Science.gov

Sample records for impact ejecta meterorites

  1. Ejecta from Ocean Impacts

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  2. Chicxulub Impact Ejecta From Albion Island, Belize

    NASA Technical Reports Server (NTRS)

    Ocampo, A.; Pope, K.; Fischer, A.; Alvarez, W.; Fouke, B.; Webster, C.; Vega, F.; Smit, J.; Fritsche, A.; Claeys, P.

    1999-01-01

    Impact ejecta from the Albion Formation are exposed in northern Belize. The ejecta come from the outer portion of the continuous ejecta blanket of the Chicxulub crater, which is located 360 km to the northwest.

  3. Ejecta evolution during cone impact

    NASA Astrophysics Data System (ADS)

    Marston, Jeremy; Vakarelski, Ivan; Thoroddsen, Sigurdur

    2013-11-01

    We present results from an experimental study of the impact of conical shaped bodies into a pool of liquid. By varying the cone angle, impact speed and liquid physical properties, we examine a broad parameter space and seek to find conditions when self-similarity can be observed during this phenomena. We use high-speed imaging to capture the early-time motion of the liquid ejecta which emanates from the tip of the cone and travels up along the cone surface. Surprisingly, we find that the detachment of the ejecta can be simply described by air entrainment relationships derived from coating experiments.

  4. Chicxulub Impact Ejecta in Belize

    NASA Technical Reports Server (NTRS)

    Ocampo, A.; Pope, K.; Fischer, A.; Alvarez, W.; Fouke, B.; Asaro, F.; Webster, C., Jr.; Vega, F.; Smith, J.; Fritsche, A. E.

    1997-01-01

    Chicxulub ejecta deposits in Belize provide the closest exposures of ejecta to the crater and the only exposures of proximal ejecta deposited in a terrestrial environment. A quarry on Albion Island in northern Belize exposes Late Cretaceous, possibly Maastrichtian, carbonate platform sediments that were folded, eroded, and subaerially weathered prior to the deposition of coarse ejecta from Chicxulub. These ejecta deposits are composed of a basal, about 1-m-thick clay and dolomite Spheroid Bed overlain by a about 15-m-thick coarse Diamictite Bed. Many and perhaps most of the clay spheroids are altered glass. Many dolomite spheroids have concentric layers and angular cores are probably of accretionary lapilli origin. A slight Ir concentration (111-152 ppt) was detected in the base of the Spheroid Bed. The Diamictite Bed contains about 10% altered glass, rare shocked quartz, 3-8 m diameter boulders and striated and polished cobbles, one with a penetrating rock chip that plastically deformed the cobble. Ejecta deposits extend to the surface at Albion and the maximum thickness in this area is not known. Ejecta deposits are exposed in several roadside quarries in the Cayo District of central Belize. The Late Cretaceous here is also represented by carbonate platform sediments. The upper surface of the carbonate platform is a highly irregular and extensively recrystallized horizon possibly representing deep karst weathering. Approximately 30 in of diamictite overlies this horizon with a texture similar to the Diamictite Bed at the Albion quarry, but with a more diverse lithology. In three locations the Cayo diamictites, contain red clay layers with abundant polished and striated limestone pebbles and cobbles called Pook's Pebbles, several of which have penetrating rock chips and ablated surfaces. We interpret the Albion Spheroid Bed as a deposit from the impact vapor plume and the Albion and Cayo diamictites as the result of a turbulent flow that contained debris derived

  5. Chicxulub Impact Ejecta in Belize

    NASA Technical Reports Server (NTRS)

    Ocampo, A.; Pope, K.; Fischer, A.; Alvarez, W.; Fouke, B.; Asaro, F.; Webster, C., Jr.; Vega, F.; Smith, J.; Fritsche, A. E.

    1997-01-01

    Chicxulub ejecta deposits in Belize provide the closest exposures of ejecta to the crater and the only exposures of proximal ejecta deposited in a terrestrial environment. A quarry on Albion Island in northern Belize exposes Late Cretaceous, possibly Maastrichtian, carbonate platform sediments that were folded, eroded, and subaerially weathered prior to the deposition of coarse ejecta from Chicxulub. These ejecta deposits are composed of a basal, about 1-m-thick clay and dolomite Spheroid Bed overlain by a about 15-m-thick coarse Diamictite Bed. Many and perhaps most of the clay spheroids are altered glass. Many dolomite spheroids have concentric layers and angular cores are probably of accretionary lapilli origin. A slight Ir concentration (111-152 ppt) was detected in the base of the Spheroid Bed. The Diamictite Bed contains about 10% altered glass, rare shocked quartz, 3-8 m diameter boulders and striated and polished cobbles, one with a penetrating rock chip that plastically deformed the cobble. Ejecta deposits extend to the surface at Albion and the maximum thickness in this area is not known. Ejecta deposits are exposed in several roadside quarries in the Cayo District of central Belize. The Late Cretaceous here is also represented by carbonate platform sediments. The upper surface of the carbonate platform is a highly irregular and extensively recrystallized horizon possibly representing deep karst weathering. Approximately 30 in of diamictite overlies this horizon with a texture similar to the Diamictite Bed at the Albion quarry, but with a more diverse lithology. In three locations the Cayo diamictites, contain red clay layers with abundant polished and striated limestone pebbles and cobbles called Pook's Pebbles, several of which have penetrating rock chips and ablated surfaces. We interpret the Albion Spheroid Bed as a deposit from the impact vapor plume and the Albion and Cayo diamictites as the result of a turbulent flow that contained debris derived

  6. Characterizing Secondary Debris Impact Ejecta

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.

    1999-01-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  7. Impact ejecta on the moon

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.

    1976-01-01

    The partitioning of energy and the distribution of the resultant ejecta on the moon is numerically modeled using a Eulerian finite difference grid. The impact of an iron meteoroid at 15 km/sec on a gabbroic anorthosite lunar crust is examined. The high speed impact induced flow is described over the entire hydrodynamic regime from a time where the peak pressures are 6 Mbar until the stresses everywhere in the flow are linearly elastic, and less than 5 kbar. Shock-induced polymorphic phase changes, (plagioclase and pyroxene to hollandite and perovskite), and the subsequent reversion to low pressure phases are demonstrated to enhance shock wave attenuation. A rate-dependent equation of state is used for describing the hysteretic effect of the phase change. Ballistic equations for a spherical planet are then applied to material with net velocity away from the moon.

  8. Colorful Impact Ejecta from Hargraves Crater

    NASA Image and Video Library

    2017-05-08

    The collision that created Hargraves Crater impacted into diverse bedrock lithologies of ancient Mars; the impact ejecta is a rich mix of rock types with different colors and textures, as seen by NASA Mars Reconnaissance Orbiter. The crater is named after Robert Hargraves who discovered and studied meteorite impacts on the Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21609

  9. Orbital Evolution of Impact Ejecta from Ganymede

    NASA Astrophysics Data System (ADS)

    Alvarellos, Jose Luis; Zahnle, Kevin J.; Dobrovolskis, Anthony R.; Hamill, Patrick

    2002-11-01

    We have numerically computed the orbital evolution of ˜10 3 particles representing high-speed ejecta from Gilgamesh, the largest impact basin on Ganymede. The integration includes the four Galilean satellites, Jupiter (including J2 and J4), Saturn, and the Sun. The integrations last 100,000 years. The particles are ejected at a variety of speeds and directions, with the fastest particles ejected at 1.4 times the escape speed vesc≡ 2GM G/R G of Ganymede. Ejecta with speeds v<0.96 vesc follow suborbital trajectories. At v˜0.96 vesc there is a transition characterized by complex behavior suggestive of chaos. For v>0.96 vesc, most particles escape Ganymede and achieve orbits about Jupiter. Eventually most (˜71%) of the jovicentric particles hit Ganymede, with 92% of these hitting within 1000 years. The accretion rate scales as 1/ t. Their impact sites are randomly distributed, as expected for planetocentric debris. We estimate that most of the resulting impact craters are a few kilometers across and smaller. The rest of the escaping ejecta are partitioned as follows: ˜3% hit Io; ˜10% hit Europa; ˜13% hit Callisto; 2% reach heliocentric space; and less than ˜1% hit Jupiter. Only two particles survived the entire 10 5-year integration. Ejecta from large impact events do not appear to be a plausible source of large craters on the Galilean satellites; however, such ejecta may account for the majority of small craters.

  10. Mercurian impact ejecta: Meteorites and mantle

    NASA Astrophysics Data System (ADS)

    Gladman, B.; Coffey, J.

    2009-03-01

    We have examined the fate of impact ejecta liberated from the surface of Mercury due to impacts by comets or asteroids, in order to study 1) meteorite transfer to Earth, and 2) reaccumulation of an expelled mantle in giant-impact scenarios seeking to explain Mercury’s large core. In the context of meteorite transfer during the last 30 Myr, we note that Mercury’s impact ejecta leave the planet’s surface much faster (on average) than other planets in the solar system because it is the only planet where impact speeds routinely range from 5 to 20 times the planet’s escape speed; this causes impact ejecta to leave its surface moving many times faster than needed to escape its gravitational pull. Thus, a large fraction of Mercurian ejecta may reach heliocentric orbit with speeds sufficiently high for Earth-crossing orbits to exist immediately after impact, resulting in larger fractions of the ejecta reaching Earth as meteorites. We calculate the delivery rate to Earth on a time scale of 30 Myr (typical of stony meteorites from the asteroid belt) and show that several percent of the high-speed ejecta reach Earth (a factor of 2-3 less than typical launches from Mars); this is one to two orders of magnitude more efficient than previous estimates. Similar quantities of material reach Venus. These calculations also yield measurements of the re-accretion time scale of material ejected from Mercury in a putative giant impact (assuming gravity is dominant). For Mercurian ejecta escaping the gravitational reach of the planet with excess speeds equal to Mercury’s escape speed, about one third of ejecta reaccretes in as little as 2 Myr. Thus collisional stripping of a silicate proto-Mercurian mantle can only work effectively if the liberated mantle material remains in small enough particles that radiation forces can drag them into the Sun on time scale of a few million years, or Mercury would simply re-accrete the material.

  11. Chicxulub Ejecta Impact Trenches And Terminal Impact

    NASA Astrophysics Data System (ADS)

    Page, R. L.

    2013-05-01

    DISCOVERY During a Pacific voyage from E. Australia to the US on a small sailing research vessel what appears to be two Chicxulub impact trenches were discovered in the ocean floor at depths of 4,627m and 3,519m. DESCRIPTION Trench A begins at a depth of 4,627m, 704km from the Chicxulub impact and is 18km long, 5km wide and 225m deep. Trench B begins at a depth of 3,519m, 732km from the Chixculub impact and is 23km long, 7 km wide and 400m deep. At the end of Trench B is what appears to be a debris deposit 5km long. Their relationship to the Chicxulub impact seems confirmed by their central axis, which when extended intersect at the Chicxulub impact at N Lat 21.33, W Long 89.5. Down range 286km from the end of Trench B is what appears to be the terminal impact of the object that created the two trenches. This is in the form of several large boulders, small seamounts, and islands in shallower depths indicating breakup of the object 1040km from the Chicxulub impact. The trenches are in an area of the Caribbean where currents prevented them from being silted in, preserving their physical form on the ocean floor. The object that created the trenches could have been large ejecta from the impact or possibly part of the asteroid that separated before impact or upon impact and carried on 1000km down range. The trajectory of both trenches is an upward angle of about 3 degrees. This indicates that the trajectory of the object was at a low angle, very high velocity and was deflected slightly upward upon impact with the ocean floor 4,627 below sea level. RESEARCH The first two phases of 10 phases consisting of mapping, exploration, research, and documentation of the impacts have been completed. Phase 1 consisted of assembling available sea floor data of the area of the impacts. Phase 2 consisted of selecting aerial and under water images from Google Earth, preparing bathymetric mapping from a GEBCO_08. BODC raster analysis with 50m contour intervals of the impact area

  12. Jet ejecta mass upon oblique impact

    NASA Technical Reports Server (NTRS)

    Yang, W.; Ahrens, T. J.; Miller, G. H.; Petach, M. B.

    1991-01-01

    Theoretical models in the jetting regime for symmetric and asymmetric impact of thin plates predict the mass and velocity of jetted material upon oblique impact. However, experimental constraints on the amount of material which form jets upon oblique impact are not known. A series of preliminary experiments were conducted in which tungsten (W) flyer plates at speeds of 1.5 to 2.0 km/s were obliquely impacted into carbon targets at 30 deg in the regime of jetting, yielding radiation temperatures in the about 3200 K range. Both framing-camera and flash X-ray imaging were conducted. Broad cm-sized craters induced by jet ejecta on 2024 Al witness plates were used to infer jet mass. We infer, from measured witness plate crater volumes, that jet masses in the range of 0.01 to 0.06 g are produced by a 32 mm diameter, 6 mm thick W impactor. This is about one to two orders of magnitude less than those calculated from present theoretical models. In contrast, in refractory material experiments, the mass of gabbro ejecta trapped in styrofoam is 0.52 g, which is similar to that calculated.

  13. Oblique Impact and Its Ejecta: Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Artemieva, N.; Pierazzo, E.

    2003-01-01

    It is well known that impact events strike planetary surfaces at an angle from the surface. Assuming an isotropic flux of projectiles, probability theory indicates that the most likely angle of impact is 45 regardless of the body's gravitational field. While crater rims appear circular down to low impact angles, the distribution of ejecta around the crater is sensitive to the angle of impact and currently serves as the best guide to obliquity of impacts. A fair amount of numerical modeling of vertical impacts has been carried out from the early 60-s to the present time and references herein]. In vertical impacts, the axial symmetry of the process allows the simplification of the model to two dimensions (2D). Oblique impact modeling requires 3D hydro-codes and, hence, much more powerful computers. The first documented detailed oblique impact studies were carried out at Sandia National Labs' supercomputers less than 10 years ago to describe the 1994 collision of comet SL9 with Jupiter. Since then, substantial progress in computer science has made 3D modeling a reachable objective for the scientific community.

  14. Small Impact Craters with Dark Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    1999-01-01

    When a meteor impacts a planetary surface, it creates a blast very much like a bomb explosion. Shown here are two excellent examples of small impact craters on the martian surface. Each has a dark-toned deposit of material that was blown out of the crater (that is, ejected) during the impact. Materials comprising these deposits are called ejecta. The ejecta here is darker than the surrounding substrate because each crater-forming blast broke through the upper, brighter surface material and penetrated to a layer of darker material beneath. This darker material was then blown out onto the surface in the radial pattern seen here.

    The fact that impact craters can penetrate and expose material from beneath the upper surface of a planet is very useful for geologists trying to determine the nature and composition of the martian subsurface. The scene shown here is illuminated from the upper left and covers an area 1.1 km (0.7 mi) wide by 1.4 km (0.9 mi). The larger crater has a diameter of about 89 meters (97 yards), the smaller crater is about 36 meters (39 yards) across. The picture is located in Terra Meridiani and was taken by the Mars Global Surveyor Mars Orbiter Camera.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  15. Trajectories of ballistic impact ejecta on a rotating Earth

    NASA Technical Reports Server (NTRS)

    Alvarez, W.

    1994-01-01

    On an airless, slowly rotating planetary body like the Moon, ejecta particles from an impact follow simple ballistic trajectories. If gaseous interactions in the fireball are ignored, ejecta particles follow elliptical orbits with the center of the planetary body at one focus until they encounter the surface at the point of reimpact. The partial elliptical orbit of the ejecta particle lies in a plane in inertial (galactic) coordinates. Because of the slow rotation rate (for example, 360 degrees/28 days for the Moon), the intersection of the orbital plane and the surface remains nearly a great circle during the flight time of the ejecta. For this reason, lunar rays, representing concentrations of ejecta with the same azimuth but different velocities and/or ejecta angles, lie essentially along great circles. Ejecta from airless but more rapidly rotating bodies will follow more complicated, curving trajectories when plotted in the coordinate frame of the rotating planet or viewed as rays on the planetary surface. The curvature of trajectories of ejecta particles can be treated as a manifestation of the Coriolis effect, with the particles being accelerated by Coriolis pseudoforces. However, it is more straightforward to calculate the elliptical orbit in inertial space and then determine how far the planet rotates beneath the orbiting ejecta particle before reimpact. The Earth's eastward rotation affects ballistic ejecta in two ways: (1) the eastward velocity component increases the velocity of eastbound ejecta and reduces the velocity of westbound ejecta; and (2) the Earth turns underneath inflight ejecta, so that although the latitude of reimpact is not changed, the longitude is displaced westward, with the displacement increasing as a function of the time the ejecta remains aloft.

  16. The Acraman impact and its widespread ejecta, South Australia

    NASA Technical Reports Server (NTRS)

    Gostin, V. A.; Keays, R. R.; Wallace, M. W.

    1992-01-01

    Discovery of a widespread horizon of shock-deformed volcaniclastic ejecta preserved in Late Proterozoic (approx. 600 Ma) shales in South Australia and its probable link to the Acraman impact structure in the Middle Proterozoic Gawler Range. Volcanics provide a rare opportunity to study the effects of a major terrestrial impact, including the sedimentology and distribution of an ejecta blanket and its precious-metal signature. The ejecta horizon occurs in the Bunyeroo Formation at many localities within the Adelaide Geosyncline, including the Wearing Hills, which are approx. 350 km northeast of the Acraman impact site. Following a search at the same stratigraphic level in other basins in South Australia, the ejecta has been located within the Lower Rodda beds of the Officer Basin, extending the limits of the ejecta to approx. 470 km northwest of the Acraman impact structure. The ejecta is therefore widely dispersed, and provides an important chronostratigraphic marker enabling precise correlation of Late Proterozoic sequences in southern Australia. In summary, the Bunyeroo ejecta is unique as the only known example of a widely dispersed, coarse-grained ejecta blanket that is, moreover, strongly linked to a known major impact structure. The marked Ir-PGE anomalies in the ejecta horizon provide support for the hypothesis that meteorite impact events can produce Ir anomalies interrestrial sediments. The findings also indicate that Ir can be mobilized and concentrated in sediments by low-temperature diagenetic processes. The identification of ejecta horizons in sedimentary rocks therefore should be based on the coincidence of shock-metamorphic features in the detritus and clear Ir anomalies.

  17. Searching for Biosignatures in Exoplanetary Impact Ejecta.

    PubMed

    Cataldi, Gianni; Brandeker, Alexis; Thébault, Philippe; Singer, Kelsi; Ahmed, Engy; de Vries, Bernard L; Neubeck, Anna; Olofsson, Göran

    2017-08-01

    With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future. Key Words: Biosignatures-Exoplanets-Impacts

  18. Chicxulub Ejecta Trenches and Terminal Impact

    NASA Astrophysics Data System (ADS)

    Page, R.

    2012-12-01

    DISCOVERY During a Pacific voyage from E. Australia to the US on a small sailing research vessel what appears to be two Chicxulub impact trenches were discovered in the ocean floor at depths of 4,627m and 3,519m. DESCRIPTION Trench A begins at a depth of 4,627m, 704km from the Chicxulub impact and is 18km long, 5km wide and 225m deep. Trench B begins at a depth of 3,519m, 732km from the Chixculub impact and is 23km long, 7 km wide and 400m deep. At the end of Trench B is what appears to be a debris deposit 5km long. Their relationship to the Chicxulub impact seems confirmed by their central axis, which when extended intersect at the Chicxulub impact at N Lat 21.33, W Long 89.5. Down range 286km from the end of Trench B is what appears to be the terminal impact of the object that created the two trenches. This is in the form of several large boulders, small seamounts, and islands in shallower depths indicating breakup of the object 1040km from the Chicxulub impact. The trenches are in an area of the Caribbean where currents prevented them from being silted in, preserving their physical form on the ocean floor. The object that created the trenches could have been large ejecta from the impact or possibly part of the asteroid that separated before impact or upon impact and carried on 1000km down range. The trajectory of both trenches is an upward angle of about 3 degrees. This indicates that the trajectory of the object was at a low angle, very high velocity and was deflected slightly upward upon impact with the ocean floor 3,519m below sea level. RESEARCH The first two phases of 10 phases consisting of mapping, exploration, research, and documentation of the impacts have been completed. Phase 1 consisted of assembling available sea floor data of the area of the impacts. Phase 2 consisted of selecting aerial and under water images from Google Earth, preparing bathymetric mapping from a GEBCO_08. BODC raster analysis with 50m contour intervals of the impact area

  19. Searching for Biosignatures in Exoplanetary Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Cataldi, Gianni; Brandeker, Alexis; Thébault, Philippe; Singer, Kelsi; Ahmed, Engy; de Vries, Bernard L.; Neubeck, Anna; Olofsson, Göran

    2017-08-01

    With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future.

  20. Ejecta Dynamics during Hypervelocity Impacts into Dry and Wet Sandstone

    NASA Astrophysics Data System (ADS)

    Hoerth, T.; Schäfer, F.; Thoma, K.; Poelchau, M.; Kenkmann, T.; Deutsch, A.

    2011-03-01

    Hypervelocity impact experiments into dry and water saturated porous Seeberger sandstone were conducted at the two-stage light gas accelerator at the Ernst-Mach-Institute (EMI) and the ejecta dynamics were analyzed.

  1. Ejecta Thickness of the Martian Impact Crater Tooting

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Garbeil, H.

    2006-12-01

    We have used MOLA topographic data to study the multi-layered ejecta blanket of a remarkably fresh Martian impact crater ~28 km in diameter, with the provisional I.A.U. name Tooting Crater. Tooting Crater is located just west of the Olympus Mons aureole at 23.4°N, 207.5°E. This crater is very young, as demonstrated by large amounts of impact melt preserved on the walls and floor, a extensive secondary crater field, almost no superposed primary impact craters, and higher than average thermal inertia values on the distal ramparts and crater walls. Tooting Crater formed on virtually flat lava flows within Amazonis Planitia far away from other topographic features, so that the thickness of the ejecta blanket can be determined by subtracting an elevation of -3,872 m from the MOLA measurements. Thus, for the first time, it is possible to determine absolute ejecta thicknesses for an impact crater on Mars as a function of radial distance away from the rim crest. This study therefore serves as a reference point against which to study the ejecta of more eroded multi-layered ejecta craters of similar size; knowledge of the radial distribution of ejecta for craters in the southern highlands may be particularly important for assessing erosion rates at different periods of the history of Mars (e.g., Forsberg-Taylor et al. 2004, JGR 109 E05002 doi: 10.1029/2004JE002242). A total of 24,201 MOLA shots lie on the ejecta blanket beyond the rim crest of Tooting Crater to a radial distance of 66.5 km. MOLA data show that the crater cavity volume is ~380 km3 and the volume of materials above the elevation of the pre-impact terrain is ~455 km3. Given no losses in the ejecta due to erosion, this implies a bulking of ~14.4% in the material that now forms the ejecta blanket. Maximum ejecta thickness is ~800 m at the rim, that decreases to <30 m within 35% of the maximum ejecta range. Remarkably, the ejecta layers are <5 m thick in some locations within the ejecta blanket, particularly at

  2. Impact Ejecta Modeling of the Bunte Breccia Deposits of the Ries Impact Crater, Southern Germany

    NASA Astrophysics Data System (ADS)

    Sturm, S.; Wulf, G.; Jung, D.; Kenkmann, T.

    2012-03-01

    Here we present new impact ejecta modeling results of the paleo-surface and Bunte breccia ejecta outside the Ries impact crater that provide morphology and thickness variations of the Bunte breccia with increasing distance from the crater center.

  3. Modeling the detection of impact ejecta on the lunar surface

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Srama, Ralf; Wu, Yiyong; Grün, Eberhard

    2015-12-01

    The lunar surface is continuously exposed to the micrometeoroid environment. Hypervelocity impacts of interplanetary dust particles with speeds around 17 kms-1 generate secondary ejecta on the lunar surface. A dust detector placed on the moon is capable of characterizing the secondary ejecta population. The purpose of this paper is to study the speed and trajectory information of ejecta by impact simulations and its implications for the location of a dust sensor on the surface. AUTODYN15.0/2D software was used to simulate the velocity and angular distributions of ejecta created by the primary impacts of interplanetary dust particles. We considered projectiles with sizes of 10 μm spheres in diameter with speeds of 17 kms-1. We used impact angles of 15°, 30°, 45°, 60°, 75°, and 90° with respect to the surface. A significant percentage of the impact ejecta are created in the early-time stage of the impact process. This population can be captured by a sensor placed on the lunar surface (e.g. Lunar Ejecta and Meteorites (LEAM) experiment) or by a sensor mounted directly on a lander (e.g. Lunar Dust eXplorer (LDX)). The secondary ejecta population above the lunar surface is considered to explain the results of the LEAM experiment. A sensor directly placed on the surface like LEAM is not very well suited to measure the high-speed ejecta component - a sensor located at a few meters height (e.g. on top of a lunar lander) would measure higher fluxes.

  4. The Detection of Impact Ejecta on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Srama, R.; Grun, E.

    2014-04-01

    Based on the recent data, the LDEX (Lunar Dust EXperiment) sensor onboard lunar orbiter LADEE (Lunar Atmosphere and Dust Environment Explorer) already identified the existence of a dust cloud above the lunar surface down to 10 km [1]. Instruments placed on the lunar surface can monitor both secondary ejecta of interplanetary dust impact and lofted dust by electric force. This paper will fucus on the measurement for impact ejecta. Considering the trajectory of the ejecta, we suggest to mount the instrument with a elevation angle of + 15±. The detection of falling down ejecta population is considered as the main science goal. We recorded to add a articulate mechanism to allow the detector scanning by at lest ± 15±) in order to sperate the two ejcta populations.

  5. Impact ejecta dynamics in an atmosphere - Experimental results and extrapolations

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1982-01-01

    It is noted that the impacts of 0.635-cm aluminum projectiles at 6 km/sec into fine pumice dust, at 1 atm, generate a ball of ionized gas behind an expanding curtain of upward moving ejecta. The gas ball forms a toroid which dissolves as it is driven along the interior of the ejecta curtain, by contrast to near-surface explosions in which a fireball envelops early-time crater growth. High frame rate Schlieren photographs show that the atmosphere at the base of the ejecta curtain is initially turbulent, but later forms a vortex. These experiments suggest that although small size ejecta may be decelerated by air drag, they are not simply lofted and suspended but become incorporated in an ejecta cloud that is controlled by air flow which is produced by the response of the atmosphere to the impact. The extrapolation of these results to large body impacts on the earth suggests such contrasts with laboratory experiments as a large quantity of impact-generated vapor, the supersonic advance of the ejecta curtain, the lessened effect of air drag due to the tenuous upper atmosphere, and the role of secondary cratering.

  6. Standardizing the nomenclature of Martian impact crater ejecta morphologies

    USGS Publications Warehouse

    Barlow, Nadine G.; Boyce, Joseph M.; Costard, Francois M.; Craddock, Robert A.; Garvin, James B.; Sakimoto, Susan E.H.; Kuzmin, Ruslan O.; Roddy, David J.; Soderblom, Laurence A.

    2000-01-01

    The Mars Crater Morphology Consortium recommends the use of a standardized nomenclature system when discussing Martian impact crater ejecta morphologies. The system utilizes nongenetic descriptors to identify the various ejecta morphologies seen on Mars. This system is designed to facilitate communication and collaboration between researchers. Crater morphology databases will be archived through the U.S. Geological Survey in Flagstaff, where a comprehensive catalog of Martian crater morphologic information will be maintained.

  7. Martian impact craters: Continuing analysis of lobate ejecta sinuosity

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1990-01-01

    The lobate ejecta morphology surrounding most fresh Martian impact craters can be quantitatively analyzed to determine variations in ejecta sinuosity with diameter, latitude, longitude, and terrain. The results of such studies provide another clue to the question of how these morphologies formed: are they the results of vaporization of subsurface volatiles or caused by ejecta entrainment in atmospheric gases. Kargel provided a simple expression to determine the degree of non-circularity of an ejecta blanket. This measure of sinuosity, called 'lobateness', is given by the ratio of the ejecta perimeter to the perimeter of a circle with the same area as that of the ejecta. The Kargel study of 538 rampart craters in selected areas of Mars led to the suggestion that lobateness increased with increasing diameter, decreased at higher latitude, and showed no dependence on elevation or geologic unit. Major problems with the Kargel analysis are the limited size and distribution of the data set and the lack of discrimination among the different types of lobate ejecta morphologies. Bridges and Barlow undertook a new lobateness study of 1582 single lobe (SL) and 251 double lobe (DL) craters. The results are summarized. These results agree with the finding of Kargel that lobateness increases with increasing diameter, but found no indication of a latitude dependence for SL craters. The Bridges and Barlow study has now been extended to multiple lobe (ML) craters. Three hundred and eighty ML craters located across the entire Martian surface were studied. ML craters provide more complications to lobateness studies than do SL and DL craters - in particular, the ejecta lobes surrounding the crater are often incomplete. Since the lobateness formula compares the perimeter of the ejecta lobe to that of a circle, the analysis was restricted only to complete lobes. The lobes are defined sequentially starting with the outermost lobe and moving inward.

  8. An Impact Ejecta Behavior Model for Small, Irregular Bodies

    NASA Technical Reports Server (NTRS)

    Richardson, J. E.; Melosh, H. J.; Greenberg, R.

    2003-01-01

    In recent years, spacecraft observations of asteroids 951 Gaspra, 243 Ida, 253 Mathilde, and 433 Eros have shown the overriding dominance of impact processes with regard to the structure and surface morphology of these small, irregular bodies. In particular, impact ejecta play an important role in regolith formation, ranging from small particles to large blocks, as well as surface feature modification and obscuration. To investigate these processes, a numerical model has been developed based upon the impact ejecta scaling laws provided by Housen, Schmidt, and Holsapple, and modified to more properly simulate the late-stage ejection velocities and ejecta plume shape changes (ejection angle variations) shown in impact cratering experiments. A target strength parameter has also been added to allow the simulation of strength-dominated cratering events in addition to the more familiar gravity-dominated cratering events. The result is a dynamical simulation which models -- via tracer particles -- the ejecta plume behavior, ejecta blanket placement, and impact crater area resulting from a specified impact on an irregularly shaped target body, which is modeled in 3-dimensional polygon fashion. This target body can be placed in a simple rotation state about one of its principal axes, with the impact site and projectile/target parameters selected by the user. The gravitational force from the irregular target body (on each tracer particle) is determined using the polygonized surface (polyhedron) gravity technique developed by Werner.

  9. An Impact Ejecta Behavior Model for Small, Irregular Bodies

    NASA Technical Reports Server (NTRS)

    Richardson, J. E.; Melosh, H. J.; Greenberg, R.

    2003-01-01

    In recent years, spacecraft observations of asteroids 951 Gaspra, 243 Ida, 253 Mathilde, and 433 Eros have shown the overriding dominance of impact processes with regard to the structure and surface morphology of these small, irregular bodies. In particular, impact ejecta play an important role in regolith formation, ranging from small particles to large blocks, as well as surface feature modification and obscuration. To investigate these processes, a numerical model has been developed based upon the impact ejecta scaling laws provided by Housen, Schmidt, and Holsapple, and modified to more properly simulate the late-stage ejection velocities and ejecta plume shape changes (ejection angle variations) shown in impact cratering experiments. A target strength parameter has also been added to allow the simulation of strength-dominated cratering events in addition to the more familiar gravity-dominated cratering events. The result is a dynamical simulation which models -- via tracer particles -- the ejecta plume behavior, ejecta blanket placement, and impact crater area resulting from a specified impact on an irregularly shaped target body, which is modeled in 3-dimensional polygon fashion. This target body can be placed in a simple rotation state about one of its principal axes, with the impact site and projectile/target parameters selected by the user. The gravitational force from the irregular target body (on each tracer particle) is determined using the polygonized surface (polyhedron) gravity technique developed by Werner.

  10. Orbital evolution of impact ejecta from Mars

    NASA Astrophysics Data System (ADS)

    Wetherill, G. W.

    1984-03-01

    The orbital evolution of material ejected from Mars into heliocentric orbits is investigated, with emphasis on the origin of the shergottite, nakhlite, and chassignite achondrites. Two models are considered. In the first, meteorite-size bodies are ejected directly from Mars. In the second, the ejecta are approximately 15 m diameter bodies, that are subsequently fragmented by collisions in space. In both cases about 35 percent of the objects that will ever reach earth do so within 10 m y. For the small body model, it is found that about 0.03 percent of the Mars crater ejecta must be accelerated to the Mars escape velocity; the large body model requires an efficiency of 0.4 percent. The results indicate that meteorites originating as small bodies should dominate the terrestrial flux of Mars ejecta. This is in general agreement with data from SNC meteorites. The yield of meteorites from Mercury is found to be at least a factor of 100 lower than from Mars.

  11. The Impact Ejecta Environment of Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey R.; Horányi, Mihály

    2016-10-01

    Impact ejecta production is a ubiquitous process that occurs on all airless bodies throughout the solar system. Unlike the Moon, which retains a large fraction of its ejecta, asteroids primarily shed their ejecta into the interplanetary dust population. These grains carry valuable information about the chemical compositions of their parent bodies that can be measured via in situ dust detection. Here, we use recent Lunar Atmosphere and Dust Environment Explorer/Lunar Dust Experiment measurements of the lunar dust cloud to calculate the dust ejecta distribution for any airless body near 1 au. We expect this dust distribution to be highly asymmetric, due to non-isotropic impacting fluxes. We predict that flybys near these asteroids would collect many times more dust impacts by transiting the apex side of the body compared to its anti-apex side. While these results are valid for bodies at 1 au, they can be used to qualitatively infer the ejecta environment for all solar-orbiting airless bodies.

  12. Petrography and geochemistry of ejecta from the Sudbury impact event

    NASA Astrophysics Data System (ADS)

    Huber, Matthew S.; McDonald, Iain; Koeberl, Christian

    2014-10-01

    Ejecta from the Connors Creek site in Michigan (500 km from the Sudbury Igneous Complex [SIC]), the Pine River site in western Ontario (650 km from the SIC), and the Coleraine site in Minnesota (980 km from the SIC) were petrographically and geochemically analyzed. Connors Creek was found to have approximately 2 m of ejecta, including shocked quartz, melt droplets, and accretionary lapilli; Pine River has similar deposits about 1 m in thickness, although with smaller lapilli; Coleraine contains only impact spherules in a 20 cm-thick layer (impact spherules being similar to microkrystites or microtektites). The ejecta transition from chaotic deposits of massively bedded impactoclastic material with locally derived detritus at Connors Creek to a deposit with apparently very little detrital material that is primarily composed of melt droplets at Pine River to a deposit that is almost entirely composed of melt spherules at Coleraine. The major and trace element compositions of the ejecta confirm the previously observed similarity of the ejecta deposits to the Onaping Formation in the SIC. Platinum-group element (PGE) concentrations from each of the sites were also measured, revealing significantly elevated PGE contents in the spherule samples compared with background values. PGE abundances in samples from the Pine River site can be reproduced by addition of approximately 0.2 wt% CI chondrite to the background composition of the underlying sediments in the core. PGE interelement ratios indicate that the Sudbury impact event was probably caused by a chondritic impactor.

  13. Crater-ray formation by impact-induced ejecta particles

    NASA Astrophysics Data System (ADS)

    Kadono, T.; Suzuki, A. I.; Wada, K.; Mitani, N. K.; Yamamoto, S.; Arakawa, M.; Sugita, S.; Haruyama, J.; Nakamura, A. M.

    2015-04-01

    We performed impact experiments with granular targets to reveal the formation process of crater "rays", the non-uniform ejecta distributions around some fresh craters on the Moon and planets. We found mesh patterns, loosely woven with spaces like a net, as ejecta. A characteristic length of spaces between meshes was evaluated, and an angle, defined as the ratio of the characteristic length to the distance from the ejection point, was obtained as ∼a few degrees. These features are similar to the results of the analyses of the ray patterns around two lunar craters, Glushko and Kepler. Numerical simulations of granular material showed that clear mesh pattern appeared at lower coefficients of restitution between particles but was less clear at larger one, suggesting that the inelastic collisions between particles cause the clear mesh-pattern formation of impact ejecta.

  14. Impact and explosion crater ejecta, fragment size, and velocity

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1983-01-01

    A model was developed for the mass distribution of fragments that are ejected at a given velocity for impact and explosion craters. The model is semi-empirical in nature and is derived from (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter and an assumption on the functional form for the distribution of fragements ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity are nearly monodisperse, e.g., 20% of the mass of the ejecta at a given velocity contain fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. Using this model, the largest fragment that can be ejected from asteroids, the moon, Mars, and Earth is calculated as a function of crater diameter. In addition, the internal energy of ejecta versus ejecta velocity is found. The internal energy of fragments having velocities exceeding the escape velocity of the moon will exceed the energy required for incipient melting for solid silicates and thus, constrains the maximum ejected solid fragment size.

  15. LCROSS Impact Conditions and Ejecta Evolution: Insight from Experiments

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.; Schultz, P. H.; Colaprete, A.

    2009-12-01

    The ejecta distribution resulting from an impact event reflects the impact conditions and target material properties. The Lunar CRater Observation and Sensing Satellite (LCROSS) mission will provide a rare look at subsurface materials. The LCROSS impact will excavate regolith from a permanently shadowed crater on the south pole of the moon. The impactor, named the Earth-Departure-Upper-Stage (EDUS), will impact the surface at ~2.5km/s at an angle of greater than 80° from horizontal. The trailing Shepherding Spacecraft (SSc) will record the impact and take measurements of the ejecta in coordination with a comprehensive earth-based observational campaign. Prior studies have explored the predicted ejecta mass/velocity distribution and general ejecta dynamics through computational modeling (Korycansky, et al 2009) and scaling laws(Schultz, 2006, Heldmann et al 2007). At very early times, however, these models and scaling laws break down. It is this high-speed component of the ejected material that will reach the sunlight horizon first and will be recorded by the SSc. Thus to interpret the initial conditions of the impact from the LCROSS ejecta plume, the early-time ejecta distribution must be understood. A suite of impact experiments (performed at the NASA Ames Vertical Gun Range, or AVGR) were designed to interpret LCROSS conditions. These experiments reveal that early in the cratering process, when the projectile is still coupling its energy and momentum to the target surface, ejection velocity is higher than predicted by dimensional scaling laws (Housen, et al 1983). Moreover, the ejection angles of this early-time component are initially lower than predicted, and sweep upward tens of degrees to reach nominal ejection angles (~45° for impacts into sand). Low-density projectiles (such as the EDUS) yield even lower ejection angles throughout much of crater growth, thereby indicating a shallower depth of coupling. An estimate of mass above a given height calculated

  16. Biomass preservation in impact melt ejecta

    NASA Astrophysics Data System (ADS)

    Howard, Kieren Torres; Bailey, Melanie J.; Berhanu, Deborah; Bland, Phil A.; Cressey, Gordon; Howard, Lauren E.; Jeynes, Chris; Matthewman, Richard; Martins, Zita; Sephton, Mark A.; Stolojan, Vlad; Verchovsky, Sasha

    2013-12-01

    Meteorites can have played a role in the delivery of the building blocks of life to Earth only if organic compounds are able to survive the high pressures and temperatures of an impact event. Although experimental impact studies have reported the survival of organic compounds, there are uncertainties in scaling experimental conditions to those of a meteorite impact on Earth and organic matter has not been found in highly shocked impact materials in a natural setting. Impact glass linked to the 1.2-km-diameter Darwin crater in western Tasmania is strewn over an area exceeding 400km2 and is thought to have been ejected by a meteorite impact about 800kyr ago into terrain consisting of rainforest and swamp. Here we use pyrolysis-gas chromatography-mass spectrometry to show that biomarkers representative of plant species in the local ecosystem--including cellulose, lignin, aliphatic biopolymer and protein remnants--survived the Darwin impact. We find that inside the impact glass the organic components are trapped in porous carbon spheres. We propose that the organic material was captured within impact melt and preserved when the melt quenched to glass, preventing organic decomposition since the impact. We suggest that organic material can survive capture and transport in products of extreme impact processing, at least for a Darwin-sized impact event.

  17. Ejecta Erosion

    NASA Image and Video Library

    2010-09-23

    The ejecta blanket created around impact craters is often much more resistant to erosion than surrounding surface materials. As seen by NASA Mars Odyssey, the ejecta material creates isolated highs as surrounding surface is eroded near Meridiani Planum.

  18. Crater Ejecta

    NASA Image and Video Library

    2012-06-05

    This image from NASA 2001 Mars Odyssey spacecraft contains a relatively young crater and its ejecta. Layering in the ejecta is visible and relates to the shock waves from the impact. This unnamed crater is located in Arabia Terra.

  19. Proximal Multi-layered Ejecta of the Haughton Impact Crater (Devon Island, High Arctic); Insights into Emplacement Mechanisms of Layered Ejecta

    NASA Astrophysics Data System (ADS)

    Thackrey, S.; Lee, P.; Mason, C. E.; Parnell, J.

    2008-03-01

    We report the discovery of a well preserved, proximal multi-layered ejecta deposit on the NW sector of the Haughton impact crater. The deposit provides evidence that subsurface volatiles plays a vital role in the emplacement of layered ejecta.

  20. Experimental Investigation of the Distribution of Shock Effects in Regolith Impact Ejecta Using an Ejecta Recovery Chamber

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Montes, R.; Cardenas, F.; Cintala, M. J.

    2016-01-01

    Because the mass-flux of solar system meteoroids is concentrated in the approx. 200 microns size range, small-scale impacts play a key role in driving the space weathering of regoliths on airless bodies. Quantifying this role requires improved data linking the mass, density and velocity of the incoming impactors to the nature of the shock effects produced, with particular emphasis on effects, such as production of impact melt and vapor, that drive the optical changes seen in space weathered regoliths. Of particular importance with regard to space weathering is understanding not only the composition of the shock melt created in small-scale impacts, but also how it is partitioned volumetrically between the local impact site and more widely distributed ejecta. To improve the ability of hypervelocity impact experiments to obtain this type of information, we have developed an enclosed sample target chamber with multiple-geometry interior capture cells for in-situ retention of ejecta from granular targets. A key design objective was to select and test capture cell materials that could meet three requirements: 1) Capture ejecta fragments traveling at various trajectories and velocities away from the impact point, while inducing minimal additional damage relative to the primary shock effects; 2) facilitate follow-up characterization of the ejecta either on or in the cell material by analytical SEM, or ex-situ by microprobe, TEM and other methods; and 3) enable the trajectories of the captured and characterized ejecta to be reconstructed relative to the target.

  1. Spitzer spectral observations of the deep impact ejecta.

    PubMed

    Lisse, C M; Vancleve, J; Adams, A C; A'hearn, M F; Fernández, Y R; Farnham, T L; Armus, L; Grillmair, C J; Ingalls, J; Belton, M J S; Groussin, O; McFadden, L A; Meech, K J; Schultz, P H; Clark, B C; Feaga, L M; Sunshine, J M

    2006-08-04

    Spitzer Space Telescope imaging spectrometer observations of comet 9P/Tempel 1 during the Deep Impact encounter returned detailed, highly structured, 5- to 35-micrometer spectra of the ejecta. Emission signatures due to amorphous and crystalline silicates, amorphous carbon, carbonates, phyllosilicates, polycyclic aromatic hydrocarbons, water gas and ice, and sulfides were found. Good agreement is seen between the ejecta spectra and the material emitted from comet C/1995 O1 (Hale-Bopp) and the circumstellar material around the young stellar object HD100546. The atomic abundance of the observed material is consistent with solar and C1 chondritic abundances, and the dust-to-gas ratio was determined to be greater than or equal to 1.3. The presence of the observed mix of materials requires efficient methods of annealing amorphous silicates and mixing of high- and low-temperature phases over large distances in the early protosolar nebula.

  2. HCN production from impact ejecta on the early Earth

    NASA Astrophysics Data System (ADS)

    Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. J.

    2016-11-01

    Major impact events have drastically altered the evolution of life on Earth. The reentry of ejecta formed from these events can trigger widespread chemical changes to the atmosphere on a global scale. This mechanism was proposed as a source of HCN during the Late Heavy Bombardment (LHB), 4.1 to 3.8 billion years ago. Significant concentrations of HCN in surface water could directly lead to adenine formation, a precursor for RNA. This work uses the Direct Simulation Monte Carlo (DSMC) method to examine the production of CN and HCN due to the reentry of impact ejecta. We use the Statistical Modeling in Low-Density Environment (SMILE) code, which utilizes the Total Collisional Energy (TCE) model for reactions. The collisions are described by the Variable Soft Sphere (VSS) and Larsen-Borgnakke (LB) models. We compare this nonequilibrium production to equilibrium concentrations from bulk atmospheric heating. The equilibrium HCN yield for a 1023 J impact is 7.0×104 moles, corresponding to a 2.5×1014 molecules per m2 surface deposition. We find that additional CN and HCN is produced under thermochemical nonequilibrium, particularly at higher altitudes. The total nonequilibrium yield for a 1023 J impact is 1.2×106 moles of HCN, a value 17 times the equilibrium result. This corresponds to a surface deposition of 1.4×1015 molecules per m2. This increase in production indicates that thermochemical nonequilibrium effects play a strong role in HCN from impact ejecta, and must be considered when investigating impacts as a plausible mechanism for significant adenine production during the LHB.

  3. Ejecta Production in Microgravity from Low Velocity Impacts in Regolith

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Dove, A.; Brisset, J.; Rascon, A. N.; Brightwell, K.

    2015-12-01

    We report on the results of the third PRIME (Physics of Regolith Impacts in Microgravity Experiment) campaign on-board the NASA C-9 airplane in August 2014. The objective of PRIME is to study low-velocity impacts of cm-scale particles into planetary regolith under reduced gravity and microgravity conditions, measuring how dust on the surfaces of planetary ring particles, planetesimals and asteroids dissipates energy in the collision and the mass-velocity distribution of any ejecta produced in the impact. PRIME can perform impacts into granular materials at speeds of ~5-50 cm/s in microgravity. Impacts are performed in vacuum and projectiles are spherical particles launched by a spring designed to provide the desired impact energy. The target materials studied are quartz sand and JSC-1 lunar regolith simulant, filled to a depth of 2 cm in the target tray. Projectile materials are quartz, brass, and stainless steel to provide a range of impact energies at constant impact velocity. Impacts are performed in isolated chambers and up to 8 experiments can be performed per flight. The data collected consists of video recordings of the impacts, taken with a high resolution video camera at 120 frames per second. The impacts observed during the PRIME-3 campaign resulted in 9 marble rebounds and 15 impacts with ejecta. Seven of these 15 were at accelerations of ~0.05 g while the remaining impacts were performed in free fall. For each rebound observed, the coefficient of restitution of the impact was measured and for each collision that produced ejecta, the ejected particles were tracked to determine their initial velocities. The PRIME-3 campaign successfully extended the region of the parameter field explored by investigating impacts at velocities lower than observed during previous campaigns while collecting new data on impacts at asteroid gravity levels. We present our new results and combine them with results from previous similar experiments and discuss applications to

  4. Oblique impact: Projectile richochet, concomitant ejecta and momentum transfer

    NASA Technical Reports Server (NTRS)

    Gault, Donald E.; Schultz, Peter H.

    1987-01-01

    Experimental studies of oblique impact indicate that projectile richochet occurs for trajectory angles less than 30 deg and that the richocheted projectile, accompanied by some target material, are ejected at velocities that are a large fraction of the impact velocity. Because the probability of occurrence of oblique impact less than 30 deg on a planetary body is about one out of every four impact events, oblique impacts would seem to be a potential mechanism to provide a source of meteorites from even the largest atmosphere-free planetary bodies. Because the amount of richocheted target material cannot be determined from previous results, additional experiments in the Ames Vertical Gun laboratory were undertaken toward that purpose using pendulums; one to measure momentum of the richocheted projectile and concomitant target ejecta, and a second to measure the momentum transferred from projectile to target. These experiments are briefly discussed.

  5. Popigai Impact Structure Modeling: Morphology and Worldwide Ejecta

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Artemieva, N. A.; Pierazzo, E.

    2004-01-01

    The approx. 100 km in diameter, 35.7 0.2 Ma old Popigai structure [1], northern Siberia (Russia), is the best-preserved of the large terrestrial complex crater structures containing a central-peak ring [2- 4]. Although remotely located, the excellent outcrops, large number of drill cores, and wealth of geochemical data make Popigai ideal for the general study of the cratering processes. It is most famous for its impact-diamonds [2,5]. Popigai is the best candidate for the source crater of the worldwide late Eocene ejecta [6,7].

  6. Distal Impact Ejecta from the Gulf of Carpentaria: Have We Found Cometary Fragments as Part of the Ejecta Suite?

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. E.; Abbott, D. H.; Breger, D.

    2011-12-01

    Analysis using light microscopy, analytical scanning electron microscopy, and measurements of the magnetic susceptibility of five sediment cores (MD 28-MD 32) from the Gulf of Carpentaria have revealed that each has had an impact layer less than a centimeter (10s to 100s of micrometers) thick prior to bioturbation. The present stratigraphic thickness of the impact layer (result of bioturbation) within every core was determined based on whether or not we had observed at least one of the following impact ejecta: FeNiCrCl (a recent discovery), metallic spherules (some of which consisted of Fe and Ni), or chlorinated hydrocarbon; the highest peak of magnetic susceptibility correlated with the highest concentration of impact ejecta. We used modeling of the magnetic susceptibility of a hematite-calcium carbonate mixture to constrain the minimum thickness of the impact ejecta layer (prior to bioturbation). Until recently we had been unaware that the red, glassy, semi-spherules we found within the impact layer were in fact FeNiCrCl. Nickel is not abundant within the Earth's crust, thus it is highly likely that these fragments are cometary debris from an impact event within the Gulf of Carpentaria. Furthermore, SEM analysis has confirmed that the chlorinated hydrocarbon was not PVC contamination from the coring process; with such high levels of chlorine the results strongly suggest that the material was a by product of a marine water impact event. In addition, by using impact modeling we deduced that the observed impact ejecta layer could not have been transported via an impact generated tsunami. The model also predicts that the layer could have been produced by a cometary impact event (average velocity 51 km/s) that would have produced the 12 km crater at the site of the Tabban crater candidate.

  7. Impact Ejecta above an Unconformity in Hudson River Sediments

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.; Gogan, N.; Breger, D.

    2012-12-01

    We examined three Hudson River cores just above a step increase in density that we infer to be an erosional unconformity circa 2300 BP in age (Goodbred et al., 2006). Each core has a layer containing impact ejecta and marine microfossils that lies directly above the unconformity. As the river water is too fresh for marine organisms, there are no marine microfossils in the sediments above and below this unusual layer. The marine microfossils are pelagic and benthic foraminifera, radiolarians, and coccoliths. The impact ejecta include marine microfossils coated with Sn oxide, often in crystalline form. The Sn oxide coating contains quantitative levels of Ni as determined by microprobe analysis. Ni is a marker for extraterrestrial material. Sn oxide also appears as a coating on glauconite grains within the layer. Glauconite is highly unstable and only forms in a marine setting. Marine sediments on the continental shelf outside the mouth of the Hudson River contain abundant glauconite. We also found impact breccia containing flow-textured glass, shocked ilmenite, pyroxene, and K-feldspar. Some of the glass cemented impact breccias are enriched in pyrite. The layer above the unconformity increases in thickness towards the mouth of the Hudson. The water depth of the cores in some cases exceeds 10 meters. Because the flow depths of storm surges do not exceed 10 meters and are generally less than 3 meters, we can eliminate storm surge as a cause of the event. Alternatively, tsunamis can exhibit flow depths that exceed 10 meters, suggesting that the erosional event was produced by an impact-generated tsunami. The cores containing the unconformity are located between 27 and 41 km upstream from the mouth of the Hudson River.

  8. Distal Ejecta from Lunar Impacts: Extensive Regions of Rocky Deposits

    NASA Technical Reports Server (NTRS)

    Bandfield, Joshua L.; Cahill, Joshua T. S.; Carter, Lynn M.; Neish, Catherine D.; Patterson, G. Wesley; Williams, Jean-Pierre; Paige, David A.

    2016-01-01

    Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer, Mini-RF, and LRO Camera data were used to identify and characterize rocky lunar deposits that appear well separated from any potential source crater. Two regions are described: 1) A approximate 18,000 sq km area with elevated rock abundance and extensive melt ponds and veneers near the antipode of Tycho crater (167.5 deg E, 42.5 deg N). This region has been identified previously, using radar and aging data. 2) A much larger and more diffuse region, covering approximately 730,000 sq km, centered near 310 deg E, 35 deg S, containing elevated rock abundance and numerous granular flow deposits on crater walls. The rock distributions in both regions favor certain slope azimuths over others, indicating a directional component to the formation of these deposits. The spatial distribution of rocks is consistent with the arrival of ejecta from the west and northwest at low angles (approximately 10-30 deg) above the horizon in both regions. The derived age and slope orientations of the deposits indicate that the deposits likely originated as ejecta from the Tycho impact event. Despite their similar origin, the deposits in the two regions show significant differences in the datasets. The Tycho crater antipode deposit covers a smaller area, but the deposits are pervasive and appear to be dominated by impact melts. By contrast, the nearside deposits cover a much larger area and numerous granular flows were triggered. However, the features in this region are less prominent with no evidence for the presence of impact melts. The two regions appear to be surface expressions of a distant impact event that can modify surfaces across wide regions, resulting in a variety of surface morphologies. The Tycho impact event may only be the most recent manifestation of these processes, which likely have played a role in the development of the regolith throughout lunar history

  9. Distal ejecta from lunar impacts: Extensive regions of rocky deposits

    NASA Astrophysics Data System (ADS)

    Bandfield, Joshua L.; Cahill, Joshua T. S.; Carter, Lynn M.; Neish, Catherine D.; Patterson, G. Wesley; Williams, Jean-Pierre; Paige, David A.

    2017-02-01

    Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer, Mini-RF, and LRO Camera data were used to identify and characterize rocky lunar deposits that appear well separated from any potential source crater. Two regions are described: 1) A ∼18,000 km2 area with elevated rock abundance and extensive melt ponds and veneers near the antipode of Tycho crater (167.5°E, 42.5°N). This region has been identified previously, using radar and imaging data. 2) A much larger and more diffuse region, covering ∼730,000 km2, centered near 310°E, 35°S, containing elevated rock abundance and numerous granular flow deposits on crater walls. The rock distributions in both regions favor certain slope azimuths over others, indicating a directional component to the formation of these deposits. The spatial distribution of rocks is consistent with the arrival of ejecta from the west and northwest at low angles (∼10-30°) above the horizon in both regions. The derived age and slope orientations of the deposits indicate that the deposits likely originated as ejecta from the Tycho impact event. Despite their similar origin, the deposits in the two regions show significant differences in the datasets. The Tycho crater antipode deposit covers a smaller area, but the deposits are pervasive and appear to be dominated by impact melts. By contrast, the nearside deposits cover a much larger area and numerous granular flows were triggered. However, the features in this region are less prominent with no evidence for the presence of impact melts. The two regions appear to be surface expressions of a distant impact event that can modify surfaces across wide regions, resulting in a variety of surface morphologies. The Tycho impact event may only be the most recent manifestation of these processes, which likely have played a role in the development of the regolith throughout lunar history.

  10. Martian impact crater ejecta morphologies and their potential as indicators of subsurface volatile distribution

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1991-01-01

    Many martian impact craters ejecta morphologies suggestive of fluidization during ejecta emplacement. Impact into subsurface volatile reserviors (i.e., water, ice, CO2, etc.) is the mechanism favored by many scientists, although acceptance of this mechanism is not unanimous. In recent years, a number of studies were undertaken to better understand possible relationships between ejecta morphology and latitude, longitude, crater diameter, and terrain. These results suggest that subsurface volatiles do influence the formation of specific ejecta morphologies and may provide clues to the vertical and horizontal distribution of volatiles in more localized regions of Mars. The location of these volatile reservoirs will be important to humans exploring and settling Mars in the future. Qualitative descriptions of ejecta morphology and quantitative analyses of ejecta sinuosity and ejecta lobe areal extent from the basis of the studies. Ejecta morphology studies indicate that morphology is correlated with crater diameter and latitude, and, using depth-diameter relationships, these correlations strongly suggest that changes in morphology are related to transition among subsurface layers with varying amounts of volatiles. Ejecta sinuosity studies reveal correlations between degree of sinuosity (lobateness) and crater morphology, diameter, latitude, and terrain. Lobateness, together with variations in areal extent of the lobate ejecta blanket with morphology and latitude, probably depends most directly on the ejecta emplacement process. The physical parameters measured here can be compared with those predicted by existing ejecta emplacement models. Some of these parameters are best reproduced by models requiring incorporation of volatiles within the ejecta. However, inconsistencies between other parameters and the models indicate that more detailed modeling is necessary before the location of volatile reservoirs can be confidently predicted based on ejecta morphology studies

  11. Martian impact crater ejecta morphologies and their potential as indicators of subsurface volatile distribution

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1991-01-01

    Many martian impact craters ejecta morphologies suggestive of fluidization during ejecta emplacement. Impact into subsurface volatile reserviors (i.e., water, ice, CO2, etc.) is the mechanism favored by many scientists, although acceptance of this mechanism is not unanimous. In recent years, a number of studies were undertaken to better understand possible relationships between ejecta morphology and latitude, longitude, crater diameter, and terrain. These results suggest that subsurface volatiles do influence the formation of specific ejecta morphologies and may provide clues to the vertical and horizontal distribution of volatiles in more localized regions of Mars. The location of these volatile reservoirs will be important to humans exploring and settling Mars in the future. Qualitative descriptions of ejecta morphology and quantitative analyses of ejecta sinuosity and ejecta lobe areal extent from the basis of the studies. Ejecta morphology studies indicate that morphology is correlated with crater diameter and latitude, and, using depth-diameter relationships, these correlations strongly suggest that changes in morphology are related to transition among subsurface layers with varying amounts of volatiles. Ejecta sinuosity studies reveal correlations between degree of sinuosity (lobateness) and crater morphology, diameter, latitude, and terrain. Lobateness, together with variations in areal extent of the lobate ejecta blanket with morphology and latitude, probably depends most directly on the ejecta emplacement process. The physical parameters measured here can be compared with those predicted by existing ejecta emplacement models. Some of these parameters are best reproduced by models requiring incorporation of volatiles within the ejecta. However, inconsistencies between other parameters and the models indicate that more detailed modeling is necessary before the location of volatile reservoirs can be confidently predicted based on ejecta morphology studies

  12. Corvid meteoroids are not ejecta from the Giordano Bruno impact

    NASA Astrophysics Data System (ADS)

    Harris, A. W.

    1993-05-01

    The study points out three difficulties with the hypothesis of Hartung (1993) that the Corvid meteor system, observed only once in 1937, may be the return of the clump of ejecta from the formation of a lunar crater, specifically, an event recorded in the chronicles of Gervase of Canterbury on June 25, 1178, which Hartung (1976) previously suggested may be an eyewitness account of the formation of the lunar crater Giordano Bruno. On the basis of this, he predicts that another Corvid shower may be observed in 2003 or 2006. This hypothesis is rejected on the contention that it is implausible that a clump of ejecta could be launched into heliocentric orbit with a low enough dispersion in velocity among separate pieces that it would produce a meteor shower in just one year and not others. Subsequent perturbations by the earth on parts of the clump passing near the earth but not impacting would destroy the coherence of the clump on a time scale much shorter than the 759-yr interval proposed. There are so many orbits that could yield a shower after 759 yr that it is unlikely that a prediction of a return in a specific year would be correct.

  13. Corvid meteoroids are not ejecta from the Giordano Bruno impact

    NASA Technical Reports Server (NTRS)

    Harris, A. W.

    1993-01-01

    The study points out three difficulties with the hypothesis of Hartung (1993) that the Corvid meteor system, observed only once in 1937, may be the return of the clump of ejecta from the formation of a lunar crater, specifically, an event recorded in the chronicles of Gervase of Canterbury on June 25, 1178, which Hartung (1976) previously suggested may be an eyewitness account of the formation of the lunar crater Giordano Bruno. On the basis of this, he predicts that another Corvid shower may be observed in 2003 or 2006. This hypothesis is rejected on the contention that it is implausible that a clump of ejecta could be launched into heliocentric orbit with a low enough dispersion in velocity among separate pieces that it would produce a meteor shower in just one year and not others. Subsequent perturbations by the earth on parts of the clump passing near the earth but not impacting would destroy the coherence of the clump on a time scale much shorter than the 759-yr interval proposed. There are so many orbits that could yield a shower after 759 yr that it is unlikely that a prediction of a return in a specific year would be correct.

  14. Using Hydrocode Modelling to Track Ejecta from Oblique Hypervelocity Impacts onto Glass

    NASA Astrophysics Data System (ADS)

    Price, M. C.; Burchell, M.

    2012-03-01

    Hydrocode modelling has been implemented to track the ejecta from hypervelocity impacts of oblique impactors onto glass. This supports the ongoing Stardust ISPE as a method to aid discrimination between spacecraft secondary impacts and IDP/ISPs.

  15. Analysis of Regolith Simulant Ejecta Distributions from Normal Incident Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Suggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has established the Constellation Program. The Constellation Program has defined one of its many goals as long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013 'Meteoroid Environment Model Near Earth to Lunar Surface', was developed for the Apollo program in 1969 and contains the latest definition of the lunar ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powdered pumice and unconsolidated JSC-1A Lunar Mare Regolith simulant targets. Projectiles were accelerated to velocities between 2.45 and 5.18 km/s at normal incidence using the Ames Vertical Gun Range (AVGR). The ejected particles were detected by thin aluminum foil targets strategically placed around the impact site and angular ejecta distributions were determined. Assumptions were made to support the analysis which include; assuming ejecta spherical symmetry resulting from normal impact and all ejecta particles were of mean target particle size. This analysis produces a hemispherical flux density distribution of ejecta with sufficient velocity to penetrate the aluminum foil detectors.

  16. Mars impact ejecta in the regolith of Phobos: Bulk concentration and distribution

    NASA Astrophysics Data System (ADS)

    Ramsley, Kenneth R.; Head, James W.

    2013-10-01

    The gravity of Mars and the observation of a thick Phobos regolith suggest that nearly all Phobos ejecta returns to Phobos and re-impacts on Phobos. Primary ejecta from Mars typically impacts Phobos at velocities of ~2-3 km/s and due to the low escape velocity from Phobos of ~4-10 m/s, ~95-99% of the secondary ejecta from Phobos is inserted into temporary orbits around Mars. Most Phobos ejecta fragments remain trapped in orbits around Mars for several days to several hundred years until they re-impact with Phobos and produce new generations of ejecta. Mars-orbiting Phobos ejecta fragments typically re-impact on opposite hemispheres of Phobos from their previous impact sites, and when combined with the typical conical dispersion pattern of impact ejecta, this suggests that just two or three generations of re-impacts on Phobos are sufficient to uniformly disperse Mars ejecta fragments globally across the geographic surface of Phobos. Due to the energy conversion inefficiencies of impact processes, subsequent re-impacts produce subsequent generations of ejecta with lower launch velocities, and a higher proportion of Phobos ejecta remains on Phobos. Once no new ejecta fragments are launched from Phobos at velocities that are greater than the local escape velocity from Phobos, no new Mars-orbiting ejecta are produced. While in orbit around Mars, particles of ejecta are perturbed by martian gravity and solar photon forces that combine to produce an increase in the orbital eccentricities, which preferentially alters the orbits of the smallest fragments. Dust fragments ≲300 µm are typically de-orbited to the atmosphere of Mars or to solar orbits within several years, whereas fragments ≳300 mm tend to remain in orbit until they re-impact with Phobos. The rapid removal of dust fragments ≲300 µm places a severe limit on their opportunities for a re-impact with Phobos and suggests a deficiency of dust grains ≲300 µm in the regolith of Phobos. For the present

  17. Energy and mass distributions of impact ejecta blankets on the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Okeefe, J. D.

    1978-01-01

    The paper applies previously calculated impact-induced flow fields (O'Keefe and Ahrens, 1977) resulting from interaction of 5-cm radius gabbroic anorthosite impactor with a half-space of the same material, at various velocities, to obtain mass and energy ejecta distributions. Whereas earlier results described the ejecta distribution from a 15 km/s impact of an iron object on the moon in terms of mass vs. distance, the present results describe, at a given distance from the impact, the energy content as a function of depth, i.e., the thermal structure of ejecta blankets. Pertinent computational methods are included, and several tables and plots supplement the text.

  18. Thermophysical properties of lunar impact ejecta and their evolution through time

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Bandfield, J.; Hayne, P. O.; Tai Udovicic, C.; Carter, L. M.; Paige, D. A.

    2016-12-01

    On the Moon, impact cratering has occurred continuously over the past 4 billion years, and has a profound effect on all aspects of lunar geology. Large impacts excavate large blocks from beneath the regolith, and impacts of sub-cm sized objects rupture and sandblast large ejected fragments and turn them into regolith. The regolith, in turn, is space weathered and aged by the impact of micrometeorites, together with exposure to solar wind. The state of impact-related materials at any given site can thus be interpreted in the context of relative or absolute age, and can provide information about the rates of geological processes. Here, we report on observations of the thermophysical properties of lunar impact ejecta from the Lunar Reconnaissance Orbiter Diviner thermal radiometer. Nighttime thermal IR data are sensitive to the abundance of meter-scale rocks at the surface, and to variations in the density structure of the upper meter of the regolith. Comparison of these thermal observations with those from radar instruments allows us to distinguish between large ejecta at the surface and those buried or suspended in the upper 10 m of regolith, and thus to examine the evolution of these two ejecta populations ejecta through time. We have previously found that the surface ejecta rocks associated with large craters break down at a quantifiable rate, and that rocky surface ejecta disappear completely in 1.5 Gyr. Here, we show that rocks buried within the upper m of regolith, detected by radar, can remain undisturbed by surface processes for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained distal ejecta, and find that they also persist for long periods (> 3 Gyr). Thus, the surface rockiness of a given ejecta deposit can be used to determine its age. Current work is focusing on exploiting the state of preservation of buried ejecta to constrain the rate of regolith overturn.

  19. NOx production and rainout from Chicxulub impact ejecta reentry

    NASA Astrophysics Data System (ADS)

    Parkos, Devon; Alexeenko, Alina; Kulakhmetov, Marat; Johnson, Brandon C.; Melosh, H. Jay

    2015-12-01

    The Chicxulub impact 66.0 Ma ago initiated the second biggest extinction in the Phanerozoic Eon. The cause of the concurrent oceanic nitrogen isotopic anomaly, however, remains elusive. The Chicxulub impactor struck the Yucatán peninsula, ejecting 2 × 1015 kg of molten and vaporized rock that reentered globally as approximately 1023 microscopic spherules. Here we report that modern techniques indicate that this ejecta generates 1.5 × 1014 moles of NOx, which is enough to cause the observed nitrogen enrichment of the basal layer. Additionally, reentry-based NO production would explain the anomalously heavy isotopic composition of the observed nitrogen. We include N, O, N2, O2, and NO species in simulations of nonequilibrium chemically reacting flow around a reentering spherule. We then determine the net production of NO from all the spherules and use turbulence models to determine how quickly this yield diffuses through the atmosphere. Upon reaching the stratosphere and troposphere, cloud moisture absorbs the NOx and forms nitric acid. We model this process and determine the acidity of the resulting precipitation, which peaks about 1 year after the impact. The precipitation ultimately reaches the upper ocean, where we assume that the well-mixed surface layer is 100 m deep. We then model the naturally occurring carbonate/bicarbonate buffer and determine the net pH. We find that insufficient NOx reaches the ocean to directly cause the observed end-Cretaceous oceanic extinction via acidification and buffer removal. However, the resulting nitrates are sufficient to explain the concurrent nitrogen isotopic anomaly and facilitate an end-Cretaceous algae bloom.

  20. The Steinheim Basin impact crater (SW-Germany) - Where are the ejecta?

    NASA Astrophysics Data System (ADS)

    Buchner, Elmar; Schmieder, Martin

    2015-04-01

    The ∼24 km Nördlinger Ries and the ∼3.8 km Steinheim Basin in southern Germany are thought to represent a ∼14.8 Ma old impact crater doublet. The complex craters of the Steinheim Basin with its crater fill deposits and the Nördlinger Ries and its voluminous impact ejecta blanket are still widely preserved. Although located in an environmental setting that presumably underwent the same erosional history as the Ries crater, field geologic studies suggest that no proximal or distal ejecta of the Steinheim impact event are presently preserved. Generally, the lack of the ejecta blanket around the crater could be explained either by intense erosion, the scarcity of outcrops, or it never formed. In contrast to the lack of ejecta, fluvial and lacustrine Middle Miocene sediments deposited prior to, synchronous with, and shortly after the impact are preserved in many places in the surroundings of to the Steinheim Basin. On low-density asteroids or planets with highly porous target rocks (⩾30-40% effective porosity), impact structures can form without significant ejecta outside the craters due to the compaction of porosity and a concordant drastic reduction of the ejecta velocity. In the Steinheim area, the target rocks comprised loose, porous Miocene sands, Upper Jurassic limestones and Middle Jurassic porous sand- and claystones. The average porosity of the entire sedimentary target suite may have reached 20-30% or even higher values assuming the existence of open karst cavities in the Upper Jurassic carbonates. Compaction of the porous target rocks, resulting in the reduction of ejected material, in combination with erosion could explain the apparent lack of impact ejecta in the wider periphery of the Steinheim impact structure. The Steinheim Basin represents the first proposed terrestrial example of an impact crater characterized by porosity-related ejecta suppression, and it is suggested that other sediment-hosted impact structures on Earth might exhibit

  1. Impact Ejecta Thickness Interpolation of the Bunte Breccia Deposits Outside the Ries Crater, Southern Germany

    NASA Astrophysics Data System (ADS)

    Sturm, S.; Wulf, G.; Jung, D.; Kenkmann, T.

    2012-09-01

    Preliminary interpolation results of the thickness variation of the south-western continuous ejecta blanket outside the Ries impact crater indicate a systematic thickness distribution that deviates from a steady decrease with radial range.

  2. Interpolation of the Bunte Breccia Ejecta Deposits of the Ries Impact Crater, Southern Germany

    NASA Astrophysics Data System (ADS)

    Wulf, G.; Sturm, S.; Jung, D.; Kenkmann, T.

    2012-09-01

    Preliminary interpolation results of the thickness variation of the south-western continuous ejecta blanket outside the Ries impact crater are presented. They indicate a systematic thickness distribution that deviates from a steady decrease with radial range.

  3. Model calculations of the proximal and globally distributed distal ejecta from the Chicxulub impact crater

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Kring, David A.; Pierazzo, Elisabetta; Melosh, H. J.

    1997-03-01

    The origin of the K/T boundary sequence of impact ejecta of the Chicxulub impact crater has been reexamined by constructing a computer simulation of the launch and deposition of both low- and high-energy ejecta. The distribution of low- and high-energy ejecta following a vertical impact is illustrated based on 20,000 tracer particles. The distribution is also shown for a 25 deg oblique impact from the southeast. Most of the high-energy ejecta stays within 50,000 km of Earth, with several percent reaching 100,000 km or more before reentering the atmosphere. About 25 percent of the material reaccretes within 2 hrs, about 50 percent within 8 hrs, and about 75 percent within about 72 hrs. At least 20-30 percent of the ejected material escapes the Earth. The implications of these findings for the postimpact environment are considered.

  4. Properties of Ejecta Blanket Deposits Surrounding Morasko Meteorite Impact Craters (Poland)

    NASA Astrophysics Data System (ADS)

    Szokaluk, M.; Muszyński, A.; Jagodziński, R.; Szczuciński, W.

    2016-08-01

    Morasko impact craters are a record of the fall of a meteorite into the soft sediments. The presented results illustrate the geological structure of the area around the crater as well as providing evidence of the occurrence of ejecta blanket.

  5. Identification and Characterization of Well-Preserved Impact Ejecta Deposits Using THEMIS Global Infrared Mosaics

    NASA Astrophysics Data System (ADS)

    Hill, J. R.; Christensen, P. R.

    2014-12-01

    The Thermal Emission Imaging System (THEMIS) onboard the 2001 Mars Odyssey spacecraft has been acquiring infrared observations of the Martian surface for nearly thirteen years. Daytime infrared images from the first twelve years of the mission have previously been used to generate a complete global mosaic, while nighttime infrared images have been used to generate a near-global mosaic between 60°N-60°S. A combined product has been generated by overlaying the daytime global mosaic with a colorized version of the nighttime global mosaic, resulting in a near-global map that can be used to more easily identify surface features with unique thermal characteristics.Well-preserved ejecta deposits associated with fresh impact craters are readily identifiable in the combined map by their characteristic nighttime temperature pattern, which is controlled by variations in the thermal inertia of the ejecta material. The pattern consists of relatively high thermal inertia material in and around the crater, an inner ejecta ring composed of intermediate thermal inertia material and an outer ejecta ring composed of low thermal inertia material.A near-global survey (60°N-60°S) of these well-preserved ejecta deposits has shown that the vast majority occur in a small region covering northern Terra Sirenum and eastern Daedalia Planum, with a smaller concentration present in Syria Planum. A comparison of THEMIS and Viking images has verified that the larger craters and ejecta deposits were present at the time of the Viking mission and are not the result of more recent impacts. The survey also identified similarly fresh impact craters across the planet that are lacking an outer ring of low thermal inertia ejecta material, possibly due to erosion of the original ejecta deposits. This suggests that local conditions in Terra Sirenum, Daedalia Planum and Syria Planum are favorable for the long-term preservation of the fine-grained component of fresh impact ejecta deposits.

  6. Corvid meteoroids are ejecta from the Giordano Bruno impact

    NASA Astrophysics Data System (ADS)

    Hartung, J. B.

    1993-05-01

    Attention is given to Corvid meteoroids, with reference to a Corvid meteor shower observed in late June of 1937. On June 18, 1178, the upper horn of a crescent moon was reported to have split, with fire and sparks emanating from the division point. This report was interpreted to be a description of events related to the formation of the lunar crater Giordano Bruno. Corvid meteoroids are judged to be Giordano Bruno ejecta fragments based on similarities in their heliocentric positions, directions of motion, and speeds. Commensurability relationships between meteoroid/ejecta and earth-moon system orbital periods enable definitive predictions of Corvid showers in the years 2003 and/or 2006.

  7. Constraining planetary atmospheric density: application of heuristic search algorithms to aerodynamic modeling of impact ejecta trajectories

    NASA Astrophysics Data System (ADS)

    Liu, Z. Y. C.; Shirzaei, M.

    2015-12-01

    Impact craters on the terrestrial planets are typically surrounded by a continuous ejecta blanket that the initial emplacement is via ballistic sedimentation. Following an impact event, a significant volume of material is ejected and falling debris surrounds the crater. Aerodynamics rule governs the flight path and determines the spatial distribution of these ejecta. Thus, for the planets with atmosphere, the preserved ejecta deposit directly recorded the interaction of ejecta and atmosphere at the time of impact. In this study, we develop a new framework to establish links between distribution of the ejecta, age of the impact and the properties of local atmosphere. Given the radial distance of the continuous ejecta extent from crater, an inverse aerodynamic modeling approach is employed to estimate the local atmospheric drags and density as well as the lift forces at the time of impact. Based on earlier studies, we incorporate reasonable value ranges for ejection angle, initial velocity, aerodynamic drag, and lift in the model. In order to solve the trajectory differential equations, obtain the best estimate of atmospheric density, and the associated uncertainties, genetic algorithm is applied. The method is validated using synthetic data sets as well as detailed maps of impact ejecta associated with five fresh martian and two lunar impact craters, with diameter of 20-50 m, 10-20 m, respectively. The estimated air density for martian carters range 0.014-0.028 kg/m3, consistent with the recent surface atmospheric density measurement of 0.015-0.020 kg/m3. This constancy indicates the robustness of the presented methodology. In the following, the inversion results for the lunar craters yield air density of 0.003-0.008 kg/m3, which suggest the inversion results are accurate to the second decimal place. This framework will be applied to older martian craters with preserved ejecta blankets, which expect to constrain the long-term evolution of martian atmosphere.

  8. Asteroid Impact Deflection and Assessment (AIDA) mission - Properties of Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.; Fahnestock, Eugene G.; Schwartz, Stephen R.; Murdoch, Naomi; Asphaug, Erik; Cheng, Andrew F.; Housen, Kevin R.; Michel, Patrick; Miller, Paul L.; Stickle, Angela; Tancredi, Gonzalo; Vincent, Jean-Baptiste; Wuennemann, Kai; Yu, Yang; AIDA Impact Simulation Working Group

    2016-10-01

    The Asteroid Impact Deflection and Assessment (AIDA) mission is composed of NASA's Double Asteroid Redirection Test (DART) mission and ESA's Asteroid Impact Monitor (AIM) rendezvous mission. The DART spacecraft is designed to impact the small satellite of near-Earth asteroid 65803 Didymos in October 2022, while the in-situ AIM spacecraft observes. AIDA's Modeling and Simulation of Impact Outcomes Working Group is tasked with investigating properties of the debris ejected from the impact. The orbital evolution of this ejecta has important implications for observations that the AIM spacecraft will take as well as for the safety of the spacecraft itself. Ejecta properties including particle sizes, bulk densities, and velocities all depend on the poorly-known physical properties of Didymos' moon. The moon's density, internal strength, and especially its porosity have a strong effect on all ejecta properties. Making a range of assumptions, we perform a suite of numerical simulations to determine the fate of the ejected material; we will use simulation predictions to optimize AIM observations and safety. Ultimately, combining AIM's observations of the ejecta with detailed numerical simulations will help constrain key satellite parameters.We use distinct types of numerical tools to explore ejecta properties based on additional target parameters (different forms of friction, cohesion), e.g., the shock physics code iSALE, smoothed particle hydrodynamics codes, and the granular code PKDGRAV. Given the large discrepancy between the 6 km/s impact speed of DART and the moon's 6 cm/s escape speed, a great challenge will be to determine properties of the low-speed ejecta. Very low-speed material relevant to the safety of the AIM spacecraft and its ability to conduct its observations may loft from the crater at late stages of the impact process, or from other locations far from the impact site due to seismic energy propagation. The manner in which seismic waves manifests in

  9. Ejecta from experimental impact craters: Particle size distribution and fragmentation energy

    NASA Astrophysics Data System (ADS)

    Buhl, Elmar; Sommer, Frank; Poelchau, Michael H.; Dresen, Georg; Kenkmann, Thomas

    2014-07-01

    The particle size distribution (PSD) of impact crater ejecta is an important parameter that is useful for understanding the formation of natural craters, the distribution of space debris, the influence of impact events on climate and energy partitioning in impact events. 11 impact experiments into dry and water-saturated sandstone were performed and analyzed. The experiments span a range of impact velocities from 2.5 to 5.3 km s-1 using projectile sizes from 2.5 to 12 mm. Kinetic impact energies between 874 and 80,338 J were achieved. Ejecta of these experiments was collected and the PSD was measured and quantified with power law fits. The resulting power law exponents lie between 2.54 and 2.74. Our results do not show an influence of impact energy or impact velocity on the PSD of impact ejecta. A significant increase in the PSD values was found from dry to water-saturated sandstone targets. We suggest that water saturation of the target has multiple effects on ejecta fragmentation. A comparison of our experimental data with data from the literature shows no correlation between the target material lithology and the ejecta PSD. Interestingly, literature data for disruption experiments revealed a strong influence imparted energy density on the D-values. PSD values were used to calculate the energy spent for target fragmentation and show that the fraction of impact energy used for comminution is in the lower single-digit percentage.

  10. Simulated meteorite impacts and volcanic explosions: Ejecta analyses and planetary implications

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Nellis, W. J.

    1992-01-01

    Past cratering studies have focused primarily on crater morphology. However, important questions remain about the nature of crater deposits. Phenomena that need to be studied include the distribution of shock effects in crater deposits and crater walls; the origin of mono- and polymict breccia; differences between local and distal ejecta; deformation induced by explosive volcanism; and the production of unshocked, high-speed ejecta that could form the lunar and martian meteorites found on the Earth. To study these phenomena, one must characterize ejecta and crater wall materials from impacts produced under controlled conditions. New efforts at LLNL simulate impacts and volcanism and study resultant deformation. All experiments use the two-stage light-gas gun facility at LLNL to accelerate projectiles to velocities of 0.2 to 4.3 km/s, including shock pressures of 0.9 to 50 GPa. We use granite targets and novel experimental geometries to unravel cratering processes in crystalline rocks. We have thus far conducted three types of simulations: soft recovery of ejecta, 'frozen crater' experiments, and an 'artificial volcano. Our ejecta recovery experiments produced a useful separation of impactites. Material originally below the projectile remained trapped there, embedded in the soft metal of the flyer plate. In contrast, material directly adjacent to the projectile was jetted away from the impact, producing an ejecta cone that was trapped in the foam recovery fixture. We find that a significant component of crater ejecta shows no signs of strong shock; this material comes from the near-surface 'interference zone' surrounding the impact site. This phenomenon explains the existence of unshocked meteorites on the Earth of lunar and martian origin. Impact of a large bolide on neighboring planets will produce high-speed, weakly shocked ejecta, which may be trapped by the Earth's gravitational field. 'Frozen crater' experiments show that the interference zone is highly

  11. Inferences on the Emplacement Dynamics of Martian Impact Crater Ejecta: Constraints from Mola Topography

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Baloga, S. M.

    1998-01-01

    Lobate ejecta deposits surround many of the younger impact craters on Mars. Viking Orbiter images indicate the distal parts of the ejecta blankets of these lobate craters are characterized by ramparts. In the absence of detailed topographic data for characterizing the topology of these apparently fluidized ejecta deposits, physical models have relied upon their morphologic characteristics. The most widely accepted model for the formation of such rampart ejecta deposits on Mars invokes fluidization of the ejecta to produce one or more viscous flow lobes. The availability of high-precision topographic data from the Mars Orbiter Laser Altimeter [4,51 facilitates a more quantitative examination of the physical processes involved in the formation of rampart ejecta deposits on Mars. Here we investigate the emplacement constraints that can be developed from the dimensions, topography, and morphology of martian rampart craters. The primary assumptions we have adopted are: (1) the ejecta blanket is emplaced as a continuum flow over the martian surface, rather than an airfall deposit, and (2) that the observable dimensions of the deposits are indicative of flow dimensions during emplacement.

  12. Comparison of Ejecta Distributions from Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Scruggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is progressing toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013, was developed for the Apollo program and is the latest definition of the ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powered pumice and unconsolidated JSC-1A Lunar Mare Regolith stimulant (JSC-1A) targets. The Ames Vertical Gun Range (AVGR) was used to accelerate projectiles to velocities in excess of 5 km/s and impact the targets at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the impact site and angular distributions were determined for ejecta. Comparison of ejecta angular distribution with previous works will be presented. A simplistic technique to characterize the ejected particles was formulated and improvements to this technique will be discussed for implementation in future tests.

  13. Transfer of Impact Ejecta Material from the Surface of Mars to Phobos and Deimos

    PubMed Central

    Melosh, Henry J.; Vaquero, Mar; Howell, Kathleen C.

    2013-01-01

    Abstract The Russian Phobos-Grunt spacecraft originally planned to return a 200 g sample of surface material from Phobos to Earth. Although it was anticipated that this material would mainly be from the body of Phobos, there is a possibility that such a sample may also contain material ejected from the surface of Mars by large impacts. An analysis of this possibility is completed by using current knowledge of aspects of impact cratering on the surface of Mars and the production of high-speed ejecta that might reach Phobos or Deimos. Key Words: Impact cratering—Ejecta transfer—Phobos. Astrobiology 13, 963–980. PMID:24131246

  14. Well-Preserved Impact Ejecta and Impact Melt-Rich Deposits in Terra Sabaea

    NASA Image and Video Library

    2017-01-12

    This image of a well-preserved unnamed elliptical crater in Terra Sabaea, is illustrative of the complexity of ejecta deposits forming as a by-product of the impact process that shapes much of the surface of Mars. Here we see a portion of the western ejecta deposits emanating from a 10-kilometer impact crater that occurs within the wall of a larger, 60-kilometer-wide crater. In the central part is a lobe-shaped portion of the ejecta blanket from the smaller crater. The crater is elliptical not because of an angled (oblique) impact, but because it occurred on the steep slopes of the wall of a larger crater. This caused it to be truncated along the slope and elongated perpendicular to the slope. As a result, any impact melt from the smaller crater would have preferentially deposited down slope and towards the floor of the larger crater (towards the west). Within this deposit, we can see fine-scale morphological features in the form of a dense network of small ridges and pits. These crater-related pitted materials are consistent with volatile-rich impact melt-bearing deposits seen in some of the best-preserved craters on Mars (e.g., Zumba, Zunil, etc.). These deposits formed immediately after the impact event, and their discernible presence relate to the preservation state of the crater. This image is an attempt to visualize the complex formation and emplacement history of these enigmatic deposits formed by this elliptical crater and to understand its degradation history. http://photojournal.jpl.nasa.gov/catalog/PIA13078

  15. Modeling the Ballistic Behavior of Solid Ejecta from the Deep Impact Cratering Event

    NASA Astrophysics Data System (ADS)

    Richardson, J. E.; Melosh, H. J.

    2006-03-01

    We describe results from a forward model of the first-order, solid ejecta particle behavior from the impact produced by the Deep Impact mission. The expansion rate of the plume places constraints on the gravity field, mass, and density of Tempel 1.

  16. A new look at lunar impact craters provides insights into ejecta and melt emplacement on the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Grieve, R. A.; Tornabene, L. L.

    2011-12-01

    Impact cratering is one of the most fundamental processes responsible for shaping the surfaces of solid planetary bodies. Even on Earth, where the impact record is sparse, it is now apparent that impact events also have played an important role throughout Earth's history, shaping the geological landscape, affecting the evolution of life and producing economic benefits. It is widely acknowledged that the Moon provides a unique natural laboratory for studying the impact processes on planetary scales. One of the most important, but least understood aspects of impact cratering is the generation and emplacement of impact ejecta. In this contribution, we utilize new high-resolution imagery of lunar craters in addition to observations of terrestrial impact structures. Current models of ejecta emplacement do not account for several important observations of ejecta deposits on the terrestrial planets, in particular, the presence of more than one layer of ejecta. On the Moon, this addional ejecta layer takes the form of impact melt ponds on the rim terraces of complex lunar craters and overlying parts of the continuous ejecta blanket. It is also notable that there is also no universal model for the origin and emplacement of ejecta on different planetary bodies. We present a unifying working hypothesis for the origin and emplacement of ejecta on the terrestrial planets, in which the ejecta are emplaced in a multi-stage process. The generation of the continuous ejecta blanket occurs during the excavation stage of cratering, via the conventional ballistic sedimentation and radial flow model. This is followed by the emplacement of more melt-rich, ground-hugging flows - the "surface melt flow" phase - during the terminal stages of crater excavation and the modification stage of crater formation. Minor fallback occurs during the final stages of crater formation. Several factors will affect the final morphology and character of ejecta deposits. The volatile content and cohesiveness

  17. Upper Eocene tektite and impact ejecta layer on the Continental Slope off New Jersey

    NASA Astrophysics Data System (ADS)

    Glass, B. P.; Koeberl, C.; Blum, J. D.; McHugh, C. M. G.

    1998-03-01

    During Leg 150 of the Ocean Drilling Project (ODP) two sites (903C and 904A) were cored which have sediments of the same biostratigraphic age as the upper Eocene tektite-bearing ejecta layer at Deep Sea Drilling Project (DSDP) Site 612. Core 45X from ODP Site 904A (~ 4 km north of Site 612) contains a 5-cm-thick tektite-bearing ejecta layer and Core 56 from Site 903C (~ 8 km north-northwest of Site 904) contains a 2-cm-thick layer of impact ejecta without any tektite or impact glass. Shocked quartz and feldspar grains, with multiple sets of planar deformation features, and abundant coesite-bearing grains are present at both sites. The major oxide contents, trace element compositions, and rare earth element patterns of the Site 904 tektites are similar to those of the Site 612 tektites and to North American tektites (especially bediasites). The Sr and Nd values for one composite tektite sample from Site 904 fall within the range previously obtained for the Site 612 tektites, which defines a linear trend that, if extrapolated, would intersect the values obtained for North American tektites. The water contents of eight tektite fragments from Site 904 range from 0.017 to 0.098 wt. %, and, thus, are somewhat higher than is typical for tektites. The heavy mineral assemblages of the 63 - 125 m size fractions from the ejecta layers at Sites 612, 903, and 904 are all similar. Therefore, we conclude that the ejecta layer at all three sites are from the same impact event and that the tektites at Sites 904 and 612 belong to the North American tektite strewn field. Clinopyroxene-bearing (cpx) spherules occur below, or in the lower part of, the main ejecta layer at all three sites. At all three sites the cpx spherules have been partly or completely replaced with pyrite which preserved the original crystalline textures. Site 612, 903, and 904 cpx spherules are similar to those found in the Caribbean Sea, Gulf of Mexico, central equatorial Pacific, western equatorial Pacific, and

  18. Exploring hotspots of pneumococcal pneumonia and potential impacts of ejecta dust exposure following the Christchurch earthquakes.

    PubMed

    Pearson, Amber L; Kingham, Simon; Mitchell, Peter; Apparicio, Philippe

    2013-12-01

    The etiology of pneumococcal pneumonia (PP) is well-known. Yet, some events may increase its incidence. Natural disasters may worsen air quality, a risk factor for PP. We investigated spatial/spatio-temporal clustering of PP pre- and post-earthquakes in Christchurch, New Zealand. The earthquakes resulted in deaths, widespread damage and liquefaction ejecta (a source of air-borne dust). We tested for clusters and associations with ejecta, using 97 cases (diagnosed 10/2008-12/2011), adjusted for age and area-level deprivation. The strongest evidence to support the potential role of ejecta in clusters of PP cases was the: (1) geographic shift in the spatio-temporal cluster after deprivation adjustment to match the post-earthquake clusters and; (2) increased relative risk in the fully-adjusted post-earthquake compared to the pre-earthquake cluster. The application of spatial statistics to study PP and ejecta are novel. Further studies to assess the long-term impacts of ejecta inhalation are recommended particularly in Christchurch, where seismic activity continues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Highly comminuted lunar impact ejecta: Earth-based radar and LRO DIVINER observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Campbell, B. A.; Pithawala, T.

    2008-09-01

    Introduction Recent work [1-3] using Earth-based radar measurements has shown that large impacts on the Moon produce a distinct facies of highly comminuted ejecta depleted in fragments >10 cm in diameter, forming concentric radar-dark haloes around the source craters and representing a mantling layer on the order of 10m thick. We have also recently observed similar haloes of fine ejecta surrounding Martian craters >5 km in diameter, characterized by micron- to mm-sized particles. Preliminary measurements suggest that the lunar and Martian fine ejecta haloes are geometrically similar: that is, they scale in much the same way with respect to their source craters. This implies that a) the comminution process and emplacement of ejecta on the two planets occur in similar ways; and b) like the Martian case, the lunar crater haloes also have a thin mantling layer of very fine particles, which cannot be detected using Earth-based radar. Because of their extensive spatial coverage and high resolution, LRO DIVINER measurements will provide the first opportunity to bridge this gap and to more completely characterize the rock size distribution represented in lunar continuous ejecta. Radar remote sensing of fine-grained ejecta haloes Fine-grained lunar ejecta haloes were first observed [4], and later studied in detail [1-3], using Earth-based delay-Doppler radar imagery at 70-cm wavelength. Recent observations in two circular polarizations have been made using the Arecibo telescope in Puerto Rico and the Greenbank telescope in West Virginia in a bistatic geometry [5; Campbell et al., IEEE]. In general, the radar backscatter of the lunar regolith is comprised of echoes from the surface, rocks suspended within the fine-grained matrix, and a possible basal regolith interface. The relative importance of each of these components varies with radar wavelength and is a function of surface roughness, surface and volume rock populations, the depth and dielectric properties of the matrix

  20. Microtektites on Mars: Volume and Texture of Distal Impact Ejecta Deposits

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2000-04-01

    Microtektites, small blobs of ejecta formed in the shock melt and vapor plume of an impact, can be dispersed far from the source crater only if the impact is violent enough for the ejecta plume to pierce the atmosphere; they are therefore formed in far smaller (and more numerous) impact events on Mars than on Venus and Earth, which have thicker atmospheres. Microtektite abundances from the Chicxulub and Bosumtwi craters on Earth suggest that the volume of this material is ˜5 × 10 -5Dc3.74 km 3, with Dc the crater diameter in kilometers, similar to the observed volumes of the dark parabolic ejecta deposits on Venus. Corresponding volumes on Mars are ˜2.5 × smaller, but even so this result implies that even only a 15-km crater can produce a layer of microtektites with a global average thickness on Mars of 40 microtektites per square centimeter. I use a trajectory code and a thermal model to show that these particles are easily dispersed globally on Mars and that micrometeoroids of the same size will be unmelted by reentry heating. The uniform size and glassy texture of microtektites may allow such ejecta layers to be identified by the remote arm cameras on Mars landers, particularly in the polar layered terrain where they may be preserved against abrasion.

  1. Ejecta Pattern of the Impact of Comet Shoemaker-Levy 9

    NASA Technical Reports Server (NTRS)

    Pankine, Alexey A.; Ingersoll, Andrew P.

    1999-01-01

    The collision of Comet Shoemaker-Levy 9 (SL 9) with Jupiter created crescent-shaped ejecta patterns around impact sites. Although the observed impact plumes rose through a similar height of approx.3000 km, the radii of the created ejects patterns differ from impact to impact and generally are larger for larger impacts. The azimuthal angle of the symmetry axis of the ejects pattern is larger than that predicted by the models of oblique impacts, due to the action of the Coriolis force that rotates ejecta patterns counterclockwise from the south. We study the formation of ejects patterns using a simple model of ballistic plume above a rotating plane. The ejected particles follow ballistic trajectories and slide horizontally for about an hour after reentry into the jovian atmosphere. The lateral expansion of the plume is stopped by the friction force, which is assumed to be proportional to the square of the horizontal velocity. Two different mass-velocity distributions used in the simulations produce qualitatively similar results. The simulated ejecta patterns fit very well the "crescents" observed at the impact sites. The sizes and azimuthal angles of symmetry axis of ejects patterns depend on a parameter L, which has dimension of length and is related to the mass of the fragment. Thus more massive impacts produce larger ejects patterns that are rotated through a wider angle.

  2. Measurement of Primary Ejecta From Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Moser, Danielle; Swift, Wesley

    2007-01-01

    The National Aeronautics and Space Administration (NASA) continues to make progress toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment. A subject for further definition is the lunar primary ejecta environment. The document NASA SP-8013 was developed for the Apollo program and is the latest definition of the primary ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar primary ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface primary ejecta environment. This paper reports the results of experiments on projectile impact into pumice targets, simulating lunar regolith. The Ames Vertical Gun Range (AVGR) was used to accelerate spherical Pyrex projectiles of 0.29g to velocities ranging between 2.5 km/s and 5.18 km/s. Impact on the pumice target occurred at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the pumice target in a 0.5 Torr vacuum. A simplistic technique to characterize the ejected particles was formulated. Improvements to this technique will be discussed for implementation in future tests.

  3. Impact ejecta-induced melting of surface ice deposits on Mars

    NASA Astrophysics Data System (ADS)

    Weiss, David K.; Head, James W.

    2016-12-01

    Fluvial features present around impact craters on Mars can offer insight into the ancient martian climate and its relationship to the impact cratering process. The widespread spatial and temporal distribution of surface ice on Mars suggests that the interaction between impact cratering and surface ice could have been a relatively frequent occurrence. We explore the thermal and melting effects on regional surface ice sheets in this case, where an impact event occurs in regional surface ice deposits overlying a regolith/bedrock target. We provide an estimate for the post-impact temperature of martian ejecta as a function of crater diameter, and conduct thermal modeling to assess the degree to which contact melting of hot ejecta superposed on surface ice deposits can produce meltwater and carve fluvial features. We also evaluate whether fluvial features could form as a result of basal melting of the ice deposits in response to the thermal insulation provided by the overlying impact ejecta. Contact melting is predicted to occur immediately following ejecta emplacement over the course of hundreds of years to tens of kyr. Basal melting initiates when the 273 K isotherm rises through the crust and reaches the base of the ice sheet ∼0.1 to ∼1 Myr following the impact. We assess the range of crater diameters predicted to produce contact and basal melting of surface ice sheets, as well as the melt fluxes, volumes, timescales, predicted locations of melting (relative to the crater), and the associated hydraulic and hydrologic consequences. We find that the heat flux and surface temperature conditions required to produce contact melting are met throughout martian history, whereas the heat flux and surface temperature conditions to produce basal melting are met only under currently understood ancient martian thermal conditions. For an impact into a regional ice sheet, the contact and basal melting mechanisms are predicted to generate melt volumes between ∼10-1 and 105 km3

  4. Fluidized crater ejecta

    NASA Image and Video Library

    2002-12-13

    The ejecta blanket of the crater in this image from NASA Mars Odyssey spacecraft does not resemble the blocky, discontinuous ejecta associated with most fresh craters on Mars. Rather, the continuous lobes of material seen around this crater are evidence that the crater ejecta were fluidized upon impact of the meteor that formed this crater. Impact ejecta become fluidized when a meteor strikes a surface that has a considerable volatile content. The volatiles mixed with the ejecta form a flow of material that moves outward from the crater and produces the morphology seen in this THEMIS visible image. http://photojournal.jpl.nasa.gov/catalog/PIA04025

  5. Meteorite impact ejecta: dependence of mass and energy lost on planetary escape velocity.

    PubMed

    O'keefe, J D; Ahrens, T J

    1977-12-23

    The calculated energy efficiency of mass ejection for iron and anorthosite objects striking an anorthosite planet at speeds of 5 to 45 kilometers per second decreases with increasing impact velocity at low escape velocities. At escape velocities of >10(5) and >2 x 10(4) centimeters per second, respectively, the slower impactors produce relatively less ejecta for a given impact energy. The impact velocities at which ejecta losses equal meteorite mass gains are found to be approximately 20, 35, and 45 kilometers per second for anorthosite objects and approximately 25, 35, and 40 kilometers per second for iron objects striking anorthosite surfaces for the gravity fields of the moon, Mercury, and Mars.

  6. Integrated Studies of Impact-Basin Ejecta as Probes of the Lunar Crust: Imbrium and Serenitatis

    NASA Technical Reports Server (NTRS)

    Jolliff, Brad L.; Haskin, Larry A.

    1998-01-01

    The large, late, basin impacts on the Earth side of the Moon fundamentally reshaped the structure of the crust, its surface morphology, and the composition of the megaregolith and surface soils. The latest (except for Orientale on the western limb) and largest was the Imbrium impact, which produced massive ejecta deposits over much of the Procellarum region and beyond, and ejected material that mixed with surface regolith nearly Moonwide. The basins serve as natural probes into the lunar crust; therefore, understanding the nature and composition of ejecta produced by them provides information about the crust at depth. Gravity data allow modeling of the structure of the crust beneath the basins, and from such models one can infer depths of excavation and the nature of crustal response following impact.

  7. Impact ejecta and carbonate sequence in the eastern sector of the Chicxulub crater

    NASA Astrophysics Data System (ADS)

    Urrutia-Fucugauchi, Jaime; Chavez-Aguirre, Jose Maria; Pérez-Cruz, Ligia; De la Rosa, Jose Luis

    2008-12-01

    The Chicxulub 200 km diameter crater located in the Yucatan platform of the Gulf of Mexico formed 65 Myr ago and has since been covered by Tertiary post-impact carbonates. The sediment cover and absence of significant volcanic and tectonic activity in the carbonate platform have protected the crater from erosion and deformation, making Chicxulub the only large multi-ring crater in which ejecta is well preserved. Ejecta deposits have been studied by drilling/coring in the southern crater sector and at outcrops in Belize, Quintana Roo and Campeche; little information is available from other sectors. Here, we report on the drilling/coring of a section of ˜34 m of carbonate breccias at 250 m depth in the Valladolid area (120 km away from crater center), which are interpreted as Chicxulub proximal ejecta deposits. The Valladolid breccias correlate with the carbonate breccias cored in the Peto and Tekax boreholes to the south and at similar radial distance. This constitutes the first report of breccias in the eastern sector close to the crater rim. Thickness of the Valladolid breccias is less than that at the other sites, which may indicate erosion of the ejecta deposits before reestablishment of carbonate deposition. The region east of the crater rim appears different from regions to the south and west, characterized by high density and scattered distribution of sinkholes.

  8. Observations of ejecta clouds produced by impacts onto Saturn's rings.

    PubMed

    Tiscareno, Matthew S; Mitchell, Colin J; Murray, Carl D; Di Nino, Daiana; Hedman, Matthew M; Schmidt, Jürgen; Burns, Joseph A; Cuzzi, Jeffrey N; Porco, Carolyn C; Beurle, Kevin; Evans, Michael W

    2013-04-26

    We report observations of dusty clouds in Saturn's rings, which we interpret as resulting from impacts onto the rings that occurred between 1 and 50 hours before the clouds were observed. The largest of these clouds was observed twice; its brightness and cant angle evolved in a manner consistent with this hypothesis. Several arguments suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather are due to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. The responsible interplanetary meteoroids were initially between 1 centimeter and several meters in size, and their influx rate is consistent with the sparse prior knowledge of smaller meteoroids in the outer solar system.

  9. The Vakkejokk Breccia: An Early Cambrian proximal impact ejecta layer in the North-Swedish Caledonides

    NASA Astrophysics Data System (ADS)

    Ormö, J.; Nielsen, A. T.; Alwmark, C.

    2017-04-01

    The ≤27 m thick Vakkejokk Breccia is intercalated in autochthon Lower Cambrian along the Caledonian front north of Lake Torneträsk, Lapland, Sweden. The spectacular breccia is here interpreted as a proximal ejecta layer associated with an impact crater, probably 2-3 km in size, located below Caledonian overthrusts immediately north of the main breccia section. The impact would have taken place in a shallow-marine environment 520 Ma ago. The breccia comprises i) a strongly disturbed lower polymict subunit with occasional, in themselves brecciated, crystalline mega-clasts locally exceeding 50 m surrounded by contorted sediments; ii) a middle, commonly normally graded, crystalline-rich, polymict subunit, in turn locally overlain by iii) a thin fine-grained quartz sandstone, <30 cm thick. The upper sandstone is sporadically either overlain, or replaced, by a conglomerate. In progressively more distal parts of the ejecta layer, the lower subunit is better described as only slightly disturbed strata. The lower subunit is suggested to have formed by ejecta bombardment of the strata surrounding the impact crater, even causing some net outwards mobilization of the sediments. The middle subunit and the uppermost quartz sandstone are considered resurge deposits. The top conglomerate may be caused by subsequent wave reworking and slumping of material from the elevated rim. Quartz grains showing planar deformation features are present in the graded polymict subunit and the upper sandstone, that is, the inferred resurge deposits.

  10. Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.

    1975-01-01

    Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.

  11. Geochemistry and Stratigraphy of the Cretaceous/tertiary Boundary Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Hildebrand, Alan Russell

    1992-01-01

    An array of stratigraphic, chemical, isotopic, and mineralogical evidence indicates that an impact terminated the Cretaceous Period. The 180-km-diameter Chicxulub crater, which now lies buried on the Yucatan peninsula of Mexico, was probably formed by the impact. The impactor was probably a long-period comet. Shock devolatization of the thick carbonate/evaporite sequence impacted at Chicxulub probably led to a severe and long-lasting greenhouse warming and a prompt pulse of sulfuric acid rain. The fallout of crater ejecta formed two layers: a lower layer which varies in thickness following a power -law relation based on distance from the Chicxulub crater and an upper, globally-distributed, uniformly ~3-mm-thick layer. The upper layer probably represents the fallout of condensates and entrained solid and liquid particles which were distributed globally by the impact fireball. The lower layer consists of brecciated rock and impact melt near the crater and largely altered tektites far from the crater. The clasts of this layer were probably ballistically transported. The Raton, New Mexico K/T boundary section preserves the fireball and ejecta layers in a coal-free nonmarine environment. Siderophile, chalcophile, and lithophile trace element anomalies occur similar to those found at marine K/T boundary localities. Soot occurs peaking in the 3-mm-thick fireball layer and the immediately overlying 3 mm of sediment, implying prompt burning of the Cretaceous forests. The Brazos River, Texas continental-shelf K/T sections preserve coarse boundary sediments which were probably produced by impact waves. Siderophile and chalcophile trace-element anomalies occur suggesting that the fireball layer and possibly part of the ejecta layer are interbedded with the coarse boundary sediments. The Beloc, Haiti deep-sea K/T sections preserve a thick ejecta sequence including altered and unaltered tektites and shocked minerals capped by the fireball layer. The thick K/T ejecta preserved at

  12. Impact ejecta at the Paleocene-Eocene boundary

    NASA Astrophysics Data System (ADS)

    Schaller, Morgan F.; Fung, Megan K.; Wright, James D.; Katz, Miriam E.; Kent, Dennis V.

    2016-10-01

    Extraterrestrial impacts have left a substantial imprint on the climate and evolutionary history of Earth. A rapid carbon cycle perturbation and global warming event about 56 million years ago at the Paleocene-Eocene (P-E) boundary (the Paleocene-Eocene Thermal Maximum) was accompanied by rapid expansions of mammals and terrestrial plants and extinctions of deep-sea benthic organisms. Here, we report the discovery of silicate glass spherules in a discrete stratigraphic layer from three marine P-E boundary sections on the Atlantic margin. Distinct characteristics identify the spherules as microtektites and microkrystites, indicating that an extraterrestrial impact occurred during the carbon isotope excursion at the P-E boundary.

  13. Impact ejecta at the Paleocene-Eocene boundary.

    PubMed

    Schaller, Morgan F; Fung, Megan K; Wright, James D; Katz, Miriam E; Kent, Dennis V

    2016-10-14

    Extraterrestrial impacts have left a substantial imprint on the climate and evolutionary history of Earth. A rapid carbon cycle perturbation and global warming event about 56 million years ago at the Paleocene-Eocene (P-E) boundary (the Paleocene-Eocene Thermal Maximum) was accompanied by rapid expansions of mammals and terrestrial plants and extinctions of deep-sea benthic organisms. Here, we report the discovery of silicate glass spherules in a discrete stratigraphic layer from three marine P-E boundary sections on the Atlantic margin. Distinct characteristics identify the spherules as microtektites and microkrystites, indicating that an extraterrestrial impact occurred during the carbon isotope excursion at the P-E boundary.

  14. Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF Radar

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Neish, Catherine D.; Bussey, D. B. J.; Spudis, Paul D.; Patterson, G. Wesley; Cahill, Joshua T.; Raney, R. Keith

    2011-01-01

    The Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows.

  15. Survival of organic compounds in ejecta from hypervelocity impacts on ice

    NASA Astrophysics Data System (ADS)

    Bowden, S. A.; Parnell, J.; Burchell, M. J.

    2009-01-01

    Hypervelocity impacts (HVIs) where organic-bearing ice constitutes the target material are important in several aspects of planetary and space science: (1) sampling of planetary surfaces using a hypervelocity projectile to impact the surface and eject surface materials for measurement or collection by a spacecraft; (2) the transfer of organic material between planetary bodies; and (3) providing energy for chemical processes involving surface materials. While small organic molecules (~6 carbon atoms), if present in surface materials, will likely be present in HVI-ejecta, uncertainty remains for larger organic molecules. It is the larger molecular weight compounds which could constitute direct evidence of life, and thus their survival within an HVI-ejecta plume is of key importance when evaluating strategies for life detection on icy bodies. It is not currently known what large organic molecules, and in what concentrations, may be present on icy bodies in the Solar System, but it is highly likely some will be more chemically stable during a HVI than others. Accordingly, in this study we examined a range of chemicals (β,β carotene, stearic acid and anthracene) with molecular weights between 178 and 536 daltons, and three different types of chemical structure. The compounds were solvated in a dimethylsulfoxide/water mixture and frozen. The frozen targets were impacted with steel spheres 1 and 1.5 mm in diameter at velocities of about 4.9 km s-1. Ice ejected during the impact was collected and underwent chemical analysis. The most labile compound (β,β carotene) was only detected (in small amounts) in the ejecta (and only that emitted at the lowest angles of ejection), although the other compounds were present in larger quantities and at a range of ejection angles. A concentration gradient was observed within the ejecta as a function of angle of ejection. This was not the same for both stearic acid and anthracene: the greatest concentrations of stearic acid were

  16. Meteoroid Impact Ejecta Detection by Nanosatellites for Asteroid Surface Characterization

    NASA Astrophysics Data System (ADS)

    Lee, N.; Close, S.; Goel, A.

    2015-12-01

    Asteroids are constantly bombarded by much smaller meteoroids at extremely high speeds, which results in erosion of the material on the asteroid surface. Some of this material is vaporized and ionized, forming a plasma that is ejected into the environment around the asteroid where it can be detected by a constellation of closely orbiting nanosatellites. We present a concept to leverage this natural phenomenon and to analyze this excavated material using low-power plasma sensors on nanosatellites in order to determine the composition of the asteroid surface. This concept would enable a constellation of nanosatellites to provide useful data complementing existing techniques such as spectroscopy, which require larger and more power-hungry sensors. Possible mission architectures include precursor exploratory missions using nanosatellites to survey and identify asteroid candidates worthy of further study by a large spacecraft, or simultaneous exploration by a nanosatellite constellation with a larger parent spacecraft to decrease the time required to cover the entire asteroid surface. The use of meteoroid impact plasma to analyze the surface composition of asteroids will not only produce measurements that have not been previously obtained, including the molecular composition of the surface, but will also yield a better measurement of the meteoroid flux in the vicinity of the asteroid. Current meteoroid models are poorly constrained beyond the orbit of Mars, due to scarcity of data. If this technology is used to survey asteroids in the main belt, it will offer a dramatic increase in the availability of meteoroid flux measurements in deep space, identifying previously unknown meteoroid streams and providing additional data to support models of solar system dust dynamics.

  17. Scenario Of The 4 kyr Extraterrestrial Impact : Crater Location, Ejecta-Dispersion and Consequences.

    NASA Astrophysics Data System (ADS)

    Courty, M.; Abbott, D. H.; Cortese, G.; Crisci, A.; Crosta, X.; de Wever, P.; Fedoroff, M.; Greenwood, P.; Grice, K.; Mermoux, M.; Scharer, U.; Smith, D. C.; Thiemens, M. H.

    2006-12-01

    The 4 kyr BP impact event has been identified from deep-sea, soil and archaeological records as the worldwide pulverisation of a volatile-rich debris jet(1). High resolution sequences show two stages of ejecta fallout linked to the impact-triggered doublet gaseous regime(2): scattered solid debris at the ground surface and spray of the vaporized hot fireball with thermal blast and local ignition. Ejecta debris consist of flow- textured impact glass, impact breccia and incompletely melted marine clasts: volcano-clastic sandy mudstone, calcareous mud, granite-gneiss, schists, volcanic breccia, kerogen and algal mud. Marine microfossils, organo-mineral markers, and the debris-fallout spatial pattern indicate two potential impact craters: an Antarctic source with an admixture of volcanic glass and ice rafted debris, from the vicinity of Heard Island and the Kerguelen plateau; a low latitude, shallow water one with hydrocarbons possibly from the Gulf of Mexico. Fine mixing of target materials from far distant source craters emphasizes a unique impact-ejecta. This matches the theoretical view of a debris jet channelled along the corridor cut through the atmosphere by the incoming projectile, raised upward, and dispersed widely(3). The isotopic anomaly of the sulphur phase in the kerogen volatile-component, indicating mass independent fractionation due to photolytic transformation, suggests launching at great heights, beyond the O2-O3 UV shield, responsible for climate disturbances. The incomplete melting of target rocks and global dispersion of impact breccia out of the craters would result from splash of small-sized projectile at rather great water depth and a low angle impact (10-15 degrees) into porous, highly compressible marine sediments. The spatially variable distribution of the organo-mineral and melt components, and the wide range of phase transformation reflect nonequilibrium shock-melting and micro-scale thermal processes in the heterogeneous vapor plume

  18. Transfer of impact ejecta material from the surface of Mars to Phobos and Deimos.

    PubMed

    Chappaz, Loïc; Melosh, Henry J; Vaquero, Mar; Howell, Kathleen C

    2013-10-01

    The Russian Phobos-Grunt spacecraft originally planned to return a 200 g sample of surface material from Phobos to Earth. Although it was anticipated that this material would mainly be from the body of Phobos, there is a possibility that such a sample may also contain material ejected from the surface of Mars by large impacts. An analysis of this possibility is completed by using current knowledge of aspects of impact cratering on the surface of Mars and the production of high-speed ejecta that might reach Phobos or Deimos.

  19. The acraman impact structure: source of ejecta in late precambrian shales, South australia.

    PubMed

    Williams, G E

    1986-07-11

    A major probable impact structure occurs in middle Proterozoic dacitic volcanics in the Gawler Ranges, central South Australia. The structure has an inner depressed area about 30 kilometers in diameter that contains the Lake Acraman salina, an intermediate depression or ring about 90 kilometers in diameter, and a possible outer ring approximately 160 kilometers in diameter. Outcrops of dacite in Lake Acraman are intensely shattered and contain shatter cones and multiple sets of shock lamellac in quartz grains. The Acraman structure is the largest probable impact structure known in Australia and is the likely source of dacitic ejecta found in late Precambrian marine shales some 300 kilometers to the east.

  20. Striations, Polish, and Related Features from Clasts in Impact-Ejecta Deposits and the "Tillite Problem"

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Ernstson, K.; Anguita, F.; Claudin F.

    1997-01-01

    Proximal ejecta deposits related to three large terrestrial impacts, the 14.8-Ma Ries impact structure in Germany (the Bunte Breccia), the 65-Ma Chicxulub impact structure in the Yucatan (the Albion and Pook's Hill Diamictites in Belize) and the mid-Tertiary Azuara impact structure in Spain (the Pelarda Fm.) occur in the form of widespread debris-flow deposits most likely originating from ballistic processes. These impact-related diamictites typically are poorly sorted, containing grain sizes from clay to large boulders and blocks, and commonly display evidence of mass flow, including preferred orientation of long axes of clasts, class imbrication, flow noses, plugs and pods of coarse debris, and internal shear planes. Clasts of various lithologies show faceting, various degrees of rounding, striations (including nailhead striae), crescentic chattermarks, mirror-like polish, percussion marks, pitting, and penetration features. Considering the impact history of the Earth, it is surprising that so few ballistic ejecta, deposits have been discovered, unless the preservation potential is extremely low, or such materials exist but have been overlooked or misidentified as other types of geologic deposits . Debris-flow diamictites of various kinds have been reported in the geologic record, but these are commonly attributed to glaciation based on the coarse and poorly sorted nature of the deposits and, in many cases, on the presence of clasts showing features considered diagnostic of glacial action, including striations of various kinds, polish, and pitting. These diamictites are the primary evidence for ancient ice ages. We present evidence of the surface features on clasts from known proximal ejecta debris-flow deposits and compare these features with those reported in diamictites. interpreted as ancient glacial deposits (tillites). Our purpose is to document the types of features seen on clasts in diamictites of ejecta origin in order to help in the interpretation of

  1. Striations, Polish, and Related Features from Clasts in Impact-Ejecta Deposits and the "Tillite Problem"

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Ernstson, K.; Anguita, F.; Claudin F.

    1997-01-01

    Proximal ejecta deposits related to three large terrestrial impacts, the 14.8-Ma Ries impact structure in Germany (the Bunte Breccia), the 65-Ma Chicxulub impact structure in the Yucatan (the Albion and Pook's Hill Diamictites in Belize) and the mid-Tertiary Azuara impact structure in Spain (the Pelarda Fm.) occur in the form of widespread debris-flow deposits most likely originating from ballistic processes. These impact-related diamictites typically are poorly sorted, containing grain sizes from clay to large boulders and blocks, and commonly display evidence of mass flow, including preferred orientation of long axes of clasts, class imbrication, flow noses, plugs and pods of coarse debris, and internal shear planes. Clasts of various lithologies show faceting, various degrees of rounding, striations (including nailhead striae), crescentic chattermarks, mirror-like polish, percussion marks, pitting, and penetration features. Considering the impact history of the Earth, it is surprising that so few ballistic ejecta, deposits have been discovered, unless the preservation potential is extremely low, or such materials exist but have been overlooked or misidentified as other types of geologic deposits . Debris-flow diamictites of various kinds have been reported in the geologic record, but these are commonly attributed to glaciation based on the coarse and poorly sorted nature of the deposits and, in many cases, on the presence of clasts showing features considered diagnostic of glacial action, including striations of various kinds, polish, and pitting. These diamictites are the primary evidence for ancient ice ages. We present evidence of the surface features on clasts from known proximal ejecta debris-flow deposits and compare these features with those reported in diamictites. interpreted as ancient glacial deposits (tillites). Our purpose is to document the types of features seen on clasts in diamictites of ejecta origin in order to help in the interpretation of

  2. Meteorite impact ejecta - Dependence of mass and energy lost on planetary escape velocity

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1977-01-01

    The amounts of material and energy which escape a planet in a meteorite impact event is calculated as functions of impact and escape velocities. Results are obtained from the computed flow induced by the impact of iron and gabbroic anorthosite spheres onto a half-space of anorthosite at impact velocities of 5 to 45 km/sec. The impact-induced flows were determined by a numerical method using the mass, momentum, and energy conservation relations in finite-difference approximation, within an Eulerian computational grid. The impact velocities at which ejecta losses equal meteorite mass gains are found to be approximately 20, 35, and 45 km/sec for anorthosite objects and approximately 25, 35, and 40 km/sec for iron objects striking anorthosite surfaces for the gravity fields of the moon, Mercury and Mars.

  3. Iridium Concentrations and Abundances of Meteoritic Ejecta from the Eltanin Impact in Sediment Cores from Polarstern Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    The abundances of meteoritic ejecta from the Eltanin asteroid impact have been examined in several sediment cores recovered by the FS Polarstern during expedition ANT XII/4 using elemental concentrations of iridium and weights of coarse ejecta debris. Three cores with well-preserved impact deposits, PS204-1, PS2708-1, and PS2709-1, each contain Ir and ejecta fluences similar to those found in USNS Eltanin core E13-4. Small Ir anomalies and traces of ejecta were found in cores PS2706-1 and PS2710-1, but since these cores lack well-defined deposits, these are considered to be reworked and not representative of the fallout. No evidence of ejecta was found in cores PS2802-1 and PS2705-1. These results confirm earlier speculation that the Eltanin impact resulted in deposits of ejecta with up to 1 gram/sq centimeter of depris over a wide area of the ocean floor. However, there are sill large uncertainties over the actual regional or global extent of this unique sediment deposit.

  4. Iridium Concentrations and Abundances of Meteoritic Ejecta from the Eltanin Impact in Sediment Cores from Polarstern Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    The abundances of meteoritic ejecta from the Eltanin asteroid impact have been examined in several sediment cores recovered by the FS Polarstern during expedition ANT XII/4 using elemental concentrations of iridium and weights of coarse ejecta debris. Three cores with well-preserved impact deposits, PS204-1, PS2708-1, and PS2709-1, each contain Ir and ejecta fluences similar to those found in USNS Eltanin core E13-4. Small Ir anomalies and traces of ejecta were found in cores PS2706-1 and PS2710-1, but since these cores lack well-defined deposits, these are considered to be reworked and not representative of the fallout. No evidence of ejecta was found in cores PS2802-1 and PS2705-1. These results confirm earlier speculation that the Eltanin impact resulted in deposits of ejecta with up to 1 gram/sq centimeter of depris over a wide area of the ocean floor. However, there are sill large uncertainties over the actual regional or global extent of this unique sediment deposit.

  5. Martian impact craters - Correlations of ejecta and interior morphologies with diameter, latitude, and terrain

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.; Bradley, Tracy L.

    1990-01-01

    An effort is made to establish the ability of a correlation between crater morphology and latitude, diameter, and terrain, to discriminate among the effects of impact energy, atmosphere, and subsurface volatiles in 3819 larger-than-8 km diameter craters distributed over the Martian surface. It is noted that changes in ejecta and interior morphology correlate with increases in crater diameter, and that while many of the interior structures exhibit distributions interpretable as terrain-dependent, central peak and peak ring interior morphologies exhibit minimal relationships with planetary properties.

  6. Identification of Meteoritic Components in Terrestrial Impact Craters and Their Ejecta

    NASA Astrophysics Data System (ADS)

    Koeberl, C.

    2007-12-01

    The geochemistry and cosmochemistry of impacts (i.e., of impact craters and impact processes) is a rapidly developing research area that encompasses such wide-ranging topics as the simple chemical characterization of the various rock types involved (target rocks, impact breccias, melt rocks, etc.), the identification of extraterrestrial components in impact ejecta, the determination of the impactor (projectile) composition, and the determination of the causes of environmental changes from chemolithostratigraphic analyses. The recognition of geological structures and ejecta layers on Earth as being of impact origin requires the detection of either shock metamorphic effects in minerals and rocks, and/or the presence of a meteoritic component in these rocks. In addition, ejecta layers that formed from meteorite impacts can be found and confirmed by geochemical studies aimed at confirming the presence of an extraterrestrial component. In the absence of actual meteorite fragments, it is necessary to chemically search for traces of meteoritic material that is mixed in with the target rocks in breccias and melt rocks. Meteoritic components have been identified for just about 45 impact structures, out of the more than 170 impact structures that have so far been identified on Earth. The presence of a meteoritic component can be verified by measuring abundances and interelement ratios of siderophile elements, especially the platinum group elements (PGE), which are much more abundant in meteorites than in terrestrial upper crustal rocks. Often the content of the element iridium is measured as a proxy for all PGEs, because it can be measured with the best detection limit of all PGEs by neutron activation analysis, but taken out of context, small Ir anomalies alone have little diagnostic power. More reliable results can be achieved by measuring whole suites of elements, for example, the PGEs, which also avoids some of the ambiguities that result if only moderately siderophile

  7. An Impact Sensor System for the Characterization of the Micrometeoroid and Lunar Secondary Ejecta Environment

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Burchell, M.; Corsaro, R.; Giovane, F.; Stansbery, E.; Blum, Jurgen; Cooke, William; Pisacane, V.

    2009-01-01

    The Impact Sensor for Micrometeoroid and Lunar Secondary Ejecta (IMMUSE) project aims to apply and integrate previously demonstrated impact sensing subsystems to characterize the micrometeoroid and lunar secondary (MMSE) environment on the surface of the Moon. Once deployed, data returned from IMMUSE will benefit: (1) Fundamental Lunar Science: providing data to improve the understanding of lunar cratering processes and dynamics of the lunar regolith. (2) Lunar Exploration Applied Science: providing an accurate MMSE environment definition for reliable impact risk assessments, cost-effective shielding designs, and mitigation measures for long-term lunar exploration activities. (3) Planetary Science: providing micrometeoroid data to aid the understanding of asteroidal collisions and the evolution of comets. A well-established link between micrometeoroid impacts and lunar regolith is also key to understanding other regolith-covered bodies from remote-sensing data. The IMMUSE system includes two components: (1) a large area (greater than or equal to 1 m2) micrometeoroid detector based on acoustic impact and fiber optic displacement sensors and (2) a 100 cm2 lunar secondary ejecta detector consisting of dual-layer laser curtain and acoustic impact sensors. The combinations of different detection mechanisms will allow for a better characterization of the MMSE environment, including flux, particle size/mass, and impact velocity. IMMUSE is funded by the NASA LASER Program through 2012. The project fs goal is to reach a Technical Readiness Level of 4 in preparation for a more advanced development beyond 2012. Several prototype subsystems have been constructed and subjected to low impact and hypervelocity impact tests. The presentation will include a status review and preliminary test results.

  8. An Impact Sensor System for the Characterization of the Micrometeoroid and Lunar Secondary Ejecta Environment

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Burchell, M.; Corsaro, R.; Giovane, F.; Stansbery, E.; Blum, Jurgen; Cooke, William; Pisacane, V.

    2009-01-01

    The Impact Sensor for Micrometeoroid and Lunar Secondary Ejecta (IMMUSE) project aims to apply and integrate previously demonstrated impact sensing subsystems to characterize the micrometeoroid and lunar secondary (MMSE) environment on the surface of the Moon. Once deployed, data returned from IMMUSE will benefit: (1) Fundamental Lunar Science: providing data to improve the understanding of lunar cratering processes and dynamics of the lunar regolith. (2) Lunar Exploration Applied Science: providing an accurate MMSE environment definition for reliable impact risk assessments, cost-effective shielding designs, and mitigation measures for long-term lunar exploration activities. (3) Planetary Science: providing micrometeoroid data to aid the understanding of asteroidal collisions and the evolution of comets. A well-established link between micrometeoroid impacts and lunar regolith is also key to understanding other regolith-covered bodies from remote-sensing data. The IMMUSE system includes two components: (1) a large area (greater than or equal to 1 m2) micrometeoroid detector based on acoustic impact and fiber optic displacement sensors and (2) a 100 cm2 lunar secondary ejecta detector consisting of dual-layer laser curtain and acoustic impact sensors. The combinations of different detection mechanisms will allow for a better characterization of the MMSE environment, including flux, particle size/mass, and impact velocity. IMMUSE is funded by the NASA LASER Program through 2012. The project fs goal is to reach a Technical Readiness Level of 4 in preparation for a more advanced development beyond 2012. Several prototype subsystems have been constructed and subjected to low impact and hypervelocity impact tests. The presentation will include a status review and preliminary test results.

  9. Comparing Radar and Optical Data Sets of Lunar Impact Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Patterson, G.; Cahill, J.; Grier, J.

    2015-12-01

    Impact cratering is a primary weathering process of airless bodies and is the dominant method of redistributing material across the lunar surface. Crater ejecta blankets are a window into the impact cratering process and can provide important information on the properties of subsurface materials as well as surface evolution. Radar scattering information, in particular the circular polarization ratio (CPR), provides a useful means of investigating these properties. Using data returned from the Mini-RF instrument onboard NASA's LRO, we observe significant diversity in the CPR around young mare craters as a function of distance from the crater rim, regardless of crater size or relative age. Some commonalities in the scattering profiles are observed for all crater diameters: higher CPR values occur near the crater rim that decay with radial distance outward, larger craters have a higher CPR than smaller craters, and the overall shapes of the profiles are similar such that the main scattering characteristics of the studied craters can generally be grouped into three main categories. Comparing CPR profiles with data at other wavelengths provides additional insights and suggests two interesting results. The first is that comparisons of radar and optical data imply relationships between mare subsurface stratigraphy and structure and the relative size of the material found within the ejecta blanket. Of the examined craters, twelve have shelves of approximately constant CPR as well as discrete layers outcropping in the subsurface, and nine fall along a trend line when comparing shelf-width with thickness of subsurface layers. The second is that comparisons of radar data with other wavelengths may provide insights into the maturity of the surface. For example, some examined craters have laterally extensive, optically bright ejecta blankets suggesting that a region of rough, high-CPR material should be present near the crater rim, though this is not observed. Radar data is

  10. Comet Ejecta in Aerogel

    NASA Image and Video Library

    2006-02-21

    This image from NASA shows a particle impact on the aluminum frame that holds the aerogel tiles. The debris from the impact shot into the adjacent aerogel tile producing the explosion pattern of ejecta framents captured in the material.

  11. Shared origin for seven of Mars Trojans - impact ejecta from Mars?

    NASA Astrophysics Data System (ADS)

    Polishook, David; Jacobson, Seth A.; Aharonson, Oded

    2016-10-01

    Seven out of nine Mars Trojans belong to an orbital grouping that started to spread about 109 years ago (Cuk et al. 2015). We spectrally observed two of them (311999 and 385250) using the IRTF telescope and found that both present an identical olivine-rich reflectance spectrum, that is similar to the reflectance spectrum of (5261) Eureka, the largest of these seven Trojans (Rivkin et al. 2007). These measurements confirm the shared origin of the seven. Moreover, olivine-rich reflectance spectra is rare within asteroids, but is visible in numerous locations on Mars and is found within SNC meteorites that are argued to originate from Mars (Chassigny, ALHA77005; McSween 1985). This spectral resemblance encourages us to suggest that the seven Trojans are impact ejecta from Mars' plutonic rock. We will present dynamical calculations showing how the impact ejecta could have been caught in L5 and that there are enough size-relevant craters on Mars surface to produce these seven Trojans.

  12. The origin of Phobos grooves from ejecta launched from impact craters on Mars: Tests of the hypothesis

    NASA Astrophysics Data System (ADS)

    Ramsley, Kenneth R.; Head, James W.

    2013-01-01

    The surface of the martian moon Phobos is characterized by parallel and intersecting grooves that bear resemblance to secondary crater chains observed on planetary surfaces. Murray (2011) has hypothesized that the main groove-forming process on Phobos is the intersection of Phobos with ejecta from primary impact events on Mars to produce chains of secondary craters. The hypothesis infers a pattern of parallel jets of ejecta, either fluidized or solidified, that break into equally-spaced fragments and disperse uniformly along-trajectory during the flight from Mars to Phobos. At the moment of impact with Phobos the dispersed fragments emplace secondary craters that are aligned along strike corresponding to the flight pattern of ejecta along trajectory. The aspects of the characteristics of grooves on Phobos cited by this hypothesis that might be explained by secondary ejecta include: their observed linearity, parallelism, planar alignment, pitted nature, change in character along strike, and a "zone of avoidance" where ejecta from Mars is predicted not to impact (Murray, 2011). To test the hypothesis we plot precise Keplerian orbits for ejecta from Mars (elliptical and hyperbolic with periapsis located below the surface of Mars). From these trajectories we: (1) set the fragment dispersion limits of ejecta patterns required to emplace the more typically well-organized parallel grooves observed in returned images from Phobos; (2) plot ranges of the ejecta flight durations from Mars to Phobos and map regions of exposure; (3) utilize the same exposure map to observe trajectory-defined ejecta exposure shadows; (4) observe hemispheric exposure in response to shorter and longer durations of ejecta flight; (5) assess the viability of ejecta emplacing the large family of grooves covering most of the northern hemisphere of Phobos; and (6) plot the arrival of parallel lines of ejecta emplacing chains of craters at oblique incident angles. We also assess the bulk volume of

  13. Search for, and study of, paleozoic impact ejecta: Progress made during the past year

    NASA Technical Reports Server (NTRS)

    Read, William F.

    1987-01-01

    Nodule-like objects which the author believes to be impact bombs had been found in Middle Ordovician rocks of southeastern Wisconsin and northern Illinois. In northern Illinois, rock fragments containing oolith-like spherules, which the author believes to be solidified impact droplets, and numerous large bubble-holes, had been found at the same stratigraphic level. The discovery of bomb-like nodules in Lower Ordovician rocks of southeastern Wisconsin was reported. Bomb-type nodules associated with droplet-type spherules have been found in Lower Ordovician rocks of central Pennsylvania. These discoveries, in the authors opinion, suffice to show that impact ejecta are widespread in marine sediments of Ordovician age and are likely to be widespread also in marine sediments of other ages. Unfortunately, according to the author, there is little indication so far that this evidence has been accepted as valid by the concerned scientific community.

  14. Modification of Mercury's Bulk Mantle Composition by Reaccumulation of Condensed Ejecta from a Formative Giant Impact

    NASA Astrophysics Data System (ADS)

    Wahl, Sean; Stevenson, D. J.; Elkins-Tanton, L.

    2010-10-01

    Difficulties encountered in reproducing Mercury's compositional attributes through modeling of formational processes have bolstered support for the hypothesis that one or more giant impacts stripped away a significant proportion of proto-Mercury's silicate mantle. Previous investigations demonstrate sufficient removal of mantle material to account for the planet's unusually high mean density, but do not consider the effects of multiple silicate and oxide phases. In this study we extend the present theory by investigating the consequences of a more realistic chemical model on the evolution of the ejected material. We suggest that the majority of condensation within the expanding vapor plume can be modeled as an equilibrium process following homogeneous nucleation of refractory phases leading to larger particle sizes than previously estimated. We use a thermodynamic model focused on major element composition of ejected material to analyze the effect of differential condensation on the expansion and final state of ejecta. For ejecta of sufficiently high specific entropy, our simplified chemical models indicate that energy released during condensation of MgO-rich phases buffers the temperature, delaying or preventing onset of FeO condensation. If sufficient spatial separation between condensates and vapor arises or if significant amounts of uncondensed FeO vapor remain uncondensed, reaccumulated ejecta would be enriched in MgO and refractory phases. This is compatible with an FeO depletion of Mercury's surface relative to other terrestrial bodies as spectroscopic data suggest (McClintock, Science, 2008). Despite conflicts in the data and the necessity for further relating it to bulk mantle composition, we describe potential tests of our model. Concentration of incompatible elements in the crust formed by a magma ocean would intensify FeO loss. The proposed process leads to a greater depletion in FeO and a lesser depletion in refractory, incompatible elements (Al2O3, Ca

  15. Late Eocene impact ejecta: geochemical and isotopic connections with the Popigai impact structure

    NASA Astrophysics Data System (ADS)

    Whitehead, J.; Papanastassiou, D. A.; Spray, J. G.; Grieve, R. A. F.; Wasserburg, G. J.

    2000-09-01

    compositions that may reflect the melting of supra-basement sedimentary rocks from Popigai, or early basement melts that were ejected prior to homogenization of the Popigai tagamites. The ejection of melt rocks with chemistries consistent with a basement provenance, rather than the surface ˜1 km of sedimentary cover rocks, atypically indicates a non-surficial source to some of the ejecta. Microkrystites from two adjacent biozones possess statistically indistinguishable major element compositions, suggesting they have a single source. The occurrence of microkrystites derived from a single impact event, but in different biozones, can be explained by: (1) diachronous biozone boundaries; (2) post-accumulation sedimentary reworking; or (3) erroneous biozonation.

  16. Asteroid Impact Deflection and Assessment (AIDA) mission - Full-Scale Modeling and Simulation of Ejecta Evolution and Fates

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene G.; Yu, Yang; Hamilton, Douglas P.; Schwartz, Stephen; Stickle, Angela; Miller, Paul L.; Cheng, Andy F.; Michel, Patrick; AIDA Impact Simulation Working Group

    2016-10-01

    The proposed Asteroid Impact Deflection and Assessment (AIDA) mission includes NASA's Double Asteroid Redirection Test (DART), whose impact with the secondary of near-Earth binary asteroid 65803 Didymos is expected to liberate large amounts of ejecta. We present efforts within the AIDA Impact Simulation Working Group to comprehensively simulate the behavior of this impact ejecta as it moves through and exits the system. Group members at JPL, OCA, and UMD have been working largely independently, developing their own strategies and methodologies. Ejecta initial conditions may be imported from output of hydrocode impact simulations or generated from crater scaling laws derived from point-source explosion models. We started with the latter approach, using reasonable assumptions for the secondary's density, porosity, surface cohesive strength, and vanishingly small net gravitational/rotational surface acceleration. We adopted DART's planned size, mass, closing velocity, and impact geometry for the cratering event. Using independent N-Body codes, we performed Monte Carlo integration of ejecta particles sampled over reasonable particle size ranges, and over launch locations within the crater footprint. In some cases we scaled the number of integrated particles in various size bins to the estimated number of particles consistent with a realistic size-frequency distribution. Dynamical models used for the particle integration varied, but all included full gravity potential of both primary and secondary, the solar tide, and solar radiation pressure (accounting for shadowing). We present results for the proportions of ejecta reaching ultimate fates of escape, return impact on the secondary, and transfer impact onto the primary. We also present the time history of reaching those outcomes, i.e., ejecta clearing timescales, and the size-frequency distribution of remaining ejecta at given post-impact durations. We find large numbers of particles remain in the system for several

  17. Investigating Atmospheric Effects on Impact Ejecta Morphology: Possible Tool for Determining Past Climate Conditions on Mars?

    NASA Technical Reports Server (NTRS)

    Appleby, John F.; Barnouin-Jha, Oliver S.; Cheng, Andrew F.

    1999-01-01

    The combined use of impact crater morphology and mechanics provides important information on the physical conditions of both planetary atmospheres and planetary and asteroid surfaces present during crater formation, while an understanding of the rate of crater production on the surface of asteroids provides information of their surface and spin rate evolution. The research performed with support from this project improves our understanding of (1) the mechanics of impact cratering in order to gain insights on the evolution of these physical surface conditions on planets with atmospheres and asteroids, and (2) how impact flux across an asteroid surface may vary due to anisotropic distribution of impactors in the solar system. As part of this project, we have undertaken three studies. In the first study, we investigate atmospheric effects on the morphology of ejecta excavated during a cratering event in order to determine the atmospheric and target conditions from observed crater morphologies. In the second study, we use the physical and morphological consequences of oblique impacts on an asteroid to understand how the asteroid Mathilde (recently imaged by the Near Earth Asteroid Rendezvous - NEAR- spacecraft) could have survived the formation of five giant craters. In a third study, we use a Monte Carlo method to calculate the impact flux on an asteroid given a distribution of impactors on elliptical orbits. In the following section, we present the result obtained from all three studies.

  18. Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Wünnemann, Kai; Zhu, Meng-Hua; Stöffler, Dieter

    2016-10-01

    We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2-D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color-coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power-law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock-comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.

  19. Dating a Small Impact Crater: An Age of Kaali Crater (Estonia) Based on Charcoal Emplaced Within Proximal Ejecta

    NASA Astrophysics Data System (ADS)

    Losiak, A.; Wild, E. M.; Geppert, W. D.; Huber, M. S.; Jõeleht, A.; Kriiska, A.; Kulkov, A.; Paavel, K.; Pirkovic, I.; Plado, J.; Steier, P.; Välja, R.; Wilk, J.; Wisniowski, T.; Zanetti, M.

    2015-09-01

    The Kaali crater was formed shortly after (tpq) 1530-1455 BC (3237 ± 10 14C yr BP). This age is based on dating charcoal within the ejecta blanket that makes it directly related to the impact, and not susceptible to potential reservoir effects.

  20. Generation and emplacement of fine-grained ejecta in planetary impacts

    USGS Publications Warehouse

    Ghent, R.R.; Gupta, V.; Campbell, B.A.; Ferguson, S.A.; Brown, J.C.W.; Fergason, R.L.; Carter, L.M.

    2010-01-01

    We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks 1cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ???10??m to 10mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r for all three planets. On the Moon, ???R-0.18 for craters 5-640km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as ???R-0.49, consistent with ejecta entrainment in Venus' dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R-0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials. ?? 2010 Elsevier Inc.

  1. Generation and emplacement of fine-grained ejecta in planetary impacts

    NASA Astrophysics Data System (ADS)

    Ghent, Rebecca R.; Gupta, V.; Campbell, B. A.; Ferguson, S. A.; Brown, J. C. W.; Fergason, R. L.; Carter, L. M.

    2010-10-01

    We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks ⩾1 cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ˜10 μm to 10 mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r* for all three planets. On the Moon, r* ˜ R-0.18 for craters 5-640 km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as r* ˜ R-0.49, consistent with ejecta entrainment in Venus' dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R-0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials.

  2. A rock magnetic profile through the ejecta flap of the Lockne impact crater (central Sweden) and implications for the impact excavation process

    NASA Astrophysics Data System (ADS)

    Melero-Asensio, Irene; Martín-Hernández, Fátima; Ormö, Jens

    2015-01-01

    The well-documented, well-preserved, and well-exposed Lockne crater is a reference crater for marine-target impacts on Earth. The large amount of data allows detailed analysis of the cratering and modification processes. A unique feature of Lockne as compared with other similar craters is its pristine ejecta layer. Here, we provide the first complete lithological description coupled with an analysis of the rock magnetic properties of the Lockne-9 core drilled through the ejecta flap. Low-field bulk magnetic susceptibility, magnetic hysteresis, isothermal remanent magnetization curves (IRM), and the corresponding model of the coercivity spectra, backfield IRM, and thermomagnetic curves are used to fully characterize the magnetic mineralogy (i.e., pseudo-single domain (PSD) magnetite and pyrite). Variation of the magnetic properties with depth reveals a characteristic maximum in the magnetic susceptibility and magnetization within the crystalline ejecta. The magnetic properties of rocks affected by the impact show a slight weakening in the coercivity of magnetic minerals in comparison with rocks not affected by the impact. Altogether, this suggests to us that the high magnetization zone already existed before the impact event took place. Therefore, it can be inferred that during the cratering process, the Lockne ejecta was repositioned en masse from the central part of the crater in the form of an ejecta flap. This stands in contrast to the standard ballistic emplacement model wherein individual particles move in an ejecta curtain.

  3. Spectrophotometry of the Deep Impact Ejecta of Comet 9P/Tempel 1

    NASA Astrophysics Data System (ADS)

    Hodapp, K. W.; Aldering, G.; Meech, K. J.; Cochran, A.

    We have obtained optical spectrophotometry of the evolution of comet 9P/Tempel 1 after the impact of the Deep Impact spacecraft [1], using the SNIFS Supernova Integral Field Spectrograph at the UH 2.2 m telescope. From the data-cubes, we extracted both continuum flux distributions as well as emission line fluxes of the violet CN system and of [OI].We found that the continuum brightness of the comet, i.e., scattered sunlight, started rising immediately after the impact, but that the ejecta were slightly bluer in color than the material normally released by the comet.The emission of [OI] at 630 nm, which is a tracer of water, rose similar to the scattered continuum light, but then remained nearly constant for several hours after impact.We found that CN emission at 388 nm centered on the nucleus was delayed compared to the rise of dust-scattered sunlight. This CN emission also expanded faster spatially than the cloud of scattering dust.

  4. Distal Impact Ejecta at Paleocene-Eocene Boundary sections on the Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Schaller, M. F.; Fung, M. K.; Wright, J. D.; Katz, M. E.; Kent, D. V.

    2016-12-01

    A rapid global warming event 56 million years ago at the Paleocene-Eocene (P-E) boundary (the Paleocene-Eocene Thermal Maximum, PETM) was accompanied by an abrupt negative carbon isotope excursion (CIE) observed globally. We report the discovery of silicate glass spherules in a discrete stratigraphic layer coincident with the P-E boundary from several marine sections on the Atlantic coastal plain and offshore. The spherules are found in the onset of the CIE that defines the P-E boundary at each site. They average 275 mm in diameter, have rotational and splash form morphologies, surficial microcraters, and are translucent colorless to brown, green and black. Energy dispersive x-ray spectroscopy from grain mounts and polished sections of representative spherules show that they have related major oxide chemistries of up to 50% silica, with the remainder comprised of CaO, FeO, and Al2O3, which all vary in relative proportion with silica content. The chemistries of the spherules form a population that is distinct from impact ejecta from other major strewn fields, such as the Cretaceous-Paleogene microtektites, but show more variability than is expected from volcanism. Field transmission infrared spectroscopy on a subset of spherules reveals water content <0.03%, much lower than volcanic glass spherules. They also contain inclusions of lechatelierite (a high temperature quartz glass), and quartz grain inclusions that show characteristic Raman spectra indicative of shock metamorphism: in particular relaxation of the spectral peak corresponding to SiO2 bond-bending vibration from 464 to 460 cm-1, consistent with observations from other Raman studies of quartz experimentally shocked to high peak pressures of 25.8 GPa. The summation of these characteristics is consistent with features of melt-drop microtektites and microkrystites from other known impact strewn fields. We therefore interpret the P-E boundary spherules as a component of a distal impact ejecta layer, indicating

  5. Ejecta cloud from the AIDA space project kinetic impact on the secondary of a binary asteroid: I. mechanical environment and dynamical model

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Michel, Patrick; Schwartz, Stephen R.; Naidu, Shantanu P.; Benner, Lance A. M.

    2017-01-01

    An understanding of the post-impact dynamics of ejecta clouds are crucial to the planning of a kinetic impact mission to an asteroid, and also has great implications for the history of planetary formation. The purpose of this article is to track the evolution of ejecta produced by AIDA mission, which targets for kinetic impact the secondary of near-Earth binary asteroid (65803) Didymos on 2022, and to feedback essential informations to AIDA's ongoing phase-A study. We present a detailed dynamic model for the simulation of an ejecta cloud from a binary asteroid that synthesizes all relevant forces based on a previous analysis of the mechanical environment. We apply our method to gain insight into the expected response of Didymos to the AIDA impact, including the subsequent evolution of debris and dust. The crater scaling relations from laboratory experiments are employed to approximate the distributions of ejecta mass and launching speed. The size distribution of fragments is modeled with a power law fitted from observations of real asteroid surface. A full-scale demonstration is simulated using parameters specified by the mission. We report the results of the simulation, which include the computed spread of the ejecta cloud and the recorded history of ejecta accretion and escape. The violent period of the ejecta evolution is found to be short, and is followed by a stage where the remaining ejecta is gradually cleared. Solar radiation pressure proves to be efficient in cleaning dust-size ejecta, and the simulation results after two weeks shows that large debris on polar orbits (perpendicular to the binary orbital plane) has a survival advantage over smaller ejecta and ejecta that keeps to low latitudes.

  6. Projectile-target mixing in melted ejecta formed during a hypervelocity impact cratering event

    NASA Technical Reports Server (NTRS)

    Evans, Noreen Joyce; Ahrens, Thomas J.; Shahinpoor, M.; Anderson, W. W.

    1993-01-01

    Tektites contain little to no projectile contamination while, in contrast, some distal ejecta deposits can be relatively projectile-rich (e.g. the Cretaceous-Tertiary (K-T) boundary clay). This compositional difference motivated an experimental study of hypervelocity target-projectile mixing processes. We hope to scale up the results from these experiments and apply them to terrestrial impact structures like the Chicxulub Crater, Yucutan, Mexico, the leading contender as the site for the impact that caused the mass extinction that marks the K-T boundary. Shock decomposition of the approximately 500m thickness of anhydrite, or greater thickness of limestone, in the target rocks at Chicxulub may have been a critical mechanism for either global cooling via SO3, and subsequently H2SO4, formation, or possibly, global warming via increased CO2 formation. Understanding target-projectile mixing processes during hypervelocity impact may permit more accurate estimates of the amount of potentially toxic, target-derived material reaching stratospheric heights.

  7. Problems in the interpretation of lunar mare stratigraphy and relative ages indicated by ejecta from small impact craters

    NASA Technical Reports Server (NTRS)

    Young, R. A.; Brennan, W. J.; Nichols, D. J.

    1974-01-01

    The numbers of large ejecta blocks in excess of several meters in diameter ('blockiness') around the rims of small craters in southeastern Mare Serenitatis exceed those around similar craters in southern Mare Imbrium (and some other regions) at all but the final stages of crater degradation. Terrestrial explosion crater analogs, studies of impact processes, and a layered mare model suggest that the nature of the layering in the subsurface, including lavas, ejecta and buried regolith horizons, could account for the variable blockiness of crater ejecta and, possibly, for some variation in crater size-frequency distributions. Such effects would limit the reliability and utility of counting postmare craters for the purpose of estimating the relative ages of mare surfaces. Similarly, comparisons of the effects of progressive degradation on small impact craters to determine relative or absolute ages of individual craters may be limited by the influence of stratigraphy on ejecta fragment size distributions, which would in turn affect micrometeorite erosion rates and regolith production models.

  8. Multiple (immiscible) melt phases of mafic composition in Chicxulub impact ejecta from northeastern Mexico: New constraints on target lithologies

    NASA Astrophysics Data System (ADS)

    Schulte, P.; Stinnesbeck, W.; Kontny, A.; Stüben, D.; Kramar, U.; Harting, M.

    2002-12-01

    Proximal ejecta deposits in sections from NE Mexico (Rancho Nuevo, La Sierrita, El Peñon, El Mimbral) have been investigated by backscattered electron imaging, wave-length dispersive electron microprobe analyses, and cathodoluminiscence, in order to characterize target lithologies, and ejecta mixing, fractionation, and distribution mechanisms. Additional investigations included magnetic properties (Kontny et al, this meeting) and trace element analyses (Harting et al, this meeting). Petrological features of these ejecta deposits are extraordinarily well preserved. They consist of mm-cm sized vesiculated spherical to drop-shaped spherules and angular to filamentous (ejecta-) fragments, as well as carbonate clasts, marl clasts, and rare benthic foraminifera floating in a carbonaceous matrix. Occasionally, spherules and fragments show welding-amalgamation features and enclose other components, thus resulting in a foam-like texture. An origin from the Chicxulub impact is suggested by geographical proximity and morphologically similarity to spherules found in other K-T sites in North to Central America and the Atlantic. The far distribution of such coarse-grained, foamy, and fragile ejecta-clasts as well as welding features suggest ignimbrite-like transport mechanisms or nearby secondary impacts. Several silicic ejecta phases have been observed that occur as distinct phases, even within one ejecta particle with textures indicative of liquid immiscibility: (1) Fe- (25-35 wt%), Mg- (10-15 wt%) rich phases with <25 wt% SiO2, altered to chlorite, (2) K- (5-8 wt.%) and Al- (25-30 wt%) rich hydrated glass with 45-50 wt% SiO2, and (3) rare SiO2- (>60 wt%) rich andesitic glasses. In addition to these silicic phases, abundant carbonate characterizes all studied ejecta deposits. It occurs within spherules and fragments and as clasts and globules, and shows textures indicative of either liquid immiscibility and/or quenching (`feathery calcite'). Quenched carbonates are enriched

  9. Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Bunch, Ted E.; Flemming, Roberta L.; Buitenhuis, Eric; Wittke, James H.

    2015-12-01

    Our understanding of the impact cratering process continues to evolve and, even at well-known and well-studied structures, there is still much to be learned. Here, we present the results of a study on impact-generated melt phases within ejecta at Barringer Crater, Arizona, one of the first impact craters on Earth to be recognized and arguably the most famous. We report on previously unknown impact melt-bearing breccias that contain dispersed fragments of the projectile as well as impact glasses that contain a high proportion of projectile material - higher than any other glasses previously reported from this site. These glasses are distinctly different from so-called ;melt beads; that are found as a lag deposit on the present-day erosion surface and that we also study. It is proposed that the melts in these impact breccias were derived from a more constrained sub-region of the melt zone that was very shallow and that also had a larger projectile contribution. In addition to low- and high-Fe melt beads documented previously, we document Ca-Mg-rich glasses and calcite globules within silicate glass that provide definitive evidence that carbonates underwent melting during the formation of Barringer Crater. We propose that the melting of dolomite produces Ca-Mg-rich melts from which calcite is the dominant liquidus phase. This explains the perhaps surprising finding that despite dolomite being the dominant rock type at many impact sites, including Barringer Crater, calcite is the dominant melt product. When taken together with our estimate for the amount of impact melt products dispersed on, and just below, the present-day erosional surface, it is clear that the amount of melt produced at Barringer Crater is higher than previously estimated and is more consistent with recent numerical modeling studies. This work adds to the growing recognition that sedimentary rocks melt during hypervelocity impact and do not just decompose and/or devolatilize as was previously thought

  10. Ground Penetrating Radar Field Studies of Planetary Analog Geologic Settings: Impact Ejecta, Volcanics, and Fluvial Terrains

    NASA Astrophysics Data System (ADS)

    Russell, P. S.; Grant, J. A.; Carter, L. M.; Garry, W.; Williams, K. K.; Morgan, G. A.; Daubar, I.; Bussey, B.

    2012-12-01

    Ground-Penetrating Radar (GPR) data from terrestrial analog environments can help constrain models for evolution of the lunar and martian surfaces, aid in interpretation of orbital SAR data, and help predict what might be encountered in the subsurface during future landed scientific or engineering operations. Results and interpretations presented here from impact ejecta (Barringer Meteorite Crater), volcanic deposits (Northern Arizona cinders overlying lavas, columnar-jointed Columbia River flood basalts, Hawaii lava flows), and terrains influenced by fluvial-related activity (channeled scablands megaflood bar, Mauna Kea glacio-fluvial deposits) focus on defining the radar "fingerprint" of geologic materials and settings that may be analogous to those found on the Moon and Mars. The challenge in using GPR in geologic investigations is the degree to which different geologic features and processes can be uniquely identified and distinguished in the data. Our approach to constraining this is to qualitatively and quantitatively characterize GPR signatures of different geological environments and to compare them with "ground-truth" observations of subsurface exposures immediately adjacent or subjacent to our GPR transects. Several sites were chosen in each field area based on accessibility, visual access to the subsurface, and presence of particular geologic features of interest. The interpreted distribution of blocks in impact ejecta at Meteor Crater, using a 400 MHz antenna (wavelength of 75 cm) is 1.5-3 blocks per m^3 in the upper 1 m (and 0.5-1 blocks per m^3 in the upper two meters), which is close to the in situ measured block distribution of 2-3 blocks larger than 0.25-0.30 m per m^3. This is roughly the detection limit to be expected from the λ/3 resolution approximation of radar wavelength and indicates that the 400 MHz GPR is characterizing the block population in ejecta. While megaflood bar deposits are also reflector-rich, individual reflectors are in

  11. Crater Ejecta

    NASA Image and Video Library

    2012-08-02

    The craters in this image from NASA 2001 Mars Odyssey spacecraft are located in a region of prolonged wind action. The ejecta of the craters is more resistant to the wind than the materials around it.

  12. A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density

    NASA Astrophysics Data System (ADS)

    Richardson, James E.; Melosh, H. Jay; Lisse, Carey M.; Carcich, Brian

    2007-10-01

    In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s -1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably "well-behaved" oblique impact, in which the impactor-spacecraft apparently struck a small, westward-facing slope of roughly 1/3-1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than Y¯=1-10 kPa. The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85-140 m diameter, formed in not more than 250-550 s, for the case of Y¯=0 Pa (gravity-dominated cratering); and not less than 22-26 m diameter, formed in not less than 1-3 s, for the case of Y¯=10 kPa (strength-dominated cratering). At Y¯=0 Pa, an upper limit to the total ejected mass of 1.8×10 kg ( 1.5-2.2×10 kg) is consistent with measurements made via long-range remote sensing, after taking into account that 90% of this mass would have stayed close to the surface and then landed within 45 min of the impact. However, at Y¯=10 kPa, a lower limit to the total ejected mass of 2.3×10 kg ( 1.5-2.9×10 kg) is also consistent with these measurements. The expansion rate of the ejecta plume imaged during the look-back phase of observations leads to an estimate of the comet's mean surface gravity of g¯=0.34 mms (0.17-0.90 mm s -2), which corresponds to a comet mass of m=4.5×10 kg ( 2.3-12.0×10 kg) and a bulk density of ρ=400 kgm (200-1000 kg m -3), where the large high-end error is due to uncertainties in the magnitude of coma gas

  13. A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density

    NASA Astrophysics Data System (ADS)

    Richardson, James E.; Melosh, H. Jay; Lisse, Carey M.; Carcich, Brian

    In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s-1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor spacecraft apparently struck a small, westward-facing slope of roughly 1/3 1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than Y¯=1 10 kPa. The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85 140 m diameter, formed in not more than 250 550 s, for the case of Y¯=0 Pa (gravity-dominated cratering); and not less than 22 26 m diameter, formed in not less than 1 3 s, for the case of Y¯=10 kPa (strength-dominated cratering). At Y¯=0 Pa, an upper limit to the total ejected mass of 1.8×10 kg (1.5 2.2×10 kg) is consistent with measurements made via long-range remote sensing, after taking into account that 90% of this mass would have stayed close to the surface and then landed within 45 min of the impact. However, at Y¯=10 kPa, a lower limit to the total ejected mass of 2.3×10 kg (1.5 2.9×10 kg) is also consistent with these measurements. The expansion rate of the ejecta plume imaged during the look-back phase of observations leads to an estimate of the comet's mean surface gravity of g¯=0.34 mms (0.17 0.90 mm s-2), which corresponds to a comet mass of m=4.5×10 kg (2.3 12.0×10 kg) and a bulk density of ρ=400 kgm (200 1000 kg m-3), where the large high-end error is due to uncertainties in the magnitude of coma gas

  14. Computer modeling of large asteroid impacts into continental and oceanic sites: Atmospheric, cratering, and ejecta dynamics

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Schuster, S. H.; Rosenblatt, M.; Grant, L. B.; Hassig, P. J.; Kreyenhagen, K. N.

    1988-01-01

    Numerous impact cratering events have occurred on the Earth during the last several billion years that have seriously affected our planet and its atmosphere. The largest cratering events, which were caused by asteroids and comets with kinetic energies equivalent to tens of millions of megatons of TNT, have distributed substantial quantities of terrestrial and extraterrestrial material over much or all of the Earth. In order to study a large-scale impact event in detail, computer simulations were completed that model the passage of a 10 km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics associated with impact of the asteroid into two different targets, i.e., an oceanic site and a continental site. The calcuations were designed to broadly represent giant impact events that have occurred on the Earth since its formation and specifically represent an impact cratering event proposed to have occurred at the end of Cretaceous time. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock that expanded radially outward. Behind the shock front was a region of highly shock compressed and intensely heated air. Behind the asteroid, rapid expansion of this shocked air created a large region of very low density that also expanded away from the impact area. Calculations of the cratering events in both the continental and oceanic targets were carried to 120 s. Despite geologic differences, impacts in both targets developed comparable dynamic flow fields, and by approx. 29 s similar-sized transient craters approx. 39 km deep and approx. 62 km across had formed. For all practical purposes, the atmosphere was nearly completely removed from the impact area for tens of seconds, i.e., air pressures were less than fractions of a bar out to ranges of over 50 km. Consequently, much of the asteroid and target materials were ejected upward into a near vacuum. Effects of secondary

  15. Digital Elevation Models Aid the Analysis of Double Layered Ejecta (DLE) Impact Craters on Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Boyce, J. M.; Garbeil, H.

    2014-12-01

    Considerable debate has recently taken place concerning the origin of the inner and outer ejecta layers of double layered ejecta (DLE) craters on Mars. For craters in the diameter range ~10 to ~25 km, the inner ejecta layer of DLE craters displays characteristic grooves extending from the rim crest, and has led investigators to propose three hypotheses for their formation: (1) deposition of the primary ejecta and subsequent surface scouring by either atmospheric vortices or a base surge; (2) emplacement through a landslide of the near-rim crest ejecta; and (3) instabilities (similar to Gortler vortices) generated by high flow-rate, and high granular temperatures. Critical to resolving between these models is the topographic expression of both the ejecta layer and the groove geometry. To address this problem, we have made several digital elevation models (DEMs) from CTX and HiRISE stereo pairs using the Ames Stereo Pipeline at scales of 24 m/pixel and 1 m/pixel, respectively. These DEMs allow several key observations to be made that bear directly upon the origin of the grooves associated with DLE craters: (1) Grooves formed on the sloping ejecta layer surfaces right up to the preserved crater rim; (2) There is clear evidence that grooves traverse the topographic boundary between the inner and outer ejecta layers; and (3) There are at least two different sets of radial grooves, with smaller grooves imprinted upon the larger grooves. There are "deep-wide" grooves that have a width of ~200 m and a depth of ~10 m, and there are "shallow-narrow" grooves with a width of <50 m and depth <5 m. These two scales of grooves are not consistent with their formation analogous to a landslide. Two different sets of grooves would imply that, simultaneously, two different depths to the flow would have to exist if the grooves were formed by shear within the flow, something that is not physically possible. All three observations can only be consistent with a model of groove formation

  16. Crater Ejecta Deposition on Ceres

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Otto, Katharina; Schulzeck, Franziska; Krohn, Katrin; Gathen, Isabell v. d.; Kneissl, Thomas; Neesemann, Adrian; Jaumann, Ralf; Raymond, Carol; Russell, Christopher T.

    2016-10-01

    Since March 6 2015 the Dawn spacecraft (Russell et al., 2012) is orbiting the dwarf planet Ceres inside the asteroid main belt. Color ratio data of the Framing Camera instrument show distinct bluish characteristics of recently exposed materials such as impact ejecta of young craters. Besides the common radial pattern of proximal ejecta, the distribution of remote ejecta is heavily affected by the relatively fast rotation of Ceres. We compare results from n-body simulations of impact ejecta with specific patterns in the color ratio data of the Dawn Framing Camera. Results of this work can also be used in order to predict prominent regions and patterns of secondary cratering.

  17. Experimental study on the ejecta-velocity distributions caused by low-velocity impacts on quartz sand

    NASA Astrophysics Data System (ADS)

    Tsujido, S.; Arakawa, M.; Suzuki, A. I.; Yasui, M.

    2014-07-01

    Introduction: Regolith formation on asteroids is caused by successive impacts of small bodies. The ejecta velocity distribution during the crater formation process is one of the most important physical properties related to the surface-evolution process, and the distribution is also necessary to reconstruct the planetary-accretion process among planetesimals. The surface of small bodies, such as asteroids and planetesimals in the solar system, could have varying porosity, strength, and density, and the impact velocity could vary across a wide range from a few tens of m/s to several km/s. Therefore, it is necessary to conduct impact experiments by changing the physical properties of the target and the projectile in a wide velocity range in order to constrain the crater-formation process applicable to the small bodies in the solar system. Housen and Holsapple (2011) compiled the data of ejecta velocity distribution with various impact velocities, porosities, grain sizes, grain shapes, and strengths of the targets, and they improved their ejecta scaling law. But the ejecta velocity data is not enough for varying projectile densities and for impact velocities less than 1 km/s. In this study, to investigate the projectile density dependence of the ejecta velocity distribution at a low velocity region, we conducted impact experiments with projectile densities from 1.1 to 11.3 g/cm^3. Then, we try to determine the effect of projectile density on the ejecta velocity distribution by means of the observation of each individual ejecta grain. Experimental methods: We made impact cratering experiments by using a vertical-type one-stage light-gas gun (V-LGG) set at Kobe University. Targets were quartz sand (irregular shape) and glass beads (spherical shape) with the grain size of 500 μ m (porosity 44.7 %). The target container with the size of 30 cm was set in a large vacuum chamber with air pressure less than 10^3 Pa. The projectile materials that we used were lead, copper

  18. New modeling results of the Bunte breccia ejecta morphology and thickness variations outside the Ries impact crater, southern Germany

    NASA Astrophysics Data System (ADS)

    Sturm, S.; Wulf, G.; Jung, D.; Kenkmann, T.

    2012-04-01

    The Ries impact crater with a diameter of ~25 km represents a relatively pristine, complex impact crater in southern Germany that was formed during the Miocene (14.34+-0.08 Ma) [1, 2]. The impact occurred into a two-layered target that consists of ~650 m partly water-saturated and subhorizontally layered sediments (limestones, sandstones, shales) of Triassic to Tertiary ages underlain by crystalline basement rocks (mainly gneisses, granites and amphibolites) [3, 4]. The continuous ejecta blanket of the crater ejected up to a distance of 45 km from the crater center is built up by so called Bunte breccias, a polymict lithic breccia. The ejected breccia material mainly consists of unshocked to weakly shocked sedimentary target clasts in addition to a minority of crystalline basement clasts and reworked surfical sediments (e.g., Upper Freshwater Molasses or Upper Seawater Molasses) [5, 6]. Here we present new results of the morphology of the (i) paleo-relief and (ii) the thickness variations of the continuous ejecta blanket with radial range. For this study we combined digital elevation data and geologic information of the recent geologic map [7] in ArcGIS (ESRI) and RockWorks14 (RockWare) to extract the elevation of the lower contact plane ("paleo-surface") and the contact between the Bunte breccia and the overlain Suevite deposits. In detail, we extracted the mapping information of the autochthonous-allochthonous ("Bunte breccia base") and allochthonous-suevite ("Bunte breccia top") intersections from the geologic map [7], descriptions of nine NASA drilling sites [6], and included up to 40 drillings carried out by the Bavarian Environment Agency to interpolate the morphology and thickness variation of the Bunte breccia ejecta outside the Ries impact crater. Due to the highest data density and the widespread occurrence of Bunte breccia deposits as well as Suevite, the southwestern part of the ejecta blanket was selected for the study and delivered a more or less

  19. Distal Impact Ejecta Material in Marine Sediments in the North-Central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Leung, I. S.; Hagstrum, J. T.

    2006-12-01

    We studied a sample of red clay weighing 1.4 grams, derived from a deep sea core (GPC3) located at Latitude 30 degrees N, Longitude 158 degrees W, provided by Jim Broda at the core lab of Woods Hole Oceanographic Institution (supported by NSF). The 65 Ma K/T boundary layer was identified by magnetic susceptibility measurements and Ir anomaly which peaked at a down-hole depth of 2055-2056 cm. We dissolved calcium carbonate in the red clay with dilute HCl to facilitate wet sieving for the size fraction greater than 38 microns. This process yielded 0.0l gram of clean grains from which we hand-picked materials under a binocular microscope. We picked out 40 microtektites (glass spherules, now devitrified), 12 olive- green aggregates composed of talc (probably from alteration of olivine), pyroxene, and magnetite, 6 crystals of biotite, a few magnetic oxide minerals and spherules, and 3 green and 1 blue crystals of silicon carbide (SiC). We are studying the SiC by X-rays. Also, there are abundant quartz grains. Six of the grains we picked out show two sets of shock lamellae decorated by a black substance. Some quartz crystals show mosaic structures. One other grain has a foreign particle embedded in it, while another has two penetrating hollow tubes. These two grains might have been impacted upon by high-velocity "bullets". Because the olive-green aggregates we found have both their mineralogy and texture similar to those often observed in chondrules, in addition to the presence of SiC, which is typically associated with carbonaceous chondrites, we recognize that there seems to be a strong implication that the impactor at Chicxulub which caused extinction of dinosaurs might have been a carbonaceous chondrite which sent the distal ejecta to our core site.

  20. The disposition of impact ejecta resulting from the AIDA-DART mission to binary asteroid 65803 Didymos: an independent investigation

    NASA Astrophysics Data System (ADS)

    Richardson, James E.; O'Brien, David P.

    2016-10-01

    If all goes as planned, in the year 2020 a joint ESA and NASA mission will be launched that will rendezvous with the near-Earth binary asteroid system 65803 Didymos in the fall of 2022. The European component, the Asteroid Impact & Deflection Assessment (AIDA) spacecraft will arrive first and characterize the system, which consists of a ~800 m diameter primary and a ~160 m diameter secondary, orbiting a common center of mass at a semi-major axis distance of ~1200 m with a orbital period of 11.9 hr. Following system characterization, the AIDA spacecraft will remove to a safe distance while the NASA component, the 300 kg Double Asteroid Redirection Test (DART) spacecraft collides with the trailing edge of the secondary body (with respect to the binary's retrograde mutual orbit). Meanwhile, the AIDA spacecraft will conduct observations of this impact and its aftermath, specifically looking for changes made to the primary, the secondary, and their mutual orbit as a result of the DART collision. Of particular interest is the ballistic flight and final disposition of the ejecta produced by the impact cratering process, not just from the standpoint of scientific study, but also from the standpoint of AIDA spacecraft safety.In this study, we investigate a series of hypothetical DART impacts utilizing a semi-empirical, numerical impact ejecta plume model originally developed for the Deep Impact mission and designed specifically with impacts on small bodies in mind. The resulting excavated mass is discretized into 7200 individual tracer particles, each representing a unique combination of speed, mass, and ejected direction. The trajectory of each tracer is computed numerically under the gravitational influence of both primary and secondary, along with the effects of solar radiation pressure. Each tracer is followed until it either impacts a body or escapes the system, whereupon tracking is continued in the heliocentric frame using an N-body integrator. Various impact

  1. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-01-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  2. Fingerprinting the K/T impact site and determining the time of impact by UPb dating of single shocked zircons from distal ejecta

    USGS Publications Warehouse

    Krogh, T.E.; Kamo, S.L.; Bohor, B.F.

    1993-01-01

    UPb isotopic dating of single 1-3 ??g zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 ?? 5 Ma primary age for a component of the target site, white those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 ?? 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With UPb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age. ?? 1993.

  3. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-01-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  4. Radioactivity and Thermalization in the Ejecta of Compact Object Mergers and Their Impact on Kilonova Light Curves

    NASA Astrophysics Data System (ADS)

    Barnes, Jennifer; Kasen, Daniel; Wu, Meng-Ru; Martínez-Pinedo, Gabriel

    2016-10-01

    One promising electromagnetic signature of compact object mergers are kilonovae: approximately isotropic radioactively powered transients that peak days to weeks post-merger. Key uncertainties in kilonova modeling include the emission profiles of the radioactive decay products—non-thermal β -particles, α -particles, fission fragments, and γ -rays—and the efficiency with which their kinetic energy is absorbed by the ejecta. The radioactive energy emitted, along with its thermalization efficiency, sets the luminosity budget and is therefore crucial for predicting kilonova light curves. We outline uncertainties in the radioactivity, describe the processes by which the decay products transfer energy to the ejecta, and calculate time-dependent thermalization efficiencies for each particle type. We determine the net thermalization efficiency and explore its dependence on r-process yields—in particular, the production of α -decaying translead nuclei—and on ejecta mass, velocity, and magnetic fields. We incorporate our results into detailed radiation transport simulations, and calculate updated kilonova light curve predictions. Thermalization effects reduce kilonova luminosities by a factor of roughly 2 at peak, and by an order of magnitude at later times (15 days or more after explosion). We present analytic fits to time-dependent thermalization efficiencies, which can be used to improve light curve models. We revisit the putative kilonova that accompanied gamma-ray burst 130603B, and estimate the mass ejected in that event. We find later time kilonova light curves can be significantly impacted by α -decay from translead isotopes; data at these times may therefore be diagnostic of ejecta abundances.

  5. Noachian Impact Ejecta on Murray Ridge and Pre-impact Rocks on Wdowiak Ridge, Endeavour Crater, Mars: Opportunity Observations

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Gellert, R.; Ming, D. W.; Morris, R. V.; Schroeder, C.; Yen, A. S.; Farrand, W. H.; Arvidson, R. E.; Franklin, B. J.; Grant, J. A.; Herkenhoff, K. E.; Jolliff, B. J.

    2015-01-01

    Mars Exploration Rover Opportunity has been exploring Meridiani Planum since January 2004, and has completed 4227% of its primary mission. Opportunity has been investigating the geology of the rim of 22 km diameter Endeavour crater, first on the Cape York segment and now on Cape Tribulation. The outcrops are divided York; (ii) the Shoemaker fm, impact breccias representing ejecta from the crater; into three formations: (i) the lower Matijevic fm, a pre-impact lithology on Cape and (iii) the upper Grasberg fm, a post-impact deposit that drapes the lower portions of the eroded rim segments. On the Cape Tribulation segment Opportunity has been studying the rocks on Murray Ridge, with a brief sojourn to Wdowiak Ridge west of the rim segment. team member Thomas Wdowiak, who died in 2013.) One region of Murray Ridge has distinctive CRISM spectral characteristics indicating the presence of a small concentration of aluminous smectite based on a 2.2 micron Al-OH combination band (hereafter, the Al-OH region).

  6. The Ries impact crater described as an analogue for a Martian double-layered ejecta crater on Earth

    NASA Astrophysics Data System (ADS)

    Sturm, Sebastian; Wulf, Gerwin; Jung, Dietmar; Kenkmann, Thomas

    2014-05-01

    The Ries impact crater (~26 km-diameter) is described as a relatively pristine, complex impact crater in southern Germany. The oblique impact occurred during the Miocene (14.9 Ma) and hit into a two-layered target material that consists of ~650 m partly water-saturated and subhorizontally layered sediments (limestones, sandstones, shales) of Triassic to Tertiary ages underlain by crystalline basement rocks (mainly gneisses, granites and amphibolites) [1, 2, 3, 4]. The continuous and well-preserved ejecta blanket reaches up to a distance of 45 km from the crater center. It is built up by so called Bunte Breccia material that is described as a polymict lithic breccia. Bunte Breccia mainly consists of unshocked to weakly shocked sedimentary target clasts including a minority of crystalline basement clasts and reworked surfical sediments (e.g., Upper Freshwater Molasses or Upper Seawater Molasses) [5, 6]. Here we present our final interpolation results of the morphology of the paleo-surface and the thickness variations of the continuous ejecta blanket (Bunte Breccia) with radial range outside of the Ries impact crater. Our results were then compared with ejecta distribution characteristics of Martian complex double-layered ejecta craters (DLE) [7]. We combined digital elevation data (ASTER DEM) and geologic information of the recent geologic map [8], in addition with nine NASA Drillings [6], and up to 40 Bavarian Environment Agency drillings in ArcGIS (ESRI) and RockWorks14 (RockWare) to interpolate the elevation of the lower contact plane ("paleo-surface") and the contact between the Bunte breccia and the overlain Suevite deposits to reconstruct the Bunte Breccia thickness variation outside of the Ries impact crater [7]. Our final interpolation results of the paleo-surface and Bunte Breccia top surface provide an increasing Bunte breccia thickness with increasing distance from the crater center. The ejecta thickness distribution clearly deviates from a steady decrease

  7. Ejecta velocity distribution of impact craters formed on quartz sand: Effect of projectile density on crater scaling law

    NASA Astrophysics Data System (ADS)

    Tsujido, Sayaka; Arakawa, Masahiko; Suzuki, Ayako I.; Yasui, Minami

    2015-12-01

    In order to clarify the effects of projectile density on ejecta velocity distributions for a granular target, impact cratering experiments on a quartz sand target were conducted by using eight types of projectiles with different densities ranging from 11 g cm-3 to 1.1 g cm-3, which were launched at about 200 m s-1 from a vertical gas gun at Kobe University. The scaling law of crater size, the ejection angle of ejecta grains, and the angle of the ejecta curtain were also investigated. The ejecta velocity distribution obtained from each projectile was well described by the π-scaling theory of v0/√{gR} =k2(x0/R)-1/μ , where v0, g, R and x0 are the ejection velocity, gravitational acceleration, crater radius and ejection position, respectively, and k2 and μ are constants mostly depending on target material properties (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856-875). The value of k2 was found to be almost constant at 0.7 for all projectiles except for the nylon projectile, while μ increased with the projectile density, from 0.43 for the low-density projectile to 0.6-0.7 for the high-density projectile. On the other hand, the π-scaling theory for crater size gave a μ value of 0.57, which was close to the average of the μ values obtained from ejecta velocity distributions. The ejection angle, θ, of each grain decreased slightly with distance, from higher than 45° near the impact point to 30-40° at 0.6 R. The ejecta curtain angle is controlled by the two elementary processes of ejecta velocity distribution and ejection angle; it gradually increased from 52° to 63° with the increase of the projectile density. The comparison of our experimental results with the theoretical model of the crater excavation flow known as the Z-model revealed that the relationship between μ and θ obtained by our experiments could not be described by the Z-model (Maxwell, D.E. [1977]. In: Roddy, D.J., Pepin, R.O., Merrill, R.B. (Eds.), Impact and Explosion Cratering

  8. Evidence for Multiple Holocene Marine Impact Events: Ejecta in a Bog Core

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.; Courty, M.; Breger, D.; Costa, S.; Gerard-Little, P.; Burckle, L.; Pekar, S.

    2006-12-01

    In a core from Tamarack Pond (a former bog) in the Hudson Highlands of New York, we found two layers containing marine microfossils. Because carbon rich sediments can be bioturbated over 20 cm depths, we give the layer thicknesses as 20 cm. The first layer is at 332-354 cm depth. It contains a radiolarian with a splashed on coating of Fe-Cr-Ni metal. It also contains a benthonic foraminiferal fossil. The second layer is at 432-454 cm depth. The second layer contains a degraded radiolarian fossil, a silicate with a splashed on coating of Fe-Cr-Ni metal, a carbon rich spherule containing Fe-Cr-Ni metal, and a grain of titanomagnetite with multiple craters. It also contains organic matter with Sn in it. As Tamarack Pond is quite far from the ocean, the marine fossils in the cores are unlikely to be windblown debris of Holocene age. A benthonic foraminifera is particularly unlikely to be blown by the wind. This conclusion is strengthened by the observation that the splashed on coating of Fe-Cr-Ni metal occurs in chondritic relative abundances with Fe>Cr>Ni. In grains with a thick layer of splashed metal, the Ni is sufficiently abundant to produce 3 distinct Ni peaks in the X-ray analysis. Such a high abundance of Ni coupled with chondritic relative abundances suggests that the Fe-Cr- Ni splash is derived from the vaporization of an extraterrestrial impactor. If we assume that the sedimentation rate of the Tamarack Pond core is the same as that of a previously dated core from nearby Sutherland Pond, the two layers have an uncorrected C-14 age of around 900-1200 B.C. for the layer at 332-354 cm and 2100 to 2400 B.C. for the layer at 432-454 cm. Both ages have a rough correspondence with times of climate downturn recorded in tree ring data (1159 and 2354 B.C.). These climate downturns cannot be explained by volcanic eruptions and are proposed to be cosmogenic in origin[1]. The older layer also corresponds in components to a previously studied circa 2350 B.C. impact ejecta

  9. Fluidized Crater Ejecta Deposit

    NASA Technical Reports Server (NTRS)

    1998-01-01

    the main, fluidized ejecta deposit.

    Fluidized or 'rampart' ejecta deposits have long been thought by many Mars scientists to result from an impact into a surface that contains water. The water would have been underground, and could have been frozen or liquid. According to the prevailing model, when the meteor hit, this water was released--along with tons of rock and debris--and the ejecta flowed like mud. Images with resolutions higher than those presently attainable from the 11.6 hr elliptical orbit are needed to see the specific features (such as large boulders 'rafted' by the dense mud) that would confirm or refute this model. Such images may be acquired once MGS is in its mapping orbit.

    MOC image 47903 was received and processed by the MOC team at Malin Space Science Systems on Monday afternoon (PDT), August 10, 1998. The image center is located at 27.92oN latitude and 184.66oW longitude, in the northern Tartarus Montes region.

  10. Fluidized Crater Ejecta Deposit

    NASA Technical Reports Server (NTRS)

    1998-01-01

    the main, fluidized ejecta deposit.

    Fluidized or 'rampart' ejecta deposits have long been thought by many Mars scientists to result from an impact into a surface that contains water. The water would have been underground, and could have been frozen or liquid. According to the prevailing model, when the meteor hit, this water was released--along with tons of rock and debris--and the ejecta flowed like mud. Images with resolutions higher than those presently attainable from the 11.6 hr elliptical orbit are needed to see the specific features (such as large boulders 'rafted' by the dense mud) that would confirm or refute this model. Such images may be acquired once MGS is in its mapping orbit.

    MOC image 47903 was received and processed by the MOC team at Malin Space Science Systems on Monday afternoon (PDT), August 10, 1998. The image center is located at 27.92oN latitude and 184.66oW longitude, in the northern Tartarus Montes region.

  11. Recent research on the Chesapeake Bay impact structure, USA - Impact debris and reworked ejecta

    USGS Publications Warehouse

    Horton, J.W.; Aleinikoff, J.N.; Kunk, M.J.; Gohn, G.S.; Edwards, L.E.; ,; Powars, D.S.; Izett, G.A.

    2005-01-01

    Four new coreholes in the western annular trough of the buried, late Eocene Chesapeake Bay impact structure provide samples of shocked minerals, cataclastic rocks, possible impact melt, mixed sediments, and damaged microfossils. Parautochthonous Cretaceous sediments show an upward increase in collapse, sand fluidization, and mixed sediment injections. These impact-modifi ed sediments are scoured and covered by the upper Eocene Exmore beds, which consist of highly mixed Cretaceous to Eocene sediment clasts and minor crystalline-rock clasts in a muddy quartz-glauconite sand matrix. The Exmore beds are interpreted as seawater-resurge debris flows. Shocked quartz is found as sparse grains and in rock fragments at all four sites in the Exmore, where these fallback remnants are mixed into the resurge deposit. Crystalline-rock clasts that exhibit shocked quartz or cataclastic fabrics include felsites, granitoids, and other plutonic rocks. Felsite from a monomict cataclasite boulder has a sensitive high-resolution ion microprobe U-Pb zircon age of 613 ?? 4 Ma. Leucogranite from a polymict cataclasite boulder has a similar Neoproterozoic age based on muscovite 40Ar/39Ar data. Potassium-feldspar 40Ar/39Ar ages from this leucogranite show cooling through closure (???150 ??C) at ca. 261 Ma without discernible impact heating. Spherulitic felsite is under investigation as a possible impact melt. Types of crystalline clasts, and exotic sediment clasts and grains, in the Exmore vary according to location, which suggests different provenances across the structure. Fractured calcareous nannofossils and fused, bubbled, and curled dinofl agellate cysts coexist with shocked quartz in the Exmore, and this damage may record conditions of heat, pressure, and abrasion due to impact in a shallow-marine environment. ?? 2005 Geological Society of America.

  12. Geologic Mapping of Bakhuysen Crater, Mars: Analogies to the Ries Impact Ejecta with Insights into Martian Impact Melt

    NASA Astrophysics Data System (ADS)

    Caudill, C. M.; Osinski, G. R.; Tornabene, L. L.

    2016-08-01

    In this study, we report the mapping and geologic interpretation of 150-km diameter Bakhuysen Crater, Mars, which supports previous work suggesting similar mechanisms of multi-unit ejecta emplacement on other comparable rocky bodies.

  13. Styles of ejecta emplacement under atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1991-01-01

    Laboratory experiments provide essential first-order constraints on processes affecting ballistic ejecta and styles of ejecta emplacement under different atmospheric environments at planetary scales. The NASA-Ames Vertical Gun allows impacting different fine-grained particulate targets under varying atmospheric pressure and density, thereby helping to isolate controlling variables. Further analysis now permits characterizing distinct modes of emplacement that reflect the degree of ejecta entrainment within a turbidity flow created by ejecta curtain movement through the atmosphere.

  14. Computer simulations of large asteroid impacts into oceanic and continental sites--preliminary results on atmospheric, cratering and ejecta dynamics

    USGS Publications Warehouse

    Roddy, D.J.; Schuster, S.H.; Rosenblatt, M.; Grant, L.B.; Hassig, P.J.; Kreyenhagen, K.N.

    1987-01-01

    Computer simulations have been completed that describe passage of a 10-km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics caused by impact of the asteroid into both oceanic and continental sites. The asteroid was modeled as a spherical body moving vertically at 20 km/s with a kinetic energy of 2.6 ?? 1030 ergs (6.2 ?? 107 Mt ). Detailed material modeling of the asteroid, ocean, crustal units, sedimentary unit, and mantle included effects of strength and fracturing, generic asteroid and rock properties, porosity, saturation, lithostatic stresses, and geothermal contributions, each selected to simulate impact and geologic conditions that were as realistic as possible. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock wave followed by a highly shock compressed and heated air mass. Rapid expansion of this shocked air created a large low-density region that also expanded away from the impact area. Shock temperatures in air reached ???20,000 K near the surface of the uplifting crater rim and were as high as ???2000 K at more than 30 km range and 10 km altitude. Calculations to 30 s showed that the shock fronts in the air and in most of the expanding shocked air mass preceded the formation of the crater, ejecta, and rim uplift and did not interact with them. As cratering developed, uplifted rim and target material were ejected into the very low density, shock-heated air immediately above the forming crater, and complex interactions could be expected. Calculations of the impact events showed equally dramatic effects on the oceanic and continental targets through an interval of 120 s. Despite geologic differences in the targets, both cratering events developed comparable dynamic flow fields and by ???29 s had formed similar-sized transient craters ???39 km deep and ???62 km across. Transient-rim uplift of ocean and crust reached a maximum altitude of nearly

  15. Effects of the Core-collapse Supernova Ejecta Impact on a Rapidly Rotating Massive Companion Star

    NASA Astrophysics Data System (ADS)

    Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2017-02-01

    We investigate the effects of the core-collapse supernova (CCSN) ejecta on a rapidly rotating and massive companion star. We show that the stripped mass is twice as high as that of a massive but nonrotating companion star. In close binaries with orbital periods of about 1 day, the stripped masses reach up to ∼ 1 {M}ȯ . By simulating the evolutions of the rotational velocities of the massive companion stars based on different stripped masses, we find that the rotational velocity decreases greatly for a stripped mass higher than about 1 {M}ȯ . Of all the known high-mass X-ray binaries (HMXBs), Cygnus X-3 and 1WGA J0648.024418 have the shortest orbital periods, 0.2 and 1.55 days, respectively. The optical counterpart of the former is a Wolf-Rayet star, whereas it is a hot subdwarf for the latter. Applying our model to the two HMXBs, we suggest that the hydrogen-rich envelopes of their optical counterparts may have been stripped by CCSN ejecta.

  16. Proximal ejecta deposits of the K-Pg Chixulub impact: The case for carbonate impact melt spherules

    NASA Astrophysics Data System (ADS)

    Deutsch, Alex; Schulte, Peter

    2010-05-01

    When 65.5 million yrs. ago an about ~10 km-sized asteroid hit Earth (Chicxulub impact event), ejecta was distributed world-wide to form the Cretaceous-Paleogene (K-Pg) event bed. Continuous sections across this K-Pg boundary document unambiguously that the 'K-T' mass extinction was triggered by the Chicxulub event, not only because of the projectile's size but particularly by the specific composition of the target, namely a 3-km- (in the West) to about 4.5-km-thick (in the Gulf area) layer of volatile-rich carbonate and sulfate platform sediments on top of the crystalline basement (Schulte et al., 2010). Modeling, petrographic and geochemical studies on natural samples as well as experimental results show that shock pressure and high post-shock temperatures yield irreversible deformations and transformations on carbonate and sulfate target lithologies which are also expected to occur in the context of the Chicxulub event. Twofold devastating effects on life are predicted (i) dissociation of carbonates and sulfates with nearly instantaneous release of vast quantities of CO2, and of about 100 to 500 Gt sulfur triggering severe climate effects, and (ii) deposition of carbonate and sulfate melts together with silicate melts, causing short-term disruption of the thermal conditions proximal to the crater. Silicate impact glasses with high CaO contents occur, for example, as spherules in the K-Pg event bed at Haiti and in melt lithologies from drill cores (e.g., Yucatan-6, Chicxulub-1, Yaxcopoil-1). Carbonate melt glasses have not been reported so far in K-Pg event beds. Hence, the following question was answered so far: Where are the huge amounts of carbonates that suffered impact metamorphism and were ejected in the Chicxulub event? The Chicxulub ejecta deposits in the Gulf of Mexico area contain up to 80 wt% carbonates which, however, have been interpreted as precipitation product during diagenesis. In consequence, the abundant mm-sized ejecta spherules consisting of a

  17. Dating a small impact crater: An age of Kaali crater (Estonia) based on charcoal emplaced within proximal ejecta

    NASA Astrophysics Data System (ADS)

    Losiak, A.; Wild, E. M.; Geppert, W. D.; Huber, M. S.; Jõeleht, A.; Kriiska, A.; Kulkov, A.; Paavel, K.; Pirkovic, I.; Plado, J.; Steier, P.; VäLja, R.; Wilk, J.; Wisniowski, T.; Zanetti, M.

    2016-04-01

    The estimates of the age of the Kaali impact structure (Saaremaa Island, Estonia) provided by different authors vary by as much as 6000 years, ranging from ~6400 to ~400 before current era (BCE). In this study, a new age is obtained based on 14C dating charred plant material within the proximal ejecta blanket, which makes it directly related to the impact structure, and not susceptible to potential reservoir effects. Our results show that the Kaali crater was most probably formed shortly after 1530-1450 BCE (3237 ± 10 14C yr BP). Saaremaa was already inhabited when the bolide hit the Earth, thus, the crater-forming event was probably witnessed by humans. There is, however, no evidence that this event caused significant change in the material culture (e.g., known archeological artifacts) or patterns of human habitation on Saaremaa.

  18. Impact melt-bearing breccias of the Mistastin Lake impact structure: A unique planetary analogue for ground-truthing proximal ejecta emplacement

    NASA Astrophysics Data System (ADS)

    Mader, M. M.; Osinski, G. R.

    2013-12-01

    Impact craters are the dominant geological landform on rocky planetary surfaces; however, relationships between specific craters and their ejecta are typically poorly constrained. With limited planetary samples, scientists look to terrestrial craters as analogues. Impact ejecta is defined here as any target material, regardless of its physical state, that is transported beyond the rim of the transient cavity [1]. The original transient cavity reaches its maximum size during the excavation stage of crater formation, before rim collapse begins in the modification stage [2]. In complex craters, during the modification stage, rocks around the periphery of the bowl-shaped transient crater collapse downward and inward to form a series of terraces along the outer margin of the crater structure [3]. Proximal impact ejecta, can therefore be found on the terraces of the modified rim of a complex crater, interior to the final crater rim [1]. Although typically poorly preserved on Earth due to post-impact erosional processes, impact ejecta have been identified in the terraced rim region of the Mistastin Lake impact structure, located in northern Labrador, Canada (55°53'N; 63°18'W) [4]. The Mistastin Lake impact structure is an intermediate-size, complex crater (28 km apparent crater diameter) formed by a meteorite impact ~36 Ma in crystalline target rocks. The original crater has been differentially eroded; however, a terraced rim and distinct central uplift are still observed [5]. The inner portion of the structure is covered by the Mistastin Lake and the surrounding area is locally covered by soil/glacial deposits and vegetation. Locally, allochthonous impactites overlying fractured target rocks are exposed along the lakeshore and along banks of radially cutting streams. They define a consistent stratigraphy, including, from bottom to top: monomict, lithic breccias, allochthonous polymict lithic breccias, and allochthonous impact melt rocks. Mistastin impact breccias range

  19. Impact spallation processes on the Moon: A case study from the size and shape analysis of ejecta boulders and secondary craters of Censorinus crater

    NASA Astrophysics Data System (ADS)

    Krishna, N.; Kumar, P. Senthil

    2016-01-01

    Impact spallation is a fundamental process responsible for formation of ejecta boulders from impact craters. Although theoretical spallation models were developed about three decades ago, only limited geological observations have been made so far to test these models. The 3.8 km Censorinus crater on the Moon provides an excellent opportunity for studying the impact spallation processes associated with a fresh simple crater formed by oblique impact. Using the Lunar Reconnaissance Orbiter Narrow Angle Camera images, we prepared the ejecta boulder distribution map of Censorinus crater and measured the boulder sizes and shapes. Mapping of about 242,000 ejecta boulders enabled us to document the size distribution of boulders both radial and concentric to the impact crater. Larger size boulders dominate the crater rim areas, while they become smaller away from the crater. The boulder distribution exhibits a radial asymmetry suggesting Censorinus is a oblique impact, in which the uprange ejecta have smaller ranges with larger concentration of boulders near the southwestern crater rim, while the downrange ejecta are in general characterized by smaller boulders with high spatial dispersion. The cumulative size-frequency distribution (CSFD) of boulders shows a highly variable fragmentation history in which the uprange boulders suffered more complex fragmentation. The ejecta boulders also exhibit a variety of shapes that are gleaned from their axial ratios and edge angle characteristics. There is a general decrease of axial ratios away from the crater rim. Rectangular boulders dominate the crater rim and they become more equant away from the crater. In addition to the boulder sizes, the boulder shape distribution also exhibits a mild asymmetry in response to the oblique impact. Small size fresh impact craters (84,000 craters) are abundant on the Censorinus ejecta and post-date Censorinus. These craters are found in two morphologic types in which a large majority of craters

  20. Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure

    USGS Publications Warehouse

    Katongo, C.; Koeberl, C.; Witzke, B.J.; Hammond, R.H.; Anderson, R.R.

    2004-01-01

    The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock-metamorphosed minerals. The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2, (29-58 wt%), Al2O3 (6-14 wt%), and CaO (7-30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75-99), coupled with the Al2O3-(CaO*,+Na2O -K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson

  1. Studying the nucleus of comet 9P/Tempel 1 using the structure of the Deep Impact ejecta cloud at the early stages of its development

    NASA Astrophysics Data System (ADS)

    Kolokolova, Ludmilla; Nagdimunov, Lev; A'Hearn, Michael; King, Ashley; Wolff, Michael

    2016-11-01

    The paper presents an attempt to extract information about the comet 9P/Tempel 1 nucleus from the characteristics of the ejecta cloud produced by the impactor of the Deep Impact mission. For this purpose we use two techniques. We first study the shadow cast on the nucleus surface by the ejecta cloud and investigate how areas of different brightness are related to the varying optical thickness or albedo of the ejecta cloud. The shadow was seen during the first 2.0 s after the impact (afterward it became obscured by the ejecta cloud). We have found that all brightness variations in the shadow are the result of the surface inhomogeneities, indicating that during first 2.0 s the ejecta cloud was homogeneous within the MRI spatial resolution. Our second technique is to study the obscuration of the nucleus limb by the ejecta. This study covers the period 0.76-68.8 s after impact and is based on comparison of the ejecta cloud brightness on the limb and just beyond the limb. At this stage we do see inhomogeneities in the ejecta cloud that relate to the albedo and optical thickness variations in the ejected dust. Specifically, we have found two distinct bands of low optical thickness and one band of a high optical thickness. Based on crater formation ideas we estimate the depth of excavation of the ejected material for the found inhomogeneities and, thus, define a potential layering structure for the comet nucleus, Our estimates suggest that the low-optical thickness material was excavated from a depth of 15-18 and 30-32 m in the case the porous nucleus material and 37-46 and 87-93 m in the case of a non-porous nucleus material, and a layer of high optical thickness originated from the depth 9-11 m for porous material or 20-23 m for non-porous material. Based on the crater diameter estimates, we expect that the real depth of the layers is between these two cases. The rest of the ejecta do not show any signs of layering but have significant azimuthal inhomogeneity with

  2. Exploring the effects of particle size and shape on ejecta production in response to low-velocity impacts

    NASA Astrophysics Data System (ADS)

    Dove, A.; Barsoum, C.; Colwell, J. E.

    2016-12-01

    Understanding and predicting the complex behavior of granular material on planetary surfaces requires a combination of complementary experimental and numerical simulations. Such an approach allows us to use experimental results to empirically model the behavior of complex systems, and feed these results into simulations that can be run over a broader range of conditions. Studies of the response of granular systems, particularly planetary regolith and regolith simulants, to low-energy impacts is relevant to surface layers on planetary bodies, including asteroids, small moons, planetesimals, and planetary ring particles. Knowledge of the velocities and mass distributions of dust knocked off of planetary surfaces is necessary to understand the evolution of the upper layers of the soil, and to develop mitigation strategies for transported dust. In addition, the fine particles in the regolith pose an engineering and safety hazard for equipment, experiments, and astronauts working in severe environments. We will present the results of extended testing with a number of combinations of impactor and particle composition and morphology. A spherical glass or brass impactor is used for all experiments, which impacts a particle bed at a few m/s. This study includes three main particle material types - acrylic (used for comparison with initial modeling and previous experiments), glass, and stainless steel. We directly compare the results of these experiments by using 2mm spherical particles of each material type. Additionally, we vary the glass particle sizes between 1-3mm in order to analyze the effect of size on the cratering and ejecta properties. Finally, we varied the stainless steel particle shape from spherical to elongated cylinders with 2mm diameter and 2, 4, and 6 mm lengths. Here, we will focus on the experimental portion of this work - future results will elaborate upon the simulation validation. Interpretation of these results was informed by initial comparisons

  3. Visible and near-infrared spectrophotometry of the Deep Impact ejecta of Comet 9P/Tempel 1

    NASA Astrophysics Data System (ADS)

    Hodapp, Klaus W.; Aldering, Greg; Meech, Karen J.; Cochran, Anita L.; Antilogus, Pierre; Pécontal, Emmanuel; Chickering, William; Blanc, Nathalie; Copin, Yannick; Lynch, David K.; Rudy, Richard J.; Mazuk, S.; Venturini, Catherine C.; Puetter, Richard C.; Perry, Raleigh B.

    2007-03-01

    We have obtained optical spectrophotometry of the evolution of Comet 9P/Tempel 1 after the impact of the Deep Impact probe, using the Supernova Integral Field Spectrograph (SNIFS) at the UH 2.2-m telescope, as well as simultaneous optical and infrared spectra using the Lick Visible-to-Near-Infrared Imaging Spectrograph (VNIRIS). The spatial distribution and temporal evolution of the "violet band" CN (0-0) emission and of the 630 nm [OI] emission was studied. We found that CN emission centered on the nucleus increased in the 2 h after impact, but that this CN emission was delayed compared to the light curve of dust-scattered sunlight. The CN emission also expanded faster than the cloud of scattering dust. The emission of [OI] at 630 nm rose similarly to the scattered light, but then remained nearly constant for several hours after impact. On the day following the impact, both CN and [OI] emission concentrated on the comet nucleus had returned nearly to pre-impact levels. We have also searched for differences in the scattering properties of the dust ejected by the impact compared to the dust released under normal conditions. Compared to the pre-impact state of the comet, we find evidence that the color of the comet was slightly bluer during the post-impact rise in brightness. Long after the impact, in the following nights, the comet colors returned to their pre-impact values. This can be explained by postulating a change to a smaller particle size distribution in the ejecta cloud, in agreement with the findings from mid-infrared observations, or by postulating a large fraction of clean ice particles, or by a combination of these two.

  4. Visible and near-infrared spectrophotometry of the Deep Impact ejecta of Comet 9P/Tempel 1

    NASA Astrophysics Data System (ADS)

    Hodapp, Klaus W.; Aldering, Greg; Meech, Karen J.; Cochran, Anita L.; Antilogus, Pierre; Pécontal, Emmanuel; Chickering, William; Blanc, Nathalie; Copin, Yannick; Lynch, David K.; Rudy, Richard J.; Mazuk, S.; Venturini, Catherine C.; Puetter, Richard C.; Perry, Raleigh B.

    We have obtained optical spectrophotometry of the evolution of Comet 9P/Tempel 1 after the impact of the Deep Impact probe, using the Supernova Integral Field Spectrograph (SNIFS) at the UH 2.2-m telescope, as well as simultaneous optical and infrared spectra using the Lick Visible-to-Near-Infrared Imaging Spectrograph (VNIRIS). The spatial distribution and temporal evolution of the “violet band” CN (0 0) emission and of the 630 nm [OI] emission was studied. We found that CN emission centered on the nucleus increased in the 2 h after impact, but that this CN emission was delayed compared to the light curve of dust-scattered sunlight. The CN emission also expanded faster than the cloud of scattering dust. The emission of [OI] at 630 nm rose similarly to the scattered light, but then remained nearly constant for several hours after impact. On the day following the impact, both CN and [OI] emission concentrated on the comet nucleus had returned nearly to pre-impact levels. We have also searched for differences in the scattering properties of the dust ejected by the impact compared to the dust released under normal conditions. Compared to the pre-impact state of the comet, we find evidence that the color of the comet was slightly bluer during the post-impact rise in brightness. Long after the impact, in the following nights, the comet colors returned to their pre-impact values. This can be explained by postulating a change to a smaller particle size distribution in the ejecta cloud, in agreement with the findings from mid-infrared observations, or by postulating a large fraction of clean ice particles, or by a combination of these two.

  5. Ponds, Flows, and Ejecta of Impact Cratering and Volcanism: A Remote Sensing Perspective of a Dynamic Moon

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.

    Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic

  6. Methods to Reduce Sand Ejecta from Projectile Impact - a Scaled Study with the Goal of Application to Depleted Uranium Penetrator Catch Boxes

    DTIC Science & Technology

    2012-04-01

    ball ammunition . Both high-speed Phantom and digital video cameras were used to capture ejecta images during the impact. Ejected sand settled on the...8 50-caliber rifle and ammunition ...the box and on the side, at 150-ft (45.7-m) distances. Figure 13. Catch box with sectors on the plastic tarp. 50-caliber rifle and ammunition A

  7. The Manson impact crater: Estimation of the energy of formation, possible size of the impacting asteroid or comet, and ejecta volume and mass

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Shoemaker, E. M.; Anderson, R. R.

    1993-01-01

    A research program on the Manson impact structure has substantially improved our knowledge of the detailed features of this eroded crater. As part of our structural studies, we have derived a value of 21 km for the diameter of the final transient cavity formed during crater excavation. With this information, we can estimate the energy of formation of the Manson crater and the possible size of the impacting asteroid or comet. In addition, we have estimated the near- and far-field ejecta volumes and masses.

  8. The Manson impact crater: Estimation of the energy of formation, possible size of the impacting asteroid or comet, and ejecta volume and mass

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Shoemaker, E. M.; Anderson, R. R.

    1993-01-01

    A research program on the Manson impact structure has substantially improved our knowledge of the detailed features of this eroded crater. As part of our structural studies, we have derived a value of 21 km for the diameter of the final transient cavity formed during crater excavation. With this information, we can estimate the energy of formation of the Manson crater and the possible size of the impacting asteroid or comet. In addition, we have estimated the near- and far-field ejecta volumes and masses.

  9. Magnetic properties of the ejecta blanket from the Chicxulub impact crater: Analog for robotic exploration of similar deposits on Mars

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Wasilewski, P. J.; Ocampo, A.; Pope, K.

    2001-05-01

    A major focus in the search for fossil life on Mars is on recognition of the proper material on the surface. Heavily cratered surface suggests high concentration of fluidized ejecta deposits. Because magnetism of rocks is an easy measure for remote robotic tools we collected samples of ejecta blanket deposits in southern Mexico and throughout Belize as a Martian analog. The ejecta layer (spheroid bed) that blankets the preexisting Cretaceous dolomite units consists of green glassy fragments, pink and white spheroids (accretionary lapilli) and darker fragments of limestone. The spheroid bed is overlain by a coarse unit of pebbles, cobbles, and boulders, which in more distal locations is composed of a pebble conglomerate. Clasts in the conglomerate (Pooks Pebbles) have striated features consistent with hypervelocity collisions during impact. We examined the magnetic properties of individual fragments within the spheroid bed. Green glassy fragments are highly paramagnetic (0.2 to 0.3 Am2kg-1 at 2 Tesla field) with no ferromagnetic component detected. Pink spheroids are slightly paramagnetic (0.001 to 0.04 Am2kg-1 at 2 Tesla field) and commonly contain soft ferromagnetic component (saturation magnetization (Ms) = 0.02 to 0.03 Am2kg-1). White spheroids have more or less equal amount of paramagnetic and diamagnetic components (-0.08 to 0.03 Am2kg-1 at 2 Tesla field) and no apparent ferromagnetism. Darker fragments are diamagnetic (-0.05 to -0.02 Am2kg-1 at 2 Tesla field) with absence of ferromagnetism. Intense paramagnetic properties of the glass allow easy distinction of glass containing samples. Pink spheroids appear to contain the largest amount of ferromagnetic particles. Diamagnetic dark grains are most likely fragments of limestone. Pebbles from the conglomerate unit are dolomite and consequently diamagnetic. The diamagnetism was established with field magnetic susceptibility measurements. Pebbles have very small natural remanent magnetization (NRM). Thermal

  10. The Cretaceous-Paleogene transition and Chicxulub impact ejecta in the northwestern Gulf of Mexico: Paleoenvironments, sequence stratigraphic setting and target lithologies

    NASA Astrophysics Data System (ADS)

    Schulte, Peter

    2003-07-01

    The Cretaceous-Paleogene (K-P) transition is characterized by a period of mass extinctions, the Chicxulub impact event, sea-level changes, and considerable climate changes (e.g., cooling). The Gulf of Mexico region is a key area for addressing these issues, specifically because of the proximity to the large Chicxulub impact structure in southern Mexico, and because of its shallow shelf areas throughout the Maastrichtian to Danian period. This study presents the results of a multidisciplinary investigation of Chicxulub impact ejecta and marine sediments from the K-P transition in the western Gulf of Mexico. Sedimentological, mineralogical, and geochemical aspects of K-P sections and cores from northeastern Mexico, Texas, and Alabama have been by studied with focus on Chicxulub ejecta, long- or short-term facies change, and sequence stratigraphic setting. CHICXULUB EJECTA: The Chicxulub ejecta (or impact spherule) deposits from northeastern Mexico and Texas revealed an unexpected complex and localized ejecta composition. Fe-Mg-rich chlorite- as well as Si-Al-K-rich glass-spherules are the predominant silicic ejecta components in northeastern Mexico, whereas in Texas, spherules of Mg-rich smectite compositions were encountered. Spherules contain Fe-Ti-K-rich schlieren, Fe-Mg-rich globules, and rare µm-sized metallic and sulfidic Ni-Co-(Ir-?) rich inclusions. This composition provides evidence for a distinct range of target rocks of mafic to intermediate composition, presumably situated in the northwestern sector of the Chicxulub impact structure, in addition to the possibility of contamination by meteoritic material. The absence of spinels and the ubiquitous presence of hematite and goethite points to high oxygen fugacity during the impact process. Besides these silicic phases, the most prominent ejecta component is carbonate.! Carbonate is found in ejecta deposits as unshocked clasts, accretionary lapilli-like grains, melt globules (often with quenching textures

  11. Butterfly Ejecta

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 4 September 2003

    In the heavily cratered southern highlands of Mars, the type of crater seen in this THEMIS visible image is relatively rare. Elliptical craters with 'butterfly' ejecta patterns make up roughly 5% of the total crater population of Mars. They are caused by impactors which hit the surface at oblique, or very shallow angles. Similar craters are also seen in about the same abundance on the Moon and Venus.

    Image information: VIS instrument. Latitude -24.6, Longitude 41 East (319 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Mapping of a Widespread Olivine-Rich Layer on Mars: Identification of a Global Impact Ejecta Deposit?

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Christensen, P. R.

    2011-12-01

    Exposures of the most ancient materials on Mars, much like on Earth, have the possibility to illuminate a period of planetary surface evolution that is difficult to constrain. However, these exposures on planetary surfaces are rare and often difficult to positively identify without in situ measurements. Identification of these materials is especially difficult on Mars, as it is a largely volcanic planet dominated by basaltic magmatism and the ability to distinguish ancient materials from more recent deposits is primarily reliant on convincing stratigraphic relationships. Important but relatively minor variations in the basaltic composition of the planet are observed on the global scale; however, the majority of the planet's mineralogical variability and diversity occurs at small scales, for example the identification of in place phyllosilicates, carbonates, olivine-rich basalts, sulfate deposits, and opaline silica. It is these local-scale deposits that have fundamentally refined and shaped our current understanding of the evolutionary history and geology of Mars. Olivine-rich basalts have been characterized and mapped extensively, both globally and locally. These units have been associated with a variety of formation mechanisms, including volcanism, impact ejecta material, and lag deposits. Following the work of Edwards et al. (2008), we have mapped and characterized a compositionally distinct olivine-rich layer using TES, THEMIS, and CRISM spectral data. This thin and flat lying (~200m thick), continuous, rocky (TI >600-800 J K-1m-2s-1/2), olivine-rich (>15% areal abundance of ~Fo58-Fo74) basalt layer extends for a minimum of thousands of kilometers and may be global in scale. Additionally, the composition of this material is consistent with the crystallization of a melt derived from the martian mantle that underwent little fractional crystallization. The stratigraphic location of this layer, which was first identified in the walls of Valles Marineris in Ganges

  13. Pits in Hale Crater Ejecta

    NASA Image and Video Library

    2015-01-28

    The pits visible in this image from NASA Mars Reconnaissance Orbiter arent impact craters. The material they are embedded into is ejecta stuff thrown out of an impact crater when it forms from a large crater called Hale not seen in this image. Substances called "volatiles" -- which can explode as gases when they're quickly warmed by the immense heat of an impact-exploded out of the ejecta and caused these pits. Unrelated sand dunes near the top of the image have since blown over portions of the pits. http://photojournal.jpl.nasa.gov/catalog/PIA19289

  14. Searching for Crisium Basin ejecta - Chemistry and ages of Luna 20 impact melts

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Spudis, P. D.; Taylor, G. J.; Korotev, R. L.; Nichols, R. H., Jr.

    1991-01-01

    Chemical (INAA) and chronological (Ar-40 - Ar-39) analyses of six Luna 20 impact melts are performed, and these are compared to the results of Podosek et al. (1973), commonly taken to be representative of the Crisium Basin impact. At least two chemical groups of impact melts are identified. One is interpreted as melts derived from the local crust by craters over the last 3.9 Ga. Another group, which includes one of the samples dated by Podosek et al. (1973), is chemically and chronologically (3.85 + or - 0.02 Ga) indistinguishable from Apollo 17 samples interpreted as Serenitatis impact melts, and hence could be melt formed by that event and deposited at the Luna 20 site. One sample (22023,3,F) has a well-defined age of 3.895 + or - 0.017 Ga, and is chemically similar to, but distinct from, impact melts from other basins. This sample, and its chemistry and age are tentatively identified with the Crisium Basin impact. Whether the age of the Crisium impact is given by 22023,3,F, the samples analyzed by Podosek et al. (1973), or neither, it is clear that Crisium impact melt is not abundant in the Luna 20 collection.

  15. The Stickney Crater ejecta secondary impact crater spike on Phobos: Implications for the age of Stickney and the surface of Phobos

    NASA Astrophysics Data System (ADS)

    Ramsley, Kenneth R.; Head, James W.

    2017-04-01

    A global and uniformly distributed spike of secondary impact craters on Phobos with diameters (D) <0.6 km and a portion of craters up to D 2 km were produced by Stickney Crater ejecta, including secondary craters within the surface area of Stickney Crater. The global exposure of Phobos to Stickney secondary impacts was facilitated by the desynchronized orbital/rotational period of Phobos that was produced by the impulse of the Stickney impact event. In our model we apply the Tsiolkovsky rocket equation to calculate the total available Stickney impact acceleration impulse delta-v (Δv) and further calculate the effective impulse by incorporating the energy conversion inefficiencies of the crater formation process. We also calculate the pre- and post-impact Phobos moment of inertia that further contributes to the desynchronizing effect. The majority of the Stickney ejecta that exited from Phobos was trapped in orbits around Mars until it later accumulated back onto Phobos over a period of <1000 years. However, Phobos de-spun back to a synchronous rotation after a much longer period of at least 5000 years. Therefore, a sufficient period of desynchronized rotation exposed the entire surface of Phobos to ejecta that returned from martian orbits. In view of how all or most craters observed inside Stickney Crater approximate the size/frequency distribution (SFD) of Stickney secondary impacts, it is infeasible to derive an age for Stickney Crater based on an assumption of background impacts ( 2.8-4.2 Ga according to Schmedemann et al. (2014)). In view of how crater-counting is unworkable for age-dating Stickney Crater we conclude an alternate age for Stickney Crater of 0.1-0.5 Ga that is constrained instead by the boulder evidence of Thomas et al. (2000), the boulder destruction rate analysis of Basilevsky et al. (2013, 2015), and the observed space weathering of Phobos regolith (Cipriani et al., 2011; Pieters et al., 2014). Assessing several implications of our model we 1

  16. Impact ejecta layer from the mid-Devonian: possible connection to global mass extinctions.

    PubMed

    Ellwood, Brooks B; Benoist, Stephen L; El Hassani, Ahmed; Wheeler, Christopher; Crick, Rex E

    2003-06-13

    We have found evidence for a bolide impacting Earth in the mid-Devonian ( approximately 380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.

  17. Ejecta- and Size-Scaling Considerations from Impacts of Glass Projectiles into Sand

    NASA Technical Reports Server (NTRS)

    Anderson J. L. B.; Cintala, M. J.; Siebenaler, S. A.; Barnouin-Jha, O. S.

    2007-01-01

    One of the most promising means of learning how initial impact conditions are related to the processes leading to the formation of a planetary-scale crater is through scaling relationships.1,2,3 The first phase of deriving such relationships has led to great insight into the cratering process and has yielded predictive capabilities that are mathematically rigorous and internally consistent. Such derivations typically have treated targets as continuous media; in many, cases, however, planetary materials represent irregular and discontinuous targets, the effects of which on the scaling relationships are still poorly understood.4,5 We continue to examine the effects of varying impact conditions on the excavation and final dimensions of craters formed in sand. Along with the more commonly treated variables such as impact speed, projectile size and material, and impact angle,6 such experiments also permit the study of changing granularity and friction angle of the target materials. This contribution presents some of the data collected during and after the impact of glass spheres into a medium-grained sand.

  18. Parabolic Ejecta Features on Titan? Probably Not

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Melosh, H. J.

    1996-03-01

    Radar mapping of Venus by Magellan indicated a number of dark parabolic features, associated with impact craters. A suggested mechanism for generating such features is that ejecta from the impact event is 'winnowed' by the zonal wind field, with smaller ejecta particles falling out of the atmosphere more slowly, and hence drifting further. What discriminates such features from simple wind streaks is the 'stingray' or parabolic shape. This is due to the ejecta's spatial distribution prior to being winnowed during fallout, and this distribution is generated by the explosion plume of the impact piercing the atmosphere, allowing the ejecta to disperse pseudoballistically before re-entering the atmosphere, decelerating to terminal velocity and then being winnowed. Here we apply this model to Titan, which has a zonal wind field similar to that of Venus. We find that Cassini will probably not find parabolic features, as the winds stretch the deposition so far that ejecta will form streaks or bands instead.

  19. The Acraman impact structure: Estimation of the diameter by the ejecta layer thickness

    NASA Technical Reports Server (NTRS)

    Gurov, E. P.

    1993-01-01

    The big role of gigantic craters formation in geological history of the Earth was established by the example of the K/T boundary event. The discovery of the iridium anomaly in the sedimentary rocks of Vendian in the western part of Ukrainian shield allows to suppose its origin in connection with the great impact of that time. The only big impact structure of that age is the Acraman Crater in south-eastern part of Australia. The Acraman Crater is presented by deeply eroded structure, original diameter of which it is difficult to determine. By geological and morphological data the Acraman Crater is presented by an inner ring 30 km in diameter, an intermediate ring 90 km in diameter, and an outer ring about 150-160 km in diameter.

  20. Still water: dead zones and collimated ejecta from the impact of granular jets.

    PubMed

    Ellowitz, Jake; Turlier, Hervé; Guttenberg, Nicholas; Zhang, Wendy W; Nagel, Sidney R

    2013-10-18

    When a dense granular jet hits a target, it forms a large dead zone and ejects a highly collimated conical sheet with a well-defined opening angle. Using experiments, simulations, and continuum modeling, we find that this opening angle is insensitive to the precise target shape and the dissipation mechanisms in the flow. We show that this surprising insensitivity arises because dense granular jet impact, though highly dissipative, is nonetheless controlled by the limit of perfect fluid flow.

  1. Impact ejecta horizon within late precambrian shales, adelaide geosyncline, South australia.

    PubMed

    Gostin, V A; Haines, P W; Jenkins, R J; Compston, W; Williams, I S

    1986-07-11

    A solitary layer of shattered crustal rock fragments has been traced over a distance of 260 kilometers within folded 600-million-year-old Precambrian marine shales of the Adelaide Geosyncline, South Australia. The fragments consist entirely of acid to intermediate volcanics (approximately 1575 million years old) displaying shattered mineral grains, shock lamellae in quartz, and small shatter cones. Fragments reach 30 centimeters in diameter and show evidence of vertical fall emplacement. Available evidence points to derivation of the rock fragments from a distant hypervelocity impact into the Gawler Range Volcanics at Lake Acraman, approximately 300 kilometers west of the Adelaide Geosyncline.

  2. 22Ne and 23Na ejecta from intermediate-mass stars: the impact of the new LUNA rate for 22Ne(p, γ)23Na

    NASA Astrophysics Data System (ADS)

    Slemer, A.; Marigo, P.; Piatti, D.; Aliotta, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Bressan, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Cavanna, F.; Ciani, G. F.; Corvisiero, P.; Davinson, T.; Depalo, R.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, G.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Prati, P.; Straniero, O.; Szücs, T.; Takács, M. P.; Trezzi, D.

    2017-03-01

    We investigate the impact of the new LUNA rate for the nuclear reaction 22Ne(p, γ)23Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim, we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range 3.0-6.0 M⊙ and metallicities Zi = 0.0005, 0.006 and 0.014. We find that the new LUNA measures have much reduced the nuclear uncertainties of the 22Ne and 23Na AGB ejecta that drop from factors of ≃10 to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of 23Na, the uncertainties that still affect the 22Ne and 23Na AGB ejecta are mainly dominated by the evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anticorrelation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass-loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anticorrelation and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available.

  3. Stratigraphies of Apollo and Luna Highland Landing Sites and Provenances of Materials from the Perspective of Basin Impact Ejecta Modeling

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Korotev, Randy L.; Gillis, Jeffrey J.; Jolliff, Bradley L.

    2002-01-01

    What are the provenances of the non-mare materials collected at the Apollo and Luna sampling sites? Results from basin ejecta modeling suggest that much of it came from distant basins. Additional information is contained in the original extended abstract.

  4. Stratigraphies of Apollo and Luna Highland Landing Sites and Provenances of Materials from the Perspective of Basin Impact Ejecta Modeling

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Korotev, Randy L.; Gillis, Jeffrey J.; Jolliff, Bradley L.

    2002-01-01

    What are the provenances of the non-mare materials collected at the Apollo and Luna sampling sites? Results from basin ejecta modeling suggest that much of it came from distant basins. Additional information is contained in the original extended abstract.

  5. Sinuosity of Martian rampart ejecta deposits

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1994-01-01

    The sinuosities of 2213 Martian rampart ejecta craters are quantified through measurement of the ejecta flow front perimeter and ejecta area. This quantity, called lobateness, was computed for each complete lobe of the 1582 single lobe (SL), 251 double lobe (DL), and 380 multiple lobe (ML) craters included in this study. A lobateness value of 1 indicates a circular ejecta blanket, whereas more sinuous ejecta perimeters have lobateness values greater than 1. Although resolution does have an effect on the absolute values of lobateness, the general relationships between lobateness and morphology exist regardless of resolution. Evaluation of the lobateness values reveals that the outer lobes of DL and ML craters have higher median lobateness values (i.e., are more sinuous) than the inner lobes. The outermost lobe of ML craters displays higher lobateness values than the outer lobe of DL craters or the single lobe of SL craters. Previous reports of lobateness-diameter, lobateness-latitude, and lobateness-terrain relationships for rampart craters are not supported by this study. Many of the differences between the results of this study and the previous lobateness analyses can be attributed to the inclusion of resolution effects and the distinction between different ejecta morphologies in this study. The results of this study taken together with a previous analysis of the distribution and diameter dependence of different ejecta morphologies are most consistent with the theory that Martian lobate ejecta morphologies form from impact into subsurface volatiles.

  6. Contribution of secondary ejecta to the debris population

    NASA Astrophysics Data System (ADS)

    Mandeville, J.-C.; Bariteau, M.

    2004-01-01

    When a micro-debris or a micrometeoroid impacts a spacecraft surface, secondary particles, called ejecta, are produced. These ejecta can contribute to a modification of the debris environment: either locally by the occurrence of secondary impacts on the components of complex and large space structures, or at great distances by the formation of a population of small orbital debris. This paper describes the ejecta production mechanism, and shows their orbital evolution. Then, the distribution of ejecta in low earth orbits is given. Some results are presented describing the number of ejecta as a function of size and altitude.

  7. A modelling of ejecta as a space debris source

    NASA Astrophysics Data System (ADS)

    Bariteau, Muriel; Mandeville, Jean-Claude

    2001-10-01

    When a micro-debris or a micrometeoroid impacts a spacecraft surface, secondary particles, called ejecta, are produced. These ejecta can contributes to a modification of the debris environment: either locally by the occurrence of secondary impacts on the components of complex and large space structures, or at great distances by the formation of a population of small orbital debris. This paper describes, firstly, the ejecta production, and secondly, their lifetime and orbit propagation. Then, the repartition of ejecta in LEO is given. Results describing the ejecta number as a function of size and altitude are presented.

  8. Isidis Basin Ejecta

    NASA Image and Video Library

    2017-03-02

    This scene is a jumbled mess. There are blocks and smears of many different rocks types that appear to have been dumped into a pile. That's probably about what happened, as ejecta from the Isidis impact basin to the east. This pile of old rocks is an island surrounded by younger lava flows from Syrtis Major. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 27.4 centimeters (10.8 inches) per pixel (with 1 x 1 binning); objects on the order of 82 centimeters (32.2 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21553

  9. A Precambrian proximal ejecta blanket from Scotland

    NASA Astrophysics Data System (ADS)

    Amor, Kenneth; Hesselbo, Stephen P.; Porcelli, Don; Thackrey, Scott; Parnell, John

    2008-04-01

    Ejecta blankets around impact craters are rarely preserved onEarth. Although impact craters are ubiquitous on solid bodiesthroughout the solar system, on Earth they are rapidly effaced,and few records exist of the processes that occur during emplacementof ejecta. The Stac Fada Member of the Precambrian Stoer Groupin Scotland has previously been described as volcanic in origin.However, shocked quartz and biotite provide evidence for high-pressureshock metamorphism, while chromium isotope values and elevatedabundances of platinum group metals and siderophile elementsindicate addition of meteoritic material. Thus, the unit isreinterpreted here as having an impact origin. The ejecta blanketreaches >20 m in thickness and contains abundant dark green,vesicular, devitrified glass fragments. Field observations suggestthat the deposit was emplaced as a single fluidized flow thatformed as a result of an impact into water-saturated sedimentarystrata. The continental geological setting and presence of groundwatermake this deposit an analogue for Martian fluidized ejecta blankets.

  10. Crater ejecta scaling laws - Fundamental forms based on dimensional analysis

    NASA Technical Reports Server (NTRS)

    Housen, K. R.; Schmidt, R. M.; Holsapple, K. A.

    1983-01-01

    Self-consistent scaling laws are developed for meteoroid impact crater ejecta. Attention is given to the ejection velocity of material as a function of the impact point, the volume of ejecta with a threshold velocity, and the thickness of ejecta deposit in terms of the distance from the impact. Use is made of recently developed equations for energy and momentum coupling in cratering events. Consideration is given to scaling of laboratory trials up to real-world events and formulations are developed for calculating the ejection velocities and ejecta blanket profiles in the gravity and strength regimes of crater formation. It is concluded that, in the gravity regime, the thickness of an ejecta blanket is the same in all directions if the thickness and range are expressed in terms of the crater radius. In the strength regime, however, the ejecta velocities are independent of crater size, thereby allowing for asymmetric ejecta blankets. Controlled experiments are recommended for the gravity/strength transition.

  11. Crater ejecta scaling laws - Fundamental forms based on dimensional analysis

    NASA Technical Reports Server (NTRS)

    Housen, K. R.; Schmidt, R. M.; Holsapple, K. A.

    1983-01-01

    Self-consistent scaling laws are developed for meteoroid impact crater ejecta. Attention is given to the ejection velocity of material as a function of the impact point, the volume of ejecta with a threshold velocity, and the thickness of ejecta deposit in terms of the distance from the impact. Use is made of recently developed equations for energy and momentum coupling in cratering events. Consideration is given to scaling of laboratory trials up to real-world events and formulations are developed for calculating the ejection velocities and ejecta blanket profiles in the gravity and strength regimes of crater formation. It is concluded that, in the gravity regime, the thickness of an ejecta blanket is the same in all directions if the thickness and range are expressed in terms of the crater radius. In the strength regime, however, the ejecta velocities are independent of crater size, thereby allowing for asymmetric ejecta blankets. Controlled experiments are recommended for the gravity/strength transition.

  12. Mapping Ejecta Thickness Around Small Lunar Craters

    NASA Astrophysics Data System (ADS)

    Brunner, A.; Robinson, M. S.

    2016-12-01

    Detailed knowledge of the distribution of ejecta around small ( 1 km) craters is still a key missing piece in our understanding of crater formation. McGetchin et al. [1] compiled data from lunar, terrestrial, and synthetic craters to generate a semi-empirical model of radial ejecta distribution. Despite the abundance of models, experiments, and previous field and remote sensing studies of this problem, images from the 0.5 m/pixel Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) [2] provides the first chance to quantify the extent and thickness of ejecta around kilometer scale lunar craters. Impacts excavate fresh (brighter) material from below the more weathered (darker) surface, forming a relatively bright ejecta blanket. Over time space weathering tends to lower the reflectance of the ejected fresh material [3] resulting in the fading of albedo signatures around craters. Relatively small impacts that excavate through the high reflectance immature ejecta of larger fresh craters provide the means of estimating ejecta thickness. These subsequent impacts may excavate material from within the high reflectance ejecta layer or from beneath that layer to the lower-reflectance mature pre-impact surface. The reflectance of the ejecta around a subsequent impact allows us to categorize it as either an upper or lower limit on the ejecta thickness at that location. The excavation depth of each crater found in the ejecta blanket is approximated by assuming a depth-to-diameter relationship relevant for lunar simple craters [4, e.g.]. Preliminary results [Figure] show that this technique is valuable for finding the radially averaged profile of the ejecta thickness and that the data are roughly consistent with the McGetchin equation. However, data from craters with asymmetric ejecta blankets are harder to interpret. [1] McGetchin et al. (1973) Earth Planet. Sci. Lett., 20, 226-236. [2] Robinson et al. (2010) Space Sci. Rev., 150, 1-4, 81-124. [3] Denevi et al

  13. Ejecta Blanket on Vesta

    NASA Image and Video Library

    2011-10-13

    This image from NASA Dawn spacecraft shows an ejecta blanket mantling the surface and obscuring older caters. The bright crater rim, seen in the middle right edge, is one of a group of craters which are the source of this ejecta blanket.

  14. Poynting Crater Ejecta

    NASA Image and Video Library

    2002-08-05

    Located roughly equidistant between two massive volcanoes, the approximately 60 km Poynting Crater and its ejecta, shown in this image from NASA Mars Odyssey spacecraft, have experienced an onslaught of volcanic activity.

  15. Double-layered ejecta craters on Mars: morphology, formation, and a comparison with the Ries ejecta blanket

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Wulf, Gerwin; Sturm, Sebastian; Pietrek, Alexa

    2015-04-01

    The ejecta blankets of impact craters in volatile-rich environments often show characteristic layered ejecta morphologies. The so-called double-layer ejecta (DLE) craters are probably the most confusing crater types showing two ejecta layers with distinct morphologies. A phenomenological ejecta excavation and emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim - a textbook like, pristine DLE crater - and studies of other DLE craters [1]. The observations show that DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice. The deposits of the ejecta curtain are wet in the distal part and dryer in composition in the proximal part. As a result, the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a fluid saturated debris flow mode after landing overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits. This slide overruns and superimposes parts of the outer ejecta layer. Basal melting of the ice components of the ejecta volumes at the transient crater rim is induced by frictional heating and the enhanced pressure at depth. The results indicate similar processes also for other planetary bodies with volatile-rich environments, such as Ganymede, Europa or the Earth. The Ries crater on Earth has a similar ejecta thickness distribution as DLE craters on Mars [2]. Here basal sliding and fluidization of the ejecta increases outward by the entrainment of locally derived Tertiary sands and clays, that are saturated with groundwater. References: [1] Wulf, G. & Kenkmann, T. (2015) Met. Planet. Sci. (in press); [2] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013) Geology 41, 531-534.

  16. Mars and the Amazing Technicolor Ejecta Blanket

    NASA Image and Video Library

    2017-07-12

    This image from NASA's Mars Reconnaissance Orbiter shows the exposed bedrock of an ejecta blanket of an unnamed crater in the Mare Serpentis region of Mars. Ejecta, when exposed, are truly an eye-opening feature, as they reveal the sometimes exotic subsurface, and materials created by impacts (close-up view). This ejecta shares similarities to others found elsewhere on Mars, which are of particular scientific interest for the extent of exposure and diverse colors. (For example, the Hargraves Crater ejecta, in the Nili Fossae trough region, was once considered as a candidate landing site for the next NASA Mars rover 2020.) The colors observed in this picture represent different rocks and minerals, now exposed on the surface. Blue in HiRISE infrared color images generally depicts iron-rich minerals, like olivine and pyroxene. Lighter colors, such as yellow, indicate the presence of altered rocks. The possible sources of the ejecta is most likely from two unnamed craters. How do we determine which crater deposited the ejecta? A full-scale image shows numerous linear features that are observed trending in an east-west direction. These linear features indicate the flow direction of the ejecta from its unnamed host crater. Therefore, if we follow them, we find that they emanate from the bottom of the two unnamed craters. If the ejecta had originated from the top crater, then we would expect the linear features at the location of our picture to trend northwest to southeast. https://photojournal.jpl.nasa.gov/catalog/PIA21782

  17. Research on the Statistical Property of the Ejecta Population Derivation

    NASA Astrophysics Data System (ADS)

    Ju, Fangfei; Xiao, Weike; Pang, Baojun

    2013-08-01

    During the debris population derivation in current versions of the orbital debris engineering model, NASA's ORDEM2010 and ESA's MASTER-2009, the ejecta model is simplified in some degree so as to link the populations with data. As a requirement for more accurate space debris environment model, researches on the statistical inference of population derivation of the ejecta model are essential. We simulate single particle impacts in various relative velocity directions in space with current ejecta model, in order to figure out features in ejecta orbital evolution such as orbital lifetime. In view of the nearly continuous generation of this secondary source, information of the on-orbit spacecraft area especially the debris flux is also taken into account. The simulation results show that by assuming the ejecta model is precise, these features which make the ejecta model distinct could increase the debris population accuracy before being linked to the observed data.

  18. Paleomagnetism of Triassic bedded chert from Japan for determining the age of an impact ejecta layer deposited on peri-equatorial latitudes of the paleo-Pacific Ocean: A preliminary analysis

    NASA Astrophysics Data System (ADS)

    Uno, Koji; Yamashita, Daisuke; Onoue, Tetsuji; Uehara, Daiki

    2015-12-01

    Bedded chert samples from the Norian (Upper Triassic) Sakahogi section of the Mino Terrane in the Inuyama area, southwest Japan, have been collected for paleomagnetic study in order to determine the age of an impact ejecta layer interbedded within it and the paleolatitude of its deposition. Thermal demagnetization of the bedded chert samples revealed four distinct remanent magnetization components. The last demagnetized component with both polarities is interpreted to be the primary magnetization, which produced the first magnetostratigraphic data of the middle to upper Norian from Panthalassa, consistent with Tethyan magnetostratigraphic sections. Tie points were derived from paleomagnetic and paleontological data, from which the stratigraphic position of the ejecta layer was compared with the astronomically tuned geomagnetic polarity time scale (APTS). The age of ejecta layer is estimated to be about 212 Ma. This magnetostratigraphic age is consistent with the radiometric age of the Manicouagan impact that formed the second largest known crater in the Phanerozoic at Quebec, Canada. The results of this study, as well as previous studies, suggest that the chert section, which includes the ejecta layer, was deposited within a paleolatitude range of 0.3-14.4°N. This indicates that the material ejected by the Manicouagan impact event reached near the equatorial region of the paleo-Pacific Ocean.

  19. Ejecta of the Ries Crater, Germany

    NASA Technical Reports Server (NTRS)

    Horz, F.

    1982-01-01

    Attention is given to the light which may be shed by the ejecta surrounding the 26-km diameter Ries Crater in West Germany on the Cretaceous-Tertiary Boundary Event. Moldavites represent early high speed ejecta originating at the projectile-target interface. Bunte breccia reflects the major excavation and ejection phase, comprising more than 90 percent of all ejecta beyond the rim crest. Suevite is deposited last, and is derived from the deepest target stratum. Using various scaling laws that relate the bolide's kinetic energy to crater geometry or volume, and assuming a 25 km/sec impact velocity, a 1-2 km projectile diameter is obtained for a stony object. Geochemical studies reveal that projectile dissemination is heterogeneous, and that maximum extraterrestrial contamination modeled as a C1 chondrite is 0.004 wt pct. Observations from this and other terrestrial craters show that tektites and microtectites provide the sole evidence for widespread impact deposits.

  20. Muddy Ejecta Flow

    NASA Image and Video Library

    2017-01-10

    This small 2 kilometer-wide crater was sitting around, minding its own business when a meteoroid struck the ground just to the west and created a new, larger crater almost 10 kilometers in diameter (not pictured). The ejecta spraying out of the new crater landed back on the ground and then continued to flow away from the new crater, and the smaller crater was in the way of that muddy flow. You can see where much of the muddy material flowed around the crater's uplifted rim and forms a squiggly ridge, but you can also see where the mud flow slid over the rim and ponded down in the bottom of the crater. One question we don't know the answer to is: "how wet was the muddy ejecta?" Ongoing observations like this and laboratory-based experiments are trying to find the answer to that question. This image also illustrates a common theme in geology, namely, the law of superposition. Because the crater has been affected by ejecta from the larger crater to the west, the small crater had to be there first and then the second, larger crater and its ejecta had to form. This allows planetary geologists to decipher the relative ages of different landforms. Because a central goal of geology is to understand past events from present-day clues, geology is sometimes compared to forensic science. http://photojournal.jpl.nasa.gov/catalog/PIA13181

  1. Secondary craters from large impacts on Europa and Ganymede: Ejecta size-velocity distributions on icy worlds, and the scaling of ejected blocks

    NASA Astrophysics Data System (ADS)

    Singer, Kelsi N.; McKinnon, William B.; Nowicki, L. T.

    2013-09-01

    We have mapped fields of secondary craters around three large primary craters on Europa and Ganymede and estimated the size and velocity of the fragments that formed the secondaries using updated scaling equations for ice impacts. We characterize the upper envelope of the fragment size-velocity distribution to obtain a function for the largest fragments at a given ejection velocity. Power-law velocity exponents found in our study of icy satellite secondary fields are compared to the exponents found for similar studies of mercurian, lunar, and martian craters; for all but basin-scale impacts, fragment size decreases more slowly with increasing ejection velocity than on rocky bodies. Spallation theory provides estimates of the size of ejected spall plates at a given velocity, but this theory predicts fragments considerably smaller than are necessary to form most of our observed secondaries. In general, ejecta fragment sizes scale with primary crater diameter and decrease with increasing ejection velocity, υej, by 1/υej or greater, and point-source scaling implies a relation between the two. The largest crater represented in any of these studies, Gilgamesh on Ganymede, exhibits a relatively steep velocity dependence. Extrapolating the results to the escape speed for each icy moon yields the size of the largest fragment that could later re-impact to form a so-called sesquinary crater, either on the parent moon or a neighboring satellite. We find that craters above 2 km in diameter on Europa and Ganymede are unlikely to be sesquinaries.

  2. Chicxulub High-Altitude Ballistic Ejecta from Central Belize

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ocampo, A. C.

    2000-01-01

    Chicxulub ejecta are found in central Belize, 475 km southeast of the impact crater center. These deposits are ballistic ejecta launched along high-altitude trajectories above the atmosphere and deposited as a discontinuous sheet on the terminal Cretaceous land surface.

  3. Chicxulub High-Altitude Ballistic Ejecta from Central Belize

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ocampo, A. C.

    2000-01-01

    Chicxulub ejecta are found in central Belize, 475 km southeast of the impact crater center. These deposits are ballistic ejecta launched along high-altitude trajectories above the atmosphere and deposited as a discontinuous sheet on the terminal Cretaceous land surface.

  4. The properties of the Lunar ejecta cloud

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Beckmann, U.

    2008-09-01

    The moon is wrapped into a dust enveloped produced by hypervelocity impacts of micrometeoroids or interstellar grains. A more or less constant flux of fast projectiles strikes the lunar surface, produces secondary material and a fraction of it leaves the surface forming the dust envelope. The ejecta particles populating the dust envelope carry precious information about the composition of lunar surface, the properties of the regolith, as well as about the impactor flux itself. Here we discuss the spatial distribution of Lunar ejecta in the vicinity of the moon. We also present our model calculations for the evolution of the electro-static charge carried on the grain.

  5. Relevance of Pitted Material and Impact Melt to Early Martian Hydrothermalism and Habitability; Ries Ejecta Deposits as a Martian Analogue

    NASA Astrophysics Data System (ADS)

    Caudill, C. M.; Greenberger, R. N.; Tornabene, L. L.; Osinski, G. R.; Flemming, R. L.; Ehlmann, B. L.

    2017-10-01

    Hydrothermal features are investigated at the Ries impact structure as potentially analogous to crater-related pitted material in Martian ancient terrains, which may reveal shallow sub-surface hydrothermal environments and prime exploration targets.

  6. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

    NASA Astrophysics Data System (ADS)

    Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.

    2016-10-01

    The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

  7. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

    NASA Astrophysics Data System (ADS)

    Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.

    2017-07-01

    The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

  8. Modeling the Provenance of Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Huei; Minton, David A.

    2014-11-01

    The cratering history of the Moon provides a way to study the violent early history of our early solar system. Nevertheless, we are still limited in our ability to interpret the lunar cratering history because the complex process of generation and subsequent transportation and destruction of impact melt products is relatively poorly understood. Here we describe a preliminary model for the transport of datable impact melt products by craters over Gy timescales on the lunar surface. We use a numerical model based on the Maxwell Z-model to model the exhumation and transport of ejecta material from within the excavation flow of a transient crater. We describe our algorithm for rapidly estimating the provenance of ejecta material for use in a Monte Carlo cratering code capable of simulating lunar cratering over Gy timescales.

  9. Ejecta emplacement: from distal to proximal

    NASA Astrophysics Data System (ADS)

    Artemieva, N.

    2008-09-01

    Introduction Most part of impact ejecta is deposited ballistically at some distance from a crater, defined by ejection velocity V and ejection angle α: d=v2sinα/g. In case of giant impacts, planetary curvature should be taken into account [1]. Combined with ejecta scaling [2], these relations allow to define ejecta thickness as a function of distance. Ejecta from large craters are deposited at velocity high enough to mobilize substrate material and to thicken ejecta deposits [3]. Ballistic approximation is valid for airless bodies (if impact vaporization is not vast) or for proximal ejecta of large impact craters, where ejecta mass per unit area is substantially greater than the mass of involved vapor/atmosphere (M-ratio). Deposition of distal ejecta, in which ejecta mass is negligible compared to the atmosphere, may be also treated in a simplified manner, i.e. as 1) passive motion of ejected particles within an impact plume and 2) later, as sedimentation of particles in undisturbed atmosphere (equilibrium between gravity and drag). In all intermediate M-ratio values, impact ejecta move like a surge, i.e. dilute suspension current in which particles are carried in turbulent flows under the influence of gravity. Surges are well-known for near-surface explosive tests, described in detail for volcanic explosions (Plinian column collapse, phreato-magmatic eruption, lateral blast), and found in ejecta from the Chicxulub [4] and the Ries [5]. Important aspects of surge transport include its ability to deposit ejecta over a larger area than that typical of continuous ballistic ejecta and to create multiple ejecta layers. Numerical model Two-phase hydrodynamics. Surges should be modeled in the frame of two-phase hydrodynamics, i.e. interaction between solid/molten particles and atmospheric gas/impact vapor should be taken into account. There are two techniques of solving equations for dust particle motion in a gas flow. The first one describes solid/molten particles as a

  10. Thicknesses of and Primary Ejecta Fractions in Basin Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; McKinnon, William B.

    2003-01-01

    We have developed a model for production of ba-sin ejecta deposits to address provenances of materials collected at the Apollo and Luna landing sites and for consideration in interpreting remote sensing data.

  11. Thicknesses of and Primary Ejecta Fractions in Basin Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; McKinnon, William B.

    2003-01-01

    We have developed a model for production of basin ejecta deposits to address provenances of materials collected at the Apollo and Luna landing sites and for consideration in interpreting remote sensing data.

  12. Thicknesses of and Primary Ejecta Fractions in Basin Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; McKinnon, William B.

    2003-01-01

    We have developed a model for production of ba-sin ejecta deposits to address provenances of materials collected at the Apollo and Luna landing sites and for consideration in interpreting remote sensing data.

  13. Thicknesses of and Primary Ejecta Fractions in Basin Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; McKinnon, William B.

    2003-01-01

    We have developed a model for production of basin ejecta deposits to address provenances of materials collected at the Apollo and Luna landing sites and for consideration in interpreting remote sensing data.

  14. Influence of shockwave profile on ejecta

    SciTech Connect

    Zellner, Michael B; Dimonte, Guy; Germann, Tim C; Hammerberg, James E; Rigg, Paulo A; Buttler, William T; Stevens, Gerald D; Turley, William D

    2009-01-01

    This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins. Assay foils, optical shadowgraphy, and x-ray attenuation.

  15. Structure of Solar Ejecta

    NASA Astrophysics Data System (ADS)

    Muñoz, G.; Cantó, J.; Lara, A.; González, R.; Schwenn, R.

    Solar Ejecta (SE) have been of interest in the last years, especially those which may reach Earth environment. It is possible to observe the SE early evolution, when they are in the field of view of coronagraphs. There are few indirect observations, as the case of interplanetary scintillation, of SEs in the interplanetary medium. Finally, we observe SEs in situ when they arrive at 1 AU.The SEs structure and evolution are important to understand the origin of these phenomena but to predict the possible effects in the space weather. It is of general acceptance that SEs are "Erupting Flux Ropes" traveling trough the Solar Wind. The "shapes" have been modeled as cylinders or as "ice cream cones" in order to represent the many different projections observed on Coronagraphs.We present a model of the SE evolution based on purely Hydrodynamic considerations. This model reproduces in good approximation some of the features observed in the images and in the measures of the shocks near Earth.

  16. Morphology and Scaling of Ejecta Deposits on Icy Satellites

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Ridolfi, Francis J.; Bredekamp, Joe (Technical Monitor)

    2002-01-01

    Continuous ejecta deposits on Ganymede consist of two major units, or facies: a thick inner hummocky pedestal facies, and a relatively thin outer radially scoured facies defined also by the inner limit of the secondary crater field. Both ejecta facies have a well-defined power-law relationship to crater diameter for craters ranging from 15 to approx. 600 km across. This relationship can be used to estimate the nominal crater diameter for impact features on icy satellites (such as palimpsests and multiring basins) for which the crater rim is no longer recognizable. Ejecta deposits have also been mapped on 4 other icy satellites. Although morphologically similar to eject deposits on the Moon, ejecta deposits for smaller craters are generally significantly broader in extent on the icy satellites, in apparent defiance of predictions of self-similarity. A greater degree of rim collapse and enlargement on the Moon may explain the observed difference.

  17. Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew; Vickers, John

    2007-02-01

    The temporal association between late Archaean to earliest Proterozoic asteroid impact ejecta/fallout units and overlying banded iron formations suggests that, in some instances, these impacts were closely followed by significant transformation in the nature of source terrains of the sediments. The Jeerinah Impact Layer (JIL) [B.M. Simonson, D. Davies, S.W. Hassler, Discovery of a layer of probable impact melt spherules in the late Archean Jeerinah Formation, Fortescue Group, Western Australia. Aust. J. Earth Sci. 47 (2000) 315-325; B.M. Simonson, S.W. Hassler, Revised correlations in the early Precambrian Hamersley Basin based on a horizon of resedimented impact spherules. Aust. J. Earth Sci. 44 (1997) 37-48; B.M. Simonson, B.P. Glass, Spherule layers - records of ancient impacts. Ann. Rev. Earth Planet. Sci. 32 (2004) 329-361; A.Y. Glikson, Early Precambrian asteroid impact-triggered tsunami: excavated seabed, debris flows, exotic boulders, and turbulence features associated with 3.47-2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Astrobiology 4 (2001) 19-50; S.W. Hassler, B.M. Simonson, D.Y. Sumner, D. Murphy, Neoarchaean impact spherule layers in the Fortescue and Hamersley Groups, Western Australia: stratigraphic and depositional implications of re-correlation. Aust. J. Earth Sci. 52 (2005) 759-772; B. Rasmussen, C. Koeberl, Iridium anomalies and shocked quartz in a late Archean spherule layer from the Pilbara Craton: new evidence for a major asteroid impact at 2.63 Ga. Geology 32 (2004) 1029-1032; B. Rasmussen, T.S. Blake, I.R. Fletcher, U-Pb zircon age constraints on the Hamersley spherule beds: Evidence for a single 2.63 Ga Jeerinah-Carawine impact ejecta layer. Geology, 33 (2005) 725-728.] overlies an argillite-dominated unit (Jeerinah Formation, 2684 ± 6 Ma [A.F. Trendall, W. Compston, D.R. Nelson, J.R. deLaeter, V.C. Bennett, SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western

  18. Global Distribution of Small Rayed Craters on Mars: Sequences of Ejecta Retention

    NASA Technical Reports Server (NTRS)

    Calef, F. J., III; Herrick, R. R.; Sharpton, V. L

    2011-01-01

    Small rayed impact craters (SRC), whose diameter (D) is less than1 km, should be distributed spatially and temporally random across Mars. Ejecta retention, the capacity of and time period impact excavated material remains in place around a crater, can serve as a proxy to understand global resurfacing rates and recent surficial processes. Ejecta retention depends on two factors: formation, where the target material is more conducive to creating ejecta rays, and retention, the erosion/deposition rate where ejecta are emplaced. This research aims to quantify the distribution of SRC on Mars, as well as develop a classification scheme for ejecta retention with correlations to known processes. Our ultimate goal is to better understand the retention environment over the "lifespan" of the rayed ejecta.

  19. Fates of satellite ejecta in the Saturn system, II

    NASA Astrophysics Data System (ADS)

    Alvarellos, José Luis; Dobrovolskis, Anthony R.; Zahnle, Kevin J.; Hamill, Patrick; Dones, Luke; Robbins, Stuart

    2017-03-01

    We assess the fates of ejecta from the large craters Aeneas on Dione and Ali Baba on Enceladus (161 and 39 km in diameter, respectively), as well as that from Herschel (130 km in diameter) on Mimas. The ejecta are treated either as 'spalls' launched from hard surfaces, or as 'rubble' launched from a weak rubble pile regolith. Once in orbit we consider the ejecta as massless test particles subject to the gravity of Saturn and its classical satellites. The great majority of escaped ejecta get swept up by the source moons. The best fit to the ejecta population decay is a stretched exponential with exponent near 1/2 (Dobrovolskis et al., Icarus 188, 481-505, 2007). We bracket the characteristic ejecta sizes corresponding to Grady-Kipp fragments and spalls. Based on this and computed impact velocities and incidence angles, the resulting sesquinary craters, if they exist, should have diameters on the order of a few meters to a few km. The observed longitude distribution of small craters on Mimas along with the findings of Bierhaus et al. that small moons should not have a secondary crater population (Icarus 218, 602-621, 2012) suggest that the most likely place to find sesquinary craters in the Saturn system is the antapex of Mimas.

  20. Venusian extended ejecta deposits as time-stratigraphic markers

    NASA Technical Reports Server (NTRS)

    Izenberg, Noam R.

    1992-01-01

    Use of impact crater ejects at time-stratigraphic markers was established during lunar geologic mapping efforts. The basic premise is that the deposition of impact ejecta, either by itself or mixed with impact-excavated material, is superimposed on a surface. The deposit becomes an observable, mappable unit produced in a single instant in geologic time. Up to two-thirds of Venus craters exhibit extended ejecta deposits. A reconnaissance survey of 336 craters (about 40 percent of the total population) was conducted. About half the craters examined were located in and around the Beta-Atla-Themis region, and half were spread over the western hemisphere of the planet. The survey was conducted using primarily C1-MIDR images. The preliminary survey shows: (1) of the 336 craters, 223 were found to have extended ejecta deposits. This proportion is higher than that found in other Venus crater databases by up to a factor of 2. (2) 53 percent of all extended ejecta craters were unambiguously superimposed on all volcanic and tectonic units. Crater Annia Faustina's associated parabolic ejecta deposit is clearly superimposed on volcanic flows coming from Gula Mons to the west. Parabola material from Faustina has covered the lava flows, smoothing the surface and reducing its specific backscatter cross section. The stratigraphy implies that the parabola material is the youngest observable unit in the region. (3) 12 percent of extended ejecta deposits are superimposed by volcanic materials. Crater Hwangcini has extended ejecta that has been covered by volcanic flows from a dome field to the northwest, implying that the volcanic units were emplaced subsequent to the ejecta deposit and are the youngest units in the locality. (4) It is difficult to determine the stratigraphic relationships of the remaining extended ejecta deposits in SAR at C1-MIDR resolution. Examination of higher resolution images and application of the other Magellan datasets in systematic manner should resolve

  1. Topographic Analysis of the Asymmetric Ejecta of Zunil Crater, Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Sharpton, V. L.

    2016-12-01

    The 10.1 km diameter crater Zunil (7.7oN, 166.2oE) has many of the attributes of a fresh impact crater on Mars, including pitted material on the crater floor, an extensive field of secondary craters, as well as thermally-distinct crater rays. But unlike most craters of this size and location, Zunil crater displays a striking azimuthal variation in ejecta deposits with both fluidized and ballistic ejecta. Here we investigate the geometric attributes of the crater cavity and rim to try to identify the cause of this ejecta asymmetry, as well as the possible explanation for the formation of the ballistic ejecta. To accomplish this, we have created a digital elevation model (DEM) from stereo Context Camera (CTX) images, using the Ames Stereo Pipeline software. We used CTX frames F06_038250_1877 and G05_020211_1877 to produce a DEM with a nominal spatial resolution of 24 m/pixel, and use this DEM to conduct a detailed morphometric analysis of the crater in order to ascertain the nature of this "lobate-ballistic ejecta dichotomy", as well as derive new information on local target properties and the nature of the impact process itself. Measuring the rim height and radius at one-degree increments of azimuth, we find there are numerous places on the rim crest that are both higher and wider, or lower and narrower, than is typical for Zunil crater. There are places where rim height and radius are both close to average, while in other places both the rim height and radius are larger or smaller than the average. There is also a lack of consistency between the geometry of the crater and the type of ejecta; namely no direct correlation between rim height, crater radius, and ejecta type, but a slight negative correlation between radius and rim height for parts of the crater which possess ballistic ejecta. We find good circumstantial evidence that some of the target rock within which Zunil crater formed may have been dry at the time of impact compared to other craters of this size

  2. Venusian extended ejecta deposits as time-stratigraphic markers

    NASA Astrophysics Data System (ADS)

    Izenberg, Noam R.

    1992-12-01

    Use of impact crater ejects at time-stratigraphic markers was established during lunar geologic mapping efforts. The basic premise is that the deposition of impact ejecta, either by itself or mixed with impact-excavated material, is superimposed on a surface. The deposit becomes an observable, mappable unit produced in a single instant in geologic time. Up to two-thirds of Venus craters exhibit extended ejecta deposits. A reconnaissance survey of 336 craters (about 40 percent of the total population) was conducted. About half the craters examined were located in and around the Beta-Atla-Themis region, and half were spread over the western hemisphere of the planet. The survey was conducted using primarily C1-MIDR images. The preliminary survey shows: (1) of the 336 craters, 223 were found to have extended ejecta deposits. This proportion is higher than that found in other Venus crater databases by up to a factor of 2. (2) 53 percent of all extended ejecta craters were unambiguously superimposed on all volcanic and tectonic units. Crater Annia Faustina's associated parabolic ejecta deposit is clearly superimposed on volcanic flows coming from Gula Mons to the west. Parabola material from Faustina has covered the lava flows, smoothing the surface and reducing its specific backscatter cross section. The stratigraphy implies that the parabola material is the youngest observable unit in the region. (3) 12 percent of extended ejecta deposits are superimposed by volcanic materials. Crater Hwangcini has extended ejecta that has been covered by volcanic flows from a dome field to the northwest, implying that the volcanic units were emplaced subsequent to the ejecta deposit and are the youngest units in the locality. (4) It is difficult to determine the stratigraphic relationships of the remaining extended ejecta deposits in SAR at C1-MIDR resolution. Examination of higher resolution images and application of the other Magellan datasets in systematic manner should resolve

  3. Volatile Abundance and Distribution in the Tempel 1 Ejecta Cloud

    NASA Astrophysics Data System (ADS)

    Moretto, Mark J.; Feaga, Lori M.; A'Hearn, Michael F.; Protopapa, Silvia; Sunshine, Jessica M.; Farnham, Tony L.

    2015-11-01

    On 4 Jul 2005 the Deep Impact Impactor Spacecraft collided with comet Tempel 1, creating an ejecta cloud that was observed by the Deep Impact Flyby Spacecraft (DIF) as well as Earth and space based observatories. The High Resolution Instrument Infrared Spectrometer (HRI-IR) onboard DIF acquired several spectral scans of this ejecta cloud in the minutes immediately after impact. HRI-IR has a spectral range of 1.05 to 4.85 microns. This spectral range allows for water vapor, water ice, organics, CO2 and CO to be detected simultaneously, if each species is sufficiently abundant.We present an analysis of the quantity and spatial distribution of water, organics and CO2 in the Tempel 1 ejecta cloud. Variation in abundance, either absolute or relative, will be compared to morphological features in the ejecta cloud present in visible images acquired by the Medium and High Resolution Imagers onboard DIF. The composition of the ejecta cloud will also be compared with that of the 2 Jul 2005 natural outburst and quiescent activity levels at Tempel 1.

  4. Ejecta production mechanisms on painted surfaces

    NASA Astrophysics Data System (ADS)

    Bariteau, Muriel; Mandeville, Jean-Claude; Schäfer, Frank

    2001-10-01

    Painted surfaces are frequently used on space vehicles, whether on satellites or on rocket bodies. A bibliographic research allows us to evaluate the painted surfaces in orbit at about 63000 m2. The observation of impacts on painted surfaces of the LDEF satellite shows that the total ejected mass is large. However, no description of hypervelocity impact tests on painted surfaces has been found in the literature. An ejecta model has been previously developed at ONERA/DESP. This model is applicable for hypervelocity impacts on homogeneous ductile targets, homogeneous brittle targets and solar cells. The objective of this work is to extend this model to the case of painted surfaces. Consequently, impact pictures on painted surfaces of LDEF were analysed and some laboratory impact tests were performed at the Ernst-Mach-Institut, in Freiburg, under an ESA contract.

  5. Eltanin: Ground Truth for Kilometer-Sized Deep-Ocean Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Kyte, F. T.; Gersonde, R.; Kuhn, G.

    2009-12-01

    Deposits of the late Pliocene (2.5 Ma) Eltanin impact are unique in the known geological record. The only known example of a km-sized asteroid to impact a deep-ocean (5 km) basin, is the most meterorite-rich locality known on Earth. This was discovered as an Ir anomaly in sediments from three cores collected in the SE Pacific in 1965 by the USNS Eltanin. Subsequently, two expeditions of the R/V Polarstern in 1995 and 2001 have conducted geological and geophysical investigations in the impact region. An area of ~80,000 km2 has been mapped in some detail, and deposits from the impact are found in 23 cores spanning a region extending 660 (E-W) by 250 km (N-S). We find a central region 50 to 100 km across, near the Freeden Seamounts (57.3S, 90.5W), where sediments as old as Eocene have been ripped up (perhaps to basement) and redeposited by the impact into a chaotic mix of pebble to boulder-sized fragments. This is overlain by a fining upward sequence of sediments with laminations and some cross-bedding consistent with deposition in a high-energy flow regime. Near the top of this impact deposit, sub mm- to cm-sized meteoritic ejecta is mixed into the disturbed sediment. This ejecta is composed of 90% shock-melted asteroid and 10% unmelted meteorite fragments from the lo-metal mesosiderite asteroid. The amount of meteoritic ejecta in 13 cores from the central region record deposition of 3 to 50 kg of asteroid material per square meter. Km-sized impacts are fairly common on geological timescales, occurring a few times per m.y., so one or two other similar-sized, and several smaller projectiles likely hit the Pacific basin since the Late Pliocene. Undoubtedly, this is not the only such impact collected in deep-sea cores; it is unique only in that it has been recognized. Eltanin thus serves as type section for identifying ocean-impact deposits at other localities. Projectiles of this size cannot penetrate to the ocean floor and indeed there is no chemical evidence in the

  6. Summary of Results from Analyses of Deposits of the Deep-Ocean Impact of the Eltanin Asteroid

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Kuhn, Gerhard; Gersonde, Rainer

    2005-01-01

    Deposits of the late Pliocene (2.5 Ma) Eltanin impact are unique in the known geological record. The only known example of a km-sized asteroid to impact a deep-ocean (5 km) basin, is the most meterorite-rich locality known. This was discovered as an Ir anomaly in sediments from three cores collected in 1965 by the USNS Eltanin. These cores contained mm-sized shock-melted asteroid materials and unmelted meteorite fragments. Mineral chemistry of meteorite fragments, and siderophole concentrations in melt rocks, indicate that the parent asteroid was a low-metal (4\\%) mesosiderite. A geological exploration of the impact in 1995 by Polarstern expedition ANT-XIV4 was near the Freeden Seamounts (57.3S, 90.5 W), and successfully collected three cores with impact deposits. Analyses showed that sediments as old as Eocene were eroded by the impact disturbance and redeposited in three distinct units. The lowermost is a chaotic assemblage of sediment fragments up to 50 cm in size. Above this is a laminated sand-rich unit that deposited as a turbulent flow, and this is overlain by a more fine-grained deposit of silts and clays that settled from a cloud of sediment suspended in the water column. Meteoritic ejecta particles were concentrated near the base of the uppermost unit, where coarse ejecta caught up with the disturbed sediment. Here we will present results from a new suite of cores collected on Polarstern expedition ANT-XVIIU5a. In 2001, the Polarstern returned to the impact area and explored a region of 80,000 sq-km., collecting at least 16 sediment cores with meteoritic ejecta. The known strewn field extends over a region 660 by 200 km. The meteoritic ejecta is most concentrated in cores on the Freeden seamounts, and in the basins to the north, where the amount of meteoritic material deposited on the ocean floor was as much as 3 g/sq-cm. These concentrations drop off to the north and the east to levels as low as approximately 0.1 g/sq-cm. We were unable to sample the

  7. Summary of Results from Analyses of Deposits of the Deep-Ocean Impact of the Eltanin Asteroid

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Kuhn, Gerhard; Gersonde, Rainer

    2005-01-01

    Deposits of the late Pliocene (2.5 Ma) Eltanin impact are unique in the known geological record. The only known example of a km-sized asteroid to impact a deep-ocean (5 km) basin, is the most meterorite-rich locality known. This was discovered as an Ir anomaly in sediments from three cores collected in 1965 by the USNS Eltanin. These cores contained mm-sized shock-melted asteroid materials and unmelted meteorite fragments. Mineral chemistry of meteorite fragments, and siderophole concentrations in melt rocks, indicate that the parent asteroid was a low-metal (4\\%) mesosiderite. A geological exploration of the impact in 1995 by Polarstern expedition ANT-XIV4 was near the Freeden Seamounts (57.3S, 90.5 W), and successfully collected three cores with impact deposits. Analyses showed that sediments as old as Eocene were eroded by the impact disturbance and redeposited in three distinct units. The lowermost is a chaotic assemblage of sediment fragments up to 50 cm in size. Above this is a laminated sand-rich unit that deposited as a turbulent flow, and this is overlain by a more fine-grained deposit of silts and clays that settled from a cloud of sediment suspended in the water column. Meteoritic ejecta particles were concentrated near the base of the uppermost unit, where coarse ejecta caught up with the disturbed sediment. Here we will present results from a new suite of cores collected on Polarstern expedition ANT-XVIIU5a. In 2001, the Polarstern returned to the impact area and explored a region of 80,000 sq-km., collecting at least 16 sediment cores with meteoritic ejecta. The known strewn field extends over a region 660 by 200 km. The meteoritic ejecta is most concentrated in cores on the Freeden seamounts, and in the basins to the north, where the amount of meteoritic material deposited on the ocean floor was as much as 3 g/sq-cm. These concentrations drop off to the north and the east to levels as low as approximately 0.1 g/sq-cm. We were unable to sample the

  8. Non-Ballistic Vapor-Driven Ejecta

    NASA Technical Reports Server (NTRS)

    Wrobel, K. E.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Impact-induced vaporization is a key component of early-time cratering mechanics. Previous experimental [1,2] and computational [e.g., 3] studies focused on the generation and expansion of vapor clouds in an attempt to better understand vaporization in hypervelocity impacts. Presented here is a new experimental approach to the study of impact-induced vaporization. The three-dimensional particle image velocimetry (3D PIV) system captures interactions between expanding vapor phases and fine particulates. Particles ejected early in the cratering process may be entrained in expanding gas phases generated at impact, altering their otherwise ballistic path of flight. 3D PIV allows identifying the presence of such non-ballistic ejecta from very early times in the cratering process.

  9. Ejecta experiments at the Pegasus Pulsed Power facility

    SciTech Connect

    Sorenson, D.S.; Carpenter, B.; King, N.S.P.

    1997-08-01

    When a shock wave interacts at the surface of a metal target, target material can be emitted from the surface called ejecta. The mass, size, shape, and velocity of ejecta varies depending on the initial shock conditions, and target material properties. In order to understand this phenomena, diagnostics have been developed and implemented at the Pegasus Pulsed Power facility located at Los Alamos National Laboratory. The facility provides both radial and axial access for making measurements. There exist optical, laser, and x-ray paths for performing measurements on the target assembly located near the center of the machine. The facility can provide many mega amps of current which is transported to a 5.0 cm diameter, 2.0 cm high aluminum cylinder. The current and associated magnetic field set up forces which implode the aluminum cylinder radially inward. As the aluminum cylinder reaches the appropriate velocity it impacts a target cylinder. Due to this impact, a shock wave is set up in the target and eventually interacts at the inner surface of the target cylinder where ejecta are produced. A 1.5 cm diameter collimator cylinder located inside the target cylinder is used to control the number of ejecta particles that arrive at the center region where ejecta measurements are made. Diagnostics have been developed including in-line Fraunhofer holography and visible shadowgraph. Details of these diagnostics are described.

  10. Deposition of Distal K/T Ejecta via Density Currents

    NASA Astrophysics Data System (ADS)

    Goldin, T. J.; Melosh, H. J.

    2007-12-01

    While the K/T boundary ejecta layer is well known, both the mechanics of deposition and the environmental effects of this deposition are less established. KFIX-LPL, a two-phase fluid flow code, allows us to model the interactions between the atmosphere and ejecta spherules. KFIX-LPL accommodates a range of flow regimes and includes a complete treatment of thermal radiation. We modeled a distal Chicxulub scenario (impact plume ejecta only) by injecting 250-μm spherules into the atmosphere at 8 km/s with an inflow density consistent with observed spherule volumes. The spherules fall through the thin upper atmosphere, compressing the atmosphere until the spherules decelerate due to drag and increasing atmospheric pressure. The particles accumulate in dense layers at ~50-km altitude. At intermediate distances from Chicxulub, such as North America where a dual-layer is observed at the K/T boundary, ejecta curtain material must also be considered. For these models we include an initial brief injection 500-μm terrestrial ejecta at 4.5 km/s in addition to the more prolonged flux of fireball material. The ejecta curtain material compresses the atmosphere to below 40 km in altitude. As this brief pulse ends, the atmosphere rebounds upwards and ejecta from the fireball pulse accumulates at a higher level and the two types of ejecta are deposited separately. In both the distal and North American models, the spherules initially settle through the atmosphere as individual particles, but as the ejecta near the ground, density currents form. The modeled instabilities are real density currents and not numerical artifacts, as confirmed by KFIX-LPL simulations of a series of tephra fall experiments in water (Carey 1997). We modeled these experiments by dropping spherical particles at various mass fluxes into water. Instability formation was evaluated using a criterion yielded by the ratio between turbulent instability growth rate and Stokes velocity of individual particles

  11. Designing global climate and atmospheric chemistry simulations for 1 and 10 km diameter asteroid impacts using the properties of ejecta from the K-Pg impact

    NASA Astrophysics Data System (ADS)

    Toon, Owen B.; Bardeen, Charles; Garcia, Rolando

    2016-10-01

    About 66 million years ago, an asteroid about 10 km in diameter struck the Yucatan Peninsula creating the Chicxulub crater. The crater has been dated and found to be coincident with the Cretaceous-Paleogene (K-Pg) mass extinction event, one of six great mass extinctions in the last 600 million years. This event precipitated one of the largest episodes of rapid climate change in Earth's history, yet no modern three-dimensional climate calculations have simulated the event. Similarly, while there is an ongoing effort to detect asteroids that might hit Earth and to develop methods to stop them, there have been no modern calculations of the sizes of asteroids whose impacts on land would cause devastating effects on Earth. Here, we provide the information needed to initialize such calculations for the K-Pg impactor and for a 1 km diameter impactor. There is considerable controversy about the details of the events that followed the Chicxulub impact. We proceed through the data record in the order of confidence that a climatically important material was present in the atmosphere. The climatic importance is roughly proportional to the optical depth of the material. Spherules with diameters of several hundred microns are found globally in an abundance that would have produced an atmospheric layer with an optical depth around 20, yet their large sizes would only allow them to stay airborne for a few days. They were likely important for triggering global wildfires. Soot, probably from global or near-global wildfires, is found globally in an abundance that would have produced an optical depth near 100, which would effectively prevent sunlight from reaching the surface. Nanometer-sized iron particles are also present globally. Theory suggests these particles might be remnants of the vaporized asteroid and target that initially remained as vapor rather than condensing on the hundred-micron spherules when they entered the atmosphere. If present in the greatest abundance allowed

  12. The Manson Impact Structure: 40Ar/39Ar age and its distal impact ejecta in the pierre shale in southeastern South Dakota

    USGS Publications Warehouse

    Izett, G.A.; Cobban, W.A.; Obradovich, J.D.; Kunk, M.J.

    1993-01-01

    The 40Ar/39Ar ages of a sanidine clast from a melt-matrix breccia of the Manson, Iowa, impact structure (MIS) indicate that the MIS formed 73.8 ?? 0.3 million years ago (Ma) and is not coincident with the Cretaceous-Tertiary boundary (64.43 ?? 0.05 Ma). The MIS sanidine is 9 million years older than 40Ar/39Ar age spectra of MIS shock-metamorphosed microcline and melt-matrix breccia interpreted earlier to be 64 to 65 Ma. Grains of shock-metamorphosed quartz, feldspar, and zircon were found in the Crow Creek Member (upper Campanian) at a biostratigraphic level constrained by radiometric ages in the Pierre Shale of South Dakota that are consistent with the 40Ar/39Ar age of 73.8 ?? 0.3 Ma for MIS reported herein.

  13. Dynamics of Supernova Remnants with Ejecta and Circumstellar Bubbles

    NASA Astrophysics Data System (ADS)

    Blondin, M. J.; Featherstone, N.; Borkowski, J. K.; Reynolds, P. S.

    2001-09-01

    Progenitors of core-collapse supernovae (SNe) blow bubbles in the ambient medium and sweep it into shells with their powerful stellar winds. After the explosion, SN ejecta initially collide with the stellar wind, then with the wind-blown bubble, and finally with a dense wind-swept shell. This collision is particularly energetic for SNe whose progenitors lost most of their outer envelopes just prior to explosion: the brightest galactic supernova remnant (SNR), Cas A, is a prime example of such an interaction with the circumstellar medium (CSM). The SN ejecta are far from being smooth for such remnants, because of vigorous turbulence and mixing of heavy-element ejecta immediately after the explosion and subsequent growth of Ni-Fe bubbles powered by the radioactive decay. We study the interaction of ``bubbly'' SN ejecta with a CSM bubble and a swept CSM shell, using hydrodynamical simulations in 2 and 3 dimensions with the VH-1 hydrocode. We compare our simulations with analytic self-similar (Chevalier & Liang 1989) solutions and with our previous simulations of interaction of bubbly ejecta with a uniform ambient medium. When compared with these simulations, the impact of bubbly ejecta with the shell results in a more vigorous turbulence and mixing. Dense and cool ejecta at the boundaries of adjacent bubbles may penetrate the shell, leading to plume-like and ring-like features. We examine whether such an interaction is responsible for the observed morphology of Cas A as seen by the Chandra X-ray Observatory and the Hubble Space Telescope, and for the different expansion rates seen at X-ray and radio wavelengths.

  14. The Crater Ejecta Distribution on Ceres

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Neesemann, Adrian; Schulzeck, Franziska; Krohn, Katrin; Gathen, Isabel; Otto, Katharina; Jaumann, Ralf; Michael, Gregory; Raymond, Carol; Russell, Christopher

    2017-04-01

    Since March 6 2015 the Dawn spacecraft [1] has been in orbit around the dwarf planet Ceres. At small crater diameters Ceres appears to be peppered with secondary craters that often align in chains or form clusters. Some of such possible crater chains follow curved geometries and are not in a radial orientation with respect to possible source craters [2]. Ceres is a fast rotating body ( 9 h per revolution) with comparatively low surface gravity ( 0.27 m/s2). A substantial fraction of impact ejecta may be launched with velocities similar to Ceres' escape velocity (510 m/s), which implies that many ejected particles follow high and long trajectories. Thus, due to Ceres' fast rotation the distribution pattern of the reimpacting ejected material is heavily affected by Coriolis forces that results in a highly asymmetrical and curved pattern of secondary crater chains. In order to simulate flight trajectories and distribution of impact ejected material for individual craters on Ceres we used the scaling laws by [3] adjusted to the Cerean impact conditions [4] and the impact ejecta model by [5]. These models provide the starting conditions for tracer particles in the simulation. The trajectories of the particles are computed as n-body simulation. The simulation calculates the positions and impact velocities of each impacting tracer particle with respect to the rotating surface of Ceres, which is approximated by a two-axis ellipsoid. Initial results show a number of interesting features in the simulated deposition geometries of specific crater ejecta. These features are roughly in agreement with features that can be observed in Dawn imaging data of the Cerean surface. For example: ray systems of fresh impact craters, non-radial crater chains and global scale border lines of higher and lower color ratio areas. Acknowledgment: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry for Economic Affairs and Energy, Germany, grants 50 OW

  15. Martian craters viewed by the Thermal Emission Imaging System instrument: Double-layered ejecta craters

    NASA Astrophysics Data System (ADS)

    Boyce, Joseph M.; Mouginis-Mark, Peter J.

    2006-10-01

    The Thermal Emission Imaging System (THEMIS) visible (VIS) images provide new insight into the nature and development of the unique ejecta deposits of Martian craters. This study focuses on double-layered ejecta (DLE) craters. To date, over 100 DLE craters have been examined using mainly THEMIS VIS data. Our observations suggest that emplacement of DLE crater ejecta occurred in two stages, with the inner ejecta layer emplaced similar to single-layered ejecta (SLE) crater ejecta. This may have involved both ballistic and flow processes. In contrast, the outer ejecta layer of DLE craters appears to have been emplaced through the high-velocity outflow of materials from tornadic winds generated by the advancing ejecta curtain or base surge. Remarkably, DLE craters lack secondary craters, which suggests that the large ejecta blocks that normally produce such craters may have either been entrained and/or crushed by these winds or fragmented as a result of the presence of water in the target materials. These observations suggest that volatiles (either trapped in the subsurface or in the atmosphere) have played a key role in the emplacement of the ejecta of DLE craters and leaves open the question as to what role volatiles play in the emplacement of ejecta of other types of fluidized ejecta craters (i.e., SLE and MLE craters). Because DLE craters are found in many different regions of Mars, often in close proximity to other types of craters, conditions (e.g., atmospheric density) that produce DLE craters must fluctuate or the Martian crust must be unexpectedly heterogeneous (laterally and vertically). While the degree of heterogeneity has yet to be recognized, recent suggestions about possible Martian climate change raises the possibility of impact into target materials that are periodically wet or that a significantly higher atmospheric pressure may be periodically present.

  16. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.

  17. Performance of Hayabusa2 DCAM3-D Camera for Short-Range Imaging of SCI and Ejecta Curtain Generated from the Artificial Impact Crater Formed on Asteroid 162137 Ryugu (1999 JU3)

    NASA Astrophysics Data System (ADS)

    Ishibashi, K.; Shirai, K.; Ogawa, K.; Wada, K.; Honda, R.; Arakawa, M.; Sakatani, N.; Ikeda, Y.

    2017-07-01

    Deployable Camera 3-D (DCAM3-D) is a small high-resolution camera equipped on Deployable Camera 3 (DCAM3), one of the Hayabusa2 instruments. Hayabusa2 will explore asteroid 162137 Ryugu (1999 JU3) and conduct an impact experiment using a liner shooting device called Small Carry-on Impactor (SCI). DCAM3 will be detached from the Hayabusa2 spacecraft and observe the impact experiment. The purposes of the observation are to know the impact conditions, to estimate the surface structure of asteroid Ryugu, and to understand the physics of impact phenomena on low-gravity bodies. DCAM3-D requires high imaging performance because it has to image and detect multiple targets of different scale and radiance, i.e., the faint SCI before the shot from 1-km distance, the bright ejecta generated by the impact, and the asteroid. In this paper we report the evaluation of the performance of the CMOS imaging sensor and the optical system of DCAM3-D. We also describe the calibration of DCAM3-D. We confirmed that the imaging performance of DCAM3-D satisfies the required values to achieve the purposes of the observation.

  18. Performance of Hayabusa2 DCAM3-D Camera for Short-Range Imaging of SCI and Ejecta Curtain Generated from the Artificial Impact Crater Formed on Asteroid 162137 Ryugu (1999 JU3)

    NASA Astrophysics Data System (ADS)

    Ishibashi, K.; Shirai, K.; Ogawa, K.; Wada, K.; Honda, R.; Arakawa, M.; Sakatani, N.; Ikeda, Y.

    2016-11-01

    Deployable Camera 3-D (DCAM3-D) is a small high-resolution camera equipped on Deployable Camera 3 (DCAM3), one of the Hayabusa2 instruments. Hayabusa2 will explore asteroid 162137 Ryugu (1999 JU3) and conduct an impact experiment using a liner shooting device called Small Carry-on Impactor (SCI). DCAM3 will be detached from the Hayabusa2 spacecraft and observe the impact experiment. The purposes of the observation are to know the impact conditions, to estimate the surface structure of asteroid Ryugu, and to understand the physics of impact phenomena on low-gravity bodies. DCAM3-D requires high imaging performance because it has to image and detect multiple targets of different scale and radiance, i.e., the faint SCI before the shot from 1-km distance, the bright ejecta generated by the impact, and the asteroid. In this paper we report the evaluation of the performance of the CMOS imaging sensor and the optical system of DCAM3-D. We also describe the calibration of DCAM3-D. We confirmed that the imaging performance of DCAM3-D satisfies the required values to achieve the purposes of the observation.

  19. Apollo 17 Lunar Surface Experiment: Lunar Ejecta and Meteorites Experiment

    NASA Image and Video Library

    1972-11-30

    S72-37257 (November 1972) --- The Lunar Ejecta and Meteorites Experiment (S-202), one of the experiments of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. The purpose of this experiment is to measure the physical parameters of primary and secondary particles impacting the lunar surface.

  20. Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley Basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic earth

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew; Allen, Charlotte

    2004-04-01

    A stratigraphically consistent <20-cm-thick unit of microkrystite spherule and microtektite-bearing impact fallout ejecta overlying volcanic tuff of the 4th Shale Macroband (DGS4) of the Dales Gorge Member (2.47-2.50 Ga), Brockman Iron Formation, Hamersley Group, Western Australia, displays anomalous platinum group element (PGE) and other trace metal patterns. The unit has high Ir (13 ppb) and Pt (35 ppb), and low Pd (2.7 ppb) and Au (1.55-1.88 ppb). The low Pd/Ir ratios and low Cr/V suggest depletion in volatile PGE and metals relative to refractory PGE and V, contrasted to the ubiquitous high Pd/Ir of most terrestrial rocks. Marked depletion in the volatile Rare Earth Element (REE) abundances in stilpnomelane spherule cores is consistent with this model. The loss of volatile PGE, analogous to relations in 3.24 Ga impact fallout units of the Barberton greenstone belt (S3 and S4), suggests fractionation related to atmospheric spherule condensation. The microkrystite spherule unit locally incorporate fragments and up to meter-scale boulders of banded chert and stromatolite carbonate, suggesting tsunami transport postdating spherule deposition. DGS4 microkrystite spherules are dominated by stilpnomelane mantled by K-feldspar shells, which consist of inward-radiating fibrous feldspar aggregates suggestive of devitrification. The K and REE enrichment of spherule margins are contrasted to flat REE patterns of the stilpnomelane cores, suggesting adsorption of lithophile elements during settling of the spherules through the hydrosphere. K-feldspar shells contain submicron-scale Ni metal, oxide, sulfide and arsenide grains and euhedral needles of feldspar-exsolved ilmenite. Associated magnetite may have high nickel (<1.25% NiO). The generally mafic composition of the spherules and high Ni/Cr and Ni/Co are consistent with a target mafic-ultramafic crust, consistent with the lack of shock-metamorphosed quartz. Mixing calculations suggest a contribution of 2.5-3% projectile

  1. A model for wind-extension of the Copernicus ejecta blanket

    NASA Technical Reports Server (NTRS)

    Rehfuss, D. E.; Michael, D.; Anselmo, J. C.; Kincheloe, N. K.

    1977-01-01

    The interaction between crater ejecta and the transient wind from impact-shock vaporization is discussed. Based partly on Shoemaker's (1962) ballistic model of the Copernicus ejecta and partly on Rehfuss' (1972) treatment of lunar winds, a simple model is developed which indicates that if Copernicus were formed by a basaltic meteorite impacting at 20 km/s, then 3% of the ejecta mass would be sent beyond the maximum range expected from purely ballistic trajectories. That 3% mass would, however, shift the position of the outer edge of the ejecta blanket more than 400% beyond the edge of the ballistic blanket. For planetary bodies lacking an intrinsic atmosphere, the present model indicates that this form of hyperballistic transport can be very significant for small (no more than about 1 kg) ejecta fragments.

  2. Planet Earth Set to Broil: Thermal Radiation from Chicxulub Ejecta Reentry

    NASA Astrophysics Data System (ADS)

    Goldin, T. J.; Melosh, H. J.

    2009-03-01

    We model the thermal radiation transfer due to the atmospheric reentry of hypervelocity Chicxulub impact ejecta. Self-shielding of downward radiation by the spherules limits the magnitude and duration of the thermal pulse at the Earth’s surface.

  3. Ejecta transport, breakup and conversion

    DOE PAGES

    Buttler, William Tillman; Lamoreaux, Steven Keith; Schulze, Roland K.; ...

    2017-04-26

    Here, we report experimental results from an initial study of reactive and nonreactive metal fragments—ejecta—transporting in vacuum, and in reactive and nonreactive gases. We postulate that reactive metal fragments ejected into a reactive gas, such as H2, will break up into smaller fragments in situations where they are otherwise hydrodynamically stable in a nonreactive gas such as He. To evaluate the hypothesis we machined periodic perturbations onto thin Ce and Zn coupons and then explosively shocked them to eject hot, micron-scale fragments from the perturbations. The ejecta masses were diagnosed with piezoelectric pressure transducers, and their transport in H2 andmore » He was imaged with visible and infrared (IR) cameras. Because Ce + H2 → CeH2 + ΔH, where ΔH is the enthalpy of formation, an observed increase of the relative IR (radiance) temperature TR between the Ce–H2 and Ce–He gas systems can be used to estimate the amount of Ce that converts to CeH2. As a result, the experiments sought to determine whether dynamic chemical effects should be included in ejecta-transport models.« less

  4. A possible formation mechanism of rampart-like ejecta pattern in a laboratory

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Kadono, T.; Nakamura, A. M.; Arakawa, M.; Wada, K.; Yamamoto, S.

    2011-12-01

    The ejecta morphologies around impact craters represent highly diverse appearance on the surface of solid bodies in our Solar System. It is considered that the varied ejecta morphologies result from the environments such as the atmospheric pressure, the volatile content in the subsurface, because they affect the emplacement process of the ejecta. Clarifying the relationships between the ejecta morphologies and the formation processes and environments could constrain the ancient surface environment and the evolution of the planets. We have investigated the ejecta patterns around the impact craters which formed on a glass beads layer in a laboratory, and found that the patterns depend on impact velocity, atmospheric pressure, and initial state of packing of the target [Suzuki et al., 2010, JpGU abstract]. Now, we focus on one of the ejecta patterns which has a petal-like (or sometimes concentric) ridges on the distal edge of the continuous ejecta. This ejecta pattern looks very similar to the rampart ejecta morphology observed around Martian impact craters [e.g. Barlow et al., 2000]. The experiments are conducted with the small light gas gun placed in Kobe University, Japan. The projectile is a cylinder with a diameter of 10 mm and a height of 10 mm, and is made of aluminum, nylon, or stainless. The target is a layer of glass beads (nearly uniform diameter) in a tub with ~28 cm in diameter. The bulk density is about 1.7 g/cm^3. The following three parameters are varied: 1) the diameter of the target glass beads (50, 100, 420 microns), 2) the ambient atmospheric pressure in the chamber (from ~500 Pa to atmospheric pressure), 3) the impact velocity of the projectile (from a few to ~120 m/s). In our experiments, the rampart-like ridged patterns are observed within the following conditions: 1) the diameter of the target glass beads is 50 and 100 microns, 2) the ambient pressure in the chamber is higher than ~10^4 Pa, and 3) the impact velocity is higher than 16 m

  5. Creating an artificial Geminid meteor shower: Correlation between ejecta velocity and observability

    NASA Astrophysics Data System (ADS)

    Kasuga, T.; Sato, M.; Watanabe, J.

    One of the interesting arguments for a space impact mission to asteroid 3200 Phaethon is to create an artificial Geminid meteor shower. In this work we investigate the artificial shower's dates of observability and dependence on ejecta velocity using dust trail theory. We find that when the dust ejecta velocities are 200 m/s the artificial meteor showers start to be visible in 2204 and continue for about 30 years. If the dust ejecta velocity is 20 m/s they only last 10 years from 2215 to 2225. Thus, the onset of artificial shower activity begins sooner and lasts longer with higher ejecta velocities. To produce an artificial meteor shower with 3200 Phaethon as the parent will require higher impact energy than the Deep Impact spacecraft delivered to 9P/Tempel 1.

  6. Using martian single and double layered ejecta craters to probe subsurface stratigraphy

    NASA Astrophysics Data System (ADS)

    Jones, Eriita; Osinski, Gordon R.

    2015-02-01

    Martian craters with fluidized ejecta - including single-layered, double-layered and multiple-layered craters - have been studied extensively, with their formation generally suggested to require some presence of volatiles in the subsurface. However, experimental reproduction of these morphologies, impact modelling, and the occurrence of layered ejecta in putative volatile poor regions suggests that other factors may also play important roles. A recent extensive catalogue of martian impact craters (Robbins, S.J., Hynek, B.M. [2012a]. J. Geophys. Res. 117, E05004) classifies crater ejecta along with their location, diameters and ejecta extents, potentially providing new information on the links between these morphologies and the subsurface. We utilise this catalogue to examine the regional variation in ejecta mobility, onset diameter and the correlation between ejecta mobility and diameter for single- and double-layered ejecta craters on Mars. A simple regional stratigraphic model is developed to explain the observed trends through the viscosity of the layers within the target. Using this model, the potential relative thickness and burial depths of low viscosity layers in the martian subsurface are hypothesised, and compared to other observations and models of subsurface volatiles and how they have varied throughout time.

  7. Erosion of ejecta at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    Grant, John A.; Schultz, Peter H.

    1993-01-01

    New methods for estimating erosion at Meteor Crater, Arizona, indicate that continuous ejecta deposits beyond 1/4-1/2 crater radii from the rim have been lowered less than 1 m on the average. This conclusion is based on the results of two approaches: coarsening of unweathered ejecta into surface lag deposits and calculation of the sediment budget within a drainage basin on the ejecta. Preserved ejecta morphologies beneath thin alluvium revealed by ground-penetrating radar provide qualitative support for the derived estimates. Although slightly greater erosion of less resistant ejecta locally has occurred, such deposits were limited in extent, particularly beyond 0.25R-0.5R from the present rim. Subtle but preserved primary ejecta features further support our estimate of minimal erosion of ejecta since the crater formed about 50,000 years ago. Unconsolidated deposits formed during other sudden extreme events exhibit similarly low erosion over the same time frame; the common factor is the presence of large fragments or large fragments in a matrix of finer debris. At Meteor Crater, fluvial and eolian processes remove surrounding fines leaving behind a surface lag of coarse-grained ejecta fragments that armor surfaces and slow vertical lowering.

  8. High-resolution studies of double-layered ejecta craters: Morphology, inherent structure, and a phenomenological formation model

    NASA Astrophysics Data System (ADS)

    Wulf, Gerwin; Kenkmann, Thomas

    2015-02-01

    The ejecta blankets of impact craters in volatile-rich environments often possess characteristic layered ejecta morphologies. The so-called double-layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high-resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well-preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile-rich environments, such as Ganymede, Europa, and the Earth.

  9. The Unique Characteristics of Double Layered Ejecta Craters on Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Boyce, J. M.

    2004-12-01

    THEMIS VIS images reveal several unique characteristics of double layered ejecta (DLE) craters on Mars that suggest a strikingly different mode of formation from single layered ejecta (SLE) or multi-layered ejecta (MLE) craters. DLE craters are typically 15 to 25 km in diameter and differ from the other types of Martian craters in the following ways: (1) DLE craters lack secondary craters; (2) ejecta layers of DLE craters lack distal ramparts; (3) flow features within the outer layer of DLE craters suggest a very low emplacement velocity; and (4) radial striations exist only within DLE ejecta, and that these striations cross both the inner and outer ejecta layers. The interior morphology of DLE is also less complex than SLE or MLE layered ejecta craters; DLE craters lack wall terraces and, where present, have only simple central peaks. Previous morphologic analyses of DLE craters proposed that they might have formed in the volatile-rich sediments that are believed to infill areas such as Utopia, Arcadia and Acidalia Planitiae. But our inspection of the THEMIS VIS data set confirms the Viking-based results of Barlow and Perez (JGR-Planets, vol. 108 (E8), doi 10.1029/2002JE002036, 2003) that DLE craters are not uniquely located in the northern plains. We find that DLE craters with nearly identical morphologies also occur within the highlands of Mars, including Hesperia Planum, Icaria Planum, Arabia Terra, Noachis Terra, and Terra Sirenum. A few examples of DLE craters are found at a range of elevations between -5.8 km to +2.7 km relative to the MOLA datum, and within two latitudes belts between 23° to 52° N, and between 29° to 46° S. Thus some other mode of formation apart from impact into volatile-rich sediments of the northern plains needs to be identified. Through our on-going characterization of DLE craters with THEMIS VIS data, we hope to identify the attributes of these craters to help identify their unique mode of formation.

  10. Investigations of primary and secondary impact structures on the moon and laboratory experiments to study the ejecta of secondary particles. Ph.D. Thesis - Ruprecht Karl Univ.

    NASA Technical Reports Server (NTRS)

    Koenig, B.

    1977-01-01

    Young lunar impact structures were investigated by using lunar orbiter, Apollo Metric and panorama photographs. Measurements on particularly homogeneous areas low in secondary craters made possible an expansion of primary crater distribution to small diameters. This is now sure for a range between 20m or = D or = 20km and this indicates that the size and velocity distribution of the impacting bodies in the last 3 billion years has been constant. A numerical approximation in the form of a 7th degree polynomial was obtained for the distribution.

  11. Large ejecta fragments from asteroids. [Abstract only

    NASA Technical Reports Server (NTRS)

    Asphaug, E.

    1994-01-01

    The asteroid 4 Vesta, with its unique basaltic crust, remains a key mystery of planetary evolution. A localized olivine feature suggests excavation of subcrustal material in a crater or impact basin comparable in size to the planetary radius (R(sub vesta) is approximately = 280 km). Furthermore, a 'clan' of small asteroids associated with Vesta (by spectral and orbital similarities) may be ejecta from this impact 151 and direct parents of the basaltic achondrites. To escape, these smaller (about 4-7 km) asteroids had to be ejected at speeds greater than the escape velocity, v(sub esc) is approximately = 350 m/s. This evidence that large fragments were ejected at high speed from Vesta has not been reconciled with the present understanding of impact physics. Analytical spallation models predict that an impactor capable of ejecting these 'chips off Vesta' would be almost the size of Vesta! Such an impact would lead to the catastrophic disruption of both bodies. A simpler analysis is outlined, based on comparison with cratering on Mars, and it is shown that Vesta could survive an impact capable of ejecting kilometer-scale fragments at sufficient speed. To what extent does Vesta survive the formation of such a large crater? This is best addressed using a hydrocode such as SALE 2D with centroidal gravity to predict velocities subsequent to impact. The fragmentation outcome and velocity subsequent to the impact described to demonstrate that Vesta survives without large-scale disassembly or overturning of the crust. Vesta and its clan represent a valuable dataset for testing fragmentation hydrocodes such as SALE 2D and SPH 3D at planetary scales. Resolution required to directly model spallation 'chips' on a body 100 times as large is now marginally possible on modern workstations. These boundaries are important in near-surface ejection processes and in large-scale disruption leading to asteroid families and stripped cores.

  12. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  13. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  14. Computer simulations of 10-km-diameter asteroid impacts into oceanic and continental sites: Preliminary results on atmospheric passage, cratering and ejecta dynamics

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Schuster, S. H.; Rosenblatt, Martin; Grant, L. B.; Hassig, P. J.; Kreyenhagen, K. N.

    1987-01-01

    A series of analytical calculations of large scale cratering events for both oceanic and continental sites were made in order to examine their effects on the target media and atmosphere. The first analytical studies that were completed consists of computer simulations of the dynamics of: (1) the passage of a 10 km diameter asteroid moving at 20 km/sec through the Earth's atmosphere, and (2) the impact cratering events in both oceanic and continental environments. Calculation of the dynamics associated with the passage of the asteroid through the atmosphere showed strong effects on the surrounding air mass. The calculations of the impact cratering events showed equally dramatic effects on the oceanic and continental environments. These effects are briefly discussed.

  15. Erosion and Ejecta Reaccretion on 243 Ida and Its Moon

    NASA Astrophysics Data System (ADS)

    Geissler, Paul; Petit, Jean-Marc; Durda, Daniel D.; Greenberg, Richard; Bottke, William; Nolan, Michael; Moore, Jeffrey

    1996-03-01

    Galileo images of Asteroid 243 Ida and its satellite Dactyl show surfaces which are dominantly shaped by impact cratering. A number of observations suggest that ejecta from hypervelocity impacts on Ida can be distributed far and wide across the Ida system, following trajectories substantially affected by the low gravity, nonspherical shape, and rapid rotation of the asteroid. We explore the processes of reaccretion and escape of ejecta on Ida and Dactyl using three-dimensional numerical simulations which allow us to compare the theoretical effects of orbital dynamics with observations of surface morphology. The effects of rotation, launch location, and initial launch speed are first examined for the case of an ideal triaxial ellipsoid with Ida's approximate shape and density. Ejecta launched at low speeds (V≪Vesc) reimpact near the source craters, forming well-defined ejecta blankets which are asymmetric in morphology between leading and trailing rotational surfaces. The net effect of cratering at low ejecta launch velocities is to produce a thick regolith which is evenly distributed across the surface of the asteroid. In contrast, no clearly defined ejecta blankets are formed when ejecta is launched at higher initial velocities (V∼Vesc). Most of the ejecta escapes, while that which is retained is preferentially derived from the rotational trailing surfaces. These particles spend a significant time in temporary orbit around the asteroid, in comparison to the asteroid's rotation period, and tend to be swept up onto rotational leading surfaces upon reimpact. The net effect of impact cratering with high ejecta launch velocities is to produce a thinner and less uniform soil cover, with concentrations on the asteroids' rotational leading surfaces. Using a realistic model for the shape of Ida (P. Thomas, J. Veverka, B. Carcich, M. J. S. Belton, R. Sullivan, and M. Davies 1996,Icarus120, 000-000), we find that an extensive color/albedo unit which dominates the

  16. Contribution of Secondary Ejecta to the Debris Population

    NASA Astrophysics Data System (ADS)

    Mandeville, J.; Bariteau, M.

    When a micro-debris or a micrometeoroid impacts a spacecraft surface, a large number of secondary particles, called ejecta, are produced. These particles can contribute to a modification of the debris environment : either locally by the occurrence of secondary impacts on the components of complex and large space structures, or at great distance by the formation of a population of small orbital debris. This paper describes the ejecta overall production, the lifetime and the orbital evolution of the particles. Finally the repartition of ejecta in LEO and GEO is computed. By an extensive use of the spacecraft database DISCOS, satellites and rocket bodies currently in orbit have been identified. The surface area of solar arrays and painted surfaces currently in orbit is estimated, and the primary flux received is computed using the ORDEM 96 model for debris and the Grün model for meteoroids. Afterward, for each representative particle, its orbital evolution is computed. The ejecta are considered to be produced since 1960, and their spatial density is computed in 2000. It is assumed that the area of the primary surfaces increases at a rate of 2% a year. Small particles are ejected with a high velocity, so their initial orbit is very different from the one of the parent object and about 23% of them are ejected on a re-entering or a hyperbolic trajectory. On the other hand, spall and large particles are ejected with low velocity and their initial orbit is close to the parent body. The spatial density of ejected particles is maximum between 800 km and 1400 km of altitude. Below 800 km altitude, the spatial density decreases because of the increase of the atmospheric drag. Above, the spatial density diminishes, because primary surfaces are less numerous. The number of ejecta, in the millimetre size range, reaches 5% of the total debris density at 800 km altitude and about 1 % in GEO. To allows a faster computation, the ejecta number as a function of size, altitude and

  17. Chromium isotope evidence in ejecta deposits for the nature of Paleoproterozoic impactors

    NASA Astrophysics Data System (ADS)

    Mougel, Bérengère; Moynier, Frédéric; Göpel, Christa; Koeberl, Christian

    2017-02-01

    Non-mass dependent chromium isotopic signatures have been successfully used to determine the presence and identification of extra-terrestrial materials in terrestrial impact rocks. Paleoproterozoic spherule layers from Greenland (Grænsesø) and Russia (Zaonega), as well as some distal ejecta deposits (Lake Superior region) from the Sudbury impact (1849 ± 0.3 Ma) event, have been analyzed for their Cr isotope compositions. Our results suggest that 1) these distal ejecta deposits are all of impact origin, 2) the Grænsesø and Zaonega spherule layers contain a distinct carbonaceous chondrite component, and are possibly related to the same impact event, which could be Vredefort (2023 ± 4 Ma) or another not yet identified large impact event from that of similar age, and 3) the Sudbury ejecta record a complex meteoritic signature, which is different from the Grænsesø and Zaonega spherule layers, and could indicate the impact of a heterogeneous chondritic body.

  18. Platinum group elements and 187Os/ 188Os in a purported impact ejecta layer near the Eifelian-Givetian stage boundary, Middle Devonian

    NASA Astrophysics Data System (ADS)

    Schmitz, Birger; Ellwood, Brooks B.; Peucker-Ehrenbrink, Bernhard; El Hassani, Ahmed; Bultynck, Pierre

    2006-09-01

    A global faunal crisis close to the Eifelian-Givetian stage boundary in the mid-Devonian has been purported to be related to the impact of one or two major extraterrestrial bodies. This was based on unusual mineralogical and chemical features within a distinct composite marl bed, at a level c. 40 cm below the Global Stratotype Section and Point (GSSP) for the Eifelian-Givetian boundary at Jebel Mech Irdane in Morocco. The impact relation has been challenged based partly on the absence of platinum group element data. We present here detailed Ir, Os, Pd and Pt as well as Os isotopic data across the bed at Mech Irdane and from a correlated 10 cm bed at a nearby site, Rich Haroun. Iridium concentrations of 0.13-0.28 ng/g in the beds represent a small enrichment compared to average shale, but Ir/Al ratios are only a factor 1.5-2 higher than background at respective site. Such small enrichments can readily be explained by terrestrial diagenetic processes, and do not require the presence of an extraterrestrial component. On an Al-normalized basis Pd and Pt show weak enrichments, typically a factor 2-4 higher than background. High 187Os/ 188Os ratios, 1.1-3.8, reflect ingrowth of radiogenic Os from Re, which is also evident from Os concentrations of up to 3 ng/g. The platinum group inter-element ratios are clearly non-chondritic. The overall platinum group and trace element (e.g. Co, Ni, As, V) patterns indicate that diagenetic processes at redox fronts have played a crucial role in shaping most element enrichments. If an excess siderophile-rich extraterrestrial component exists in these beds it represents less than 0.2‰ by weight.

  19. Investigating the retention of bright and dark ejecta from small rayed craters on mars

    NASA Astrophysics Data System (ADS)

    Calef, Fred J., III

    2010-12-01

    Impact cratering is one of the principal geologic processes operating throughout the solar system. On Mars, small rayed impact craters (SRC) form continuously and randomly on the surface. Ejecta retention, the timespan and ability of excavated ejecta to remain in place around a crater rim, records a lineage of recent surface processes. However, the timescales under which small rayed craters are produced and their origin, whether terrestrial or cosmic, plays an important role in further investigating surface processes and possible recent climate variations. By examining thousands of randomly chosen panchromatic images from the Mars Orbiter Camera Narrow Angle (MOCNA) camera, a population of 630 SRC was catalogued across three equatorial and two polar regions on Mars. The survey of MOCNA images also revealed intriguing Enigmatic Linear Features (ELFs) in the northern hemisphere of Mars, which a short side study revealed to be a unique form of dust-devil track. From statistically examining several physical parameters, dust deposition and periglacial erosion were found to be the major factors affecting ejecta retention for the SRC. SRC morphology revealed ejecta retention sequences that followed four stages of ejecta retention from the initial impact to eventual erasure from the surface. By reconstructing the current cratering rate from estimates of atmospheric filtering, it was possible to calculate the ejecta retention age across Mars. In general, SRC ejecta are retained on the surface for <100 ka. Based on ejecta morphology and retention age estimates, a possible shift from depositional to erosional processes just south of the Martian equator is suspected to have occurred within this timeframe.

  20. CME dynamics using coronagraph and interplanetary ejecta observations

    NASA Astrophysics Data System (ADS)

    Dal Lago, Alisson; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; de Lucas, Aline; Braga, Carlos Roberto; Ramos Vieira, Lucas

    One of the key issues of Space Weather is the dynamics of coronal mass ejections, from their release from the Sun, their propagation throughout the interplanetary space, eventually im-pacting the earth and other planets. These impacts of CMEs are the most important drivers of space weather phenomena. A number of empirical and analytical studies have addressed this point so far, using observations from coronagraphs and interplanetary monitors, in order to correlate CMEs observed near the Sun and in situ (e.g. earth vincity). However, results are far from conclusive. Error bars in CME travel time predictions from the Sun to earth, are of the order of 1 day, which is considerably big for the typical time scale of 1 to 3 days of their travel time. After many years of intensive investigations of CMEs observed with the Large An-gle and Spectrometric Coronagraph (LASCO), abord the Solar and Heliospheric Observatory (SOHO), we found that the subset of interplanetary counterparts of CMEs, the ICMEs, with a well defined ejecta structure are those with best predictable behaviour. The prediction of these interplanetary ejecta travel time to earth, using coronagraph observations is the one with lowest error bar among other sets of events, such as interplanetary shock. We present a statistic study of all the CME-ejecta events observed by SOHO and by the Advanced Composition Explorer (ACE) satellite since 1997.

  1. In plain sight: the Chesapeake Bay crater ejecta blanket

    NASA Astrophysics Data System (ADS)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  2. Phase Doppler anemometry as an ejecta diagnostic

    NASA Astrophysics Data System (ADS)

    Bell, D. J.; Chapman, D. J.

    2017-01-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from that surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the sizes and velocities of the individual shock induced ejecta particles; providing an important insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. These experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and current state of the art of the technique are discussed along with the future improvements required to optimise performance and increase usability.

  3. Ejecta particle size distributions for shock loaded Sn and Al metals.

    SciTech Connect

    Sorenson, D. S.; Minich, R. W.; Romero, J. L.; Tunnell, T. W.; Malone, R. M.

    2001-01-01

    When a shock wave interacts at the surface of a metal sample 'ejected matter' (ejecta) can be emitted from the surface. The mass, size, shape, and velocity of the ejecta varies depending on the initial shock conditions and the material properties of the target. To understand this phenomena, experiments have been conducted at the Pegasus Pulsed Power Facility (PPPF) located at Los Alamos National Laboratory (LANL). The facility is used to implode cylinders to velocities of many mm/{micro}sec. The driving cylinder impacts a smaller target cylinder where shock waves of a few hundreds of kilobars can be reached and ejecta formation proceeds. The ejecta particle sizes are measured for shock loaded Sn and Al metal samples using an in-line Fraunhofer holography technique. The distributions will be compared to calculations from 3 and 2 dimensional percolation theory.

  4. Ejecta emplacement and modes of formation of Martian fluidized ejecta craters

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.

    1981-01-01

    From an analysis of 1173 craters possessing single (type 1) and double (type 2) concentric ejecta deposits, type 2 craters are found to occur most frequently in areas that have also been described as possessing periglacial features. The frequency of occurrence of central peaks and wall failure (terraces plus scallops) within the craters indicates that, by analogy with previous analyses, type 1 craters form in more fragmental targets than type 2 craters. The maximum range of the outer ejecta deposits of type 2 craters, however, consistently extends about 0.8 crater radii further than ejecta deposits of type 1 craters, suggesting a greater degree of ejecta fluidization for the twin-lobed type 2 craters. Numerous characteristics of Ries Crater, West Germany, show similarities to craters on Mars, indicating that Martian fluidized ejecta craters may be closer analogs to this terrestrial crater than are lunar craters.

  5. The interaction of core-collapse supernova ejecta with a companion star

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Tauris, T. M.; Röpke, F. K.; Moriya, T. J.; Kruckow, M.; Stancliffe, R. J.; Izzard, R. G.

    2015-12-01

    Context. The progenitors of many core-collapse supernovae (CCSNe) are expected to be in binary systems. After the SN explosion in a binary, the companion star may suffer from mass stripping and be shock heated as a result of the impact of the SN ejecta. If the binary system is disrupted by the SN explosion, the companion star is ejected as a runaway star, and in some cases as a hypervelocity star. Aims: By performing a series of three-dimensional (3D) hydrodynamical simulations of the collision of SN ejecta with the companion star, we investigate how CCSN explosions affect their binary companion. Methods: We use the BEC stellar evolution code to construct the detailed companion structure at the moment of SN explosion. The impact of the SN blast wave on the companion star is followed by means of 3D smoothed particle hydrodynamics (SPH) simulations using the Stellar GADGET code. Results: For main-sequence (MS) companion stars, we find that the amount of removed stellar mass, the resulting impact velocity, and the chemical contamination of the companion that results from the impact of the SN ejecta strongly increases with decreasing binary separation and increasing explosion energy. Their relationship can be approximately fitted by power laws, which is consistent with the results obtained from impact simulations of Type Ia SNe. However, we find that the impact velocity is sensitive to the momentum profile of the outer SN ejecta and, in fact, may decrease with increasing ejecta mass, depending on the modeling of the ejecta. Because most companion stars to Type Ib/c CCSNe are in their MS phase at the moment of the explosion, combined with the strongly decaying impact effects with increasing binary separation, we argue that the majority of these SNe lead to inefficient mass stripping and shock heating of the companion star following the impact of the ejecta. Conclusions: Our simulations show that the impact effects of Type Ib/c SN ejecta on the structure of MS companion

  6. Condensation of Silicon Carbide in Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Deneault, Ethan

    2017-07-01

    We present a kinetic model of the formation of silicon carbide (SiC) in the expanding and cooling outflows of Type II supernova ejecta. We assume an ejecta cloud composed of a mixture of Si, C, and O in the gas phase, with the initial temperature, density, and composition as tunable parameters. The condensation of diatomic SiC into (SiC)2 molecules provides the abundance of nucleation sites for the eventual condensation of larger SiC solids and dust grains. We find that the abundance of these nucleation sites, formed after the first 1700 days after the explosion, is strongly governed by the C/Si ratio, the density of the gas, and the rate of cooling in the ejecta.

  7. Thermally distinct ejecta blankets from Martian craters

    NASA Astrophysics Data System (ADS)

    Betts, B. H.; Murray, B. C.

    1993-06-01

    A study of Martian ejecta blankets is carried out using the high-resolution thermal IR/visible data from the Termoskan instrument aboard Phobos '88 mission. It is found that approximately 100 craters within the Termoskan data have an ejecta blanket distinct in the thermal infrared (EDITH). These features are examined by (1) a systematic examination of all Termoskan data using high-resolution image processing; (2) a study of the systematics of the data by compiling and analyzing a data base consisting of geographic, geologic, and mormphologic parameters for a significant fraction of the EDITH and nearby non-EDITH; and (3) qualitative and quantitative analyses of localized regions of interest. It is noted that thermally distinct ejecta blankets are excellent locations for future landers and remote sensing because of relatively dust-free surface exposures of material excavated from depth.

  8. Carbonate Condensates in the Chicxulub Ejecta Deposits from Belize

    NASA Astrophysics Data System (ADS)

    Pope, K. O.; Ocampo, A. C.; Fischer, A. G.; Morrison, J.; Sharp, Z.

    1996-03-01

    It has long been proposed that large amounts of CO2 released to the atmosphere by impact vaporization of carbonates could trigger greenhouse warming. Recent studies of the Cretaceous/Tertiary Chicxulub impact indicate that large amounts of both carbonate and sulfate were vaporized, although sulfates had a much more dramatic effect on climate in part due to the relatively small ambient sulfate reservoir of the Earth's atmosphere compared to the huge ambient reservoir of CO2. One process that could mitigate the climatic effects of these volatiles is the back reaction of impact generated oxides (CaO and MgO) with CO2 and SO2-SO3 in the vapor plume. Analyses of Chicxulub ejecta deposits from Belize confirm that the proximal ejecta in this locality are dominated by carbonate lithologies and sulfates are extremely rare. Much of the carbonate is in the form of dolomite and calcite spheroids and euhedral dolomite silt matrix. These spheroids and fine-grained matrix may have formed through condensation in the vapor plume, thus sequestering large amounts of impact generated CO2.

  9. Kinematical analysis of the ejecta created after a catastrophic collision

    NASA Astrophysics Data System (ADS)

    Dell'Oro, A.; Cellino, A.; Paolicchi, P.; Tanga, P.

    2014-07-01

    avoid huge computations, whenever one is interested in the general properties of the process, and not in the details? In this preliminary analysis, we have studied a pair of ejecta fields produced by old SPH computations (Michel et al., 2001). The most surprising and significant indication is that, at least in these cases, about 20 % of the original ejecta appear to have initially crossing trajectories forcing them to have necessarily mutual impacts, without any role played by the mutual gravity. This property marks a significant difference with respect to the ''simple'' models, usually allowing collisions only as a consequence of the gravity, and might be important to shape the reaccumulation properties. It has to be noted that this property is not resolution-independent (in principle, for a given total volume of the ejecta, a larger number of smaller ejecta with similar kinematical properties should entail a larger collision probability). We also discuss the possibility of identifying in these ejection fields an analogue of the ''irradiation point'' usually defined in the semiempirical models.

  10. Condensation of dust in supernova ejecta

    NASA Astrophysics Data System (ADS)

    Sarangi, A.; Cherchneff, I.

    Observations in the infrared and submm indicate the presence of molecules and dust in the ejecta of type II-P supernovae. The mass of dust formed in the ejecta of supernovae is still uncertain and highly debated: Infrared observations indicate smaller dust masses (10-5 to 10-3 M ) before 500 days post-explosion, compared to submm observations with Herschel revealing supernova remnants as large reservoirs of cool dust (10-2 to 0.7 M ). We study the ejecta of a typical type II-P supernova with a chemical kinetic approach considering a 15 M progenitor as a benchmark. The synthesis of molecules (e.g., CO, SiO, O2, AlO, SiS, FeS, SiC, SO) and small clusters (e.g., silicates, carbon, metal oxides, metallic clusters etc.) in the gas phase is considered. The clusters form gradually over time in different ejecta zones, small dust masses form in the first 600 days (˜ 10-4 M ), that gradually increase up to ˜ 0.1 M at 1500 days post-explosion. The small clusters condense to form dust grains in the gas phase. The size distributions of different dust components are derived from the study.

  11. Properties of Ejecta Generated at High-Velocity Perforation of Thin Bumpers made from Different Constructional Materials

    NASA Astrophysics Data System (ADS)

    Myagkov, N. N.; Shumikhin, T. A.; Bezrukov, L. N.

    2013-08-01

    The series of impact experiments were performed to study the properties of ejecta generated at high-velocity perforation of thin bumpers. The bumpers were aluminum plates, fiber-glass plastic plates, and meshes weaved of steel wire. The projectiles were 6.35 mm diameter aluminum spheres. The impact velocities ranged from 1.95 to 3.52 km/s. In the experiments the ejecta particles were captured with low-density foam collectors or registered with the use of aluminum foils. The processing of the experimental results allowed us to estimate the total masses, spatial and size distributions, and perforating abilities of the ejecta produced from these different bumpers. As applied to the problem of reducing the near-Earth space pollution caused by the ejecta, the results obtained argue against the use of aluminum plates as first (outer) bumper in spacecraft shield protection.

  12. Lunar Crater Ejecta: Physical Properties Revealed by Radar and Thermal Infrared Observations

    NASA Technical Reports Server (NTRS)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Udovicic, C. J. Tai; Campbell, B. A.

    2015-01-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for greater than 3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages greater than 3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  13. Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Tai Udovicic, C. J.; Campbell, B. A.

    2016-07-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages >3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  14. Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta

    NASA Astrophysics Data System (ADS)

    Nayak, M.; Asphaug, E.

    2016-08-01

    The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties.

  15. Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta.

    PubMed

    Nayak, M; Asphaug, E

    2016-08-30

    The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties.

  16. Characterizing the Surface Roughness of Ejecta Fields Associated with Km-Scale Fresh Lunar Craters

    NASA Astrophysics Data System (ADS)

    Patterson, G. W.; Cahill, J. T. S.; Bussey, D. B. J.; Lawrence, S. J.; Turtle, E. P.; Robinson, M. S.

    2011-10-01

    Using the Mini-RF and LROC NAC instruments aboard LRO, we have characterized the distribution of cm- to m-scale boulders associated with the ejecta of several km-scale fresh lunar craters. The results of this work will lead to a means of determining the size distribution of ejected material from km-scale impact craters without having to gather statistics through counting features. It will also lead, more generally, to a better understanding of the cratering process. The unnamed fresh crater on the floor of Kopff crater offers a specific example (Figs. 1 and 2). Here we observe that ejecta from the fresh crater has been deposited beyond the rim of Kopff. With the wall of Kopff acting as a topographic obstacle (Fig. 3), we can use statistics on the boulder population to better constrain models of ejecta emplacement.

  17. Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta

    PubMed Central

    Nayak, M.; Asphaug, E.

    2016-01-01

    The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties. PMID:27575002

  18. (U-Th)/He Zircon Dating of Chesapeake Bay Ejecta; Ocean Drilling Program Site 1073A

    NASA Astrophysics Data System (ADS)

    Biren, M. B.; van Soest, M. C.; Wartho, J.-A.; Hodges, K. V.; Glass, B. P.; Koeberl, C.; Hale, W.

    2014-09-01

    Results from our (U-Th)/He zircon dating of distal ejecta associated with the 40 km diameter Chesapeake Bay impact structure of Virginia, are in excellent agreement with previous K-Ar and Ar-Ar dating studies of the North American tektites.

  19. Characterization of Ejecta Facies of a Small Lunar Crater in Balmer Basin Using LROC Data

    NASA Astrophysics Data System (ADS)

    Wells, K. S.; Bell, J. F.

    2010-03-01

    Using a 0.93 m/pix Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) image, we investigate the distribution of impact ejecta of a small (D ~ 1 km) unnamed lunar primary crater located in Balmer Basin (-18.6°, 69.1°).

  20. A new model of the lunar ejecta cloud

    NASA Astrophysics Data System (ADS)

    Christou, A. A.

    2014-04-01

    Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such "dust exospheres" have been observed around the Galilean satellites of Jupiter [2, 3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the recent investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.

  1. Dynamics of ejecta from the binary asteroid Didymos, the target of the AIDA mission

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Yu, Yang; Schwartz, Stephen; Naidu, Shantanu; Benner, Lance

    2016-04-01

    The AIDA space mission, a collaborative effort between ESA and NASA, aims to characterize the near-Earth asteroid binary (65803) Didymos and to perform a kinetic impactor demonstration on the small moon of the binary system. Our study presents a multi-scale dynamical model of the ejecta cloud produced by a hypervelocity impact, which enables us to compute the ejecta properties at different spatial and time scales. This model is applied to the impact into the small moon of Didymos on October 2022 as considered by the AIDA mission. We model the process by including as much practical information as possible, e.g., the gravitational environment influenced by the non-spherical shapes of the bodies (based on the observed shape of the primary), the solar tides, and the solar radiation pressure. Our simulations show where and for how long the ejecta cloud evolves with time for the considered ejecta initial conditions. This information is used to assess the potential hazard to the ESA Asteroid Impact Mission (AIM) observing spacecraft and to determine the safest positions. This study is performed with support of the European Space Agency and in the framework of the NEOShield-2 project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 640351.

  2. Fragment size-ejection speed correlation in impactor-ejecta processes

    NASA Astrophysics Data System (ADS)

    Sachse, M.

    2014-04-01

    Ejecta created in high velocity impacts (v > 10 km s ) of micro-meteoroids on atmosphereless cosmic bodies is an efficient source for interplanetary dust. The impact erodes the target surface and releases material into space. The ejecta are typically micron-sized and populate a dust cloud whose number density decreases with increasing distance from the target. Unbound particles escape and add to the planetary dust environment. However, even mesoscopic particles (R > 100 μm) can severely damage manmade space hardware as they have high kinetic energies when they encounter spacecraft with high relative velocities. Here we investigate the influence of a correlation between the fragment size R and the ejection speed u in the form stating that larger fragments are (in average) launched with slower speeds as suggested by theoretical considerations and impact experiments (Melosh, 1984; Miljkovíc et al., 2012). We found that such a correlation constitutes a dynamical filter which removes large ejecta from high altitudes. For large moons they are always bound and restricted to regions close to the target surface. The effect is stronger for bigger ejecta and for more massive target bodies. Our results show that the risk to encounter dangerous particles during close flybys around large moons is lower than expected from the uncorrelated model of Krivov et al. (2003). Further changes due to strong planetary magnetic fields at the other end of the size range are discussed.

  3. 40Ar/39Ar age of the Manson impact structure, Iowa, and correlative impact ejecta in the Crow Creek member of the Pierre Shale (Upper Cretaceous), South Dakota and Nebraska

    USGS Publications Warehouse

    Izett, G.A.; Cobban, W.A.; Dalrymple, G.B.; Obradovich, J.D.

    1998-01-01

    A set of 34 laser total-fusion 40Ar/39Ar analyses of sanidine from a melt layer in crater-fill deposits of the Manson impact structure in Iowa has a weighted-mean age of 74.1 ?? 0.1 Ma. This age is about 9.0 m.y. older than 40Ar/39Ar ages of shocked microcline from the Manson impact structure reported previously by others. The 74.1 Ma age of the sanidine, which is a melt product of Precambrian microcline clasts, indicates that the Manson impact structure played no part in the Cretaceous-Tertiary (K-T) mass extinction at 64.5 Ma. Moreover, incremental-heating 40Ar/39Ar ages of the sanidine show that it is essentially free of excess 40Ar and has not been influenced by postcrystallization heating or alteration. An age spectrum of the matrix of the melt layer shows effects of 39Ar recoil, including older ages in the low-temperature increments and younger ages in the high-temperature increments. At 17 places in eastern South Dakota and Nebraska, shocked quartz and feldspar grains are concentrated in the lower part of the Crow Creek Member of the Pierre Shale (Upper Cretaceous). The grains are largest (3.2 mm) in southeastern South Dakota and decrease in size (0.45 mm) to the northwest, consistent with the idea that the Manson impact structure was their source. The ubiquitous presence of shocked grains concentrated in a thin calcarenite at the base of the Crow Creek Member suggests it is an event bed recording an instant of geologic time. Ammonites below and above the Crow Creek Member limit its age to the zone of Didymoceras nebrascense of earliest late Campanian age. Plagioclase from a bentonite bed in this zone in Colorado has a 40Ar/39Ar age of 74.1 ?? 0.1 Ma commensurate with our sanidine age of 74.1 Ma for the Manson impact structure. 40Ar/39Ar ages of bentonite beds below and above the Crow Creek are consistent with our 74.1 ?? 0.1 Ma age for the Manson impact structure and limit its age to the interval ?? 74.5 0.1 to 73.8 ?? 0.1 Ma. Recently, two origins for the

  4. Evolutionary signatures in complex ejecta and their driven shocks

    NASA Astrophysics Data System (ADS)

    Farrugia, C.; Berdichevsky, D.

    2004-10-01

    We examine interplanetary signatures of ejecta-ejecta interactions. To this end, two time intervals of inner-heliospheric (≤1AU) observations separated by 2 solar cycles are chosen where ejecta/magnetic clouds are in the process of interacting to form complex ejecta. At the Sun, both intervals are characterized by many coronal mass ejections (CMEs) and flares. In each case, a complement of observations from various instruments on two spacecraft are examined in order to bring out the in-situ signatures of ejecta-ejecta interactions and their relation to solar observations. In the first interval (April 1979), data are shown from Helios-2 and ISEE-3, separated by ~0.33AU in radial distance and 28° in heliographic longitude. In the second interval (March-April 2001), data from the SOHO and Wind probes are combined, relating effects at the Sun and their manifestations at 1AU on one of Wind's distant prograde orbits. At ~0.67AU, Helios-2 observes two individual ejecta which have merged by the time they are observed at 1AU by ISEE-3. In March 2001, two distinct Halo CMEs (H-CMEs) are observed on SOHO on 28-29 March approaching each other with a relative speed of 500kms-1 within 30 solar radii. In order to isolate signatures of ejecta-ejecta interactions, the two event intervals are compared with expectations for pristine (isolated) ejecta near the last solar minimum, extensive observations on which were given by Berdichevsky et al. (2002). The observations from these two event sequences are then intercompared. In both event sequences, coalescence/merging was accompanied by the following signatures: heating of the plasma, acceleration of the leading ejecta and deceleration of the trailing ejecta, compressed field and plasma in the leading ejecta, disappearance of shocks and the strengthening of shocks driven by the accelerated ejecta. A search for reconnection signatures at the interface between the two ejecta in the March 2001 event was inconclusive because the

  5. Fates of ejecta from co-orbital satellites: Tethys, Telesto, and Calypso

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.; Alvarellos, J. L.; Zahnle, K. J.; Lissauer, J. J.

    2009-12-01

    Unique in the Solar system, the crowded satellite system of Saturn has three sets of moons sharing essentially the same orbits: the two small co-orbitals Janus and Epimetheus, Tethys with its Trojan companions Telesto and Calypso, and Dione with its Trojans Helene and tiny Polydeuces. We have used the SWIFT integrator package to simulate the fates of impact ejecta from Tethys, Telesto, and Calypso in order to study the exchange of material among co-orbitals. Our simulations include all nine of Saturn's major satellites as well as Telesto, Calypso, Helene, and Polydeuces. Of primary spalls ejected into planetocentric orbit from Tethys' two largest craters (Odysseus on its leading side and Penelope on its trailing side), we find that about 90 percent eventually re-impact Tethys. In comparison, some 10 percent hit other major satellites, but on the order of 0.1 percent strike Tethys' Trojan companions Telesto or Calypso, consistent with their geometric cross-sections. For ejecta from Telesto and Calypso, we use slower launch speeds more appropriate for their softer regolith surfaces. We find that the rubble falls into several distinct categories, depending on both the speed and direction of launch. One consequence is the exchange of material between Telesto and Calypso. We will describe how the fates of their ejecta depend on launch velocity as well as other novel phenomena of co-orbital ejecta.

  6. Evidence for hydrothermal alteration in the Hellas ejecta

    NASA Astrophysics Data System (ADS)

    Noe Dobrea, E. Z.; Swayze, G. A.

    2011-12-01

    We have analyzed data from MRO/CRISM, HiRISE, and CTX to study the massifs in the NW Hellas region. The Hellas basin is thought to have formed during the late heavy bombardment [Acuña et al. 1999] as a consequence of a massive impact. The impact not only excavated rocks from the deep stratigraphy, but it also deposited enough energy into the ejecta to support hydrothermal conditions [Newsom 1980]. Spectral observations of the mineralogy of the martian highlands north of Hellas suggest that the region was experiencing aqueous activity during that era [Pelkey et al. 2007]. Therefore, spectroscopic studies of the well-preserved massifs that form the rim and ejecta in northwest Hellas have the potential to reveal zones of hydrothermal alteration. Additionally, studies of the deep crustal rocks excavated as part of the ejecta are of particular relevance in light of recent discoveries of carbonate-bearing rocks exposed in complex craters on Mars [Michalski and Niles 2010; Wray et al. 2011]. Our analyses reveal outcrops in the massifs where evidence for products of hydrothermal alteration are observed. In particular, we find evidence for smectites, prehnite, chlorite, and illite exposed in these outcrops (Fig 1). The spectra of these altered units also exhibit a strong, broad concave-up absorption in the 1-1.5 μm region, consistent with the presence of Fe2+ in olivine, suggesting that only partial alteration has occurred. The mineralogy of hydrothermal alteration products is a function of the original composition of the host rock; the temperature, chemistry, and pH of the water; and the overburden pressure [DeRudder and. Beck 1963; Morris et al. 2001; 2003; Brown et al. 2010; Inoue et al. 2010]. On Earth, prehnite can form via low-grade metamorphism, where it occurs as part of the prehnite-pumpellyite metamorphic facies [Blatt and Tracy 1995], or as a product of the low-temperature (100-350°C) hydrothermal alteration of mafic rocks [Freedman et al. 2009; Marks et al

  7. A class of ejecta transport test problems

    SciTech Connect

    Hammerberg, James E; Buttler, William T; Oro, David M; Rousculp, Christopher L; Morris, Christopher; Mariam, Fesseha G

    2011-01-31

    Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function ofparticulate masses and velocities, f{sub 0}(m, v;t). Some of the properties of this source distribution function have been determined from extensive Taylor and supported wave experiments on shock loaded Sn interfaces of varying surface and subsurface morphology. Such experiments measure the mass moment of f{sub o} under vacuum conditions assuming weak particle-particle interaction and, usually, fully inelastic capture by piezo-electric diagnostic probes. Recently, planar Sn experiments in He, Ar, and Kr gas atmospheres have been carried out to provide transport data both for machined surfaces and for coated surfaces. A hydro code model of ejecta transport usually specifies a criterion for the instantaneous temporal appearance of ejecta with source distribution f{sub 0}(m, v;t{sub 0}). Under the further assumption of separability, f{sub 0}(m,v;t{sub 0}) = f{sub 1}(m)f{sub 2}(v), the motion of particles under the influence of gas dynamic forces is calculated. For the situation of non-interacting particulates, interacting with a gas via drag forces, with the assumption of separability and simplified approximations to the Reynolds number dependence of the drag coefficient, the dynamical equation for the time evolution of the distribution function, f(r,v,m;t), can be resolved as a one-dimensional integral which can be compared to a direct hydro simulation as a test problem. Such solutions can also be used for preliminary analysis of experimental data. We report solutions for several shape dependent drag coefficients and analyze the results of recent planar dsh experiments in Ar and Xe.

  8. A Fresh Look at Aging Lunar Ejecta: Insights from Optical Maturity (OMAT) and Rock Abundance (RA)

    NASA Astrophysics Data System (ADS)

    Tai Udovicic, C.; Mazrouei, S.; Costello, E.; Ghent, R. R.; Lemelin, M.; Lucey, P. G.

    2016-12-01

    Space weathering is the combination of the solar wind interactions and micrometeorite bombardment that alter the optical properties of the lunar surface over time. Most of the lunar surface is optically mature, meaning it has relatively low albedo and is reddened in visible to near-infrared spectral reflectance. Impact craters excavate rocky, less weathered material and deposit it as bright, optically immature ejecta blankets. Here we use the Kaguya Optical Maturity (OMAT) and Diviner Rock Abundance (RA) parameters to compare ejecta maturation rates at the nanometer and meter scales. Understanding the rates of maturation at various length scales is crucial for understanding how quickly the lunar surface evolves over time. The OMAT dataset we use is derived from the visible channels of the Kaguya Multiband Imager. The OMAT parameter contains information about the optical effects of space weathering. The primary product responsible for optical maturation is surface nanophase iron which forms as globules that are roughly 10s of nanometers in diameter. Young ejecta blankets are relatively low in nanophase iron content, causing them to appear optically immature in OMAT when compared to older, more weathered surfaces. RA is a more recent parameter derived independently from OMAT. It uses the Lunar Reconnaissance Orbiter (LRO)'s Diviner thermal-infrared observations to quantify the rockiness of crater ejecta blankets. The RA parameter is sensitive to surface blocks greater than 1m in diameter which have a distinct thermal signature from smaller, degraded rocks and regolith fines. The breakdown of these meter-scale blocks causes aging ejecta to appear less rocky over time, making RA a viable measure of ejecta maturity. We compile populations of optically immature ejecta blankets in OMAT and blocky ejecta blankets in RA, and observe a discrepancy between them. Current work to understand this discrepancy will enhance our understanding of how the rate of optical maturation at

  9. Eta Carinae and Its Ejecta, the Homunculus

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2014-01-01

    Eta Carinae (Eta Car), its interacting winds and historical ejecta provide an unique astrophysical laboratory that permits addressing a multitude of questions ranging from stellar evolution, colliding winds, chemical enrichment, nebular excitation to the formation of molecules and dust. Every 5.54 years, Eta Car changes from high excitation to several-months-long low excitation caused by modulation of the massive interacting winds due to a very eccentric binary orbit. The surrounding Homunculus (Figure 1) and Little Homunculus, thrown out in the 1840s Great Eruption and the 1890s Lesser Eruption, respond to the changing flux, providing clues to many physical phenomena of great interest to astrophysicists.

  10. Hyper-ballistic transport models of Copernican ejecta

    NASA Technical Reports Server (NTRS)

    Rehfuss, D. E.; Michael, D.; Anselmo, J. C.; Kincheloe, N. K.; Wolfe, S. A.

    1977-01-01

    As the ejecta curtain sweeps outward from the crater which forms after meteorite impact, fine particles may receive a hyperballistic boost from the expanding gas cloud created by vaporization. In modeling the phenomenon, this paper considers both spatial and frequency variations of the particle size parameter. Two models which preserve spatial homogeneity within the elliptical transient crater serve to test the effects of different particle-frequency distributions. Three models which feature identical spatial nonhomogeneity of particle sizes serve to test different crater-formation rates. From 1 to 6% of the total ejected mass is sent beyond the maximum ballistic range of 437 km, according to the five models, each of which is a possible simulation of the lunar crater Copernicus.

  11. Tyrrhena Terra: hydrated lobates ejecta and plains, as seen by OMEGA/MEx

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Bouley, S.; Mangold, N.; Meresse, S.; Costard, F.; Poulet, F.; Ansan, V.; Le Mouelic, S.; Bibring, J.-P.; Gondet, B.

    2009-04-01

    networks located on the higher plateaus, or plains cut by valleys. Their typical size is 10 to 20 km x 50 to 100 km. Most of them are located be-tween 1 km and 1.5 km in altitude. Here also, pyroxene is identified with OMEGA on every hydrated plain, but OMEGA does not detect olivine on the same outcrops. These detections suggest a partial alteration of rocks in Tyrrhena Terra, or a spatial mixing of hydrated and unal-tered materials (for example a pyroxene-rich cap over a hydrated unit, or an intricate mixing of altered and unaltered materials). Two hypotheses can be drawn at this stage for the origin of the hydrated minerals restricted to the ejecta blan-kets: (1) formation of phyllosilicates and hydrated silicate minerals resulting from impact associated processes; (2) excavation of hydrated materials buried before the impact [3]. The study of hydrated minerals in ejecta can also be important concerning the implication of volatiles for the lo-bate ejecta. The studied region is located in Noachian terrains, but most craters are not of Noachian age. They are surrounded by fresh ejecta without high erosion and relative low density of craters. This shows that, if formed by hydrothermal alteration during the impact, the hydrated minerals would be recent, while an excavation would limit the age of the alteration to the age of the terrain, i.e. Noachian. In addition, the observed alteration is located on the ejecta blankets, while hydrothermal models due to the impact predict alteration in the crater center, but do not find alteration possible on distal ejecta. The observation of the hydrated minerals in alluvial plains suggests that this material was collected material from the highlands or formed in situ by weathering [9]. The observation at high spatial resolution of hydrated minerals inside the valley flanks, upstream from the alluvial plains, is crucial to understand the location and time of alteration, and would constrain the process of alteration of the ejecta blankets

  12. The Fate of Ejecta from Hyperion

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Ejecta from Saturn's moon Hyperion is subject to powerful perturbations from nearby Titan, which control its ultimate fate. We have performed numerical integrations to simulate a simplified system consisting of Saturn (including oblateness), Tethys, Dione, Titan, Hyperion, Iapetus, and the Sun (treated simply as a massive satellite). In addition, 1050 massless particles were ejected from Hyperion at five different points in its orbit. These particles started more or less evenly distributed over latitude and longitude, 1 km above Hyperion's mean radius, and were ejected radially outward at speeds 10\\% faster than its escape speed. Only about 4\\% of the particles survived for the 100,000-year course of the integration, while $\\sim$8/% escaped from the Saturnian system. Titan accreted $\\sim$77\\% of all the particles, while Hyperion reaccreted only $\\sim$5\\%. This may help to account for Hyperion's rugged shape. Three particles hit Rhea and 2 hit Dione, but $\\sim$5\\% of the particles were removed when they penetrated within 150,000 km of Saturn. Most removals occurred within the first few thousand years. In general, ejecta from Hyperion are much more widely scattered than previously thought, and cross the orbits of all of the other classical satellites.

  13. Particulate distribution function evolution for ejecta transport

    SciTech Connect

    Hammerberg, James Edward; Plohr, Bradley J

    2010-01-01

    The time evolution of the ejecta distribution function in a gas is discussed in the context of the recent experiments of W. Buttler and M. Zellner for well characterized Sn surfaces. Evolution equations are derived for the particulate distribution function when the dominant gas-particle interaction in is particulate drag. In the approximation of separability of the distribution function in velocity and size, the solution for the time dependent distribution function is a Fredholm integral equation of the first kind whose kernel is expressible in terms of the vacuum time dependent velocity distribution function measured with piezo probes or Asay foils. The solution of this equation in principle gives the size distribution function. We discuss the solution of this equation and the results of the Buttler - Zellner experiments. These suggest that correlations in velocity and size are necessary for a complete description of the transport dala. The solutions presented also represent an analytic test problem for the calculated distribution function in ejecta transport implementations.

  14. A possible formation process of outer lobes of Double Layered Ejecta craters on Mars

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Baratoux, D.; Kurita, K.

    2008-12-01

    Martian impact ejecta are famous for their morphologies suggesting ejecta would be formed by radial ground- hugging flows in the late stage of the impact. The atmosphere [Schultz, 1992] and/or the subsurface volatiles [Carr et al., 1977] have been suggested as causes of fluidization. Examining the process to generate and emplace the radial flow would allow us to understand the nature of the entrained fluid. Double Layered Ejecta (DLE), one of the major subclasses of martian ejecta, have many unique features. Most enigmatic is the presence of two distinct layers of ejecta: a thick inner lobe and a thin outer lobe. The striking differences between the two lobes suggest that two different processes occur independently during ejecta emplacement, a case implausible by a single ballistic trajectory. In this study, based on the hypothesis that an impact- induced vortex ring modifies surface materials in the late stage of the impact to produce the outer lobe, the volumes of displaced particles by the vortex ring were measured in laboratory experiments to compare the volumes of the outer lobes. We utilized the experimental situation of a vortex ring impacting on a particle layer. Two dimensionless numbers based on particle size (Shields' and Reynolds number) in lab fall within the same ranges as those on Mars [Suzuki et al., 2007], it is thus possible to compare the relationships between volumes and Γ, a parameter expressing the strength of a vortex ring. We fit the dependence of Vdisplaced on Gamma using a power law Vdisplaced = a Γb and we found b = 1.25 ± 0.17. The volumes of the outer lobes were measured, selecting 7 fresh craters larger than 5km in diameter in the survey area (0N-60N, 90E-150E). In the case of impact cratering, the vortex strength Γ can be scaled with the crater diameter [Barnouin-Jha and Schultz, 1998] as Γ ∝ D⅔. Using also a power law Vouter = c Γd, we obtained d = 1.42 ± 0.24 for the volume of outer lobes of DLE. As the power indices of

  15. Subsurface volatile content of martian double-layer ejecta (DLE) craters

    USGS Publications Warehouse

    Viola, Donna; McEwen, Alfred S.; Dundas, Colin M.; Byrne, Shane

    2017-01-01

    Excess ice is widespread throughout the martian mid-latitudes, particularly in Arcadia Planitia, where double-layer ejecta (DLE) craters also tend to be abundant. In this region, we observe the presence of thermokarstically-expanded secondary craters that likely form from impacts that destabilize a subsurface layer of excess ice, which subsequently sublimates. The presence of these expanded craters shows that excess ice is still preserved within the adjacent terrain. Here, we focus on a 15-km DLE crater that contains abundant superposed expanded craters in order to study the distribution of subsurface volatiles both at the time when the secondary craters formed and, by extension, remaining today. To do this, we measure the size distribution of the superposed expanded craters and use topographic data to calculate crater volumes as a proxy for the volumes of ice lost to sublimation during the expansion process. The inner ejecta layer contains craters that appear to have undergone more expansion, suggesting that excess ice was most abundant in that region. However, both of the ejecta layers had more expanded craters than the surrounding terrain. We extrapolate that the total volume of ice remaining within the entire ejecta deposit is as much as 74 km3 or more. The variation in ice content between the ejecta layers could be the result of (1) volatile preservation from the formation of the DLE crater, (2) post-impact deposition in the form of ice lenses; or (3) preferential accumulation or preservation of subsequent snowfall. We have ruled out (2) as the primary mode for ice deposition in this location based on inconsistencies with our observations, though it may operate in concert with other processes. Although none of the existing DLE formation hypotheses are completely consistent with our observations, which may merit a new or modified mechanism, we can conclude that DLE craters contain a significant quantity of excess ice today.

  16. Subsurface volatile content of martian double-layer ejecta (DLE) craters

    NASA Astrophysics Data System (ADS)

    Viola, Donna; McEwen, Alfred S.; Dundas, Colin M.; Byrne, Shane

    2017-03-01

    Excess ice is widespread throughout the martian mid-latitudes, particularly in Arcadia Planitia, where double-layer ejecta (DLE) craters also tend to be abundant. In this region, we observe the presence of thermokarstically-expanded secondary craters that likely form from impacts that destabilize a subsurface layer of excess ice, which subsequently sublimates. The presence of these expanded craters shows that excess ice is still preserved within the adjacent terrain. Here, we focus on a 15-km DLE crater that contains abundant superposed expanded craters in order to study the distribution of subsurface volatiles both at the time when the secondary craters formed and, by extension, remaining today. To do this, we measure the size distribution of the superposed expanded craters and use topographic data to calculate crater volumes as a proxy for the volumes of ice lost to sublimation during the expansion process. The inner ejecta layer contains craters that appear to have undergone more expansion, suggesting that excess ice was most abundant in that region. However, both of the ejecta layers had more expanded craters than the surrounding terrain. We extrapolate that the total volume of ice remaining within the entire ejecta deposit is as much as 74 km3 or more. The variation in ice content between the ejecta layers could be the result of (1) volatile preservation from the formation of the DLE crater, (2) post-impact deposition in the form of ice lenses; or (3) preferential accumulation or preservation of subsequent snowfall. We have ruled out (2) as the primary mode for ice deposition in this location based on inconsistencies with our observations, though it may operate in concert with other processes. Although none of the existing DLE formation hypotheses are completely consistent with our observations, which may merit a new or modified mechanism, we can conclude that DLE craters contain a significant quantity of excess ice today.

  17. A steady-state model of the lunar ejecta cloud

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos

    2014-05-01

    Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.

  18. Lunar Photometry and Composition of Ejecta Terrains

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. V.; Pugacheva, S. G.; Pinet, P.; Chevrel, S.; Daydou, Y.

    One scientific goal of the AMIE experiment to fly onboard the SMART-1 mission is to investigate, at low polar orbit, the South Pole regions of the Moon. The AMIE camera will observe the surface in nadir direction within a large phase angle interval, thus providing photometric investigation of selected regions, in particular the South Pole- Aitken basin. The view is taken here that information retrieved from the local surface photometric behaviour of the Moon could be used for guiding the remote sensing anal- yses of specific geological targets. In a preliminary investigation, we have compared the Lunar Prospector thorium contents for some regions of the lunar near side with surface roughness estimated by means of the local photometric function. The aver- age structure of the lunar surface consists in a porous upper layer with various small fragments. Reflecting properties of this layer gives the uniform shape of photometric function. The average integrated lunar indicatrix was used as a background photomet- ric model. Taken as a reference, it permits to intercompare in a uniform system the shape of the phase function of different areas located at different longitude and lati- tude on the Moon. If the observed surface is represented by significant fields of ejecta materials, with many fragments of rocks, a shadow-hiding mechanism is involved, showing up at low phase angles. Thus, the fast decrease of the brightness in the phase function curve should reveal the presence of fragments on the surface. The Saari and Shorthill catalog data were used as observed phase functions. Both kinds of photo- metric functions were converted to symmetric form. Then, the difference between the modeled and observed phase functions for phase angle about 18 degree was used as a photometric parameter of the surface roughness. In the areas under study, this pa- rameter (which can vary between 0 and 1) varies from 0.05 (smooth mare surface) to 0.25 (crater Tycho and its ejecta

  19. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-09-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and superluminous supernovae (SNe). We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳10-100 yr. In the rapidly rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Secondly, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (≲10-100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  20. Mineral-produced high-pressure striae and clay polish: Key evidence for nonballistic transport of ejecta from Ries crater

    USGS Publications Warehouse

    Chao, E.C.T.

    1976-01-01

    Recently discovered mineral-produced, deeply incised striae and mirror-like polish on broken surfaces of limestone fragments from the sedimentary ejecta of the Ries impact crater of southern Germany are described. The striae and polish were produced under high confining pressures during high-velocity nonballistic transport of the ejecta mass within the time span of the cratering event (measured in terms of seconds). The striae on these fragments were produced by scouring by small mineral grains embedded in the surrounding clay matrix, and the polish was formed under the same condition, by movements of relatively fragment-free clay against the fragment surfaces. The occurrence of these striae and polish is key evidence for estimating the distribution and determining the relative importance of nonballistic and ballistic transport of ejecta from the shallow Ries stony meteorite impact crater.

  1. ASYMMETRIC EJECTA DISTRIBUTION IN SN 1006

    SciTech Connect

    Uchida, Hiroyuki; Koyama, Katsuji; Yamaguchi, Hiroya

    2013-07-01

    We present the results from deep X-ray observations ({approx}400 ks in total) of SN 1006 with Suzaku. The thermal spectrum from the entire supernova remnant (SNR) exhibits prominent emission lines of O, Ne, Mg, Si, S, Ar, Ca, and Fe. The observed abundance pattern in the ejecta components is in good agreement with that predicted by a standard model of Type Ia supernovae (SNe). The spatially resolved analysis reveals that the distribution of the O-burning and incomplete Si-burning products (Si, S, and Ar) is asymmetric, while that of the C-burning products (O, Ne, and Mg) is relatively uniform in the SNR interior. The peak position of the former is clearly shifted by 5' ({approx}3.2 pc at the distance of 2.2 kpc) to the southeast (SE) from the SNR's geometric center. Using the SNR age of {approx}1000 yr, we constrain that the velocity asymmetry (in projection) of the ejecta is {approx}3100 km s{sup -1}. The Fe abundance is also significantly higher in the SE region than in the northwest. Given that the non-uniformity is observed only in the heavier elements (Si through Fe), we argue that SN 1006 originates from an asymmetric explosion, as is expected from recent multidimensional simulations of Type Ia SNe, although we cannot eliminate the possibility that inhomogeneous ambient medium had induced the apparent non-uniformity. Possible evidence for the Cr-K-shell line and line broadening in the Fe-K-shell emission is also found.

  2. SPECTROPOLARIMETRIC SIGNATURES OF CLUMPY SUPERNOVA EJECTA

    SciTech Connect

    Hole, K. T.; Nordsieck, K. H.; Kasen, D.

    2010-09-10

    Polarization has been detected at early times for all types of supernovae (SNe), indicating that all such systems result from or quickly develop some form of asymmetry. In addition, the detection of strong line polarization in SNe is suggestive of chemical inhomogeneities ('clumps') in the layers above the photosphere, which may reflect hydrodynamical instabilities during the explosion. We have developed a fast, flexible, approximate semi-analytic code for modeling polarized line radiative transfer within three-dimensional inhomogeneous rapidly expanding atmospheres. Given a range of model parameters, the code generates random sets of clumps in the expanding ejecta and calculates the emergent line profile and Stokes parameters for each configuration. The ensemble of these configurations represents the effects both of various host geometries and of different viewing angles. We present results for the first part of our survey of model geometries, specifically the effects of the number and size of clumps (and the related effect of filling factor) on the emergent spectrum and Stokes parameters. Our simulations show that random clumpiness can produce line polarization in the range observed in SNe Ia, as well as the Q-U loops that are frequently seen in all SNe. We have also developed a method to connect the results of our simulations to robust observational parameters such as maximum polarization and polarized equivalent width in the line. Our models, in connection with spectropolarimetric observations, can constrain the three-dimensional structure of SN ejecta and offer important insight into the SN explosion physics and the nature of their progenitor systems.

  3. Distal Aqueous-Rich Ejecta Deposits from Hale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Grant, J. A., III; Wilson, S. A.

    2016-12-01

    Hale crater (125 km by 150 km-diameter, 35.69ºS, 323.64ºE) formed in the Early to Middle Amazonian and is one of the best preserved large craters on Mars. Detailed mapping identifies distal ejecta deposits that occur up to 450 km northeast of the crater, may have reached Uzboi Vallis 130 km north of the crater, and always embay and never originate from Hale secondaries when present and which are found up to 600 km from the rim. The distal deposits are associated with Hale-related windstreaks oriented radial to Hale, are typically smooth at scales of tens-to hundreds of meters, devoid of superposing eolian bedforms, and are inferred to be mostly fine-grained based on local erosional patterns and their generally darker-toned appearance relative to adjacent surfaces in THEMIS Nighttime IR data. They show evidence of having flowed during emplacement and have distinct, occasionally leveed lateral margins in medial to distal sections. The deposits typically terminate in single or multi-lobate forms often pooled in low lying topography or pre-existing craters. Like more proximal Hale ejecta, the distal deposits were likely water-rich and subsequent dewatering of some resulted in flow along gradients of 10m/km for distances 10s of km. The deposits are typically <10 m thick with volumes generally <0.5 km3, but two large craters closer to Hale are mostly filled. The deposits could have been emplaced within 1 day of the Hale impact and persist in a remarkably pristine state, consistent with low average erosion rates post-Hale impact ( 10-2 to 10-3 m/Myr) that are comparable to those estimated elsewhere during the Amazonian. The pristine nature of the deposits and Hale secondaries indicates the impact did not significantly influence long-term global or regional geomorphic activity or climate. Further, preservation of secondaries on some fans in southern Margaritifer Terra indicates the Hale impact post-dated late alluvial activity in the region.

  4. Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Seelos, K. D.

    2010-12-01

    be especially noted, to be incorporated into a new crater classification scheme that includes both degradation state and level and type of infilling. We will also distinguish between craters infilled with 1) lava, 2) impact melt and 3) ejecta, based on our interpretation of the MDIS images. We will then determine the crater size-frequency distribution of each geomorphic unit. We will analyze the crater density of the Caloris floor plains unit, the Odin Formation ejecta and the Odin Formation intra-ejecta dark plains. We will do a second count of Caloris floor craters that includes filled craters, to attempt to get a minimum age for the underlying dark basement. Crater counting on any additional geologic units will depend upon results of the geomorphic mapping. Finally, we will refine the stratigraphy of the Caloris basin units. We start in the region where MESSENGER data over-laps Mariner 10 images. By comparing the Caloris group formations mapped in the Tolstoj and Shakespeare quadrangles to the overlapping MDIS images, we determine the distinctive geomorphology of each of these units in the high resolution MESSENGER data. We will then use this as diagnostic criteria as we map the rest of the basin.

  5. Estimates of primary ejecta and local material for the Orientale basin: Implications for the formation and ballistic sedimentation of multi-ring basins

    NASA Astrophysics Data System (ADS)

    Xie, Minggang; Zhu, Meng-Hua

    2016-04-01

    A clear understanding of thickness distributions of primary ejecta and local material is critical to interpreting the process of ballistic sedimentation, provenances of lunar samples, the evolution of the lunar surface, and the origin of multi-ring basins. The youngest lunar multi-ring basin, Orientale, provides the best preserved structure for determining the thicknesses of primary ejecta and local material. In general, the primary ejecta thickness was often estimated using crater morphometry. However, previous methods ignored either crater erosion, the crater interior geometry, or both. In addition, ejecta deposits were taken as mostly primary ejecta. And, as far as we know, the local material thickness had not been determined for the Orientale. In this work, we proposed a model based on matching measurements of partially filled pre-Orientale craters (PFPOCs) with the simulations of crater erosion to determine their thicknesses. We provided estimates of primary ejecta thickness distribution with the thickness of 0.85 km at Cordillera ring and a decay power law exponent of b = 2.8, the transient crater radius of 200 km, excavation volume of 2.3 ×106 km3, primary ejecta volume of 2.8 ×106 km3. These results suggest that previous works (e.g., Fassett et al., 2011; Moore et al., 1974) might overestimate the primary ejecta thicknesses of Orientale, and the primary ejecta thickness model of Pike (1974a) for multi-ring basins may give better estimates than the widely cited model of McGetchin et al. (1973) and the scaling law for impacts into Ottawa Sand (Housen et al., 1983). Structural uplift decays slower than previously thought, and rim relief is mostly rim uplift for Orientale. The main reason for rim uplift may be the fracturing and squeezing upward of the surrounding rocks. The proportion of local material to ejecta deposits increases with increasing radial distance from basin center, and the thickness of local material is larger than that of primary ejecta at

  6. Overview of the Chicxulub impactite and proximal ejecta

    NASA Astrophysics Data System (ADS)

    Claeys, Ph

    2003-04-01

    Several types of impactites have now been recovered from the various wells drilled in the Chicxulub crater in Yucatan. The old Pemex wells (Yucatan 6 and Chicxulub 1) contain a highly heterogeneous and stratified suevite, which upper unit is unusually rich in carbonates, impact breccia and a possibly an impact melt at the very bottom of C1. They are located towards the crater center (C1), on the flank of the peak ring (Y6). The thickness of impactite in this zone exceeds 250 m. The UNAM wells just outside the crater rim reveal sedimentary breccia and a fall-out suevite richer in silicate melt and basement fragments, than its crater equivalent. There, the thickness of the impactite was probably several hundred meters, considering that its top might have been eroded. It can also be speculated that a cover of fall-back suevite extended over the ejecta blanket in Yucatan, all the way to Belize and perhaps even to the region of Tabasco, in Southern Mexico. The recently drilled Yaxcopoil contains about 100 m of impactites, which is currently under study. Preliminary data seem to show less variability than the material recovered from Y6. As in the UNAM well, the impactite is dominated by basement material, and shows alternating severely altered and better preserved horizons.

  7. Flow Ejecta and Slope Landslides in Small Crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of a moderately small impact crater on Mars was taken by the Mars Global Surveyor Orbiter Camera (MOC) on October 17, 1997 at 4:11:07 PM PST, during MGS orbit 22. The image covers an area 2.9 by 48.4 kilometers (1.8 by 30 miles) at 9.6 m (31.5 feet) per picture element, and is centered at 21.3 degrees N, 179.8 degrees W, near Orcus Patera. The MOC image is a factor of 15X better than pervious Viking views of this particular crater (left, Viking image 545A49).

    The unnamed crater is one of three closely adjacent impact features that display the ejecta pattern characteristic of one type of 'flow-ejecta' crater. Such patterns are considered evidence of fluidized movement of the materials ejected during the cratering event, and are believed to indicate the presence of subsurface ice or liquid water.

    Long, linear features of different brightness values can be seen on the on the steep slopes inside and outside the crater rim. This type of feature, first identified in Viking Orbiter images acquired over 20 years ago, are more clearly seen in this new view (about 3 times better than the best previous observations). Their most likely explanation is that small land or dirt slides, initiated by seismic or wind action, have flowed down the steep slopes. Initially dark because of the nature of the surface disturbance, these features get lighter with time as the ubiquitous fine, bright dust settles onto them from the martian atmosphere. Based on estimates of the dust fall-out rate, many of these features are probably only a few tens to hundreds of years old. Thus, they are evidence of a process that is active on Mars today.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with

  8. Flow Ejecta and Slope Landslides in Small Crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of a moderately small impact crater on Mars was taken by the Mars Global Surveyor Orbiter Camera (MOC) on October 17, 1997 at 4:11:07 PM PST, during MGS orbit 22. The image covers an area 2.9 by 48.4 kilometers (1.8 by 30 miles) at 9.6 m (31.5 feet) per picture element, and is centered at 21.3 degrees N, 179.8 degrees W, near Orcus Patera. The MOC image is a factor of 15X better than pervious Viking views of this particular crater (left, Viking image 545A49).

    The unnamed crater is one of three closely adjacent impact features that display the ejecta pattern characteristic of one type of 'flow-ejecta' crater. Such patterns are considered evidence of fluidized movement of the materials ejected during the cratering event, and are believed to indicate the presence of subsurface ice or liquid water.

    Long, linear features of different brightness values can be seen on the on the steep slopes inside and outside the crater rim. This type of feature, first identified in Viking Orbiter images acquired over 20 years ago, are more clearly seen in this new view (about 3 times better than the best previous observations). Their most likely explanation is that small land or dirt slides, initiated by seismic or wind action, have flowed down the steep slopes. Initially dark because of the nature of the surface disturbance, these features get lighter with time as the ubiquitous fine, bright dust settles onto them from the martian atmosphere. Based on estimates of the dust fall-out rate, many of these features are probably only a few tens to hundreds of years old. Thus, they are evidence of a process that is active on Mars today.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with

  9. Calculation of ejecta thickness and structural uplift for Lunar and Martian complex crater rims.

    NASA Astrophysics Data System (ADS)

    Krüger, Tim; Sturm, Sebastian; Kenkmann, Thomas

    2014-05-01

    Crater rims of simple and complex craters have an elevation that is formed during the excavation stage of crater formation. For simple crater rims it is believed that the elevation is due to the sum of two equal parts, the thickness of the most proximal impact ejecta blanket (overturned flap) plus the thickness that results from plastic deformation including injection [1, 2, 3]. We intend to measure and quantify the kinematics of mass movements, especially concerning the question why complex impact craters have elevated crater rims like simple craters and precisely constrain the ejecta thickness and structural uplift of Lunar and Martian crater rims to understand what the main contributor to the elevated rim is [4]. We investigated a pristine 16 km-diameter unnamed Martian complex crater (21.52°N, 184.35°) and the lunar complex craters Bessel (21.8°N, 17.9°E) 16 km in diameter and Euler (23.3°N, 29.2°W) 28 km in diameter [5, 6]. In the crater walls of these craters we found columnar lavas on Mars and basaltic layering on the Moon. We used the uppermost layers of these exposed outcrops along the crater wall to determine the dip of the target rocks (Mars) and to distinguish between the bedrock and the overlying ejecta. We precisely measured the structural uplift and ejecta thickness of these complex craters. The unnamed crater on Mars has a mean rim height of 375.75 m, with a structural uplift of 233.88 m (57.44%), exposed as columnar lavas and the superposing ejecta has a height of 141.87 m (43.56%). For the Lunar complex crater Euler the mean total rim height is 790 ± 100 m, with a minimal structural uplift of 475 ± 100 m (60 ± 10 %), exposed as basaltic layers [e.g., 7, 8] and a maximum ejecta thickness of 315 ± 100 m (40 ± 10%). The Lunar complex crater Bessel has a total rim height of 430 ± 15 m , with a minimal structural uplift of 290 ± 15 m (67 ± 3 %), exposed as basaltic layers and a maximum ejecta thickness of 140 ± 115 m (33 ± 3%). For the

  10. Crater Ejecta by Day and Night

    NASA Image and Video Library

    2004-06-24

    Released 24 June 2004 This pair of images shows a crater and its ejecta. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA06445

  11. Crater ejecta morphology and the presence of water on Mars

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1987-01-01

    The possible effects of projectile, target, and environment on the cratering process is reviewed. It is suggested that contradictions in interpreting Martian crater ejecta morphologies reflect over simplifying the process as a singular consequence of buried water. It seem entirely possible that most ejecta facies could be produced without the presence of liquid water. However, the combination of extraordinary ejecta fluidity, absence of secondaries, and high ejection angles all would point to the combined effects of atmosphere and fluid rich substrates. Moreover, recent experiments revealing the broad scour zone associated with rapid vapor expansion may account for numerous craters in the circumpolar regions with subtle radial grooving extending 10 crater radii away with faint distal ramparts. Thus certain crater ejecta morphologies may yet provide fundamental clues for the presence of unbound water.

  12. Crater ejecta morphology and the presence of water on Mars

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.

    1987-01-01

    The purpose of this contribution is to review the possible effects of projectile, target, and environment on the cratering process. The discussion presented suggests that contradictions in interpreting Martian crater ejecta morphologies reflect oversimplifying the process as a singular consequence of buried water. It seem entirely possible that most ejecta facies could be produced without the presence of liquid water. However, the combination of extraordinary ejecta fluidity, absence of secondaries, and high ejection angles all would point to the combined effects of atmosphere and fluid rich substrates. Moreover, recent experiments revealing the broad scour zone associated with rapid vapor expansion may account for numerous craters in the circum-polar regions with subtle radial grooving extending 10 crater radii away with faint distal ramparts. Thus certain crater ejecta morphologies may yet provide fundamental clues for the presence of unbound water.

  13. Emplacement of Fahrenheit crater ejecta at the Luna-24 site

    NASA Technical Reports Server (NTRS)

    Settle, M.; Cintala, M. J.; Head, J. W.

    1979-01-01

    The likelihood that the gabbroic and monomineralic fragments in the Luna-24 soils were excavated during the Fahrenheit cratering event can be assessed by considering the quantity, characteristics, and mode of deposition of Fahrenheit ejecta in the vicinity of the Luna-24 site. The original morphology of Fahrenheit's ejecta deposits is inferred by examining a fresh crater, Lichtenberg B, of a comparable site that formed in a similar type of target material. On the basis of this analogy, a probability of over 80% was calculated that the Luna-24 site was morphologically disturbed by the deposition of Fahrenheit ejecta. The relative abundance, gabbroic composition, and unshocked character of the holocrystalline fragments discovered in the Luna-24 core sample are consistent with the widespread occurrence of Fahrenheit deposits and the characteristics of Fahrenheit ejecta anticipated at the Luna-24 range.

  14. Target delamination by spallation and ejecta dragging: An example from the Ries crater's periphery

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Ivanov, Boris A.

    2006-11-01

    Subhorizontal shear planes (detachments) are observed in bedded limestones in the periphery of the Ries impact crater, Germany. These detachments occur at 0.8-1.8 crater radii distance from the crater center beneath deposits of the continuous ejecta blanket. Striations on detachment planes and offsets of markers indicate top-outward shearing with radial slip vectors. Detachments were found at depths between a few meters and more than 50 m beneath the target surface. The displacements along these faults range from meters to decameters and decrease with increasing depth and distance from the crater center. With increasing crater distance, detachment horizons tend to climb to shallower levels. Cross-cutting relationships to faults associated with the crater collapse indicate that detachment faulting started prior to the collapse but continued during crater modification. Numerical modeling of the cratering process shows that near-surface deformation outside the transient crater is induced by two separate mechanisms: (i) weak spallation by interference of shock and release waves near the target surface and (ii) subsequent dragging by the deposition of the ejecta curtain. Spallation causes an upward and outward directed motion of target material that increases in magnitude toward the target surface. It leads to decoupling of the uppermost target layers in the early cratering stage without totally disintegrating the rock. The subsequent arrival of the oblique impact shower of the ejecta curtain at the target surface delivers a horizontal momentum to the uppermost target area and results in a second horizontal displacement increment by dragging. With increasing depth this effect vanishes rapidly. Spallation decoupling and subsequent ejecta dragging of near-surface rocks is probably a general cratering mechanism around craters in layered targets with weak interbeds.

  15. A Model for Properties of Basin Ejecta Deposits and Secondary Crater Densities

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.; McKinnon, W. B.; Moss, B. E.

    2001-01-01

    Ejecta scaling relationships, ballistic sedimentation, and ejecta fragment size distributions are used to give estimates of thicknesses of basin ejecta deposits, proportions of primary ejecta, and secondary crater diameters and surface densities. Additional information is contained in the original extended abstract.

  16. A Model for Properties of Basin Ejecta Deposits and Secondary Crater Densities

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.; McKinnon, W. B.; Moss, B. E.

    2001-01-01

    Ejecta scaling relationships, ballistic sedimentation, and ejecta fragment size distributions are used to give estimates of thicknesses of basin ejecta deposits, proportions of primary ejecta, and secondary crater diameters and surface densities. Additional information is contained in the original extended abstract.

  17. Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers

    NASA Astrophysics Data System (ADS)

    Just, O.; Bauswein, A.; Pulpillo, R. Ardevol; Goriely, S.; Janka, H.-T.

    2015-03-01

    We present the first comprehensive study of r-process element nucleosynthesis in the ejecta of compact binary mergers (CBMs) and their relic black hole (BH)-torus systems. The evolution of the BH-accretion tori is simulated for seconds with a Newtonian hydrodynamics code including viscosity effects, pseudo-Newtonian gravity for rotating BHs, and an energy-dependent two-moment closure scheme for the transport of electron neutrinos and antineutrinos. The investigated cases are guided by relativistic double neutron star (NS-NS) and NS-BH merger models, producing ˜3-6 M⊙ BHs with rotation parameters of ABH ˜ 0.8 and tori of 0.03-0.3 M⊙. Our nucleosynthesis analysis includes the dynamical (prompt) ejecta expelled during the CBM phase and the neutrino and viscously driven outflows of the relic BH-torus systems. While typically ˜20-25 per cent of the initial accretion-torus mass are lost by viscously driven outflows, neutrino-powered winds contribute at most another ˜1 per cent, but neutrino heating enhances the viscous ejecta significantly. Since BH-torus ejecta possess a wide distribution of electron fractions (0.1-0.6) and entropies, they produce heavy elements from A ˜ 80 up to the actinides, with relative contributions of A ≳ 130 nuclei being subdominant and sensitively dependent on BH and torus masses and the exact treatment of shear viscosity. The combined ejecta of CBM and BH-torus phases can reproduce the solar abundances amazingly well for A ≳ 90. Varying contributions of the torus ejecta might account for observed variations of lighter elements with 40 ≤ Z ≤ 56 relative to heavier ones, and a considerable reduction of the prompt ejecta compared to the torus ejecta, e.g. in highly asymmetric NS-BH mergers, might explain the composition of heavy-element deficient stars.

  18. EJECTA KNOT FLICKERING, MASS ABLATION, AND FRAGMENTATION IN CASSIOPEIA A

    SciTech Connect

    Fesen, Robert A.; Zastrow, Jordan A.; Hammell, Molly C.; Shull, J. Michael; Silvia, Devin W.

    2011-08-01

    Ejecta knot flickering, ablation tails, and fragmentation are expected signatures associated with the gradual dissolution of high-velocity supernova (SN) ejecta caused by their passage through an inhomogeneous circumstellar medium or interstellar medium (ISM). Such phenomena mark the initial stages of the gradual merger of SN ejecta with and the enrichment of the surrounding ISM. Here we report on an investigation of this process through changes in the optical flux and morphology of several high-velocity ejecta knots located in the outskirts of the young core-collapse SN remnant Cassiopeia A using Hubble Space Telescope images. Examination of WFPC2 F675W and combined ACS F625W + F775W images taken between 1999 June and 2004 December of several dozen debris fragments in the remnant's northeast ejecta stream and along the remnant's eastern limb reveal substantial emission variations ('flickering') over timescales as short as nine months. Such widespread and rapid variability indicates knot scale lengths {approx_equal} 10{sup 15} cm and a highly inhomogeneous surrounding medium. We also identify a small percentage of ejecta knots located all around the remnant's outer periphery which show trailing emissions typically 0.''2-0.''7 in length aligned along the knot's direction of motion suggestive of knot ablation tails. We discuss the nature of these trailing emissions as they pertain to ablation cooling, knot disruption, and fragmentation, and draw comparisons to the emission 'strings' seen in {eta} Car. Finally, we identify several tight clusters of small ejecta knots which resemble models of shock-induced fragmentation of larger SN ejecta knots caused by a high-velocity interaction with a lower density ambient medium.

  19. Thermomagnetic analysis of meterorites. 4: Ureilites

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.; Larson, E. E.; Watson, D. E.

    1974-01-01

    Samples of all available ureilites have been analyzed thermomagnetically. For three of the six (Dyalpur, Goalpara and Havero) evidence was found for only low-nickel metallic-iron as the magnetic component and the (saturation magnetization vs, temperature) curves were reversible. In the Novo Urei ureilite, magnetite in addition to low-nickel metallic-iron was indicated and again the Js-T curve was reversible. For the two badly weathered ureilites, Dingo Pup Donga and North Haig, indication was also found that both initial magnetite and low-nickel metallic-iron were present. However, the Js-T curves were somewhat irreversible and the final saturation magnetization was 20% and 50% greater than initially for North Haig and Dingo Pup Donga, respectively. This behavior is interpreted to be the result of magnetite production from a secondary iron oxide during the experiment.

  20. Long-term dynamical evolution of dusty ejecta from Deimos

    NASA Astrophysics Data System (ADS)

    Makuch, Martin; Krivov, Alexander V.; Spahn, Frank

    2005-04-01

    We re-assess expected properties of the presumed dust belt of Mars formed by impact ejecta from Deimos. Previous studies have shown that dynamics of Deimos particles are dominated by two perturbing forces: radiation pressure (RP) and Mars' oblateness (J2). At the same time, they have demonstrated that lifetimes of particles, especially of grains about ten of micrometers in size, may reach more than 104 years. On such timescales, the Poynting-Robertson drag (PR) becomes important. Here we provide a study of the dynamics under the combined action of all three perturbing forces. We show that a PR decay of the semimajor axes leads to an adiabatic decrease of amplitudes and periods of oscillations in orbital inclinations predicted in the framework of the underlying RP+J2 problem. Furthermore, we show that smallest of the long-lived Deimos grains (radius≈5- 10μm) may reach a chaotic regime, resulting in unpredictable and abrupt changes of their dynamics. The particles just above that size ( ≈10- 15μm) should be the most abundant in the Deimos torus. Our dynamical analysis, combined with a more accurate study of the particle lifetimes, provides corrections to earlier predictions about the dimensions and geometry of the Deimos torus. In addition to a population, appreciably inclined and shifted towards the Sun, the torus should contain a more contracted, less asymmetric, and less tilted component between the orbits of Phobos and Deimos.

  1. Condensation and mixing in supernova ejecta

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Meyer, B. S.; Grossman, L.

    2010-06-01

    Low-density graphite spherules from the Murchison carbonaceous chondrite contain TiC grains and possess excess 28Si and 44Ca (from decay of short-lived 44Ti). These and other isotopic anomalies indicate that such grains formed by condensation from mixtures of ejecta from the interior of a core-collapse supernova with those from the exterior. Using homogenized chemical and isotopic model compositions of the eight main burning zones as end-members, Travaglio et al. (1999) attempted to find mixtures whose isotopic compositions match those observed in the graphite spherules, subject to the condition that the atomic C/O ratio = 1. They were partially successful, but this chemical condition does not guarantee condensation of TiC at a higher temperature than graphite, which is indicated by the spherule textures. In the present work, model compositions of relatively thin layers of ejecta within the main burning zones computed by Rauscher et al. (2002) for Type II supernovae of 15, 21 and 25 M ʘ are used to construct mixtures whose chemical compositions cause equilibrium condensation of TiC at a higher temperature than graphite in an attempt to match the textures and isotopic compositions of the spherules simultaneously. The variation of pressure with temperature and the change in elemental abundances with time due to radioactive decay were taken into account in the condensation calculations. Layers were found within the main Ni, O/Ne, He/C and He/N zones that, when mixed together, simultaneously match the carbon, nitrogen and oxygen isotopic compositions, 44Ti/ 48Ti ratios and inferred initial 26Al/ 27Al ratios of the low-density graphite spherules, even at subsolar 12C/ 13C ratios. Due to the relatively large proportion of material from the Ni zone and the relative amounts of the two layers of the Ni zone required to meet these conditions, predicted 28Si excesses are larger than observed in the low-density graphite spherules, and large negative δ46Ti/ 48Ti, δ47Ti/ 48Ti

  2. Simulating regolith ejecta due to gas impingement

    NASA Astrophysics Data System (ADS)

    Chambers, Wesley Allen; Metzger, Philip; Dove, Adrienne; Britt, Daniel

    2016-10-01

    Space missions operating at or near the surface of a planet or small body must consider possible gas-regolith interactions, as they can cause hazardous effects or, conversely, be employed to accomplish mission goals. They are also directly related to a body's surface properties; thus understanding these interactions could provide an additional tool to analyze mission data. The Python Regolith Interaction Calculator (PyRIC), built upon a computational technique developed in the Apollo era, was used to assess interactions between rocket exhaust and an asteroid's surface. It focused specifically on threshold conditions for causing regolith ejecta. To improve this model, and learn more about the underlying physics, we have begun ground-based experiments studying the interaction between gas impingement and regolith simulant. Compressed air, initially standing in for rocket exhaust, is directed through a rocket nozzle at a bed of simulant. We assess the qualitative behavior of various simulants when subjected to a known maximum surface pressure, both in atmosphere and in a chamber initially at vacuum. These behaviors are compared to prior computational results, and possible flow patterns are inferred. Our future work will continue these experiments in microgravity through the use of a drop tower. These will use several simulant types and various pressure levels to observe the effects gas flow can have on target surfaces. Combining this with a characterization of the surface pressure distribution, tighter bounds can be set on the cohesive threshold necessary to maintain regolith integrity. This will aid the characterization of actual regolith distributions, as well as informing the surface operation phase of mission design.

  3. Numerical Modelling and Ejecta Distribution Analysis of a Martian Fresh Crater

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Cremonese, G.; Cambianica, P.; Daubar, I.; McEwen, A. S.; Re, C.

    2015-12-01

    Images taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter reveal fresh craters on Mars that are known to be recent as they are constrained by before and after images (Daubar et al., 2013). In particular, on Nov. 19, 2013 an image acquired by HiRISE, ESP_034285_1835, observed a 25 m diameter fresh crater located at 3.7° N, 53.4° E. This impact occurred between July 2010 and May 2012, as constrained by Context camera (CTX) images. Because the terrain where the crater formed is dusty, the fresh crater appears blue in the enhanced color of the HiRISE image, due to removal of the reddish dust in that area. We analyze this crater using the iSALE shock physics code (Amsden et al., 1980, Collins et al., 2004, Ivanov et al., 1997, Melosh et al., 1992, Wünnemann et al., 2006) to model the formation of this impact structure which is ~25 m in diameter and ~ 2.5 - 3 m in depth. These values are obtained from the DTM profile we have generated. We model the Martian surface considering different target compositions as regolith and fractured basalt rock and we based our simulations on a basalt projectile with a porosity of 10% (which is derived from the average of the meteorite types proposed by Britt et al., 2002) that hits the Martian surface with a beginning velocity equal to 7 km/s (Le Feuvre & Wieczorek, 2011) and an impact angle of 90°. The projectile size is around 1 m and it is estimated from the comparison between the DTM profile and the profiles obtained by numerical modelling. The primary objective of this analysis is the detailed study of the ejecta, in fact we will track the ejecta coming from the simulation and compare them to the ejecta distribution computed on the image (the ejecta reached a distance of more than 15 km). From the matching of the simulated ejecta with their real distribution, we will be able to understand the goodness of the simulation and also put constraints on the target material.

  4. The LCROSS Ejecta Plume Revealed: First Characterization from Earth-based Imaging

    NASA Astrophysics Data System (ADS)

    Miller, C.; Chanover, N.; Hermalyn, B.; Strycker, P. D.; Hamilton, R. T.; Suggs, R. M.

    2012-12-01

    On October 9, 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) struck the floor of Cabeus crater. We observed the LCROSS impact site at 0.5-second intervals throughout the time of impact in the V-band (491 to 591 nm) using the Agile camera on the 3.5 m telescope at the Apache Point Observatory. Our initial analysis of these images showed that the ejecta plume could be no brighter than 9.5 magnitudes/arcsec^2. (Chanover et al. 2011, JGR). We subsequently applied a Principal Component Analysis (PCA) technique to filter out time-varying seeing distortions and image registration errors from an 8-minute sequence of images centered on the LCROSS impact time and unambiguously detected the evolving plume below the noise threshold. This is the first and only reported image detection of the LCROSS plume from ground-based instruments. Our detection is consistent with an ejecta plume that reaches peak brightness between 12 and 20 seconds after impact and fades to an undetectable level within 90 seconds after impact. This is consistent with in situ observations made by the LCROSS Shepherding Satellite (LCROSS S/SC) and the Lunar Reconnaissance Orbiter (LRO) that observed the impact from above (Colaprete et al., and Hayne et. al., 2010, Science). To test our detection method, we compared the brightness profiles derived from our impact image sequence to those extracted from a sequence with a simulated ejecta pattern. We performed 3-D ballistic simulations of trial impacts, starting with initial particle ejection angles and velocities derived from laboratory measurements made with the NASA Ames Vertical Gun of impacts of hollow test projectiles (Hermalyn et. al., 2012, Icarus). We extracted images from these simulations at 0.5-second intervals, combined them with a computer generated lunar landscape, and introduced image distortions due to time-varying seeing conditions and instrumental noise sources to produce a synthetic ejecta image sequence. We then re

  5. Geologic Mapping of Ejecta Deposits in Oppia Quadrangle, Asteroid (4) Vesta

    NASA Technical Reports Server (NTRS)

    Garry, W. Brent; Williams, David A.; Yingst, R. Aileen; Mest, Scott C.; Buczkowski, Debra L.; Tosi, Federico; Schafer, Michael; LeCorre, Lucille; Reddy, Vishnu; Jaumann, Ralf; Pieters, Carle M.; Russell, Christopher T.; Raymond, Carol A.

    2014-01-01

    Oppia Quadrangle Av-10 (288-360 deg E, +/- 22 deg) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA's Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (approximately 45 km diameter) and Oppia (approximately 40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as 'dark mantle' material because it appears dark orange in the Framing Camera 'Clementine-type' colorratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera 'Clementine-type' color-ratio image as 'light mantle material' supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced greater than 5 crater radii away) in a microgravity environment.

  6. Radar scattering mechanisms within the meteor crater ejecta blanket: Geologic implications and relevance to Venus

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Campbell, B. A.; Zisk, S. H.; Schaber, Gerald G.; Evans, C.

    1989-01-01

    Simple impact craters are known to occur on all of the terrestrial planets and the morphologic expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars, Mercury, and most recently for Venus. It will be crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these concepts in mind, a study was initiated of the quantitative SAR textural characteristics of the ejecta blanket preserved at Meteor Crater, Arizona, the well studied 1.2 km diameter simple crater that formed approx. 49,000 years ago from the impact of an octahedrite bolide. While Meteor Crater was formed as the result of an impact into wind and water lain sediments and has undergone recognizable water and wind related erosion, it nonetheless represents the only well studied simple impact crater on Earth with a reasonably preserved CEB. Whether the scattering behavior of the CEB can provide an independent perspective on its preservation state and style of erosion is explored. Finally, airborne laser altimeter profiles of the microtopography of the Meteor Crater CEB were used to further quantify the subradar pizel scale topographic slopes and RMS height variations for comparisons with the scattering mechanisms computed from SAR polarimetry. A preliminary assessment was summarized of the L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8 SAR Polarimetry dataset acquired in 1988, and the dominant scattering behavior was compared with microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).

  7. Characteristics and Origin of Martian Low-Aspect-Ratio Layered Ejecta (LARLE) Craters

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Boyce, J. M.

    2013-10-01

    An unusual crater morphology is found primarily at high latitudes on Mars. These craters display an extensive outer deposit beyond the normal layered ejecta blanket. This outer deposit extends up to 20 crater radii from the rim, terminates in a sinuous flame-like edge, and is extremely thin, leading to a low aspect ratio (A = thickness/length). These craters are thus called Low-Aspect-Ratio Layered Ejecta (LARLE) craters. We have conducted a survey of all LARLE craters 1-km-diameter and larger on Mars. We find 139 LARLE craters ranging in diameter from 1.0 to 12.2 km with a median of 2.8 km. Most (97%) are found poleward of 35N and 40S, with the remainder primarily found in the equatorial Medusae Fossae Formation. The surfaces of the freshest LARLE layers commonly exhibit radial, curvilinear ridges and dune-like landforms, and the LARLE deposit typically drapes over pre-existing terrain. We propose that the LARLE deposit is formed by a different mechanism than that responsible for the normal layered ejecta patterns. We suggest that impact into relatively-thick fine-grained ice-rich mantles enhances the formation of a base surge that is deposited after formation of the inner layered ejecta deposits. This base surge is similar to the density-driven, turbulent cloud of suspended fine-grained particles produced by impact erosion and mobilization of the surrounding surface material by ejecta from shallow-depth-of-burst nuclear and high-explosion craters. We have applied a base surge equation developed for terrestrial explosive events to two fresh LARLE craters. After adjustment of the equation for Martian conditions, it predicts runout distances that are within 99% of the observed values. All Martian craters likely produce a base surge during formation, but the presence of the obvious LARLE deposit is attributed to crater formation in thick, fine-grained, sedimentary deposits. These sediments are the source of the extra particulate debris incorporated into and deposited

  8. Crater Ejecta by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 24 June 2004 This pair of images shows a crater and its ejecta.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through

  9. Thickness of Proximal Ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for Multi-Ring Basin Formation

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb I.a; Head, James W.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.

    2011-01-01

    Quantifying the ejecta distribution around large lunar basins is important to understanding the origin of basin rings, the volume of the transient cavity, the depth of sampling, and the nature of the basin formation processes. We have used newly obtained altimetry data of the Moon from the Lunar Orbiter Laser Altimeter (LOLA) instrument to estimate the thickness of ejecta in the region surrounding the Orientale impact basin, the youngest and best preserved large basin on the Moon. Our measurements yield ejecta thicknesses of approx.2900 m near the Cordillera Mountains, the topographic rim of Orientale, decaying to approx.1 km in thickness at a range of 215 km. These measurements imply a volume of ejecta in the region from the Cordillera ring to a radial range of one basin diameter of approx.2.9 x 10(exp 6)cu km and permit the derivation of an ejecta-thickness decay model, which can be compared with estimates for the volume of excavation and the size of the transient cavity. These data are consistent with the Outer Rook Mountains as the approximate location of the transient cavity s rim crest and suggest a volume of approx.4.8 x 10(exp 6)cu km for the total amount of basin ejecta exterior to this location.

  10. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una

    2013-01-01

    The ejecta of the Cas A supernova remnant has a complex morphology, consisting of dense fast-moving line emitting knots and diffuse X-ray emitting regions that have encountered the reverse shock, as well as more slowly expanding, unshocked regions of the ejecta. Using the Spitzer 5-35 micron IRS data cube, and Herschel 70, 100, and 160 micron PACS data, we decompose the infrared emission from the remnant into distinct spectral components associated with the different regions of the ejecta. Such decomposition allows the association of different dust species with ejecta layers that underwent distinct nuclear burning histories, and determination of the dust heating mechanisms. Our decomposition identified three characteristic dust spectra. The first, most luminous one, exhibits strong emission features at approx. 9 and 21 micron, and a weaker 12 micron feature, and is closely associated with the ejecta knots that have strong [Ar II] 6.99 micron and [Ar III] 8.99 micron emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low MgO-to-SiO2 ratios. A second, very different dust spectrum that has no indication of any silicate features, is best fit by Al2O3 dust and is found in association with ejecta having strong [Ne II] 12.8 micron and [Ne III] 15.6 micron emission lines. A third characteristic dust spectrum shows features that best matched by magnesium silicates with relatively high MgO-to-SiO2 ratio. This dust is primarily associated with the X-ray emitting shocked ejecta and the shocked interstellar/circumstellar material. All three spectral components include an additional featureless cold dust component of unknown composition. Colder dust of indeterminate composition is associated with [Si II] 34.8 micron emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. The dust mass giving rise to the warm dust component is about approx. 0.1solar M. However, most of the dust mass

  11. Impact Craters

    NASA Image and Video Library

    2003-03-22

    The fluidized impact crater ejecta and flat crater floors observed in this image from NASA Mars Odyssey spacecraft suggest near-surface volatiles once played an important role in modifying the Martian surface.

  12. Characterization of Lunar Crater Ejecta Deposits Using Radar Data from the Mini-RF Instrument on LRO

    NASA Astrophysics Data System (ADS)

    Patterson, G. W.; Raney, R. K.; Cahill, J. T.; Bussey, B.

    2012-12-01

    Impact cratering is the dominant weathering process on the surface of the Moon and a primary means of distrib-uting material on the lunar surface [1]. Radar data provide unique information on both the horizontal and vertical distribution of impact deposits [2]. The Miniature Radio Frequency (Mini-RF) instrument flown on the Lunar Re-connaissance Orbiter (LRO) is a Synthetic Aperture Radar (SAR) with an innovative hybrid dual-polarimetric archi-tecture, transmitting (quasi-) circular polarization, and receiving orthogonal linear polarizations and their relative phase [3]. The four Stokes parameters that characterize the observed backscattered EM field are calculated from the received data. These parameters can be used to derive a variety of child products that include the circular polariza-tion ratio (CPR) and the m-chi decomposition. The former provides an indication of surface roughness and the latter provides an indication of the scattering properties of the surface [4]. Using these products, we examine the crater Byrgius A and demonstrate the ability to differentiate materials within ejecta deposits and their relative thicknesses. Byrgius A is a 19 km diameter Copernican located in the lunar highlands east of the Orientale Basin and west of Mare Humorum. Visible image data of the region obtained by the Lunar Reconnaissance Orbiter Camera Wide An-gle Camera (LROC WAC) [5] at a resolution of 100 m/pixel show optically bright ejecta deposits associated with the crater that extend to radial distances of 100s of km, with near continuous deposits observed to an average radial distance of 70 km. Mini-RF CPR information derived from S-band (12.6 cm) data of the region show an increased roughness for Byrgius A and its ejecta deposits relative to the surrounding terrain. This is a commonly observed characteristic of young, fresh craters and indicates that the crater and its ejecta have a higher fraction of cm- to m-scale scatterers at the surface and/or buried to depths

  13. Ejecta model development at pRad (u)

    SciTech Connect

    Buttler, William T; Oro, David M; Dimonte, Guy; Terrones, Guillermo; Morris, Christopher; Bainbridge, J R; Hogan, Gary E.; Hollander, Brian J.; Holtkamp, David B.; Kwiathowski, Kris; Marr-Lyon, Mark; Mariam, Fesseha G.; Merrill, Frank E; Nedrow, Paul; Saunders, Alexander; Schwartz, C L; Stone, B; Tupa, Dale; Vogan-McNeil, Wendy S

    2010-02-09

    In July 2009 we fielded three explosively (HE) driven Richtmyer-Meshkov instability experiments at the LANSCE Proton Radiography Facility (pRad), and in August of 2009 we fielded one flyer plate experiment on the pRad 40 mm powder gun. One HE experiment was done in vacuum, and the other two within four atmospheres of noble gasses: Xe and Ne. These two gases were chosen to study the viscous effects on ejecta formation. It is unexpected, but the viscosity {eta} of Ne is twice that of Xe, and, due to the atomic mass difference between the two, the kinematic viscosity ({eta}/{rho}) of Ne is about ten times that of Xe. The results showed that ejecta formation is sensitively linked to the gas density, which implies that the Weber number is more important in ejecta formation than the Reynolds number.

  14. Interstellar and ejecta dust in the cas a supernova remnant

    SciTech Connect

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jeonghee; Hwang, Una

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  15. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jeonghee; Hwang, Una

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ~9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al2O3 dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is <~ 0.1 M ⊙. The mass of warmer dust is only ~0.04 M ⊙.

  16. MIXING OF CLUMPY SUPERNOVA EJECTA INTO MOLECULAR CLOUDS

    SciTech Connect

    Pan Liubin; Desch, Steven J.; Scannapieco, Evan; Timmes, F. X.

    2012-09-01

    Several lines of evidence, from isotopic analyses of meteorites to studies of the Sun's elemental and isotopic composition, indicate that the solar system was contaminated early in its evolution by ejecta from a nearby supernova. Previous models have invoked supernova material being injected into an extant protoplanetary disk, or isotropically expanding ejecta sweeping over a distant (>10 pc) cloud core, simultaneously enriching it and triggering its collapse. Here, we consider a new astrophysical setting: the injection of clumpy supernova ejecta, as observed in the Cassiopeia A supernova remnant, into the molecular gas at the periphery of an H II region created by the supernova's progenitor star. To track these interactions, we have conducted a suite of high-resolution (1500{sup 3} effective) three-dimensional numerical hydrodynamic simulations that follow the evolution of individual clumps as they move into molecular gas. Even at these high resolutions, our simulations do not quite achieve numerical convergence, due to the challenge of properly resolving the small-scale mixing of ejecta and molecular gas, although they do allow some robust conclusions to be drawn. Isotropically exploding ejecta do not penetrate into the molecular cloud or mix with it, but, if cooling is properly accounted for, clumpy ejecta penetrate to distances {approx}10{sup 18} cm and mix effectively with large regions of star-forming molecular gas. In fact, the {approx}2 M{sub Sun} of high-metallicity ejecta from a single core-collapse supernova is likely to mix with {approx}2 Multiplication-Sign 10{sup 4} M{sub Sun} of molecular gas material as it is collapsing. Thus, all stars forming late ( Almost-Equal-To 5 Myr) in the evolution of an H II region may be contaminated by supernova ejecta at the level {approx}10{sup -4}. This level of contamination is consistent with the abundances of short-lived radionuclides and possibly some stable isotopic shifts in the early solar system and is

  17. Long-wave stratospheric transmission of Mount St. Helens ejecta

    SciTech Connect

    Kuhn, P.M.; Haughney, L.C.; Innis, R.C.

    1981-01-01

    The NASA/Ames Research C-141 aircraft underflew the Mount St. Helens ejecta plume in Utah three days after the eruption. Upward-looking 20--40-..mu..m on-board radiometry provided data resulting in a calculated long-wave transmission of 0.93. From this value, an optical depth of 0.073 is inferred. This value is compared with an accepted background, stratospheric infrared optical depth of 0.06. Assumptions on particle size, shortwave albedo, and thermal warming imply little surface temperature change caused by the ejecta on the third day immediately following the eruption.

  18. Long-wave stratospheric transmission of Mount St. Helens ejecta.

    PubMed

    Kuhn, P M; Haughney, L C; Innis, R C

    1981-01-01

    The NASA/Ames Research C-141 aircraft underflew the Mount St. Helens ejecta plume in Utah three days after the eruption. Upward-looking 20-40-microm on-board radiometry provided data resulting in a calculated long-wave transmission of 0.93. From this value, an optical depth of 0.073 is inferred. This value is compared with an accepted background, stratospheric infrared optical depth of 0.06. Assumptions on particle size, shortwave albedo, and thermal warming imply little surface temperature change caused by the ejecta on the third day immediately following the eruption.

  19. Planetary geological studies. [MARS crater morphology and ejecta deposit topography

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.

    1981-01-01

    A global data base was assembled for the study of Mars crater ejecta morphology. The craters were classified as to morhology using individual photographic prints of Viking orbiter frames. Positional and scale information were derived by fitting digitized mosaic coordinates to lattitude-longitude coordinates of surface features from the Mars geodetic control net and feature coordinates from the U.S.G.S. series of 1:5,00,000 scale shaded relief maps. Crater morphology characteristics recorded are of two classes - attributes of each ejecta deposit and other crater charactersitics. Preliminary efforts to check the data base with findings of other workers are described.

  20. Clay mineralogy of the Cretaceous-Tertiary boundary clay. [in search for asteroid ejecta

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Reynolds, R. C.

    1983-01-01

    Cretaceous-Tertiary boundary layer clay samples from four localities were subjected to analyses which imply that they are neither mineralogically exotic nor distinct from locally derived clays above and below the boundary. The anomalous iridium-rich ejecta component predicted by the asteroid impact scenario of Alvarez et al (1980) was not detected. It is proposed that volcanic material be considered as an explanation of the geochemical anomalies of the Cretaceous-Tertiary boundary. A model which involves a period of intense volcanism at the end of the Cretaceous would generate a variety of climatic and biological effects consonant with the geologic history of that period.

  1. Clay mineralogy of the Cretaceous-Tertiary boundary clay. [in search for asteroid ejecta

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Reynolds, R. C.

    1983-01-01

    Cretaceous-Tertiary boundary layer clay samples from four localities were subjected to analyses which imply that they are neither mineralogically exotic nor distinct from locally derived clays above and below the boundary. The anomalous iridium-rich ejecta component predicted by the asteroid impact scenario of Alvarez et al (1980) was not detected. It is proposed that volcanic material be considered as an explanation of the geochemical anomalies of the Cretaceous-Tertiary boundary. A model which involves a period of intense volcanism at the end of the Cretaceous would generate a variety of climatic and biological effects consonant with the geologic history of that period.

  2. Geology of Lunar Landing Sites and Origin of Basin Ejecta from a Clementine Perspective

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Haskin, Larry A.

    1998-01-01

    The goals of this research were to examine Clementine multispectral data covering the Apollo landing sites in order to: (1) provide ground truth for the remotely sensed observations, (2) extend our understanding of the Apollo landing sites to the surrounding regions using the empirically calibrated Clementine data, and (3) investigate the composition and distribution of impact-basin ejecta using constraints based upon the remotely sensed data and the Apollo samples. Our initial efforts (in collaboration with P. Lucey and coworkers) to use the Apollo soil compositions to "calibrate" information derived from the remotely sensed data resulted in two extremely useful algorithms for computing estimates of the concentrations of FeO and TiO2 from the UV-VIS 5-band data. In this effort, we used the average surface soil compositions from 37 individual Apollo and 3 Luna sample stations that could be resolved using the Clementine data. We followed this work with a detailed investigation of the Apollo 17 landing site, where the sampling traverses were extensive and the spectral and compositional contrast between different soils covers a wide range. We have begun to investigate the nature and composition of basin ejecta by comparing the thick deposits on the rim of Imbrium in the vicinity of the Apollo 15 site and those occurring southeast of the Serenitatis basin, in the Apollo 17 region. We continue this work under NAG5-6784, "Composition, Lithology, and Heterogeneity of the lunar crust using remote sensing of impact-basin uplift structures and ejecta as probes. The main results of our work are given in the following brief summaries of major tasks. Detailed accounts of these results are given in the attached papers, manuscripts, and extended abstracts.

  3. Spectroscopy of the LCROSS Ejecta Plume from Keck, Gemini, and NASA IRTF Observatories

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Young, E. F.; Kelley, M. S.; Woodward, C. E.; Harker, D. E.; Disanti, M. A.; Lucey, P. G.; Hawke, R. B.; Goldstein, D.; Summy, D.; Conrad, A. R.; Geballe, T. R.; Rayner, J. T.; Colaprete, A.; Heldmann, J. L.

    2009-12-01

    We will observe the LCROSS impact event with three complementary ground-based instruments, chosen specifically to achieve LCROSS Mission Science Goals, as follows: - Keck+NIRSPEC will acquire high-resolution spectra (R = 25,000) of non-resonant fluorescent water vapor emission lines between 3380 cm-1 and 3530 cm-1. - NASA IRTF+SpeX will acquire a wide contiguous spectral range (2 - 4 µm, although saturation is possible longward of 3.4 µm). This range is expected to characterize the shape of the non-H2O-ice continuum as a function of ejecta grain size and mineralogical composition. SpeX will also sample the H2O-ice fundamental band at 3.0 µm. - Gemini+NIFS will acquire infrared spectra (1.9 - 2.3 µm) over a 3"x3" (6 km x 6 km) field of view, encompassing the entire ejecta plume for the first 30 seconds after impact and resolving the dense core of the plume (where the highest column of H2O-ice would be seen). The height dependence is expected to be diagnostic of the size distribution, since smaller particles will have faster post velocities and be lofted higher. Together, these three data sets will look for water, both as vapor (NIRSPEC) and as ice grains (SpeX and NIFS); characterize the grain size and mineralogy of the impacted regolith; and possibly reveal non-water hydrocarbons or hydrated mineral constituents. Below, Flux predictions are given. Predictions for "dry" ejecta plume models (Goldstein, D.B. et al. 2008, AIP 1084, 1061) for Mg-Fe pyroxene composition, and grain column densities from 2e5 to 1e7 m-2, for radii a=35 µm, averaged over the central 6 x 6 km (3"x3") region. In general, fluxes scale with number densities. If 2e5 m-2 of a=35 µm grains disaggregate to yield 1e10 m-2 of a=1 µm grains, then the ejecta plume will be as bright as for 1e7 m-2 of 35 µm grains but spectra probably will reveal mineral features. Separate thermal and scattered fluxes are shown for the a=35 µm, N=1e7 m-2 case. The spectrum of a V=5 A0V star is shown for

  4. The Links Between Target Properties and Layered Ejecta Craters in Acidalia and Utopia Planitiae Mars

    NASA Astrophysics Data System (ADS)

    Jones, E.; Osinski, G. R.

    2013-08-01

    Layered ejecta craters on Mars may form from excavation into subsurface volatiles. We examine a new catalogue of martian craters to decipher differences between the single- and double-layered ejecta populations in Acidalia and Utopia.

  5. Modelling circumplanetary ejecta clouds at low altitudes: A probabilistic approach

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos A.

    2015-04-01

    A model is presented of a ballistic, collisionless, steady state population of ejecta launched at randomly distributed times and velocities and moving under constant gravity above the surface of an airless planetary body. Within a probabilistic framework, closed form solutions are derived for the probability density functions of the altitude distribution of particles, the distribution of their speeds in a rest frame both at the surface and at altitude and with respect to a moving platform such as an orbiting spacecraft. These expressions are validated against numerically-generated synthetic populations of ejecta under lunar surface gravity. The model is applied to the cases where the ejection speed distribution is (a) uniform (b) a power law. For the latter law, it is found that the effective scale height of the ejecta envelope directly depends on the exponent of the power law and increases with altitude. The same holds for the speed distribution of particles near the surface. Ejection model parameters can, therefore, be constrained through orbital and surface measurements. The scope of the model is then extended to include size-dependency of the ejection speed and an example worked through for a deterministic power law relation. The result suggests that the height distribution of ejecta is a sensitive proxy for this dependency.

  6. Condensation in Supernova Ejecta at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Meyer, B. S.; Grossman, L.; Desch, S. J.

    2009-03-01

    ^44Ti-rich TiC condenses before graphite in SN ejecta only if thin sub-layers of the main burning zones mix together; such mixing is also needed to form Fe-olivine. High-T phases change from carbides to oxides along composition gradients within the He/N zone.

  7. The condensation of grains in the ejecta of supernovae

    NASA Astrophysics Data System (ADS)

    Pearce, G.

    1986-03-01

    The condensation of grains around supernovae is considered. The mechanism by which grains could condense from supernovae ejecta to form a circumstellar dust shell is investigated. It is discovered that the depletion factor of grain forming material from the surrounding gas is important.

  8. Unmelted Meteoritic Debris Collected from Eltanin Ejecta in Polarstern Cores from Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    A total of 1.7g of unmelted meteorite particles have been recovered from FS Polarstern piston cores collected on expedition ANT XII/4 that contain ejecta from the Eltanin impact event. Most of the mass (1.2 g) is a large, single specimen that is a polymict breccia, similar in mineralogy and chemistry to howardites or the silicate fraction of mesosiderites. Most of the remaining mass is in several large individual pieces (20-75mg each) that are polymict breccias, fragments dominated by pyroxene, and an igneous rock fragment. The latter has highly fractionated REE, similar to those reported in mafic clasts from mesosiderites. Other types of specimens identified include fragments dominated by maskelynite or olivine. These pieces of the projectile probably survived impact by being blown off the back surface of the Eltanin asteroid during its impact into the Bellingshausen Sea.

  9. Unmelted Meteoritic Debris Collected from Eltanin Ejecta in Polarstern Cores from Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    A total of 1.7g of unmelted meteorite particles have been recovered from FS Polarstern piston cores collected on expedition ANT XII/4 that contain ejecta from the Eltanin impact event. Most of the mass (1.2 g) is a large, single specimen that is a polymict breccia, similar in mineralogy and chemistry to howardites or the silicate fraction of mesosiderites. Most of the remaining mass is in several large individual pieces (20-75mg each) that are polymict breccias, fragments dominated by pyroxene, and an igneous rock fragment. The latter has highly fractionated REE, similar to those reported in mafic clasts from mesosiderites. Other types of specimens identified include fragments dominated by maskelynite or olivine. These pieces of the projectile probably survived impact by being blown off the back surface of the Eltanin asteroid during its impact into the Bellingshausen Sea.

  10. Investigation of the enhanced spatial density of submicron lunar ejecta between L values 1.2 and 3.0 in the earth's magnetosphere: Theory

    NASA Technical Reports Server (NTRS)

    Alexander, W. M.; Tanner, W. G.; Goad, H. S.

    1987-01-01

    Initial results from the measurement conducted by the dust particle experiment on the lunar orbiting satellite Lunar Explorer 35 (LE 35) were reported with the data interpreted as indicating that the moon is a significant source of micrometeroids. Primary sporadic and stream meteoroids impacting the surface of the moon at hypervelocity was proposed as the source of micron and submicron particles that leave the lunar craters with velocities sufficient to escape the moon's gravitational sphere of influence. No enhanced flux of lunar ejecta with masses greater than a nanogram was detected by LE 35 or the Lunar Orbiters. Hypervelocity meteoroid simulation experiments concentrating on ejecta production combined with extensive analyses of the orbital dynamics of micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space have shown that a pulse of these lunar ejecta, with a time correlation relative to the position of the moon relative to the earth, intercepts the earth's magnetopause surface (EMPs). As shown, a strong reason exists for expecting a significant enhancement of submicron dust particles in the region of the magnetosphere between L values of 1.2 and 3.0. This is the basis for the proposal of a series of experiments to investigate the enhancement or even trapping of submicron lunar ejecta in this region. The subsequent interaction of this mass with the upper-lower atmosphere of the earth and possible geophysical effects can then be studied.

  11. The Vakkejokk Breccia, Northernmost Sweden: A Cambrian Analogue to the Proximal Ejecta Layer and Resurge Deposits at the Ordovician Lockne Marine-Target Crater

    NASA Astrophysics Data System (ADS)

    Ormö, J.; Nielsen, A. T.; Alwmark, C.

    2016-08-01

    We propose the Cambrian Vakkejokk Breccia in the Scandinavian arctic to be a uniquely well-preserved and well-exposed proximal impact ejecta layer. The associated crater is likely 2-4 km in diameter and currently covered by Caledonian overthrusts.

  12. Nucleosynthesis in the ejecta of neutron star mergers

    SciTech Connect

    Wanajo, Shinya; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru; Nishimura, Nobuya; Kyutoku, Koutarou

    2014-05-02

    We present, for the first time, the result of nucleosynthesis calculations based on the fully general-relativistic simulation of a NS-NS merger with approximate neutrino transport taken into account. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino-processed, resulting in a wide range of electron fraction, Y{sub e} ∼ 0.1-0.4. The mass-averaged abundance distribution of calculated nucleosynthesis yields is in remarkable agreement with the full-mass range (A ≈ 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers can be the origin of the Galactic r-process nuclei.

  13. Extinction, ejecta masses, and radial velocities of novae

    NASA Technical Reports Server (NTRS)

    Williams, Robert E.

    1994-01-01

    Interstellar reddening is determined for a number of recent novae based upon emission-line ratios which are generally observable using CCDs. Large values of extinction are found for most systems, possibly indicative of an intrinsic component of reddening in postoutburst novae. The unusual characteristics of the (O I) lines in novae, which are strong and optically thick, require a large population of very dense globules which are the likely sites of dust formation. These pyroclasts must be ejected from the white dwarf. The total mass of the neutral gas in the globules in some of the objects is substantially larger than the masses normally derived for the ionized ejecta of novae. The distribution of radial velocities of Galactic novae in the Tololo sample, although uncertain, shows an asymmetry in having predominantly negative values. Either high internal absorption in the expanding ejecta skews the emission lines to bluer wavelengths, or most of the novae are moving out from the center of the Galaxy.

  14. Extinction, ejecta masses, and radial velocities of novae

    NASA Technical Reports Server (NTRS)

    Williams, Robert E.

    1994-01-01

    Interstellar reddening is determined for a number of recent novae based upon emission-line ratios which are generally observable using CCDs. Large values of extinction are found for most systems, possibly indicative of an intrinsic component of reddening in postoutburst novae. The unusual characteristics of the (O I) lines in novae, which are strong and optically thick, require a large population of very dense globules which are the likely sites of dust formation. These pyroclasts must be ejected from the white dwarf. The total mass of the neutral gas in the globules in some of the objects is substantially larger than the masses normally derived for the ionized ejecta of novae. The distribution of radial velocities of Galactic novae in the Tololo sample, although uncertain, shows an asymmetry in having predominantly negative values. Either high internal absorption in the expanding ejecta skews the emission lines to bluer wavelengths, or most of the novae are moving out from the center of the Galaxy.

  15. Aggregation of SiC-X Grains in Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Deneault, Ethan A.-N.

    2009-11-01

    We present a model for the formation of silicon carbide aggregates within the expanding and cooling supernova remnant. SiC type-X (SiC-X) grains measured in the laboratory at a high spatial resolution have been found to be aggregates of smaller crystals which are isotopically homogenous. The initial condensation of SiC in the ejecta occurs within an interior dense shell of material which is created by a reverse shock which rebounds from the core-envelope interface. A subsequent reverse shock accelerates the grains forward, but the gas drag from the ejecta on the rapidly moving particles limits their travel distance. By observing the effects of gas drag on the travel distance of grains, we propose that supernova grain aggregates form from material that condensed in a highly localized region, which satisfies the observational evidence of isotopic homogeneity in SiC-X grains.

  16. The dynamical and radiative evolution of clumpy supernova ejecta

    NASA Technical Reports Server (NTRS)

    Anderson, M. C.; Jones, T. W.; Rudnick, L.; Tregillis, I. L.; Kang, Hyesung

    1994-01-01

    Numerical simulations describing the dynamical and radiative evolution of clumpy supernova ejecta are compared with observations of optical and radio emission knots in supernova remnant (SNR) Cassiopeia A. Three major phases are identified in the evolution of clumpy ejecta: a bow-shock phase, an instability phase, and a dispersal phase. The phenomenological and radiative signatures of each phase are discussed and compared with multi-epoch measurements of small-scale features in Cas A. Good correspondence is found between theory and observations. Both support the premise that compact radio emission features are controlled more by magnetic field amplification triggered in the instability phase than by in situ acceleration of new relativistic particles.

  17. Nucleosynthesis in the ejecta of neutron star mergers

    NASA Astrophysics Data System (ADS)

    Wanajo, Shinya; Sekiguchi, Yuichiro; Nishimura, Nobuya; Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru

    2014-05-01

    We present, for the first time, the result of nucleosynthesis calculations based on the fully general-relativistic simulation of a NS-NS merger with approximate neutrino transport taken into account. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino-processed, resulting in a wide range of electron fraction, Ye ˜ 0.1-0.4. The mass-averaged abundance distribution of calculated nucleosynthesis yields is in remarkable agreement with the full-mass range (A ≈ 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers can be the origin of the Galactic r-process nuclei.

  18. Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution

    NASA Astrophysics Data System (ADS)

    Mimica, P.; Giannios, D.; Aloy, M. A.

    2009-02-01

    Context: The role of magnetic fields in gamma-ray burst (GRB) flows remains debated. If of sufficient strength, they can leave their signature on the initial phases of the afterglow by substantially changing the backreaction of the flow as a consequence of its interaction with the external medium. Aims: We attempt to understand quantitatively the dynamical effect and observational signatures of GRB ejecta magnetization on the onset of the afterglow. Methods: We perform ultrahigh-resolution, one-dimensional, relativistic MHD simulations of the interaction between a radially expanding, magnetized ejecta with the interstellar medium. We require ultrahigh numerical resolution because of the extreme jump conditions in the region of interaction between the ejecta and the circumburst medium. We study the complete evolution of an ultrarelativistic shell to the self-similar asymptotic phase. Results: Our simulations demonstrate that the complete evolution can be characterized in terms of two parameters, the ξ parameter introduced by Sari and Piran and the magnetization σ_0. We use this fact in producing numerical models in which the shell Lorentz factor γ0 is between 10 and 20 and rescaling the results to arbitrarily large values of γ_0. We find that the reverse shock is typically weak or absent for ejecta characterized by σ_0⪆ 1. The onset of the forward shock emission is strongly dependent on the magnetization. On the other hand, the magnetic energy of the shell is transferred into the external medium on a short timescale (of several times the duration of the burst). The later forward shock emission contains no information about the initial magnetization of the flow. The asymptotic evolution of strongly magnetized shells, after experiencing significant deceleration, resembles that of hydrodynamic shells, i.e. they enter fully into the Blandford-McKee self-similar regime.

  19. Hydrodynamical Interaction of Mildly Relativistic Ejecta with an Ambient Medium

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi; Shigeyama, Toshikazu

    2017-01-01

    The hydrodynamical interaction of spherical ejecta freely expanding at mildly relativistic speeds into an ambient cold medium is studied in semianalytical and numerical ways to investigate how ejecta produced in energetic stellar explosions dissipate their kinetic energy through the interaction with the surrounding medium. We especially focus on the case in which the circumstellar medium (CSM) is well represented by a steady wind at a constant mass-loss rate, having been ejected from the stellar surface prior to the explosion. As a result of the hydrodynamical interaction, the ejecta and CSM are swept by the reverse and forward shocks, leading to the formation of a geometrically thin shell. We present a semianalytical model describing the dynamical evolution of the shell and compare the results with numerical simulations. The shell can give rise to bright emission as it gradually becomes transparent to photons. We develop an emission model for the expected emission from the optically thick shell, in which photons in the shell gradually diffuse out to the interstellar space. Then we investigate the possibility that radiation powered by the hydrodynamical interaction is the origin of an underluminous class of gamma-ray bursts.

  20. Lunar Radar Scattering from Near-Surface Buried Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Ustinov, E. A.; Heggy, E.

    2009-12-01

    The Apollo 15, 16, and 17 core tubes show that the uppermost few meters of the lunar regolith are interlaced layers of a fine grained powders and blocky crater ejecta. The layers of crater ejecta have dielectric constants in the range of 7-9 while the fine-grained powders has dielectric constant on the order of 2.7. These differences in dielectric constant, in turn, create radar reflections that are both refracted and reflected back through the space-regolith interface. Note that for a dielectric constant of 2.7 for the lunar regolith, radio waves incident on the lunar surface at the angle of 30-degrees from the normal will propagate in the regolith at an angle of 18-degrees. At the limb, radio waves incident on the lunar surface at an angle near 90-degrees from the normal will propagate in the regolith at an angle of about 37-degrees. These angles are within the range where radar backscatter is in the quasi-specular regime. When these buried crater ejecta layers are modeled using Hagfors’ formulation (Hagfors, 1963), echo powers match the behavior observed for average lunar backscatter at centimeter wavelengths for higher (30° to 90°) angles of incidence. In addition, Hagfors et al. (1965) conducted an experiment where the Moon was illuminated at 23-cm wavelength with circular polarization and the differences were observed in orthogonal linear polarizations. Modeling of these observations and assuming again that the buried crater ejecta scatter in a quasi-specular manner, echo differences in horizontal and vertical linear polarizations are in relatively good agreement with the observations. The data from Chandrayaan Mini-RF radar, which operated at S-Band (13cm) wavelength, and the Lunar Reconnaissance Orbiter (LRO) Mini-RF radar, which is operating at S-Band and X-Band (4-cm) wavelengths, provide an opportunity for a new examination of whether radar backscatter from buried crater ejecta behaves like a quasi-specular scatter. These radars reproduce the

  1. Facies distribution of ejecta in analog tephra rings from experiments with single and multiple subsurface explosions

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.; Valentine, G. A.; Sonder, I.; Ross, P.-S.; White, J. D. L.

    2015-08-01

    The volume, grain size, and depositional facies of material deposited outside an explosion crater, ejecta, are sensitive to the depth of the explosion, the explosion energy, and the presence or absence of a crater before the explosion. We detonate buried chemical explosives as an analog for discrete volcanic explosions in experiments to identify unique characteristics of proximal, medial, and distal ejecta facies and their distribution from a range of scaled depths in undisturbed and cratered ground. Ejecta are here discussed in terms of three facies: (1) proximal ejecta, which form a constructional landform around a crater; (2) medial ejecta, which form a continuous sheet deposit that thins much more gradually with distance; and (3) distal ejecta that are deposited as isolated clasts. The extent of proximal ejecta away from the crater, relative to crater size, is not sensitive to scaled depth, but the volume proportion of proximal ejecta to the total ejecta deposit is sensitive to the presence of a crater and scaled depth. Medial ejecta distribution and volume contributions are both sensitive to the presence of a crater and to scaled depth. Distal ejecta distance is dependent on scaled depth and the presence of a crater, while the volume proportion of distal ejecta is less sensitive to scaled depth or presence of a crater. Experimental facies and deposit structures inferred from observations of jet dynamics are used to suggest facies associations anticipated from eruptions dominated by explosions of different scaled depth configurations. We emphasize that significant differences in tephra ring deposits can result from the effects of scaled depth and preexisting craters on ejecta dynamics, and are not necessarily related to fundamental differences in explosion mechanisms or degree of magma fragmentation.

  2. Self-Shielding of Thermal Radiation by Chicxulub Ejecta: Firestorm or Fizzle?

    NASA Astrophysics Data System (ADS)

    Goldin, T. J.; Melosh, H. J.

    2008-12-01

    The discovery of soot within the Chicxulub ejecta sequence and the observed survival patterns of terrestrial organisms across the K/Pg boundary led to the hypothesis that thermal radiation from the atmospheric reentry of hypervelocity impact ejecta was sufficient to ignite global wildfires and cause biological catastrophe. Using a two-dimensional, two-phase fluid flow code, KFIX-LPL, we model the atmospheric reentry of distal Chicxulub ejecta and calculate the fluxes of thermal radiation throughout the atmosphere. The model treatment includes optical opacity, allowing us to examine the effects that greenhouse gases and the spherules themselves have on the transfer of thermal radiation to the ground. We model a simple Chicxulub scenario where 250-µm spherules reenter the atmosphere for an hour with maximum inflow after 10 minutes. Our models predict a pulse of thermal radiation at the ground peaking at ~6 kW/m2, analogous to an oven set on 'broil'. Previous calculations, which did not consider spherule opacity, yielded >10 kW/ m2 sustained over an hour or more and such an extended pulse of high fluxes is thought to be required for wildfire ignition. However, our model suggests a half-hour in which fluxes exceed the solar norm and only a few minutes >5 kW/m2. Large fluxes are not sustained in our models due to the increasingly opaque cloud of settling spherules, which increasingly blocks the transmission of thermal radiation from the decelerating spherules above. Hence, the spherules themselves limit the magnitude and duration of thermal radiation at the ground. Such self-shielding may have prevented the ignition of global wildfires following Chicxulub and limited other environmental effects. Keeping the impact wildfire hypothesis will require a mechanism to override this effect. A nonuniform distribution of spherule reentry may produce gaps in the opaque spherule layer through which the downward thermal radiation may be concentrated. Additionally, an opaque cloud

  3. The Cretaceous-Paleogene boundary in the shallow northeastern Mexican foreland basins: Evidence for paleoseismic liquefaction, tsunami deposition, and Chicxulub ejecta

    NASA Astrophysics Data System (ADS)

    Schulte, Peter; Smit, Jan; Deutsch, Alex; Friese, Andrea; Beichel, Kilian

    2010-05-01

    Understanding the depositional sequence and composition of impact ejecta is critical for the interpretation of timing and effects of the Chicxulub impact regarding the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary. Preliminary investigations have shown that the shallow La Popa and Parras foreland basins in northeastern Mexico both feature outstanding and continuous 3D exposures of the Chicxulub ejecta-rich, K-Pg boundary event deposit (Lawton et al., 2005). The m-thick sand-siltstone interval directly underlying the ejecta-rich mass flows shows evidence of slumping and liquefaction, locally leading to complete disorganization and disruption of the pre-impact late Cretaceous sedimentary sequence. The subsequent ejecta-rich sequence consists of an up to one m-thick basal carbonate-rich bed that discontinuously fills a valley-like topography. Besides abundant silicic and carbonate ejecta spherules (up to 50%) that are excellently preserved, this bed includes abundant mollusks and gastropod shells, as well as vertebrate bones and teeth. The conglomeratic bed is overlain by a series of alternating fine- to medium grained calcareous sandstones with shell debris and ejecta that were deposited by repeated currents / mass flow events incorporating varying source areas. Hummocky-cross-stratified strata that mark the return to a normal out-shelf depositional regime conformably overly these sandstones. We interpret this sequence as evidence for presumably seismic-induced sediment liquefaction followed by a series of impact-related tsunami deposits. The specific depositional sequence and Fe-Mg-rich ejecta composition as well as the petrography of the sandstones all closely link the K-Pg boundary sequence in the La Popa and Parras basin to the well-known deep-water K-Pg sites in the Gulf of Mexico (e.g. El Mimbral; Smit et al., 1996; Schulte and Kontny, 2005). Lawton, T.F., et al., 2005, Geology, v. 33, p. 81-84. Smit, J. et al., 1996, GSA Special Paper v. 307, p

  4. Reduction of ejecta from asperities on a metal surface upon shock breakout

    NASA Astrophysics Data System (ADS)

    Georges, William; Loiseau, Jason; Higgins, Andrew; Tyler, Troy; Zimmermann, Joerg

    2017-01-01

    Ejecta can be produced when a shock breaks out of a metallic surface with imperfections. The amount of material ejected depends on the wave profile and the surface finish. This work focuses on techniques to reduce the amount of ejecta produced. As a baseline, a Taylor wave loading was produced by detonating a high explosive next to an aluminum target featuring V-grooves on the free surface. The ejecta and free surface velocities were monitored with photonic doppler velocimetry (PDV). In an attempt to suppress the ejecta, the shock pressure was reduced by the addition of an air gap. The effect of a vacuum gap was also investigated. PDV spectrograms show that significant ejecta traveling at roughly three times the free surface velocity was produced when explosives were in contact with the target. The placement of an air gap or a vacuum gap between explosive and target suppressed detectable ejecta.

  5. Neutron star kicks and their relationship to supernovae ejecta mass

    NASA Astrophysics Data System (ADS)

    Bray, J. C.; Eldridge, J. J.

    2016-10-01

    We propose a simple model to explain the velocity of young neutron stars. We attempt to confirm a relationship between the amount of mass ejected in the formation of the neutron star and the `kick' velocity imparted to the compact remnant resulting from the process. We assume that the velocity is given by vkick = α (Mejecta/Mremnant) + β . To test this simple relationship, we use the BPASS (Binary Population and Spectral Synthesis) code to create stellar population models from both single and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply different α and β values, and three different `kick' orientations then record the resulting velocity probability distributions. We find that while a single star population provides a poor fit to the observational data, the binary population provides an excellent fit. Values of α = 70 km s-1 and β = 110 km s-1 reproduce the Hobbs et al. observed two-dimensional velocities, and α = 70 km s-1 and β = 120 km s-1 reproduce their inferred three-dimensional velocity distribution for nearby single neutron stars with ages less than 3 Myr. After testing isotropic, spin-axis aligned and orthogonal to spin-axis `kick' orientations, we find no statistical preference for a `kick' orientation. While ejecta mass cannot be the only factor that determines the velocity of supernova compact remnants, we suggest that it is a significant contributor and that the ejecta-based `kick' should replace the Maxwell-Boltzmann velocity distribution currently used in many population synthesis codes.

  6. Planet formation from the ejecta of common envelopes

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Dreizler, Stefan

    2014-03-01

    Context. The close binary system NN Serpentis must have gone through a common envelope phase before the formation of its white dwarf. During this phase, a substantial amount of mass was lost from the envelope. The recently detected orbits of circumbinary planets are probably inconsistent with planet formation before the mass loss. Aims: We explore whether new planets may have formed from the ejecta of the common envelope and derive the expected planetary mass as a function of radius. Methods: We employed the Kashi & Soker model to estimate the amount of mass that is retained during the ejection event and inferred the properties of the resulting disk from the conservation of mass and angular momentum. The resulting planetary masses were estimated from models with and without radiative feedback. Results: We show that the observed planetary masses can be reproduced for appropriate model parameters. Photoheating can stabilize the disks in the interior, potentially explaining the observed planetary orbits on scales of a few AU. We compare the expected mass scale of planets for 11 additional systems with observational results and find hints of two populations, one consistent with planet formation from the ejecta of common envelopes and the other a separate population that may have formed earlier. Conclusions: The formation of the observed planets from the ejecta of common envelopes seems feasible. The model proposed here can be tested through refined observations of additional post-common envelope systems. While it appears observationally challenging to distinguish between the accretion on pre-existing planets and their growth from new fragments, it may be possible to further constrain the properties of the protoplanetary disk through additional observations of current planetary candidates and post-common envelope binary systems.

  7. EVOLUTION OF THE 1919 EJECTA OF V605 AQUILAE

    SciTech Connect

    Clayton, Geoffrey C.; Montiel, Edward; Bond, Howard E.; Sparks, William B.; Meakes, M. G.; Long, Lindsey A.; Meyer, Paul I.; Sugerman, Ben E. K.; Chesneau, O.; De Marco, O. E-mail: emonti2@lsu.edu E-mail: sparks@stsci.edu E-mail: ben.sugerman@goucher.edu E-mail: orsola@science.mq.edu.au

    2013-07-10

    New imaging of V605 Aql, was obtained in 2009 with HST/WFPC2, which had a nova-like outburst in 1919, and is located at the center of the planetary nebula (PN), A58. This event has long been ascribed to a final helium shell flash, but it has been suggested recently that it may instead have been an ONe nova. The new images provide an 18 yr baseline for the expansion of the ejecta from the 1919 event. In addition, the central star has been directly detected in the visible for the first time since 1923, when it faded from sight due to obscuration by dust. The expansion of the ejecta has a velocity of {approx}200 km s{sup -1}, and an angular expansion rate of {approx}10 mas yr{sup -1}, consistent with a 1919 ejection. This implies a geometric distance of 4.6 kpc for V605 Aql, consistent with previous estimates. The gas mass in the central knot of ejecta was previously estimated to be 5 Multiplication-Sign 10{sup -5} M{sub Sun }. It is estimated that warm dust associated with this gas has a mass of {approx}10{sup -5} M{sub Sun }. There is also evidence for a significant amount, 10{sup -3} M{sub Sun }, of cold (75 K) dust, which may be associated with its PN. The knot ejected in 1919 is asymmetrical and is approximately aligned with the asymmetry of the surrounding PN. Polarimetric imaging was obtained to investigate whether the 2001 spectrum of V605 Aql was obtained primarily in scattered light from dust in the central knot, but the signal-to-noise in the data was insufficient to measure the level of polarization.

  8. Lateral Translation of Explosion Crater Ejecta: A Working Model Based Upon Pellet Experiments

    DTIC Science & Technology

    1975-08-19

    empiric-al ejecta studies to a variety of, telds and ,eologic-al settings, and (2) characteri-ing * the relative threat the total ejecta eavironment...inmqict cratering protesi . C-urrent thenrwie.s ies•t-•,. the cratering of impart crater frwmationt arn basedt primartly upon (1) small -cale imnpact expe...ial thrown farther travels faster so that the total ejecta deposit can reflect , variety of depositional processes ranging from the low velocity

  9. Chemical Composition of Impact Glass and Suevite-Type Partial Melts of the Rab and Krk Islands and Their Relation with the Proposed Krk Impact Structure in Northern Adriatic, Croatia

    NASA Astrophysics Data System (ADS)

    Čalogović, M.; Marjanac, T.; Fazinić, S.; Strmić-Palinkaš, S.; Tomša, A. M.; Marjanac, L.

    2015-09-01

    Chemical composition of Krk impact structure ejecta represented by incomplete melts and glasses indicate affinity with Pleistocene loess as target lithology, and suggests Pleistocene age of the impact.

  10. Life near the Roche limit - Behavior of ejecta from satellites close to planets

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A. R.; Burns, J. A.

    1980-01-01

    A study of the dynamics of nearby debris from impact craters was made to explain the distinctive features seen on Phobos, Deimis, and Amalthea. The planetary tides and satellite rotation were considered, and the usual pseudo-energy (Jacobi) integral was numerically calculated in the framework of a restricted body problem where satellites are modelled as triaxial ellipsoids rather than point masses. Iso-contours of this integral show that Deimos and Amalthea are entirely closed by Roche lobes, and the surfaces of their model ellipsoids lie nearly along equipotentials. Presently, the surface of Phobos overflows its Roche lobe, except for regions within a few km of the sub-Mars and anti-Mars points. The behavior of crater ejecta from the satellites of Mars were also examined by numerical integration of trajectories for particles leaving their surfaces in the equatorial plane.

  11. Life near the Roche limit - Behavior of ejecta from satellites close to planets

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A. R.; Burns, J. A.

    1980-01-01

    A study of the dynamics of nearby debris from impact craters was made to explain the distinctive features seen on Phobos, Deimis, and Amalthea. The planetary tides and satellite rotation were considered, and the usual pseudo-energy (Jacobi) integral was numerically calculated in the framework of a restricted body problem where satellites are modelled as triaxial ellipsoids rather than point masses. Iso-contours of this integral show that Deimos and Amalthea are entirely closed by Roche lobes, and the surfaces of their model ellipsoids lie nearly along equipotentials. Presently, the surface of Phobos overflows its Roche lobe, except for regions within a few km of the sub-Mars and anti-Mars points. The behavior of crater ejecta from the satellites of Mars were also examined by numerical integration of trajectories for particles leaving their surfaces in the equatorial plane.

  12. Electrostatic dust transport and Apollo 17 LEAM experiment. [Lunar Ejecta And Meteorite

    NASA Technical Reports Server (NTRS)

    Rhee, J. W.; Berg, O. E.; Wolf, H.

    1977-01-01

    The Lunar Ejecta and Meteorite (LEAM) experiment has been in operation since December 1973 when it was deployed in the Taurus-Littrow region of the moon by the Apollo 17 crew. A specialized analysis based on more than twenty-two lunations of the impact data shows that all of the events recorded by the sensors during the terminator passages are essentially lunar surface microparticles carrying a high electrostatic charge. Charged lunar fines held in place by adhesive forces can be ejected into space if the electrostatic stress exceeds the adhesive strength. A simple laboratory test demonstrated that this soil transport can indeed take place at the lunar terminator and in the vicinity of it.

  13. Stratified ejecta boulders as indicators of layered plutons on the Moon

    NASA Astrophysics Data System (ADS)

    Research Team, Kickapoo Lunar; Kramer, Georgiana

    2014-01-01

    High resolution images of stratified ejecta boulders on the lunar nearside reveal layers of alternating low and high albedo material. We measured the thickness and albedo of each alternating light and dark layer from 29 stratified boulders located in Aristarchus Crater and Mare Undarum. The results were used to test hypotheses to explain the origin of the observed strata in these impact ejected boulders. Morphologically, these boulders demonstrate cross-bedding, trough-shaped layering, tapered layering and cumulate enclaves. We interpret these characteristics to be evidence that these layers result from periodic disruption by convection or density currents within a cooling layered igneous intrusion. We demonstrate that the layering observed in these boulders cannot be the result of known processes occurring on the surface, but instead suggests a history of complex intrusive igneous processes within the lunar crust.

  14. Spatial Distribution of Mg-rich Ejecta in LMC Supernova Remnant N49B

    NASA Astrophysics Data System (ADS)

    Park, Sangwook; Bhalerao, Jayant

    2017-01-01

    The supernova remnant (SNR) N49B in the Large Magellanic Cloud is a peculiar example of a core-collapse SNR that shows the shocked metal-rich ejecta enriched only in Mg without evidence for a similar overabundance in O and Ne. Based on archival Chandra data, we present results from our extensive spatially resolved spectral analysis of N49B. We find that the Mg-rich ejecta gas extends from the central regions of the SNR out to the southeastern outermost boundary of the SNR. This elongated feature shows an overabundance for Mg similar to that of the main ejecta region at the SNR center, and its electron temperature appears to be higher than the central main ejecta gas. We estimate that the Mg mass in this southeastern elongated ejecta feature is ∼10% of the total Mg ejecta mass. Our estimated lower limit of >0.1 M⊙ on the total mass of the Mg-rich ejecta confirms the previously suggested large mass for the progenitor star (M ≳ 25 M⊙). We entertain scenarios of an SNR expanding into a nonuniform medium and an energetic jet-driven supernova in an attempt to interpret these results. However, with the current results, the origins of the extended Mg-rich ejecta and the Mg-only-rich nature of the overall metal-rich ejecta in this SNR remain elusive.

  15. NUMERICAL SIMULATIONS OF SUPERNOVA DUST DESTRUCTION. II. METAL-ENRICHED EJECTA KNOTS

    SciTech Connect

    Silvia, Devin W.; Smith, Britton D.; Shull, J. Michael E-mail: michael.shull@colorado.edu

    2012-03-20

    Following our previous work, we investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We vary the relative velocity between the reverse shock and ejecta clump to explore the effects of shock heating and cloud compression. Because supernova ejecta will be metal-enriched, we consider gas metallicities from Z/Z{sub Sun} = 1 to 100 and their influence on the cooling properties of the cloud and the thermal sputtering rates of embedded dust grains. We post-process the simulation output to calculate grain sputtering for a variety of species and size distributions. In the metallicity regime considered in this paper, the balance between increased radiative cooling and increased grain erosion depends on the impact velocity of the reverse shock. For slow shocks (v{sub shock} {<=} 3000 km s{sup -1}), the amount of dust destruction is comparable across metallicities or in some cases is decreased with increased metallicity. For higher shock velocities (v{sub shock} {>=} 5000 km s{sup -1}), an increase in metallicity from Z/Z{sub Sun} = 10 to 100 can lead to an additional 24% destruction of the initial dust mass. While the total dust destruction varies widely across grain species and simulation parameters, our most extreme cases result in complete destruction for some grain species and only 44% dust mass survival for the most robust species. These survival rates are important in understanding how early supernovae contribute to the observed dust masses in high-redshift galaxies.

  16. A Numerical Study on the Interaction Between 2 Ejecta in the Interplanetary Medium: 1 and 2 Dimensional Hidrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; Santillan, A.

    We studied the heliospheric evolution in 1 and 2 dimensions of the interaction between two ejecta-like disturbances. The study is based on a hydrodynamic single fluid model using the ZEUS-3D code. These simple numerical simulations illuminate several aspects of the heliocentric evolution of the ejecta and their associated IP shocks. The simulation shows that when a fast ejecta 2 overtakes a previously launched slower ejecta 1 in the solar wind, occurs an interchange of momentum between the two ejecta, the leading slower ejecta 1 accelerates and the tracking faster ejecta 2 decelerates. Both ejecta tend to arrive to 1 AU having similar speeds. Associated with this transfer of momentum between the two ejecta, the forward shock leading the disturbances accelerates becoming stronger.

  17. Dating Kaali Crater (Estonia) based on charcoal emplaced within proximal ejecta blanket

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Wild, Eva Maria; Huber, Matthew S.; Wisniowski, Tomasz; Paavel, Kristiina; Jõeleht, Argo; Välja, Rudolf; Plado, Jüri; Kriiska, Aivar; Wilk, Jakob; Zanetti, Michael; Geppert, Wolf D.; Kulkov, Alexander; Steier, Peter; Pirkovic, Irena

    2015-04-01

    The Kaali impact field consists of nine identified craters located on the Saaremaa Island in Estonia. The largest crater is 110 m in diameter (centered around 58°22'21.94"N, 22°40'09.91" E). It was formed by impact of an IAB iron meteoroid into Silurian dolomite target rocks covered by up to a few meters of glacial till (Veski et al. 2007). The age of the Kaali impact structure is still a matter of debate, and the estimates provided by different authors vary considerably between ~6400 BC (Raukas et al. 1995, Moora et al. 2012) and ~400 BC (Rasmussen et al. 2000, Veski et al. 2001). These ages were derived by 14C dating of marker horizons, characterized by a slightly elevated iridium content within the nearby Piila bog yielding a calibrated age of 800-400 BC (Rasmussen et al. 2000, Veski et al. 2001) and occurrences of glassy siliceous material in the Piila bog (~6400 BC: Raukas et al. 1995) or iron microspherules in an organic-rich layer of the Reo gravel pit (6400 BC: Moora et al. 2012). However, the source of the foreign material within those layers was never unequivocally connected with the Kaali crater. 14C dating of material from post-impact organic sediments within Kaali impact craters yielded ages between 1800-1500 BC (Saarse et al. 1991, Veski et al. 2004) and 1450-400 BC (Aaloe et al. 1963). These dates underestimate the age of impact as organic sediments within the crater started to form at unknown period after the impact. On the other hand, Veski et al. (2004) suggested a reservoir effect that might have caused artificially "aging" of the organic matter because the crater was emplaced within Silurian dolomite which is rich in old carbon. The aim of this study is to determine the age of the Kaali crater by 14C dating of organic material covered by the continuous layer of proximal ejecta. This research was conducted in conjunction with a new structural investigation of Kaali Main (Zanetti et al. 2015). Ten samples collected from different locations

  18. CME dynamics using coronagraph and interplanetary ejecta data

    NASA Astrophysics Data System (ADS)

    Dal Lago, Alisson; Gonzalez, Walter D.; De Lucas, Aline; Braga, Carlos Roberto; Vieira, Lucas Ramos; Stekel, Tardelli Ronan Coelho; Rockenbach, Marlos

    2013-05-01

    In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.

  19. NUCLEOSYNTHETIC LAYERS IN THE SHOCKED EJECTA OF CASSIOPEIA A

    SciTech Connect

    Isensee, Karl; Olmschenk, Greg; Rudnick, Lawrence; DeLaney, Tracey; Rho, Jeonghee; Smith, J. D.; Reach, William T.; Kozasa, Takashi; Gomez, Haley E-mail: larry@astro.umn.edu E-mail: jrho@sofia.usra.edu E-mail: reach@ipac.caltech.edu E-mail: haley.morgan@astro.cf.ac.uk

    2012-10-01

    We present a three-dimensional analysis of the supernova remnant Cassiopeia A using high-resolution spectra from the Spitzer Space Telescope. We observe supernova ejecta both immediately before and during the shock-ejecta interaction. We determine that the reverse shock of the remnant is spherical to within 7%, although the center of this sphere is offset from the geometric center of the remnant by 810 km s{sup -1}. We determine that the velocity width of the nucleosynthetic layers is {approx}1000 km s{sup -1} over 4000 arcsec{sup 2} regions, although the velocity width of a layer along any individual line of sight is <250 km s{sup -1}. Si and O, which come from different nucleosynthetic layers in the progenitor star, are observed to be coincident in velocity space in some directions, but segregated by up to {approx}500 km s{sup -1} in other directions. We compare these observations of the nucleosynthetic layers to predictions from supernova explosion models in an attempt to constrain such models. Finally, we observe small-scale, corrugated velocity structures that are likely caused during the supernova explosion itself, rather than hundreds of years later by dynamical instabilities at the remnant's reverse shock.

  20. The role of ejecta in the small crater populations on the mid-sized saturnian satellites

    NASA Astrophysics Data System (ADS)

    Bierhaus, Edward B.; Dones, Luke; Alvarellos, José Luis; Zahnle, Kevin

    2012-03-01

    We find evidence, by both observation and analysis, that primary crater ejecta play an important role in the small crater (less than a few km) populations on the saturnian satellites, and more broadly, on cratered surfaces throughout the Solar System. We measure crater populations in Cassini images of Enceladus, Rhea, and Mimas, focusing on image data with scales less than 500 m/pixel. We use recent updates to crater scaling laws and their constants (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856-875) to estimate the amount of mass ejected in three different velocity ranges: (i) greater than escape velocity, (ii) less than escape velocity and faster than the minimum velocity required to make a secondary crater (vmin), and (iii) velocities less than vmin. Although the vast majority of mass on each satellite is ejected at speeds less than vmin, our calculations demonstrate that the differences in mass available in the other two categories should lead to observable differences in the small crater populations; the predictions are borne out by the measurements we have made to date. In particular, Rhea, Tethys, and Dione have sufficient surface gravities to retain ejecta moving fast enough to make secondary crater populations. The smaller satellites, such as Enceladus but especially Mimas, are expected to have little or no traditional secondary populations because their escape velocities are near the threshold velocity necessary to make a secondary crater. Our work clarifies why the Galilean satellites have extensive secondary crater populations relative to the saturnian satellites. The presence, extent, and sizes of sesquinary craters (craters formed by ejecta that escape into temporary orbits around Saturn before re-impacting the surface, see Dobrovolskis, A.R., Lissauer, J.J. [2004]. Icarus 169, 462-473; Alvarellos, J.L., Zahnle, K.J., Dobrovolskis, A.R., Hamill, P. [2005]. Icarus 178, 104-123; Zahnle, K., Alvarellos, J.L., Dobrovolskis, A.R., Hamill, P. [2008

  1. Mapping and Analysis of 'Dunes' in the Ejecta Blankets of Fresh Lunar Craters

    NASA Astrophysics Data System (ADS)

    Atwood-Stone, Corwin; Bray, Veronica; McEwen, Alfred

    2014-11-01

    Lunar concentric ‘dunes’ are ridge-like features that appear in the ejecta blankets of fresh craters on the Moon. These ‘dunes’ are oriented roughly perpendicular to ejecta flow, and are found between ~1.2 to several crater radii. We have been mapping and measuring these features using the high-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC). In our survey of the Moon we have so far found fifty-seven craters where the facies of the Lunar concentric ‘dunes’ can be seen, ranging in diameter from one to eleven kilometers, in both the mare and the highlands. We have created mosaics from high-resolution LROC Narrow Angle Camera (NAC) images for fourteen of these craters which allow us to examine the morphology of these dunes in detail. We note a general progression in dune morphology as distance from the crater increases (the following measurements are not standard from crater to crater and reflect the mapping results for crater Piton B): ‘dunes’ are most distinct between 1.5 to 3 crater radii from the crater center. Between 3 and 6 crater radii, dunes are commonly accompanied by a trough on the crater-facing side of the dune. As distance from the crater increases, dune morphology subsides and troughs become the most notable feature within the ejecta blanket. Using Lunar Orbiter Laser Altimeter (LOLA) data we are able to examine how the ‘dunes’ form in the context of local pre-existing slopes. These ‘dunes’ are known to form predominantly on level and crater facing slopes, however we have found at some highlands craters, like Stevinus A, that they can form on slopes facing away from the crater. We have observed a number of morphological features of the ‘dunes’ that do not seem to support the previously proposed ballistic impact sedimentation and erosion hypothesis for the formation of this facies. Thus we will need to formulate and test new hypotheses for how this interesting lunar facies forms.

  2. Assessing the Provenance of regolith components in the South Pole-Aitken Basin: Results from LRO, M3, GRAIL, and Ejecta Modeling

    NASA Astrophysics Data System (ADS)

    Petro, N. E.; Cohen, B. A.; Jolliff, B. L.; Moriarty, D. P.

    2016-12-01

    Results from recent lunar missions are reshaping our view of the lunar surface, the evolution of the Moon, and the scale of processes that have affected the Moon. From orbital remote sensing data we can investigate surface mineralogy at the 100s m scale as well as corresponding high-resolution images to evaluate the exposures of various compositions. Coupled with geophysical data from the GRAIL mission, we can now assess the effects of large impacts (>200 km in diameter). These data are essential for assessing the composition of the interior of the South Pole-Aitken Basin (SPA), a key destination for future sample return (Jolliff et al., this conference). Data from the Lunar Reconnaissance Orbiter (LRO) shows that variations in surface roughness and morphology are broad and likely reflect both the ancient age of the basin floor, as well as younger volcanic and impact-related resurfacing events. Data from the Moon Mineralogy Mapper also reveal compositional variations across the interior of the basin and reflect both ancient volcanic activity as well as surface exposures of deep-seated crustal (SPA substrate) materials. These datasets are critical for delineating variations in surface compositions, which indicate formation mechanisms (e.g., volcanic vs. impact-derived). We investigate the resurfacing history of SPA, focusing on integrating data from multiple instruments, as well as updated modeling into the origin of regolith components (in the form of ejecta from near and distant impact craters). Recent advances include determination of the inventory of large craters as well as improved estimates of the amount of ejecta from such craters. As with past estimates of basin ejecta distribution, the volume of ejecta introduced to SPA is relatively small and quickly becomes diluted within the regolith. In addition, the contribution of ejecta by smaller, local craters is shown to distribute a comparable amount of material within the basin. Much of the material distributed

  3. Molecules and Dust in the Humunculus: Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, T.

    2007-01-01

    In the 18401s, Eta Carinae ejected massive amounts of nitrogen-rich, carbon- and oxygen-poor material which we see as the hourglass-shaped Homunculus. With the Hubble Space Telescope Imaging Spectrograph, we detected multiple shells in line of sight, the most massive and intriguing being at -513 km/s. Numerous lines of Fe I, Fe II, Ni II, Cr II, Sc II, Sr II, Ti II, V II, etc are identified as well as nearly a thousand H2 lines. The metals have energy level populations consistent with 760K and excited by photons < 8.5eV. We have now identified CH, CH+, OH, and NH at the same velocity, but at 60K, suggesting stratification in the outer ejecta. Analysis of the interior, photoionized emission hourglass structure, known as the Little Homunculus, indicates He, N overabundances and C, 0 underabundances (approximately 1/80 solar). A skirt of neutral and partially ionized gas lies between the lobes of the hourglasses. A portion is seen as the Strontium Filament, a metal- ionized, neutral hydrogen structure. Relative abundances of TiNi are 1/80 solar, CrNi are 1/20 solar. This complex of ejecta appears to have been ejected by a massive star(s) at the end of the hydrogen-burning phase when convection led to overproduction of nitrogen at the expense of carbon and oxygen. Given the underabundances of carbon and oxygen, the chemistry of this system is quite different to the normal ISM, leading to a nitrogen- dominated chemistry. What little C and 0 that is formed is immediately taken up by SiO and Al0 molecules leading to a very different gas/dust ratio than the normal ISM. Dust in this ejecta is abundance, but known to be very grey in character. Observations with HST/STIS and VLT/UVES will be presented along with simple physical models and CLOUD modeling. Insight by the participants will be solicited.

  4. Molecules and Dust in the Humunculus: Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, T.

    2007-01-01

    In the 18401s, Eta Carinae ejected massive amounts of nitrogen-rich, carbon- and oxygen-poor material which we see as the hourglass-shaped Homunculus. With the Hubble Space Telescope Imaging Spectrograph, we detected multiple shells in line of sight, the most massive and intriguing being at -513 km/s. Numerous lines of Fe I, Fe II, Ni II, Cr II, Sc II, Sr II, Ti II, V II, etc are identified as well as nearly a thousand H2 lines. The metals have energy level populations consistent with 760K and excited by photons < 8.5eV. We have now identified CH, CH+, OH, and NH at the same velocity, but at 60K, suggesting stratification in the outer ejecta. Analysis of the interior, photoionized emission hourglass structure, known as the Little Homunculus, indicates He, N overabundances and C, 0 underabundances (approximately 1/80 solar). A skirt of neutral and partially ionized gas lies between the lobes of the hourglasses. A portion is seen as the Strontium Filament, a metal- ionized, neutral hydrogen structure. Relative abundances of TiNi are 1/80 solar, CrNi are 1/20 solar. This complex of ejecta appears to have been ejected by a massive star(s) at the end of the hydrogen-burning phase when convection led to overproduction of nitrogen at the expense of carbon and oxygen. Given the underabundances of carbon and oxygen, the chemistry of this system is quite different to the normal ISM, leading to a nitrogen- dominated chemistry. What little C and 0 that is formed is immediately taken up by SiO and Al0 molecules leading to a very different gas/dust ratio than the normal ISM. Dust in this ejecta is abundance, but known to be very grey in character. Observations with HST/STIS and VLT/UVES will be presented along with simple physical models and CLOUD modeling. Insight by the participants will be solicited.

  5. Unburned Material in the Ejecta of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Folatelli, Gastón; Phillips, M. M.; Morrell, Nidia; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi; Stritzinger, Maximilian; Burns, Christopher R.; Hamuy, Mario; Mazzali, Paolo; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; González, Sergio; Roth, Miguel; Salgado, Francisco; Freedman, W. L.; Madore, Barry F.; Persson, S. E.; Suntzeff, Nicholas B.

    2012-01-01

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at ≈6300 Å which is attributed to C II λ6580. An alternative identification of this absorption as Hα is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 Å absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely ≈1000 km s-1 above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10-3 to 10-2 M ⊙. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for objects which show carbon. This paper includes data gathered with

  6. Extensional Faulting of the Overturned Coconino Ejecta Layer and Emplacement of Fallback Breccia at Barringer Meteorite Crater (aka Meteor Crater)

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Cole, S.; Craft, K.; Crites, S.; Gaither, T.; Jilly, C.; Lemelin, M.; Rosenburg, M.; Seward, L.; Song, E.; Snape, J. F.; Talpe, M.; Thaisen, K.; Veto, M.; Wielicki, M.; Williams, F.; Worsham, E.; Garber, J.

    2012-03-01

    New sections measured at Meteor Crater indicate the extension of the ejecta blanket was partly accommodated by a series of normal faults. Those normal faults also provided a means of "burying" and protecting fallback ejecta.

  7. The reionization of unshocked ejecta in SN 1006

    NASA Technical Reports Server (NTRS)

    Hamilton, Andrew J. S.; Fesen, Robert A.

    1988-01-01

    The validity of carbon-deflagration models white dwarf models for type Ia supernovae is investigated by examining whether most of the iron in the center of SN 1006 exists in forms other than Fe II, such as iron grains or other ionic stages of iron, as the models require. The possible ways in which iron can be hidden in SN 1006 are reviewed, and an argument on observational grounds is made against any appreciable fraction of iron in grains or Fe I. Various mechanisms for ionizing unshocked iron beyond Fe II are discussed; the most probable mechanism for ionizing the iron appears to be photoionization by UV and X-ray emission from reverse-shocked ejecta. A detailed model for this reverse-shcok photoionization mechanism is described.

  8. Is the Ejecta of ETA Carinae Overabundant or Overexcited

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Davidson, Kris; Johansson, Sveneric; Damineli, Augusto; Ishibashi, Kaxunori; Corcoran, Michael; Hartman, Henrick; Viera, Gladys; Nielsen, Krister

    2003-01-01

    The ejecta of Eta Carinae, revealed by HST/STIS, are in a large range of physical conditions. As Eta Carinae undergoes a 5.52 period, changes occur in nebular emission and nebular absorption. "Warm" neutral regions, partially ionized regions, and fully ionized regions undergo significant changes. Over 2000 emission lines, most of Fe-like elements, have been indentified in the Weigelt blobs B and D. Over 500 emission lines have been indentified in the Strontium Filament. An ionized Little Homunculus is nestled within the neutral-shelled Homunculus. In line of sight, over 500 nebular absorption lines have been identified with up to twenty velocity components. STIS is following changes in many nebular emission and absorption lines as Eta Carinae approaches the minimum, predicted to be in June/July 2003, during the General Assembly. Coordinated observations with HST, CHANDRA, RXTE, FUSE, UVES/VLT, Gemini and other observatories are following this minimum.

  9. The Ejecta of Eta Carinae as Studied by STIS

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The Space Telescope Imaging Spectrograph has been used to study the emission and absorption spectra of ejecta surrounding Eta Carinae. Discussion will be presented on the overall structure of the Homunculus, the Weigelt blobs and the Strontium filament. Three visits have been accomplished with the Position Angle precisely the same and covering the Central Source and Weigelt Blobs B and D. Deep spectra have been done at several positions to obtain the overall velocity structure of the Homunculus and the disk region. Mapping has been done with the STIS medium dispersion gratings set near H beta and H alpha. We have obtained full coverage of the strontium filament from 1640 Angstroms to 10300 Angstroms. The structure and physical properties will be described.

  10. Fresh lunar impact craters - Review of variations with size

    NASA Technical Reports Server (NTRS)

    Howard, K. A.

    1974-01-01

    Thirty-three morphologic characteristics are reviewed for fresh lunar impact craters wider than 1 km. Bar graphs express the way each characteristic varies with crater size. The features are grouped as crater structure, ejecta, and downhill flow features. Major structural transitions occur at diameters of about 15 and 200 km. Details of the ejecta blanket, which include several kinds of lineations, dunelike ridges, troughs, and lobes, reflect different transport regimes in the ejecta. Some materials at larger craters flowed downhill in lavalike fashion after the ejecta was deposited; the lavalike materials are probably impact melt.

  11. Impact Crater Size and Evolution: Expectations for Deep Impact

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Anderson, J. L. B.; Heineck, J. T.

    2002-01-01

    Deep Impact will involve a unique cratering experiment designed to probe below the surface of a comet. Laboratory experiments provide critical data for crater scaling and evolution of the ejecta curtain. Additional information is contained in the original extended abstract.

  12. Flow Ejecta and Slope Landslides in Small Crater - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of a moderately small impact crater on Mars was taken by the Mars Global Surveyor Orbiter Camera (MOC) on October 17, 1997 at 4:11:07 PM PST, during MGS orbit 22. The image covers an area 2.9 by 48.4 kilometers (1.8 by 30 miles) at 9.6 m (31.5 feet) per picture element, and is centered at 21.3 degrees N, 179.8 degrees W, near Orcus Patera. The MOC image is a factor of 15X better than pervious Viking views of this particular crater.

    The unnamed crater is one of three closely adjacent impact features that display the ejecta pattern characteristic of one type of 'flow-ejecta' crater. Such patterns are considered evidence of fluidized movement of the materials ejected during the cratering event, and are believed to indicate the presence of subsurface ice or liquid water.

    Long, linear features of different brightness values can be seen on the on the steep slopes inside and outside the crater rim. This type of feature, first identified in Viking Orbiter images acquired over 20 years ago, are more clearly seen in this new view (about 3 times better than the best previous observations). Their most likely explanation is that small land or dirt slides, initiated by seismic or wind action, have flowed down the steep slopes. Initially dark because of the nature of the surface disturbance, these features get lighter with time as the ubiquitous fine, bright dust settles onto them from the martian atmosphere. Based on estimates of the dust fall-out rate, many of these features are probably only a few tens to hundreds of years old. Thus, they are evidence of a process that is active on Mars today.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner

  13. Geochemistry of K/T-boundary Chicxulub ejecta of NE-Mexico

    NASA Astrophysics Data System (ADS)

    Harting, M.; Deutsch, A.; Rickers, K.

    2003-12-01

    Many K/T sections all over the world contain impact spherules supposed related to the Chicxulub event. This study focus on ejecta layers in NE-Mexican profiles. We carried out systematic XRF and synchrotron radiation measurements on such spherules at the HASYLAB and ANKA facilities as well as microprobe analyses (CAMECA SX50). Area scans on tektite-like material of the Bochil section reveal a pronounced zonation in the inner part, dominated by Ba and Sr whereas secondary CaCO3 dominates in the altered margin. The composition of the spherules from the Mesa-Juan Perez section differ significantly from the Beloc (Haiti) and Bochil tektite glasses. At Mesa-Juan Perez, spherules are either extremely rich in Fe and Ca or consist of smectite, some of those carry carbonate inclusions. Yttrium, La and Ce are zoned within the smectite with concentrations below the detection limit and up to 20 æg/g The Ca-rich inclusions are enriched in Y (up to 35 æg/g) and La (18 æg/g) and, compared to the surrounding smectite, also in Ce (up to 34 æg/g). The Ce enrichment in spherules from the Mesa-Juan Perez section indicates impact-melted carbonates of the Yucatan carbonate platform as possible precursor rocks. Recent investigations focus on the chemistry of melt rock samples from the PEMEX wells Yucatan-6 and Chicxulub-1: Their average composition (mean of 250 data points in wt-percent ) is 61.6 for SiO2, 0.16 for TiO2, 18.07 for Al2O3, 0.01 for Cr2O3, 1.98 for Na2O, 1.5 for FeO, 0.05 for MnO, 0.01 for NiO, 0.31 for MgO, 9.14 for K2O, 3.44 for CaO, and 0.01 for SO2. These results are in some cases comparable to the geochemistry of ejecta glasses, e.g. from Beloc (Haiti).

  14. Flow Ejecta and Slope Landslides in Small Crater - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of a moderately small impact crater on Mars was taken by the Mars Global Surveyor Orbiter Camera (MOC) on October 17, 1997 at 4:11:07 PM PST, during MGS orbit 22. The image covers an area 2.9 by 48.4 kilometers (1.8 by 30 miles) at 9.6 m (31.5 feet) per picture element, and is centered at 21.3 degrees N, 179.8 degrees W, near Orcus Patera. The MOC image is a factor of 15X better than pervious Viking views of this particular crater.

    The unnamed crater is one of three closely adjacent impact features that display the ejecta pattern characteristic of one type of 'flow-ejecta' crater. Such patterns are considered evidence of fluidized movement of the materials ejected during the cratering event, and are believed to indicate the presence of subsurface ice or liquid water.

    Long, linear features of different brightness values can be seen on the on the steep slopes inside and outside the crater rim. This type of feature, first identified in Viking Orbiter images acquired over 20 years ago, are more clearly seen in this new view (about 3 times better than the best previous observations). Their most likely explanation is that small land or dirt slides, initiated by seismic or wind action, have flowed down the steep slopes. Initially dark because of the nature of the surface disturbance, these features get lighter with time as the ubiquitous fine, bright dust settles onto them from the martian atmosphere. Based on estimates of the dust fall-out rate, many of these features are probably only a few tens to hundreds of years old. Thus, they are evidence of a process that is active on Mars today.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner

  15. Structural uplift and ejecta thickness of lunar mare craters: New insights into the formation of complex crater rims

    NASA Astrophysics Data System (ADS)

    Krüger, Tim; Kenkmann, Thomas

    2015-04-01

    Most complex impact craters on solid planetary surfaces throughout the Solar System exhibit elevated crater rims similar to the elevated crater rims of simple craters. In principal the final elevation of the crater rim is due to the deposition of ejecta on the structurally uplifted bedrock of the pre-impact surface. For simple craters the elevated crater rim is due to two well understood factors: (i) Emplacement of the coherent proximal ejecta material at the transient cavity rim (overturned flap) [1]. (ii) Structural uplift of the pre-impact surface in the proximity of the transient cavity [1, 2]. The amount of structural uplift at the rim of simple craters is due to plastic thickening of the target rock, the emplacement of interthrust wedges and/or the injection of dike material in the underlying target [1, 2, 3, 4]. Both factors, (i) and (ii), are believed to equally contribute to the structural uplift of simple craters. Larger craters have complex morphologies and the crater's extent may considerably exceed that of the transient cavity due to gravity-driven adjustment movements. For instance, the Ries crater's final diameter is twice of its transient cavity size. It is expected that both ejecta thickness and structural uplift decrease with increasing distance from the rim of the transient crater. For lunar craters the continuous ejecta extends up to 2 crater radii from the crater center. The ejecta blanket thickness ET at the rim crest of the transient crater (which is inside the final crater) is a function of the distance r from the crater center, with RT as the radius of the transient crater [2, 6, 7] and is expressed by the following function: (1) ET = 0.033 RT (r/RT)^-3.0 for r ≥ RT [5, 6] The structural uplift is largest at the transient cavity rim and gets rapidly smaller with increasing distance to the crater center and disappears after 1.3 - 1.7 crater radii [1]. These circumstances raise the question, how elevated rims of complex craters form? Based

  16. Atypical dust species in the ejecta of classical novae

    NASA Astrophysics Data System (ADS)

    Helton, L. A.; Evans, A.; Woodward, C. E.; Gehrz, R. D.

    2011-03-01

    A classical nova outburst arises from a thermonuclear runaway in the hydrogen-rich material accreted onto the surface of a white dwarf in a binary system. These explosions can produce copious amounts of heavy element enriched material that are ejected violently into the surrounding interstellar medium. In some novae, conditions in the ejecta are suitable for the formation of dust of various compositions, including silicates, amorphous carbon, silicon carbide, and hydrocarbons. Multiple dust grain types are sometimes produced in the same system. CO formation in novae may not reach saturation, thus invalidating the usual paradigm in which the C:O ratio determines the dust species. A few novae, such as V705 Cas and DZ Cru, have exhibited emission features near 6, 8, and 11 μmthat are similar to "Unidentified Infrared" (UIR) features, but with significant differences in position and band structure. Here, we present Spitzer IRS spectra of two recent dusty novae, V2361 Cyg and V2362 Cyg, that harbor similar peculiar emission structures superimposed on features arising from carbonaceous grains. In other astronomical objects, such as star forming regions and young stellar objects, emission peaks at 6.2, 7.7, and 11.3 μmhave been associated with polycyclic aromatic hydrocarbon (PAH) complexes. We suggest that hydrogenated amorphous carbon (HAC) may be the source of these features in novae based upon the spectral behavior of the emission features and the conditions under which the dust formed.

  17. Propagation Characteristics of CMEs Associated Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, Roksoon; Gopalswamy, N.; Cho, K.; Moon, Y.; Yashiro, S.

    2012-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counter parts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, speed, and direction parameter, D, that quantifies the propagation direction of a CME. For the 54 CDAW events, we found several properties of the CMEs as follows: (1) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly to the Earth than the EJ-associated CMEs; (2) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; (3) the mean speed of MC-associated CMEs (946 km/s) is faster than that of EJ-associated CMEs (771 km/s). For seven very fast CMEs (> 1500 km/s), all CMEs with large D (> 0.4) are associated with MCs and the CMEs with small D are associated with EJs. On the basis of these results, we suggest that the CME trajectory essentially decides the observed ICME structure.

  18. Analysis of ejecta fate from proposed man-made impactors into near-Earth objects --- a NEOShield study

    NASA Astrophysics Data System (ADS)

    Schwartz, S.; Michel, P.; Jutzi, M.

    2014-07-01

    Asteroids measuring 100 meters across tend to impact the Earth once every 5,000 years on average [1]. Smaller bodies enter into the Earth's atmosphere more frequently, but may detonate before reaching the surface. Conversely, impacts from larger bodies are more rare [2], but can come with devastating global consequences to living species. In 2005, a United States Congressional mandate called for NASA to detect, by 2020, 90 percent of near-Earth objects (NEOs) having diameters of 140 meters or greater [3]. One year prior, ESA's Near-Earth Object Mission Advisory Panel (NEOMAP) recommended the study of a kinetic impactor mission as a priority in the framework of NEO risk assessment [4]. A ''Phase-A'' study of such a mission, Don Quixote, took place at ESA until 2007. In accordance with NEOMAP and with the Target NEO Global Community's recommendations in 2011 [5], the NEOShield Project is being funded for 3.5 years by the European Commission in its FP7 program. NEOShield began in 2012 and is primarily, but not exclusively, a European consortium of research institutions and engineering industries that aims to analyze promising mitigation options and provide solutions to the critical scientific and technical obstacles involved in confronting threats posed by the small bodies in the neighborhood of the Earth's orbit [6]. To further explore the NEO threat mitigation via the strategy of kinetic impact, building upon the Don Quixote study, the idea is to target a specific NEO for impact and attempt to quantify the response. How long do ejecta remain aloft and where do they end up? Fragments that are ejected at high speeds escape, but what about material moving at or near the escape speed of the NEO or that suffer energy-dissipating collisions after being ejected? Where would be a ''safe'' location for an observing spacecraft during and subsequent to the impact? Here, we outline the early phases of an ongoing numerical investigation of the fate of the material ejected from a

  19. Stratified Ejecta Boulders as Indicators of Layered Plutons on the Lunar Nearside

    NASA Astrophysics Data System (ADS)

    Kickapoo Lunar Research Team; Kramer, G. Y.

    2012-07-01

    We tested the leading formation hypotheses for the origin of the stratified ejecta boulders and assessed their plausibility based on our observations and measurements of layer thicknesses and albedos.

  20. Phobos, Deimos, and the moon - Size and distribution of crater ejecta blocks

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Thomas, P.; Veverka, J.

    1986-01-01

    Ejecta block characteristics observed on Phobos, Deimos, and the moon are examined. The analyzed source craters on Deimos are 0.8-2.3 km in diameter, those on Phobos are 1.5-10 km, and the lunar craters are between 0.2-3.5 km in diameter. The size and radial distribution of the ejecta blocks for the three bodies are compared. It is observed that the size distribution of the ejecta blocks surrounding craters on the three objects are basically similar, and the radial distribution of the blocks for Phobos and the moon are the same (within 2 radii of the crater center); however, the ejecta on Deimos are more dispersed (greater than or equal to 2 radii from the crater center).

  1. X-Ray Heating of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Larsson, Josefin; Fransson, Claes; Kirshner, Robert; Challis, Peter; McCray, Richard

    2012-01-01

    Analysis of Hubble Space Telescope Band R band images from 1994 to 2009 show that the optical luminosity of SN 1987A has transitioned from being powered by radioactive decay of Ti-44 to energy deposited by X-rays produced as the ejecta interacts with the surrounding material (Larsson et al. 2011, Nature, 474, 484). The B and R band flux from the densest, central parts of the ejecta followed the expected exponential decline until 2001 (about day 5000) when the flux in these bands started increasing, more than doubling by the end of 2009. This increase is the result of heat deposited by X-rays from the shock interaction of the fast-moving outer ejecta with the inner circumstellar ring. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyze the structure and chemistry of the vanished star.

  2. Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 2: Ejecta dynamics and enhanced lifetimes in the Earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Alexander, W. M.; Tanner, W. G.; Anz, P. D.; Chen, A. L.

    1986-01-01

    Extensive studies were conducted concerning the indivdual mass, temporal and positional distribution of micron and submicron lunar ejecta existing in the Earth-Moon gravitational sphere of influence. Initial results show a direct correlation between the position of the Moon, relative to the Earth, and the percentage of lunar ejecta leaving the Moon and intercepting the magnetosphere of the Earth at the magnetopause surface. It is seen that the Lorentz Force dominates all other forces, thus suggesting that submicron dust particles might possibly be magnetically trapped in the well known radiation zones.

  3. Comprehensive investigation of the dynamics of micron and submicron lunar ejecta in heliocentric space

    SciTech Connect

    Hargrave, A.D.

    1984-01-01

    The forces which act on micron and submicron dust particles in interplanetary space are studied in detail. Particular attention is given to Mie scattering theory as it applies to the calculation of the force due to radiation pressure. All of the forces are integrated into a computer model to study the heliocentric orbits of lunar ejecta. It is shown that lunar ejecta contribute to a geocentric dust cloud, as well as to a heliocentric dust belt.

  4. Preflow stresses in Martian rampart ejecta blankets - A means of estimating the water content

    NASA Technical Reports Server (NTRS)

    Woronow, A.

    1981-01-01

    Measurements of extents of rampart ejecta deposits as a function of the size of the parent craters support models which, for craters larger than about 6 km diameter, constrain ejecta blankets to all have a similar maximum thickness regardless of the crater size. These volatile-rich ejecta blankets may have failed under their own weights, then flowed radially outward. Assuming this to be so, some of the physicomechanical properties of the ejecta deposits at the time of their emplacement can then be determined. Finite-element studies of the stress magnitudes, distributions, and directions in hypothetical Martian rampart ejecta blankets reveal that the material most likely failed when the shear stresses were less than 500 kPa and the angle of internal friction was between 26 and 36 deg. These figures imply that the ejecta has a water content between 16 and 72%. Whether the upper limit or the lower limit is more appropriate depends on the mode of failure which one presumes: namely, viscous flow of plastic deformation.

  5. Evidence for Crater Ejecta on Venus Tessera Terrain from Earth-Based Radar Images

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Campbell, Donald B.; Morgan, Gareth A.; Carter, Lynn M.; Nolan, Michael C.; Chandler, John F.

    2014-01-01

    We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had similar viewing geometries. Processing of both datasets with better image focusing and co-registration techniques, and summing over multiple looks, yields maps with 1-2 km spatial resolution and improved signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest for future spacecraft landings. The Earth-based radar images reveal multiple examples of tessera mantling by impact ''parabolas'' or ''haloes'', and can extend mapping of locally thick material from Magellan data by revealing thinner deposits over much larger areas. Of particular interest is an ejecta deposit from Stuart crater that we infer to mantle much of eastern Alpha Regio. Some radar-dark tessera occurrences may indicate sediments that are trapped for longer periods than in the plains. We suggest that such radar information is important for interpretation of orbital infrared data and selection of future tessera landing sites.

  6. Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.; Campbell, Donald B.; Morgan, Gareth A.; Carter, Lynn M.; Nolan, Michael C.; Chandler, John F.

    2015-04-01

    We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had similar viewing geometries. Processing of both datasets with better image focusing and co-registration techniques, and summing over multiple looks, yields maps with 1-2 km spatial resolution and improved signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest for future spacecraft landings. The Earth-based radar images reveal multiple examples of tessera mantling by impact "parabolas" or "haloes", and can extend mapping of locally thick material from Magellan data by revealing thinner deposits over much larger areas. Of particular interest is an ejecta deposit from Stuart crater that we infer to mantle much of eastern Alpha Regio. Some radar-dark tessera occurrences may indicate sediments that are trapped for longer periods than in the plains. We suggest that such radar information is important for interpretation of orbital infrared data and selection of future tessera landing sites.

  7. OPACITIES AND SPECTRA OF THE r-PROCESS EJECTA FROM NEUTRON STAR MERGERS

    SciTech Connect

    Kasen, Daniel; Barnes, Jennifer; Badnell, N. R.

    2013-09-01

    Material ejected during (or immediately following) the merger of two neutron stars may assemble into heavy elements through the r-process. The subsequent radioactive decay of the nuclei can power transient electromagnetic emission similar to, but significantly dimmer than, an ordinary supernova. Identifying such events is an important goal of future optical surveys, offering new perspectives on the origin of r-process nuclei and the astrophysical sources of gravitational waves. Predictions of the transient light curves and spectra, however, have suffered from the uncertain optical properties of heavy ions. Here we argue that the opacity of an expanding r-process material is dominated by bound-bound transitions from those ions with the most complex valence electron structure, namely the lanthanides. For a few representative ions, we run atomic structure models to calculate the radiative transition rates for tens of millions of lines. The resulting r-process opacities are orders of magnitude larger than that of ordinary (e.g., iron-rich) supernova ejecta. Radiative transport calculations using these new opacities suggest that the light curves should be longer, dimmer, and redder than previously thought. The spectra appear to be pseudo-blackbody, with broad absorption features, and peak in the infrared ({approx}1 {mu}m). We discuss uncertainties in the opacities and attempt to quantify their impact on the spectral predictions. The results have important implications for observational strategies to find and study the radioactively powered electromagnetic counterparts to neutron star mergers.

  8. Evidence for Crater Ejecta on Venus Tessera Terrain from Earth-Based Radar Images

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Campbell, Donald B.; Morgan, Gareth A.; Carter, Lynn M.; Nolan, Michael C.; Chandler, John F.

    2014-01-01

    We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had similar viewing geometries. Processing of both datasets with better image focusing and co-registration techniques, and summing over multiple looks, yields maps with 1-2 km spatial resolution and improved signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest for future spacecraft landings. The Earth-based radar images reveal multiple examples of tessera mantling by impact ''parabolas'' or ''haloes'', and can extend mapping of locally thick material from Magellan data by revealing thinner deposits over much larger areas. Of particular interest is an ejecta deposit from Stuart crater that we infer to mantle much of eastern Alpha Regio. Some radar-dark tessera occurrences may indicate sediments that are trapped for longer periods than in the plains. We suggest that such radar information is important for interpretation of orbital infrared data and selection of future tessera landing sites.

  9. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  10. Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Moon, Y.-J.; Yashiro, S.

    2013-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km s-1) is faster than that of EJ-associated CMEs (771 km s-1). For seven very fast CMEs (≥ 1500 km s-1), all CMEs with large D (≥ 0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.

  11. Nebular Hydrogen Absorption in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Space Telescope Imaging Spectrograph (STIS) observations of Eta Carinae and immediate ejecta reveal narrow Balmer absorption lines in addition to the nebular-scattered broad P-Cygni absorptions. The narrow absorption correlates with apparent disk structure that separates the two Homunculus lobes. We trace these features about half way up the Northern lobe until the scattered stellar Balmer line doppler-shifts redward beyond the nebular absorption feature. Three-dimensional data cubes, made by mapping the Homunculus at Balmer alpha and Balmer beta with the 52 x 0.1 arcsecond aperture and about 5000 spectral resolving power, demonstrate that the absorption feature changes slowly in velocity with nebular position. We have monitored the stellar Balmer alpha line profile of the central source over the past four years. The equivalent width of the nebular absorption feature changes considerably between observations. The changes do not correlate with measured brightness of Eta Carinae. Likely clumps of neutral hydrogen with a scale size comparable to the stellar disk diameter are passing through the intervening light path on the timescales less than several months. The excitation mechanism involves Lyman alpha radiation (possibly the Lyman series plus Lyman continuum) and collisions leading to populating the 2S metastable state. Before the electron can jump to the ground state by two photon emission (lifetime about 1/8 second), a stellar Balmer photon is absorbed and the electron shifts to an NP level. We see the absorption feature in higher Balmer lines, and but not in Paschen lines. Indeed we see narrow nebular Paschen emission lines. At present, we do not completely understand the details of the absorption. Better understanding should lead to improved insight of the unique conditions around Eta Carinae that leads to these absorptions.

  12. A Microwave Study of Coronal and Chromospheric Ejecta

    NASA Astrophysics Data System (ADS)

    Nindos, A.; Kundu, M. R.; Raulin, J.-P.; Shibasaki, K.; White, S. M.; Nitta, N.; Shibata, K.; Shimojo, M.

    1999-12-01

    We have studied the radio properties of 18 X-ray coronal jets (observed by the Yohkoh SXT) using Nobeyama 17 GHz data. We also searched for chromospheric ejecta (Hα surges) during the time intervals that the X-ray images were available. Microwave emission was associated with the majority of the X-ray jets. The radio emission came from the base or the lower part of the jets. We detected radio emission from almost all jets which showed flare-like activity at their footpoints. The 17 GHz time profiles were gradual and unpolarized, implying that the emission was thermal. When possible, we computed the physical properties of the X-ray-emitting ejected plasma. In one two-sided-loop type jet and one anemone-type jet, the observed microwave fluxes from the lower part of the jets were well above the fluxes predicted from the computed electron temperatures and emission measures of the soft X-ray-emitting material on the basis of thermal free-free emission. We interpreted the large discrepancies in terms of the presence of lower temperature material which cannot be detected by the SXT but produces strong microwave free-free emission. This is the first time that such material is observed in two-sided-loop type jets. Thus our observations confirm the theoretical prediction by Yokoyama and Shibata (1996). We detected no cool material at the base of the jets. We also observed an Hα surge which was not associated with an X-ray jet and showed no signatures on the SXT images but was detected with the Nobeyama Radioheliograph. The emission of the microwave surge-associated source was free-free from the chromospheric plasma. Constraints for the surge density were derived.

  13. Data analysis to separate particles of different speed regimes and charges. [lunar ejecta and meteorite experiment and pioneer space probe data

    NASA Technical Reports Server (NTRS)

    Wolf, H.

    1977-01-01

    Although the instruments on the lunar ejecta and meteorite experiment (LEAM) and the Pioneer 8 and 9 space probes were essentially similar, a comparison of their results indicates that different sets of particles caused the different responses. On Pioneer, the events were caused by the impact of cosmic dust, the so-called beta particles expelled from the vicinity of the sun by solar radiation pressure, augmented by extremely high energy but definitely identifiable interstellar grains. On the moon, the events were due to the impact of slowly moving, highly charged lunar dust being propelled electrostatically across the terminator. Both theoretical analysis and experimental testing confirming these conclusions are discussed.

  14. Small Impact Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    22 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small impact crater with a 'butterfly' ejecta pattern. The butterfly pattern results from an oblique impact. Not all oblique impacts result in an elliptical crater, but they can result in a non-radial pattern of ejecta distribution. The two-toned nature of the ejecta -- with dark material near the crater and brighter material further away -- might indicate the nature of subsurface materials. Below the surface, there may be a layer of lighter-toned material, underlain by a layer of darker material. The impact throws these materials out in a pattern that reflects the nature of the underlying layers.

    Location near: 3.7oN, 348.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  15. Multiproxy Approach of the K-T and Chicxulub Ejecta Layers Along the Brazos River, Texas, USA

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.

    2006-05-01

    from the K-T boundary by at least 20 to cm of normal hemipelagic claystone showing calcite, phyllosilicates, TOC, isotope and granulometric values similar to the pre-event sediments and reflect therefore normal sedimentary conditions. The Chicxulub spherule ejecta in the glauconitic sand near the base of the storm beds is reworked from an older original ejecta layer, as indicated by abundant reworked fossil shells. This is similar to the reworked spherule layers at the base of the siliciclastic deposits throughout NE Mexico, where the original layer is within marls up to 5 m below (base of CF1) and predating the K-T by 300,000 years. The original ejecta layer in Cottonmouth Creek lies 60 cm below the basal unconformity of the storm beds and within claystones near the base of zone CF1. This layer consists of a prominent 3-4 cm thick yellow clay of pure and well-crystallized smectite (Cheto Mg-smectite) that possibly represents the alteration product of Chicxulub impact glass. Glass altered smectite spherules are commonly present and present the same geochemical composition as glass and spherules weathered to smectite from Haiti and NE-Mexico. Similar Cheto smectite layers have been documented from ejecta spherule deposits in Central America and the Caribbean. The Brazos results confirm that the Chicxulub impact predates the K-T boundary by about 300,000 years, as earlier observed based on impact glass spherule layers in northeastern Mexico and the suevite breccia from the Yaxcopoil-1 core in Yucatan.

  16. Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques

    NASA Technical Reports Server (NTRS)

    McDonald, G.; Storrie-Lombardi, M.; Nealson, K.

    1999-01-01

    The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.

  17. Ionization cones and radio ejecta in active galaxies

    NASA Technical Reports Server (NTRS)

    Wilson, A. S.; Tsvetanov, Z. I.

    1994-01-01

    We report radio mapping at three frequencies of the Seyfert 2 galaxy NGC 5252, which is known to exhibit a spectacular pair of 'ionization cones' in optical emission-line images. The radio structure of the galaxy comprises an unresolved (less than 50 pc) source coincident with the optical nucleus, weak, narrow features extending approximately equal to 900 pc to north and south from the nucleus, and an unresolved radio source some 10 kpc from the nucleus. The inner parts of the extended radio structure and the off-nuclear source align well with the axis of the ionization cones. There are currently 11 Seyfert galaxies known to possess an ionization cone or a bi-cone; 8 of these galaxies also contain a linear (double, triple, or jet-like) nuclear radio structure. For this limited, incomplete sample, there is a tight alignment between cone and radi axes: the formal mean difference between the measured projections of these axes on the sky is only 6 deg, and the alignment may well be better than this at the location(s) closer to the nucleus where the collimation occurs. Although the degree of collimation is much worse for the ionizing photons than for the radio plasma, it is clear that they are collimated by the same, or coplanar, nulcear disks or tori. In particular, if the ionization cones result from absorption by dusty tori on the pc scale and the radio ejecta from accretion disks around the central black hole, the absence of differential precession indicates that either the gravitating mass distribution is close to spherical or the dusty torus has settled into a preferred plane. The cones currently known in late-type (but not early-type) spirals show a trend to align with the axis of the galaxy stellar disk. We argue that this alignment is either an observational selection effect or indicates that the gas accreted to power the nuclear activity has an internal origin in late-type spirals, but may have an external origin (e.g., a galaxy merger) in early-types. .

  18. Composition of the Innermost Core-Collapse Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Hauser, P.; Liebendörfer, M.; Martínez-Pinedo, G.; Thielemann, F.-K.; Bravo, E.; Zinner, N. T.; Hix, W. R.; Langanke, K.; Mezzacappa, A.; Nomoto, K.

    2006-01-01

    With currently known input physics and computer simulations in one dimension, a self-consistent treatment of core-collapse supernovae does not yet lead to successful explosions, while two-dimensional models show some promise. Thus, there are strong indications that the delayed neutrino mechanism works combined with a multidimensional convection treatment for unstable layers (possibly with the aid of rotation, magnetic fields and/or still existent uncertainties in neutrino opacities). On the other hand, there is a need to provide correct nucleosynthesis abundances for the progressing field of galactic evolution and observations of low-metallicity stars. The innermost ejecta is directly affected by the explosion mechanism, i.e., most strongly, the yields of Fe group nuclei for which an induced piston or thermal bomb treatment will not provide the correct yields because the effect of neutrino interactions is not included. We apply parameterized variations to the neutrino-scattering cross sections in order to mimic in one dimension the possible increase of neutrino luminosities caused by uncertainties in proto-neutron star convection. Alternatively, parameterized variations are applied to the neutrino absorption cross sections on nucleons in the ``gain region'' to mimic the increase in neutrino energy deposition enabled by convective turnover. We find that both measures lead to similar results, causing explosions and a Ye>0.5 in the innermost ejected layers, due to the combined effect of a short weak-interaction timescale and a negligible electron degeneracy, unveiling the proton-neutron mass difference. We include all weak interactions (electron and positron capture, β-decay, neutrino and antineutrino capture on nuclei, and neutrino and antineutrino capture on nucleons) and present first nucleosynthesis results for these innermost ejected layers to discuss how they improve predictions for Fe group nuclei. The proton-rich environment results in enhanced abundances of

  19. Micrometeoroid and Lunar Secondary Ejecta Flux Measurements: Comparison of Three Acoustic Systems

    NASA Technical Reports Server (NTRS)

    Corsaro, R. D.; Giovane, F.; Liou, Jer-Chyi; Burtchell, M.; Pisacane, V.; Lagakos, N.; Williams, E.; Stansbery, E.

    2010-01-01

    This report examines the inherent capability of three large-area acoustic sensor systems and their applicability for micrometeoroids (MM) and lunar secondary ejecta (SE) detection and characterization for future lunar exploration activities. Discussion is limited to instruments that can be fabricated and deployed with low resource requirements. Previously deployed impact detection probes typically have instrumented capture areas less than 0.2 square meters. Since the particle flux decreases rapidly with increased particle size, such small-area sensors rarely encounter particles in the size range above 50 microns, and even their sampling the population above 10 microns is typically limited. Characterizing the sparse dust population in the size range above 50 microns requires a very large-area capture instrument. However it is also important that such an instrument simultaneously measures the population of the smaller particles, so as to provide a complete instantaneous snapshot of the population. For lunar or planetary surface studies, the system constraints are significant. The instrument must be as large as possible to sample the population of the largest MM. This is needed to reliably assess the particle impact risks and to develop cost-effective shielding designs for habitats, astronauts, and critical instrument. The instrument should also have very high sensitivity to measure the flux of small and slow SE particles. is the SE environment is currently poorly characterized, and possess a contamination risk to machinery and personnel involved in exploration. Deployment also requires that the instrument add very little additional mass to the spacecraft. Three acoustic systems are being explored for this application.

  20. Far-infrared Study of High Velocity Ejecta Associated with Cold Dust in Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee

    2014-10-01

    Whether supernovae (SNe) are a significant source of dust has been a long-standing debate. Large quantities of dust observed in high-redshift galaxies raises a fundamental astrophysical question of the origin of dust in the Universe, since AGB stars, which are thought to produce most interstellar dust in the modern Milky Way, are too old to have evolved in high-redshift galaxies. In contrast, SNe, the end point of massive stars, can occur within millions of years after the onset of star formation. Our Spitzer observations of the young supernova remnant (YSNR) Cas A revealed that the ejecta maps show a remarkable similarity to the dust maps, confirming for the first time that significant quantities of dust forms in SN ejecta. The shape and composition of the dust continuum and type of dust is closely correlated with the nucleosynthetic layers of different heavy elements in the ejecta lines. Recent Herschel observations of YSNRs including Crab Nebula, Cas A, SN 1987A and G54.1+0.3 further confirmed that SNe are important dust factories. These results imply that SN dust could be responsible for the large dust masses detected in high redshift galaxies and in galaxies today, but only a handful of such observations exist, and it is not clear how much of this dust was formed in the previous stellar wind phase. Identifying SN ejecta and examining its physical conditions are the fundamental steps in developing an understanding of dust formation and dust evolution in ejecta. We searched for high velocity ejecta emission from ISO/LWS archival data, and identified four young SNRs which exhibit evidence for such emission in their spectra (G21.5-0.9, G54.1+0.3, MSH 11-54, and MSH15-52). These SNRs form a valuable sample for the study of cold dust emission from SNRs: in fact, we have studied such emission from these sources using Herschel archival imaging data, and so far two of these SNRs indeed feature a significant amount of dust in ejecta. The far-infrared ISO detected high

  1. A Chandra X-Ray Survey of Ejecta in the Cassiopeia A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Laming, J. Martin

    2011-01-01

    We present a survey of the X-ray emitting ejecta in the Cassiopeia A supernova remnant based on an extensive analysis of over 6000 spectral regions extracted on 2.5-10" angular scales using the Chandra 1 Ms observation. We interpret these results in the context of hydrodynamical models for the evolution of the remnant. The distributions of fitted temperature and ionization age are highly peaked and suggest that the ejecta were subjected to multiple secondary shocks. Based on the fitted emission measure and element abundances, and an estimate of the emitting volume, we derive masses for the X-ray emitting ejecta as well as showing the distribution of the mass of various elements over the remnant. The total shocked Fe mass appears to be roughly 0.14 Solar Mass, which accounts for nearly all of the mass expected in Fe ejecta. We find two populations of Fe ejecta, that associated with normal Si-burning and that associated with alpha-rich freeze-out, with a mass ratio of approximately 2:1. Surprisingly, essentially all of this Fe (both components) is well outside the central regions of the SNR, presumably having been ejected by hydrodynamic instabilities during the explosion. We discuss this, and its implications for the neutron star kick.

  2. Spall strength and ejecta production of gold under explosively driven shock wave compression

    SciTech Connect

    La Lone, B. M.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Holtkamp, D. B.

    2013-12-16

    Explosively driven shock wave experiments were conducted to characterize the spall strength and ejecta production of high-purity cast gold samples. The samples were from 0.75 to 1.84 mm thick and 30 mm in diameter. Peak stresses up to 44 GPa in gold were generated using PBX-9501 high explosive. Sample free surface and ejecta velocities were recorded using photonic Doppler velocimetry techniques. Lithium niobate pins were used to quantify the time dependence of the ejecta density and the total ejected mass. An optical framing camera for time-resolved imaging and a single-image x-ray radiograph were used for additional characterization. Free surface velocities exhibited a range of spall strengths from 1.7 to 2.4 GPa (mean: 2.0 ±0.3 GPa). The pullback signals were faint, minimal ringing was observed in the velocity records, and the spall layer continued to decelerate after first pull back. These results suggest finite tensile strength was present for some time after the initial void formation. Ejecta were observed for every sample with a roughened free surface, and the ejecta density increased with increased surface roughness, which was different in every experiment. The total ejected mass is consistent with the missing mass model.

  3. Characterization of the K-T and Chicxulub Ejecta Layers along the Brazos River, Texas: Correlation with NE Mexico and Yucatan.

    NASA Astrophysics Data System (ADS)

    Thierry, A.; Gerta, K.

    2005-05-01

    We report the results of preliminary investigations of four K-T boundary sections, which are located in small tributaries (Cottonmouth and Darting Minnow creeks) of the Brazos River. The study is based on high-resolution sampling, sedimentological observations, biostratigraphy, bulk rock and clay mineralogy, geochemistry and granulometry. The Cottonmouth Creek exposure is characterized by Late Maastrichtian dark grey fossiliferous claystone, interrupted by laterally variable channel fill storm deposits, which previously have been erroneously interpreted as impact tsunami deposits. These deposits consist of a basal shell hash (10cm), followed by glauconitic sand with altered impact spherules (10cm), laminated sandstones, and 4 to 5 hummocky cross-bedded sandstone layers separated by burrowed erosion surfaces that mark repeated colonization of the ocean floor between storm events. Above and below these storm events are dark grey fossiliferous claystones of the late Maastrichtian zone CF1, which spans the last 300,000 years of the Cretaceous. The K-T boundary is 40 cm above the storm deposits. Granulometric analyses of this interval reveal no size grading due to suspension settling from storm or tsunami waves, but rather indicate normal hemipelagic sedimentation. The Chicxulub spherule ejecta in the glauconitic sand near the base of the storm beds is reworked from an older original ejecta layer, as indicated by abundant reworked fossil shells. This is similar to the reworked spherule layers at the base of the siliclastic deposits throughout NE Mexico, where the original layer is within marls up to 5 m below (base of CF1) and predating the K-T by 300,000 years. We may have discovered the original ejecta layer in Cottonmouth Creek 60 cm below the basal unconformity of the storm beds and within claystones near the base of zone CF1. This layer consists of a prominent 3-4 cm thick yellow clay of pure and well-crystallized smectite (Cheto Mg-smectite) that possibly

  4. Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.

    2008-01-01

    We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.

  5. Comparing Run-Out Efficiency of Fluidized Ejecta on Mars with Terrestrial and Martian Mass Movements

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Baloga, S.

    2003-01-01

    We broadly characterize the rheology of fluidized ejecta on Mars as it flows during its final stages of emplacement by using the concept of run-out efficiency. Run-out efficiency for ejecta can be obtained through an energy balance between the kinetic energy of the excavated ejecta, and the total work lost during its deposition. Such an efficiency is directly comparable to run-out efficiency (i.e., L/H analyzes where L is the run-out distance and H is onset height) of terrestrial and extraterrestrial mass movements. Determination of the L/H ratio is commonly used in terrestrial geology to broadly determine the type and rheology of mass movements

  6. Low-Energy Impacts onto Lunar Regolith Simulant

    NASA Astrophysics Data System (ADS)

    Seward, Laura M.; Colwell, J.; Mellon, M.; Stemm, B.

    2012-10-01

    Low-Energy Impacts onto Lunar Regolith Simulant Laura M. Seward1, Joshua E. Colwell1, Michael T. Mellon2, and Bradley A. Stemm1, 1Department of Physics, University of Central Florida, Orlando, Florida, 2Southwest Research Institute, Boulder, Colorado. Impacts and cratering in space play important roles in the formation and evolution of planetary bodies. Low-velocity impacts and disturbances to planetary regolith are also a consequence of manned and robotic exploration of planetary bodies such as the Moon, Mars, and asteroids. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into JSC-1 lunar regolith simulant, JSC-Mars-1 Martian regolith simulant, and silica targets under 1 g. We use direct measurement of ejecta mass and high-resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. Additionally, we conduct similar experiments under microgravity conditions in a laboratory drop tower and on parabolic aircraft with velocities as low as 10 cm/s. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target shape and size distribution, regolith depth, target relative density, and crater depth, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. The total ejecta mass is also dependent on the packing density (porosity) of the regolith. We find that ejecta mass velocity fits a power-law or broken power-law distribution. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We will present our

  7. Theoretical considerations for black hole formation in supernova ejecta

    NASA Astrophysics Data System (ADS)

    Hayes, Andrew Paul

    2012-01-01

    This work hypothesizes that supernovae and other extreme astrophysical phenomena, recently recognized as much more inhomogeneous and turbulent than previously supposed, give rise to and then eject substellar-mass or Dwarf Black Holes (DBHs), along with their other ejecta. Two independent methods for detecting regions within a data set from a simulation of a high energy astrophysical event, such as a supernova, that are unstable to gravitational collapse. These methods can be used where the resolution, spatial domain, time span, and/or treatment of general relativity of the simulation may not be sufficient to evolve the region to gravitational collapse natively. The first method seeks acoustic instability against gravitational collapse. That is, some hypothetical bodies exhibit perturbative eigenmodes that grow in amplitude, rather than oscillate, and Subrahmanyan Chandrasekhar derived a theorem to prove whether such modes exist for a given distribution of matter. The Chandrasekhar (acoustic) stability theorem is adapted for use within a hot, dense medium. The accuracy of this method is demonstrated by applying it to various spherical mass distributions whose stability is known through other means. This method has already been used in the analysis of data sets from three simulations, with negative results. The adaptation is limited to DBHs of masses above a minimum threshold, however, prompting the division of DBH progenitors into Type I, the more massive subclass that can be treated fully within the acoustic stability framework, and Type II, which range in mass from the bottom of the Type I mass range down to arbitrarily small. The second method for detecting instability against gravitational collapse seeks gravitational collapse induced by inward-propagating, spherically symmetric shocks in the Groah and Temple [1, 2] (GST) theoretical prescription. Using the only extant general-relativistic shockwave simulator, written by Zeke Vogler, it is revealed that all

  8. The r-process and neutrino-heated supernova ejecta

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Wilson, J. R.; Mathews, G. J.; Hoffman, R. D.; Meyer, B. S.

    1994-01-01

    As a neutron star is formed by the collapse of the iron core of a massive star, its Kelvin-Helmholtz evolution is characterized by the release of gravitational binding energy as neutrinos. The interaction of these neutrinos with heated material above the neutron star generates a hot bubble in an atmosphere that is nearly in hydrostatic equilibrium and heated, after approximately 10 s, to an entropy of S/N(sub AS)k greater than or approximately = 400. The neutron-to-proton ratio for material moving outward through this bubble is set by the balance between neutrino and antineutrino capture on nucleons. Because the electron antineutrino spectrum at this time is hotter than the electron neutrino spectrum, the bubble is neutron-rich (0.38 less than or approximately = Y(sub e) less than or approximately = 0.47). Previous work using a schematic model has shown that these conditions are well suited to the production of heavy elements by the r-process. In this paper we have advanced the numerical modeling of a 20 solar mass 'delayed' supernova explosion to the point that we can follow the detailed evolution of material moving through the bubble at the late times appropiate to r-process nucleosynthesis. The supernova model predicts a final kinetic energy for the ejecta of 1.5 x 10(exp 51) ergs and leaves behind a remnant with a baryon mass of 1.50 solar mass (and a gravitational mass of 1.445 solar mass). We follow the thermodynamic and compositional evolution of 40 trajectories in rho(t), T(t), Y(sub e)(t) for a logarithmic grid of mass elements for the last approximately = 0.03 solar mass to be ejected by the proto-neutron star down to the last less than 10(exp -6) solar mass of material expelled at up to approximately = 18 s after core collapse. We find that an excellent fit to the solar r-process abundance distribution is obtained with no adjustable parameters in the nucleosynthesis calculations. Moreover, the abundances are produced in the quantities required to account

  9. The Three-dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Coyle, Nina M.; Yamaguchi, Hiroya; Depasquale, Joseph; Seitenzahl, Ivo R.; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.

    2017-06-01

    We present the first 3D measurements of the velocity of various ejecta knots in Tycho’s supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12 yr baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 “tufts” of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line-of-sight velocity, we use two different methods: a nonequilibrium ionization model fit to the strong Si and S lines in the 1.2-2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the redshift or blueshift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s-1, with a mean of 4430 km s-1. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s-1. Some SN Ia explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and we discuss our findings in light of various explosion models, favoring those delayed-detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant’s evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

  10. NON-EQUIPARTITION OF ENERGY, MASSES OF NOVA EJECTA, AND TYPE Ia SUPERNOVAE

    SciTech Connect

    Shara, Michael M.; Yaron, Ofer; Prialnik, Dina; Kovetz, Attay

    2010-04-01

    The total masses ejected during classical nova (CN) eruptions are needed to answer two questions with broad astrophysical implications: can accreting white dwarfs be 'pushed over' the Chandrasekhar mass limit to yield type Ia supernovae? Are ultra-luminous red variables a new kind of astrophysical phenomenon, or merely extreme classical novae? We review the methods used to determine nova ejecta masses. Except for the unique case of BT Mon (nova 1939), all nova ejecta mass determinations depend on untested assumptions and multi-parameter modeling. The remarkably simple assumption of equipartition between kinetic and radiated energy (E {sub kin} and E {sub rad}, respectively) in nova ejecta has been invoked as a way around this conundrum for the ultra-luminous red variable in M31. The deduced mass is far larger than that produced by any CN model. Our nova eruption simulations show that radiation and kinetic energy in nova ejecta are very far from being in energy equipartition, with variations of 4 orders of magnitude in the ratio E {sub kin}/E {sub rad} being commonplace. The assumption of equipartition must not be used to deduce nova ejecta masses; any such 'determinations' can be overestimates by a factor of up to 10,000. We data-mined our extensive series of nova simulations to search for correlations that could yield nova ejecta masses. Remarkably, the mass ejected during a nova eruption is dependent only on (and is directly proportional to) E {sub rad}. If we measure the distance to an erupting nova and its bolometric light curve, then E {sub rad} and hence the mass ejected can be directly measured.

  11. The Three-Dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Coyle, Nina; Yamaguchi, Hiroya; DePasquale, Joseph M.; Seitenzahl, Ivo Rolf; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.

    2017-08-01

    We present the first three-dimensional measurements of the velocity of various ejecta knots in Tycho's supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12-year baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 ``tufts'' of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line of sight velocity, we use two different methods: a non-equilibrium ionization model fit to the strong Si and S lines in the 1.2-2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the red or blue shift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s$^{-1}$, with a mean of 4430 km s$^{-1}$. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s$^{-1}$. Some Type Ia supernova explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and discuss our findings in light of various explosion models, favoring those delayed detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant's evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

  12. Compositional Mapping of Planetary moons by Mass Spectrometry of Dust Ejecta

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger, H.; Schmidt, J.; Spahn, F.; Srama, R.; Sternovsky, Z.; Trieloff, M.

    2011-12-01

    Classical methods to analyze the surface composition of planetary objects from a space craft are IR and gamma ray spectroscopy and neutron backscatter measurements. We present a complementary method to analyze rocky or icy dust particles as samples of planetary objects from where they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets - they are enshrouded in clouds of ballistic dust particles. In situ mass spectroscopic analysis of these grains impacting on to a detector on a spacecraft reveals their composition as characteristic samples of planetary surfaces at flybys or from an orbiter. The well established approach of dust detection by impact ionization has recently shown its capabilities by analyzing ice particles expelled by subsurface salt water on Saturn's moon Enceladus. Applying the method on micro-meteoroid ejecta of less active moons would allow for the qualitative and quantitative analysis of a huge number of samples from various surface areas, thus combining the advantages of remote sensing and a lander. Utilizing the heritage of the dust detectors onboard Ghiotto, Ulysses, Galileo, and Cassini a variety of improved, low-mass lab-models have been build and tested. They allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since achievable detection rates are on the order of thousand per orbit, an orbiter can create a compositional map of samples taken from a greater part of the surface. Flybies allow an investigation of certain surface areas of interest. Dust impact velocities are in general sufficiently high for impact ionization at orbiters about planetary objects with a radius of at least

  13. Compositional Mapping of the Galilean Moons by Mass Spectrometry of Dust Ejecta

    NASA Astrophysics Data System (ADS)

    Postberg, Frank; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger, H.; Lebreton, J.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Thissen, R.

    2012-10-01

    We present a method to measure composition and origin of ballistic dust particles populating the thin exospheres oft he Galilean moons. The presence of such particles, generated by the ambient meteoroid bombardment that erodes the surface has alredy been detected by Galileo spacecraft. As these grains are almost unaltered samples from the moons’ surfaces, unique composition data can be obtained from a dust spectrometer. The ballistic trajectories can be traced back to their region of origin at the surface, which allows in situ compositional mapping at flybys or from an orbiter. The well-established approach of dust detection by impact ionization has recently shown its capabilities by analyzing ice particles expelled by subsurface salt water on Saturn’s moon Enceladus. Applying the method on micro-meteoroid ejecta of less active moons allow for the qualitative and quantitative analysis of samples from various surface areas, thus combining the advantages of remote sensing and a lander. The detection rates at 200-500 km altitude are on the order of thousand per orbit and hundreds per flyby. Thus an orbiter can create a compositional map of samples taken from a greater part of the surface, whereas flybies allow an investigation of certain areas of interest. The method provides chemical characterization of ice and dust particles encountered at speeds at 1 km/s and above. It measures the bulk composition oft the ice and has ppm-level sensitivity to hydrated salts, most rock forming materials, and organic compounds. Key chemical and isotopic constraints for varying provinces or geological formations on the surfaces lead to better understanding of the body’s geological evolution. Regions which were subject to endogenic or exogenic alteration (resurfacing, radiation, old/new regions) are distinguished and investigated. In particular exchange processes with subsurface oceans on the Galileian moons could be determined with high quantitative precision.

  14. Vesta Cratered Landscape: Double Crater and Craters with Bright Ejecta

    NASA Image and Video Library

    2011-11-23

    This image from NASA Dawn spacecraft is dominated by a double crater which may have been formed by the simultaneous impact of a binary asteroid. Binary asteroids are asteroids that orbit their mutual center of mass.

  15. Protrusions Beyond the Blast Waves of Young Type Ia Supernova Remnants: Hydrodynamic Instabilities or Ejecta Bullets?

    NASA Astrophysics Data System (ADS)

    Dyer, Ashton; Blondin, J. M.; Reynolds, S. P.

    2014-01-01

    High resolution imaging of two young Type Ia supernova remnants (SNRs), Tycho and SN 1006, has revealed several morphological features which have resisted explanation with numerical simulations. One such feature is the presence of shocked ejecta blobs protruding beyond the mean forward shock radius. Two current theories explain the presence of such ejecta: highly dense ejecta shrapnel produced in the explosion penetrating the forward shock, or plumes generated by hydrodynamic instabilities long after the initial explosion. We investigate the shrapnel theory through hydrodynamic simulations in 2D and 3D of the evolution of dense ejecta clumps embedded in an exponential density profile, appropriate for Type Ia supernovae. We use high-resolution 2D simulations to identify relevant clump parameters which we investigate further in 3D. In contradiction to some former work, we find that sufficiently resolved clumps in 2D models shatter upon collision with the forward shock, yielding new protrusion features. In both 2D and 3D, shrapnel is capable of penetrating the forward shock, but the resultant protrusions in 3D simulations vary significantly from those in similar 2D runs, implying 2D simulations may not be an accurate method of investigating the shrapnel theory. We compare the our simulations with Chandra observations of projections seen in Tycho and SN 1006. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  16. Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury

    NASA Technical Reports Server (NTRS)

    Buczkowski, Debra L.; Seelos, K. S.

    2010-01-01

    The Caloris basin on Mercury is floored by light-toned plains and surrounded by an annulus of dark-toned material interpreted to be ejecta blocks and smooth, dark, ridged plains. Strangely, preliminary crater counts indicate that these intra-ejecta dark plains are younger than the light-toned plains within the Caloris basin. This would imply a second, younger plains emplacement event, possibly involving lower albedo material volcanics, which resurfaced the original ejecta deposit. On the other hand, the dark plains may be pre-Caloris light plains covered by a thin layer of dark ejecta. Another alternative to the hypothesis of young, dark volcanism is the possibility that previous crater counts have not thoroughly distinguished between superposed craters (fresh) and partly-buried craters (old) and therefore have not accurately determined the ages of the Caloris units. This abstract outlines the tasks associated with a new mapping project of the Caloris basin, intended to improve our knowledge of the geology and geologic history of the basin, and thus facilitate an understanding of the thermal evolution of this region of Mercury.

  17. Simulations and experiments of ejecta generation in twice-shocked metals

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William; Hammerberg, James; Cherne, Frank; Andrews, Malcolm

    2016-11-01

    Using continuum hydrodynamics embedded in the FLASH code, we model ejecta generation in recent target experiments, where a metallic surface was loaded by two successive shock waves. The experimental data were obtained from a two-shockwave, high-explosive tool at Los Alamos National Laboratory, capable of generating ejecta from a shocked tin surface in to a vacuum. In both simulations and experiment, linear growth is observed following the first shock event, while the second shock strikes a finite-amplitude interface leading to nonlinear growth. The timing of the second incident shock was varied systematically in our simulations to realize a finite-amplitude re-initialization of the RM instability driving the ejecta. We find the shape of the interface at the event of second shock is critical in determining the amount of ejecta, and thus must be used as an initial condition to evaluate subsequent ejected mass using a source model. In particular, the agreement between simulations, experiments and the mass model is improved when shape effects associated with the interface at second shock are incorporated. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  18. X-ray illumination of the ejecta of supernova 1987A.

    PubMed

    Larsson, J; Fransson, C; Ostlin, G; Gröningsson, P; Jerkstrand, A; Kozma, C; Sollerman, J; Challis, P; Kirshner, R P; Chevalier, R A; Heng, K; McCray, R; Suntzeff, N B; Bouchet, P; Crotts, A; Danziger, J; Dwek, E; France, K; Garnavich, P M; Lawrence, S S; Leibundgut, B; Lundqvist, P; Panagia, N; Pun, C S J; Smith, N; Sonneborn, G; Wang, L; Wheeler, J C

    2011-06-08

    When a massive star explodes as a supernova, substantial amounts of radioactive elements--primarily (56)Ni, (57)Ni and (44)Ti--are produced. After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of (44)Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star.

  19. The Three-Dimensional Motions of the Ejecta of Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Coyle, Nina; Yamaguchi, Hiroya; DePasquale, Joseph M.; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.

    2017-01-01

    We present the first three-dimensional measurements of the velocity of various ejecta knots in Tycho's supernova remnant, the remains of SN 1572, known to be a Type Ia explosion. When the ejecta knots pass through the reverse shock, they become heated to X-ray emitting temperatures, and Chandra's unmatched spatial resolution combined with the small age of this remnant allows us to watch it expand on measurable timescales. By combining a new epoch of 2015 Chandra X-ray observations with a previous 2003 epoch, we have a 12-year baseline over which we can measure proper motions from nearly 60 "tufts" of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line of sight velocity, we use two different methods: a non-equilibrium ionization model fit to the strong Si and S lines in the 1.2-2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, and allow us to determine the red or blue shift of each of the knots, and thus, the third dimension of the velocity vector. Assuming a distance of 3.5 kpc, we find total velocities that range from roughly 2400 to 6600 km/s, with mean and median values of 4429 and 4450 km/s, respectively. In the plane of the sky, we find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km/s. Some Type Ia supernova explosion models predict a velocity asymmetry in the ejecta, where the ejecta on one side of the remnant is moving faster than another side. We find no such velocity asymmetries in Tycho, and discuss our findings in light of various explosion models. Our previous work has shown an asymmetry in the velocity of the forward shock, with speeds in the southwest being significantly higher than those in the northeast. We have attributed this to a measured density gradient in the ISM, and not an asymmetry in the explosion. We compare our measurements with hydrodynamic simulations to show how the forward

  20. HST Images Flash Ionization of Old Ejecta by the 2011 Eruption of Recurrent Nova T Pyxidis

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Zurek, David; Schaefer, Bradley E.; Bond, Howard E.; Godon, Patrick; Mac Low, Mordecai-Mark; Pagnotta, Ashley; Prialnik, Dina; Sion, Edward M.; Toraskar, Jayashree; Williams, Robert E.

    2015-06-01

    T Pyxidis is the only recurrent nova known to be surrounded by knots of material ejected in previous outbursts. Following the eruption that began on 2011 April 14.29, we obtained seven epochs (from 4 to 383 days after eruption) of Hubble Space Telescope narrowband Hα images of T Pyx. The ionizing flash of radiation from the nova event had no discernible effect on the surrounding ejecta until at least 55 days after the eruption began. Photoionization of hydrogen located north and south of the central star was seen 132 days after the beginning of the eruption. That photoionized hydrogen recombined in the following 51 days, allowing us to determine a hydrogen atom density of at least 7× {{10}5}\\c{{m}-3}—at least an order of magnitude denser than the previously detected, unresolved [N ii] knots surrounding T Pyx. Material to the northwest and southeast was photoionized, and became bright between 132 and 183 days after the eruption began. Ninety-nine days later that northwest and southeast hydrogen had recombined. Both then (282 days after outburst) and 101 days later, we detected almost no trace of hydrogen emission around T Pyx. We determine that there is a large reservoir of previously unseen, cold diffuse hydrogen overlapping the previously detected, [N ii]-emitting knots of T Pyx ejecta. The mass of this newly detected hydrogen is model-dependent, but is is probably an order of magnitude larger than that of the [N ii] knots. We also determine that there is no significant reservoir of undetected hydrogen-rich ejecta, with density comparable to the flash-ionized ejecta we have detected, from the outer boundaries of the previously detected ejecta out to about twice that distance. The lack of distant ejecta is consistent with the Schaefer et al. scenario for T Pyx, in which the star underwent its first eruption within five years of 1866 after many millennia of quiescence, followed by the six observed recurrent nova eruptions since 1890. The lack of distant ejecta

  1. Martian meteorite launch: high-speed ejecta from small craters.

    PubMed

    Head, James N; Melosh, H Jay; Ivanov, Boris A

    2002-11-29

    We performed high-resolution computer simulations of impacts into homogeneous and layered martian terrain analogs to try to account for the ages and characteristics of the martian meteorite collection found on Earth. We found that craters as small as approximately 3 kilometers can eject approximately 10(7) decimeter-sized fragments from Mars, which is enough to expect those fragments to appear in the terrestrial collection. This minimum crater diameter is at least four times smaller than previous estimates and depends on the physical composition of the target material. Terrain covered by a weak layer such as an impact-generated regolith requires larger, therefore rarer, impacts to eject meteorites. Because older terrain is more likely to be mantled with such material, we estimate that the martian meteorites will be biased toward younger ages, which is consistent with the meteorite collection.

  2. Dynamics, nucleosynthesis, and kilonova signature of black hole—neutron star merger ejecta

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Foucart, Francois; Kasen, Daniel; Lippuner, Jonas; Desai, Dhruv; Roberts, Luke F.

    2017-08-01

    We investigate the ejecta from black hole—neutron star mergers by modeling the formation and interaction of mass ejected in a tidal tail and a disk wind. The outflows are neutron-rich, giving rise to optical/infrared emission powered by the radioactive decay of r-process elements (a kilonova). Here we perform an end-to-end study of this phenomenon, where we start from the output of a fully-relativistic merger simulation, calculate the post-merger hydrodynamical evolution of the ejecta and disk winds including neutrino physics, determine the final nucleosynthetic yields using post-processing nuclear reaction network calculations, and compute the kilonova emission with a radiative transfer code. We study the effects of the tail-to-disk mass ratio by scaling the tail density. A larger initial tail mass results in fallback matter becoming mixed into the disk and ejected in the subsequent disk wind. Relative to the case of a disk without dynamical ejecta, the combined outflow has lower mean electron fraction, faster speed, larger total mass, and larger absolute mass free of high-opacity Lanthanides or Actinides. In most cases, the nucleosynthetic yield is dominated by the heavy r-process contribution from the unbound part of the dynamical ejecta. A Solar-like abundance distribution can however be obtained when the total mass of the dynamical ejecta is comparable to the mass of the disk outflows. The kilonova has a characteristic duration of 1 week and a luminosity of  ∼ 1041 erg s-1 , with orientation effects leading to variations of a factor  ∼2 in brightness. At early times (< 1 d) the emission includes an optical component from the (hot) Lanthanide-rich material, but the spectrum evolves quickly to the infrared thereafter.

  3. A DETAILED KINEMATIC MAP OF CASSIOPEIA A'S OPTICAL MAIN SHELL AND OUTER HIGH-VELOCITY EJECTA

    SciTech Connect

    Milisavljevic, Dan; Fesen, Robert A.

    2013-08-01

    We present three-dimensional (3D) kinematic reconstructions of optically emitting material in the young Galactic supernova remnant Cassiopeia A (Cas A). These Doppler maps have the highest spectral and spatial resolutions of any previous survey of Cas A and represent the most complete catalog of its optically emitting material to date. We confirm that the bulk of Cas A's optically bright ejecta populate a torus-like geometry tilted approximately 30 Degree-Sign with respect to the plane of the sky with a -4000 to +6000 km s{sup -1} radial velocity asymmetry. Near-tangent viewing angle effects and an inhomogeneous surrounding circumstellar material/interstellar medium environment suggest that this geometry and velocity asymmetry may not be faithfully representative of the remnant's true 3D structure or the kinematic properties of the original explosion. The majority of the optical ejecta are arranged in several well-defined and nearly circular ring-like structures with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). These ejecta rings appear to be a common phenomenon of young core-collapse remnants and may be associated with post-explosion input of energy from plumes of radioactive {sup 56}Ni-rich ejecta that rise, expand, and compress non-radioactive material. Our optical survey encompasses Cas A's faint outlying ejecta knots and exceptionally high-velocity NE and SW streams of S-rich debris often referred to as ''jets''. These outer knots, which exhibit a chemical make-up suggestive of an origin deep within the progenitor star, appear to be arranged in opposing and wide-angle outflows with opening half-angles of Almost-Equal-To 40 Degree-Sign.

  4. Distribution of Ejecta in Analog Tephra Rings from Discrete Single and Multiple Subsurface Explosions

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.; Valentine, G. A.; Sonder, I.; Ross, P. S.; White, J. D. L.

    2015-12-01

    Buried-explosion experiments were used to investigate the spatial and volumetric distribution of extra-crater ejecta resulting from a range of explosion configurations with and without a crater present. Explosion configuration is defined in terms of scaled depth, the relationship between depth of burial and the cube root of explosion energy, where an optimal scaled depth explosion produces the largest crater diameter for a given energy. The multiple explosion experiments provide an analog for the formation of maar-diatreme ejecta deposits and the deposits of discrete explosions through existing conduits and hydrothermal systems. Experiments produced meter-sized craters with ejecta distributed between three major facies based on morphology and distance from the crater center. The proximal deposits form a constructional steep-sided ring that extends no more than two-times the crater radius away from center. The medial deposits form a low-angle continuous blanket that transitions with distance into the isolated clasts of the distal ejecta. Single explosion experiments produce a trend of increasing volume proportion of proximal ejecta as scaled depth increases (from 20-90% vol.). Multiple explosion experiments are dominated by proximal deposits (>90% vol.) for all but optimal scaled depth conditions (40-70% vol.). In addition to scaled depth, the presence of a crater influences jet shape and how the jet collapses, resulting in two end-member depositional mechanisms that produce distinctive facies. The experiments use one well-constrained explosion mechanism and, consequently, the variations in depositional facies and distribution are the result of conditions independent of that mechanism. Previous interpretations have invoked variations in fragmentation as the cause of this variability, but these experiments should help with a more complete reconstruction of the configuration and number of explosions that produce a tephra ring.

  5. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2013-01-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.

  6. A Detailed Kinematic Map of Cassiopeia A's Optical Main Shell and Outer High-velocity Ejecta

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan; Fesen, Robert A.

    2013-08-01

    We present three-dimensional (3D) kinematic reconstructions of optically emitting material in the young Galactic supernova remnant Cassiopeia A (Cas A). These Doppler maps have the highest spectral and spatial resolutions of any previous survey of Cas A and represent the most complete catalog of its optically emitting material to date. We confirm that the bulk of Cas A's optically bright ejecta populate a torus-like geometry tilted approximately 30° with respect to the plane of the sky with a -4000 to +6000 km s-1 radial velocity asymmetry. Near-tangent viewing angle effects and an inhomogeneous surrounding circumstellar material/interstellar medium environment suggest that this geometry and velocity asymmetry may not be faithfully representative of the remnant's true 3D structure or the kinematic properties of the original explosion. The majority of the optical ejecta are arranged in several well-defined and nearly circular ring-like structures with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). These ejecta rings appear to be a common phenomenon of young core-collapse remnants and may be associated with post-explosion input of energy from plumes of radioactive 56Ni-rich ejecta that rise, expand, and compress non-radioactive material. Our optical survey encompasses Cas A's faint outlying ejecta knots and exceptionally high-velocity NE and SW streams of S-rich debris often referred to as "jets." These outer knots, which exhibit a chemical make-up suggestive of an origin deep within the progenitor star, appear to be arranged in opposing and wide-angle outflows with opening half-angles of ≈40°.

  7. The Density and Mass of Unshocked Ejecta in Cassiopeia A through Low Frequency Radio Absorption

    NASA Astrophysics Data System (ADS)

    DeLaney, Tracey; Kassim, Namir E.; Rudnick, Lawrence; Perley, R. A.

    2014-04-01

    Characterizing the ejecta in young supernova remnants is a requisite step toward a better understanding of stellar evolution. In Cassiopeia A the density and total mass remaining in the unshocked ejecta are important parameters for modeling its explosion and subsequent evolution. Low frequency (<100 MHz) radio observations of sufficient angular resolution offer a unique probe of unshocked ejecta revealed via free-free absorption against the synchrotron emitting shell. We have used the Very Large Array plus Pie Town Link extension to probe this cool, ionized absorber at 9'' and 18.''5 resolution at 74 MHz. Together with higher frequency data we estimate an electron density of 4.2 cm-3 and a total mass of 0.39 M ⊙ with uncertainties of a factor of ~2. This is a significant improvement over the 100 cm-3 upper limit offered by infrared [S III] line ratios from the Spitzer Space Telescope. Our estimates are sensitive to a number of factors including temperature and geometry. However using reasonable values for each, our unshocked mass estimate agrees with predictions from dynamical models. We also consider the presence, or absence, of cold iron- and carbon-rich ejecta and how these affect our calculations. Finally we reconcile the intrinsic absorption from unshocked ejecta with the turnover in Cas A's integrated spectrum documented decades ago at much lower frequencies. These and other recent observations below 100 MHz confirm that spatially resolved thermal absorption, when extended to lower frequencies and higher resolution, will offer a powerful new tool for low frequency astrophysics.

  8. Production of impact melt in craters on Venus, Earth, and the moon

    NASA Astrophysics Data System (ADS)

    Vickery, A. M.; Melosh, H. J.

    1991-06-01

    Impact craters imaged by Magellan clearly show large amounts of flow-like ejecta whose morphology suggests that the flows comprise low-viscosity material. It was suggested that this material may be either turbidity flows or very fine-grained ejecta, flows of ejecta plus magma, or impact melts. The last of these hypotheses is considered. If these flows are composed of impact melts, there is much more melt relative to the crater volume than is observed on the moon. The ANEOS equation of state program was used for dunite to estimate the shock pressures required for melting, with initial conditions appropriate for Venus, Earth, and the moon. A simple model was then developed, based on the Z-model for excavation flow and on crater scaling relations that allow to estimate the ratio of melt ejecta to total ejecta as a function of crater size on the three bodies.

  9. The size distributions of fragments ejected at a given velocity from impact craters

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1986-01-01

    The mass distribution of fragments that are ejected at a given velocity for impact craters is modeled to allow extrapolation of laboratory, field, and numerical results to large scale planetary events. The model is semi-empirical in nature and is derived from: (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter, (4) measurements and theory of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that or planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad, e.g., 68% of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. The broad distribution suggests that in impact processes, additional comminution of ejecta occurs after the upward initial shock has passed in the process of the ejecta velocity vector rotating from an initially downward orientation. This additional comminution produces the broader size distribution in impact ejecta as compared to that obtained in simple brittle failure experiments.

  10. X-Ray Ejecta Kinematics of the Galactic Core-Collapse Supernova Remnant G292.0+1.8

    NASA Astrophysics Data System (ADS)

    Bhalerao, Jayant; Park, Sangwook; Dewey, Daniel; Hughes, John P.; Mori, Koji; Lee, Jae-Joon

    2015-02-01

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of -2300 lsim vr lsim 1400 km s-1. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ~90'' (corresponding to ~3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ~4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 1051 erg, we estimate the total ejecta mass to be lsim8 M ⊙, and we propose an upper limit of lsim35 M ⊙ on the progenitor's mass.

  11. X-RAY EJECTA KINEMATICS OF THE GALACTIC CORE-COLLAPSE SUPERNOVA REMNANT G292.0+1.8

    SciTech Connect

    Bhalerao, Jayant; Park, Sangwook; Dewey, Daniel; Hughes, John P.; Mori, Koji; Lee, Jae-Joon

    2015-02-10

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of –2300 ≲ v{sub r}  ≲ 1400 km s{sup –1}. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ∼90'' (corresponding to ∼3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ∼4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10{sup 51} erg, we estimate the total ejecta mass to be ≲8 M {sub ☉}, and we propose an upper limit of ≲35 M {sub ☉} on the progenitor's mass.

  12. Concerning the helium-to-hydrogen number density ratio in very slow ejecta and winds near solar minimum

    NASA Astrophysics Data System (ADS)

    Vasquez, Bernard J.; Farrugia, C. J.; Simunac, K. D. C.; Galvin, A. B.; Berdichevsky, D. B.

    2017-02-01

    Near the solar minimum the average value of the helium-to-proton number density ratio is a strong function of speed. The average ratios for both solar ejecta and ambient winds obey approximately the same relation with speed. At the lowest speeds, the ratio takes on small values near and below 0.01. Here winds and ejecta with very slow speeds (≲310 km/s) are examined. STEREO and Wind spacecraft data are employed that were obtained from 2007 to 2010. This was during the prolonged solar activity minimum between cycles 23 and 24. Case event and statistical studies are made with 12 very slow ejecta. The helium-to-proton ratio in very slow ejecta relative to the ratio for very slow winds of comparable speed averaged in an inclusive 1 year period is 1.06. The ejecta and ambient slow winds have, then, nearly the same concentrations on average. The values did not approach 0 with decreasing speed and are shown to deviate from a predicted form. A survey of potential solar sources of very slow ejecta and other inferences based on interplanetary data found a strong correspondence with active regions and a dependence of the properties of very slow ejecta with the solar cycle.

  13. The NASA Lunar Impact Monitoring Program

    NASA Technical Reports Server (NTRS)

    Suggs, Rob

    2008-01-01

    We have a fruitful observing program underway which has significantly increased the number of lunar impacts observed. We have done initial test shots at the Ames Vertical Gun Range obtained preliminary luminous efficiency values. More shots and better diagnostics are needed to determine ejecta properties. We are working to have a more accurate ejecta. environment definition to support lunar lander, habitat, and EVA design. Data also useful for validation of sporadic model at large size range.

  14. Dissecting a supernova impostor's circumstellar medium: MUSEing about the SHAPE of η Carinae's outer ejecta

    NASA Astrophysics Data System (ADS)

    Mehner, A.; Steffen, W.; Groh, J. H.; Vogt, F. P. A.; Baade, D.; Boffin, H. M. J.; Davidson, K.; de Wit, W. J.; Humphreys, R. M.; Martayan, C.; Oudmaijer, R. D.; Rivinius, T.; Selman, F.

    2016-11-01

    Aims: The role of episodic mass loss is one of the outstanding questions in massive star evolution. The structural inhomogeneities and kinematics of their nebulae are tracers of their mass-loss history. We conduct a three-dimensional morpho-kinematic analysis of the ejecta of η Car outside its famous Homunculus nebula. Methods: We carried out the first large-scale integral field unit observations of η Car in the optical, covering a field of view of 1'× 1' centered on the star. Observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) reveal the detailed three-dimensional structure of η Car's outer ejecta. Morpho-kinematic modeling of these ejecta is conducted with the code SHAPE. Results: The largest coherent structure in η Car's outer ejecta can be described as a bent cylinder with roughly the same symmetry axis as the Homunculus nebula. This large outer shell is interacting with the surrounding medium, creating soft X-ray emission. Doppler velocities of up to 3000 km s-1 are observed. We establish the shape and extent of the ghost shell in front of the southern Homunculus lobe and confirm that the NN condensation can best be modeled as a bowshock in the orbital/equatorial plane. Conclusions: The SHAPE modeling of the MUSE observations provides a significant gain in the study of the three-dimensional structure of η Car's outer ejecta. Our SHAPE modeling indicates that the kinematics of the outer ejecta measured with MUSE can be described by a spatially coherent structure, and that this structure also correlates with the extended soft X-ray emission associated with the outer debris field. The ghost shell immediately outside the southern Homunculus lobe hints at a sequence of eruptions within the time frame of the Great Eruption from 1837-1858 or possibly a later shock/reverse shock velocity separation. Our 3D morpho-kinematic modeling and the MUSE observations constitute an invaluable dataset to be confronted with future

  15. Earth-based radar and LRO Diviner constraints on the recent rate of lunar ejecta processing

    NASA Astrophysics Data System (ADS)

    Ghent, Rebecca R.; Hayne, Paul O.; Bandfield, Joshua L.; Campbell, Bruce A.; Carter, Lynn M.; Allen, Carlton

    2013-04-01

    Many large craters on the lunar nearside show radar circular polarization ratio (CPR) signatures consistent with the presence of blocky ejecta blankets, to distances of 0.5 to 1.5 crater radii. However, most of these surfaces show very low surface rock concentration values and only limited enhancements in regolith temperatures calculated from Diviner nighttime infrared observations. Because the radar signal is integrated over the radar penetration depth (up to several meters), but the Diviner signal is sensitive only to rocks within the upper meter of the surface, this indicates that ejecta blocks on the surface and in the shallow subsurface are quickly removed by continued bombardment. Deeper subsurface rocks, which are clearly evident in radar CPR maps but are covered by a sufficiently thick layer of thermally insulating regolith material to render them invisible to Diviner, persist for much longer. By matching the results of one-dimensional thermal models to Diviner nighttime temperatures, we can constrain the thermophysical properties of the upper 1 meter of regolith. We find that Diviner nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a mixture of rocks and regolith fines, with increasing rock content with depth. Using this density profile together with the surface rock abundance, we can estimate the excess rock mass represented by rocks on the surface and within the upper meter of regolith for individual craters. We find that for craters of known age younger than ~1.7Ga, a robust correlation exists between ejecta mass and crater age, which yields the first observational estimate of the rate of lunar ejecta processing. Our results show that crater ejecta are initially removed very quickly (perhaps up to ~1cm / m.y.), with the rate slowing over a short period of time to less than 1 mm / m.y., as the number of blocks on the surface decreases and the volume of protective regolith material increases

  16. Ejecta of Eta Carinae: What We Learn about N-Rich Chemistry

    NASA Technical Reports Server (NTRS)

    Gull, Theodore

    2006-01-01

    At least one member of the binary system, Eta Carinae, is in the late stages of CNO-cycle. At least ten solar masses of ejecta make up the Homunculus, a neutral bi-polar shell ejected in the 1840s and the Little Homunculus, an internal, ionized bi-polar shell ejected in the 1890s. HST/STIS and VLTAJVES high dispersion spectroscopy revealed absorptions of multiple elements and diatomic molecules in these shells, some, such as V II and Sr II have not been seen previously in the ISM. The skirt region between the bi-lobes includes the very bright Weigelt blobs, within 0.1 to 0.3" of the central source, and the more distant, unusual Strontium Filament, a neutral emission nebula photoexcited by Balmer continuum, but shielded by Fe II from Lyman radiation. The 600+ emission lines are due to metals usually tied up in dust, but underabundances of C and O prevent precipitation as oxides onto the dust grains. Indications are that Ti/Ni is 100X solar, likely due not to nuclear processing, but the very different photo-excitation environments coupled with N-rich, C-, O-poor chemistry. In the Homunculus, level populations of the molecules indicate 60K gas; the metal absorption lines, 760K; that of the Little Homunculus 6400K during the broad spectroscopic maximum, relaxing to 5000K for the few month long mi