90 m). On the other hand, LiDAR technique is able to produce a high resolution DEMs (around 1m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicates the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. LiDAR 1 m) to lower resolution are much less compared to the loss of model accuracy due to the use of low-cost DEM that have not only a lower resolution, but also a lower quality. Lastly, to better explore the sensitivity of the hydraulic models

  16. Assessment of climate change impacts on forest growth via ecohydrological distributed modelling

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Rossini, V.; Rosso, R.

    2010-12-01

    Climate output from the Hadley Centre's HadCM2 and HadCM3 experiments for the period 1950 to 2100, with IS92a greenhouse gas forcing, together with predicted patterns of increasing CO2, were input to the dynamic spatially distributed ecohydrological model Augusto (Rulli and Rosso, 2005; Rulli 2010). The model integrates the effects of vegetation on the hydrological budget and concurrently the effects of hydrological fluxes on the dynamics of forest growth. The basic structure of the distributed hydrological model analyzes the energy and water fluxes over a complex topography river basin by considering contour based description and tube fluxes basin portioning method. Forest growth is evaluated by considering radiation use efficiency, carbon balance and allocation. Feedbacks between vegetation and hydrological fluxes as well water and light competition are accounted step by step. The ecohydrological model was applied to the WS3 HJ Andrews Experimental Forest where forest growth dynamic was evaluated by estimating two indicators, MAI (Mean Annual Increment) and PAI (Periodic Annual Increment). Model performances were evaluated by comparing observed data (20 years) vs simulation for any single flux founding good agreement. In addition, model capability was confirmed by comparing both PAI and MAI simulated values of forest productivity with those obtained from field surveys. Model simulations were then carried out to evaluate the constraints imposed by climatic change scenario that involves modifications in temperatures, precipitation, vapour pressure deficit, wind speed and radiation as well as in atmospheric CO2 concentrations. For the study area climate change scenarios are characterized by an increase in CO2 concentrations, temperature (all season), total precipitation in summer and autumn and by a decrease of total precipitation in spring and winter. Simulations results analyses show an enhancement of the WS3 HJ Andrews Experimental Forest growth (MAI and PAI) in

  17. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity.

    PubMed

    McMahon, Sean M; Harrison, Sandy P; Armbruster, W Scott; Bartlein, Patrick J; Beale, Colin M; Edwards, Mary E; Kattge, Jens; Midgley, Guy; Morin, Xavier; Prentice, I Colin

    2011-05-01

    Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.

  18. Integrated snow and hydrology modeling for climate change impact assessment in Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Grant, G.; Lewis, S.; Nolin, A. W.; Hempel, L. A.; Cooper, M.; Tague, C.

    2014-12-01

    In the Pacific Northwest (PNW), increasing temperatures are expected to alter the hydrologic regimes of streams by shifting precipitation from snow to rain and forcing earlier snowmelt. How are such changes likely to affect peak flows across the region? Shifts in peak flows have obvious implications for changing flood risk, but are also likely to affect channel morphology, sediment transport, aquatic habitat, and water quality, issues with potentially high economic and environmental cost. Our goal, then, is to rigorously evaluate sensitivity to potential peak flow changes across the PNW. We address this by developing a detailed representation of snowpack and streamflow evolution under varying climate scenarios using a cascade-modeling approach. We have identified paired watersheds located on the east (Metolius River) and west (McKenzie River) sides of the Cascades, representing dry and wet climatic regimes, respectively. The tributaries of these two rivers are comprised of contrasting hydrologic regimes: surface-runoff dominated western cascades and deep-groundwater dominated high-cascades systems. We use a detailed hydro-ecological model (RHESSys) in conjunction with a spatially distributed snowpack evolution model (SnowModel) to characterize the peak flow behavior under present and future climate. We first calibrated and validated the SnowModel using observed temperature, precipitation, snow water equivalent, and manual snow survey data sets. We then employed a multi-objective calibration strategy for RHESSys using the simulated snow accumulation and melt from SnowModel and observed streamflow. The Nash-Sutcliffe Efficiency between observed and simulated streamflow varies between 0.5 in groundwater and 0.71 in surface-runoff dominated systems. The initial results indicate enhanced peak flow under future climate across all basins, but the magnitude of increase varies by the level of snowpack and deep-groundwater contribution in the watershed. Our continuing effort

  19. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis

    PubMed Central

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483

  20. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    PubMed

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.

  1. A Tool for Low Noise Procedures Design and Community Noise Impact Assessment: The Rotorcraft Noise Model (RNM)

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Page, Juliet A.

    2002-01-01

    To improve aircraft noise impact modeling capabilities and to provide a tool to aid in the development of low noise terminal area operations for rotorcraft and tiltrotors, the Rotorcraft Noise Model (RNM) was developed by the NASA Langley Research Center and Wyle Laboratories. RNM is a simulation program that predicts how sound will propagate through the atmosphere and accumulate at receiver locations located on flat ground or varying terrain, for single and multiple vehicle flight operations. At the core of RNM are the vehicle noise sources, input as sound hemispheres. As the vehicle "flies" along its prescribed flight trajectory, the source sound propagation is simulated and accumulated at the receiver locations (single points of interest or multiple grid points) in a systematic time-based manner. These sound signals at the receiver locations may then be analyzed to obtain single event footprints, integrated noise contours, time histories, or numerous other features. RNM may also be used to generate spectral time history data over a ground mesh for the creation of single event sound animation videos. Acoustic properties of the noise source(s) are defined in terms of sound hemispheres that may be obtained from theoretical predictions, wind tunnel experimental results, flight test measurements, or a combination of the three. The sound hemispheres may contain broadband data (source levels as a function of one-third octave band) and pure-tone data (in the form of specific frequency sound pressure levels and phase). A PC executable version of RNM is publicly available and has been adopted by a number of organizations for Environmental Impact Assessment studies of rotorcraft noise. This paper provides a review of the required input data, the theoretical framework of RNM's propagation model and the output results. Code validation results are provided from a NATO helicopter noise flight test as well as a tiltrotor flight test program that used the RNM as a tool to aid in

  2. Applicability of ranked Regional Climate Models (RCM) to assess the impact of climate change on Ganges: A case study.

    NASA Astrophysics Data System (ADS)

    Anand, Jatin; Devak, Manjula; Gosain, Ashvani Kumar; Khosa, Rakesh; Dhanya, Ct

    2017-04-01

    The negative impact of climate change is felt over wide range of spatial scales, ranging from small basins to large watershed area, which can possibly outweighs the benefits of natural water system. General Circulation Models (GCMs) has been widely used as an input to a hydrological models (HMs), to simulate different hydrological components of a river basin. However, the coarser scale of GCMs and spatio-temporal biases, restricted its use at finer resolution. If downscaled, adds one more level of uncertainty i.e., downscaling uncertainty together with model and scenario uncertainty. The outputs computed from Regional Climate Models (RCM) may aid the uncertainties arising from GCMs, as the RCMs are the miniatures of GCMs. However, the RCMs do have some inherent systematic biases, hence bias correction is a prerequisite process before it is fed to HMs. RCMs, together with the input from GCMs at later boundaries also takes topography of the area into account. Hence, RCMs need to be ranked a priori. In this study, impact of climate change on the Ganga basin, India, is assessed using the ranked RCMs. Firstly, bias correction of 14 RCM models are done using Quantile-Quantile mapping and Equidistant cumulative distribution method, for historic (1990-2004) and future scenario (2021-2100), respectively. The runoff simulations from Soil Water Assessment Tool (SWAT), for historic scenario is used for ranking of RCMs. Entropy and PROMETHEE-2 method is employed to rank the RCMs based on five performance indicators namely, Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), normalised root mean square error (NRMSE), absolute normalised mean bias error (ANMBE) and average absolute relative error (AARE). The results illustrated that each of the performance indicators behaves differently for different RCMs. RCA 4 (CNRM-CERFACS) is found as the best model with the highest value of  (0.85), followed by RCA4 (MIROC) and RCA4 (ICHEC) with  values of 0.80 and 0

  3. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    SciTech Connect

    Quinn, John; Greer, Chris; O'Connor, Ben L.; Tompson, Andrew F.B.

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  4. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    SciTech Connect

    Quinn, John; Carr, Adrianne E.; Greer, Chris; Bowen, Esther E.

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  5. IMPACT OF AN UPDATED CARBON BOND MECHANISM ON PREDICTIONS FROM THE CMAQ MODELING SYSTEM: PRELIMINARY ASSESSMENT

    EPA Science Inventory

    An updated and expanded Carbon Bond mechanism (CB05) has been incorporated into the Community Multiscale Air Quality modeling system to more accurately simulate wintertime, pristine, and high altitude situations. The CB05 mechanism has nearly twice the number of reactions compare...

  6. An assessment of the impact of local processes on dust lifting in martian climate models

    NASA Astrophysics Data System (ADS)

    Mulholland, David P.; Spiga, Aymeric; Listowski, Constantino; Read, Peter L.

    2015-05-01

    Simulation of the lifting of dust from the planetary surface is of substantially greater importance on Mars than on Earth, due to the fundamental role that atmospheric dust plays in the former's climate, yet the dust emission parameterisations used to date in martian global climate models (MGCMs) lag, understandably, behind their terrestrial counterparts in terms of sophistication. Recent developments in estimating surface roughness length over all martian terrains and in modelling atmospheric circulations at regional to local scales (less than O(100 km)) presents an opportunity to formulate an improved wind stress lifting parameterisation. We have upgraded the conventional scheme by including the spatially varying roughness length in the lifting parameterisation in a fully consistent manner (thereby correcting a possible underestimation of the true threshold level for wind stress lifting), and used a modification to account for deviations from neutral stability in the surface layer. Following these improvements, it is found that wind speeds at typical MGCM resolution never reach the lifting threshold at most gridpoints: winds fall particularly short in the southern midlatitudes, where mean roughness is large. Sub-grid scale variability, manifested in both the near-surface wind field and the surface roughness, is then considered, and is found to be a crucial means of bridging the gap between model winds and thresholds. Both forms of small-scale variability contribute to the formation of dust emission 'hotspots': areas within the model gridbox with particularly favourable conditions for lifting, namely a smooth surface combined with strong near-surface gusts. Such small-scale emission could in fact be particularly influential on Mars, due both to the intense positive radiative feedbacks that can drive storm growth and a strong hysteresis effect on saltation. By modelling this variability, dust lifting is predicted at the locations at which dust storms are frequently

  7. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    NASA Astrophysics Data System (ADS)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  8. Assessing the impact of ENSO on drought in the U.S. Southwest with NCEP climate model simulations

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Kumar, Arun

    2015-07-01

    The impact of El Niño-Southern Oscillation (ENSO) on U.S. Southwest precipitation and drought is assessed based on observational data and coupled global climate model simulations. The co-variability between 67-year (1948-2014) Southwest winter precipitation and Pacific sea surface temperature (SST) is analyzed using the singular value decomposition method. Results indicate strong associations between Southwest drought and La Niña during 1948-1977 and between Southwest pluvial and El Niño during 1978-1999. The relationship between Southwest precipitation and tropical Pacific SST is relatively weak after 1999. A comparison between two 480-year model simulations with and without ENSO variability suggests that ENSO can alter the characteristics of precipitation, and thus droughts over the Southwest in terms of frequency and intensity. In the presence of ENSO, the variability of Southwest precipitation is enhanced, and further, shifts toward lower frequencies. In addition, the chance for the ENSO-related precipitation pattern to persist over 3-4 years in the Southwest is higher in the simulation with ENSO than that without ENSO. The modeling study also demonstrates a sensitivity of the Southwest precipitation-related teleconnection to both the phase and intensity of ENSO, which helps understand the observed decadal changes in the strength of the link between Southwest precipitation and ENSO.

  9. Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil

    SciTech Connect

    Pavan, Ana Laura Raymundo; Ometto, Aldo Roberto

    2016-09-15

    Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, this paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, and 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the

  10. High resolution weather data for urban hydrological modelling and impact assessment, ICT requirements and future challenges

    NASA Astrophysics Data System (ADS)

    ten Veldhuis, Marie-claire; van Riemsdijk, Birna

    2013-04-01

    Hydrological analysis of urban catchments requires high resolution rainfall and catchment information because of the small size of these catchments, high spatial variability of the urban fabric, fast runoff processes and related short response times. Rainfall information available from traditional radar and rain gauge networks does no not meet the relevant scales of urban hydrology. A new type of weather radars, based on X-band frequency and equipped with Doppler and dual polarimetry capabilities, promises to provide more accurate rainfall estimates at the spatial and temporal scales that are required for urban hydrological analysis. Recently, the RAINGAIN project was started to analyse the applicability of this new type of radars in the context of urban hydrological modelling. In this project, meteorologists and hydrologists work closely together in several stages of urban hydrological analysis: from the acquisition procedure of novel and high-end radar products to data acquisition and processing, rainfall data retrieval, hydrological event analysis and forecasting. The project comprises of four pilot locations with various characteristics of weather radar equipment, ground stations, urban hydrological systems, modelling approaches and requirements. Access to data processing and modelling software is handled in different ways in the pilots, depending on ownership and user context. Sharing of data and software among pilots and with the outside world is an ongoing topic of discussion. The availability of high resolution weather data augments requirements with respect to the resolution of hydrological models and input data. This has led to the development of fully distributed hydrological models, the implementation of which remains limited by the unavailability of hydrological input data. On the other hand, if models are to be used in flood forecasting, hydrological models need to be computationally efficient to enable fast responses to extreme event conditions. This

  11. Assessing the Impact of Rotation Policy - Individual Sailor Assignment Model (ISAM)

    DTIC Science & Technology

    2007-06-12

    for others OPTEMPO Sea/Shore ratio ITEMPO Time on watch Time avail to train Others QOL Off duty hrs Holidays Leave Others CAREER Time to complete...crews for 3 ships) • Others • Alternatives to be compared on the basis of metrics – OPTEMPO – QOL – Career progression 4 Methodology Modeling approach...Over-manning sailor initially accumulated college credit faster than baseline sailor – result: 20 hrs of credit 4 months earlier. • Baseline sailor

  12. Assessing the impact of intervention strategies against Taenia solium cysticercosis using the EPICYST transmission model.

    PubMed

    Winskill, Peter; Harrison, Wendy E; French, Michael D; Dixon, Matthew A; Abela-Ridder, Bernadette; Basáñez, María-Gloria

    2017-02-09

    The pork tapeworm, Taenia solium, and associated human infections, taeniasis, cysticercosis and neurocysticercosis, are serious public health problems, especially in developing countries. The World Health Organization (WHO) has set goals for having a validated strategy for control and elimination of T. solium taeniasis/cysticercosis by 2015 and interventions scaled-up in selected countries by 2020. Timely achievement of these internationally-endorsed targets requires that the relative benefits and effectiveness of potential interventions be explored rigorously within a quantitative framework. A deterministic, compartmental transmission model (EPICYST) was developed to capture the dynamics of the taeniasis/cysticercosis disease system in the human and pig hosts. Cysticercosis prevalence in humans, an outcome of high epidemiological and clinical importance, was explicitly modelled. A next generation matrix approach was used to derive an expression for the basic reproduction number, R 0. A full sensitivity analysis was performed using a methodology based on Latin-hypercube sampling partial rank correlation coefficient index. EPICYST outputs indicate that chemotherapeutic intervention targeted at humans or pigs would be highly effective at reducing taeniasis and cysticercosis prevalence when applied singly, with annual chemotherapy of humans and pigs resulting, respectively, in 94 and 74% of human cysticercosis cases averted. Improved sanitation, meat inspection and animal husbandry are less effective but are still able to reduce prevalence singly or in combination. The value of R 0 for taeniasis was estimated at 1.4 (95% Credible Interval: 0.5-3.6). Human- and pig-targeted drug-focussed interventions appear to be the most efficacious approach from the options currently available. The model presented is a forward step towards developing an informed control and elimination strategy for cysticercosis. Together with its validation against field data, EPICYST will be a

  13. Hydrological Model Parameter (In)stability - Implications for the Assessment of Climate Change Impacts on Flood Seasonality

    NASA Astrophysics Data System (ADS)

    Vormoor, K.; Lawrence, D.; Heistermann, M.; Bronstert, A.

    2014-12-01

    Using a multi-model/multi-parameter ensemble consisting of (i) eight combinations of global and regional climate models, (ii) two statistical downscaling methods, and (iii) the HBV hydrological model with 25 calibrated parameter sets, we simulated daily discharge for a control (1961-1990) and future period (2071-2099) to investigate the potential impacts of climate change on flood seasonality and flood generating processes (FGPs) in six catchments with mixed snowmelt-rainfall regimes in Norway. For the catchments in northern and south-eastern Norway, we found more frequent autumn and winter events (partly also of higher magnitude) leading to possible shifts in the current flood regime from spring and early summer to autumn and winter. The possible shifts in flood regimes correspond to an increasing importance of rainfall as a FGP in all catchments considered, while rainfall replaces snowmelt as the dominant FGP in those catchments showing the largest changes in flood seasonality. The analysis of the relative role of the single ensemble components in contributing to overall uncertainty show that hydrological model parameter uncertainty is highest in those catchments showing the largest shifts in flood seasonality and FGPs. This points to difficulties in the time-transferability of the calibrated hydrological parameter sets under changing hydrometeorological conditions and highlights the need of alternative calibration approaches. In this study, we detect time periods in the observation data sets of catchments showing changes in observed hydrometeorological conditions and differing phases of predominant flood seasonality. The HBV model is calibrated for the detected time periods using the Dynamically Dimensioned Search (DDS) global optimization algorithm, and split sampling tests are applied to study the role of the calibrated hydrological parameter sets under changing conditions. Preliminary results show that the hydrological model parameters are sensitive to the

  14. Rain floods regime in the Amur Basin under climate changes impact: assessing by dynamic-stochastic modelling

    NASA Astrophysics Data System (ADS)

    Gartsmsn, Boris; Lupakov, Sergey

    2017-04-01

    A number of extraordinarily rare hydrological events, occurred in the Amur Basin over the past 20 years, support the reality of runoff regime alteration along evident climate changes. The most suitable tools to study the hydrological consequences of climate changes impact is the dynamic-stochastic modeling. For assessment of climate changes impact we used prediction scheme with basin-indicators, the core of that is regional rainfall-runoff model (Flood Cycle Model, FCM). Indicators are the small basins, which were used to calibration and parameterization of FCM. Input data is daily total precipitation. Output is calculated hydrograph as sequence of daily hydrographs. The climate scenarios used are very simple: just increasing sum of precipitation for 10 and 20%. Only 2 statistical moments (norm and variation coefficient) and only for 2 hydrological parameters (maximal discharges of rain floods Qmax and seasonal total runoff during Jun-Sept WVI-IX) were estimated with the model runs Two test-bed basins were selected (every of which includes few small catchments) for experiments - Ussuri river near Kirovsky, 24400 km2, and Bureya river near Malinovka, 67400 km2. First stage of work includes the simulation experiments with real precipitation from nearest meteo-station. Thereby we got model frequency curves of for each small basins, that seems in good accordance with observed ones, lying inside of their confidential intervals and reproduce individual features of different basins. Next stage was trying the climate scenarios. Two approaches were used to increase precipitation. One (analog) was to attract the precipitation data from others meteo-stations, located in much rainy conditions, second one was just to multiply the precipitation by coefficient. It was found, that results with analog scenarios are very different, but in average is very similar to just increasing the precipitation for 20%. So at last we used only real precipitation, increased by 10 and 20%. Finally

  15. Efficacy of CBCT for assessment of impacted mandibular third molars: a review – based on a hierarchical model of evidence

    PubMed Central

    Wenzel, A

    2015-01-01

    A radiographic examination of mandibular third molars is meant to support the surgeon in establishing a treatment plan. For years panoramic (PAN) imaging has been the first choice method; however, where an overprojection is observed between the third molar and the mandibular canal and when specific signs suggest a close contact between the molar and the canal, CBCT may be indicated. The present review provides an evaluation of the efficacy of CBCT for assessment of mandibular third molars using a six-tiered hierarchical model by Fryback and Thornbury in 1991. Levels 1–3 include studies on low evidence levels mainly regarding the technical capabilities of a radiographic method and the diagnostic accuracy of the related images. Levels 4–6 include studies on a higher level of evidence and assess the diagnostic impact of a radiographic method on the treatment of the patient in addition to the outcome for the patient and society including cost calculations. Only very few high-evidence studies on the efficacy of CBCT for radiographic examination of mandibular third molars exist and, in conclusion, periapical or PAN examination is sufficient in most cases before removal of mandibular third molars. However, CBCT may be suggested when one or more signs for a close contact between the tooth and the canal are present in the two-dimensional image—if it is believed that CBCT will change the treatment or the treatment outcome for the patient. Further research on high-evidence levels is needed. PMID:25135317

  16. Efficacy of CBCT for assessment of impacted mandibular third molars: a review - based on a hierarchical model of evidence.

    PubMed

    Matzen, L H; Wenzel, A

    2015-01-01

    A radiographic examination of mandibular third molars is meant to support the surgeon in establishing a treatment plan. For years panoramic (PAN) imaging has been the first choice method; however, where an overprojection is observed between the third molar and the mandibular canal and when specific signs suggest a close contact between the molar and the canal, CBCT may be indicated. The present review provides an evaluation of the efficacy of CBCT for assessment of mandibular third molars using a six-tiered hierarchical model by Fryback and Thornbury in 1991. Levels 1-3 include studies on low evidence levels mainly regarding the technical capabilities of a radiographic method and the diagnostic accuracy of the related images. Levels 4-6 include studies on a higher level of evidence and assess the diagnostic impact of a radiographic method on the treatment of the patient in addition to the outcome for the patient and society including cost calculations. Only very few high-evidence studies on the efficacy of CBCT for radiographic examination of mandibular third molars exist and, in conclusion, periapical or PAN examination is sufficient in most cases before removal of mandibular third molars. However, CBCT may be suggested when one or more signs for a close contact between the tooth and the canal are present in the two-dimensional image-if it is believed that CBCT will change the treatment or the treatment outcome for the patient. Further research on high-evidence levels is needed.

  17. Assessing the Impact of Data Assimilation on Acoustic Predictions in Operational Global Ocean Models

    NASA Astrophysics Data System (ADS)

    Barron, C. N.; Townsend, T. L.; Smedstad, L. F.; Helber, R. W.; Dastugue, J. M.

    2009-04-01

    Since accurate representation of sound speed is a major objective for operational naval ocean models, metrics focusing on acoustically relevant properties are used to evaluate potential changes to the systems. In particular, planned upgrades to the U.S. navy's operational Global Ocean Forecast System (GOFS) addressed aspects of the water column significant for predictions of acoustic propagation: mixed-layer depth (MLD), sonic-layer depth (SLD), and below-layer gradient. These properties were only indirectly considered in prior approaches focused on minimizing expected errors in temperature and salinity. The latest global capability, GOFS 2.6, introduces use of MLD-modified synthetic profiles based on vertical projection of satellite sea surface height and temperature as a background for Navy Coupled Ocean Data Assimilation (NCODA) analyses of in-situ data. Evaluation relative to unassimilated in situ observations reveals the continuing progress of successive operational systems. Because of these demonstrated improvements over prior capabilities, forecasts from the Navy Coastal Ocean Model in GOFS 2.6 and higher resolution regional NCOM implementations were announced as the new standard for U.S. Navy Operational Sound Speed Prediction (NOSSP) on 21 Aug. 2008.

  18. Qualitative risk assessment in a data-scarce environment: a model to assess the impact of control measures on spread of African Swine Fever.

    PubMed

    Wieland, Barbara; Dhollander, Sofie; Salman, Mo; Koenen, Frank

    2011-04-01

    In the absence of data, qualitative risk assessment frameworks have proved useful to assess risks associated with animal health diseases. As part of a scientific opinion for the European Commission (EC) on African Swine Fever (ASF), a working group of the European Food Safety Authority (EFSA) assessed the risk of ASF remaining endemic in Trans Caucasus Countries (TCC) and the Russian Federation (RF) and the risk of ASF becoming endemic in the EU if disease were introduced. The aim was to develop a tool to evaluate how current control or preventive measures mitigate the risk of spread and giving decision makers the means to review how strengthening of surveillance and control measures would mitigate the risk of disease spread. Based on a generic model outlining disease introduction, spread and endemicity in a region, the impact of risk mitigation measures on spread of disease was assessed for specific risk questions. The resulting hierarchical models consisted of key steps containing several sub-steps. For each step of the risk pathways risk estimates were determined by the expert group based on existing data or through expert opinion elicitation. Risk estimates were combined using two different combination matrices, one to combine estimates of independent steps and one to combine conditional probabilities. The qualitative risk assessment indicated a moderate risk that ASF will remain endemic in current affected areas in the TCC and RF and a high risk of spread to currently unaffected areas. If introduced into the EU, ASF is likely to be controlled effectively in the production sector with high or limited biosecurity. In the free range production sector, however, there is a moderate risk of ASF becoming endemic due to wild boar contact, non-compliance with animal movement bans, and difficult access to all individual pigs upon implementation of control measures. This study demonstrated the advantages of a systematic framework to assist an expert panel to carry out a

  19. Impact of body composition during weight change on resting energy expenditure and homeostasis model assessment index in overweight nonsmoking adults.

    PubMed

    Pourhassan, Maryam; Bosy-Westphal, Anja; Schautz, Britta; Braun, Wiebke; Glüer, Claus-C; Müller, Manfred J

    2014-04-01

    Weight change affects resting energy expenditure (REE) and metabolic risk factors. The impact of changes in individual body components on metabolism is unclear. We investigated changes in detailed body composition to assess their impacts on REE and insulin resistance. Eighty-three healthy subjects [body mass index (BMI; in kg/m²) range: 20.2-46.8; 50% obese] were investigated at 2 occasions with weight changes between -11.2 and +6.5 kg (follow-up periods between 23.5 and 43.5 mo). Detailed body composition was measured by using the 4-component model and whole-body magnetic resonance imaging. REE, plasma thyroid hormone concentrations, and insulin resistance were measured by using standard methods. Weight loss was associated with decreases in fat mass (FM) and fat-free mass (FFM) by 72.0% and 28.0%, respectively. A total of 87.9% of weight gain was attributed to FM. With weight loss, sizes of skeletal muscle, kidneys, heart, and all fat depots decreased. With weight gain, skeletal muscle, liver, kidney masses, and several adipose tissue depots increased except for visceral adipose tissue (VAT). After adjustments for FM and FFM, REE decreased with weight loss (by 0.22 MJ/d) and increased with weight gain (by 0.11 MJ/d). In a multiple stepwise regression analysis, changes in skeletal muscle, plasma triiodothyronine, and kidney masses explained 34.9%, 5.3%, and 4.5%, respectively, of the variance in changes in REE. A reduction in subcutaneous adipose tissue rather than VAT was associated with the improvement of insulin sensitivity with weight loss. Weight gain had no effect on insulin resistance. Beyond a 2-compartment model, detailed changes in organ and tissue masses further add to explain changes in REE and insulin resistance.

  20. Assessing Climatic Impacts due to Land Use Change over Southeast Asian Maritime Continent base on Mesoscale Model Simulations

    NASA Astrophysics Data System (ADS)

    Feng, N.; Christopher, S. A.; Nair, U. S.

    2014-12-01

    Due to increasing urbanization, deforestation, and agriculture, land use change over Southeast Asia has dramatically risen during the last decades. Large areas of peat swamp forests over the Southeast Asian Maritime Continent region (10°S~20°N and 90°E~135°E) have been cleared for agricultural purposes. The Center for Remote Imaging, Sensing and Processing (CRISP) Moderate Resolution Imaging Spectroradiometer (MODIS) derived land cover classification data show that changes in land use are dominated by conversion of peat swamp forests to oil palm plantation, open lowland or lowland mosaic categories. Nested grid simulations based on Weather Research Forecasting Version 3.6 modelling system (WRFV3.6) over the central region of the Sarawak coast are used to investigate the climatic impacts of land use change over Maritime Continent. Numerical simulations were conducted for August of 2009 for satellite derived land cover scenarios for years 2000 and 2010. The variations in cloud formation, precipitation, and regional radiative and non-radiative parameters on climate results from land use change have been assessed based on numerical simulation results. Modelling studies demonstrate that land use change such as extensive deforestation processes can produce a negative radiative forcing due to the surface albedo increase and evapotranspiration decrease, while also largely caused reduced rainfall and cloud formation, and enhanced shortwave radiative forcing and temperature over the study area. Land use and land cover changes, similar to the domain in this study, has also occurred over other regions in Southeast Asia including Indonesia and could also impact cloud and precipitation formation in these regions.

  1. RIFLE: regional impact of facility location on the economy. User's guide, volume 2. Maryland economic, fiscal, and social impact assessment model

    SciTech Connect

    Holland, P.D.; Harms, P.L.

    1983-02-01

    This user's guide describes the non-computerized models in the RIFLE (Regional Impact of Facility Location on the Economy) system. The RIFLE system consists of seven computerized models and three non-computerized models which can be used to analyze the economic, demographic, and fiscal impacts of major facilities upon the counties in which they are located and adjacent counties. Volume II describes the non-computerized models in the RIFLE system. These models represent an alternative approach to estimating costs of providing government services to in-migrating households.

  2. Independent component model of the default-mode brain function: Assessing the impact of active thinking.

    PubMed

    Esposito, Fabrizio; Bertolino, Alessandro; Scarabino, Tommaso; Latorre, Valeria; Blasi, Giuseppe; Popolizio, Teresa; Tedeschi, Gioacchino; Cirillo, Sossio; Goebel, Rainer; Di Salle, Francesco

    2006-10-16

    The "default-mode" network is an ensemble of cortical regions, which are typically deactivated during demanding cognitive tasks in functional magnetic resonance imaging (fMRI) studies. Using functional connectivity, this network can be conceptualized and studied as a "stand-alone" function or system. Regardless of the task, independent component analysis (ICA) produces a picture of the "default-mode" function even when the subject is performing a simple sensori-motor task or just resting in the scanner. This has boosted the use of default-mode fMRI for non-invasive research in brain disorders. Here, we studied the effect of cognitive load modulation of fMRI responses on the ICA-based pictures of the default-mode function. In a standard graded working memory study based on the n-back task, we used group-level ICA to explore the variability of the default-mode network related to the engagement in the task, in 10 healthy volunteers. The analysis of the default-mode components highlighted similarities and differences in the layout under three different cognitive loads. We found a load-related general increase of deactivation in the cortical network. Nonetheless, a variable recruitment of the cingulate regions was evident, with greater extension of the anterior and lesser extension of the posterior clusters when switching from lower to higher working memory loads. A co-activation of the hippocampus was only found under no working memory load. As a generalization of our results, the variability of the default-mode pattern may link the default-mode system as a whole to cognition and may more directly support use of the ICA model for evaluating cognitive decline in brain disorders.

  3. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    NASA Astrophysics Data System (ADS)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2016-08-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  4. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    PubMed

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity.

  5. Assessing the impact on chronic disease of incorporating the societal cost of greenhouse gases into the price of food: an econometric and comparative risk assessment modelling study

    PubMed Central

    Briggs, Adam D M; Kehlbacher, Ariane; Tiffin, Richard; Garnett, Tara; Rayner, Mike; Scarborough, Peter

    2013-01-01

    Objectives To model the impact on chronic disease of a tax on UK food and drink that internalises the wider costs to society of greenhouse gas (GHG) emissions and to estimate the potential revenue. Design An econometric and comparative risk assessment modelling study. Setting The UK. Participants The UK adult population. Interventions Two tax scenarios are modelled: (A) a tax of £2.72/tonne carbon dioxide equivalents (tCO2e)/100 g product applied to all food and drink groups with above average GHG emissions. (B) As with scenario (A) but food groups with emissions below average are subsidised to create a tax neutral scenario. Outcome measures Primary outcomes are change in UK population mortality from chronic diseases following the implementation of each taxation strategy, the change in the UK GHG emissions and the predicted revenue. Secondary outcomes are the changes to the micronutrient composition of the UK diet. Results Scenario (A) results in 7770 (95% credible intervals 7150 to 8390) deaths averted and a reduction in GHG emissions of 18 683 (14 665to 22 889) ktCO2e/year. Estimated annual revenue is £2.02 (£1.98 to £2.06) billion. Scenario (B) results in 2685 (1966 to 3402) extra deaths and a reduction in GHG emissions of 15 228 (11 245to 19 492) ktCO2e/year. Conclusions Incorporating the societal cost of GHG into the price of foods could save 7770 lives in the UK each year, reduce food-related GHG emissions and generate substantial tax revenue. The revenue neutral scenario (B) demonstrates that sustainability and health goals are not always aligned. Future work should focus on investigating the health impact by population subgroup and on designing fiscal strategies to promote both sustainable and healthy diets. PMID:24154517

  6. Health impact assessment in Korea

    SciTech Connect

    Kang, Eunjeong; Lee, Youngsoo; Harris, Patrick; Koh, Kwangwook; Kim, Keonyeop

    2011-07-15

    Recently, Health Impact Assessment has gained great attention in Korea. First, the Ministry of Environment introduced HIA within existing Environment Impact Assessment. Second, the Korea Institute for Health and Social Affairs began an HIA program in 2008 in alliance with Healthy Cities. In this short report, these two different efforts are introduced and their opportunities and challenges discussed. We believe these two approaches complement each other and both need to be strengthened. We also believe that both can contribute to the development of health in policy and project development and ultimately to improvements in the Korean population's health.

  7. Satellite and Model Assessment of Regional Aerosol Trends and Potential Impacts on Clouds in the western North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Jongeward, A.; Li, Z.

    2014-12-01

    Aerosols and clouds contribute to atmospheric variability and to Earth's radiative balance, and while aerosol-cloud interactions have been studied in the past, long-term assessments of their regional interactions are only beginning to be realized. Changes in emissions and air quality policies as well as socioeconomic factors ultimately lead to changes in AOD (aerosol optical depth) with cascading effects on clouds and ultimately on the combined radiative effects where agreement is yet to be seen. In this work, an assessment of any trends observed in the aerosol loading over the western North Atlantic Ocean during the period of 2000 to 2012 is presented. Monthly mean data from NASA's MODIS instruments onboard both Terra and Aqua satellites are employed. Two aerosol models (GOCART and MERRAero) with the capability to model five individual aerosol species are also used and can separate anthropogenic from natural contributions to the total aerosol load and the aerosol trend. Preliminary results show two distinct regions of opposite trend in the satellite AOD over the western North Atlantic. From analysis of the model trends, the trends in these two regions are also of different origin: the negative AOD trend (ranging from -0.020 to -0.040 per decade) seen just off the eastern coast of the U.S. is of anthropogenic origin while the positive AOD trend (ranging from 0.015 to 0.030 per decade) seen in the south of the domain is of natural origins. Compelling evidence from a ground-based aerosol record (AERONET) as well as EPA emissions records corroborates the anthropogenic origin of the negative trend off the eastern U.S. coast. Finally, any trends seen in the cloud effective radius are explored to examine the presence of the first indirect effect (Twomey effect). The analysis from Aqua appears stronger and more coherent, likely a testament to its calibration stability relative to Terra. Statistical significance tests are performed for the 90% and 95% levels using the

  8. Multi-model assessment of climate change impacts on river discharge in three different regional scale river basins on three continents

    NASA Astrophysics Data System (ADS)

    Vetter, Tobias; Krysanova, Valentina; Hattermann, Fred; Huang, Shaochun; Aich, Valentin; Yang, Tao

    2014-05-01

    Projections of climate impacts should be provided at the regional scale using validated regional-scale models in order to supply more reliable results for decision makers and managers. In the last decade climate impact assessment was performed for different regions and sectors using different scenarios and tools. However, the results are hardly comparable and do not allow to create a full picture of impacts and to evaluate their robustness. This study aims at comparing climate impacts on seasonal water discharge as well as on trends in projected discharge quantiles. Uncertainties from different sources are evaluated. The intercomparison of impacts was done for three regions on three continents which are characterized by very different climate and land use conditions: the Rhine in Europe, the Upper Niger in Africa and the Upper Yellow River in Asia. The climate impact assessment was performed using scenarios from five General Climate Models (GCMs). The bias-corrected climate scenarios for this study were provided by the ISI-MIP project. The following GCMs were used: HadGEM2-ES, IPSL-CM5ALR, MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M. The hydrological impact assessment was conducted applying the hydrological impact models HBV, SWIM and VIC. Our results suggest that the five GCMs contribute more to overall uncertainty of river discharge than the three hydrological models. Projected trends in river discharge are more variable and more often contradictory when different GCMs are compared. However, we also found significant opposite trend direction for projected river discharge using different hydrological models but the same climate input data.

  9. The potential and limitations of utilising head impact injury models to assess the likelihood of significant head injury in infants after a fall.

    PubMed

    Cory, C Z; Jones, M D; James, D S; Leadbeatter, S; Nokes, L D

    2001-12-01

    The use of engineering principles in assessing head injury scenarios is of increasing significance in investigations into suspected child abuse. A fall scenario is often given as the history for a head injury to an infant. This paper addresses the basic engineering principles and factors to be considered when calculating the severity of a head impact after free-fall. The application of head injury models (HIMs) to ascertain the forces involved in childhood head injuries from impact is also discussed. Previous studies including Duhaime et al. [J. Neurosurg. 66 (1987) 409] and Nokes et al. [Forensic Sci. Int. 79 (1995) 85] have utilised HIMs for this purpose: this paper reviews those models most widely documented.The HIM currently considered the 'state-of-the-art' is the head injury criterion (HIC) and it is suggested that this model should be utilised for assessing head impact injury in child abuse cases where appropriate.

  10. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories.

    PubMed

    Staudt, C; Semiochkina, N; Kaiser, J C; Pröhl, G

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture.

  11. Road ecology in environmental impact assessment

    SciTech Connect

    Karlson, Mårten Mörtberg, Ulla Balfors, Berit

    2014-09-15

    Transport infrastructure has a wide array of effects on terrestrial and aquatic ecosystems, and road and railway networks are increasingly being associated with a loss of biodiversity worldwide. Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) are two legal frameworks that concern physical planning, with the potential to identify, predict, mitigate and/or compensate transport infrastructure effects with negative impacts on biodiversity. The aim of this study was to review the treatment of ecological impacts in environmental assessment of transport infrastructure plans and projects. A literature review on the topic of EIA, SEA, biodiversity and transport infrastructure was conducted, and 17 problem categories on the treatment of biodiversity were formulated by means of a content analysis. A review of environmental impact statements and environmental reports (EIS/ER) produced between 2005 and 2013 in Sweden and the UK was then conducted using the list of problems as a checklist. The results show that the treatment of ecological impacts has improved substantially over the years, but that some impacts remain problematic; the treatment of fragmentation, the absence of quantitative analysis and that the impact assessment study area was in general delimited without consideration for the scales of ecological processes. Actions to improve the treatment of ecological impacts could include improved guidelines for spatial and temporal delimitation, and the establishment of a quantitative framework including tools, methods and threshold values. Additionally, capacity building and further method development of EIA and SEA friendly spatial ecological models can aid in clarifying the costs as well as the benefits in development/biodiversity tradeoffs. - Highlights: • The treatment of ecological impacts in EIA and SEA has improved. • Quantitative methods for ecological impact assessment were rarely used • Fragmentation effects were recognized

  12. The Impact of Environmental Variation on Demographic Convergence of Leslie Matrix Population Models: An Assessment Using Lyapunov Characteristic Exponents

    PubMed

    Grant; Benton

    1996-08-01

    In a constant environment, the rate of convergence of a density-independent Leslie matrix model to stable age distribution is determined by the damping ratio (the ratio of the absolute magnitudes of the first and second eigenvalues of the projection matrix). In a stochastic environment, the difference between the first two Lyapunov exponents is known to be analogous to the logarithm of the damping ratio, but there has been no systematic investigation of the consequences of enviromnental variation on convergence rates. In this study, the Lyapunov spectrum has been calculated for a wide variety of density-independent projection matrices subject to random variations in vital rates. This allows the impact of these random variations on convergence rates to be assessed. For rapidly convergent life histories, stochastic variation leads to a decrease in convergence rate. For life histories which are slow to converge, stochastic variation speeds up convergence. These effects are, however, relatively minor, and the value of the damping ratio for the mean matrix is a good predictor of the damping ratio in a stochastic environment. Consequently, when only an approximate indication of convergence rates is needed, the damping ratio for the mean projection matrix gives a very good guide. Detailed calculations of the Lyapunov spectrum would only be necessary to make comparisons between similar life histories or if very precise information on convergence rates were needed.

  13. Managing uncertainty, ambiguity and ignorance in impact assessment by embedding evolutionary resilience, participatory modelling and adaptive management.

    PubMed

    Bond, Alan; Morrison-Saunders, Angus; Gunn, Jill A E; Pope, Jenny; Retief, Francois

    2015-03-15

    In the context of continuing uncertainty, ambiguity and ignorance in impact assessment (IA) prediction, the case is made that existing IA processes are based on false 'normal' assumptions that science can solve problems and transfer knowledge into policy. Instead, a 'post-normal science' approach is needed that acknowledges the limits of current levels of scientific understanding. We argue that this can be achieved through embedding evolutionary resilience into IA; using participatory workshops; and emphasising adaptive management. The goal is an IA process capable of informing policy choices in the face of uncertain influences acting on socio-ecological systems. We propose a specific set of process steps to operationalise this post-normal science approach which draws on work undertaken by the Resilience Alliance. This process differs significantly from current models of IA, as it has a far greater focus on avoidance of, or adaptation to (through incorporating adaptive management subsequent to decisions), unwanted future scenarios rather than a focus on the identification of the implications of a single preferred vision. Implementing such a process would represent a culture change in IA practice as a lack of knowledge is assumed and explicit, and forms the basis of future planning activity, rather than being ignored.

  14. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods.

  15. Economic impact of explosive volcanic eruptions: A simulation-based assessment model applied to Campania region volcanoes

    NASA Astrophysics Data System (ADS)

    Zuccaro, Giulio; Leone, Mattia Federico; Del Cogliano, Davide; Sgroi, Angelo

    2013-10-01

    PLINIVS Study Centre of University of Naples Federico II has developed a methodology that aims to estimate, in probabilistic terms, the direct and the indirect economic impacts of a Sub-Plinian I or Strombolian type eruption of Vesuvius. The economic model has been implemented as a complementary tool of the Volcanic Impact Simulation Model, a tool developed at PLINIVS Center available to the Italian Civil Protection Department (DPC) decision makers to quantify the potential losses consequent to a possible eruption of Vesuvius or Campi Flegrei. Along the expected time history of the eruptive event all the possible "direct costs" and the "factors" (indirect costs) impacting the economic growth in the event area have been identified. Each cost factor is built up through a specific algorithm that is fed by various providers, in order to run software that will estimate the global amount of economic damage from a volcanic event. The model does not include the economic evaluation of intangibles (e.g. human casualties), while the evaluation of damage to the local cultural heritage (historical buildings, archeological sites, monuments, etc.), is linked to the economic impact on tourism, estimated into indirect costs. The architecture of the model is based on a simulation logic, which allows an evaluation of different economic impact scenarios through input changes, allowing the model to be used as a tool to support the decision making process.

  16. Life Cycle Impact Assessment (videotape)

    EPA Science Inventory

    Originally developed for the US EPA Regions, this presentation is available to the general public via the internet. The presentation focuses on the basics of Life Cycle Impact Assessment (LCIA) including the ISO 14040 series framework and a quick overview of each of the steps wi...

  17. Life Cycle Impact Assessment (videotape)

    EPA Science Inventory

    Originally developed for the US EPA Regions, this presentation is available to the general public via the internet. The presentation focuses on the basics of Life Cycle Impact Assessment (LCIA) including the ISO 14040 series framework and a quick overview of each of the steps wi...

  18. The Impact of Model Misspecification on Parameter Estimation and Item-Fit Assessment in Log-Linear Diagnostic Classification Models

    ERIC Educational Resources Information Center

    Kunina-Habenicht, Olga; Rupp, Andre A.; Wilhelm, Oliver

    2012-01-01

    Using a complex simulation study we investigated parameter recovery, classification accuracy, and performance of two item-fit statistics for correct and misspecified diagnostic classification models within a log-linear modeling framework. The basic manipulated test design factors included the number of respondents (1,000 vs. 10,000), attributes (3…

  19. The Impact of Model Misspecification on Parameter Estimation and Item-Fit Assessment in Log-Linear Diagnostic Classification Models

    ERIC Educational Resources Information Center

    Kunina-Habenicht, Olga; Rupp, Andre A.; Wilhelm, Oliver

    2012-01-01

    Using a complex simulation study we investigated parameter recovery, classification accuracy, and performance of two item-fit statistics for correct and misspecified diagnostic classification models within a log-linear modeling framework. The basic manipulated test design factors included the number of respondents (1,000 vs. 10,000), attributes (3…

  20. [MINNI, the national integrated modelling system for assessing the impacts of atmospheric pollution and the effectiveness of the emissions abatement strategies].

    PubMed

    Zanini, Gabriele

    2009-01-01

    Selecting the best emissions abatement strategy is very difficult due to the complexity of the processes that determine the impact of atmospheric pollutants and to the connection with climate change issues. Atmospheric pollution models can provide policy makers with a tool for assessing the effectiveness of abatement measures and their associated costs. The MINNI integrated model has been developed to link policy and atmospheric science and to assess the costs of the measures. The results have been carefully verified in order to identify uncertainties and the models are continuously updated to represent the state of the art in atmospheric science. The fine spatial and temporal resolution of the simulations provide a strong basis for assessing impacts on environment and health.

  1. Applying GIS and fine-resolution digital terrain models to assess three-dimensional population distribution under traffic impacts.

    PubMed

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2012-01-01

    Pollution exhibits significant variations horizontally and vertically within cities; therefore, the size and three-dimensional (3D) spatial distribution of population are significant determinants of urban health. This paper presents a novel methodology, 3D digital geography (3DIG) methodology, for investigating 3D spatial distributions of population in close proximity to traffic, thus the potential highly exposed population under traffic impacts. 3DIG applies geographic information system and fine-resolution (5 m) digital terrain models to obtain the number of building floors in residential zones of the Taipei metropolis; the vertical distribution of population at different floors was estimated based on demographic data in each census tract. In addition, population within 5, 10, 20, 50, and 100 m from the roadways was estimated. Field validation indicated that model results were reliable and accurate; the final population estimation differs only by 0.88% from the demographic database. The results showed that among the total 6.5 million Taipei residents, 0.8 (12.3%), 1.5 (22.9%), 2.3 (34.9), and 2.7 (41.1%) million residents live on the first or second floor within 5, 10, 20, and 50 m, respectively, of municipal roads. There are 22 census tracts with more than half of their residents living on the first or second floor within 5 m of municipal roads. In addition, half of the towns in Taipei city and county with >13.9% and 12.1% of residents live on the first and second floors within 5 m of municipal roads, respectively. These findings highlight the huge number of Taipei residents in close proximity to traffic and have significant implications for exposure assessment and environmental epidemiological studies. This study demonstrates that 3DIG is a versatile methodology for various research and policy planning in which 3D spatial population distribution is the central focus.

  2. An Integrated Ecological Modeling System for Assessing Impacts of Multiple Stressors on Stream and Riverine Ecosystem Services Within River Basins

    EPA Science Inventory

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat ...

  3. Remote Sensing and Spatial Growth Modeling Coupled With Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Estes, M. G.; Crosson, W. L.; Johnson, H.; Khan, M.

    2006-05-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world's population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as

  4. Remote Sensing and Spatial Growth Modeling Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80 percent of the world s population will live in cities. Directly aligned with the expansion of cities is urban sprawl. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes. A reduction in air quality over cities is a major result of these impacts. Strategies that can be directly or indirectly implemented to help remediate air quality problems in cities and that can be accepted by political decision makers and the general public are now being explored to help bring down air pollutants and improve air quality. The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how ozone and air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat

  5. Spatial Growth Modeling and High Resolution Remote Sensing Data Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world s population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include business as usual and smart growth scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared

  6. Spatial Growth Modeling and High Resolution Remote Sensing Data Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world s population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include business as usual and smart growth scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared

  7. Remote Sensing and Spatial Growth Modeling Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80 percent of the world s population will live in cities. Directly aligned with the expansion of cities is urban sprawl. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes. A reduction in air quality over cities is a major result of these impacts. Strategies that can be directly or indirectly implemented to help remediate air quality problems in cities and that can be accepted by political decision makers and the general public are now being explored to help bring down air pollutants and improve air quality. The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how ozone and air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat

  8. A multi-model assessment of the impact of currents, waves and wind in modelling surface drifters and oil spill

    NASA Astrophysics Data System (ADS)

    De Dominicis, M.; Bruciaferri, D.; Gerin, R.; Pinardi, N.; Poulain, P. M.; Garreau, P.; Zodiatis, G.; Perivoliotis, L.; Fazioli, L.; Sorgente, R.; Manganiello, C.

    2016-11-01

    Validation of oil spill forecasting systems suffers from a lack of data due to the scarcity of oil slick in situ and satellite observations. Drifters (surface drifting buoys) are often considered as proxy for oil spill to overcome this problem. However, they can have different designs and consequently behave in a different way at sea, making it not straightforward to use them for oil spill model validation purposes and to account for surface currents, waves and wind when modelling them. Stemming from the need to validate the MEDESS4MS (Mediterranean Decision Support System for Marine Safety) multi-model oil spill prediction system, which allows access to several ocean, wave and meteorological operational model forecasts, an exercise at sea was carried out to collect a consistent dataset of oil slick satellite observations, in situ data and trajectories of different type of drifters. The exercise, called MEDESS4MS Serious Game 1 (SG1), took place in the Elba Island region (Western Mediterranean Sea) during May 2014. Satellite images covering the MEDESS4MS SG1 exercise area were acquired every day and, in the case an oil spill was observed from satellite, vessels of the Italian Coast Guard (ITCG) were sent in situ to confirm the presence of the pollution. During the exercise one oil slick was found in situ and drifters, with different water-following characteristics, were effectively deployed into the oil slick and then monitored in the following days. Although it was not possible to compare the oil slick and drifter trajectories due to a lack of satellite observations of the same oil slick in the following days, the oil slick observations in situ and drifters trajectories were used to evaluate the quality of MEDESS4MS multi-model currents, waves and winds by using the MEDSLIK-II oil spill model. The response of the drifters to surface ocean currents, different Stokes drift parameterizations and wind drag has been examined. We found that the surface ocean currents

  9. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2010-08-01

    In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  10. Using Computational Modeling to Assess the Impact of Clinical Decision Support on Cancer Screening within Community Health Centers

    PubMed Central

    Carney, Timothy Jay; Morgan, Geoffrey P.; Jones, Josette; McDaniel, Anna M.; Weaver, Michael; Weiner, Bryan; Haggstrom, David A.

    2014-01-01

    Our conceptual model demonstrates our goal to investigate the impact of clinical decision support (CDS) utilization on cancer screening improvement strategies in the community health care (CHC) setting. We employed a dual modeling technique using both statistical and computational modeling to evaluate impact. Our statistical model used the Spearman’s Rho test to evaluate the strength of relationship between our proximal outcome measures (CDS utilization) against our distal outcome measure (provider self-reported cancer screening improvement). Our computational model relied on network evolution theory and made use of a tool called Construct-TM to model the use of CDS measured by the rate of organizational learning. We employed the use of previously collected survey data from community health centers Cancer Health Disparities Collaborative (HDCC). Our intent is to demonstrate the added valued gained by using a computational modeling tool in conjunction with a statistical analysis when evaluating the impact a health information technology, in the form of CDS, on health care quality process outcomes such as facility-level screening improvement. Significant simulated disparities in organizational learning over time were observed between community health centers beginning the simulation with high and low clinical decision support capability. PMID:24953241

  11. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Michel, P.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, P.; Richardson, D. C.; AIDA team

    2016-02-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor to deflect an asteroid. AIDA is an international cooperation, consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the ESA Asteroid Impact Mission (AIM) rendezvous mission. The primary goals of AIDA are (i) to test our ability to perform a spacecraft impact on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary near-Earth asteroid (65803) Didymos, with the deflection experiment to occur in late September, 2022. The DART impact on the secondary member of the binary at 7 km/s is expected to alter the binary orbit period by about 4 minutes, assuming a simple transfer of momentum to the target, and this period change will be measured by Earth-based observatories. The AIM spacecraft will characterize the asteroid target and monitor results of the impact in situ at Didymos. The DART mission is a full-scale kinetic impact to deflect a 150 m diameter asteroid, with known impactor conditions and with target physical properties characterized by the AIM mission. Predictions for the momentum transfer efficiency of kinetic impacts are given for several possible target types of different porosities, using Housen and Holsapple (2011) crater scaling model for impact ejecta mass and velocity distributions. Results are compared to numerical simulation results using the Smoothed Particle Hydrodynamics code of Jutzi and Michel (2014) with good agreement. The model also predicts that the ejecta from the DART impact may make Didymos into an active asteroid, forming an ejecta coma that may be observable from Earth-based telescopes. The measurements from AIDA of the momentum transfer from the DART impact, the crater size and morphology, and the evolution of an ejecta coma will

  12. Use and impact of usual intake models on dietary exposure estimate and risk assessment of chemical substances: a practical example for cadmium, acrylamide and sulphites.

    PubMed

    Mancini, Francesca Romana; Sirot, Véronique; Busani, Luca; Volatier, Jean-Luc; Hulin, Marion

    2015-01-01

    To estimate of food and nutrient intakes, 24-h recalls are frequently used in dietary assessment. However intake data collected for a short period are a limited estimator of long-term usual intake. An important limitation of such data is that the within-person variability tends to inflate the intake distribution leading to a biased estimation of extreme percentiles. Statistical models, named usual-intake models, that separate the within-person variability from the between-persons variability, have lately been implemented. The main objectives of this study were to highlight the potential impact that usual-intake models can have on exposure estimate and risk assessment and to point out which are the key aspects to be considered in order to run these models properly and be sure to interpret the output correctly. To achieve the goal we used the consumption data obtained by the French dietary survey INCA2 and the concentration data collected during the French TDS2, using Monte Carlo Risk Assessment (MCRA) software, release 8.0. For the three substances included in this study (cadmium, acrylamide and sulphites), the exposure of the upper percentiles was significantly reduced when using usual-intake models in comparison with the results obtained in the observed individual mean models, even if in terms of risk assessment the impact of using usual-intake models was limited. From the results it appears that the key aspects to consider when using usual-intake models are: (1) the normality of the log-transformed intake distribution, (2) the contribution per single food group to the total exposure, and (3) the independency of food consumption data on multiple days. In conclusion, usual-intake models may have an impact on exposure estimates although, referring to the results, it did not bring any changes in terms of risk assessment, but further investigations are needed.

  13. Assessment of climate change impact on water resources in the South-East part of Romania, using different spatial resolution atmospheric model output

    NASA Astrophysics Data System (ADS)

    Mic, Rodica Paula; Corbus, Ciprian; Neculau, Gianina

    2010-05-01

    The simulated flow by WatBal model in actual and forthcoming climate change conditions allows the assessment of climate change impact in water resources of Buzau and Ialomita river basins. The area of Buzau and Ialomita river basins is located of the outside of Curvature of the Carpathian Mountains, into a zone where the altitude varies from 2500m to 50m. In conformity of altitude, the annual precipitation varied from 1400 mm/year, in the mountainous area to 400 mm/year in the plane area and the evapotranspiration between 500 mm/year in the high area to 850 in the plane area. However, due to a very high variability of weather conditions, droughts as well as excessive humidity periods occur in the course of a year. The WATBAL model is an integrated water balance model with monthly time step model and it is combined with the Priesley-Taylor method for calculating the potential evapotranspiration. WatBal model was calibrated by simulation of monthly average flow during 1971-2000 in 4 cross-sections of Buzau catchment and 13 cross-sections of Ialomita river basin. The time series data input in WatBal model, necessary to calibrate the model parameters of this model in Buzau and Ialomita river basins include: rainfall, air temperature and relative humidity, sunshine duration, wind speed and flow in the analyzed sections. In order to assess the impacts of climate change in water resources in selected area ware used as input data the results of different global and regional climatic models, with different spatial resolution, and a comparison of these hydrological simulations it is made. In a first stage, the assessment of climate change impacts on water resources was based on a total of 27 climate scenarios determined by 3 global circulation models, ECHAM3/OPYC4, HadCM3 and NCAR-PCM each of these models being applied for three time horizons (2025 , 2050, 2100) and three intensities of climate changes phenomena. In the second stage, the analysis of the impact of climate

  14. A coupled modeling approach to assess the impact of fuel treatments on post-wildfire runoff and erosion

    USDA-ARS?s Scientific Manuscript database

    The hydrological consequences of wildfires are some of the most significant and long-lasting effects. Since wildfire severity impacts post-fire hydrological response, fuel treatments can be a useful tool for land managers to moderate this response. However, current models focus on only one aspect of...

  15. Model-based Impact Assessment of an Integrated Water Management Strategy on Ecosystem Services relevant to Food Security in Namibia

    NASA Astrophysics Data System (ADS)

    Luetkemeier, R.; Liehr, S.

    2012-04-01

    North-central Namibia is characterized by seasonal alterations of drought and heavy rainfall, mostly saline groundwater resources and a lack of perennial rivers. Water scarcity poses a great challenge for freshwater supply, harvest and food security against the background of high population growth and climate change. CuveWaters project aims at poverty reduction and livelihood improvement on a long term basis by introducing a multi-resource-mix as part of an integrated water resources management (IWRM) approach. Herein, creating water buffers by rainwater harvesting (RWH) and subsurface water storage as well as reuse of treated wastewater facilitates micro-scale gardening activities. This link constitutes a major component of a sustainable adaptation strategy by contributing to the conservation and improvement of basic food and freshwater resources in order to reduce drought vulnerability. This paper presents main findings of an impact assessment carried out on the effect of integrated water resources management on ecosystem services (ESS) relevant to food security within the framework of CuveWaters project. North-central Namibia is perceived as a social-ecological system characterized by a strong mutual dependence between natural environment and anthropogenic system. This fundamental reliance on natural resources highlights the key role of ESS in semi-arid environments to sustain human livelihoods. Among other services, food provision was chosen for quantification as one of the most fundamental ESS in north-central Namibia. Different nutritional values were utilized as indicators to adopt a demand-supply approach (Ecosystem Service Profile) to illustrate the ability of the ecosystem to meet people's nutritional requirements. Calculations have been conducted using both Bayesian networks to incorporate uncertainty introduced by the variability of monthly precipitation and the application of plant specific water production functions. Results show that improving the

  16. A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds

    SciTech Connect

    Sun, Ning; Yearsley, John; Voisin, Nathalie; Lettenmaier, D. P.

    2015-05-15

    Stream temperatures in urban watersheds are influenced to a high degree by anthropogenic impacts related to changes in landscape, stream channel morphology, and climate. These impacts can occur at small time and length scales, hence require analytical tools that consider the influence of the hydrologic regime, energy fluxes, topography, channel morphology, and near-stream vegetation distribution. Here we describe a modeling system that integrates the Distributed Hydrologic Soil Vegetation Model, DHSVM, with the semi-Lagrangian stream temperature model RBM, which has the capability to simulate the hydrology and water temperature of urban streams at high time and space resolutions, as well as a representation of the effects of riparian shading on stream energetics. We demonstrate the modeling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model is able both to produce realistic streamflow predictions at fine temporal and spatial scales, and to provide spatially distributed water temperature predictions that are consistent with observations throughout a complex stream network. We use the modeling construct to characterize impacts of land use change and near-stream vegetation change on stream temperature throughout the Mercer Creek system. We then explore the sensitivity of stream temperature to land use changes and modifications in vegetation along the riparian corridor.

  17. Tsunami hazard assessment along the French Mediterranean coast : detailed modeling of tsunami impacts for the ALDES project

    NASA Astrophysics Data System (ADS)

    Quentel, E.; Loevenbruck, A.; Hébert, H.

    2012-04-01

    The catastrophic 2004 tsunami drew the international community's attention to tsunami risk in all basins where tsunamis occurred but no warning system exists. Consequently, under the coordination of UNESCO, France decided to create a regional center, called CENALT, for the north-east Atlantic and the western Mediterranean. This warning system, which should be operational by 2012, is set up by the CEA in collaboration with the SHOM and the CNRS. The French authorities are in charge of the top-down alert system including the local alert dissemination. In order to prepare the appropriate means and measures, they initiated the ALDES (Alerte Descendante) project to which the CEA also contributes. It aims at examining along the French Mediterranean coast the tsunami risk related to earthquakes and landslides. In addition to the evaluation at regional scale, it includes the detailed studies of 3 selected sites; the local alert system will be designed for one of them : the French Riviera. In this project, our main task at CEA consists in assessing tsunami hazard related to seismic sources using numerical modeling. Past tsunamis have affected the west Mediterranean coast but are too few and poorly documented to provide a suitable database. Thus, a synthesis of earthquakes representative of the tsunamigenic seismic activity and prone to induce the largest impact to the French coast is performed based on historical data, seismotectonics and first order models. The North Africa Margin, the Ligurian and the South Tyrrhenian Seas are considered as the main tsunamigenic zones. In order to forecast the most important plausible effects, the magnitudes are estimated by enhancing to some extent the largest known values. Our hazard estimation is based on the simulation of the induced tsunamis scenarios performed with the CEA code. The 3 sites have been chosen according to the regional hazard studies, coastal typology elements and the appropriate DTMs (Digital Terrain Models). The

  18. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    SciTech Connect

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim; Naz, Bibi S; Tootle, Glenn

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.

  19. Application of STORMTOOLS's simplified flood inundation model with sea level rise to assess impacts to RI coastal areas

    NASA Astrophysics Data System (ADS)

    Spaulding, M. L.

    2015-12-01

    The vision for STORMTOOLS is to provide access to a suite of coastal planning tools (numerical models et al), available as a web service, that allows wide spread accessibly and applicability at high resolution for user selected coastal areas of interest. The first product developed under this framework were flood inundation maps, with and without sea level rise, for varying return periods for RI coastal waters. The flood mapping methodology is based on using the water level vs return periods at a primary NOAA water level gauging station and then spatially scaling the values, based on the predictions of high resolution, storm and wave simulations performed by Army Corp of Engineers, North Atlantic Comprehensive Coastal Study (NACCS) for tropical and extratropical storms on an unstructured grid, to estimate inundation levels for varying return periods. The scaling for the RI application used Newport, RI water levels as the reference point. Predictions are provided for once in 25, 50, and 100 yr return periods (at the upper 95% confidence level), with sea level rises of 1, 2, 3, and 5 ft. Simulations have also been performed for historical hurricane events including 1938, Carol (1954), Bob (1991), and Sandy (2012) and nuisance flooding events with return periods of 1, 3, 5, and 10 yr. Access to the flooding maps is via a web based, map viewer that seamlessly covers all coastal waters of the state at one meter resolution. The GIS structure of the map viewer allows overlays of additional relevant data sets (roads and highways, wastewater treatment facilities, schools, hospitals, emergency evacuation routes, etc.) as desired by the user. The simplified flooding maps are publically available and are now being implemented for state and community resilience planning and vulnerability assessment activities in response to climate change impacts.

  20. The Impact Model

    ERIC Educational Resources Information Center

    McClure, Patrick

    2006-01-01

    According to the author, teachers must give their students the ability to assess past, present, and new technologies, while making them aware that there is always a price to pay for any new technology. Students need to acquire the ability to make critical decisions about the world they live in and the technologies that will impact their lives. In…

  1. The Impact Model

    ERIC Educational Resources Information Center

    McClure, Patrick

    2006-01-01

    According to the author, teachers must give their students the ability to assess past, present, and new technologies, while making them aware that there is always a price to pay for any new technology. Students need to acquire the ability to make critical decisions about the world they live in and the technologies that will impact their lives. In…

  2. Environmental impact assessment in Brazil

    SciTech Connect

    Fowler, H.G.; De Aguiar, A.M.D. . Dept. de Ecologia e Programa de Pos- graduac ao em Analise Ambiental)

    1993-05-01

    Brazilian environmental impact assessment (EIA) had a relatively late birth and is still far from being operative by international standards. Currently, geological, economic, and social considerations are more highly valued. Nevertheless, EIA has become important in shaping governmental policy. The state of Sao Paulo is responsible for 40% of all EIAs produced in Brazil, and the number of EIAs produced is proportional to stat population density.

  3. Models and applications for measuring the impact of health research: update of a systematic review for the Health Technology Assessment programme.

    PubMed

    Raftery, James; Hanney, Steve; Greenhalgh, Trish; Glover, Matthew; Blatch-Jones, Amanda

    2016-10-01

    This report reviews approaches and tools for measuring the impact of research programmes, building on, and extending, a 2007 review. (1) To identify the range of theoretical models and empirical approaches for measuring the impact of health research programmes; (2) to develop a taxonomy of models and approaches; (3) to summarise the evidence on the application and use of these models; and (4) to evaluate the different options for the Health Technology Assessment (HTA) programme. We searched databases including Ovid MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature and The Cochrane Library from January 2005 to August 2014. This narrative systematic literature review comprised an update, extension and analysis/discussion. We systematically searched eight databases, supplemented by personal knowledge, in August 2014 through to March 2015. The literature on impact assessment has much expanded. The Payback Framework, with adaptations, remains the most widely used approach. It draws on different philosophical traditions, enhancing an underlying logic model with an interpretative case study element and attention to context. Besides the logic model, other ideal type approaches included constructionist, realist, critical and performative. Most models in practice drew pragmatically on elements of several ideal types. Monetisation of impact, an increasingly popular approach, shows a high return from research but relies heavily on assumptions about the extent to which health gains depend on research. Despite usually requiring systematic reviews before funding trials, the HTA programme does not routinely examine the impact of those trials on subsequent systematic reviews. The York/Patient-Centered Outcomes Research Institute and the Grading of Recommendations Assessment, Development and Evaluation toolkits provide ways of assessing such impact, but need to be evaluated. The literature, as reviewed here, provides very few instances of a randomised trial

  4. Assessment of Climate Change Impact on Streamflow Extremes in Mountainous Regions using a Coupled Hydrology-Glacier Model

    NASA Astrophysics Data System (ADS)

    Schoeneberg (Werner), A. T.; Schnorbus, M.; Najafi, M. R.

    2016-12-01

    Understanding future climate change impacts on hydro-climatic extremes in British Columbia, Canada requires hydrologic models that can accurately represent the cryospheric processes specific to mountainous regions in higher latitudes. Consequently, hydrologic simulations are conducted using a newly modified version of the Variable Infiltration Capacity (VIC) hydrologic model that couples to a dynamic glacier model. Using this coupled model, we project changes to streamflow extremes in the Columbia and Peace River basins based on a selection of CMIP5 models, run under two representative concentration pathways, statistically downscaled with multiple methods. The modified version of VIC is calibrated against daily streamflow and monthly evaporation using recently developed gridded climate observations, and the dynamic glacier model is evaluated with observed glacier mass balance and coverage data. We analyze changes in the frequency and intensity of peak and low flow events and compare these to previous simulations, which used a simpler version of VIC driven by statistically downscaled CMIP3 outputs.

  5. Development of an integrated generic model for multi-scale assessment of the impacts of agro-ecosystems on major ecosystem services in West Africa.

    PubMed

    Belem, Mahamadou; Saqalli, Mehdi

    2017-11-01

    This paper presents an integrated model assessing the impacts of climate change, agro-ecosystem and demographic transition patterns on major ecosystem services in West-Africa along a partial overview of economic aspects (poverty reduction, food self-sufficiency and income generation). The model is based on an agent-based model associated with a soil model and multi-scale spatial model. The resulting Model for West-Africa Agro-Ecosystem Integrated Assessment (MOWASIA) is ecologically generic, meaning it is designed for all sudano-sahelian environments but may then be used as an experimentation facility for testing different scenarios combining ecological and socioeconomic dimensions. A case study in Burkina Faso is examined to assess the environmental and economic performances of semi-continuous and continuous farming systems. Results show that the semi-continuous system using organic fertilizer and fallowing practices contribute better to environment preservation and food security than the more economically performant continuous system. In addition, this study showed that farmers heterogeneity could play an important role in agricultural policies planning and assessment. In addition, the results showed that MOWASIA is an effective tool for designing, analysing the impacts of agro-ecosystems. Copyright © 2017. Published by Elsevier Ltd.

  6. Assessing the impacts of climate change on natural resource systems

    SciTech Connect

    Frederick, K.D.; Rosenberg, N.J.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  7. Errors and uncertainties introduced by a regional climate model in climate impact assessments: example of crop yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Ramarohetra, Johanna; Pohl, Benjamin; Sultan, Benjamin

    2015-12-01

    The challenge of estimating the potential impacts of climate change has led to an increasing use of dynamical downscaling to produce fine spatial-scale climate projections for impact assessments. In this work, we analyze if and to what extent the bias in the simulated crop yield can be reduced by using the Weather Research and Forecasting (WRF) regional climate model to downscale ERA-Interim (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis) rainfall and radiation data. Then, we evaluate the uncertainties resulting from both the choice of the physical parameterizations of the WRF model and its internal variability. Impact assessments were performed at two sites in Sub-Saharan Africa and by using two crop models to simulate Niger pearl millet and Benin maize yields. We find that the use of the WRF model to downscale ERA-Interim climate data generally reduces the bias in the simulated crop yield, yet this reduction in bias strongly depends on the choices in the model setup. Among the physical parameterizations considered, we show that the choice of the land surface model (LSM) is of primary importance. When there is no coupling with a LSM, or when the LSM is too simplistic, the simulated precipitation and then the simulated yield are null, or respectively very low; therefore, coupling with a LSM is necessary. The convective scheme is the second most influential scheme for yield simulation, followed by the shortwave radiation scheme. The uncertainties related to the internal variability of the WRF model are also significant and reach up to 30% of the simulated yields. These results suggest that regional models need to be used more carefully in order to improve the reliability of impact assessments.

  8. Using Loosely Coupled Models to Assess Climate-Change Impacts on Common Loon Occurrence in Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Walker, J. F.; Hunt, R. J.; Hanson, P. C.; Kenow, K. P.; Meyer, M. W.

    2012-12-01

    The coupled groundwater/surface-water model GSFLOW was used to simulate the hydrologic response of 27 lakes in the Trout Lake watershed to a variety of climate-change scenarios downscaled by the Wisconsin Initiative on Climate Change Impacts from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Results from the hydrologic model, along with estimates of DOC concentrations were used to develop predictions of dissolved organic carbon (DOC) loading to the study lakes. An empirical DOC model was developed and used to estimate in-lake concentrations of DOC based on the hydrologic inputs. Three scenarios of in-lake total phosphorus change (0, +10% and +25%) were used along with the DOC estimates to simulate changes in secchi depth. The resulting estimates of secchi depth were input to a logistic-regression model to predict the probability of Common Loon occurrence in the study area. Simulations suggest that all lakes receive a gradual decline in net precipitation (precipitation - evaporation) with time. Drainage lakes in the watershed show relatively minor changes due to the future climate, in part because drainage lakes are relatively low in the watershed, have large contributing areas relative to the lake area, and respond to changing inputs through changes in stream outflow. Seepage lakes, however, show a slight increase in net groundwater and variable net surface-water inputs, resulting in a relatively steady to moderate decline in water levels with time. In almost all cases, the variability of the various hydrologic components increases in the later part of the 21st century, largely due to increased variability in the downscaled inputs. Because the predicted increase in net groundwater is less than the decrease in net precipitation, the result is a declining water level in the seepage lakes. The general trend in lakes was toward slightly higher water clarity (secchi depth), as indicated in model results by decreasing DOC loadings

  9. A comparison of methods for the assessment of odor impacts on air quality: Field inspection (VDI 3940) and the air dispersion model CALPUFF

    NASA Astrophysics Data System (ADS)

    Ranzato, Laura; Barausse, Alberto; Mantovani, Alice; Pittarello, Alberto; Benzo, Maurizio; Palmeri, Luca

    2012-12-01

    Unpleasant odors are a major cause of public complaints concerning air quality and represent a growing social problem in industrialized countries. However, the assessment of odor pollution is still regarded as a difficult task, because olfactory nuisance can be caused by many different chemical compounds, often found in hard-to-detect concentrations, and the perception of odors is influenced by subjective thresholds; moreover, the impact of odor sources on air quality is mediated by complex atmospheric dispersion processes. The development of standardized assessment approaches to odor pollution and proper international regulatory tools are urgently needed. In particular, comparisons of the methodologies commonly used nowadays to assess odor impacts on air quality are required. Here, we assess the olfactory nuisance caused by an anaerobic treatment plant for municipal solid waste by means of two alternative techniques: the field inspection procedure and the atmospheric dispersion model CALPUFF. Our goal was to compare rigorously their estimates of odor nuisance, both qualitatively (spatial extent of odor impact) and quantitatively (intensity of odor nuisance). To define the impact of odors, we referred to the German standards, based on the frequency of odor episodes in terms of odor hours. We report a satisfying, although not perfect agreement between the estimates provided by the two techniques. For example, they assessed similar spatial extents of odor pollution, but different frequencies of odor episodes in locations where the odor nuisance was highest. The comparison highlights strengths and weaknesses for both approaches. CALPUFF is a cheaper methodology which can be used predictively, but fugitive emissions are difficult to model reliably, because of uncertainty regarding timing, location and emission rate. Field inspection takes into account the role of human perception, but unlike the model it does not always characterize precisely the extent of the odor

  10. Characterization and Model Assessment for Impact Damage Evolution in Functionally Graded Composites Using a Novel Nanosecond Deformation Measurement System

    DTIC Science & Technology

    2006-04-30

    refined to properly produce the functional graded ceramic-metallic materials. Initial samples were produced and tests of the samples for the...rate-dependent properties of materials and high- rate testing of military structures.” Conversations and a meeting at a professional society...Measuring the back surface deformation of personnel armor during impact to validate computational models. • To develop valid test techniques to

  11. Coupling a distributed hydrological model with detailed forest structural information for large-scale global change impact assessment

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein

    2017-04-01

    Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.

  12. An Integrated Ecological Modeling System for Assessing Impacts of Multiple Stressors on Stream and Riverine Ecosystem Services within River Basins.

    PubMed

    Johnston, John M; Barber, M Craig; Wolfe, Kurt; Galvin, Mike; Cyterski, Mike; Parmar, Rajbir

    2017-06-24

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 - 2010 for the population of streams in the CRB and serves as a foundation for future model development.

  13. Assessing the Impact of Blood Loss in Cranial Vault Remodeling: A Risk Assessment Model Using the 2012 to 2013 Pediatric National Surgical Quality Improvement Program Data Sets.

    PubMed

    Chow, Ian; Purnell, Chad A; Gosain, Arun K

    2015-12-01

    Most cranial vault remodeling for craniosynostosis is associated with substantial blood loss necessitating transfusion. The transfusion of over 25 ml/kg of red blood cells has long been considered an important safety threshold and has been proposed as a potential marker of health care quality, despite a lack of evidence. The authors sought to ascertain risk factors for transfusion in cranial vault remodeling and to quantify the effect of transfusion volume on postoperative complications. Patients who underwent complex cranial vault remodeling for craniosynostosis were identified from the Pediatric National Surgical Quality Improvement Program database. Multivariate regression models were used to identify independent risk factors for transfusion and to assess its impact on subsequent outcomes. One thousand fifty-nine patients met inclusion criteria. Seven hundred seventy-seven patients (73.4 percent) required a transfusion and 520 patients (49.1 percent) required a transfusion in excess of 25 ml/kg. Neither transfusion nor transfusion volume in excess of 25 ml/kg had a significant effect on postoperative outcomes. Therefore, the authors sought to determine a more meaningful threshold. The top 20 percent of transfusion volumes were greater than or equal to 45.28 ml/kg. Recursive partitioning generated a threshold of 62.52 ml/kg, which independently predicted a greater number of complications and was associated with higher odds ratios than the quintile method. A threshold of 60 ml/kg was chosen for simplicity and was independently predictive of overall complications, medical complications, and increased length of stay. Transfusion is common in complex cranial vault remodeling. Currently described occurrence thresholds do not accurately convey postoperative risk. Transfusion in excess of 60 ml/kg significantly increases risk for complications and length of stay in cranial vault remodeling.

  14. Assessment of the Impact of the Spatial Distribution of Isolated and Riparian Wetlands on Watershed Hydrology using a Mathematical Modelling Framework

    NASA Astrophysics Data System (ADS)

    Fossey, M.; Rousseau, A. N.; Savary, S.; Royer, A.

    2014-12-01

    Wetlands play a significant role on the hydrological cycle, reducing peak flows through water storage functions and sustaining low flows through slow release of water. However, their impacts on water resource availability and flood control are mainly driven by wetland types and locations within a watershed. So, despite the general agreement about these major hydrological functions, little is known about their spatial and typological influences. Consequently, assessing the quantitative impact of wetlands on hydrological regimes has become a relevant issue for both the scientific community and the decision-maker community. To investigate the hydrologic response at the watershed scale, mathematical modelling has been a well-accepted framework. Specific isolated and riparian wetland modules were implemented in the PHYSITEL/HYDROTEL distributed hydrological modelling platform to assess the impact of the spatial distribution of isolated and riparian wetlands on the stream flows of the Becancour River watershed, Quebec, Canada. More specifically, the focus was on assessing whether stream flow parameters, including peak flow, low flow and flow volume, were related to: (i) the percentage and the distribution of wetlands in the watershed, (ii) geographic location of wetlands, and (iii) seasons. Preliminary results suggest that: (i) integration of specific wetland modules can slightly improve HYDROTEL's ability to replicate basic hydrograph characteristics; and (ii) isolated and riparian wetlands have individual space- and time-dependent impacts on the hydrologic response of the study watershed.

  15. A management tool for assessing aquaculture environmental impacts in Chilean Patagonian Fjords: integrating hydrodynamic and pellets dispersion models.

    PubMed

    Tironi, Antonio; Marin, Víctor H; Campuzano, Francisco J

    2010-05-01

    This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.

  16. Can the combined use of an ensemble based modelling approach and the analysis of measured meteorological trends lead to increased confidence in climate change impact assessments?

    NASA Astrophysics Data System (ADS)

    Gädeke, Anne; Koch, Hagen; Pohle, Ina; Grünewald, Uwe

    2014-05-01

    In anthropogenically heavily impacted river catchments, such as the Lusatian river catchments of Spree and Schwarze Elster (Germany), the robust assessment of possible impacts of climate change on the regional water resources is of high relevance for the development and implementation of suitable climate change adaptation strategies. Large uncertainties inherent in future climate projections may, however, reduce the willingness of regional stakeholder to develop and implement suitable adaptation strategies to climate change. This study provides an overview of different possibilities to consider uncertainties in climate change impact assessments by means of (1) an ensemble based modelling approach and (2) the incorporation of measured and simulated meteorological trends. The ensemble based modelling approach consists of the meteorological output of four climate downscaling approaches (DAs) (two dynamical and two statistical DAs (113 realisations in total)), which drive different model configurations of two conceptually different hydrological models (HBV-light and WaSiM-ETH). As study area serve three near natural subcatchments of the Spree and Schwarze Elster river catchments. The objective of incorporating measured meteorological trends into the analysis was twofold: measured trends can (i) serve as a mean to validate the results of the DAs and (ii) be regarded as harbinger for the future direction of change. Moreover, regional stakeholders seem to have more trust in measurements than in modelling results. In order to evaluate the nature of the trends, both gradual (Mann-Kendall test) and step changes (Pettitt test) are considered as well as both temporal and spatial correlations in the data. The results of the ensemble based modelling chain show that depending on the type (dynamical or statistical) of DA used, opposing trends in precipitation, actual evapotranspiration and discharge are simulated in the scenario period (2031-2060). While the statistical DAs

  17. Assessing the impacts of climate change on winter crop production in Uruguay and Argentina using crop simulation models

    SciTech Connect

    Baethgen, W.E.; Magrin, G.O.

    1995-12-31

    Enhanced greenhouse effect caused by the increase in atmospheric concentration of CO{sub 2} and other trace gases could lead to higher global surface temperature and altered hydrological cycles. Most possible climate change scenarios include higher atmospheric CO{sub 2} concentrations, higher temperatures, and changes in precipitation. Three global climate models (GCMs) were applied to generate climate change scenarios for the Pampas region in southern South America. The generated scenarios were then used with crop simulation models to study the possible impact of climate change on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) production in the Pampas. The authors evaluated the impact of possible climate change scenarios on wheat and barley production in Uruguay for a wide range of soil and crop management strategies including planting dates, cultivar types, fertilizer management, and tillage practices. They also studied the impact of climate change on wheat production across two transects of the Pampas: north to south transect with decreasing temperature, and east to west transect with decreasing precipitation. Finally, sensitivity analyses were conducted for both, the Uruguayan site and the transects, by increasing daily maximum and minimum temperature by 0, 2, and 4 C, and changing the precipitation by {minus}20, 0, and +20%.

  18. Assessing cumulative impacts of forest development on the distribution of furbearers using expert-based habitat modeling.

    PubMed

    Bridger, M C; Johnson, C J; Gillingham, M P

    2016-03-01

    Cumulative impacts of anthropogenic landscape change must be considered when managing and conserving wildlife habitat. Across the central-interior of British Columbia, Canada, industrial activities are altering the habitat of furbearer species. This region has witnessed unprecedented levels of anthropogenic landscape change following rapid development in a number of resource sectors, particularly forestry. Our objective was to create expert-based habitat models for three furbearer species: fisher (Pekania pennanti), Canada lynx (Lynx canadensis), and American marten (Martes americana) and quantify habitat change for those species. We recruited 10 biologist and 10 trapper experts and then used the analytical hierarchy process to elicit expert knowledge of habitat variables important to each species. We applied the models to reference landscapes (i.e., registered traplines) in two distinct study areas and then quantified the change in habitat availability from 1990 to 2013. There was strong agreement between expert groups in the choice of habitat variables and associated scores. Where anthropogenic impacts had increased considerably over the study period, the habitat models showed substantial declines in habitat availability for each focal species (78% decline in optimal fisher habitat, 83% decline in optimal lynx habitat, and 79% decline in optimal marten habitat). For those traplines with relatively little forest harvesting, the habitat models showed no substantial change in the availability of habitat over time. The results suggest that habitat for these three furbearer species declined significantly as a result of the cumulative impacts of forest harvesting. Results of this study illustrate the utility of expert knowledge for understanding large-scale patterns of habitat change over long time periods.

  19. Health Impact Assessment Impact Characterization Table

    EPA Pesticide Factsheets

    The potential health impacts of the proposed decision should be characterized based on the following criteria: Direction, Likelihood, Magnitude, Distribution, Severity, Permanence, Strength of Evidence.

  20. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    PubMed

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta.

  1. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions

    USGS Publications Warehouse

    Viney, N.R.; Bormann, H.; Breuer, L.; Bronstert, A.; Croke, B.F.W.; Frede, H.; Graff, T.; Hubrechts, L.; Huisman, J.A.; Jakeman, A.J.; Kite, G.W.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Willems, P.

    2009-01-01

    This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in

  2. Application of the Systems Impact Assessment Model (SIAM) to Fishery Resource Issues in the Klamath River, California

    USGS Publications Warehouse

    Campbell, Sharon G.; Bartholow, John M.; Heasley, John

    2010-01-01

    At the request of two offices of the U.S. Fish and Wildlife Service (FWS) located in Yreka and Arcata, Calif., we applied the Systems Impact Assessment Model (SIAM) to analyze a variety of water management concerns associated with the Federal Energy Regulatory Commission (FERC) relicensing of the Klamath hydropower projects or with ongoing management of anadromous fish stocks in the mainstem Klamath River, Oregon and California. Requested SIAM analyses include predicted effects of reservoir withdrawal elevations, use of full active storage in Copco and Iron Gate Reservoirs to augment spring flows, and predicted spawning and juvenile outmigration timing of fall Chinook salmon. In an effort to further refine the analysis of spring flow effects on predicted fall Chinook production, additional SIAM analyses were performed for predicted response to spring flow release variability from Iron Gate Dam, high and low pulse flow releases, the predicted effects of operational constraints for both Upper Klamath Lake water surface elevations, and projected flow releases specified in the Klamath Project 2006 Operations Plan (April 10, 2006). Results of SIAM simulations to determine flow and water temperature relationships indicate that up to 4 degrees C of thermal variability can be attributed to flow variations, but the effect is seasonal. Much more of thermal variability can be attributed to air temperature variations, up to 6 degrees C. Reservoirs affect the annual thermal signature by delaying spring warming by about 3 weeks and fall cooling by about 2 weeks. Multi-level release outlets on Iron Gate Dam would have limited utility; however, if releases are small (700 cfs) and a near-surface and bottom-level outlet could be blended, then water temperature may be reduced by 2-4 degrees C for a 4-week period during September. Using the full active storage in Copco and Iron Gate Reservoir, although feasible, had undesirable ramifications such as earlier spring warming, loss of

  3. Assessing the Long-Term Hydrologic Impact of Land Use Change Using a GIS-NPS Model and the World Wide Web

    SciTech Connect

    Bhaduri, B.; Engel, B.; Harbor, J.; Jones, D.; Lim, K.J.

    1999-09-22

    Assessment of the long-term hydrologic impacts of land use change is important for optimizing management practices to control runoff and non-point source (NPS) pollution associated with watershed development. Land use change, dominated by an increase in urban/impervious areas, can have a significant impact on water resources. Non-point source (NPS) pollution is the leading cause of degraded water quality in the US and urban areas are an important source of NPS pollution. Despite widespread concern over the environmental impacts of land use changes such as urban sprawl, most planners, government agencies and consultants lack access to simple impact-assessment tools that can be used with readily available data. Before investing in sophisticated analyses and customized data collection, it is desirable to be able to run initial screening analyses using data that are already available. In response to this need, we developed a long-term hydrologic impact assessment technique (L-THIA) using the popular Curve Number (CN) method that makes use of basic land use, soils and long-term rainfall data. Initially developed as a spreadsheet application, the technique allows a user to compare the hydrologic impacts of past, present and any future land use change. Consequently, a NPS pollution module was incorporated to develop the L-THWNPS model. Long-term daily rainfall records are used in combination with soils and land use information to calculate average annual runoff and NPS pollution at a watershed scale. Because of the geospatial nature of land use and soils data, and the increasingly widespread use of GE by planners, government agencies and consultants, the model is linked to a Geographic Information System (GIS) that allows convenient generation and management of model input and output data, and provides advanced visualization of the model results. Manipulation of the land use layer, or provision of multiple land use layers (for different scenarios), allows for rapid and

  4. Incorporating social concerns in environmental impact assessments

    SciTech Connect

    Wolfe, A.K.

    1990-03-01

    Social impact assessments most often focus on the population-driven impacts of projects. Such impacts may be insignificant when compared with social structural impacts of complex, controversial projects. This set of impacts includes social disruption, social group formation, and stigma effects. The National Environmental Policy Act does not explicitly call for assessment of, and assessors often are reluctant to address, these complex issues. This paper discusses why such impacts are critical to assess and gives examples of how they have been incorporated into environmental assessment documents. 6 refs.

  5. Assessing Drought Impacts on Water Storage using GRACE Satellites and Regional Groundwater Modeling in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Faunt, C. C.; Dettinger, M. D.

    2015-12-01

    Increasing concerns about drought impacts on water resources in California underscores the need to better understand effects of drought on water storage and coping strategies. Here we use a new GRACE mascons solution with high spatial resolution (1 degree) developed at the Univ. of Texas Center for Space Research (CSR) and output from the most recent regional groundwater model developed by the U.S. Geological Survey to evaluate changes in water storage in response to recent droughts. We also extend the analysis of drought impacts on water storage back to the 1980s using modeling and monitoring data. The drought has been intensifying since 2012 with almost 50% of the state and 100% of the Central Valley under exceptional drought in 2015. Total water storage from GRACE data declined sharply during the current drought, similar to the rate of depletion during the previous drought in 2007 - 2009. However, only 45% average recovery between the two droughts results in a much greater cumulative impact of both droughts. The CSR GRACE Mascons data offer unprecedented spatial resolution with no leakage to the oceans and no requirement for signal restoration. Snow and reservoir storage declines contribute to the total water storage depletion estimated by GRACE with the residuals attributed to groundwater storage. Rates of groundwater storage depletion are consistent with the results of regional groundwater modeling in the Central Valley. Traditional approaches to coping with these climate extremes has focused on surface water reservoir storage; however, increasing conjunctive use of surface water and groundwater and storing excess water from wet periods in depleted aquifers is increasing in the Central Valley.

  6. Application of a source-to-outcome model for the assessment of health impacts from dietary exposures to insecticide residues.

    PubMed

    Price, Paul S; Schnelle, Karl D; Cleveland, Cheryl B; Bartels, Michael J; Hinderliter, Paul M; Timchalk, Charles; Poet, Torka S

    2011-10-01

    The paper presents a case study of the application of a "source-to-outcome" model for the evaluation of the health outcomes from dietary exposures to an insecticide, chlorpyrifos, in populations of adults (age 30) and children (age 3). The model is based on publically-available software programs that characterize the longitudinal dietary exposure and anthropometry of exposed individuals. These predictions are applied to a validated PBPK/PD model to estimate interindividual and longitudinal variation in brain and RBC AChE inhibition (key events) and chlorpyrifos concentrations in blood and TCPy in urine (biomarkers of exposure). The predicted levels of chlorpyrifos and TCPy are compared to published measurements of the biomarkers. Predictions of RBC AChE are compared to levels of inhibition associated with reported exposure-related effects in humans to determine the potential for the occurrence of adverse cholinergic effects. The predicted distributions of chlorpyrifos in blood and TCPy in urine were found to be reasonably consistent with published values, supporting the predictive value of the exposure and PBPK portions of the source-to-outcome model. Key sources of uncertainty in predictions of dietary exposures were investigated and found to have a modest impact on the model predictions. Future versions of this source-to-outcome model can be developed that consider advances in our understanding of metabolism, to extend the approach to other age groups (infants), and address intakes from other routes of exposure.

  7. Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview.

    PubMed

    De Vries, W; Wamelink, G W W; Van Dobben, H; Kros, J; Reinds, G J; Mol-Dijkstra, J P; Smart, S M; Evans, C D; Rowe, E C; Belyazid, S; Sverdrup, H U; Van Hinsberg, A; Posch, M; Hettelingh, J-P; Spranger, T; Bobbink, R

    2010-01-01

    Field observations and experimental data of effects of nitrogen (N) deposition on plant species diversity have been used to derive empirical critical N loads for various ecosystems. The great advantage of such an approach is the inclusion of field evidence, but there are also restrictions, such as the absence of explicit criteria regarding significant effects on the vegetation, and the impossibility to predict future impacts when N deposition changes. Model approaches can account for this. In this paper, we review the possibilities of static and dynamic multispecies models in combination with dynamic soil-vegetation models to (1) predict plant species composition as a function of atmospheric N deposition and (2) calculate critical N loads in relation to a prescribed protection level of the species composition. The similarities between the models are presented, but also several important differences, including the use of different indicators for N and acidity and the prediction of individual plant species vs. plant communities. A summary of the strengths and weaknesses of the various models, including their validation status, is given. Furthermore, examples are given of critical load calculations with the model chains and their comparison with empirical critical N loads. We show that linked biogeochemistry-biodiversity models for N have potential for applications to support European policy to reduce N input, but the definition of damage thresholds for terrestrial biodiversity represents a major challenge. There is also a clear need for further testing and validation of the models against long-term monitoring or long-term experimental data sets and against large-scale survey data. This requires a focused data collection in Europe, combing vegetation descriptions with variables affecting the species diversity, such as soil acidity, nutrient status and water availability. Finally, there is a need for adaptation and upscaling of the models beyond the regions for which

  8. Modeling number of bacteria per food unit in comparison to bacterial concentration in quantitative risk assessment: impact on risk estimates.

    PubMed

    Pouillot, Régis; Chen, Yuhuan; Hoelzer, Karin

    2015-02-01

    When developing quantitative risk assessment models, a fundamental consideration for risk assessors is to decide whether to evaluate changes in bacterial levels in terms of concentrations or in terms of bacterial numbers. Although modeling bacteria in terms of integer numbers may be regarded as a more intuitive and rigorous choice, modeling bacterial concentrations is more popular as it is generally less mathematically complex. We tested three different modeling approaches in a simulation study. The first approach considered bacterial concentrations; the second considered the number of bacteria in contaminated units, and the third considered the expected number of bacteria in contaminated units. Simulation results indicate that modeling concentrations tends to overestimate risk compared to modeling the number of bacteria. A sensitivity analysis using a regression tree suggests that processes which include drastic scenarios consisting of combinations of large bacterial inactivation followed by large bacterial growth frequently lead to a >10-fold overestimation of the average risk when modeling concentrations as opposed to bacterial numbers. Alternatively, the approach of modeling the expected number of bacteria in positive units generates results similar to the second method and is easier to use, thus potentially representing a promising compromise. Published by Elsevier Ltd.

  9. Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States

    SciTech Connect

    Ashfaq, Moetasim; Bowling, Laura C.; Cherkauer, Keith; Pal, Jeremy; Diffenbaugh, Noah

    2010-01-01

    The Intergovernmental Panel on Climate Change's Fourth Assessment Report concludes that climate change is now unequivocal, and associated increases in evaporation and atmospheric water content could intensify the hydrological cycle. However, the biases and coarse spatial resolution of global climate models limit their usefulness in hydrological impact assessment. In order to reduce these limitations, we use a high-resolution regional climate model (RegCM3) to drive a hydrological model (variable infiltration capacity) for the full contiguous United States. The simulations cover 1961-1990 in the historic period and 2071-2100 in the future (A2) period. A quantile-based bias correction technique is applied to the times series of RegCM3-simulated precipitation and temperature. Our results show that biases in the RegCM3 fields not only affect the magnitude of hydrometeorological variables in the baseline hydrological simulation, but they also affect the response of hydrological variables to projected future anthropogenic increases in greenhouse forcing. Further, we find that changes in the intensity and occurrence of severe wet and hot events are critical in determining the sign of hydrologic change. These results have important implications for the assessment of potential future hydrologic changes, as well as for developing approaches for quantitative impacts assessment.

  10. An extended modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Uvo, C. B.; Berndtsson, R.

    2014-10-01

    The impact of future climate scenarios on surface and groundwater resources was simulated using a modeling approach for an artificial recharge area in arid southern Iran. Future climate data for the periods of 2010-2030 and 2030-2050 were acquired from the Canadian Global Coupled Model (CGCM 3.1) for scenarios A1B, A2, and B1. These scenarios were adapted to the studied region using the delta-change method. The modified version of the HBV model (Qbox) was used to simulate runoff in a flash flood prone catchment. The model was calibrated and validated for the period 2002-2011 using daily discharge data. The projected climate variables were used to simulate future runoff. The rainfall-runoff model was then coupled to a calibrated groundwater flow and recharge model (MODFLOW) to simulate future recharge and groundwater hydraulic head. The results of the rainfall-runoff modeling showed that under the B1 scenario the number of floods might increase in the area. This in turn calls for a proper management, as this is the only source of fresh water supply in the studied region. The results of the groundwater recharge modeling showed no significant difference between present and future recharge for all scenarios. Owing to that, four abstraction and recharge scenarios were assumed to simulate the groundwater level and recharged water in the studied aquifer. The results showed that the abstraction scenarios have the most substantial effect on the groundwater level and the continuation of current pumping rate would lead to a groundwater decline by 18 m up to 2050.

  11. Assessing the impacts of tillage and fertilization management on nitrous oxide emissions in a cornfield using the DNDC model

    NASA Astrophysics Data System (ADS)

    Deng, Qi; Hui, Dafeng; Wang, Junming; Yu, Chih-Li; Li, Changsheng; Reddy, K. Chandra; Dennis, Sam

    2016-02-01

    Quantification and prediction of N2O emissions from croplands under different agricultural management practices are vital for sustainable agriculture and climate change mitigation. We simulated N2O emissions under tillage and no-tillage,and different nitrogen (N) fertilizer types and application methods (i.e., nitrification inhibitor, chicken manure, and split applications) in a cornfield using the DeNitrification-DeComposition (DNDC) model. The model was parameterized with field experimental data collected in Nashville, Tennessee, under various agricultural management treatments and run for a short term (3 years) and a long term (100 years). Results showed that the DNDC model could adequately simulate N2O emissions as well as soil properties under different agricultural management practices. The modeled emissions of N2O significantly increased by 35% with tillage, and decreased by 24% with the use of nitrification inhibitor, compared with no-tillage and normal N fertilization. Chicken manure amendment and split applications of N fertilizer had minor impact on N2O emission in a short term, but over a long term (100 years) the treatments significantly altered N2O emission (+35%, -10%, respectively). Sensitivity analysis showed that N2O emission was sensitive to mean annual precipitation, mean annual temperature, soil organic carbon, and the amount of total N fertilizer application. Our model results provide valuable information for determining agricultural best management practice to maintain highly productive corn yield while reducing greenhouse gas emissions.

  12. Assessment of mineral concentration impacts from pumped stormwater on an Everglades Wetland, Florida, USA - Using a spatially-explicit model

    NASA Astrophysics Data System (ADS)

    Chen, Chunfang; Meselhe, Ehab; Waldon, Michael

    2012-07-01

    SummaryThe Arthur R. Marshall Loxahatchee National Wildlife Refuge (Refuge) overlays a 58,725 ha remnant of the Northern Everglades which is termed Water Conservation Area 1 (WCA-1). The Refuge is impacted by stormwater inflow from flood control pump stations which discharge to a perimeter canal system inside an impounding levee. These discharges contain elevated mineral and nutrient concentrations, with chloride concentration averaging well over 100 mg/L. It has long been established that the Refuge naturally has low mineral content softwater, and that this low-mineral condition affects the species composition of wetland periphyton that are at the base of much of the Refuge food chain. The interior marsh of the Refuge has today been termed rainfall-driven or ombrotrophic, with median chloride concentration averaging 20.5 mg/L. However, chloride concentration in rain water averages roughly 2 mg/L. The level of impact of exogenous pumped inflow on the concentration of chloride and other mineral constituents in the interior marsh has been unclear, and at times it has been debated whether atmospheric loading and evaporation can alone explain observed concentration of chloride in the interior. We applied a spatially explicit hydrodynamic and constituent transport model, MIKE FLOOD, to estimate the unimpacted condition of the interior. We compare this with simulated and monitored chloride concentrations under current conditions. The model was calibrated for a 5-year period (2000-2004), and validated for a 2-year period (2005-2006). We found that when pumped inflow concentration is reduced to an estimated rainfall chloride concentration, interior chloride concentration ranges typically below 5 mg/L. We therefore conclude that the interior chloride concentration is currently dominated by pumped inflows and should not be termed ombrotrophic. We also present initial modeling of one proposed remedial solution for reducing this impact. Our study demonstrates the feasibility

  13. The use of cartographic modeling to assess the impacts of coastal flooding: a case study of Port Said Governorate, Egypt.

    PubMed

    Abou Samra, Rasha M

    2017-09-01

    Low-set coastal areas are expected to aggravate inundation on account of sea level rise (SLR). The present study is planned to appraise the impacts of coastal flooding in Port Said city, Egypt by using remote sensing, GIS, and cartographic modeling techniques. To accomplish this scope, Landsat 8-OLI image dated 2016 and SRTM 1Arc-Second Digital Elevation Model (DEM) data were used. Landsat image was classified into seven land use and land cover (LULC) classes by using remote sensing and GIS's software. Different inundation scenarios 1.0, 2.0, and 3.0-m coastal elevation were used to figure the influence of SLR on the study area. Estimation of potential losses under SLR was made by overlaying the expected scenarios on land use. The inundation areas under the expected SLR scenarios of 1.0, 2.0, and 3.0 m were estimated at 827.49, 1072.67, and 1179.41 km(2), respectively. In conclusion, this study demonstrated that expected coastal flooding scenarios will lead up to serious impacts on LULC classes and coastal features in the study area.

  14. Three-dimensional modeling of HCFC-123 in the atmosphere: assessing its potential environmental impacts and rationale for continued use.

    PubMed

    Wuebbles, Donald J; Patten, Kenneth O

    2009-05-01

    HCFC-123 (C2HCl2F3) is used in large refrigeration systems and as a fire suppression agent blend. Like other hydrochlorofluorocarbons, production and consumption of HCFC-123 is limited under the Montreal Protocol on Substances that Deplete the Ozone Layer. The purpose of this study is to update the understanding of the current and projected impacts of HCFC-123 on stratospheric ozone and on climate and to discuss the potential environmental effects from continued use of this chemical for specific applications. For the first time, the Ozone Depletion Potential (ODP) of a HCFC is determined using a three-dimensional model (MOZART-3) of atmospheric physics and chemistry. All previous studies have relied on results from two-dimensional models. The derived HCFC-123 ODP of 0.0098 is smaller than previous values. Analysis of the projected uses and emissions of HCFC-123, assuming reasonable levels of projected growth and use in centrifugal chiller and fire suppressant applications, suggests an extremely small impact on the environment due to its short atmospheric lifetime, low ODP, low Global Warming Potential (GWP), and the small production and emission of its limited applications. The current contribution of HCFC-123 to stratospheric reactive chlorine is too small to be measurable.

  15. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment (LCA) model combining Process LCA and Economic Input-Output LCA.

    PubMed

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2017-08-10

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far only focused on the environmental impacts from direct emissions and included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one media to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer and human health non-cancer, caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 gCO2-eq /MJ) of the biofuels are still less than those of petroleum-based fuels (94 gCO2-eq /MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except the eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and can't be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environment impacts of the biofuels more

  16. Assessing the Impact of Teaching

    ERIC Educational Resources Information Center

    Malouff, John M.; Schutte, Nicola S.; Rooke, Sally E.

    2008-01-01

    University teaching can have a positive impact, a negative impact, or no impact. This article describes indicators of the impact of university teaching at the unit level. Teaching-impact indicators can be organized by the main beneficiary of the teaching: students; others, such as employers and clients, who interact with the students; the…

  17. Improving Hybrid III injury assessment in steering wheel rim to chest impacts using responses from finite element Hybrid III and human body model.

    PubMed

    Holmqvist, Kristian; Davidsson, Johan; Mendoza-Vazquez, Manuel; Rundberget, Peter; Svensson, Mats Y; Thorn, Stefan; Törnvall, Fredrik

    2014-01-01

    The main aim of this study was to improve the quality of injury risk assessments in steering wheel rim to chest impacts when using the Hybrid III crash test dummy in frontal heavy goods vehicle (HGV) collision tests. Correction factors for chest injury criteria were calculated as the model chest injury parameter ratios between finite element (FE) Hybrid III, evaluated in relevant load cases, and the Total Human Model for Safety (THUMS). This is proposed to be used to compensate Hybrid III measurements in crash tests where steering wheel rim to chest impacts occur. The study was conducted in an FE environment using an FE-Hybrid III model and the THUMS. Two impactor shapes were used, a circular hub and a long, thin horizontal bar. Chest impacts at velocities ranging from 3.0 to 6.0 m/s were simulated at 3 impact height levels. A ratio between FE-Hybrid III and THUMS chest injury parameters, maximum chest compression C max, and maximum viscous criterion VC max, were calculated for the different chest impact conditions to form a set of correction factors. The definition of the correction factor is based on the assumption that the response from a circular hub impact to the middle of the chest is well characterized and that injury risk measures are independent of impact height. The current limits for these chest injury criteria were used as a basis to develop correction factors that compensate for the limitations in biofidelity of the Hybrid III in steering wheel rim to chest impacts. The hub and bar impactors produced considerably higher C max and VC max responses in the THUMS compared to the FE-Hybrid III. The correction factor for the responses of the FE-Hybrid III showed that the criteria responses for the bar impactor were consistently overestimated. Ratios based on Hybrid III and THUMS responses provided correction factors for the Hybrid III responses ranging from 0.84 to 0.93. These factors can be used to estimate C max and VC max values when the Hybrid III is

  18. Noise impact on wildlife: An environmental impact assessment

    NASA Technical Reports Server (NTRS)

    Bender, A.

    1977-01-01

    Various biological effects of noise on animals are discussed and a systematic approach for an impact assessment is developed. Further research is suggested to fully quantify noise impact on the species and its ecosystem.

  19. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    PubMed

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century.

  20. An atmospheric dispersion model for the environmental impact assessment of thermal power plants in Japan--a method for evaluating topographical effects.

    PubMed

    Ichikawa, Yoichi; Sada, Koichi

    2002-03-01

    An atmospheric dispersion model was developed for the environmental impact assessment of thermal power plants in Japan, and a method for evaluating topographical effects using this model was proposed. The atmospheric dispersion model consists of an airflow model with a turbulence closure model based on the algebraic Reynolds stress model and a Lagrangian particle dispersion model (LPDM). The evaluation of the maximum concentration of air pollutants such as SO2, NOx, and suspended particulate matter is usually considered of primary importance for environmental impact assessment. Three indices were therefore estimated by the atmospheric dispersion model: the ratios (alpha and beta, respectively) of the maximum concentration and the distance of the point of the maximum concentration from the source over topography to the respective values over a flat plane, and the relative concentration distribution [gamma(x)] along the ground surface projection of the plume axis normalized by the maximum concentration over a flat plane. The atmospheric dispersion model was applied to the topography around a power plant with a maximum elevation of more than 1,000 m. The values of alpha and beta evaluated by the atmospheric dispersion model varied between 1 and 3 and between 1 and 0.4, respectively, depending on the topographical features. These results and the calculated distributions of y(x) were highly similar to the results of the wind tunnel experiment. Therefore, when the slope of a hill or mountain is similar to the topography considered in this study, it is possible to evaluate topographical effects on exhaust gas dispersion with reasonable accuracy using the atmospheric dispersion model as well as wind tunnel experiments.

  1. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  2. Selection of a Representative Subset of Global Climate Models that Captures the Profile of Regional Changes for Integrated Climate Impacts Assessment

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Mcdermid, Sonali P.

    2017-01-01

    We present the Representative Temperature and Precipitation (T&P) GCM Subsetting Approach developed within the Agricultural Model Intercomparison and Improvement Project (AgMIP) to select a practical subset of global climate models (GCMs) for regional integrated assessment of climate impacts when resource limitations do not permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics models. Subsetting inherently leads to a loss of information but can free up resources to explore important uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and precipitation change within the growing season while maintaining information about the probability that basic classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry) are projected in the full GCM ensemble. We demonstrate the selection methodology for maize impacts in Ames, Iowa, and discuss limitations and situations when additional information may be required to select representative GCMs. We then classify 29 GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous assessments selected solely on availability of scenarios, and may be extended for application to a range of scales and sectoral impacts.

  3. Selection of a Representative Subset of Global Climate Models that Captures the Profile of Regional Changes for Integrated Climate Impacts Assessment

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Mcdermid, Sonali P.

    2017-01-01

    We present the Representative Temperature and Precipitation (T&P) GCM Subsetting Approach developed within the Agricultural Model Intercomparison and Improvement Project (AgMIP) to select a practical subset of global climate models (GCMs) for regional integrated assessment of climate impacts when resource limitations do not permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics models. Subsetting inherently leads to a loss of information but can free up resources to explore important uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and precipitation change within the growing season while maintaining information about the probability that basic classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry) are projected in the full GCM ensemble. We demonstrate the selection methodology for maize impacts in Ames, Iowa, and discuss limitations and situations when additional information may be required to select representative GCMs. We then classify 29 GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous assessments selected solely on availability of scenarios, and may be extended for application to a range of scales and sectoral impacts.

  4. A process-based model of soil structure to assess the impact of biological agents, climate and reduced tillage

    NASA Astrophysics Data System (ADS)

    Le Couteulx, Alexis; Pérès, Guénola; Wolf, Cédric; Hallaire, Vincent

    2014-05-01

    Soil structure can be defined as the spatial arrangement of voids and solids in soil. It is a dynamic soil property due to agents' activity such as (i) mechanical action of soil tillage (ii) earthworms through their burrowing activity and faeces production and (iii) climate impact due to rain or temperature. Soil structure is often studied because of its impacts on soil functional properties, e.g. water percolation, soil water conductivity. In a context of farming practices shift towards non-ploughing techniques, it is needed to evaluate impacts on soil structure and consequently on its functional properties. Existing models have adopted two strategies to simulate soil structure: (i) to use of measured parameters to adjust a theoretical model or (ii) to build a soil structure by simulating processes that are its base. The first strategy does not deal with the difficulty to access soil structure by itself because input measured parameters are needed. The second one starts from either a virgin structure or a structure coming from strategy (i). This starting structure is then altered according to one structuring agent. At present, there is a need for such dynamic models of soil structure. They must be explicit (3D) and common for a large set of structuring agents too. They must also deal with several issues: e.g. to memorize the many voids and solids building up the soil structure or the need to be fast enough to simulate soil structure dynamics for a month, a year, etc. A first proposal, based on the strong assumption that soil is fractal, was made by Marilleau et al. (2008). In our model three structuring agents were chosen: tillage, earthworm's activity and solid particles settlement due to climate. It first focuses on the building of a computerized soil structure which is a common base to simulate the agents. It aims at being as generic as possible by using an object-oriented structure. The concept of voxel is used to split the soil into elementary units and each

  5. Geospatial analysis of spaceborne remote sensing data for assessing disaster impacts and modeling surface runoff in the built-environment

    NASA Astrophysics Data System (ADS)

    Wodajo, Bikila Teklu

    Every year, coastal disasters such as hurricanes and floods claim hundreds of lives and severely damage homes, businesses, and lifeline infrastructure. This research was motivated by the 2005 Hurricane Katrina disaster, which devastated the Mississippi and Louisiana Gulf Coast. The primary objective was to develop a geospatial decision-support system for extracting built-up surfaces and estimating disaster impacts using spaceborne remote sensing satellite imagery. Pre-Katrina 1-m Ikonos imagery of a 5km x 10km area of Gulfport, Mississippi, was used as source data to develop the built-up area and natural surfaces or BANS classification methodology. Autocorrelation of 0.6 or higher values related to spectral reflectance values of groundtruth pixels were used to select spectral bands and establish the BANS decision criteria of unique ranges of reflectance values. Surface classification results using GeoMedia Pro geospatial analysis for Gulfport sample areas, based on BANS criteria and manually drawn polygons, were within +/-7% of the groundtruth. The difference between the BANS results and the groundtruth was statistically not significant. BANS is a significant improvement over other supervised classification methods, which showed only 50% correctly classified pixels. The storm debris and erosion estimation or SDE methodology was developed from analysis of pre- and post-Katrina surface classification results of Gulfport samples. The SDE severity level criteria considered hurricane and flood damages and vulnerability of inhabited built-environment. A linear regression model, with +0.93 Pearson R-value, was developed for predicting SDE as a function of pre-disaster percent built-up area. SDE predictions for Gulfport sample areas, used for validation, were within +/-4% of calculated values. The damage cost model considered maintenance, rehabilitation and reconstruction costs related to infrastructure damage and community impacts of Hurricane Katrina. The developed

  6. Impact of Covariate Models on the Assessment of the Air Pollution-Mortality Association in a Single- and Multipollutant Context

    PubMed Central

    Sacks, Jason D.; Ito, Kazuhiko; Wilson, William E.; Neas, Lucas M.

    2012-01-01

    With the advent of multicity studies, uniform statistical approaches have been developed to examine air pollution-mortality associations across cities. To assess the sensitivity of the air pollution-mortality association to different model specifications in a single and multipollutant context, the authors applied various regression models developed in previous multicity time-series studies of air pollution and mortality to data from Philadelphia, Pennsylvania (May 1992–September 1995). Single-pollutant analyses used daily cardiovascular mortality, fine particulate matter (particles with an aerodynamic diameter ≤2.5 µm; PM2.5), speciated PM2.5, and gaseous pollutant data, while multipollutant analyses used source factors identified through principal component analysis. In single-pollutant analyses, risk estimates were relatively consistent across models for most PM2.5 components and gaseous pollutants. However, risk estimates were inconsistent for ozone in all-year and warm-season analyses. Principal component analysis yielded factors with species associated with traffic, crustal material, residual oil, and coal. Risk estimates for these factors exhibited less sensitivity to alternative regression models compared with single-pollutant models. Factors associated with traffic and crustal material showed consistently positive associations in the warm season, while the coal combustion factor showed consistently positive associations in the cold season. Overall, mortality risk estimates examined using a source-oriented approach yielded more stable and precise risk estimates, compared with single-pollutant analyses. PMID:22984096

  7. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    NASA Astrophysics Data System (ADS)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  8. Modelling the fluxes, fates and impacts of CO2 leakage, with a focus on environmental assessment and monitoring in the marine system

    NASA Astrophysics Data System (ADS)

    Blackford, J.

    2013-12-01

    Carbon Capture and Storage (CCS) is a primary carbon emissions mitigation strategy, predicated towards environmental and societal protection. As a relatively untested process it is prudent to examine the potential for environmental and economic consequences should there be a failure in storage or transport. Further it will be a necessity to develop an appropriate approach to regulation, monitoring and remediation, should a leakage event occur. A contextual approach is also necessary; risks and consequences of leakage can only be effectively judged against the risks and consequences of not mitigating CO2 emissions. Since in NW Europe much storage potential is sub seabed, the environmental focus of this contribution is marine. In the absence of real data pertaining to CO2 leakage from storage, modelling provides the only technology available to constrain the whole system. However this is still challenging given the requirement to assess the full spectrum of processes that might control CO2 flow from deep geology via shallow sediments, the water column and eventually to the atmosphere whilst modelling transformations and impacts (both biological and economic) en route. In the EU funded ECO2 project a chain of models representing an end to end approach to constraining leakage is being developed. The first group of models are focussed on geomechanics and multiphase fluid flow in the overburden, generating geologically realistic scenarios of CO2 flux. These feed into models that characterise biogeochemical reactions and transport in the shallow, non-consolidated sediments and predict fluxes across the sediment-water interface. These then inform models of the spread of CO2 plumes and gas bubble behaviour in the water column as impacted by hydrodynamics. The range of in-situ CO2 concentrations predicted by the sediment and water column models can then be used to drive models of ecosystem impact. Finally, based on this flux and impact assessment, models of economic valuing

  9. Linking Biological Integrity and Watershed Models to Assess the Impacts of Historical Land Use and Climate Changes on Stream Health

    NASA Astrophysics Data System (ADS)

    Einheuser, Matthew D.; Nejadhashemi, A. Pouyan; Wang, Lizhu; Sowa, Scott P.; Woznicki, Sean A.

    2013-06-01

    Land use change and other human disturbances have significant impacts on physicochemical and biological conditions of stream systems. Meanwhile, linking these disturbances with hydrology and water quality conditions is challenged due to the lack of high-resolution datasets and the selection of modeling techniques that can adequately deal with the complex and nonlinear relationships of natural systems. This study addresses the above concerns by employing a watershed model to obtain stream flow and water quality data and fill a critical gap in data collection. The data were then used to estimate fish index of biological integrity (IBI) within the Saginaw Bay basin in Michigan. Three methods were used in connecting hydrology and water quality variables to fish measures including stepwise linear regression, partial least squares regression, and fuzzy logic. The IBI predictive model developed using fuzzy logic showed the best performance with the R 2 = 0.48. The variables that identified as most correlated to IBI were average annual flow, average annual organic phosphorus, average seasonal nitrite, average seasonal nitrate, and stream gradient. Next, the predictions were extended to pre-settlement (mid-1800s) land use and climate conditions. Results showed overall significantly higher IBI scores under the pre-settlement land use scenario for the entire watershed. However, at the fish sampling locations, there was no significant difference in IBI. Results also showed that including historical climate data have strong influences on stream flow and water quality measures that interactively affect stream health; therefore, should be considered in developing baseline ecological conditions.

  10. Assessing the Impacts of Tillage and Fertilization Management on Nitrous Oxide Emissions in a Cornfield Using the DNDC Model

    NASA Astrophysics Data System (ADS)

    Hui, D.; Deng, Q.; Wang, J.; Yu, C. L.; Li, C.; Reddy, C.; Dennis, S.

    2015-12-01

    Quantification and prediction of N2O emissions from croplands for multiple management practices are vital for sustainable agriculture and climate change mitigation. We simulated N2O emissions under tillage and no-tillage, and different nitrogen (N) fertilizer types and application methods in a cornfield using the DeNitrification-DeComposition (DNDC) model. The model was parameterized with field experimental data collected in Nashville, TN under various management treatments and run for a short term (3 yrs) and a long term (100 yrs). Results showed that the DNDC model could adequately simulate N2O emissions as well as soil and climate conditions under different tillage, alternative use of N fertilizer sources or application methods (i.e. nitrification inhibitor, chicken manure and split applications), given that the model was parameterized based on the measured crop growths for each treatment. The emissions of N2O significantly increased by 29% with tillage, and decreased by 26% with the use of nitrification inhibitor, compared with the no-tillage and normal N fertilization. Chicken manure amendment and split applications of N fertilizer had minor impact on N2O emissions in a short term, but over a long term (100 yrs) they might significantly alter N2O emission (+30%, -12%, respectively). Sensitivity analysis showed that N2O emissions were sensitive to mean annual precipitation, mean annual temperature, soil organic carbon, and the amount of total N fertilizer application. Our model results provide valuable information for determining the best management practice to maintain highly productive corn yield while reducing greenhouse gas emissions.

  11. Human and ecotoxicological impacts assessment from the Mexican oil industry in the Coatzacoalcos region, as revealed by the USEtox model.

    PubMed

    Morales-Mora, M A; Rodríguez-Pérez, B; Martínez-Delgadillo, S A; Rosa-Domínguez, E; Nolasco-Hipólito, C

    2014-01-01

    Human and ecotoxicological impacts were analyzed in the lower basin of the Coatzacoalcos River (Veracruz, State in Mexico). High pollution levels of contaminants from the oil industry have been reported in natural streams and the Coatzacoalcos River and in their sediments. USEtox model was employed to evaluate environmental fate, exposure, and effect of nine organic compounds (polycyclic aromatic hydrocarbons and one of which was in the group of polychlorinated biphenyls), a heavy metal (lead), and the effect of the industrial wastewater emitted into the river, on the Coatzacoalcos region. Most of these compounds are highly toxic; they bioaccumulate in human and animal tissue, mainly in the fatty tissues and can damage different organs and systemic targets such as the liver, kidney, hormonal system, nervous system, etc., of both humans and wildlife. The model estimates that 96% (3,247 kg/day) of organic compounds is transferred from the water into air, whereas only 4% (151 kg/day) remains in the water. In addition, it predicts that humans are mainly exposed to polychlorinated biphenyls (PCBs) congeners (28 and 153) by eating contaminated fish, due to PCBs accumulating in the fish fat tissue. The number of cases of cancer and noncancer (1 in 862 habitants per additional kilogram) is expected to have an increment due to the higher PCBs exposure of human population. Genetic damages in fishes, earthworms, and toads have been observed and related to higher exposure to organic compounds. The relationship between the field reported data and those one predicted by the USEtox model have been confirmed empirically by using the nonparametric correlation analysis (Spearman's rho). Based on the USEtox model, the environmental stress in the Coatzacoalcos industrial zone is between 2 and 6 orders of magnitude over geometric mean of acute aquatic EC₅₀s. We think that USEtox model can be used to expand the number of substances that have the current water quality guidelines to

  12. Impact of the Fenton process in meat digestion as assessed using an in vitro gastro-intestinal model.

    PubMed

    Oueslati, Khaled; de La Pomélie, Diane; Santé-Lhoutellier, Véronique; Gatellier, Philippe

    2016-10-15

    The production of oxygen free radicals catalysed by non-haem iron was investigated in an in vitro mimetic model of the digestive tract using specific chemical traps. Superoxide radicals (O2(∗-)) and their protonated form (hydroperoxyl radicals, HO2(∗)) were detected by the reduction of nitroblue tetrazolium into formazan, and hydroxyl radicals (OH(∗)) were detected by the hydroxylation of terephthalate. Under gastric conditions, O2(∗-)/HO2(∗) were detected in higher quantity than OH(∗). Increasing the pH from 3.5 to 6.5 poorly affected the kinetics of free radical production. The oxidations generated by these free radicals were estimated on myofibrils prepared from pork rectus femoris muscle. Myofibrillar lipid and protein oxidation increased with time and oxidant concentration, with a negative impact on the digestibility of myofibrillar proteins. Plant food antioxidants considerably decreased free radical production and lipid oxidation but not protein oxidation.

  13. Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction.

    PubMed

    Cai, Juan Juan; Song, Jee Hey; Lee, Yunah; Lee, Dong Soo

    2014-02-01

    The objective was to quantitatively understand the impacts of climate change (CC) under the A1B scenario on the contamination levels of 11 polycyclic aromatic hydrocarbons (PAHs) from pyrogenic sources in the environmental media based on model prediction. To predict the impacts of CC in South Korea, a revised version of KoEFT-PBTs, a dynamic multimedia model for persistent organic pollutants in South Korea, was used. Simulations were conducted for the period from 2000 to 2049 under the A1B scenario with the emission data for 2009 and the results for Seoul and Kangwon were compared to those under no climate change (NCC) scenario. Due to CC, the average of annual or monthly average concentration changes within a factor of two for the PAHs in air, soil and water. Time dependent comparison indicates that the maximum increase induced by CC in the monthly average concentration ranges from 10 to 10(2) in air and water. Change in advective flux due to wind speed difference between A1B and NCC dictates the change of the atmospheric PAHs levels while wet particle deposition due to rain rate difference contributes to some extent to the change of 5 and 6 ring PAHs. Whether the concentration change is positive or not depends primarily on the emission strength of internal sources relative to those in surrounding areas. The CC induced changes in atmospheric depositions and degradation rate in soil play a leading role in the change of soil concentration. In water, runoff and degradation are the key processes to the CC induced concentration change. Both in soil and water, the relative importance of individual key processes varies with PAHs. The difference between the two scenarios in wind speed and in rain rate shows stronger correlations with the concentration change than the temperature change.

  14. RETHINKING HUMAN HEALTH IMPACT ASSESSMENT. (R825758)

    EPA Science Inventory

    Most EIA programs around the world require the consideration of human health impacts. Yet relatively few EIA documents adequately address those impacts. This article examines how, why, and to what extent health impacts are analyzed in environmental impact assessments in the U.S. ...

  15. RETHINKING HUMAN HEALTH IMPACT ASSESSMENT. (R825758)

    EPA Science Inventory

    Most EIA programs around the world require the consideration of human health impacts. Yet relatively few EIA documents adequately address those impacts. This article examines how, why, and to what extent health impacts are analyzed in environmental impact assessments in the U.S. ...

  16. A novel integrated modelling framework to assess the impacts of climate and socio-economic drivers on land use and water quality.

    PubMed

    Zessner, Matthias; Schönhart, Martin; Parajka, Juraj; Trautvetter, Helene; Mitter, Hermine; Kirchner, Mathias; Hepp, Gerold; Blaschke, Alfred Paul; Strenn, Birgit; Schmid, Erwin

    2017-02-01

    Changes in climatic conditions will directly affect the quality and quantity of water resources. Further on, they will affect them indirectly through adaptation in land use which ultimately influences diffuse nutrient emissions to rivers and therefore potentially the compliance with good ecological status according to the EU Water Framework Directive (WFD). We present an integrated impact modelling framework (IIMF) to track and quantify direct and indirect pollution impacts along policy-economy-climate-agriculture-water interfaces. The IIMF is applied to assess impacts of climatic and socio-economic drivers on agricultural land use (crop choices, farming practices and fertilization levels), river flows and the risk for exceedance of environmental quality standards for determination of the ecological water quality status in Austria. This article also presents model interfaces as well as validation procedures and results of single models and the IIMF with respect to observed state variables such as land use, river flow and nutrient river loads. The performance of the IIMF for calculations of river nutrient loads (120 monitoring stations) shows a Nash-Sutcliffe Efficiency of 0.73 for nitrogen and 0.51 for phosphorus. Most problematic is the modelling of phosphorus loads in the alpine catchments dominated by forests and mountainous landscape. About 63% of these catchments show a deviation between modelled and observed loads of 30% and more. In catchments dominated by agricultural production, the performance of the IIMF is much better as only 30% of cropland and 23% of permanent grassland dominated areas have a deviation of >30% between modelled and observed loads. As risk of exceedance of environmental quality standards is mainly recognized in catchments dominated by cropland, the IIMF is well suited for assessing the nutrient component of the WFD ecological status. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  17. Comparative Assessment of a New Hydrological Modelling Approach for Prediction of Runoff in Gauged and Ungauged Basins, and Climate Change Impacts Assessment: A Case Study from Benin.

    NASA Astrophysics Data System (ADS)

    GABA, C. O. U.; Alamou, E.; Afouda, A.; Diekkrüger, B.

    2016-12-01

    Assessing water resources is still an important challenge especially in the context of climatic changes. Although numerous hydrological models exist, new approaches are still under investigation. In this context, we investigate a new modelling approach based on the Physics Principle of Least Action which was first applied to the Bétérou catchment in Benin and gave very good results. The study presents new hypotheses to go further in the model development with a view of widening its application. The improved version of the model MODHYPMA was applied to sixteen (16) subcatchments in Bénin, West Africa. Its performance was compared to two well-known lumped conceptual models, the GR4J and HBV models. The model was successfully calibrated and validated and showed a good performance in most catchments. The analysis revealed that the three models have similar performance and timing errors. But in contrary to other models, MODHYMA is subject to a less loss of performance from calibration to validation. In order to evaluate the usefulness of our model for the prediction of runoff in ungauged basins, model parameters were estimated from the physical catchments characteristics. We relied on statistical methods applied on calibrated model parameters to deduce relationships between parameters and physical catchments characteristics. These relationships were further tested and validated on gauged basins that were considered ungauged. This regionalization was also performed for GR4J model.We obtained NSE values greater than 0.7 for MODHYPMA while the NSE values for GR4J were inferior to 0.5. In the presented study, the effects of climate change on water resources in the Ouémé catchment at the outlet of Savè (about 23 500 km2) are quantified. The output of a regional climate model was used as input to the hydrological models.Computed within the GLOWA-IMPETUS project, the future climate projections (describing a rainfall reduction of up to 15%) are derived from the regional

  18. USEtox - The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment

    SciTech Connect

    Rosenbaum, Ralph K.; Bachmann, Till M.; Swirsky Gold, Lois; Huijbregts, Mark A.J.; Jolliet, Olivier; Juraske, Ronnie; Koehler, Annette; Larsen, Henrik F.; MacLeod, Matthew; Margni, Manuele; McKone, Thomas E.; Payet, Jerome; Schuhmacher, Marta; van de Meent, Dik; Hauschild, Michael Z.

    2008-02-03

    provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC's Life Cycle Initiative regarding characterization of toxic impacts in Life Cycle Assessment. Recommendations and Perspectives. We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.

  19. Evaluating the impact of climate policies on regional food availability and accessibility using an Integrated Assessment Model

    NASA Astrophysics Data System (ADS)

    Gilmore, E.; Cui, Y. R.; Waldhoff, S.

    2015-12-01

    Beyond 2015, eradicating hunger will remain a critical part of the global development agenda through the Sustainable Development Goals (SDG). Efforts to limit climate change through both mitigation of greenhouse gas emissions and land use policies may interact with food availability and accessibility in complex and unanticipated ways. Here, we develop projections of regional food accessibility to 2050 under the alternative futures outlined by the Shared Socioeconomic Pathways (SSPs) and under different climate policy targets and structures. We use the Global Change Assessment Model (GCAM), an integrated assessment model (IAM), for our projections. We calculate food access as the weighted average of consumption of five staples and the portion of income spend on those commodities and extend the GCAM calculated universal global producer price to regional consumer prices drawing on historical relationships of these prices. Along the SSPs, food access depends largely on expectations of increases in population and economic status. Under a more optimistic scenario, the pressures on food access from increasing demand and rising prices can be counterbalanced by faster economic development. Stringent climate policies that increase commodity prices, however, may hinder vulnerable regions, namely Sub-Saharan Africa, from achieving greater food accessibility.

  20. The U.S. Geological Survey Coal Hydrology Program and the potential of hydrologic models for impact assessments

    USGS Publications Warehouse

    Doyle, W. Harry

    1981-01-01

    A requirement of Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977, is the understanding of the hydrology in actual and proposed surface-mined areas. Surface-water data for small specific-sites and for larger areas such as adjacent and general areas are needed also to satisfy the hydrologic requirements of the Act. The Act specifies that surface-water modeling techniques may be used to generate the data and information. The purpose of this report is to describe how this can be achieved for smaller watersheds. This report also characterizes 12 ' state-of-the-art ' strip-mining assessment models that are to be tested with data from two data-intensive studies involving small watersheds in Tennessee and Indiana. Watershed models are best applied to small watersheds with specific-site data. Extending the use of modeling techniques to larger watersheds remains relatively untested, and to date the upper limits for application have not been established. The U.S. Geological Survey is currently collecting regional hydrologic data in the major coal provinces of the United States and this data will be used to help satisfy the ' general-area ' data requirements of the Act. This program is reviewed and described in this report. (USGS)

  1. Climate change impact assessment on mountain snow hydrology by water and energy budget-based distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Bhatti, Asif M.; Koike, Toshio; Shrestha, Maheswor

    2016-12-01

    A water and energy budget-based distributed hydrological model with improved snow physics (WEB-DHM-S) was applied to elucidate the impact of climate change on mountain snow hydrology in the Shubuto River basin, Hokkaido, Japan. The simulated spatial distribution of snow cover was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow-cover extent (MOD10A2) product, which revealed the model's capability for capturing the spatiotemporal variations in snow cover within the study area. Four Atmosphere Ocean General Circulation Models (AOGCMs) were selected and the SRESA1B emission scenario of the Intergovernmental Panel on Climate Change was used to describe climate predictions in the basin. All AOGCMs predict a future decrease in snowmelt contribution to total discharge 11-22% and an average decrease in SWE of 36%, with a shift in peak SWE by 4-14 days. The shift in runoff regime is broadly consistent between the AOGCMs with snowmelt-induced peak discharge expected to occur on average about two weeks earlier in the future hydrological year. The warming climate will drive a shift in runoff regime from a combined rainfall- and snowmelt-driven regime to one with a reduced contribution from snowmelt. The results of the study revealed that the model could be successfully applicable on the basin scale to simulate river discharge and snow processes and to investigate the effect of climate change on hydrological processes. This research contributes to improve the understanding of basin hydrological responses and the pace of change associated with climate variability.

  2. Overuse Injury Assessment Model

    DTIC Science & Technology

    2005-03-01

    2.1 Model Framework It is well established that training is needed to increase performance, but overtraining is detrimental and can cause injury ...DAMD17-02-C-0073 TITLE: Overuse Injury Assessment Model PRINCIPAL INVESTIGATOR: James H. Stuhmiller, Ph.D...2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DAMD17-02-C-0073 Overuse Injury Assessment Model 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  3. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and FJORD system.

    PubMed

    Kaste, Ø; Wright, R F; Barkved, L J; Bjerkeng, B; Engen-Skaugen, T; Magnusson, J; Saelthun, N R

    2006-07-15

    Dynamically downscaled data from two Atmosphere-Ocean General Circulation Models (AOGCMs), ECHAM4 from the Max-Planck Institute (MPI), Germany and HadAm3H from the Hadley Centre (HAD), UK, driven with two scenarios of greenhouse gas emissions (IS92a and A2, respectively) were used to make climate change projections. These projections were then used to drive four effect models linked to assess the effects on hydrology, and nitrogen (N) concentrations and fluxes, in the Bjerkreim river basin (685-km(2)) and its coastal fjord, southwestern Norway. The four effect models were the hydrological model HBV, the water quality models MAGIC, INCA-N and the NIVA FJORD model. The downscaled climate scenarios project a general temperature increase in the study region of approximately 1 degrees C by 2030-2049 (MPI IS92a) and approximately 3 degrees C by 2071-2100 (HAD A2). Both scenarios imply increased winter precipitation, whereas the projections of summer and autumn precipitation are quite different, with the MPI scenario projecting a slight increase and the HAD scenario a significant decrease. As a response to increased winter temperature, the HBV model simulates a dramatic reduction of snow accumulation in the upper parts of the catchment, which in turn lead to higher runoff during winter and lower runoff during snowmelt in the spring. With the HAD scenario, runoff in summer and early autumn is substantially reduced as a result of reduced precipitation, increased temperatures and thereby increased evapotranspiration. The water quality models, MAGIC and INCA-N project no major changes in nitrate (NO(3)(-)) concentrations and fluxes within the MPI scenario, but a significant increase in concentrations and a 40-50% increase in fluxes in the HAD scenario. As a consequence, the acidification of the river could increase, thus offsetting ongoing recovery from acidification due to reductions in acid deposition. Additionally, the increased N loading may stimulate growth of N

  4. Life cycle assessment part 2: current impact assessment practice.

    PubMed

    Pennington, D W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T; Rebitzer, G

    2004-07-01

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse, recycling, through to ultimate disposal. These all contribute to impacts such as climate change, stratospheric ozone depletion, photooxidant formation (smog), eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources and noise-among others. The need exists to address these product-related contributions more holistically and in an integrated manner, providing complimentary insights to those of regulatory/process-oriented methodologies. A previous article (Part 1, Rebitzer et al., 2004) outlined how to define and model a product's life cycle in current practice, as well as the methods and tools that are available for compiling the associated waste, emissions and resource consumption data into a life cycle inventory. This article highlights how practitioners and researchers from many domains have come together to provide indicators for the different impacts attributable to products in the life cycle impact assessment (LCIA) phase of life cycle assessment (LCA).

  5. DRSPALL: Impact of the Modification of the Numerical Spallings Model on Waste Isolation Pilot Plant Performance Assessment.

    SciTech Connect

    Kicker, Dwayne Curtis; Herrick, Courtney G.; Zeitler, Todd; Malama, Bwalya; Rudeen, David Keith; Gilkey, Amy P.

    2016-01-01

    The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant (WIPP) solid waste subject to material failure and transport to the surface as a result of a hypothetical future inadvertent drilling intrusion. An error in the implementation of the DRSPALL finite difference equations was discovered as documented in Software Problem Report (SPR) 13-001. The modifications to DRSPALL to correct the finite difference equations are detailed, and verification and validation testing has been completed for the modified DRSPALL code. The complementary cumulative distribution function (CCDF) of spallings releases obtained using the modified DRSPALL is higher compared to that found in previous WIPP performance assessment (PA) calculations. Compared to previous PAs, there was an increase in the number of vectors that result in a nonzero spallings volume, which generally translates to an increase in spallings releases. The overall mean CCDFs for total releases using the modified DRSPALL are virtually unchanged, thus the modification to DRSPALL did not impact WIPP PA calculation results.

  6. Results of an adaptive environmental assessment modeling workshop concerning potential impacts of drilling muds and cuttings on the marine environment

    USGS Publications Warehouse

    Auble, Gregor T.; Andrews, Austin K.; Ellison, Richard A.; Hamilton, David B.; Johnson, Richard A.; Roelle, James E.; Marmorek, David R.

    1983-01-01

    Drilling fluids or "muds" are essential components of modern drilling operations. They provide integrity for the well bore, a medium for removal of formation cuttings, and lubrication and cooling of the drill bit and pipe. The modeling workshop described in this report was conducted September 14-18, 1981 in Gulf Breeze, Florida to consider potential impacts of discharged drilling muds and cuttings on the marine environment. The broad goals of the workshop were synthesis of information on fate and effects, identification of general relationships between drilling fluids and the marine environment, and identification of site-specific variables likely to determine impacts of drilling muds and cuttings in various marine sites. The workshop was structured around construction of a model simulating fate and effects of discharges from a single rig into open water areas of the Gulf of Mexico, and discussion of factors that might produce different fate and effects in enclosed areas such as bays and estuaries. The simulation model was composed of four connected submodels. A Discharge/Fate submodel dealt with the discharge characteristics of the rig and the subsequent fate of discharged material. Three effects submodels then calculated biological responses at distances away from the rig for the water column, soft bottom benthos (assuming the rig was located over a soft bottom environment), and hard bottom benthos (assuming the rig was located over a hard bottom environment). The model focused on direct linkages between the discharge and various organisms rather than on how the marine ecosystem itself is interconnected. Behavior of the simulation model indicated relatively localized effects of drilling muds and cuttings discharged from a single platform into open water areas. Water column fate and effects were dominated by rapid dilution. Effects from deposition of spent mud and cuttings were spatially limited with relatively rapid recovery, especially in soft bottom benthic

  7. Species for the screening assessment. Columbia River Comprehensive Impact Assessment

    SciTech Connect

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O`Neil, T.K.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area.

  8. Environmental impact assessment: Process and implementation

    SciTech Connect

    Chen, S.Y.; Tsai, S.Y.

    1989-01-01

    In this paper, the procedures and issues regarding the preparation of an environmental impact assessment in accordance with the National Environmental Policy Act (NEPA) as promulgated by the US Congress in 1969 are discussed. NEPA procedures and requirements are covered in general, while particular attention is given to the preparation of the environmental impact assessment. Also included is a discussion of the social impact assessment. The aim of the social impact assessment is to address the social issues involved in enhancing public understanding of the hazardous risks, thereby mitigating any conflicts that may arise in the NEPA process. 3 refs., 1 fig., 1 tab.

  9. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect

    Not Available

    1994-10-01

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  10. A USCLVAR Multi-Model Assessment of the Impact of SST Anomalies and Land-Atmosphere Feedbacks on Drought

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2009-01-01

    The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of

  11. A USCLVAR Multi-Model Assessment of the Impact of SST Anomalies and Land-Atmosphere Feedbacks on Drought

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2009-01-01

    The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of

  12. A model for assessing habitat fragmentation caused by new infrastructures in extensive territories - evaluation of the impact of the Spanish strategic infrastructure and transport plan.

    PubMed

    Mancebo Quintana, S; Martín Ramos, B; Casermeiro Martínez, M A; Otero Pastor, I

    2010-05-01

    The aim of the present work is to design a model for evaluating the impact of planned infrastructures on species survival at the territorial scale by calculating a connectivity index. The method developed involves determining the effective distance of displacement between patches of the same habitat, simplifying earlier models so that there is no dependence on specific variables for each species. A case study is presented in which the model was used to assess the impact of the forthcoming roads and railways included in the Spanish Strategic Infrastructure and Transport Plan (PEIT, in its Spanish initials). This study took into account the habitats of peninsular Spain, which occupies an area of some 500,000 km(2). In this territory, the areas deemed to provide natural habitats are defined by Directive 92/43/EEC. The impact of new infrastructures on connectivity was assessed by comparing two scenarios, with and without the plan, for the major new road and railway networks. The calculation of the connectivity index (CI) requires the use of a raster methodology based on the Arc/Info geographical information system (GIS). The actual calculation was performed using a program written in Arc/Info Macro Language (AML); this program is available in FragtULs (Mancebo Quintana, 2007), a set of tools for calculating indicators of fragmentation caused by transport infrastructure (http://topografia.montes.upm.es/fragtuls.html). The indicator of connectivity proposed allows the estimation of the connectivity between all the patches of a territory, with no artificial (non-ecologically based) boundaries imposed. The model proposed appears to be a useful tool for the analysis of fragmentation caused by plans for large territories. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Impact of cleaning and other interventions on the reduction of hospital-acquired Clostridium difficile infections in two hospitals in England assessed using a breakpoint model.

    PubMed

    Hughes, G J; Nickerson, E; Enoch, D A; Ahluwalia, J; Wilkinson, C; Ayers, R; Brown, N M

    2013-07-01

    Clostridium difficile infection remains a major challenge for hospitals. Although targeted infection control initiatives have been shown to be effective in reducing the incidence of hospital-acquired C. difficile infection, there is little evidence available to assess the effectiveness of specific interventions. To use statistical modelling to detect substantial reductions in the incidence of C. difficile from time series data from two hospitals in England, and relate these time points to infection control interventions. A statistical breakpoints model was fitted to likely hospital-acquired C. difficile infection incidence data from a teaching hospital (2002-2009) and a district general hospital (2005-2009) in England. Models with increasing complexity (i.e. increasing the number of breakpoints) were tested for an improved fit to the data. Partitions estimated from breakpoint models were tested for individual stability using statistical process control charts. Major infection control interventions from both hospitals during this time were grouped according to their primary target (antibiotics, cleaning, isolation, other) and mapped to the model-suggested breakpoints. For both hospitals, breakpoints coincided with enhancements to cleaning protocols. Statistical models enabled formal assessment of the impact of different interventions, and showed that enhancements to deep cleaning programmes are the interventions that have most likely led to substantial reductions in hospital-acquired C. difficile infections at the two hospitals studied. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Asteroid Threat Assessment: Land versus Water Impact Risk

    NASA Astrophysics Data System (ADS)

    Mathias, D.; Wheeler, L.; Register, P.; Aftosmis, M.; Berger, M. J.; LeVeque, R. J.; Robertson, D.

    2016-12-01

    The Asteroid Threat Assessment Project (ATAP) team at NASA Ames Research Center has created a physics-based impact risk model to quantify the risk that asteroid impacts pose to Earth's population. The model uses Monte Carlo sampling to produce stochastic sets of potential impact scenarios based on uncertainty distributions characterizing key asteroid parameters. For each impact case, the entry and fragmentation process is modeled to compute the energy deposited in the atmosphere, determine airburst altitude or surface impact, and estimate the resulting damage areas and affected populations. Damage due to blast overpressure and thermal radiation is assessed for land impacts, and tsunami generation is assessed for impacts over the oceans. This presentation will describe the physics-based impact risk model, the generation of damage regions based on energy deposition profiles, and the adaptation of engineering tsunami inundation models for the current analysis. Modeling assumptions that have a strong impact on the integrated results will be discussed and compared to results from high-fidelity simulations. The overall probabilistic risks of water versus land impacts will be compared to quantify the relative hazard posed by each.

  15. Towards a landscape scale management of pesticides: ERA using changes in modelled occupancy and abundance to assess long-term population impacts of pesticides.

    PubMed

    Topping, Chris J; Craig, Peter S; de Jong, Frank; Klein, Michael; Laskowski, Ryszard; Manachini, Barbara; Pieper, Silvia; Smith, Rob; Sousa, José Paulo; Streissl, Franz; Swarowsky, Klaus; Tiktak, Aaldrik; van der Linden, Ton

    2015-12-15

    Pesticides are regulated in Europe and this process includes an environmental risk assessment (ERA) for non-target arthropods (NTA). Traditionally a non-spatial or field trial assessment is used. In this study we exemplify the introduction of a spatial context to the ERA as well as suggest a way in which the results of complex models, necessary for proper inclusion of spatial aspects in the ERA, can be presented and evaluated easily using abundance and occupancy ratios (AOR). We used an agent-based simulation system and an existing model for a widespread carabid beetle (Bembidion lampros), to evaluate the impact of a fictitious highly-toxic pesticide on population density and the distribution of beetles in time and space. Landscape structure and field margin management were evaluated by comparing scenario-based ERAs for the beetle. Source-sink dynamics led to an off-crop impact even when no pesticide was present off-crop. In addition, the impacts increased with multi-year application of the pesticide whereas current ERA considers only maximally one year. These results further indicated a complex interaction between landscape structure and pesticide effect in time, both in-crop and off-crop, indicating the need for NTA ERA to be conducted at landscape- and multi-season temporal-scales. Use of AOR indices to compare ERA outputs facilitated easy comparison of scenarios, allowing simultaneous evaluation of impacts and planning of mitigation measures. The landscape and population ERA approach also demonstrates that there is a potential to change from regulation of a pesticide in isolation, towards the consideration of pesticide management at landscape scales and provision of biodiversity benefits via inclusion and testing of mitigation measures in authorisation procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts.

    PubMed

    Iskandar, Anita R; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2015-09-01

    Organotypic 3D cultures of epithelial cells are grown at the air-liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model.

  17. GIS based procedure of cumulative environmental impact assessment.

    PubMed

    Balakrishna Reddy, M; Blah, Baiantimon

    2009-07-01

    Scale and spatial limits of impact assessment study in a GIS platform are two very important factors that could have a bearing on the genuineness and quality of impact assessment. While effect of scale has been documented and well understood, no significant study has been carried out on spatial considerations in an impact assessment study employing GIS technique. A novel technique of impact assessment demonstrable through GIS approach termed hereby as 'spatial data integrated GIS impact assessment method (SGIAM)' is narrated in this paper. The technique makes a fundamental presumption that the importance of environmental impacts is dependent, among other things, on spatial distribution of the effects of the proposed action and of the affected receptors in a study area. For each environmental component considered (e.g., air quality), impact indices are calculated through aggregation of impact indicators which are measures of the severity of the impact. The presence and spread of environmental descriptors are suitably quantified through modeling techniques and depicted. The environmental impact index is calculated from data exported from ArcINFO, thus giving significant importance to spatial data in the impact assessment exercise.

  18. Including past and present impacts in cumulative impact assessments

    SciTech Connect

    McCold, L.N.; Saulsbury, J.W.

    1996-09-01

    Environmental concerns such as loss of biological diversity and stratospheric ozone depletion have heightened awareness of the need to assess cumulative impacts in environmental documents. More than 20 years of experience with National Environmental Policy Act (NEPA) have provided analysts in the United States with opportunities for developing successful techniques to assess site-specific impacts of proposed actions. Methods for analyzing a proposed action`s incremental contribution to cumulative impacts are generally less advanced than those for project-specific impacts. The Presidents Council on Environmental Quality (CEQ) defines cumulative impact to include the impacts of {open_quotes}past, present and reasonably foreseeable future actions{close_quotes} regardless of who undertakes the action. Court decisions have helped clarify the distinction between reasonably foreseeable future actions and other possible future actions. This paper seeks to clarify how past and present impacts should be included in cumulative impact analyses. The definition of cumulative impacts implies that cumulative impact analyses should include the effects of all past and present actions on a particular resource. Including past and present impacts in cumulative impact assessments increases the likelihood of identifying significant impacts. NEPA requires agencies to give more consideration to alternatives and mitigation and to provide more opportunities for public involvement for actions that would have significant impacts than for actions that would not cause or contribute to significant impacts. For an action that would contribute to significant cumulative impacts, the additional cost and effort involved in increased consideration of alternatives and mitigation and in additional public involvement may be avoided if the action can be modified so that its contributions to significant cumulative impacts are eliminated. 18 refs., 4 figs.

  19. Stochastic assessment of climate impacts on hydrology and geomorphology of semiarid headwater basins using a physically based model

    NASA Astrophysics Data System (ADS)

    Francipane, A.; Fatichi, S.; Ivanov, V. Y.; Noto, L. V.

    2015-03-01

    Hydrologic and geomorphic responses of watersheds to changes in climate are difficult to assess due to projection uncertainties and nonlinearity of the processes that are involved. Yet such assessments are increasingly needed and call for mechanistic approaches within a probabilistic framework. This study employs an integrated hydrology-geomorphology model, the Triangulated Irregular Network-based Real-time Integrated Basin Simulator (tRIBS)-Erosion, to analyze runoff and erosion sensitivity of seven semiarid headwater basins to projected climate conditions. The Advanced Weather Generator is used to produce two climate ensembles representative of the historic and future climate conditions for the Walnut Gulch Experimental Watershed located in the southwest U.S. The former ensemble incorporates the stochastic variability of the observed climate, while the latter includes the stochastic variability and the uncertainty of multimodel climate change projections. The ensembles are used as forcing for tRIBS-Erosion that simulates runoff and sediment basin responses leading to probabilistic inferences of future changes. The results show that annual precipitation for the area is generally expected to decrease in the future, with lower hourly intensities and similar daily rates. The smaller hourly rainfall generally results in lower mean annual runoff. However, a non-negligible probability of runoff increase in the future is identified, resulting from stochastic combinations of years with low and high runoff. On average, the magnitudes of mean and extreme events of sediment yield are expected to decrease with a very high probability. Importantly, the projected variability of annual sediment transport for the future conditions is comparable to that for the historic conditions, despite the fact that the former account for a much wider range of possible climate "alternatives." This result demonstrates that the historic natural climate variability of sediment yield is already so

  20. Integrating Land Conservation and Renewable Energy Goals in California: Assessing Land Use and Economic Cost Impacts Using the Optimal Renewable Energy Build-Out (ORB) Model.

    NASA Astrophysics Data System (ADS)

    Wu, G. C.; Schlag, N. H.; Cameron, D. R.; Brand, E.; Crane, L.; Williams, J.; Price, S.; Hernandez, R. R.; Torn, M. S.

    2015-12-01

    There is a lack of understanding of the environmental impacts and economic costs of potential renewable energy (RE) siting decisions that achieve ambitious RE targets. Such analyses are needed to inform policy recommendations that minimize potential conflicts between conservation and RE development. We use the state of California's rapid development of utility-scale RE as a case study to examine how possible land use constraints impact the total electricity land area, areas with conservation value, water use, and electricity cost of ambitious RE portfolios. We developed the Optimal Renewable energy Build-out (ORB) model, and used it in conjunction with the Renewable Portfolio Standard (RPS) Calculator, a RE procurement and transmission planning tool used by utilities within California, to generate environmentally constrained renewable energy potential and assess the cost and siting-associated impacts of wind, solar photovoltaic, concentrating solar power (CSP), and geothermal technologies. We find that imposing environmental constraints on RE development achieves lower conservation impacts and results in development of more fragmented land areas. With increased RE and environmental exclusions, generation becomes more widely distributed across the state, which results in more development on herbaceous agricultural vegetation, grasslands, and developed & urban land cover types. We find land use efficiencies of RE technologies are relatively inelastic to changes in environmental constraints, suggesting that cost-effective substitutions that reduce environmental impact and achieve RE goals is possible under most scenarios and exclusion categories. At very high RE penetration that is limited to in-state development, cost effectiveness decreases substantially under the highest level of environmental constraint due to the over-reliance on solar technologies. This additional cost is removed once the in-state constraint is lifted, suggesting that minimizing both negative

  1. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  2. Assessing the Impact of Spatial Scaling on Empirical Runoff Ratio Models within a Heterogeneous Suburbanizing Watershed in Central Indiana

    NASA Astrophysics Data System (ADS)

    Lindner, G. A.; Caylor, K. K.

    2007-12-01

    Suburbanized watersheds are characterized by a spatially complex mosaic of fragmented impervious and vegetated surfaces. The heterogeneous nature of land cover in and the variety of storm routing structures that accompany suburban development substantially modify surface hydrological dynamics within suburban watersheds. The hydrological consequences of land use and land cover change create a pressing issue for the management of water resources within developing watersheds. This research examines the hydrological impacts of recent population growth and accompanying suburban development within the Jack's Defeat Creek watershed in Ellettsville, IN, which is a 40 km2 basin that has experienced an approximate doubling in population in the last 25 years. Event-based, whole-basin runoff responses are determined from streamflow and precipitation data collected during 2005 and 2006 under both wet and dry antecedent conditions. Observed runoff responses are compared to multi-scale predictions of runoff ratios derived from the Soil Conservation Service Curve Number, which is an empirical model commonly used by municipal planning agencies to generate runoff estimates based largely on characterization of land cover and soil type. The comparison of observed whole-basin runoff response to predictions of the SCS Curve Number derived from a range of spatial scales addresses both (1) the accuracy of the Curve Number method as a predictor of runoff response in heterogeneously impervious landscapes as well as (2) the spatial scale at which the runoff estimates from empirical approaches best match the observed data under varying antecedent moisture conditions. These results will provide guidance regarding the best practices for employing empirical rainfall-runoff relationships to predict storm runoff responses in rapidly urbanizing watersheds.

  3. Risk assessment methodologies for biotechnology impact assessment

    NASA Astrophysics Data System (ADS)

    Gillett, James W.

    1986-07-01

    By combining hazard assessment of effects of a potential biotechnology product with exposure assessments based on study of the genetically engineered organism's fate, conclusions may be reached about the risk involved in release of the product to the environment. In order to make this risk assessment, criteria (including regulatory endpoints) must be established and then developed further against a data base from well-accepted tests. Other aspects requiring research and development include test evaluation, quality assurance, statistical procedures, and methods of identifying and monitoring not only the nominal organism(s) in the products, but also any contaminating material or organisms to which the genetically engineered components may be transferred in the environment. Application of microcosm technology to testing of genetically engineered organisms is expected to be important, since these systems may be used safely to understand fate and effects prior to (or in place of) testing the product in the environment. Limitations in the use of microcosms may be offset by the cost-effectiveness and incisiveness of results, as has been shown for other pollutants. Risk management for biotechnology products currently lacks an adequate background, but components of the process exist or can be developed. New resources, in terms of personnel, training, facilities, and funding, will be needed in order to apply the risk assessment paradigm used for toxic chemicals and pesticides. We will need to know:

  4. Impact of food intake on in vivo VOC concentrations in exhaled breath assessed in a caprine animal model.

    PubMed

    Fischer, Sina; Bergmann, Andreas; Steffens, Markus; Trefz, Phillip; Ziller, Mario; Miekisch, Wolfram; Schubert, Jochen S; Köhler, Heike; Reinhold, Petra

    2015-12-15

    Physiological processes within the body may change emitted volatile organic compound (VOC) composition, and may therefore cause confounding biological background variability in breath gas analyses. To evaluate the effect of food intake on VOC concentration patterns in exhaled breath, this study assessed the variability of VOC concentrations due to food intake in a standardized caprine animal model. VOCs in (i) alveolar breath gas samples of nine clinically healthy goats and (ii) room air samples were collected and pre-concentrated before morning feeding and repeatedly after (+60 min, +150 min, +240 min) using needle trap microextraction (NTME). Analysis of VOCs was performed by gas chromatography and mass spectrometry (GC-MS). Only VOCs with significantly higher concentrations in breath gas samples compared to room air samples were taken into consideration. Six VOCs that belonged to the chemical classes of hydrocarbons and alcohols were identified presenting significantly different concentrations before and after feeding. Selected hydrocarbons showed a concentration pattern that was characterized by an initial increase 60 min after food intake, and a subsequent gradual decrease. Results emphasize consideration of physiological effects on exhaled VOC concentrations due to food intake with respect to standardized protocols of sample collection and critical evaluation of results.

  5. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems

    NASA Astrophysics Data System (ADS)

    Milzow, Christian; Bauer-Gottwein, Peter

    2010-05-01

    The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important

  6. Multi-Target Calibration with a VIC Hydrologic Model: Impacts of Climate Change and Risk Assessment in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Wi, S.; Isenstein, L.; Yang, Y. C. E.; Brown, C.

    2015-12-01

    The Variable Infiltration Capacity (VIC) model is applied to the headwaters of the Arkansas River (Colorado Springs) in the USA for the purpose of water supply evaluation. Modeling the hydrologic regime of the Arkansas River is a challenge due to the large number of diversions and regulations that might impact the natural streamflow. Since the Arkansas River headwaters are snow-melt dominated, a snow cover dataset can provide additional information during the model calibration process. Remote sensing snow data have been successfully used in previous studies coupled with hydrologic modeling to improve calibration results. Using the daily snow data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite, and this study tests different calibration schemes to determine the most suitable calibration target(s) for the Colorado Springs. First, the VIC model is calibrated to streamflow and snow alone, and then a mutli-objective optimization is utilized to calibrate the model to streamflow and snow simultaneously. A well calibrated hydrologic model can be employed particularly for climate change assessments to inform decision makers about water availability and water supply under different climate conditions. This study will provide such information to Colorado Springs in which development in terms of water supply is expected to grow considerably; increases in demands are projected to be 28% higher than the present demands (approximately 102 billion gallons) by the year 2050.

  7. Integrating subsistence practice and species distribution modeling: assessing invasive elodea's potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    NASA Astrophysics Data System (ADS)

    Luizza, Matthew W.; Evangelista, Paul H.; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-07-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state's vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska's first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon ( Oncorhynchus tshawytscha) and whitefish ( Coregonus nelsonii) subsistence. State models were applied to future climate (2040-2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  8. Integrating subsistence practice and species distribution modeling: assessing invasive elodea’s potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    USGS Publications Warehouse

    Luizza, Matthew; Evangelista, Paul; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-01-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state’s vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska’s first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040–2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  9. Integrating subsistence practice and species distribution modeling: assessing invasive elodea's potential impact on Native Alaskan subsistence of Chinook salmon and whitefish.

    PubMed

    Luizza, Matthew W; Evangelista, Paul H; Jarnevich, Catherine S; West, Amanda; Stewart, Heather

    2016-07-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state's vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska's first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040-2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  10. Assessing Drought Impacts on Water Storage Changes from New GRACE Mascons Solutions and Regional Groundwater Modeling in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Faunt, C. C.; Save, H.; Wiese, D. N.; Dettinger, M. D.; Longuevergne, L.; Margulis, S. A.

    2016-12-01

    There is increasing interest in the impacts of the current five year drought in California on water resources. Here we use recently released GRACE mascons solutions from Univ. Texas Center for Space Research and NASA Jet Propulsion Lab and output from a regional groundwater model developed by the U.S Geological Survey to assess changes in water storage in response to the current and past droughts. Marked declines in Total Water Storage (TWS) from GRACE are recorded during the current drought from mid-2011 - mid-2015 with slight recovery after this time. TWS declines during the current drought exceed those recorded during the previous 2007 - 2009 drought. Contributors to TWS depletion include snow water storage (very low during 2013 and 2014), reservoir storage (decline mid 2011 - late 2015, with slight recovery in spring 2016), soil moisture storage from land surface models (greater decline during early years of drought and recent slight recovery) and groundwater storage estimated as a residual. There is general consistency between GRACE derived groundwater storage decline during the drought and simulated groundwater storage depletion from the regional groundwater model. Combining remote sensing estimation of TWS trends with global and regional modeling allows estimation of the contribution of different components to TWS anomalies, and assessment of the reliability of the groundwater storage changes.

  11. Technical approach for the assessment of air emissions from municipal landfills using the US EPA flux chamber and dispersion modeling to predict off-site impact potential

    SciTech Connect

    Schmidt, C.E.; Wilsey, S.D.; Hasek, T. Jr.

    1998-12-31

    Municipal solid waste landfills are described as large, heterogeneous area sources with relatively high generation rates of methane and carbon dioxide and relatively low emission levels of total non-methane hydrocarbon compounds (TNMHCs) and reduced sulfur compounds (RSCs) including hydrogen sulfide. Recent public awareness and enacted air regulations have generated concerns from fugitive emissions of landfill gases as a significant contribution to air pollution and the potential health effects off-site. As such, assessing impacts to local ambient air quality around a municipal landfill can be a challenge to quantify and evaluate. A technical approach has been developed and used at a large municipal landfill in the Northeast in order to assess potential impact to local air quality with particular emphasis on identifying hazardous air pollutants (HAPs) and RSCs as well as other air toxics and odor-causing compounds. The technical approach includes: Screening the landfill surface using direct-reading field analyzers based on a surface grid system; Assigning areas of similar emission potential based on screening data and engineering descriptions of the landfill (surface condition and operation); Direct emission testing using the US EPA recommended flux chamber, estimating area-specific emissions using measured flux and surface area; Predicting off-site impact using a dispersion model with area source input capability; and Collection of collaborating off-site ambient air samples during periods of significant odor events to identify compounds and their concentrations. This approach was found to be superior to other assessment approaches including use of emission factors or indirect ambient air monitoring technologies.

  12. Development of an flood-inundation model nesting a grid-based distributed rainfall-runoff model for impact assessment of water-related disasters

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Tachikawa, Y.; Yorozu, K.

    2013-12-01

    A risk assessment of water-related disaster under a changing climate has been highly concerned recently. To examine a change of the magnitude of inundation disasters is an important issue for a risk assessment of water-related disasters. It takes huge computational cost to conduct many 2D-inundation simulations for a whole basin under various external force scenarios. If inundation simulations are conducted only for a possible inundation area, it will highly reduce the computational time. To achieve this purpose, a flood-inundation model which nests a distributed rainfall-runoff model was developed. First, as a rainfall-runoff model to predict flood discharge, a distributed hydrologic model in 30 second spatial resolution, 1K-DHM (http://hywr.kuciv.kyoto-u.ac.jp/products/1K-DHM/1K-DHM.html) was developed, which uses digital elevation and flow direction information in HydroSHED developed by the USGS. 1K-DHM routes spatially-distributed rainfall-runoff using kinematic wave approximation from an upper grid to a lower grid along a flow direction map. Second, the flood-inundation model nesting the rainfall-runoff was developed. The framework of the inundation model is as follows. Setting river discharge simulated by 1K-DHM as a boundary condition, the flood-inundation model calculates river discharge and flooded water by the 1D and 2D inertial model which neglects the advective term in a momentum equation proposed by Bates et. al. (J. Hydrol., 387, 33-45, 2010). The inundation model considers a gradient of water stage with lower computational cost than the diffusive wave model. A devised discretization scheme (Bates et. al.: J. Hydrol., 387, 33-45, 2010) enhances the inundation model to capture the relevant mechanisms of flood propagation with very high computational performance and stability. The distributed runoff model and the inundation model use the same topographic data, thus river channel networks in the flood-inundation model with the 3 second resolution falls

  13. Minority Utility Rate Design Assessment Model

    SciTech Connect

    Poyer, David A.; Butler, John G.

    2003-01-20

    Econometric model simulates consumer demand response to various user-supplied, two-part tariff electricity rate designs and assesses their economic welfare impact on black, hispanic, poor and majority households.

  14. Population pharmacokinetic modelling to assess the impact of CYP2D6 and CYP3A metabolic phenotypes on the pharmacokinetics of tamoxifen and endoxifen

    PubMed Central

    ter Heine, Rob; Binkhorst, Lisette; de Graan, Anne Joy M; de Bruijn, Peter; Beijnen, Jos H; Mathijssen, Ron H J; Huitema, Alwin D R

    2014-01-01

    Aims Tamoxifen is considered a pro-drug of its active metabolite endoxifen. The major metabolic enzymes involved in endoxifen formation are CYP2D6 and CYP3A. There is considerable evidence that variability in activity of these enzymes influences endoxifen exposure and thereby may influence the clinical outcome of tamoxifen treatment. We aimed to quantify the impact of metabolic phenotype on the pharmacokinetics of tamoxifen and endoxifen. Methods We assessed the CYP2D6 and CYP3A metabolic phenotypes in 40 breast c