Sample records for impact testing system

  1. Low velocity instrumented impact testing of four new damage tolerant carbon/epoxy composite systems

    NASA Technical Reports Server (NTRS)

    Lance, D. G.; Nettles, A. T.

    1990-01-01

    Low velocity drop weight instrumented impact testing was utilized to examine the damage resistance of four recently developed carbon fiber/epoxy resin systems. A fifth material, T300/934, for which a large data base exists, was also tested for comparison purposes. A 16-ply quasi-isotropic lay-up configuration was used for all the specimens. Force/absorbed energy-time plots were generated for each impact test. The specimens were cross-sectionally analyzed to record the damage corresponding to each impact energy level. Maximum force of impact versus impact energy plots were constructed to compare the various systems for impact damage resistance. Results show that the four new damage tolerant fiber/resin systems far outclassed the T300/934 material. The most damage tolerant material tested was the IM7/1962 fiber/resin system.

  2. LOX/GOX mechanical impact tester assessment

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Bryan, C. J.; Frye, G. W.; Stohler, S. L.

    1980-01-01

    The performances of three existing high pressure oxygen mechanical impact test systems were tested at two different test sites. The systems from one test site were fabricated from the same design drawing, whereas the system tested at the other site was of different design. Energy delivered to the test sample for each test system was evaluated and compared. Results were compared to the reaction rates obtained.

  3. Low Velocity Impact Testing and Nondestructive Evaluation of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Brennan, R. E.; Green, W. H.

    2011-06-01

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  4. Detection of impact damage on thermal protection systems using thin-film piezoelectric sensors for integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.

    2008-03-01

    Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.

  5. Impact Testing of Orbiter Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  6. Pedestrian headform testing: inferring performance at impact speeds and for headform masses not tested, and estimating average performance in a range of real-world conditions.

    PubMed

    Hutchinson, T Paul; Anderson, Robert W G; Searson, Daniel J

    2012-01-01

    Tests are routinely conducted where instrumented headforms are projected at the fronts of cars to assess pedestrian safety. Better information would be obtained by accounting for performance over the range of expected impact conditions in the field. Moreover, methods will be required to integrate the assessment of secondary safety performance with primary safety systems that reduce the speeds of impacts. Thus, we discuss how to estimate performance over a range of impact conditions from performance in one test and how this information can be combined with information on the probability of different impact speeds to provide a balanced assessment of pedestrian safety. Theoretical consideration is given to 2 distinct aspects to impact safety performance: the test impact severity (measured by the head injury criterion, HIC) at a speed at which a structure does not bottom out and the speed at which bottoming out occurs. Further considerations are given to an injury risk function, the distribution of impact speeds likely in the field, and the effect of primary safety systems on impact speeds. These are used to calculate curves that estimate injuriousness for combinations of test HIC, bottoming out speed, and alternative distributions of impact speeds. The injuriousness of a structure that may be struck by the head of a pedestrian depends not only on the result of the impact test but also the bottoming out speed and the distribution of impact speeds. Example calculations indicate that the relationship between the test HIC and injuriousness extends over a larger range than is presently used by the European New Car Assessment Programme (Euro NCAP), that bottoming out at speeds only slightly higher than the test speed can significantly increase the injuriousness of an impact location and that effective primary safety systems that reduce impact speeds significantly modify the relationship between the test HIC and injuriousness. Present testing regimes do not take fully into account the relationship between impact severity and variations in impact conditions. Instead, they assess injury risk at a single impact speed. Hence, they may fail to differentiate risks due to the effects of bottoming out under different impact conditions. Because the level of injuriousness changes across a wide range of HIC values, even slight improvements to very stiff structures need to be encouraged through testing. Indications are that the potential of autonomous braking systems is substantial and needs to be weighted highly in vehicle safety assessments.

  7. A Method for Direct-Measurement of the Energy of Rupture of Impact Specimens

    DTIC Science & Technology

    1953-01-01

    CONTENTS SECTION A - Poreword SFCTION B » ObjectiTes of the Current Investigation SECTION C - Basic Elements of an Impact Testing System ...SECTION D - Discussion lo Linear System 2 c Rotary System 3o Methods for Ifeasui ing the Energy of Rupture SECTION E « The Energy Measuring System ...has followed and to siironarize our techni<»l findings, Co BASIC ELEKEMTS OF AN IMPACT TESTING SYSTEM For the analytical purposes of this

  8. Safety impact of an integrated crash warning system based on field test data.

    DOT National Transportation Integrated Search

    2011-06-13

    This paper provides the results of an analysis : conducted to assess the safety impact of an integrated : vehicle-based crash warning system based on : naturalistic driving data collected from a field : operational test. The system incorporates four ...

  9. A Brief Study on Toxic Combustion Products of the Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2005-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is the adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper investigates the feasibility of using the NASA pneumatic-impact system to conduct adiabatic-compression combustion tests and determines the toxic combustion products produced from the burning of five selected polymers. Five polymers commonly used in high-pressure oxygen systems, Zytel(Registered TradeMark) 42 (Nylon 6/6), Buna N (nitrile rubber), Witon(Registered TradeMark) A (copolymer of vinylidene fluoride and hexafluoropropylene), Neoflon(Registered TradeMark) (polychlorotrifluoroethylene), and Teflon(Registered TradeMark) (polytetrafluoroethylene), were tested in the NASA pneumatic-impact test system at 17.2-MPa oxygen pressure. The polymers were ignited and burned; combustion products were collected in a stainless-steel sample bottle and analyzed using various methods. The results show that the NASA pneumatic-impact system is an appropriate test system to conduct adiabatic-compression combustion tests and to collect combustion products for further chemical analysis. The composition of the combustion product gas generated from burning the five selected polymers are presented and discussed.

  10. Determination of Acreage Thermal Protection Foam Loss From Ice and Foam Impacts

    NASA Technical Reports Server (NTRS)

    Carney, Kelly S.; Lawrence, Charles

    2015-01-01

    A parametric study was conducted to establish Thermal Protection System (TPS) loss from foam and ice impact conditions similar to what might occur on the Space Launch System. This study was based upon the large amount of testing and analysis that was conducted with both ice and foam debris impacts on TPS acreage foam for the Space Shuttle Project External Tank. Test verified material models and modeling techniques that resulted from Space Shuttle related testing were utilized for this parametric study. Parameters varied include projectile mass, impact velocity and impact angle (5 degree and 10 degree impacts). The amount of TPS acreage foam loss as a result of the various impact conditions is presented.

  11. Supersonic Particle Impact Test Capabilities: Investigative Report

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa

    2007-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact flow tests to determine the maximum capabilities of the particle impact test systems in different configurations. Additional flow tests were performed to determine the target pressures at given upstream conditions to supplement the WSTF data located in ASTM Manual 36 (2000).

  12. Acoustic Emission Detection of Impact Damage on Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

    2004-01-01

    The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

  13. Testing of state roadside safety systems. Volume XI, Appendix J -- Crash testing and evaluation of existing guardrail systems

    DOT National Transportation Integrated Search

    1999-04-01

    The purpose of this study is to crash test and evaluate new or modified roadside safety hardware and, where necessary, redesign the devices to improve their impact performance. The three major areas addressed in this study are the impact performance ...

  14. Distributed Impact Detector System (DIDS) Health Monitoring System Evaluation

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Madaras, Eric I.

    2010-01-01

    Damage due to impacts from micrometeoroids and orbital debris is one of the most significant on-orbit hazards for spacecraft. Impacts to thermal protection systems must be detected and the damage evaluated to determine if repairs are needed to allow safe re-entry. To address this issue for the International Space Station Program, Langley Research Center and Johnson Space Center technologists have been working to develop and implement advanced methods for detecting impacts and resultant leaks. LaRC funded a Small Business Innovative Research contract to Invocon, Inc. to develop special wireless sensor systems that are compact, light weight, and have long battery lifetimes to enable applications to long duration space structures. These sensor systems are known as distributed impact detection systems (DIDS). In an assessment, the NASA Engineering and Safety Center procured two prototype DIDS sensor units to evaluate their capabilities in laboratory testing and field testing in an ISS Node 1 structural test article. This document contains the findings of the assessment.

  15. Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer

    2017-02-01

    Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.

  16. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Pereira, J. M.; Revilock, D. M.

    2004-01-01

    Under the Federal Aviation Administration's Airworthiness Assurance Center of Excellence and the Aircraft Catastrophic Failure Prevention Program, National Aeronautics and Space Administration Glenn Research Center collaborated with Arizona State University, Honeywell Engines, Systems and Services, and SRI International to develop improved computational models for designing fabric-based engine containment systems. In the study described in this report, ballistic impact tests were conducted on layered dry fabric rings to provide impact response data for calibrating and verifying the improved numerical models. This report provides data on projectile velocity, impact and residual energy, and fabric deformation for a number of different test conditions.

  17. High Pressure Quick Disconnect Particle Impact Tests

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  18. Rail Impact Testing. Test Operations Procedure (TOP)

    DTIC Science & Technology

    2008-09-15

    impact test. The rail impact test is used to verify structural integrity of the test item and the adequacy of the tie-down system and tie-down...strength of provisions, connection and supporting structural frame, paragraph 5.2.3 ** Superscript...parts, to include outriggers and booms) without advanced approval by SDDCTEA. Torque nuts on wire rope clips to their correct value. Torque cable

  19. Optimal design and dynamic impact tests of removable bollards

    NASA Astrophysics Data System (ADS)

    Chen, Suwen; Liu, Tianyi; Li, Guoqiang; Liu, Qing; Sun, Jianyun

    2017-10-01

    Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30º and satisfy the requirements of the BSI Specification.

  20. Impact reactivity of materials at very high oxygen pressure

    NASA Technical Reports Server (NTRS)

    Connor, H. W.; Minchey, J. G.; Crowder, R.; Davidson, R.

    1983-01-01

    The requirements for impact testing of materials in an oxygen atmosphere at pressures from 82.7 MPa (12,000 psi) to 172 MPa (25,000 psi) were evaluated. The impact tester system was evaluated for potential pressure increases from 69 MPa (10,000 psi) to 82.7 MPa (12,000 psi). The low pressure oxygen and nitrogen systems, the impact tower, the impact test cell, and the high pressure oxygen system were evaluated individually. Although the structural integrity of the impact test cell and the compressor were sufficient for operation at 82.7 MPa (12,000 psi), studies revealed possible material incompatibility at that pressure and above. It was recommended that if a component should be replaced for 82.7 MPa (12,000 psi) operation the replacement should meet the final objectives of 172 MPa (25,000 psi). Recommended changes in the system include; use of Monel 400 for pressures above 82.7 MPa (12,000 psi), use of bellows to replace the seal in the impact tester, use of a sapphire window attached to a fiber optic for event sensing, and use of a three diaphragm compressor.

  1. Simplified Impact Testing of Traffic Barrier Systems (Phase I)

    DOT National Transportation Integrated Search

    2003-06-01

    A simplified impact test configuration was developed to provide a preliminary, economical means of assessing prototype traffic barriers before proceeding to full-scale federal testing. Specifically, the test was configured to assess the federal crite...

  2. Experimental stress analysis of large plastic deformations in a hollow sphere deformed by impact against a concrete block

    NASA Technical Reports Server (NTRS)

    Morris, R. E.

    1973-01-01

    An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.

  3. Impact Properties of Metal Fan Containment Materials Being Evaluated for the High-Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Enabling Propulsion Materials (EPM) program - a partnership between NASA, Pratt & Whitney, and GE Aircraft Engines - the Materials and Structures Divisions of the NASA Lewis Research Center are involved in developing a fan-containment system for the High-Speed Civil Transport (HSCT). The program calls for a baseline system to be designed by the end of 1995, with subsequent testing of innovative concepts. Five metal candidate materials are currently being evaluated for the baseline system in the Structures Division's Ballistic Impact Facility. This facility was developed to provide the EPM program with cost-efficient and timely impact test data. At the facility, material specimens are impacted at speeds up to 350 m/sec by projectiles of various sizes and shapes to assess the specimens' ability to absorb energy and withstand impact. The tests can be conducted at either room or elevated temperatures. Posttest metallographic analysis is conducted to improve understanding of the failure modes. A dynamic finite element program is used to simulate the events and both guide the testing as well as aid in designing the fan-containment system.

  4. Design of Orion Soil Impact Study using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2010-01-01

    Two conventional One Factor At a Time (OFAT) test matrices under consideration for an Orion Landing System subscale soil impact study are reviewed. Certain weaknesses in the designs, systemic to OFAT experiment designs generally, are identified. An alternative test matrix is proposed that is based in the Modern Design of Experiments (MDOE), which achieves certain synergies by combining the original two test matrices into one. The attendant resource savings are quantified and the impact on uncertainty is discussed.

  5. System-Integrated Finite Element Analysis of a Full-Scale Helicopter Crash Test with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Polanco, Michael A.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.

  6. Capabilities of the Impact Testing Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Nehls, Mary; Young, Whitney; Gray, Perry; Suggs, Bart; Lowrey, Nikki M.

    2011-01-01

    The test and analysis capabilities of the Impact Testing Facility at NASA's Marshall Space Flight Center are described. Nine different gun systems accommodate a wide range of projectile and target sizes and shapes at velocities from subsonic through hypersonic, to accomplish a broad range of ballistic and hypervelocity impact tests. These gun systems include ballistic and microballistic gas and powder guns, a two-stage light gas gun, and specialty guns for weather encounter studies. The ITF "rain gun" is the only hydrometeor impact gun known to be in existence in the United States that can provide single impact performance data with known raindrop sizes. Simulation of high velocity impact is available using the Smooth Particle Hydrodynamic Code. The Impact Testing Facility provides testing, custom test configuration design and fabrication, and analytical services for NASA, the Department of Defense, academic institutions, international space agencies, and private industry in a secure facility located at Marshall Space Flight Center, on the US Army's Redstone Arsenal in Huntsville, Alabama. This facility performs tests that are subject to International Traffic in Arms Regulations (ITAR) and DoD secret classified restrictions as well as proprietary and unrestricted tests for civil space agencies, academic institutions, and commercial aerospace and defense companies and their suppliers.

  7. High Pressure Quick Disconnect Particle Impact Tests

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen; Rosales, Keisa; Smith, Sarah R.; Stoltzfus, Joel M.

    2007-01-01

    To determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS), NASA Johnson Space Center requested White Sands Test Facility (WSTF) to perform particle impact testing. Testing was performed from November 2006 through May 2007 and included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This report summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs.

  8. Environmental assessment of the 40 kilowatt fuel cell system field test operation

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.

    1982-01-01

    This environmental assessment examines the potential environmental consequences, both adverse and beneficial, of the 40 kW fuel cell system system field test operation. The assessment is of necessity generic in nature since actual test sites were not selected. This assessment provides the basis for determining the need for an environmental impact statement. In addition, this assessment provides siting criteria to avoid or minimize negative environmental impacts and standards for determining candidate test sites, if any, for which site specific assessments may be required.

  9. Using Modeling and Simulation to Complement Testing for Increased Understanding of Weapon Subassembly Response.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K.; Davidson, Megan

    As part of Sandia’s nuclear deterrence mission, the B61-12 Life Extension Program (LEP) aims to modernize the aging weapon system. Modernization requires requalification and Sandia is using high performance computing to perform advanced computational simulations to better understand, evaluate, and verify weapon system performance in conjunction with limited physical testing. The Nose Bomb Subassembly (NBSA) of the B61-12 is responsible for producing a fuzing signal upon ground impact. The fuzing signal is dependent upon electromechanical impact sensors producing valid electrical fuzing signals at impact. Computer generated models were used to assess the timing between the impact sensor’s response to themore » deceleration of impact and damage to major components and system subassemblies. The modeling and simulation team worked alongside the physical test team to design a large-scale reverse ballistic test to not only assess system performance, but to also validate their computational models. The reverse ballistic test conducted at Sandia’s sled test facility sent a rocket sled with a representative target into a stationary B61-12 (NBSA) to characterize the nose crush and functional response of NBSA components. Data obtained from data recorders and high-speed photometrics were integrated with previously generated computer models in order to refine and validate the model’s ability to reliably simulate real-world effects. Large-scale tests are impractical to conduct for every single impact scenario. By creating reliable computer models, we can perform simulations that identify trends and produce estimates of outcomes over the entire range of required impact conditions. Sandia’s HPCs enable geometric resolution that was unachievable before, allowing for more fidelity and detail, and creating simulations that can provide insight to support evaluation of requirements and performance margins. As computing resources continue to improve, researchers at Sandia are hoping to improve these simulations so they provide increasingly credible analysis of the system response and performance over the full range of conditions.« less

  10. A Preliminary Study on the Toxic Combustion Products Testing of Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2004-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.

  11. A damage tolerance comparison of IM7/8551 and IM8G/8553 carbon/epoxy composites

    NASA Technical Reports Server (NTRS)

    Lance, D. G.; Nettles, A. T.

    1991-01-01

    A damage tolerance study of two new toughened carbon fiber/epoxy resin systems was undertaken as a continuation of ongoing work into screening new opposites for resistance to foreign object impact. This report is intended to be a supplement to NASA TP 3029 in which four new fiber/resin systems were tested for damage tolerance. Instrumented drop weight impact testing was used to inflict damage to 16-ply quasi-isotropic specimens. Instrumented output data and cross-sectional examinations of the damage zone were utilized to quantify the damage. It was found that the two fiber/resin systems tested in this study were much more impact resistant than an untoughened composite such as T300/934, but were not as impact resistant as other materials previously studied.

  12. Impact detection and analysis/health monitoring system for composites

    NASA Astrophysics Data System (ADS)

    Child, James E.; Kumar, Amrita; Beard, Shawn; Qing, Peter; Paslay, Don G.

    2006-05-01

    This manuscript includes information from test evaluations and development of a smart event detection system for use in monitoring composite rocket motor cases for damaging impacts. The primary purpose of the system as a sentry for case impact event logging is accomplished through; implementation of a passive network of miniaturized piezoelectric sensors, logger with pre-determined force threshold levels, and analysis software. Empirical approaches to structural characterizations and network calibrations along with implementation techniques were successfully evaluated, testing was performed on both unloaded (less propellants) as well as loaded rocket motors with the cylindrical areas being of primary focus. The logged test impact data with known physical network parameters provided for impact location as well as force determination, typically within 3 inches of actual impact location using a 4 foot network grid and force accuracy within 25%of an actual impact force. The simplistic empirical characterization approach along with the robust / flexible sensor grids and battery operated portable logger show promise of a system that can increase confidence in composite integrity for both new assets progressing through manufacturing processes as well as existing assets that may be in storage or transportation.

  13. Impact Testing on Reinforced Carbon-Carbon Flat Panels with Ice Projectiles for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1--fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2--subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3--full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with ice projectile impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated three types of debris projectiles: Single-crystal, polycrystal, and "soft" ice. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the ice and RCC models for use in LS-DYNA.

  14. Impact Testing on Reinforced Carbon-Carbon Flat Panels With BX-265 and PDL-1034 External Tank Foam for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1-fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2-subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3-full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with external tank foam impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated two types of debris projectiles: BX-265 and PDL-1034 external tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the foam and RCC models for use in LS-DYNA.

  15. 16 CFR 1203.13 - Test schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... environments, respectively) shall be tested in accordance with the dynamic retention system strength test at... Peripheral vision § 1203.15 Positional stability § 1203.16 Retention system strength § 1203.17 Impact tests...

  16. Photon Doppler Velocimeter to Measure Entrained Additive Manufactured Bulk Metal Powders in Hot Subsonic and Supersonic Oxygen Gas

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan

    2016-01-01

    Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.

  17. Reinforced Carbon-Carbon Subcomponent Flat Plate Impact Testing for Space Shuttle Orbiter Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.

    2007-01-01

    Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.

  18. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  19. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A.T.; Munafo, Paul (Technical Monitor)

    2002-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  20. Biofidelity assessment of the 6-year-old ATDs in lateral impact.

    PubMed

    Yaek, J L; Li, Y; Lemanski, P J; Begeman, P C; Rouhana, S W; Cavanaugh, J M

    2016-07-03

    The objective of this study was to assess and compare the current lateral impact biofidelity of the shoulder, thorax, abdomen, and pelvis of the Q6, Q6s, and Hybrid III (HIII) 6-year-old anthropomorphic test devices (ATDs) through lateral impact testing. A series of lateral impact pendulum tests, vertical drop tests, and Wayne State University (WSU) sled tests was performed, based on the procedures detailed in ISO/TR 9790 (1999) and scaling to the 6-year-old using Irwin et al. ( 2002 ). The HIII used in this study was tested with the Ford-designed abdomen described in Rouhana ( 2006 ) and Elhagediab et al. ( 2006 ). The data collected from the 3 different ATDs were filtered using SAE J211 (SAE International 2003 ), aligned using the methodology described by Donnelly and Moorhouse ( 2012 ), and compared for each body region tested (shoulder, thorax, abdomen, and pelvis). The biofidelity performance in lateral impact for the 3 ATDs was assessed against the scaled biofidelity targets published in Irwin et al. ( 2002 ), the abdominal biofidelity target suggested in van Ratingen et al. ( 1997 ), and the biofidelity targets published in Rhule et al. ( 2013 ). Regional and overall biofidelity rankings for each of the 3 ATDs were performed using both the ISO 9790 biofidelity rating system (ISO/TR 9790 1999) and the NHTSA's external biofidelity ranking system (BRS; Rhule et al. 2013 ). All 3 6-year-old ATD's pelvises were rated as least biofidelic of the 4 body regions tested, based on both the ISO and BRS biofidelity rating systems, followed by the shoulder and abdomen, respectively. The thorax of all 3 ATDs was rated as the most biofidelic body region using the aforementioned biofidelity rating systems. The HIII 6-year-old ATD was rated last in overall biofidelity of the 3 tested ATDs, based on both rating systems. The Q6s ATD was rated as having the best overall biofidelity using both rating systems. All 3 ATDs are more biofidelic in the thorax and abdomen than the shoulder and pelvis, with the pelvis being the least biofidelic of all 4 tested body regions. None of the 3 tested 6-year-old ATDs had an overall ranking of 2.0 or less, based on the BRS ranking. Therefore, it is expected that none of the 3 ATDs would mechanically respond like a postmortem human subject (PMHS) in a lateral impact crash test based on this ranking system. With respect to the ISO biofidelity rating, the HIII dummy would be considered unsuitable and the Q-series dummies would be considered marginal for assessing side impact occupant protection.

  1. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  2. Characterization of pediatric wheelchair kinematics and wheelchair tiedown and occupant restraint system loading during rear impact.

    PubMed

    Fuhrman, Susan I; Karg, Patricia; Bertocci, Gina

    2010-04-01

    This study characterizes pediatric wheelchair kinematic responses and wheelchair tiedown and occupant restraint system (WTORS) loading during rear impact. It also examines the kinematic and loading effects of wheelchair headrest inclusion in rear impact. In two separate rear-impact test scenarios, identical WC19-compliant manual pediatric wheelchairs were tested using a seated Hybrid III 6-year-old anthropomorphic test device (ATD) to evaluate wheelchair kinematics and WTORS loading. Three wheelchairs included no headrests, and three were equipped with slightly modified wheelchair-mounted headrests. Surrogate WTORS properly secured the wheelchairs; three-point occupant restraints properly restrained the ATD. All tests used a 26km/h, 11g rear-impact test pulse. Headrest presence affected wheelchair kinematics and WTORS loading; headrest-equipped wheelchairs had greater mean seatback deflections, mean peak front and rear tiedown loads and decreased mean lap belt loads. Rear-impact tiedown loads differed from previously measured loads in frontal impact, with comparable tiedown load levels reversed in frontal and rear impacts. The front tiedowns in rear impact had the highest mean peak loads despite lower rear-impact severity. These outcomes have implications for wheelchair and tiedown design, highlighting the need for all four tiedowns to have an equally robust design, and have implications in the development of rear-impact wheelchair transportation safety standards. Copyright 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Instrumented impact and residual tensile strength testing of eight-ply carbon eopoxy specimens

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1990-01-01

    Instrumented drop weight impact testing was utilized to examine a puncture-type impact on thin carbon-epoxy coupons. Four different material systems with various eight-ply lay-up configurations were tested. Specimens were placed over a 10.3-mm diameter hole and impacted with a smaller tup (4.2-mm diameter) than those used in previous studies. Force-time plots as well as data on absorbed energy and residual tensile strength were gathered and examined. It was found that a critical impact energy level existed for each material tested, at which point tensile strength began to rapidly decrease with increasing impact energy.

  4. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  5. Hypervelocity Impact Test Results for a Metallic Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Karr, Katherine L.; Poteet, Carl C.; Blosser, Max L.

    2003-01-01

    Hypervelocity impact tests have been performed on specimens representing metallic thermal protection systems (TPS) developed at NASA Langley Research Center for use on next-generation reusable launch vehicles (RLV). The majority of the specimens tested consists of a foil gauge exterior honeycomb panel, composed of either Inconel 617 or Ti-6Al-4V, backed with 2.0 in. of fibrous insulation and a final Ti-6Al-4V foil layer. Other tested specimens include titanium multi-wall sandwich coupons as well as TPS using a second honeycomb sandwich in place of the foil backing. Hypervelocity impact tests were performed at the NASA Marshall Space Flight Center Orbital Debris Simulation Facility. An improved test fixture was designed and fabricated to hold specimens firmly in place during impact. Projectile diameter, honeycomb sandwich material, honeycomb sandwich facesheet thickness, and honeycomb core cell size were examined to determine the influence of TPS configuration on the level of protection provided to the substructure (crew, cabin, fuel tank, etc.) against micrometeoroid or orbit debris impacts. Pictures and descriptions of the damage to each specimen are included.

  6. 16 CFR 1203.15 - Positional stability test (roll-off resistance).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... any slack. (3) Suspend the dynamic impact system from the helmet by positioning the flexible strap... positions. (3) Dynamic impact apparatus. A dynamic impact apparatus shall be used to apply a shock load to a helmet secured to the test headform. The dynamic impact apparatus shall allow a 4-kg (8.8-lb) drop weight...

  7. Environmental effects on FOD resistance of composite fan blade

    NASA Technical Reports Server (NTRS)

    Murphy, G. C.; Selemme, C. T.

    1981-01-01

    The sensitivity of the impact characteristics of typical polymeric composite fan blade materials to potential limiting combinations of moisture, temperature level and temperature transients was established. The following four technical tasks are reported: (1) evaluation and characterization of constituent blade materials; (2) ballistic impact tests; (3) leading edge impact protection systems; and (4) simulated blade spin impact tests.

  8. Feasibility Study of an Airbag-Based Crew Impact Attenuation System for the Orion MPCV

    NASA Technical Reports Server (NTRS)

    Do, Sydney; deWeck, Olivier

    2011-01-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential lightweight means of enabling safe land-landings for the Orion Multi-Purpose Crew Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the performance feasibility of this concept during a nominal 7.62m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85m/s, 0 deg. impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the airbag-based crew impact attenuation concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0 deg impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30 deg indicated that severe injury risk levels would be sustained beyond impact velocities of 5m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  9. Demonstration of a Particle Impact Monitoring System for Crewed Space Exploration Modules

    NASA Technical Reports Server (NTRS)

    Opiela, J. N.; Liou, J.-C.; Corsaro, R.; Giovane, F.; Anz-Meador, P.

    2011-01-01

    When micrometeorite or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules, both in space and on the surfaces of Solar System bodies. The HIMS uses multiple thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA?s 2010 Desert Research and Technologies Studies (Desert-RATS). Four sensor locations were assigned near the corners of a rectangular pattern. To study the influence of wall thickness, three sets of four sensors were installed at different layer depths: on the interior of the PEM wall, on the exterior of the same wall, and on the exterior of a layer of foam insulation applied to the exterior wall. Once the system was activated, particle impacts were periodically applied by firing a pneumatic pellet gun at the exterior wall section. Impact signals from the sensors were recognized by a data acquisition system when they occurred, and recorded on a computer for later analysis. Preliminary analysis of the results found that the HIMS system located the point of impact to within 8 cm, provided a measure of the impact energy / damage produced, and was insensitive to other acoustic events. Based on this success, a fully automated version of this system will be completed and demonstrated as part of a crew "Caution/Warning" system at the 2011 Desert-RATS, along with a crew response procedure.

  10. Preparation of calibrated test packages for particle impact noise detection

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A standard calibration method for any particle impact noise detection (PIND) test system used to detect loose particles responsible for failures in hybrid circuits was developed along with a procedure for preparing PIND standard test devices. Hybrid packages were seeded with a single gold ball, hermetically sealed, leak tested, and PIND tested. Conclusions are presented.

  11. Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.

    2013-01-01

    There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.

  12. Impact of Environment-Based Teaching on Student Achievement: A Study of Washington State Middle Schools

    ERIC Educational Resources Information Center

    Bartosh, Oksana; Tudor, Margaret; Ferguson, Lynne; Taylor, Catherine

    2009-01-01

    This paper reports on a project which investigates the impact of systemic environmental education (EE) programs on student achievement on EE-based integrated tests and standardized tests in math, language arts, and listening. Systemic environmental education programs are defined by curriculum designed to align and integrate subjects around real…

  13. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off

    NASA Astrophysics Data System (ADS)

    Wang, Cun; Zhang, Dayi; Ma, Yanhong; Liang, Zhichao; Hong, Jie

    2016-08-01

    Blade loss from a running turbofan rotor will introduce sudden unbalance into the dynamical system, and as a consequence leads to the rub-impact, the asymmetry of rotor and a series of interesting dynamic characteristics. The paper focuses on the theoretical study on the sudden unbalance and rub-impact caused by blade loss, in particular investigates the response of the rotor on a rotor test rig with sudden unbalance and rub-impact device designed respectively. The results reveal that the sudden unbalance will induce impact effect on the rotor, and critical speed frequency is excited in frequency spectrum. Meantime, the impact effect is more obvious for the rotor operating above critical speed. The influence of rub-impact is considered as additional constraint to the rotor, analyzed by the theory of time-varying system for the first time, and the results are evaluated by experimental tests. The study shows that great attention should be paid to the dynamical design for the overhung rotor system, additional constraint and corresponding analysis method in rub-impact need to be intensively studied.

  14. A comparative study between experimental results and numerical predictions of multi-wall structural response to hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Peck, Jeffrey A.

    1992-01-01

    Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.

  15. An overheight vehicle bridge collision monitoring system using piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Song, G.; Olmi, C.; Gu, H.

    2007-04-01

    With increasing traffic volume follows an increase in the number of overheight truck collisions with highway bridges. The detection of collision impact and evaluation of the impact level is a critical issue in the maintenance of a concrete bridge. In this paper, an overheight collision detection and evaluation system is developed for concrete bridge girders using piezoelectric transducers. An electric circuit is designed to detect the impact and to activate a digital camera to take photos of the offending truck. Impact tests and a health monitoring test were conducted on a model concrete bridge girder by using three piezoelectric transducers embedded before casting. From the experimental data of the impact test, it can be seen that there is a linear relation between the output of sensor energy and the impact energy. The health monitoring results show that the proposed damage index indicates the level of damage inside the model concrete bridge girder. The proposed overheight truck-bridge collision detection and evaluation system has the potential to be applied to the safety monitoring of highway bridges.

  16. Insulation bonding test system

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)

    1984-01-01

    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.

  17. Apparatus for Hot Impact Testing of Material Specimens

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph J.; Choi, Sung R.

    2006-01-01

    An apparatus for positioning and holding material specimens is a major subsystem of a system for impact testing of the specimens at temperatures up to 1,500 C. This apparatus and the rest of the system are designed especially for hot impact testing of advanced ceramics, composites, and coating materials. The apparatus includes a retaining fixture on a rotating stage on a vertically movable cross support driven by a linear actuator. These components are located below a furnace wherein the hot impact tests are performed (see Figure 1). In preparation for a test, a specimen is mounted on the retaining fixture, then the cross support is moved upward to raise the specimen, through an opening in the bottom of the furnace, to the test position inside the furnace. On one side of the furnace there is another, relatively small opening on a direct line to the specimen. Once the specimen has become heated to the test temperature, the test is performed by using an instrumented external pressurized-gas-driven gun to shoot a projectile through the side opening at the specimen.

  18. Space station integrated wall design and penetration damage control. Task 4: Impact detection/location system

    NASA Technical Reports Server (NTRS)

    Nelson, J. M.; Lempriere, B. M.

    1987-01-01

    A program to develop a methodology is documented for detecting and locating meteoroid and debris impacts and penetrations of a wall configuration currently specified for use on space station. Testing consisted of penetrating and non-penetrating hypervelocity impacts on single and dual plate test configurations, including a prototype 1.22 m x 2.44 m x 3.56 mm (4 ft x 8 ft x 0.140 in) aluminum waffle grid backwall with multilayer insulation and a 0.063-in shield. Acoustic data were gathered with transducers and associated data acquisition systems and stored for later analysis with a multichannel digitizer. Preliminary analysis of test data included sensor evaluation, impact repeatability, first waveform arrival, and Fourier spectral analysis.

  19. Thermal Management Coating As Thermal Protection System for Space Transportation System

    NASA Technical Reports Server (NTRS)

    Kaul, Raj; Stuckey, C. Irvin

    2003-01-01

    This paper presents viewgraphs on the development of a non-ablative thermal management coating used as the thermal protection system material for space shuttle rocket boosters and other launch vehicles. The topics include: 1) Coating Study; 2) Aerothermal Testing; 3) Preconditioning Environments; 4) Test Observations; 5) Lightning Strike Test Panel; 6) Test Panel After Impact Testing; 7) Thermal Testing; and 8) Mechanical Testing.

  20. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  1. A personal airbag system for the Orion Crew Exploration Vehicle

    NASA Astrophysics Data System (ADS)

    Do, Sydney; de Weck, Olivier

    2012-12-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential simple, lightweight means of enabling safe land-landings for the Orion Crew Exploration Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the feasibility of this concept during a nominal 7.62 m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85 m/s, 0° impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the personal airbag system concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0° impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30° indicated that severe injury risk levels would be sustained beyond impact velocities of 5 m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  2. The Effects of Foam Thermal Protection System on the Damage Tolerance Characteristics of Composite Sandwich Structures for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Hodge, A. J.; Jackson, J. R.

    2011-01-01

    For any structure composed of laminated composite materials, impact damage is one of the greatest risks and therefore most widely tested responses. Typically, impact damage testing and analysis assumes that a solid object comes into contact with the bare surface of the laminate (the outer ply). However, most launch vehicle structures will have a thermal protection system (TPS) covering the structure for the majority of its life. Thus, the impact response of the material with the TPS covering is the impact scenario of interest. In this study, laminates representative of the composite interstage structure for the Ares I launch vehicle were impact tested with and without the planned TPS covering, which consists of polyurethane foam. Response variables examined include maximum load of impact, damage size as detected by nondestructive evaluation techniques, and damage morphology and compression after impact strength. Results show that there is little difference between TPS covered and bare specimens, except the residual strength data is higher for TPS covered specimens.

  3. Permeability Testing of Impacted Composite Laminates for Use on Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite, and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented, and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a nonlinear fashion for almost all the specimens tested.

  4. Ignition of contaminants by impact of high-pressure oxygen

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.; Pao, Jenn-Hai; Bamford, Larry; Williams, Ralph E.; Plante, Barry

    1988-01-01

    The ignition of oil-film contaminants in high-pressure gaseous oxygen systems, caused by rapid pressurization, was investigated using the NASA/White Sands Test Facility's large-volume pneumatic impact test system. The test section consisted of stainless steel lines, contaminated on the inside surface with known amounts of Mobil DTE 24 oil and closed at one end, which was attached to a high-pressure oxygen system; the test section was pressurized to 48 MPa by opening a high-speed valve. Ignition of the oil was detected by a photocell attached to the closed end of the line. It was found that the frequency of ignition increased as a function of both the concentration of oil and of the pressure of the impacting oxygen. The threshold of ignition was between 25 and 65 mg/sq m. The results were correlated with the present NASA and Compressed Gas Association requirements for maximum levels of organic contaminants.

  5. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

  6. Testing of Hand-Held Mine Detection Systems

    DTIC Science & Technology

    2015-01-08

    ITOP 04-2-5208 for guidance on software testing . Testing software is necessary to ensure that safety is designed into the software algorithm, and that...sensor verification areas or target lanes. F.2. TESTING OBJECTIVES. a. Testing objectives will impact on the test design . Some examples of...overall safety, performance, and reliability of the system. It describes activities necessary to ensure safety is designed into the system under test

  7. Testing of small and large sign support systems FOIL test number : 92F011

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s), test 92FOll. The vehicle used for these t...

  8. Testing of small and large sign support systems FOIL test number : 92F036

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 60 mi/h (96.6 km/h), test 92F036. The vehicle used for this ...

  9. Testing of small and large sign support systems FOIL test number : 92F016

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor : Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign : support system at 20 mi/h (8.9 m/s), test 92F016. The vehicle used for the...

  10. Testing of small and large sign support systems FOIL test number : 92F035

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (32.2 km/h), test 92F035. The vehicle used for this ...

  11. Testing of small and large sign support systems FOIL test number : 92F038

    DOT National Transportation Integrated Search

    1994-01-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 60 mi/h (96.6 km/h), test 92F038. The vehicle used for this ...

  12. Testing of small and large sign support systems FOIL test number : 92F037

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (32.2 km/h), test 92F037. The vehicle used for this ...

  13. Testing of small and large sign support systems FOIL test number : 92F022

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact laboratory (FOIL) in Mclean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s) , test 92F022. The vehicle used for this t...

  14. Testing of small and large sign support systems FOIL test numbers : 92F040

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 60 mi/h (96.6 km/h), test 92F040. The vehicle used for this ...

  15. Testing of small and large sign support systems FOIL test number : 92F039

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (32.2 km/h) , test 92F039. The vehicle used for this...

  16. Impact Testing and Simulation of Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II

    2014-01-01

    Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.

  17. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts

    PubMed Central

    Dagalakis, Nicholas G.; Yoo, Jae Myung; Oeste, Thomas

    2017-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels. PMID:28579658

  18. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts.

    PubMed

    Dagalakis, Nicholas G; Yoo, Jae Myung; Oeste, Thomas

    2016-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels.

  19. Application of Optical Fibers to DNA’s Testing Program.

    DTIC Science & Technology

    1980-10-15

    economic impact. In addition to benefitting UGT , advances in fiber optic technology can greatly impact other DNA activities such as hardening of military...components and simulation and testing in high radiation environments. Using the UGT environment as a test bed, optical fibers can be characterized in...OPTIC SYSTEMS 33 3-3.1 Active System Design 37 4 USE OF FIBERS IN UGT 47 4-1 ADVANTAGES OF FIBERS FOR UGT 47 4-2 DIAGNOSTIC APPLICATIONS 4-3 EFFECTS

  20. Influence of impact speed on head and brain injury outcome in vulnerable road user impacts to the car hood.

    PubMed

    Fredriksson, Rikard; Zhang, Liying; Boström, Ola; Yang, King

    2007-10-01

    EuroNCAP and regulations in Europe and Japan evaluate the pedestrian protection performance of cars. The test methods are similar and they all have requirements for the passive protection of the hood area at a pedestrian to car impact speed of 40 km/h. In Europe, a proposal for a second phase of the regulation mandates a brake-assist system along with passive requirements. The system assists the driver in optimizing the braking performance during panic braking, resulting in activation only when the driver brakes sufficiently. In a European study this was estimated to occur in about 50% of pedestrian accidents. A future system for brake assistance will likely include automatic braking, in response to a pre-crash sensor, to avoid or mitigate injuries of vulnerable road users. An important question is whether these systems will provide sufficient protection, or if a parallel, passive pedestrian protection system will be necessary. This study investigated the influence of impact speed on head and brain injury risk, in impacts to the carhood. One car model was chosen and a rigid adjustable plate was mounted under the hood. Free-flying headform impacts were carried out at 20 and 30 km/h head impact velocities at different under-hood distances, 20 to 100 mm; and were compared to earlier tests at 40 km/h. The EEVC WG17 adult pedestrian headform was used for non-rotating tests and a Hybrid III adult 50th percentile head was used for rotational tests where linear and rotational acceleration was measured. Data from the rotational tests was used as input to a validated finite element model of the human head, the Wayne State University Head Injury Model (WSUHIM). The model was utilized to assess brain injury risk and potential injury mechanism in a pedestrian-hood impact. Although this study showed that it was not necessarily true that a lower HIC value reduced the risk for brain injury, it appeared, for the tested car model, under-hood distances of 60 mm in 20 km/h and 80 mm in 30 km/h reduced head injury values for both skull fractures and brain injuries. An earlier study showed that the corresponding value for a test speed of 40 km/h is 100 mm. A 10 km/h reduction in head impact velocity, as in automatic braking, allowed 20 mm less under-hood clearance with maintained head protection of the vulnerable road user.

  1. A 640 foot per second impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1971-01-01

    An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.

  2. Privacy Impact Assessment for the Light-Duty In-Use Vehicle Testing Program Information System

    EPA Pesticide Factsheets

    EPA's Light-Duty In-Use Vehicle Testing Program Information System contains car owner names, addresses, vehicle identification numbers, etc. The EPA uses this information to recruit and test vehicles for emissions standards compliance.

  3. Measuring mobile patient safety information system success: an empirical study.

    PubMed

    Jen, Wen-Yuan; Chao, Chia-Cheng

    2008-10-01

    The Health Risk Reminders and Surveillance (HRRS) system was designed to deliver critical abnormal test results of severely ill patients from Laboratory, Radiology, and Pathology departments to physicians within 5 min using cell phone text messages. This paper explores the success of the HRRS system. This study employed an augmented version of the DeLone and McLean IS success model. Seven variables (system quality, information quality, system use, user satisfaction, mobile healthcare anxiety, impact on the individual and impact on the organization) were used to evaluate the success of the HRRS system. The interrelationships between the seven variables were hypothesized and the hypotheses were empirically tested. The results indicate that the information quality of the HRRS system is positively associated with both system use and user satisfaction. In addition, system use is positively associated with user satisfaction, which is also positively associated with mobile healthcare anxiety. Moreover, results indicate that impact on the individual is positively associated with both user satisfaction and mobile healthcare anxiety. Finally, the impact of the organization is positively associated with impact on the individual. The results of the study provide an expanded understanding of the factors that contribute to mobile patient safety information system (IS) success. Implications of the relationship between system use and physician mobile healthcare anxiety are discussed.

  4. Orion Ground Test Article Water Impact Tests: Photogrammetric Evaluation of Impact Conditions

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Mark, Stephen D.

    2018-01-01

    The Ground Test Article (GTA) is an early production version of the Orion Crew Module (CM). The structural design of the Orion CM is being developed based on LS-DYNA water landing simulations. As part of the process of confirming the accuracy of LS-DYNA water landing simulations, the GTA water impact test series was conducted at NASA Langley Research Center (LaRC) to gather data for comparison with simulations. The simulation of the GTA water impact tests requires the accurate determination of the impact conditions. To accomplish this, the GTA was outfitted with an array of photogrammetry targets. The photogrammetry system utilizes images from two cameras with a specialized tracking software to determine time histories for the 3-D coordinates of each target. The impact conditions can then be determined from the target location data.

  5. An 810 ft/sec soil impact test of a 2-foot diameter model nuclear reactor containment system

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A soil impact test was conducted on a 880-pound 2-foot diameter sphere model. The impact area consisted of back filled desert earth and rock. The impact generated a crater 5 feet in diameter by 5 feet deep. It buried itself a total of 15 feet - as measured to the bottom of the model. After impact the containment vessel was pressure checked. No leaks were detected nor cracks observed.

  6. Application of impact dampers in vibration control of flexible structures

    NASA Technical Reports Server (NTRS)

    Akl, Fred A.; Butt, Aamir S.

    1995-01-01

    Impact dampers belong to the category of passive vibration devices used to attenuate the vibration of discrete and continuous systems. An impact damper generally consists of a mass which is allowed to travel freely between two defined stops. Under the right conditions, the vibration of the structure to which the impact damper is attached will cause the mass of the impact damper to strike the structure. Previous analytical and experimental research work on the effect of impact dampers in attenuating the vibration of discrete and continuous systems have demonstrated their effectiveness. It has been shown in this study that impact dampers can increase the intrinsic damping of a lightly-damped flexible structure. The test structure consists of a slender flexible beam supported by a pin-type support at one end and supported by a linear helical flexible spring at another location. Sinusoidal excitation spanning the first three natural frequencies was applied in the horizontal plane. The orientation of the excitation and the test structure in the horizontal plane minimizes the effect of gravity on the behavior of the test structure. The excitation was applied using a linear sine sweep technique. The span of the test structure, the mass of the impact damper, the distance of travel, and the location of the impact damper along the span of the test structure were varied. The damping ratio are estimated for sixty test configurations. The results show that the impact damper significantly increases the damping ratio of the test structure. Statistical analysis of the results using the method of multiple linear regression indicates that a reasonable fit has been accomplished. It is concluded that additional experimental analysis of flexible structures in microgravity environment is needed in order to achieve a better understanding of the behavior of impact damper under conditions of microgravity. Numerical solution of the behavior of flexible structures equipped with impact dampers is also needed to predict stresses and deformations under operating conditions of microgravity in space applications.

  7. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are increasingly planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeorite impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. The Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeorite impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at NASA MSFC's Microlight Gas Gun Facility. The SSL-provided coupons consist of three strings, each string with two solar cells in series. Five impacts will be induced at various locations on a powered test coupon under different string voltage (0 volts - 150 volts) and string current (1.1 amperes - 1.65 amperes) conditions. The maximum specified test voltage and current represent margins of 1.5 times for both voltage and current. The test parameters are chosen to demonstrate new array design robustness to any ESD event caused by plasma plumes resulting from a simulated micrometeorite impact. A second unpowered coupon will undergo two impacts: one impact on the front side and one impact on the back side. Following the impact testing, the second coupon will be exposed to a thermal cycle test to determine possible damage propagation and further electrical degradation due to thermally-induced stress. The setup, checkout, and results from the impact testing are discussed. The challenges for impact testing include precise coupon alignment to control impact location; pressure management during the impact process; and measurement of the true transient electrical response during impact on the powered coupon. Results from pre- and post-test visual and electrical functional testing are also discussed.

  8. Southern Impact Testing Alliance (SITA)

    NASA Technical Reports Server (NTRS)

    Hubbs, Whitney; Roebuck, Brian; Zwiener, Mark; Wells, Brian

    2009-01-01

    Efforts to form this Alliance began in 2008 to showcase the impact testing capabilities within the southern United States. Impact testing customers can utilize SITA partner capabilities to provide supporting data during all program phases-materials/component/ flight hardware design, development, and qualification. This approach would allow programs to reduce risk by providing low cost testing during early development to flush out possible problems before moving on to larger scale1 higher cost testing. Various SITA partners would participate in impact testing depending on program phase-materials characterization, component/subsystem characterization, full-scale system testing for qualification. SITA partners would collaborate with the customer to develop an integrated test approach during early program phases. Modeling and analysis validation can start with small-scale testing to ensure a level of confidence for the next step large or full-scale conclusive test shots. Impact Testing Facility (ITF) was established and began its research in spacecraft debris shielding in the early 1960's and played a malor role in the International Space Station debris shield development. As a result of return to flight testing after the loss of STS-107 (Columbia) MSFC ITF realized the need to expand their capabilities beyond meteoroid and space debris impact testing. MSFC partnered with the Department of Defense and academic institutions as collaborative efforts to gain and share knowledge that would benefit the Space Agency as well as the DoD. MSFC ITF current capabilities include: Hypervelocity impact testing, ballistic impact testing, and environmental impact testing.

  9. Testing of small and large sign support systems FOIL test number : 92F017

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s), test 92F017. The vehicle used for this te...

  10. Testing of small and large sign support systems FOIL test number : 92F026

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s), test 92F026. The vehicle used for this te...

  11. Testing of small and large sign support systems FOIL test number : 92F018

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s), test 92F018. The vehicle used for this te...

  12. Testing of small and large sign support systems FOIL test number : 92F015

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s), test 92F015. The vehicle used for these t...

  13. Testing of small and large sign support systems FOIL test number : 92F012

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s), test 92F012. The vehicle used for these t...

  14. Testing of small and large sign support systems FOIL test number : 92F023

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s), test 92F023. The vehicle used for this te...

  15. Testing of small and large sign support systems FOIL test number : 92F019

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s), test 92F019. The vehicle used for this te...

  16. Testing of small and large sign support systems FOIL test number : 92F014

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at 20 mi/h (8.9 m/s), test 92F014. The vehicle used for these t...

  17. A Passive Earth-Entry Capsule for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Kellas, Sotiris

    1999-01-01

    A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45-degree half-angle cone forebody with an ablative heat shield. The primary structure is a hemispherical, composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the tests and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.

  18. DEVELOPMENT OF A HIGH ALTITUDE LOW OPENING HUMANITARIAN AIRDROP SYSTEM

    DTIC Science & Technology

    2017-07-12

    4  2.3  Aid Item Testing ___________________________________________________________ 6  2.3.1  12 October 2010...2.3.3  USAARL Aid Item Safety Evaluation _________________________________________________ 10  2.3.4  USAARL Accelerated Impact Test ...16  3.1.3  System Testing __________________________________________________________________ 23  3.2  Sling Load System

  19. Development of a head impact monitoring "Intelligent Mouthguard".

    PubMed

    Hedin, Daniel S; Gibson, Paul L; Bartsch, Adam J; Samorezov, Sergey

    2016-08-01

    The authors present the development and laboratory system-level testing of an impact monitoring "Intelligent Mouthguard" intended to help with identification of potentially concussive head impacts and cumulative head impact dosage. The goal of Intelligent Mouthguard is to provide an indicator of potential concussion risk, and help caregiver identify athletes needing sideline concussion protocol testing. Intelligent Mouthguard may also help identify individuals who are at higher risk based on historical dosage. Intelligent Mouthguard integrates inertial sensors to provide 3-degree of freedom linear and rotational kinematics. The electronics are fully integrated into a custom mouthguard that couples tightly to the upper teeth. The combination of tight coupling and highly accurate sensor data means the Intelligent Mouthguard meets the National Football League (NFL) Level I validity specification based on laboratory system-level test data presented in this study.

  20. Analysis of developed transition road safety barrier systems.

    PubMed

    Soltani, Mehrtash; Moghaddam, Taher Baghaee; Karim, Mohamed Rehan; Sulong, N H Ramli

    2013-10-01

    Road safety barriers protect vehicles from roadside hazards by redirecting errant vehicles in a safe manner as well as providing high levels of safety during and after impact. This paper focused on transition safety barrier systems which were located at the point of attachment between a bridge and roadside barriers. The aim of this study was to provide an overview of the behavior of transition systems located at upstream bridge rail with different designs and performance levels. Design factors such as occupant risk and vehicle trajectory for different systems were collected and compared. To achieve this aim a comprehensive database was developed using previous studies. The comparison showed that Test 3-21, which is conducted by impacting a pickup truck with speed of 100 km/h and angle of 25° to transition system, was the most severe test. Occupant impact velocity and ridedown acceleration for heavy vehicles were lower than the amounts for passenger cars and pickup trucks, and in most cases higher occupant lateral impact ridedown acceleration was observed on vehicles subjected to higher levels of damage. The best transition system was selected to give optimum performance which reduced occupant risk factors using the similar crashes in accordance with Test 3-21. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.

    2014-06-08

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less

  2. Testing of state roadside safety systems. Volume I, Technical report

    DOT National Transportation Integrated Search

    1999-04-01

    The purpose of this study is to crash test and evaluate new or modified roadside safety hardware and, where necessary, redesign the devices to improve their impact performance. The three major areas addressed in this study are the impact performance ...

  3. Impact analysis of air gap motion with respect to parameters of mooring system for floating platform

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-xiang; Huo, Fa-li; Nie, Yan; Liu, Yin-dong

    2017-04-01

    In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.

  4. Visual Confirmation (VICON) of Takeoff Clearance Signal System Impact Study

    DOT National Transportation Integrated Search

    1980-11-01

    A study was performed to evaluate the impact on airport capacity and voice communications of the Visual Confirmation of Takeoff Clearance (VICON) Signal System. Befoe-and-after test data collection and analysis were conducted at Bradley International...

  5. Predicting multi-wall structural response to hypervelocity impact using the hull code

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.

  6. Gender, Complexity, and Science for All: Systemizing and Its Impact on Motivation to Learn Science for Different Science Subjects

    ERIC Educational Resources Information Center

    Zeyer, Albert

    2018-01-01

    The present study is based on a large cross-cultural study, which showed that a systemizing cognition type has a high impact on motivation to learn science, while the impact of gender is only indirect thorough systemizing. The present study uses the same structural equation model as in the cross-cultural study and separately tests it for physics,…

  7. A new testing station about full-scale testing for rockfall protection systems

    NASA Astrophysics Data System (ADS)

    Bost, Marion; Dubois, Laurent; Rocher-Lacoste, Frédéric

    2010-05-01

    Rock blocks which detach from slopes overhanging urban areas, roads, railways and other infrastructures create one of the most frequent hazards in mountainous areas. Some of protection systems against rockfalls are designed to mitigate the effects of a foreseen movement by intercepting and stopping falling rock blocks. Despite the worldwide application of this kind of protections, the global behaviour of such a system has been poorly investigated, for the time being, and only at a reduced scale. The behaviour of these protection systems at real scale has been widely extrapolated, however these theories have still not been investigated by performing relating test at scale 1. The French Public Work Laboratory (LCPC) has decided to build a new testing station to work on that topic. This new testing station located in French Alps is able to drop heavy loads (up to 20 tons) from the top of a cliff down to structural systems in order to test their resistance to big shocks and study their dynamical behaviour at this high energy level. As the fall height can reach near 70m, the impact velocity can actually reach 35 metres per second and the energy released during the impact can be as large as 13 500 kilojoules. The experimental area at the bottom of the cliff which can be impacted by a block is 12 metres wide. This allows to test not only rockfall protection systems at scale 1 but also some parts of building structures too. To avoid damaging test-structure during a block drop due to dynamical effects, the dropping hook was designed with a special system. This one consists of a reversed mass which can be adapted to the dropped block and dropped together with the block. Moreover, it is very important to pay attention on repeatability of results concerning new devices for experiments. Whatever fall height the impact point is hit so with a precision of 50 centimetres. Such an experimental facility needs to be equipped with a relevant instrumentation. High capacity stress sensors, accelerometers and high speed cameras are available for experiments. They have been chosen for their capacity to work with an important length of cables. The monitoring with these experimental devices is performed at a high sample frequency suitable and for a very short load like an impact. A radio controlled system allows triggering monitoring and dropping at the same time. Due to bounce risk with the dropped block the safety of personal is ensured by strict operating rules. An observation platform has been located on an embankment along the test-site in order to follow experiments without risk. Two years were necessary for the test-site construction and its equipment. First tests on rockfall nets fences were performed at the end of 2009.

  8. Testing of small and large sign support systems FOIL test numbers : 92F009 and 92F010

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of two crash tests performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The/tests were performed on a small sign support system at 20 rni/h (8.9 m/s), test 92F009 and 60 mi/h (26.8 m/s),...

  9. Testing of small and large sign support systems FOIL test numbers : 92F024 and 92F025

    DOT National Transportation Integrated Search

    1994-07-01

    This test report contains the results of two crash tests performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The tests were performed on a small sign support system at 20 mi/h (8.9 m/s), test 92F024, and 60 mi/h (26.8 m/s),...

  10. Personal Narratives of Genetic Testing: Expectations, Emotions, and Impact on Self and Family.

    PubMed

    Anderson, Emily E; Wasson, Katherine

    2015-01-01

    The stories in this volume shed light on the potential of narrative inquiry to fill gaps in knowledge, particularly given the mixed results of quantitative research on patient views of and experiences with genetic and genomic testing. Published studies investigate predictors of testing (particularly risk perceptions and worry); psychological and behavioral responses to testing; and potential impact on the health care system (e.g., when patients bring DTC genetic test results to their primary care provider). Interestingly, these themes did not dominate the narratives published in this issue. Rather, these narratives included consistent themes of expectations and looking for answers; complex emotions; areas of contradiction and conflict; and family impact. More narrative research on patient experiences with genetic testing may fill gaps in knowledge regarding how patients define the benefits of testing, changes in psychological and emotional reactions to test results over time, and the impact of testing on families.

  11. Repeatability and uncertainty analyses of light gas gun test data

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Cooper, David

    1994-01-01

    All large spacecraft are susceptible to high-speed impacts by meteoroids and pieces of orbiting space debris which can damage flight-critical systems and in turn lead to catastrophic failure. One way to obtain information on the response of a structure to a meteoroid impact or an orbital debris impact is to simulate the impact conditions of interest in the laboratory and analyze the resulting damage to a target structure. As part of the Phase B and C/D development activities for the Space Station Freedom, 950 impact tests were performed using the NASA/Marshall Space Flight Center (MSFC) light gas gun from 1985-1991. This paper presents the results of impact phenomena repeatability and data uncertainty studies performed using the information obtained from those tests. The results of these studies can be used to assess the utility of individual current and future NASA/MSFC impact test results in the design of long-duration spacecraft.

  12. National Aeronautics Research, Development, Test and Evaluation (RDT&E) Infrastructure Plan

    DTIC Science & Technology

    2011-01-01

    addressed in the National Aeronautics R&D Plan, identi- fying unnecessary redundancy solely on the basis of infrastructure required to support H H13 ...near, mid, and far terms, and impact not only scramjet propulsion systems, but potential turbine-based combined cycle systems as well. Turbine Engine...Icing Test Facilities A greater understanding of the impact that icing conditions have on turbine engine opera- tions is needed to develop enhanced

  13. GRC-2009-C-01749

    NASA Image and Video Library

    2005-07-01

    Photographs of the Low Impact Docking System (LIDS); this hardware is a test for the ORION docking birthing system to connect the Crew Exploration Vehicle (CEV) to the International Space Station (ISS); atomic oxygen 12 inch seals testing

  14. Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.

  15. Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System

    NASA Technical Reports Server (NTRS)

    Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.

    2011-01-01

    Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.

  16. The Impact of Sound-Field Systems on Learning and Attention in Elementary School Classrooms

    ERIC Educational Resources Information Center

    Dockrell, Julie E.; Shield, Bridget

    2012-01-01

    Purpose: The authors evaluated the installation and use of sound-field systems to investigate the impact of these systems on teaching and learning in elementary school classrooms. Methods: The evaluation included acoustic surveys of classrooms, questionnaire surveys of students and teachers, and experimental testing of students with and without…

  17. Crash test rating and likelihood of major thoracoabdominal injury in motor vehicle crashes: the new car assessment program side-impact crash test, 1998-2010.

    PubMed

    Figler, Bradley D; Mack, Christopher D; Kaufman, Robert; Wessells, Hunter; Bulger, Eileen; Smith, Thomas G; Voelzke, Bryan

    2014-03-01

    The National Highway Traffic Safety Administration's New Car Assessment Program (NCAP) implemented side-impact crash testing on all new vehicles since 1998 to assess the likelihood of major thoracoabdominal injuries during a side-impact crash. Higher crash test rating is intended to indicate a safer car, but the real-world applicability of these ratings is unknown. Our objective was to determine the relationship between a vehicle's NCAP side-impact crash test rating and the risk of major thoracoabdominal injury among the vehicle's occupants in real-world side-impact motor vehicle crashes. The National Automotive Sampling System Crashworthiness Data System contains detailed crash and injury data in a sample of major crashes in the United States. For model years 1998 to 2010 and crash years 1999 to 2010, 68,124 occupants were identified in the Crashworthiness Data System database. Because 47% of cases were missing crash severity (ΔV), multiple imputation was used to estimate the missing values. The primary predictor of interest was the occupant vehicle's NCAP side-impact crash test rating, and the outcome of interest was the presence of major (Abbreviated Injury Scale [AIS] score ≥ 3) thoracoabdominal injury. In multivariate analysis, increasing NCAP crash test rating was associated with lower likelihood of major thoracoabdominal injury at high (odds ratio [OR], 0.8; 95% confidence interval [CI], 0.7-0.9; p < 0.01) and medium (OR, 0.9; 95% CI, 0.8-1.0; p < 0.05) crash severity (ΔV), but not at low ΔV (OR, 0.95; 95% CI, 0.8-1.2; p = 0.55). In our model, older age and absence of seat belt use were associated with greater likelihood of major thoracoabdominal injury at low and medium ΔV (p < 0.001), but not at high ΔV (p ≥ 0.09). Among adults in model year 1998 to 2010 vehicles involved in medium and high severity motor vehicle crashes, a higher NCAP side-impact crash test rating is associated with a lower likelihood of major thoracoabdominal trauma. Epidemiologic study, level III.

  18. A multi-particle crushing apparatus for studying rock fragmentation due to repeated impacts

    NASA Astrophysics Data System (ADS)

    Huang, S.; Mohanty, B.; Xia, K.

    2017-12-01

    Rock crushing is a common process in mining and related operations. Although a number of particle crushing tests have been proposed in the literature, most of them are concerned with single-particle crushing, i.e., a single rock sample is crushed in each test. Considering the realistic scenario in crushers where many fragments are involved, a laboratory crushing apparatus is developed in this study. This device consists of a Hopkinson pressure bar system and a piston-holder system. The Hopkinson pressure bar system is used to apply calibrated dynamic loads to the piston-holder system, and the piston-holder system is used to hold rock samples and to recover fragments for subsequent particle size analysis. The rock samples are subjected to three to seven impacts under three impact velocities (2.2, 3.8, and 5.0 m/s), with the feed size of the rock particle samples limited between 9.5 and 12.7 mm. Several key parameters are determined from this test, including particle size distribution parameters, impact velocity, loading pressure, and total work. The results show that the total work correlates well with resulting fragmentation size distribution, and the apparatus provides a useful tool for studying the mechanism of crushing, which further provides guidelines for the design of commercial crushers.

  19. Full-scale Transport Controlled Impact Demonstration Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.

  20. Crash-test dummy and pendulum impact tests of ice hockey boards: greater displacement does not reduce impact

    PubMed Central

    Schmitt, Kai-Uwe; Muser, Markus H; Thueler, Hansjuerg; Bruegger, Othmar

    2018-01-01

    Background One injury mechanism in ice hockey is impact with the boards. We investigated whether more flexible hockey boards would provide less biomechanical loading on impact than did existing (reference) boards. Methods We conducted impact tests with a dynamic pendulum (mass 60 kg) and with crash test dummies (ES-2 dummy, 4.76 m/s impact speed). Outcomes were biomechanical loading experienced by a player in terms of head acceleration, impact force to the shoulder, spine, abdomen and pelvis as well as compression of the thorax. Results The more flexible board designs featured substantial displacement at impact. Some so-called flexible boards were displaced four times more than the reference board. The new boards possessed less stiffness and up to 90 kg less effective mass, reducing the portion of the board mass a player experienced on impact, compared with boards with a conventional design. Flexible boards resulted in a similar or reduced loading for all body regions, apart from the shoulder. The displacement of a board system did not correlate directly with the biomechanical loading. Conclusions Flexible board systems can reduce the loading of a player on impact. However, we found no correlation between the displacement and the biomechanical loading; accordingly, displacement alone was insufficient to characterise the overall loading of a player and thus the risk of injury associated with board impact. Ideally, the performance of boards is assessed on the basis of parameters that show a good correlation to injury risk. PMID:29084724

  1. Measuring School and Teacher Value Added for IMPACT and TEAM in DC Public Schools. Final Report

    ERIC Educational Resources Information Center

    Isenberg, Eric; Hock, Heinrich

    2010-01-01

    The District of Columbia Public Schools (DCPS) has incorporated measures of school and teacher effectiveness, based on student test score growth, into a new teacher assessment system known as IMPACT. Implemented for the first time during the 2009-2010 school year, IMPACT is an assessment system with significant consequences. Prior to the start of…

  2. Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.

    2008-01-01

    Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.

  3. Impact of Reflex EGFR/ ALK Testing on Time to Treatment of Patients With Advanced Nonsquamous Non-Small-Cell Lung Cancer.

    PubMed

    Cheema, Parneet K; Menjak, Ines B; Winterton-Perks, Zoe; Raphael, Simon; Cheng, Susanna Y; Verma, Sunil; Muinuddin, Ahmad; Freedman, Ryan; Toor, Nevkeet; Perera, Joseph; Anaka, Matthew; Victor, J Charles

    2017-02-01

    Optimal first-line systemic therapy for patients with advanced nonsquamous (nonsq) non-small-cell lung cancer (NSCLC) requires confirmation of EGFR/ ALK status, which can delay treatment. We evaluated the impact of reflex testing, defined as pathologists initiating EGFR/ ALK testing at the time of diagnosis of nonsq NSCLC, on time to treatment (TTT). We conducted a retrospective review of patients with nonsq NSCLC with medical oncology consultation at Sunnybrook Odette Cancer Centre between March 18, 2010 and April 30, 2014. Data were compared during routine and reflex testing. TTT was defined as the interval between the first medical oncology visit with advanced NSCLC and the initiation of systemic therapy. A total of 306 patients were included (n = 232 for routine testing, n = 74 for reflex testing). There was a trend to improvement in median TTT with reflex testing (36 days [interquartile range {IQR}, 16 to 71 days v 26 days [IQR, 8 to 41 days], P = .071). Omitting patients with intentional delays in systemic therapy for low-volume disease, poor performance status, comorbidity management, and/or radiation therapy, median TTT improved (34 days [IQR, 15 to 67 days] v 22 days [IQR, 8 to 42 days], P = .049). Time to optimal first-line systemic therapy according to published guidelines improved (median, 36 days [IQR, 16 to 91 days] v 24 days [IQR, 8 to 43 days], P = .036). There was no impact on receipt of any first-line systemic therapy (55% v 59%, P = .66). The quality of biomarker testing improved, with fewer unsuccessful tests ( EGFR, 14% v 4%, P = .039; and ALK, 17% v 3%, P = .037). Reflex testing of EGFR/ ALK improved the time to optimal systemic therapy and the quality of biomarker testing for patients with advanced nonsq NSCLC.

  4. Predictions of Helmet Pad Suspension System Performance using Isolated Pad Impact Results

    DTIC Science & Technology

    2010-09-13

    Equation 2 and Equation 3, respectively. 3. METHOD The primary method of data collection for this report is detailed in the 2008 Joint Live Fire ...tests and the helmet system tests (see Figure 3). All testing was performed with a monorail drop tower (see Figure 4) at three conditioning...right) and system test setup (right and center left) Figure 5. MEP monorail drop test setup with a hemispherical impactor (left and center left

  5. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and copilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. One lesson learned was that this approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and pretest predictions. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, potentially reducing overall development costs.

  6. Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Agrawal, Paul; Hawbaker, James

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.

  7. Simulating the Impact Response of Full-Scale Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Littell, Justin D.; Seal, Michael D.

    2012-01-01

    NASA Langley Research Center obtained a composite helicopter cabin structure in 2010 from the US Army's Survivable Affordable Repairable Airframe Program (SARAP) that was fabricated by Sikorsky Aircraft Corporation. The cabin had been subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead masses into the fuselage cabin. Damage to the cabin test article was limited primarily to the roof. Consequently, the roof area was removed and the remaining structure was cut into test specimens including a large subfloor section and a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA®, to simulate these responses including damage initiation and progressive failure. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from accelerometers and full-field photogrammetry. The focus of this paper will be to document impact testing and simulation results for the longitudinal impact of the subfloor section and the vertical drop test of the forward framed fuselage section.

  8. Orbital Debris Impact Damage to Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Jennifer H.

    1998-01-01

    In an effort by the National Aeronautics and Space Administration (NASA), hypervelocity impact tests were performed on thermal protection systems (TPS) applied on the external surfaces of reusable launch vehicles (RLV) to determine the potential damage from orbital debris impacts. Three TPS types were tested, bonded to composite structures representing RLV fuel tank walls. The three heat shield materials tested were Alumina-Enhanced Thermal Barrier-12 (AETB-12), Flexible Reusable Surface Insulation (FRSI), and Advanced Flexible Reusable Surface Insulation (AFRSI). Using this test data, predictor equations were developed for the entry hole diameters in the three TPS materials, with correlation coefficients ranging from 0.69 to 0.86. Possible methods are proposed for approximating damage occurring at expected orbital impact velocities higher than tested, with references to other published work.

  9. Hypervelocity impact testing of the Space Station utility distribution system carrier

    NASA Technical Reports Server (NTRS)

    Lazaroff, Scott

    1993-01-01

    A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.

  10. The impact of an integrated hospital-community medical information system on quality and service utilization in hospital departments.

    PubMed

    Nirel, Nurit; Rosen, Bruce; Sharon, Assaf; Blondheim, Orna; Sherf, Michael; Samuel, Hadar; Cohen, Arnon D

    2010-09-01

    In 2005, an innovative system of hospital-community on-line medical records (OFEK) was implemented at Clalit Health Services (CHS). The goals of the study were to examine the extent of OFEK's use and its impact on quality indicators and medical-service utilization in Internal Medicine and General Surgery wards of CHS hospitals. Examining the frequency of OFEK's use with its own track-log data; comparing, "before" and "after", quality indicators and service utilization data in experimental (CHS patients) versus control groups (other patients). OFEK's use increased by tens of percentages each year, Internal Medicine wards showed a significant decrease in the number of laboratory tests and 3 CT tests performed compared with the control group. Wards using OFEK extensively showed a greater decrease in CT tests, in one imaging test, and in the average number of ambulatory hospitalizations. No similar changes were found in General Surgery wards. The study helps evaluate the extent to which OFEK's targets were achieved and contributes to the development of measures to examine the impact of such systems, which can be used to assess a broad range of Health Information Technology (HIT) systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Lay out, test verification and in orbit performance of HELIOS a temperature control system

    NASA Technical Reports Server (NTRS)

    Brungs, W.

    1975-01-01

    HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.

  12. Impact Sensors for Use with Electronic Fuzes

    DTIC Science & Technology

    1975-12-01

    corroborated the major features of a theoretical analysis. More work is needed to 10R. Wasser , Impact Switch Tests, US Naval Ordnance...might be more fruitful if more effort were expended on electro- mechanical systems. One principle that could be applied to such a l0R. Wasser ...Switches for Artillery Fuzes, Part I: Development, Harry Diamond Laboratories TM-72-18 (July 1972). (10) R. Wasser , Impact Switch TestP, US Naval

  13. Results of Two-Stage Light-Gas Gun Development Efforts and Hypervelocity Impact Tests of Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Cornelison, C. J.; Watts, Eric T.

    1998-01-01

    Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.

  14. Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems

    NASA Technical Reports Server (NTRS)

    Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.

    2009-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.

  15. The Impact of Music Education on Academic Achievement in Reading and Math

    ERIC Educational Resources Information Center

    Deere, Kelli Beth

    2010-01-01

    Increased scrutiny on the place of music education in school systems has caused some school systems to eliminate their music program entirely. School systems are being forced to place more emphasis on increased testing and accountability with the No Child Left Behind Act of 2001. This study examined the impact music education has on academic…

  16. Impact of the application of the Value Added Tax to imaging tests on out-of-pocket health expenses of households in Chile.

    PubMed

    Cuadrado, Cristóbal; Silva-Illanes, Nicolás

    2015-12-09

    Out-of-pocket healthcare expense represents a challenge for health systems for it constitutes a barrier to health care, impacting the equality of access to healthcare systems, something particularly important in the Chilean health system. In this context, the Government recently raised the possibility of incorporating a tax on imaging tests, creating debate over its potential consequences. To explore the impact on household out-of-pocket healthcare expense by the implementation of a value added tax to imaging tests in Chile. Cross-sectional study using data of household expenditures from the VII Household Budget Survey. Out-of-pocket healthcare expense and catastrophic household expenses are calculated comparing two scenarios, with and without the inclusion of the proposed tax. Analyses are presented by income deciles to explore the differential equality impact. 42.8% of diagnostic test expense on household corresponds to imaging studies. Under a scenario of tax implementation, a relative increase of 1.1% of out-of-pocket expenses and 2.2% of catastrophic household expenses is observed. The groups that suffer the greatest impact are those with lower income levels, concentrating in the first fifth deciles. We conclude that, although the increase in the average out-of- pocket spending is moderate, this policy may involve a significant increase in the catastrophic expense of the population with the lowest incomes, thereby increasing health inequalities. Considering the challenges of health system financing in Chile, it appears that such fiscal policy would only worsen the possibility of moving towards lower levels of out-of-pocket of household expenses.

  17. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  18. CLIMATE CHANGE IN THAILAND AND ITS POTENTIAL IMPACT ON RICE YIELD

    EPA Science Inventory

    Because of the uncertainties surrounding prediction of climate change, it is common to employ climate scenarios to estimate its impacts on a system. Climate scenarios are sets of climatic perturbations used with models to test system sensitivity to projected changes. In this stud...

  19. Climate Science: How Earth System Models are Reshaping the Science Policy Interface.

    NASA Technical Reports Server (NTRS)

    Ruane, Alex

    2015-01-01

    This talk is oriented at a general audience including the largest French utility company, and will describe the basics of climate change before moving into emissions scenarios and agricultural impacts that we can test with our earth system models and impacts models.

  20. Impact of a pneumatic tube system transport on hemostasis parameters measurement: the experiment of Cochin universitary hospital (AP-HP, Paris, France).

    PubMed

    Calmette, Leyla; Ibrahim, Firas; Gouin, Isabelle; Horellou, Marie-Hélène; Mazoyer, Élisabeth; Fontenay, Michaela; Flaujac, Claire

    2017-02-01

    Samples transported by pneumatic tube system are submitted to forces of acceleration and deceleration which can affect laboratory parameters. At Cochin hospital, majority of samples of hemostasis, except for platelets tests, are transported by pneumatic tube system. The objective of this study was to evaluate the impact of a pneumatic tube system (PTS) transport compared to hand-delivered transport on samples and to qualify Cochin hospital PTS according to requirements of standard ISO 15189. A bibliographical study was made and showed that pneumatic tube system particularly influences platelets tests. Four citrate tubes were collected in 5 healthy volunteers in the maternity: 2 tubes were transported by PTS and 2 others were hand-delivered to the laboratory. Five coagulation tests were analyzed: prothrombine time (PT), activated partial thromboplastin time (aPTT), factor (F) V, FVIII and platelet closure time with PFA-100TM collagen/epinephrine. For each volunteer, the results obtained by PTS and by hand-delivered transport were compared with formula usually used for biological analysis retake: 2.8 x standard deviation of reproductibility variation coefficient (SH GTA 01, COFRAC). This study did not show an impact of PTS on PT, aPTT, FV and FVIII. For PFA-100TM collagen/epinephrine, we noted an impact on 2/5 volunteers. These results, in agreement with the literature, led to the conclusion that Cochin hospital PTS is in compliance to transport samples for usual coagulation tests except platelet tests. This study allowed to issue French recommendations for PTS transport of hemostasis tubes qualification available on "Groupe français d'hémostase et thrombose" Web site.

  1. Laboratory testing in primary care: A systematic review of health IT impacts.

    PubMed

    Maillet, Éric; Paré, Guy; Currie, Leanne M; Raymond, Louis; Ortiz de Guinea, Ana; Trudel, Marie-Claude; Marsan, Josianne

    2018-08-01

    Laboratory testing in primary care is a fundamental process that supports patient management and care. Any breakdown in the process may alter clinical information gathering and decision-making activities and can lead to medical errors and potential adverse outcomes for patients. Various information technologies are being used in primary care with the goal to support the process, maximize patient benefits and reduce medical errors. However, the overall impact of health information technologies on laboratory testing processes has not been evaluated. To synthesize the positive and negative impacts resulting from the use of health information technology in each phase of the laboratory 'total testing process' in primary care. We conducted a systematic review. Databases including Medline, PubMed, CINAHL, Web of Science and Google Scholar were searched. Studies eligible for inclusion reported empirical data on: 1) the use of a specific IT system, 2) the impacts of the systems to support the laboratory testing process, and were conducted in 3) primary care settings (including ambulatory care and primary care offices). Our final sample consisted of 22 empirical studies which were mapped to a framework that outlines the phases of the laboratory total testing process, focusing on phases where medical errors may occur. Health information technology systems support several phases of the laboratory testing process, from ordering the test to following-up with patients. This is a growing field of research with most studies focusing on the use of information technology during the final phases of the laboratory total testing process. The findings were largely positive. Positive impacts included easier access to test results by primary care providers, reduced turnaround times, and increased prescribed tests based on best practice guidelines. Negative impacts were reported in several studies: paper-based processes employed in parallel to the electronic process increased the potential for medical errors due to clinicians' cognitive overload; systems deemed not reliable or user-friendly hampered clinicians' performance; and organizational issues arose when results tracking relied on the prescribers' memory. The potential of health information technology lies not only in the exchange of health information, but also in knowledge sharing among clinicians. This review has underscored the important role played by cognitive factors, which are critical in the clinician's decision-making, the selection of the most appropriate tests, correct interpretation of the results and efficient interventions. By providing the right information, at the right time to the right clinician, many IT solutions adequately support the laboratory testing process and help primary care clinicians make better decisions. However, several technological and organizational barriers require more attention to fully support the highly fragmented and error-prone process of laboratory testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Flip-Flop Recovery System for sounding rocket payloads

    NASA Technical Reports Server (NTRS)

    Flores, A., Jr.

    1986-01-01

    The design, development, and testing of the Flip-Flop Recovery System, which protects sensitive forward-mounted instruments from ground impact during sounding rocket payload recovery operations, are discussed. The system was originally developed to reduce the impact damage to the expensive gold-plated forward-mounted spectrometers in two existing Taurus-Orion rocket payloads. The concept of the recovery system is simple: the payload is flipped over end-for-end at a predetermined time just after parachute deployment, thus minimizing the risk of damage to the sensitive forward portion of the payload from ground impact.

  3. In Situ Corrosion and Heat Loss Assessment of Two Nonstandard Underground Heat Distribution System Piping Designs: Supplement-Appendices for Final Report on Project F07-AR01

    DTIC Science & Technology

    2011-06-01

    negative mission impacts . This report documents the assessment of two similar nonstandard UHDS piping system designs — one at Fort Carson, CO, and one at...psig and monitored for 2 hours to determine whether the conduit piping system is protected from ground water infiltration and its degrading impacts ...Conduits to/from this pit were tested from adjacent pits. 2. Supply, Return drains tested on 8/15/07: All Dry N S EW MH-3N ERDC/CERL TR-11-14 H13

  4. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian, E-mail: Grosse@tum.de

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT)more » system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.« less

  5. Uniform Foam Crush Testing for Multi-Mission Earth Entry Vehicle Impact Attenuation

    NASA Technical Reports Server (NTRS)

    Patterson, Byron W.; Glaab, Louis J.

    2012-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, four different Rohacell foams are tested at three different, uniform, strain rates (approximately 0.17, approximately 100, approximately 13,600%/s). The primary data analysis method uses a global data smoothing technique in the frequency domain to remove noise and system natural frequencies. The results from the data indicate that the filter and smoothing technique are successful in identifying the foam crush event and removing aberrations. The effect of strain rate increases with increasing foam density. The 71-WF-HT foam may support Mars Sample Return requirements. Several recommendations to improve the drop tower test technique are identified.

  6. Evaluation of Test Methods To Determine the Impact Resistance of Exterior Insulation and Finish Systems (EIFS).

    DTIC Science & Technology

    1992-07-01

    be used effectively in new construction or retrofit applications. These systems usually contain: 1. Molded expanded polystyrene insulation board (MEPS...commonly referred to as "bead board," or extruded expanded polystyrene insulation board (XEPS), commonly referred to as "blue board." 2. An...Walls ( Expanded Polystyrene Insulation Faced with a Thin Rendering), M.O.A.T. n 22, June 1988. 7 ASTM D3029-90. "Standard Test Methods for Impact

  7. A Method for Testing the Dynamic Accuracy of Micro-Electro-Mechanical Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) Sensors for Inertial Navigation Systems (INS) and Human Motion Tracking Applications

    DTIC Science & Technology

    2010-06-01

    32 2. Low-Cost Framework........................................................................33 3. Low Magnetic Field ...that have a significant impact on the magnetic field measured by a MARG, which could potentially add errors that are due entirely to the test...minimize the impact on the local magnetic field , and the apparatus was made as rigidly as possible using 2 x 4s to minimize any out of plane motions that

  8. Autonomy Community of Interest (COI) Test and Evaluation, Verification and Validation (TEVV) Working Group: Technology Investment Strategy 2015-2018

    DTIC Science & Technology

    2015-05-01

    Evaluation Center of Excellence SUAS Small Unmanned Aircraft System SUT System under Test T&E Test and Evaluation TARDEC Tank Automotive Research...17 Distribution A: Distribution Unlimited 2 Background In the past decade, unmanned systems have significantly impacted warfare...environments at a speed and scale beyond manned capability. However, current unmanned systems operate with minimal autonomy. To meet warfighter needs and

  9. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  10. Mitigating Interconnection Challenges of the High Penetration Utility-Interconnected Photovoltaic (PV) in the Electrical Distribution Systems: Cooperative Research and Development Final Report, CRADA Number CRD-14-563

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sudipta

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from differentmore » manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.« less

  11. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Hernandez, Sonia

    2012-01-01

    Earth has previously been struck with devastating force by near-Earth asteroids (NEAs) and will be struck again. Telescopic search programs aim to provide advance warning of such an impact, but no techniques or systems have yet been tested for deflecting an incoming NEA. To begin addressing this problem, we have analyzed the more than 8000 currently known NEAs to identify those that offer opportunities for safe and meaningful near-term tests of the proposed kinetic impact asteroid deflection technique. In this paper we present our methodology and results, including complete mission designs for the best kinetic impactor test mission opportunities.

  12. An integrated draft gear model with the consideration of wagon body structural characteristics

    NASA Astrophysics Data System (ADS)

    Chang, Gao; Liangliang, Yang; Weihua, Ma; Min, Zhang; Shihui, Luo

    2018-03-01

    With the increase of railway wagon axle load and the growth of marshalling quantity, the problem caused by impact and vibration of vehicles is increasingly serious, which leads to the damage of vehicle structures and the components. In order to improve the reliability of longitudinal connection model for vehicle impact tests, a new railway wagon longitudinal connection model was developed to simulate and analyse vehicle impact tests. The new model is based on characteristics of longitudinal force transmission for vehicles and parts. In this model, carbodies and bogies were simplified to a particle system that can vibrate in the longitudinal direction, which corresponded to a stiffness-damping vibration system. The model consists of three sub-models, that is, coupler and draft gear sub-model, centre plate sub-model and carbody structure sub-model. Compared with conventional draft gear models, the new model was proposed with geometrical and mechanical relations of friction draft gears considered and with behaviours of sticking, sliding and impact between centre plate and centre bowl added. Besides, virtual springs between discrete carbodies were built to describe the structural deformation of carbody. A computation program for longitudinal dynamics based on vehicle impact tests was accomplished to simulate. Comparisons and analyses regarding the train dynamics outputs and vehicle impact tests were conducted. Simulation results indicate that the new wagon longitudinal connection model can provide a practical application environment for wagons, and the outputs of vehicle impact tests agree with those of field tests. The new model can also be used to study on longitudinal vibrations of different vehicles, of carbody and bogie, and of carbody itself.

  13. Crash-test dummy and pendulum impact tests of ice hockey boards: greater displacement does not reduce impact.

    PubMed

    Schmitt, Kai-Uwe; Muser, Markus H; Thueler, Hansjuerg; Bruegger, Othmar

    2018-01-01

    One injury mechanism in ice hockey is impact with the boards. We investigated whether more flexible hockey boards would provide less biomechanical loading on impact than did existing (reference) boards. We conducted impact tests with a dynamic pendulum (mass 60 kg) and with crash test dummies (ES-2 dummy, 4.76 m/s impact speed). Outcomes were biomechanical loading experienced by a player in terms of head acceleration, impact force to the shoulder, spine, abdomen and pelvis as well as compression of the thorax. The more flexible board designs featured substantial displacement at impact. Some so-called flexible boards were displaced four times more than the reference board. The new boards possessed less stiffness and up to 90 kg less effective mass, reducing the portion of the board mass a player experienced on impact, compared with boards with a conventional design. Flexible boards resulted in a similar or reduced loading for all body regions, apart from the shoulder. The displacement of a board system did not correlate directly with the biomechanical loading. Flexible board systems can reduce the loading of a player on impact. However, we found no correlation between the displacement and the biomechanical loading; accordingly, displacement alone was insufficient to characterise the overall loading of a player and thus the risk of injury associated with board impact. Ideally, the performance of boards is assessed on the basis of parameters that show a good correlation to injury risk. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  15. Integrating Formal Methods and Testing 2002

    NASA Technical Reports Server (NTRS)

    Cukic, Bojan

    2002-01-01

    Traditionally, qualitative program verification methodologies and program testing are studied in separate research communities. None of them alone is powerful and practical enough to provide sufficient confidence in ultra-high reliability assessment when used exclusively. Significant advances can be made by accounting not only tho formal verification and program testing. but also the impact of many other standard V&V techniques, in a unified software reliability assessment framework. The first year of this research resulted in the statistical framework that, given the assumptions on the success of the qualitative V&V and QA procedures, significantly reduces the amount of testing needed to confidently assess reliability at so-called high and ultra-high levels (10-4 or higher). The coming years shall address the methodologies to realistically estimate the impacts of various V&V techniques to system reliability and include the impact of operational risk to reliability assessment. Combine formal correctness verification, process and product metrics, and other standard qualitative software assurance methods with statistical testing with the aim of gaining higher confidence in software reliability assessment for high-assurance applications. B) Quantify the impact of these methods on software reliability. C) Demonstrate that accounting for the effectiveness of these methods reduces the number of tests needed to attain certain confidence level. D) Quantify and justify the reliability estimate for systems developed using various methods.

  16. Return to Flight Resource Reel 1 of 2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A video presentation detailing the tests performed on the Space Shuttle Discovery in preparation for its return to flight is shown. The tests include: 1) Reinforced Carbon-Carbon (RCC) Impact Test Article; 2) RCC Foam Impact Testing; 3) Thermal Protection System (TPS) Ice Impact Testing featuring Justin Kerr, Project Engineer; 4) Wing Leading Edge Wireless Sensors featuring Karl Kiefer, President and CEO of Invocon, and Kevin Champaigne of Invocon; 5) TPS Repair Testing KC-135 Zero-G Environment featuring Soichi Noguchi, Mission Specialist; 6) TPS Extravehicular Activity Tool Demonstration; 7) TPS Repair Testing Vacuum Glove box; 8) TPS Repair Testing Human Thermal Vacuum Chamber; 9) TPS Reentry Testing Atmospheric Reentry Materials and Structures Evaluation Facility; 10) TPS Alternative Repair Concept; 11) Lora Bailey Lead Engineer for EVA Tools; 12) Reinforced Carbon-Carbon ATK Thiokol Plug Repair Animation; 13) 3-Percent Model Build-Up; and 14) Wind Tunnel Testing RCC Aging Research Ballistic Testing.

  17. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  18. Prediction of turning stability using receptance coupling

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Marcin; Powałka, Bartosz

    2018-01-01

    This paper presents an issue of machining stability prediction of dynamic "lathe - workpiece" system evaluated using receptance coupling method. Dynamic properties of the lathe components (the spindle and the tailstock) are assumed to be constant and can be determined experimentally based on the results of the impact test. Hence, the variable of the system "machine tool - holder - workpiece" is the machined part, which can be easily modelled analytically. The method of receptance coupling enables a synthesis of experimental (spindle, tailstock) and analytical (machined part) models, so impact testing of the entire system becomes unnecessary. The paper presents methodology of analytical and experimental models synthesis, evaluation of the stability lobes and experimental validation procedure involving both the determination of the dynamic properties of the system and cutting tests. In the summary the experimental verification results would be presented and discussed.

  19. Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury

    PubMed Central

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael

    2013-01-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  20. Individual evaluation test plan report #1 : Origin and Destination Survey and emissions monitoring at external stations

    DOT National Transportation Integrated Search

    1996-04-01

    Ada County was chosen to be a part of the national Operational Test for Intelligent : Transportation Systems (ITS). ITS applies new technologies and concepts to improve : transportation systems, efficiency, mobility, energy and environmental impacts,...

  1. Individual evaluation test plan report, No. 2 : emissions monitoring of all vehicles in Ada County : final report

    DOT National Transportation Integrated Search

    1996-04-01

    Ada County was chosen to be a part of the national Operational Test for Intelligent : Transportation Systems (ITS). ITS applies new technologies and concepts to improve : transportation systems, efficiency, mobility, energy and environmental impacts,...

  2. Economic impact of 21-gene recurrence score testing on early-stage breast cancer in Ireland.

    PubMed

    Smyth, Lillian; Watson, Geoff; Walsh, Elaine M; Kelly, Catherine M; Keane, Maccon; Kennedy, M John; Grogan, Liam; Hennessy, Bryan T; O'Reilly, Seamus; Coate, Linda E; O'Connor, Miriam; Quinn, Cecily; Verleger, Katharina; Schoeman, Olaf; O'Reilly, Susan; Walshe, Janice M

    2015-10-01

    The 21-gene test is a validated multi-gene diagnostic test that predicts chemotherapy (CT) benefit in oestrogen receptor positive (ER+), lymph node-negative (N0) breast cancer (BC) patients (pts). Ireland was the first public health care system to reimburse this test in Europe. Study objectives were to assess the impact of this test on decision-making and to analyse the economic impact of testing. Between October 2011 and February 2013, a national, retrospective, cross-sectional observational study of ER+, N0 BC pts tested with the 21-gene test was conducted. Surveyed breast medical oncologists, provided the assumption for the decision impact analysis that grade (G) 1 pts would not have received CT before testing and G2/3 pts would have received CT before testing. Descriptive statistical analyses were performed. 592 pts were identified; Low, intermediate and high recurrence score were identified in 53, 36 and 10 % pts, respectively. 384 (70 %) pts had G2, 129 (22 %) G3 and 76 (13 %) G1 tumours. Post testing, 345 pts (59 %) experienced a change in CT decision; 339 changed to hormone therapy alone and 6 advised to receive CT. 172 (30 %) pts received CT, 12 (3.9 %) of pts with low scores, 108 (50.9 %) of intermediate risk and 50 (90.9 %) of pts with high risk scores. Net reduction in CT use was 58 % and net savings achieved were €793,565. Since public reimbursement, the introduction of the 21-gene test has resulted in a significant reduction in chemotherapy administration and cost savings for the Irish public healthcare system.

  3. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VAB SHOWS OPEN PARACHUTE

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  4. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB WITH PARACHUTE HOISTED HIGH

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  5. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB PRIOR TO ATTACHING PRESSURE VESSEL

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  6. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VEHICLE ASSEMBLY BUILDING

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  7. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of themore » containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)« less

  8. Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components.

    PubMed

    Edwards, Mervyn; Nathanson, Andrew; Carroll, Jolyon; Wisch, Marcus; Zander, Oliver; Lubbe, Nils

    2015-01-01

    Autonomous emergency braking (AEB) systems fitted to cars for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programs-for example, the European New Car Assessment Programme (Euro NCAP)-are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully is how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit-related basis. The objective of this research was to develop a benefit-based methodology for assessment of integrated pedestrian protection systems with AEB and passive safety components. The method should include weighting procedures to ensure that it represents injury patterns from accident data and replicates an independently estimated benefit of AEB. A methodology has been developed to calculate the expected societal cost of pedestrian injuries, assuming that all pedestrians in the target population (i.e., pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car's AEB (if fitted) and the passive safety protection offered by the car's frontal structure. For rating purposes, the cost for the assessed car is normalized by comparing it to the cost calculated for a reference car. The speed reductions measured in AEB tests are used to determine the speed at which each pedestrian in the target population will be impacted. Injury probabilities for each impact are then calculated using the results from Euro NCAP pedestrian impactor tests and injury risk curves. These injury probabilities are converted into cost using "harm"-type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and Great Britain and an independently estimated AEB benefit. German and Great Britain versions of the methodology are available. The methodology was used to assess cars with good, average, and poor Euro NCAP pedestrian ratings, in combination with a current AEB system. The fitment of a hypothetical A-pillar airbag was also investigated. It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Because the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area, a hypothetical A-pillar airbag showed high potential to reduce overall casualty cost. A benefit-based methodology for assessment of integrated pedestrian protection systems with AEB has been developed and tested. It uses input from AEB tests and Euro NCAP passive safety tests to give an integrated assessment of the system performance, which includes consideration of effects such as the change in head impact location caused by the impact speed reduction given by the AEB.

  9. Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Berry, Felecia C.; Dismond, Harriett R.; Cate, Kenneth H.

    2008-01-01

    High-speed photogrammetric measurements are being used to assess the impact dynamics of the Orion Crew Exploration Vehicle (CEV) for ground landing contingency upon return to earth. Test articles representative of the Orion capsule are dropped at the NASA Langley Landing and Impact Research (LandIR) Facility onto a sand/clay mixture representative of a dry lakebed from elevations as high as 62 feet (18.9 meters). Two different types of test articles have been evaluated: (1) half-scale metal shell models utilized to establish baseline impact dynamics and soil characterization, and (2) geometric full-scale drop models with shock-absorbing airbags which are being evaluated for their ability to cushion the impact of the Orion CEV with the earth s surface. This paper describes the application of the photogrammetric measurement technique and provides drop model trajectory and impact data that indicate the performance of the photogrammetric measurement system.

  10. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 5 - Phase 2 Implementation of the Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Batten, Adam; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter; Johnson, Mark; Lewis, Chris; hide

    2009-01-01

    This report describes the second phase of the implementation of the Concept Demonstrator experimental test-bed system containing sensors and processing hardware distributed throughout the structure, which uses multi-agent algorithms to characterize impacts and determine a suitable response to these impacts. This report expands and adds to the report of the first phase implementation. The current status of the system hardware is that all 192 physical cells (32 on each of the 6 hexagonal prism faces) have been constructed, although only four of these presently contain data-acquisition sub-modules to allow them to acquire sensor data. Impact detection.. location and severity have been successfully demonstrated. The software modules for simulating cells and controlling the test-bed are fully operational. although additional functionality will be added over time. The visualization workstation displays additional diagnostic information about the array of cells (both real and simulated) and additional damage information. Local agent algorithms have been developed that demonstrate emergent behavior of the complex multi-agent system, through the formation of impact damage boundaries and impact networks. The system has been shown to operate well for multiple impacts. and to demonstrate robust reconfiguration in the presence of damage to numbers of cells.

  11. An inflatable belt system in the rear seat occupant environment: investigating feasibility and benefit in frontal impact sled tests with a 50th percentile male ATD

    PubMed Central

    Forman, Jason L.; Lopez-Valdes, Francisco J.; Dennis, Nate; Kent, Richard W.; Tanji, Hiromasa; Higuchi, Kazuo

    2010-01-01

    Frontal-impact airbag systems have the potential to provide a benefit to rear seat occupants by distributing restraining forces over the body in a manner not possible using belts alone. This study sought to investigate the effects of incorporating a belt-integrated airbag (“airbelt”) into a rear seat occupant restraint system. Frontal impact sled tests were performed with a Hybrid III 50th percentile male anthropomorphic test device (ATD) seated in the right-rear passenger position of a 2004 mid-sized sedan buck. Tests were performed at 48 km/h (20 g, 100 ms acceleration pulse) and 29 km/h (11 g, 100 ms). The restraints consisted of a 3-point belt system with a cylindrical airbag integrated into the upper portion of the shoulder belt. The airbag was tapered in shape, with a maximum diameter of 16 cm (at the shoulder) that decreased to 4 cm at the mid-chest. A 2.5 kN force-limiter was integrated into the shoulder-belt retractor, and a 2.3 kN pretensioner was present in the out-board anchor of the lap belt. Six ATD tests (three 48 km/h and three 29 km/h) were performed with the airbelt system. These were compared to previous frontal-impact, rear seat ATD tests with a standard (not-force-limited, not-pretensioned) 3-point belt system and a progressive force-limiting (peak 4.4 kN), pretensioning (FL+PT) 3-point belt system. In the 48 km/h tests, the airbelt resulted in significantly less (p<0.05, two-tailed Student’s t-test) posterior displacement of the sternum towards the spine (chest deflection) than both the standard and FL+PT belt systems (airbelt: average 13±1.1 mm standard deviation; standard belt: 33±2.3 mm; FL+PT belt: 23±2.6 mm). This was consistent with a significant reduction in the peak upper shoulder belt force (airbelt: 2.7±0.1 kN; standard belt: 8.7±0.3 kN; FL+PT belt: 4.4±0.1 kN), and was accompanied by a small increase in forward motion of the head (airbelt: 54±0.4 cm; standard belt: 45±1.3 cm; FL+PT belt: 47±1.1 cm) The airbelt system also significantly reduced the flexion moment in the lower neck (airbelt: 169±3.3 Nm; standard belt: 655±26 Nm; FL+PT belt: 308±19 Nm). Similar results were observed in the 29 km/h tests. These results suggest that this airbelt system may provide some benefit for adult rear seat occupants in frontal collisions, even in relatively low-speed impacts. Further study is needed to evaluate this type of restraint system for different size occupants (e.g., children), for out-of-position occupants, and with other occupant models (e.g., cadavers). PMID:21050596

  12. Live Virtual Constructive Distributed Test Environment Characterization Report

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Kim, Sam K.

    2013-01-01

    This report documents message latencies observed over various Live, Virtual, Constructive, (LVC) simulation environment configurations designed to emulate possible system architectures for the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project integrated tests. For each configuration, four scenarios with progressively increasing air traffic loads were used to determine system throughput and bandwidth impacts on message latency.

  13. Overview of High Speed Close-Up Imaging in an Icing Environment

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Lynch, Christopher J.; Tate, Peter A.

    2004-01-01

    The Icing Branch and Imaging Technology Center at NASA Glenn Research Center have recently been involved in several projects where high speed close-up imaging was used to investigate water droplet impact/splash, and also ice particle impact/bounce in an icing wind tunnel. The combination of close-up and high speed imaging capabilities were required because the particles being studied were relatively small (d < 1 mm in diameter), and the impact process occurred in a very short time period (t(sub impact) << 1 sec). High speed close-up imaging was utilized to study the dynamics of droplet impact and splash in simulated Supercooled Large Droplet (SLD) icing conditions. The objective of this test was to evaluate the capability of a ultra high speed camera system to acquire quantitative information about the impact process (e.g., droplet size, velocity). Imaging data were obtained in an icing wind tunnel for spray cloud MVD > 50 m. High speed close-up imaging was also utilized to characterize the impact of ice particles on an airfoil with a thermally protected leading edge. The objective of this investigation was to determine whether ice particles tend to "stick" or "bounce" after impact. Imaging data were obtained for cases where the airfoil surface was heated and unheated. Based on the results from this test, follow on tests were conducted to investigate ice particle impact on the sensing elements of water content measurement devices. This paper will describe the use of the imaging systems to support these experimental investigations, present some representative results, and summarize what was learned about the use of these systems in an icing environment.

  14. Remote control of an impact demonstration vehicle

    NASA Technical Reports Server (NTRS)

    Harney, P. F.; Craft, J. B., Jr.; Johnson, R. G.

    1985-01-01

    Uplink and downlink telemetry systems were installed in a Boeing 720 aircraft that was remotely flown from Rogers Dry Lake at Edwards Air Force Base and impacted into a designated crash site on the lake bed. The controlled impact demonstration (CID) program was a joint venture by the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) to test passenger survivability using antimisting kerosene (AMK) to inhibit postcrash fires, improve passenger seats and restraints, and improve fire-retardent materials. The uplink telemetry system was used to remotely control the aircraft and activate onboard systems from takeoff until after impact. Aircraft systems for remote control, aircraft structural response, passenger seat and restraint systems, and anthropomorphic dummy responses were recorded and displayed by the downlink stems. The instrumentation uplink and downlink systems are described.

  15. A Summary of the Development of a Nominal Land Landing Airbag Impact Attenuation System for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Tutt, Ben; Gill, Susannah; Wilson, Aaron; Johnson, Keith

    2009-01-01

    Airborne Systems North America (formally Irvin Aerospace Inc) has developed an Airbag Landing System for the Orion Crew Module of the Crew Exploration Vehicle. This work is in support of the NASA Langley Research Center Landing System Advanced Development Project. Orion is part of the Constellation Program to send human explorers back to the moon, and then onwards to Mars and other destinations in the Solar System. A component of the Vision for Space Exploration, Orion is being developed to also enable access to space following the retirement of the Space Shuttle in the next decade. This paper documents the development of a conceptual design, fabrication of prototype assemblies, component level testing and two generations of airbag landing system testing. The airbag system has been designed and analyzed using the transient dynamic finite element code LS-DYNA(RegisteredTradeMark). The landing system consists of six airbag assemblies; each assembly comprising a primary impact venting airbag and a non-venting anti-bottoming airbag. The anti-bottoming airbag provides ground clearance following the initial impact attenuation sequence. Incorporated into each primary impact airbag is an active vent that allows the entrapped gas to exit the control volume. The size of the vent is tailored to control the flow-rate of the exiting gas. An internal shaping structure is utilized to control the shape of the primary or main airbags prior to ground impact; this significantly improves stroke efficiency and performance.

  16. Impact Testing of a Stirling Converter's Linear Alternator

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with the NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure, and results of the impact testing conducted on the Stirling TDC in May 2001.

  17. Impact testing of a Stirling convertor's linear alternator

    NASA Astrophysics Data System (ADS)

    Suárez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure and results of the impact testing conducted on the Stirling TDC in May 2001. .

  18. Examining the Feasibility and Effect of Transitioning GED Tests to Computer

    ERIC Educational Resources Information Center

    Higgins, Jennifer; Patterson, Margaret Becker; Bozman, Martha; Katz, Michael

    2010-01-01

    This study examined the feasibility of administering GED Tests using a computer based testing system with embedded accessibility tools and the impact on test scores and test-taker experience when GED Tests are transitioned from paper to computer. Nineteen test centers across five states successfully installed the computer based testing program,…

  19. Impact of environmental hazards on internal soiling within concentrator photovoltaic (CPV) modules

    NASA Astrophysics Data System (ADS)

    Ellis, Sara

    2014-09-01

    Environmental conditions have a significant impact on internal soiling of a CPV system, which affects overall system performance and efficiency. The International Electrotechnical Commission (IEC) 62108, Section 10, standard includes accelerated testing such as temperature cycling, damp heat, and humidity freeze to assess a CPV module's ability to withstand environmental hazards that can compromise the typical 25-year lifetime. This paper discusses the IEC 60529 ingress protection (IP) test protocols and how they can be used to evaluate the performance of CPV modules to block water and particulate contaminants. Studies with GORE® Protective Vents installed in a CPV module and subjected to environmental hazard testing have shown increased reliability of the module over the lifetime of the system by protecting the seals from pressure differentials and keeping out contaminants.

  20. Stormwater runoff in watersheds: a system for prediciting impacts of development and climate change

    Treesearch

    Ann Blair; Denise Sanger; Susan Lovelace

    2016-01-01

    The Stormwater Runoff Modeling System (SWARM) enhances understanding of impacts of land-use and climate change on stormwater runoff in watersheds. We developed this singleevent system based on US Department of Agriculture, Natural Resources Conservation Service curve number and unit hydrograph methods. We tested SWARM using US Geological Survey discharge and rain data...

  1. 75 FR 53277 - Notice of Workshop on Polymers for Photovoltaic Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... photovoltaic systems; testing, performance, and reliability of polymers in photovoltaic systems; impact of... mentioned topics; presentation of a NIST- developed accelerated aging and service life prediction...

  2. Hydrodynamic Impact of a System with a Single Elastic Mode II : Comparison of Experimental Force and Response with Theory

    NASA Technical Reports Server (NTRS)

    Miller, Robert W; Merten, Kenneth F

    1952-01-01

    Hydrodynamic impact tests were made on an elastic model approximating a two-mass spring system to determine experimentally the effects of structural flexibility on the hydrodynamic loads encountered during seaplane landing impacts and to correlate the results with theory. A flexible seaplane was represented by a two-mass spring system consisting of a rigid prismatic float connected to a rigid upper mass by an elastic structure. The model had a ratio of sprung mass to hull mass of 0.6 and a natural frequency of 3.0 cycles per second. The tests were conducted in smooth water at fixed trims and included both high and low flight-path angles and a range of velocity. Theoretical and experimental comparisons indicated that the theoretical results agreed well with the experimental results.

  3. Expert system verification and validation guidelines/workshop task. Deliverable no. 1: ES V/V guidelines

    NASA Technical Reports Server (NTRS)

    French, Scott W.

    1991-01-01

    The goals are to show that verifying and validating a software system is a required part of software development and has a direct impact on the software's design and structure. Workshop tasks are given in the areas of statistics, integration/system test, unit and architectural testing, and a traffic controller problem.

  4. Effect of resin on impact damage tolerance of graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Rhodes, M. D.

    1982-01-01

    Twenty-four different epoxy resin systems were evaluated by a variety of test techniques to identify materials that exhibited improved impact damage tolerance in graphite/epoxy composite laminates. Forty-eight-ply composite panels of five of the material systems were able to sustain 100 m/s impact by a 1.27-cm-diameter aluminum projectile while statically loaded to strains of 0.005. Of the five materials with the highest tolerance to impact, two had elastomeric additives, two had thermoplastic additives, and one had a vinyl modifier; all the five systems used bisphenol A as the base resin. An evaluation of test results shows that the laminate damage tolerance is largely determined by the resin tensile properties, and that improvements in laminate damage tolerance are not necessarily made at the expense of room-temperature mechanical properties. The results also suggest that a resin volume fraction of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.

  5. ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation

    DTIC Science & Technology

    2011-11-17

    fencing that test the capabilities of the platform systems Recently the Open Field area was reconfigured to emulate typical impact area conditions. The...surveyed. • Open field (indirect fire) The indirect fire subarea contains only three munition types that could be typically found at an impact area...direct fire subarea contains only three munition types that could be typically found at an impact area of a direct fire weapons range. These are 25 mm

  6. Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Warren, Jerry E., Jr.

    2017-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.

  7. Simulation of Foam Impact Effects on Components of the Space Shuttle Thermal Protection System. Chapter 7

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Park, Young-Keun

    2004-01-01

    A series of three dimensional simulations has been performed to investigate analytically the effect of insulating foam impacts on ceramic tile and reinforced carbon-carbon components of the Space Shuttle thermal protection system. The simulations employed a hybrid particle-finite element method and a parallel code developed for use in spacecraft design applications. The conclusions suggested by the numerical study are in general consistent with experiment. The results emphasize the need for additional material testing work on the dynamic mechanical response of thermal protection system materials, and additional impact experiments for use in validating computational models of impact effects.

  8. Elevated Temperature Ballistic Impact Testing of PBO and Kevlar Fabrics for Application in Supersonic Jet Engine Fan Containment Systems

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts Gary D.; Revilock, Duane M., Jr.

    1997-01-01

    Ballistic impact tests were conducted on fabric made from both Poly(phenylene benzobizoxazole) (PBO) and Kevlar 29 which were selected to be similar in weave pattern, areal density, and fiber denier. The projectiles were 2.54-cm- (1-in.-) long aluminum cylinders with a diameter of 1.27 cm (0.5 in.). The fabric specimens were clamped on four sides in a 30.5-cm- (12-in.-) square frame. Tests on PBO were conducted at room temperature and at 260 C (500 F). A number of PBO specimens were aged in air at 204 and 260 C (400 and 500 F) before impact testing. Kevlar specimens were tested only at room temperature and with no aging. The PBO absorbed significantly more energy than the Kevlar at both room and elevated temperatures. However, after aging at temperatures of 204 C (400 F) and above, the PBO fabric lost almost all of its energy absorbing ability. It was concluded that PBO fabric is not a feasible candidate for fan containment system applications in supersonic jet engines where operating temperatures exceed this level.

  9. Design and development of a structural mode control system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was conducted to compile and document some of the existing information about the conceptual design, development, and tests of the B-1 structural mode control system (SMCS) and its impact on ride quality. This report covers the following topics: (1) Rationale of selection of SMCS to meet ride quality criteria versus basic aircraft stiffening. (2) Key considerations in designing an SMCS, including vane geometry, rate and deflection requirements, power required, compensation network design, and fail-safe requirements. (3) Summary of key results of SMCS vane wind tunnel tests. (4) SMCS performance. (5) SMCS design details, including materials, bearings, and actuators. (6) Results of qualification testing of SMCS on the "Iron Bird" flight control simulator, and lab qualification testing of the actuators. (7) Impact of SMCS vanes on engine inlet characteristics from wind tunnel tests.

  10. Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.

    1975-01-01

    An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.

  11. Electromagnetic emission experiences using electric propulsion systems: A survey

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Zana, Lynnette M.; Knowles, Steven C.

    1987-01-01

    As electric propulsion systems become ready to integrate with spacecraft systems, the impact of propulsion system radiated emissions are of significant interest. Radiated emissions from electromagnetic, electrostatic, and electrothermal systems have been characterized and results synopsized from the literature describing 21 space flight programs. Electromagnetic radiated emission results from ground tests and flight experiences are presented with particular attention paid to the performance of spacecraft subsystems and payloads during thruster operations. The impacts to transmission of radio frequency signals through plasma plumes are also reviewed.

  12. The Cascading Impacts of Technology Selection: Incorporating Ruby on Rails into ECHO

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Cechini, M.

    2010-12-01

    NASA’s Earth Observing System (EOS) ClearingHOuse (ECHO) is a SOA based Earth Science Data search and order system implemented in Java with one significant exception: the web client used by 98% of our users is written in Perl. After several decades of maintenance the Perl based application had reached the end of its serviceable life and ECHO was tasked with implementing a replacement. Despite a broad investment in Java, the ECHO team conducted a survey of modern development technologies including Flex, Python/Django, JSF2/Spring and Ruby on Rails. The team ultimately chose Ruby on Rails (RoR) with Cucumber for testing due to its perceived applicability to web application development and corresponding development efficiency gains. Both positive and negative impacts on the entire ECHO team, including our stakeholders, were immediate and sometimes subtle. The technology selection caused shifts in our architecture and design, development and deployment procedures, requirement definition approach, testing approach, and, somewhat surprisingly, our project team structure and software process. This presentation discusses our experiences, including technical, process, and psychological, using RoR on a production system. During this session we will discuss: - Real impacts of introducing a dynamic language to a Java team - Real and perceived efficiency advantages - Impediments to adoption and effectiveness - Impacts of transition from Test Driven Development to Behavior Driven Development - Leveraging Cucumber to provide fully executable requirement documents - Impacts on team structure and roles

  13. Feeder Voltage Regulation with High-Penetration PV Using Advanced Inverters and a Distribution Management System: A Duke Energy Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan; Giraldez, Julieta; Gruchalla, Kenny

    2016-11-01

    Duke Energy, Alstom Grid, and the National Renewable Energy Laboratory teamed up to better understand the impacts of solar photovoltaics (PV) on distribution system operations. The core goal of the project is to compare the operational - specifically, voltage regulation - impacts of three classes of PV inverter operations: 1.) Active power only (Baseline); 2.) Local inverter control (e.g., PF...not equal...1, Q(V), etc.); and 3.) Integrated volt-VAR control (centralized through the distribution management system). These comparisons were made using multiple approaches, each of which represents an important research-and-development effort on its own: a) Quasi-steady-state time-series modeling for approximately 1 yearmore » of operations using the Alstom eTerra (DOTS) system as a simulation engine, augmented by Python scripting for scenario and time-series control and using external models for an advanced inverter; b) Power-hardware-in-the-loop (PHIL) testing of a 500-kVA-class advanced inverter and traditional voltage regulating equipment. This PHIL testing used cosimulation to link full-scale feeder simulation using DOTS in real time to hardware testing; c) Advanced visualization to provide improved insights into time-series results and other PV operational impacts; and d) Cost-benefit analysis to compare the financial and business-model impacts of each integration approach.« less

  14. System-Wide Tests of Occupational Programs.

    ERIC Educational Resources Information Center

    Perlmutter, Deborah E.

    This report presents the background methodology, findings, and recommendations of three studies that comprised System-Wide Tests of Occupational Programs, a 4-year research program to assess the impact of vocational education using various followup techniques. Part 1 focuses on Project CATCH (Career Training Choice), a followup study of students…

  15. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Astrophysics Data System (ADS)

    Moraguez, M.; Liou, J.; Fitz-Coy, N.; Patankar, K.; Cowardin, H.

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  16. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Technical Reports Server (NTRS)

    Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather

    2015-01-01

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  17. Advanced parking information system evaluation report

    DOT National Transportation Integrated Search

    1997-01-01

    This report documents the evaluation analysis and results of the operational test. The evaluation assesses the impact/effect of the advance parking information system on the motoring public, parking facility operators, roadway system operations, and ...

  18. Clinically expedient reporting of rapid diagnostic test information.

    PubMed

    Doern, G V

    1986-03-01

    With the development of rapid diagnostic tests in the clinical microbiology laboratory has come an awareness of the importance of rapid results reporting. Clearly, the potential clinical impact of rapid diagnostic tests is dependent on expeditious reporting. Traditional manual reporting systems are encumbered by the necessity of transcription of test information onto hard copy reports and then the subsequent distribution of such reports into the hands of the user. Laboratory computers when linked directly to CRTs located in nursing stations, ambulatory clinics, or physician's offices, both inside and outside of the hospital, permit essentially instantaneous transfer of test results from the laboratory to the clinician. Computer-assisted results reporting, while representing a significant advance over manual reporting systems is not, however, without problems. Concerns include validation of test information, authorization of users with access to test information, mechanical integrity, and cost. These issues notwithstanding, computerized results reporting will undoubtedly play a central role in optimizing the clinical impact of rapid diagnostic tests.

  19. A prototype tap test imaging system: Initial field test results

    NASA Astrophysics Data System (ADS)

    Peters, J. J.; Barnard, D. J.; Hudelson, N. A.; Simpson, T. S.; Hsu, D. K.

    2000-05-01

    This paper describes a simple, field-worthy tap test imaging system that gives quantitative information about the size, shape, and severity of defects and damages. The system consists of an accelerometer, electronic circuits for conditioning the signal and measuring the impact duration, a laptop PC and data acquisition and processing software. The images are generated manually by tapping on a grid printed on a plastic sheet laid over the part's surface. A mechanized scanner is currently under development. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Images of the local contact stiffness, deduced from the impact duration using a spring model, revealed quantitatively the stiffness reduction due to flaws and damages, as well as the stiffness enhancement due to substructures. The system has been field tested on commercial and military aircraft as well as rotor blades and engine decks on helicopters. Field test results will be shown and the operation of the system will be demonstrated.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  20. Results of data base management system parameterized performance testing related to GSFC scientific applications

    NASA Technical Reports Server (NTRS)

    Carchedi, C. H.; Gough, T. L.; Huston, H. A.

    1983-01-01

    The results of a variety of tests designed to demonstrate and evaluate the performance of several commercially available data base management system (DBMS) products compatible with the Digital Equipment Corporation VAX 11/780 computer system are summarized. The tests were performed on the INGRES, ORACLE, and SEED DBMS products employing applications that were similar to scientific applications under development by NASA. The objectives of this testing included determining the strength and weaknesses of the candidate systems, performance trade-offs of various design alternatives and the impact of some installation and environmental (computer related) influences.

  1. Improving laboratory efficiencies to scale-up HIV viral load testing.

    PubMed

    Alemnji, George; Onyebujoh, Philip; Nkengasong, John N

    2017-03-01

    Viral load measurement is a key indicator that determines patients' response to treatment and risk for disease progression. Efforts are ongoing in different countries to scale-up access to viral load testing to meet the Joint United Nations Programme on HIV and AIDS target of achieving 90% viral suppression among HIV-infected patients receiving antiretroviral therapy. However, the impact of these initiatives may be challenged by increased inefficiencies along the viral load testing spectrum. This will translate to increased costs and ineffectiveness of scale-up approaches. This review describes different parameters that could be addressed across the viral load testing spectrum aimed at improving efficiencies and utilizing test results for patient management. Though progress is being made in some countries to scale-up viral load, many others still face numerous challenges that may affect scale-up efficiencies: weak demand creation, ineffective supply chain management systems; poor specimen referral systems; inadequate data and quality management systems; and weak laboratory-clinical interface leading to diminished uptake of test results. In scaling up access to viral load testing, there should be a renewed focus to address efficiencies across the entire spectrum, including factors related to access, uptake, and impact of test results.

  2. Biomechanical assessment of a rear-seat inflatable seatbelt in frontal impacts.

    PubMed

    Sundararajan, Srinivasan; Rouhana, Stephen W; Board, Derek; DeSmet, Ed; Prasad, Priya; Rupp, Jonathan D; Miller, Carl S; Schneider, Lawrence W

    2011-11-01

    This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats. Further research is needed to assess the field effectiveness, customer comfort and acceptance and change in the belt usage rate with the inflatable seatbelt system.

  3. NDT evaluation of long-term bond durability of CFRP-structural systems applied to RC highway bridges

    NASA Astrophysics Data System (ADS)

    Crawford, Kenneth C.

    2016-06-01

    The long-term durability of CFRP structural systems applied to reinforced-concrete (RC) highway bridges is a function of the system bond behavior over time. The sustained structural load performance of strengthened bridges depends on the carbon fiber-reinforced polymer (CFRP) laminates remaining 100 % bonded to concrete bridge members. Periodic testing of the CFRP-concrete bond condition is necessary to sustain load performance. The objective of this paper is to present a non-destructive testing (NDT) method designed to evaluate the bond condition and long-term durability of CFRP laminate (plate) systems applied to RC highway bridges. Using the impact-echo principle, a mobile mechanical device using light impact hammers moving along the length of a bonded CFRP plate produces unique acoustic frequencies which are a function of existing CFRP plate-concrete bond conditions. The purpose of this method is to test and locate CFRP plates de-bonded from bridge structural members to identify associated deterioration in bridge load performance. Laboratory tests of this NDT device on a CFRP plate bonded to concrete with staged voids (de-laminations) produced different frequencies for bonded and de-bonded areas of the plate. The spectra (bands) of frequencies obtained in these tests show a correlation to the CFRP-concrete bond condition and identify bonded and de-bonded areas of the plate. The results of these tests indicate that this NDT impact machine, with design improvements, can potentially provide bridge engineers a means to rapidly evaluate long lengths of CFRP laminates applied to multiple highway bridges within a national transportation infrastructure.

  4. Mechanical Impact Testing: A Statistical Measurement

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned.

  5. Child restraint systems for civil aircraft.

    DOT National Transportation Integrated Search

    1978-03-01

    Child restraint systems have been developed to provide protection to children involved in automobile crashes. These systems are not yet approved for use in civil aircraft. Six typical systems were exposed to controlled impacts on a test sled to simul...

  6. Children restraint systems for civil aircraft.

    DOT National Transportation Integrated Search

    1978-03-01

    Child restraint systems have been developed to provide protection to children involved in automobile crashes. These systems are not yet approved for use in civil aircraft. Six typical systems were exposed to controlled impacts on a test sled to simul...

  7. Aluminum alloy material structure impact localization by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiubin

    2014-12-01

    The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.

  8. Earth orbital teleoperator manipulator system evaluation program

    NASA Technical Reports Server (NTRS)

    Brye, R. G.; Frederick, P. N.; Kirkpatrick, M., III; Shields, N. L., Jr.

    1977-01-01

    The operator's ability to perform five manipulator tip movements while using monoptic and stereoptic video systems was assessed. Test data obtained were compared with previous results to determine the impact of camera placement and stereoptic viewing on manipulator system performance. The tests were performed using the NASA MSFC extendible stiff arm Manipulator and an analog joystick controller. Two basic manipulator tasks were utilized. The minimum position change test required the operator to move the manipulator arm to touch a target contract. The dexterity test required removal and replacement of pegs.

  9. Infrastructure for Multiphysics Software Integration in High Performance Computing-Aided Science and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Michael T.; Safdari, Masoud; Kress, Jessica E.

    The project described in this report constructed and exercised an innovative multiphysics coupling toolkit called the Illinois Rocstar MultiPhysics Application Coupling Toolkit (IMPACT). IMPACT is an open source, flexible, natively parallel infrastructure for coupling multiple uniphysics simulation codes into multiphysics computational systems. IMPACT works with codes written in several high-performance-computing (HPC) programming languages, and is designed from the beginning for HPC multiphysics code development. It is designed to be minimally invasive to the individual physics codes being integrated, and has few requirements on those physics codes for integration. The goal of IMPACT is to provide the support needed to enablemore » coupling existing tools together in unique and innovative ways to produce powerful new multiphysics technologies without extensive modification and rewrite of the physics packages being integrated. There are three major outcomes from this project: 1) construction, testing, application, and open-source release of the IMPACT infrastructure, 2) production of example open-source multiphysics tools using IMPACT, and 3) identification and engagement of interested organizations in the tools and applications resulting from the project. This last outcome represents the incipient development of a user community and application echosystem being built using IMPACT. Multiphysics coupling standardization can only come from organizations working together to define needs and processes that span the space of necessary multiphysics outcomes, which Illinois Rocstar plans to continue driving toward. The IMPACT system, including source code, documentation, and test problems are all now available through the public gitHUB.org system to anyone interested in multiphysics code coupling. Many of the basic documents explaining use and architecture of IMPACT are also attached as appendices to this document. Online HTML documentation is available through the gitHUB site. There are over 100 unit tests provided that run through the Illinois Rocstar Application Development (IRAD) lightweight testing infrastructure that is also supplied along with IMPACT. The package as a whole provides an excellent base for developing high-quality multiphysics applications using modern software development practices. To facilitate understanding how to utilize IMPACT effectively, two multiphysics systems have been developed and are available open-source through gitHUB. The simpler of the two systems, named ElmerFoamFSI in the repository, is a multiphysics, fluid-structure-interaction (FSI) coupling of the solid mechanics package Elmer with a fluid dynamics module from OpenFOAM. This coupling illustrates how to combine software packages that are unrelated by either author or architecture and combine them into a robust, parallel multiphysics system. A more complex multiphysics tool is the Illinois Rocstar Rocstar Multiphysics code that was rebuilt during the project around IMPACT. Rocstar Multiphysics was already an HPC multiphysics tool, but now that it has been rearchitected around IMPACT, it can be readily expanded to capture new and different physics in the future. In fact, during this project, the Elmer and OpenFOAM tools were also coupled into Rocstar Multiphysics and demonstrated. The full Rocstar Multiphysics codebase is also available on gitHUB, and licensed for any organization to use as they wish. Finally, the new IMPACT product is already being used in several multiphysics code coupling projects for the Air Force, NASA and the Missile Defense Agency, and initial work on expansion of the IMPACT-enabled Rocstar Multiphysics has begun in support of a commercial company. These initiatives promise to expand the interest and reach of IMPACT and Rocstar Multiphysics, ultimately leading to the envisioned standardization and consortium of users that was one of the goals of this project.« less

  10. Functional Task Test: Data Review

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita

    2014-01-01

    After space flight there are changes in multiple physiological systems including: Cardiovascular function; Sensorimotor function; and Muscle function. How do changes in these physiological system impact astronaut functional performance?

  11. On Restructurable Control System Theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  12. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Rudd and D. Bergey

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less

  13. F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.

  14. F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture

    NASA Image and Video Library

    1998-05-14

    In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.

  15. Correlations of Platooning Track Test and Wind Tunnel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, Michael P.; Kelly, Kenneth J.; Yanowitz, Janet

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 tomore » Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.« less

  16. High Speed Thermal Imaging on Ballistic Impact of Triaxially Braided Composites

    NASA Technical Reports Server (NTRS)

    Johnston, Joel P.; Pereira, J. Michael; Ruggeri, Charles R.; Roberts, Gary D.

    2017-01-01

    Ballistic impact experiments were performed on triaxially braided polymer matrix composites to study the heat generated in the material due to projectile velocity and penetration damage. Quantifying the heat generation phenomenon is crucial for attaining a better understanding of composite behavior and failure under impact loading. The knowledge gained can also be used to improve physics-based models which can numerically simulate impact of composites. Triaxially braided (0/+60/-60) composite panels were manufactured with T700S standard modulus carbon fiber and two epoxy resins. The PR520 (toughened) and 3502 (untoughened) resin systems were used to make different panels to study the effects of resin properties on temperature rise. Ballistic impact tests were conducted on these composite panels using a gas gun, and different projectile velocities were applied to study the effect on the temperature results. Temperature contours were obtained from the rear surface of the panel during the test through a high speed, infrared (IR) thermal imaging system. The contours show that high temperatures were locally generated and more pronounced along the axial tows for the T700S/PR520 composite specimens; whereas, tests performed on T700S/3502 composite panels using similar impact velocities demonstrated a widespread area of lower temperature rises. Nondestructive, ultrasonic C-scan analyses were performed to observe and verify the failure patterns in the impacted panels. Overall, the impact experimentation showed temperatures exceeding 525 K (485degF) in both composites which is well above the respective glass transition temperatures for the polymer constituents. This expresses the need for further high strain rate testing and measurement of the temperature and deformation fields to fully understand the complex behavior and failure of the material in order to improve the confidence in designing aerospace components with these materials.

  17. Analysis-test correlation of airbag impact for Mars landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salama, M.; Davis, G.; Kuo, C.P.

    1994-12-31

    The NASA Mars Pathfinder mission is intended to demonstrate key low cost technologies for use in future science missions to Mars. Among these technologies is the landing system. Upon entering in Martian atmosphere at about 7000 m/sec., the spacecraft will deploy a series of breaking devices (parachute and solid rockets) to slow down its speed to less than 20 m/sec. as it impacts with the Martian ground. To cushion science instruments form the landing impact, an airbag system is inflated to surround the lander approximately five seconds before impact. After multiple bounces, the lander/airbags comes to rest, the airbags aremore » deflated and retracted, and the lander opens up its petals to allow a microrover to begin exploration. Of interest here, is the final landing phase. Specifically, this paper will focus on the methodology used to simulate the nonlinear dynamics of lander/airbags landing impact, and how this simulation correlates with initial tests.« less

  18. Computerised pathology test order entry reduces laboratory turnaround times and influences tests ordered by hospital clinicians: a controlled before and after study

    PubMed Central

    Westbrook, J I; Georgiou, A; Dimos, A; Germanos, T

    2006-01-01

    Objective To assess the impact of a computerised pathology order entry system on laboratory turnaround times and test ordering within a teaching hospital. Methods A controlled before and after study compared test assays ordered from 11 wards two months before (n = 97 851) and after (n = 113 762) the implementation of a computerised pathology order entry system (Cerner Millennium Powerchart). Comparisons were made of laboratory turnaround times, frequency of tests ordered and specimens taken, proportions of patients having tests, average number per patient, and percentage of gentamicin and vancomycin specimens labelled as random. Results Intervention wards experienced an average decrease in turnaround of 15.5 minutes/test assay (range 73.8 to 58.3 minutes; p<0.001). Reductions were significant for prioritised and non‐prioritised tests, and for those done within and outside business hours. There was no significant change in the average number of tests (p = 0.228), or specimens per patient (p = 0.324), and no change in turnaround time for the control ward (p = 0.218). Use of structured order screens enhanced data provided to laboratories. Removing three test assays from the liver function order set resulted in significantly fewer of these tests being done. Conclusions Computerised order entry systems are an important element in achieving faster test results. These systems can influence test ordering patterns through structured order screens, manipulation of order sets, and analysis of real time data to assess the impact of such changes, not possible with paper based systems. The extent to which improvements translate into improved patient outcomes remains to be determined. A potentially limiting factor is clinicians' capacity to respond to, and make use of, faster test results. PMID:16461564

  19. Georgia science curriculum alignment and accountability: A blueprint for student success

    NASA Astrophysics Data System (ADS)

    Reining-Gray, Kimberly M.

    Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.

  20. Antimisting kerosene JT3 engine fuel system integration study

    NASA Technical Reports Server (NTRS)

    Fiorentino, A.

    1987-01-01

    An analytical study and laboratory tests were conducted to assist NASA in determining the safety and mission suitability of the modified fuel system and flight tests for the Full-Scale Transport Controlled Impact Demonstration (CID) program. This twelve-month study reviewed and analyzed both the use of antimisting kerosene (AMK) fuel and the incorporation of a fuel degrader on the operational and performance characteristics of the engines tested. Potential deficiencies and/or failures were identified and approaches to accommodate these deficiencies were recommended to NASA Ames -Dryden Flight Research Facility. The result of flow characterization tests on degraded AMK fuel samples indicated levels of degradation satisfactory for the planned missions of the B-720 aircraft. The operability and performance with the AMK in a ground test engine and in the aircraft engines during the test flights were comparable to those with unmodified Jet A. For the final CID test, the JT-3C-7 engines performed satisfactorily while operating on AMK right up to impact.

  1. A rapid method for identifying and characterizing structural impacts using distributed sensors: An application for automotive pedestrian protection

    NASA Astrophysics Data System (ADS)

    Kim, Andrew C.

    This research is motivated by recent activity to improve automotive safety, especially for pedestrians. In many parts of the world today, injuries and fatalities from road accidents are a significant problem. Safety features such as seat restraints and air bags provide considerable levels of protection for car occupants; however, no such protective measures currently exist for pedestrians. Drawing upon the success and effectiveness of occupant air bag systems, current research aims to develop similar devices for pedestrians. These active pedestrian protection systems deploy a safety feature such as an external air bag when a pedestrian is hit by a vehicle. Contact with the front bumper induces a body rotation that may result in a violent head collision. The deployable safety device provides a cushioning surface for the vulnerable pedestrian during impact. The challenge of such a system is an effective sensory unit that can rapidly and correctly discriminate pedestrian impacts from non-pedestrian ones. The fast kinematics of the automobile-pedestrian impact leaves a minimal amount of time for signal processing and computation. This research study focuses on a discrimination scheme that satisfies both the time and accuracy requirements for a proposed sensory system for pedestrian protection. A unique methodology was developed to identify structural impacts using dominant frequency features extracted from sensory data. Contact sensors mounted on the front bumper of an automobile measure the strain response from an impact event. The dominant frequencies obtained from these sensor signals are greatly influenced by the impact object's properties and can be used to discriminate between different objects. Extensive tests were conducted to gather sensor data and validate the proposed methodology and impact discrimination algorithm. Results of the impact tests indicate that the approach is sound, and the sensory system effectively identifies "pedestrian" impacts within a short period of time.

  2. An Improved Approach for Analyzing the Oxygen Compatibility of Solvents and other Oxygen-Flammable Materials for Use in Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Harper, Susan A.; Juarez, Alfredo; Peralta, Stephen F.; Stoltzfus, Joel; Arpin, Christina Pina; Beeson, Harold D.

    2016-01-01

    Solvents used to clean oxygen system components must be assessed for oxygen compatibility, as incompatible residue or fluid inadvertently left behind within an oxygen system can pose a flammability risk. The most recent approach focused on solvent ignition susceptibility to assess the flammability risk associated with these materials. Previous evaluations included Ambient Pressure Liquid Oxygen (LOX) Mechanical Impact Testing (ASTM G86) and Autogenous Ignition Temperature (AIT) Testing (ASTM G72). The goal in this approach was to identify a solvent material that was not flammable in oxygen. As environmental policies restrict the available options of acceptable solvents, it has proven difficult to identify one that is not flammable in oxygen. A more rigorous oxygen compatibility approach is needed in an effort to select a new solvent for NASA applications. NASA White Sands Test Facility proposed an approach that acknowledges oxygen flammability, yet selects solvent materials based on their relative oxygen compatibility ranking, similar to that described in ASTM G63-99. Solvents are selected based on their ranking with respect to minimal ignition susceptibility, damage and propagation potential, as well as their relative ranking when compared with other solvent materials that are successfully used in oxygen systems. Test methods used in this approach included ASTM G86 (Ambient Pressure LOX Mechanical Impact Testing and Pressurized Gaseous Oxygen (GOX) Mechanical Impact Testing), ASTM G72 (AIT Testing), and ASTM D240 (Heat of Combustion (HOC) Testing). Only four solvents were tested through the full battery of tests for evaluation of oxygen compatibility: AK-225G as a baseline comparison, Solstice PF, L-14780, and Vertrel MCA. Baseline solvent AK-225G exhibited the lowest HOC and highest AIT of solvents tested. Nonetheless, Solstice PF, L-14780, and Vertrel MCA HOCs all fell well within the range of properties that are associated with proven oxygen system materials. Tested AITs for these solvents fell only slightly lower than the AIT for the proven AK-225G solvent. Based on these comparisons in which solvents exhibited properties within those ranges seen with proven oxygen system materials, it is believed that Solstice PF, L-14780, and Vertrel MCA would perform well with respect to oxygen compatibility.

  3. The euglobulin clot lysis time to assess the impact of nanoparticles on fibrinolysis

    NASA Astrophysics Data System (ADS)

    Minet, Valentine; Alpan, Lutfiye; Mullier, François; Toussaint, Olivier; Lucas, Stéphane; Dogné, Jean-Michel; Laloy, Julie

    2015-07-01

    Nanoparticles (NPs) are developed for many applications in various fields, including nanomedicine. The NPs used in nanomedicine may disturb homeostasis in blood. Secondary hemostasis (blood coagulation) and fibrinolysis are complex physiological processes regulated by activators and inhibitors. An imbalance of this system can either lead to the development of hemorrhages or thrombosis. No data are currently available on the impact of NPs on fibrinolysis. The objectives of this study are (1) to select a screening test to study ex vivo the impact of NPs on fibrinolysis and (2) to test NPs with different physicochemical properties. Euglobulin clot lysis time test was selected to screen the impact of some NPs on fibrinolysis using normal pooled plasma. A dose-dependent decrease in the lysis time was observed with silicon dioxide and silver NPs without disturbing the fibrin network. Carbon black, silicon carbide, and copper oxide did not affect the lysis time at the tested concentrations.

  4. Comparison of Electrostatic Fins with Piezoelectric Impact Hammer Techniques to Extend Impulse Calibration Range of a Torsional Thrust Stand (Preprint)

    DTIC Science & Technology

    2011-03-23

    prac- tical max impulse to 1mNs. The newly developed Piezo - electric Impact Hammer (PIH) calibration system over- comes geometric limits of ESC...the fins to behave as part of an LRC circuit which results in voltage oscillations. By adding a resistor in series between the pulse generator and...series resistor as well as the effects of no loading on the pulse generator. III. PIEZOELECTRIC IMPACT HAMMER SYSTEM The second calibration method tested

  5. A graphical weather system design for the NASA transport systems research vehicle B-737

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    A graphical weather system was designed for testing in the NASA Transport Systems Research Vehicle B-737 airplane and simulator. The purpose of these tests was to measure the impact of graphical weather products on aircrew decision processes, weather situation awareness, reroute clearances, workload, and weather monitoring. The flight crew graphical weather interface is described along with integration of the weather system with the flight navigation system, and data link transmission methods for sending weather data to the airplane.

  6. The Impact of the College Assistance Migrant Program on Migrant Student Academic Achievement in the California State University System

    ERIC Educational Resources Information Center

    Ramirez, Adrian D.

    2012-01-01

    The 7-year longitudinal study examined the College Assistance Migrant Program (CAMP) impact on migrant student achievement in the California State University system. Participants included migrant students, Latinos, and general student populations from 2002-2009. The analysis of variance and chi-square test of independence were used to explore…

  7. Experimental Investigation of the Shuttle Transportation System Composite Overwrapped Pressure Vessels for Stress Rupture Life

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Carillo, Marlene; Thesken, John

    2006-01-01

    A viewgraph presentation describing stress rupture testing on Composite Overwrapped Pressure Vessels (COPV) is shown. The topics include: 1) Purpose for Testing; 2) NASA WSTF COPV Test Program; 3) NASA WSTF Test Facilities; 4) COPV Impact Study; 5) Fluids Compatibility Testing; 6) Stress Rupture Testing; and 7) COPV Lifting.

  8. Integrated Propulsion Data System Public Web Site

    NASA Technical Reports Server (NTRS)

    Hamilton, Kimberly

    2001-01-01

    The Integrated Propulsion Data System's (IPDS) focus is to provide technologically-advanced philosophies of doing business at SSC that will enhance the existing operations, engineering and management strategies and provide insight and metrics to assess their daily impacts, especially as related to the Propulsion Test Directorate testing scenarios for the 21st Century.

  9. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  10. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  11. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in themore » area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.« less

  12. System testing of a production Ada (trademark) project: The GRODY study

    NASA Technical Reports Server (NTRS)

    Seigle, Jeffrey; Esker, Linda; Shi, Ying-Liang

    1990-01-01

    The use of the Ada language and design methodologies that utilize its features has a strong impact on all phases of the software development project lifecycle. At the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the Software Engineering Laboratory (SEL) conducted an experiment in parallel development of two flight dynamics systems in FORTRAN and Ada. The teams found some qualitative differences between the system test phases of the two projects. Although planning for system testing and conducting of tests were not generally affected by the use of Ada, the solving of problems found in system testing was generally facilitated by Ada constructs and design methodology. Most problems found in system testing were not due to difficulty with the language or methodology but to lack of experience with the application.

  13. Using artificial intelligence for automating testing of a resident space object collision avoidance system on an orbital spacecraft

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2014-06-01

    Resident space objects (RSOs) pose a significant threat to orbital assets. Due to high relative velocities, even a small RSO can cause significant damage to an object that it strikes. Worse, in many cases a collision may create numerous additional RSOs, if the impacted object shatters apart. These new RSOs will have heterogeneous mass, size and orbital characteristics. Collision avoidance systems (CASs) are used to maneuver spacecraft out of the path of RSOs to prevent these impacts. A RSO CAS must be validated to ensure that it is able to perform effectively given a virtually unlimited number of strike scenarios. This paper presents work on the creation of a testing environment and AI testing routine that can be utilized to perform verification and validation activities for cyber-physical systems. It reviews prior work on automated and autonomous testing. Comparative performance (relative to the performance of a human tester) is discussed.

  14. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  15. Family impact of assistive technology scale: development of a measurement scale for parents of children with complex communication needs.

    PubMed

    Delarosa, Elizabeth; Horner, Stephanie; Eisenberg, Casey; Ball, Laura; Renzoni, Anne Marie; Ryan, Stephen E

    2012-09-01

    Young people use augmentative and alternative communication (AAC) systems to meet their everyday communication needs. However, the successful integration of an AAC system into a child's life requires strong commitment and continuous support from parents and other family members. This article describes the development and evaluation of the Family Impact of Assistive Technology Scale for AAC Systems - a parent-report questionnaire intended to detect the impact of AAC systems on the lives of children with complex communication needs and their families. The study involved 179 parents and clinical experts to test the content and face validities of the questionnaire, demonstrate its internal reliability and stability over time, and estimate its convergent construct validity when compared to a standardized measure of family impact.

  16. Instrumentation and data acquisition for full-scale aircraft crash testing

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Fasanella, Edwin L.

    1993-01-01

    The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.

  17. Shielding requirements for the Space Station habitability modules

    NASA Technical Reports Server (NTRS)

    Avans, Sherman L.; Horn, Jennifer R.; Williamsen, Joel E.

    1990-01-01

    The design, analysis, development, and tests of the total meteoroid/debris protection system for the Space Station Freedom habitability modules, such as the habitation module, the laboratory module, and the node structures, are described. Design requirements are discussed along with development efforts, including a combination of hypervelocity testing and analyses. Computer hydrocode analysis of hypervelocity impact phenomena associated with Space Station habitability structures is covered and the use of optimization techniques, engineering models, and parametric analyses is assessed. Explosive rail gun development efforts and protective capability and damage tolerance of multilayer insulation due to meteoroid/debris impact are considered. It is concluded that anticipated changes in the debris environment definition and requirements will require rescoping the tests and analysis required to develop a protection system.

  18. Impact of information and communications technologies on residental customer energy services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, C.; Kempton, W.; Eide, A.

    1996-10-01

    This study analyzes the potential impact of information and communications technologies on utility delivery of residential customer energy services. Many utilities are conducting trials which test energy-related and non-energy services using advanced communications systems.

  19. NASA experiments onboard the controlled impact demonstration

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Alfaro-Bou, E.; Fasanella, E. L.

    1985-01-01

    The structural crashworthiness tests conducted by NASA on the December 1, 1984 controlled impact demonstration are discussed. The components and locations of the data acquisition and photographic systems developed by NASA to evaluate impact loads throughout the aircraft structure and the transmission of loads into the dummies are described. The effectiveness of the NASA designed absorbing seats and the vertical, longitudinal, and transverse impact loads are measured. Data that is extremely applicable to crash dynamics structural research was obtained by the data acquisition system and very low load levels were measured for the NASA energy absorbing seats.

  20. Insights into accelerated aging of SSL luminaires

    NASA Astrophysics Data System (ADS)

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-01

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6" downlights in environments of 85°C and 85% relative humidity (RH) and 75°C and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.

  1. Insights into accelerated aging of SSL luminaires

    DOE PAGES

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; ...

    2013-09-30

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6” downlights in environments of 85oC and 85% relative humiditymore » (RH) and 75oC and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.« less

  2. Evaluation of the internal and external biofidelity of current rear impact ATDs to response targets developed from moderate-speed rear impacts of PMHS.

    PubMed

    Moorhouse, Kevin; Donnelly, Bruce; Kang, Yun-Seok; Bolte, John H; Herriott, Rodney

    2012-10-01

    The goal of this study is to evaluate both the internal and external biofidelity of existing rear impact anthropomorphic test devices (BioRID II, RID3D, Hybrid III 50th) in two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) by quantitatively comparing the ATD responses to biomechanical response targets developed from PMHS testing in a corresponding study. The ATDs and PMHS were tested in an experimental seat system that is capable of simulating the dynamic seat back rotation response of production seats. The experimental seat contains a total of fourteen load cells installed such that external loads from the ATDs and PMHS can be measured to evaluate external biofidelity. The PMHS were instrumented to correspond to the instrumentation contained in the ATDs so that direct comparison between ATDs and PMHS could be made to evaluate internal biofidelity. The NHTSA Biofidelity Ranking system was used to quantitatively evaluate the biofidelity of the ATDs and an additional tool was introduced and utilized which allows for the biofidelity score to be partitioned into components of amplitude, phase, and shape. For internal biofidelity, the BioRID II and RID3D were more biofidelic than the Hybrid III in the 17 km/h test, and the BioRID II was most biofidelic in the 24 km/h test. For external biofidelity, the BioRID II was most biofidelic in the 17 km/h test, while both the BioRID II and the RID3D were more biofidelic than the Hybrid III in the 24 km/h test. Overall, the BioRID II demonstrated the best biofidelity in both the 17 km/h and 24 km/h tests.

  3. Impact of Jovian radiation environmental hazard on spacecraft and mission development design

    NASA Technical Reports Server (NTRS)

    Divita, E.

    1972-01-01

    The environmental impact on the TOPS 12L configuration is discussed. The activities in system environmental design and testing are described, and radiation design restraints based on the upper limit model are given. Range energy cutoffs in aluminum are also presented and the effective shielding thicknesses for electrons and protons of different energies are included. Design integration problems and radiation testing aspects are considered. Data are given for selecting the parts which should be tested in a formal test program, and the piece-part radiation thresholds are tabulated for electrons and protons.

  4. Design and Test of an Improved Crashworthiness Small Composite Airframe

    NASA Technical Reports Server (NTRS)

    Terry, James E.; Hooper, Steven J.; Nicholson, Mark

    2002-01-01

    The purpose of this small business innovative research (SBIR) program was to evaluate the feasibility of developing small composite airplanes with improved crashworthiness. A combination of analysis and half scale component tests were used to develop an energy absorbing airframe. Four full scale crash tests were conducted at the NASA Impact Dynamics Research Facility, two on a hard surface and two onto soft soil, replicating earlier NASA tests of production general aviation airplanes. Several seat designs and restraint systems including both an air bag and load limiting shoulder harnesses were tested. Tests showed that occupant loads were within survivable limits with the improved structural design and the proper combination of seats and restraint systems. There was no loss of cabin volume during the events. The analysis method developed provided design guidance but time did not allow extending the analysis to soft soil impact. This project demonstrated that survivability improvements are possible with modest weight penalties. The design methods can be readily applied by airplane designers using the examples in this report.

  5. Improvement of impact noise in a passenger car utilizing sound metric based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kwon; Kim, Ho-Wuk; Na, Eun-Woo

    2010-08-01

    A new sound metric for impact sound is developed based on the continuous wavelet transform (CWT), a useful tool for the analysis of non-stationary signals such as impact noise. Together with new metric, two other conventional sound metrics related to sound modulation and fluctuation are also considered. In all, three sound metrics are employed to develop impact sound quality indexes for several specific impact courses on the road. Impact sounds are evaluated subjectively by 25 jurors. The indexes are verified by comparing the correlation between the index output and results of a subjective evaluation based on a jury test. These indexes are successfully applied to an objective evaluation for improvement of the impact sound quality for cases where some parts of the suspension system of the test car are modified.

  6. Policies of Global English Tests: Test-Takers' Perspectives on the IELTS Retake Policy

    ERIC Educational Resources Information Center

    Hamid, M. Obaidul

    2016-01-01

    Globalized English proficiency tests such as the International English Language Testing System (IELTS) are increasingly playing the role of gatekeepers in a globalizing world. Although the use of the IELTS as a "policy tool" for making decisions in the areas of study, work and migration impacts on test-takers' lives and life chances, not…

  7. 78 FR 13853 - Federal Motor Vehicle Safety Standards; Denial of Petition for Rulemaking; Vehicle Rollover...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... stability control systems,'' a copy of the preliminary regulatory impact analysis for FMVSS No. 126, and... directed NHTSA to develop a dynamic rollover test and to use information obtained in that test to help... policy establishing a ``fishhook'' test as the dynamic rollover test for NCAP. The fishhook test is an...

  8. Effect of multi-layer thermal insulation thickness and location on the hypervelocity impact response of dual-wall structures

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    Traditional perforation-resistant wall design for long-duration spacecraft consists of a "bumper" that is placed a small distance away from the main "pressure wall" of a spacecraft compartment or module. This concept has been studied extensively as a means of reducing the perforation threat of hypervelocity projectiles such as meteoroids and orbital debris. If a dual-wall system is employed on an earth-orbiting spacecraft, then a blanket of multi-layer insulation (MLI) will typically be included within the dual-wall system for thermal protection purposes. This paper presents the results of an experimental study in which aluminum dual-wall structures were tested under a variety of high-speed impact conditions to study the effect of MLI thickness and location on perforation resistance. The results presented consist of test-by-test comparisons of the damage sustained by similar dual-wall systems with blanket MLI of various thicknesses and at various locations within the dual-wall systems under similar impact loading conditions. The analyses performed revealed that the placement of the MLI had a significant effect on the ballistic limit of the dual-wall structures considered while reducing the thickness of the MLI by as much as 1/3 did not.

  9. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed bymore » three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.« less

  10. Multi-Tiered Systems of Supports: An Investigative Study of Their Impact on Third Grade Reading Test Scores in an Urban District

    ERIC Educational Resources Information Center

    Haynes, Heather A.

    2012-01-01

    This study analyzed the impact of implementing response to intervention (RTI), a three-tiered system of intervention of increasing intensity, in this case for reading, schoolwide in 32 elementary schools. When a three-tiered framework is applied schoolwide, with all students and addressing academic and/or behavioral curricular instruction, it is…

  11. Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop

    DTIC Science & Technology

    2007-01-01

    machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system

  12. The Impact of the Fountas and Pinnell Benchmark Assessment System on Third Grade South Carolina Ready English Language Arts Scores

    ERIC Educational Resources Information Center

    Harrington, Shanika

    2017-01-01

    The purpose of this research study was to evaluate the impact of the district's use of the Fountas and Pinnell Benchmark Assessment System on 3rd grade students' reading achievement as measured by the SC READY ELA test. Educators are increasingly using assessment data in determining students' knowledge and progress. Brady, 2011 stated that…

  13. Single Event Test Methodologies and System Error Rate Analysis for Triple Modular Redundant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Allen, Gregory; Edmonds, Larry D.; Swift, Gary; Carmichael, Carl; Tseng, Chen Wei; Heldt, Kevin; Anderson, Scott Arlo; Coe, Michael

    2010-01-01

    We present a test methodology for estimating system error rates of Field Programmable Gate Arrays (FPGAs) mitigated with Triple Modular Redundancy (TMR). The test methodology is founded in a mathematical model, which is also presented. Accelerator data from 90 nm Xilins Military/Aerospace grade FPGA are shown to fit the model. Fault injection (FI) results are discussed and related to the test data. Design implementation and the corresponding impact of multiple bit upset (MBU) are also discussed.

  14. Comparing Free-Free and Shaker Table Model Correlation Methods Using Jim Beam

    NASA Technical Reports Server (NTRS)

    Ristow, James; Smith, Kenneth Wayne, Jr.; Johnson, Nathaniel; Kinney, Jackson

    2018-01-01

    Finite element model correlation as part of a spacecraft program has always been a challenge. For any NASA mission, the coupled system response of the spacecraft and launch vehicle can be determined analytically through a Coupled Loads Analysis (CLA), as it is not possible to test the spacecraft and launch vehicle coupled system before launch. The value of the CLA is highly dependent on the accuracy of the frequencies and mode shapes extracted from the spacecraft model. NASA standards require the spacecraft model used in the final Verification Loads Cycle to be correlated by either a modal test or by comparison of the model with Frequency Response Functions (FRFs) obtained during the environmental qualification test. Due to budgetary and time constraints, most programs opt to correlate the spacecraft dynamic model during the environmental qualification test, conducted on a large shaker table. For any model correlation effort, the key has always been finding a proper definition of the boundary conditions. This paper is a correlation case study to investigate the difference in responses of a simple structure using a free-free boundary, a fixed boundary on the shaker table, and a base-drive vibration test, all using identical instrumentation. The NAVCON Jim Beam test structure, featured in the IMAC round robin modal test of 2009, was selected as a simple, well recognized and well characterized structure to conduct this investigation. First, a free-free impact modal test of the Jim Beam was done as an experimental control. Second, the Jim Beam was mounted to a large 20,000 lbf shaker, and an impact modal test in this fixed configuration was conducted. Lastly, a vibration test of the Jim Beam was conducted on the shaker table. The free-free impact test, the fixed impact test, and the base-drive test were used to assess the effect of the shaker modes, evaluate the validity of fixed-base modeling assumptions, and compare final model correlation results between these boundary conditions.

  15. The Shock and Vibration Bulletin. Part 1. Summaries of Presented Papers

    DTIC Science & Technology

    1974-10-01

    15 S. Smith, R. C. Stroud, G. A. Hamma, W. L. Hallaver, R. C. Yee MODALAB-A NEW SYSTEM FOR STRUCTURAL DYNAMIC TESTING, II, ANALYSIS ...PV -A ........................................................... 33 A. Burkhard and R. Scott ANALYSIS AND FLIGHT TEST CORRELATION OF VIBROACOUSTIC...METHODS FOR THE ANALYSIS OF ELASTICALLY SUPPORTED ISOLATION SYSTEMS ............................................. 41 G. L. Fox IMPACT ON COMPLEX

  16. 78 FR 29209 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    .../ or clarification of Order No. 773: NERC, American Public Power Association (APPA); American Wind... developed a list of facilities that have the potential to cause cascading problems on the system as well as... with particular tests and outlined general problems with the material impact tests used to determine...

  17. Putting social impact assessment to the test as a method for implementing responsible tourism practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCombes, Lucy, E-mail: l.mccombes@leedsbeckett.ac.uk; Vanclay, Frank, E-mail: frank.vanclay@rug.nl; Evers, Yvette, E-mail: y.evers@tft-earth.org

    The discourse on the social impacts of tourism needs to shift from the current descriptive critique of tourism to considering what can be done in actual practice to embed the management of tourism's social impacts into the existing planning, product development and operational processes of tourism businesses. A pragmatic approach for designing research methodologies, social management systems and initial actions, which is shaped by the real world operational constraints and existing systems used in the tourism industry, is needed. Our pilot study with a small Bulgarian travel company put social impact assessment (SIA) to the test to see if itmore » could provide this desired approach and assist in implementing responsible tourism development practice, especially in small tourism businesses. Our findings showed that our adapted SIA method has value as a practical method for embedding a responsible tourism approach. While there were some challenges, SIA proved to be effective in assisting the staff of our test case tourism business to better understand their social impacts on their local communities and to identify actions to take. - Highlights: • Pragmatic approach is needed for the responsible management of social impacts of tourism. • Our adapted Social impact Assessment (SIA) method has value as a practical method. • SIA can be embedded into tourism businesses existing ‘ways of doing things’. • We identified challenges and ways to improve our method to better suit small tourism business context.« less

  18. Evaluation of Contaminant-Promoted Ignition in Scuba Equipment and Breathing Gas Delivery Systems

    NASA Technical Reports Server (NTRS)

    Forsyth, Elliott T.; Durkin, Robert; Beeson, Harold D.

    2000-01-01

    As the underwater diving industry continues to use greater concentrations of oxygen in their scuba systems, ignition of contaminants in these systems becomes a greater concern. Breathing gas makeup and distribution systems typically combine pure oxygen with various diluents to supply high-pressure cylinders for scuba applications. The hazards associated with these applications of oxygen and NITROX (oxygen and nitrogen mixture) gases require an evaluation of inherent contaminant levels and their associated promoted-ignition thresholds in these environments. In this study, several scuba component assemblies were tested after one year of use at the NASA Johnson Space Center Neutral Buoyancy Lab. The components were rapidly impacted with 50% NITROX gas to demonstrate their ignition resistance, then disassembled to evaluate their cleanliness. A follow-up study was then performed on the ignition thresholds of hydrocarbon-bascd oil films in oxygen and NITROX environments in an attempt to define the cleaning requirements for these systems. Stainless steel tubes were contaminated and verified to known levels and placed in a pneumatic impact test system where they were rapidly pressurized with the test gas. Ignitions were determined using a photodiode connected to the end of the contaminated tube. The results of the scuba component tests, cleanliness evaluation, and contaminant ignition study are discussed and compared for 50% NITROX and 100% oxygen environments.

  19. Impacts of Space Shuttle thermal protection system tile on F-15 aircraft vertical tile

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1985-01-01

    Impacts of the space shuttle thermal protection system (TPS) tile on the leading edge and the side of the vertical tail of the F-15 aircraft were analyzed under different TPS tile orientations. The TPS tile-breaking tests were conducted to simulate the TPS tile impacts. It was found that the predicted tile impact forces compare fairly well with the tile-breaking forces, and the impact forces exerted on the F-15 aircraft vertical tail were relatively low because a very small fraction of the tile kinetic energy was dissipated in the impact, penetration, and fracture of the tile. It was also found that the oblique impact of the tile on the side of the F-15 aircraft vertical tail was unlikely to dent the tail surface.

  20. Evaluating effectiveness of dynamic soundfield system in the classroom.

    PubMed

    da Cruz, Aline Duarte; Alves Silvério, Kelly Cristina; Da Costa, Aline Roberta Aceituno; Moret, Adriane Lima Mortari; Lauris, José Roberto Pereira; de Souza Jacob, Regina Tangerino

    2016-01-01

    Research has reported on the use of soundfield amplification devices in the classroom. However, no study has used standardized tests to determine the potential advantages of the dynamic soundfield system for normally hearing students and for the teacher's voice. Our aim was to evaluate the impact of using dynamic soundfield system on the noise of the classroom, teacher's voice and students' academic performance. This was a prospective cohort study in which 20 student participants enrolled in the third year of basic education were divided into two groups (i.e., control and experimental); their teacher participated. The experimental group was exposed to the dynamic soundfield system for 3 consecutive months. The groups were assessed using standardized tests to evaluate their academic performance. Further, questionnaires and statements were collected on the participants' experience of using the soundfield system. We statistically analyzed the results to compare the academic performance of the control group with that of the experimental group. In all cases, a significance level of P < .05 was adopted. Use of the dynamic soundfield system was effective for improving the students' academic performance on standardized tests for reading, improving the teacher's speech intelligibility, and reducing the teacher's vocal strain. The dynamic soundfield system minimizes the impact of noise in the classroom as demonstrated by the mensuration of the signal-to-noise ratio (SNR) and pupil performance on standardized tests for reading and student and teacher ratings of amplification system effectiveness.

  1. Dynamical and Physical Properties of 65803 Didymos, the AIDA Mission Target

    NASA Astrophysics Data System (ADS)

    Campo Bagatin, A.; Richardson, D. C.; Tsiganis, K.; Cheng, A. F.; Michel, P.

    2017-09-01

    The near-Earth asteroid (NEA) 65803 Didymos is a binary system and is the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, which combines an orbiter (Asteroid Impact Mission, AIM, or the reduced-scope AIM Deflection Demonstration, AIM-D2) [1, 2] and a kinetic impactor experiment (Double Asteroid Redirection Test, DART) planned to impact the secondary of the Didymos binary system in October, 2022 [3]. The Dynamical and Physical Properties of Didymos Working Group supports the AIDA mission by addressing questions related to understanding the dynamical state of the system and inferring the physical properties of the components

  2. IVHS and environmental impacts : implications of the operational tests

    DOT National Transportation Integrated Search

    1994-06-06

    In recent years, public and private sponsors of Intelligent Vehicle Highway Systems : (IVHS) have recognized the need to assess the impacts of IVHS user services on air : quality and energy use. This interest has been reinforced by the mandates of th...

  3. Reusable Metallic Thermal Protection Systems Development

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Martin, Carl J.; Daryabeigi, Kamran; Poteet, Carl C.

    1998-01-01

    Metallic thermal protection systems (TPS) are being developed to help meet the ambitious goals of future reusable launch vehicles. Recent metallic TPS development efforts at NASA Langley Research Center are described. Foil-gage metallic honeycomb coupons, representative of the outer surface of metallic TPS were subjected to low speed impact, hypervelocity impact, rain erosion, and subsequent arcjet exposure. TPS panels were subjected to thermal vacuum, acoustic, and hot gas flow testing. Results of the coupon and panel tests are presented. Experimental and analytical tools are being developed to characterize and improve internal insulations. Masses of metallic TPS and advanced ceramic tile and blanket TPS concepts are compared for a wide range of parameters.

  4. iLIDS Simulations and Videos for Docking TIM

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2010-01-01

    The video shows various aspects of the International Low Impact Docking System, including team members, some production, configuration, mated androgynous iLIDS, SCS Lockdown system, thermal analysis, electrical engineering aspects, the iLIDS control box and emulator, radiation testing at BNL, component environmental testing, component vibration testing, 3G processor board delivery system, GTA vibe test, EMA testbed, hook and hook disassembly, flex shaftdrive assembly, GSE cradle MISSE-6 Columbus, MISSE 6 and 7 seal experiments, actuated full scale seal test rig, LIDS on Hubble, dynamics test prep, EDU 54 mass emulation and SCS, load ring characterization, 6DOF proof test, SCS at 6DOF, machining EEMS and inner ring assembly, APAS assembly, inner ring fitting, rotation stand assembly, EEMS mating, and EEMS proof of concept demonstration.

  5. Analysis of rock mass dynamic impact influence on the operation of a powered roof support control system

    NASA Astrophysics Data System (ADS)

    Szurgacz, Dawid; Brodny, Jaroław

    2018-01-01

    A powered roof support is a machine responsible for protection of an underground excavation against deformation generated by rock mass. In the case of dynamic impact of rock mass, the proper level of protection is hard to achieve. Therefore, the units of the roof support and its components are subject to detailed tests aimed at acquiring greater reliability, efficiency and efficacy. In the course of such test, however, it is not always possible to foresee values of load that may occur in actual conditions. The article presents a case of a dynamic load impacting the powered roof support during a high-energy tremor in an underground hard coal mine. The authors discuss the method for selecting powered roof support units proper for specific forecasted load conditions. The method takes into account the construction of the support and mining and geological conditions of an excavation. Moreover, the paper includes tests carried out on hydraulic legs and yield valves which were responsible for additional yielding of the support. Real loads impacting the support unit during tremors are analysed. The results indicated that the real registered values of the load were significantly greater than the forecasted values. The analysis results of roof support operation during dynamic impact generated by the rock mass (real life conditions) prompted the authors to develop a set of recommendations for manufacturers and users of powered roof supports. These include, inter alia, the need for innovative solutions for testing hydraulic section systems.

  6. Stationary responses of a Rayleigh viscoelastic system with zero barrier impacts under external random excitation.

    PubMed

    Wang, Deli; Xu, Wei; Zhao, Xiangrong

    2016-03-01

    This paper aims to deal with the stationary responses of a Rayleigh viscoelastic system with zero barrier impacts under external random excitation. First, the original stochastic viscoelastic system is converted to an equivalent stochastic system without viscoelastic terms by approximately adding the equivalent stiffness and damping. Relying on the means of non-smooth transformation of state variables, the above system is replaced by a new system without an impact term. Then, the stationary probability density functions of the system are observed analytically through stochastic averaging method. By considering the effects of the biquadratic nonlinear damping coefficient and the noise intensity on the system responses, the effectiveness of the theoretical method is tested by comparing the analytical results with those generated from Monte Carlo simulations. Additionally, it does deserve attention that some system parameters can induce the occurrence of stochastic P-bifurcation.

  7. What is the impact of an electronic test result acknowledgement system on Emergency Department physicians' work processes? A mixed-method pre-post observational study.

    PubMed

    Georgiou, Andrew; McCaughey, Euan J; Tariq, Amina; Walter, Scott R; Li, Julie; Callen, Joanne; Paoloni, Richard; Runciman, William B; Westbrook, Johanna I

    2017-03-01

    To examine the impact of an electronic Results Acknowledgement (eRA) system on emergency physicians' test result management work processes and the time taken to acknowledge microbiology and radiology test results for patients discharged from an Emergency Department (ED). The impact of the eRA system was assessed in an Australian ED using: a) semi-structured interviews with senior emergency physicians; and b) a time and motion direct observational study of senior emergency physicians completing test acknowledgment pre and post the implementation of the eRA system. The eRA system led to changes in the way results and actions were collated, stored, documented and communicated. Although there was a non-significant increase in the average time taken to acknowledge results in the post period, most types of acknowledgements (other than simple acknowledgements) took less time to complete. The number of acknowledgements where physicians sought additional information from the Electronic Medical Record (EMR) rose from 12% pre to 20% post implementation of eRA. Given that the type of results are unlikely to have changed significantly across the pre and post implementation periods, the increase in the time physicians spent accessing additional clinical information in the post period likely reflects the greater access to clinical information provided by the integrated electronic system. Easier access to clinical information may improve clinical decision making and enhance the quality of patient care. For instance, in situations where a senior clinician, not initially involved in the care process, is required to deal with the follow-up of non-normal results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. The Effects of Hygrothermal Aging on the Impact Penetration Resistance of Triaxially Braided Composites

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Roberts, Gary D.; Kohlman, Lee W.; Miller, Sandi G.

    2016-01-01

    An experimental study was conducted to measure the effects of long term hygrothermal aging on the impact penetration resistance of triaxially braided polymer composites. Flat panels of three different materials were subjected to repeated cycles of high and low temperature and high and low humidity for two years. Samples of the panels were periodically tested under impact loading during the two year time period. The purpose of the study was to identify and quantify any degradation in impact penetration resistance of these composites under cyclic temperature and humidity conditions experienced by materials in the fan section of commercial gas turbine engines for a representative aircraft flight cycle. The materials tested consisted of Toray ® T700S carbon fibers in a 2D triaxial braid with three different resins, Cycom® PR520, a toughened resin, Hercules® 3502, an untoughened resin and EPON 862, intermediate between the two. The fiber preforms consisted of a quasi-isotropic 0/+60/-60 braid with 24K tows in the axial direction and 12K tows in the bias directions. The composite panels were manufactured using a resin transfer molding process producing panels with a thickness of 0.125 inches. The materials were tested in their as-processed condition and again after one year and two years of aging (1.6 years in the case of E862). The aging process involved subjecting the test panels to two cycles per day of high and low temperature and high and low humidity. A temperature range of -60degF to 250degF and a humidity range of 0 to 85% rh was used to simulate extreme conditions for composite components in the fan section of a commercial gas turbine engine. Additional testing was conducted on the as-processed PR520 composite under cryogenic conditions. After aging there was some change in the failure pattern, but there was no reduction in impact penetration threshold for any of the three systems, and in the case of the 3502 system, a significant increase in penetration threshold. There was also an increase in the penetration resistance of the PR520 system impacted under cryogenic conditions.

  9. Correlation of Head Impacts to Change in Balance Error Scoring System Scores in Division I Men's Lacrosse Players.

    PubMed

    Miyashita, Theresa L; Diakogeorgiou, Eleni; Marrie, Kaitlyn

    Investigation into the effect of cumulative subconcussive head impacts has yielded various results in the literature, with many supporting a link to neurological deficits. Little research has been conducted on men's lacrosse and associated balance deficits from head impacts. (1) Athletes will commit more errors on the postseason Balance Error Scoring System (BESS) test. (2) There will be a positive correlation to change in BESS scores and head impact exposure data. Prospective longitudinal study. Level 3. Thirty-four Division I men's lacrosse players (age, 19.59 ± 1.42 years) wore helmets instrumented with a sensor to collect head impact exposure data over the course of a competitive season. Players completed a BESS test at the start and end of the competitive season. The number of errors from pre- to postseason increased during the double-leg stance on foam ( P < 0.001), tandem stance on foam ( P = 0.009), total number of errors on a firm surface ( P = 0.042), and total number of errors on a foam surface ( P = 0.007). There were significant correlations only between the total errors on a foam surface and linear acceleration ( P = 0.038, r = 0.36), head injury criteria ( P = 0.024, r = 0.39), and Gadd Severity Index scores ( P = 0.031, r = 0.37). Changes in the total number of errors on a foam surface may be considered a sensitive measure to detect balance deficits associated with cumulative subconcussive head impacts sustained over the course of 1 lacrosse season, as measured by average linear acceleration, head injury criteria, and Gadd Severity Index scores. If there is microtrauma to the vestibular system due to repetitive subconcussive impacts, only an assessment that highly stresses the vestibular system may be able to detect these changes. Cumulative subconcussive impacts may result in neurocognitive dysfunction, including balance deficits, which are associated with an increased risk for injury. The development of a strategy to reduce total number of head impacts may curb the associated sequelae. Incorporation of a modified BESS test, firm surface only, may not be recommended as it may not detect changes due to repetitive impacts over the course of a competitive season.

  10. Solutions for acceleration measurement in vehicle crash tests

    NASA Astrophysics Data System (ADS)

    Dima, D. S.; Covaciu, D.

    2017-10-01

    Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.

  11. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 4 - Phase 1 Implementation of the Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Abbott, David; Batten, Adam; Carpenter, David; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter; hide

    2008-01-01

    This report describes the first phase of the implementation of the Concept Demonstrator. The Concept Demonstrator system is a powerful and flexible experimental test-bed platform for developing sensors, communications systems, and multi-agent based algorithms for an intelligent vehicle health monitoring system for deployment in aerospace vehicles. The Concept Demonstrator contains sensors and processing hardware distributed throughout the structure, and uses multi-agent algorithms to characterize impacts and determine an appropriate response to these impacts.

  12. Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice.

    PubMed

    Cleary-Gaffney, Michael; Coogan, Andrew N

    2018-05-15

    Circadian rhythms are recurring patterns in a range of behavioural, physiological and molecular parameters that display periods of near 24 h, and are underpinned by an endogenous biological timekeeping system. Circadian clocks are increasingly recognised as being key for health. Environmental light is the key stimulus that synchronises the internal circadian system with the external time cues. There are emergent health concerns regarding increasing worldwide prevalence of electric lighting, especially man-made light-at-night, and light's impact on the circadian system may be central to these effects. A number of previous studies have demonstrated increased depression-like behaviour in various rodent experimental models exposed to dim light-at-night. In this study we set out to study the impact of dim light-at-night on circadian and affective behaviours in C57Bl/6 mice. We set out specifically to examine the impact of sex on light at night's effects, as well as the impact of housing conditions. We report minimal impact of light-at-night on circadian and affective behaviours, as measured by the tail suspension test, the forced swim test, the sucrose preference test and the elevated plus maze. Light-at-night was also not associated with an increase in body weight, but was associated with a decrease in the cell proliferation marker Ki-67 in the dentate gyrus. In summary, we conclude that experimental contextual factors, such as model species or strain, may be considerable importance in the investigation of the impact of light at night on mood-related parameters. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Measuring the Impact of Online Evidence Retrieval Systems using Critical Incidents & Journey Mapping.

    PubMed

    Westbrook, Johanna I; Coiera, Enrico W; Braithwaite, Jeffrey

    2005-01-01

    Online evidence retrieval systems are one potential tool in supporting evidence-based practice. We have undertaken a program of research to investigate how hospital-based clinicians (doctors, nurses and allied health professionals) use these systems, factors influencing use and their impact on decision-making and health care delivery. A central component of this work has been the development and testing of a broad range of evaluation techniques. This paper provides an overview of the results obtained from three stages of this evaluation and details the results derived from the final stage which sought to test two methods for assessing the integration of an online evidence system and its impact on decision making and patient care. The critical incident and journey mapping techniques were applied. Semi-structured interviews were conducted with 29 clinicians who were experienced users of the online evidence system. Clinicians were asked to described recent instances in which the information obtained using the online evidence system was especially helpful with their work. A grounded approach to data analysis was taken producing three categories of impact. The journey mapping technique was adapted as a method to describe and quantify clinicians' integration of CIAP into their practice and the impact of this on patient care. The analogy of a journey is used to capture the many stages in this integration process, from introduction to the system to full integration into everyday clinical practice with measurable outcomes. Transcribed interview accounts of system use were mapped against the journey stages and scored. Clinicians generated 85 critical incidents and one quarter of these provided specific examples of system use leading to improvements in patient care. The journey mapping technique proved to be a useful method for providing a quantification of the ways and extent to which clincians had integrated system use into practice, and insights into how information systems can influence organisational culture. Further work is required on this technique to assess its value as an evaluation method. The study demonstrates the strength of a triangulated evidence approach to assessing the use and impact of online clinical evidence systems.

  14. Single-Event Effects Ground Testing and On-Orbit Rate Prediction Methods: The Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Kinnison, Jim; Pickel, Jim; Buchner, Stephen; Marshall, Paul W.; Kniffin, Scott; LaBel, Kenneth A.

    2003-01-01

    Over the past 27 years, or so, increased concern over single event effects in spacecraft systems has resulted in research, development and engineering activities centered around a better understanding of the space radiation environment, single event effects predictive methods, ground test protocols, and test facility developments. This research has led to fairly well developed methods for assessing the impact of the space radiation environment on systems that contain SEE sensitive devices and the development of mitigation strategies either at the system or device level.

  15. Imparting Barely Visible Impact Damage to a Stitched Composite Large-Scale Pressure Box

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Przekop, Adam

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration, which has been a focus of the NASA Environmentally Responsible Aviation Project. The NASA-Boeing structural development for the HWB aircraft culminated in testing of the multi-bay box, which is an 80%-scale representation of the pressurized center-body section. This structure was tested in the NASA Langley Research Center Combined Loads Test System facility. As part of this testing, barely visible impact damage was imparted to the interior and exterior of the test article to demonstrate compliance with a condition representative of the requirements for Category 1 damaged composite structure as defined by the Federal Aviation Regulations. Interior impacts were imparted using an existing spring-loaded impactor, while the exterior impacts were imparted using a newly designed, gravity-driven impactor. This paper describes the impacts to the test article, and the design of the gravitydriven guided-weight impactor. The guided-weight impactor proved to be a very reliable method to impart barely visible impact damage in locations which are not easily accessible for a traditional drop-weight impactor, while at the same time having the capability to be highly configurable for use on other aircraft structures.

  16. Autoverification process improvement by Six Sigma approach: Clinical chemistry & immunoassay.

    PubMed

    Randell, Edward W; Short, Garry; Lee, Natasha; Beresford, Allison; Spencer, Margaret; Kennell, Marina; Moores, Zoë; Parry, David

    2018-05-01

    This study examines effectiveness of a project to enhance an autoverification (AV) system through application of Six Sigma (DMAIC) process improvement strategies. Similar AV systems set up at three sites underwent examination and modification to produce improved systems while monitoring proportions of samples autoverified, the time required for manual review and verification, sample processing time, and examining characteristics of tests not autoverified. This information was used to identify areas for improvement and monitor the impact of changes. Use of reference range based criteria had the greatest impact on the proportion of tests autoverified. To improve AV process, reference range based criteria was replaced with extreme value limits based on a 99.5% test result interval, delta check criteria were broadened, and new specimen consistency rules were implemented. Decision guidance tools were also developed to assist staff using the AV system. The mean proportion of tests and samples autoverified improved from <62% for samples and <80% for tests, to >90% for samples and >95% for tests across all three sites. The new AV system significantly decreased turn-around time and total sample review time (to about a third), however, time spent for manual review of held samples almost tripled. There was no evidence of compromise to the quality of testing process and <1% of samples held for exceeding delta check or extreme limits required corrective action. The Six Sigma (DMAIC) process improvement methodology was successfully applied to AV systems resulting in an increase in overall test and sample AV by >90%, improved turn-around time, reduced time for manual verification, and with no obvious compromise to quality or error detection. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  17. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  18. Development of an FBG Sensor Array for Multi-Impact Source Localization on CFRP Structures.

    PubMed

    Jiang, Mingshun; Sai, Yaozhang; Geng, Xiangyi; Sui, Qingmei; Liu, Xiaohui; Jia, Lei

    2016-10-24

    We proposed and studied an impact detection system based on a fiber Bragg grating (FBG) sensor array and multiple signal classification (MUSIC) algorithm to determine the location and the number of low velocity impacts on a carbon fiber-reinforced polymer (CFRP) plate. A FBG linear array, consisting of seven FBG sensors, was used for detecting the ultrasonic signals from impacts. The edge-filter method was employed for signal demodulation. Shannon wavelet transform was used to extract narrow band signals from the impacts. The Gerschgorin disc theorem was used for estimating the number of impacts. We used the MUSIC algorithm to obtain the coordinates of multi-impacts. The impact detection system was tested on a 500 mm × 500 mm × 1.5 mm CFRP plate. The results show that the maximum error and average error of the multi-impacts' localization are 9.2 mm and 7.4 mm, respectively.

  19. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because ofmore » the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.« less

  20. A systems approach to water recovery testing for space life support - Initial biomedical results from the ECLSS Water Recovery Test and plans for testbed utilization

    NASA Technical Reports Server (NTRS)

    Aten, Laurie A.; Crump, William J.; Sauer, Richard L.

    1992-01-01

    Among the challenges of designing and constructing Space Station Freedom is the development of the water system. A review of past efforts in reclaiming waste water in enclosed environments reveals that there are many gaps in the biomedical understanding of this process. Some of the key uncertainties of human interaction with a closed water system include determining potential contaminants and establishing safe levels of multiple compounds in the enclosed system of Space Station. Another uncertainty is the microbial constituency of such a system and what impact it could have on crew health and performance. The use of iodine as the passive biocide may have both an indirect and direct impact on the crew. In this paper the initial results of the Water Recovery Test are reviewed from a biomedical perspective, revealing areas where more information is needed to develop the ECLSS water system. By including the approach of 'man as a subsystem', consideration is given to how man interacts with the total water system. Taking this systems approach to providing the crew with a safe source of water gives useful insight into the most efficient design and utilization of closed system testbeds.

  1. A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.

  2. An experimental investigation of the early dynamic impact behaviour of textile armour systems: Decoupling material from system response

    NASA Astrophysics Data System (ADS)

    Cepus, Elvis

    This work focuses on the early impact response of textile armour systems. A relatively new data acquisition system, the Enhanced Laser Velocity Sensor (ELVS), was refined and used to generate a large database of results for a 5.57 mm diameter, 3 gram, non-deforming projectile impacting single-ply configurations of Ballistic Nylon, two weaves of Kevlar 129, and Zylon (PBO) over a range of velocities from 61 m/s to 248 m/s. In addition, one Kevlar 129 material was tested in configurations of 2, 3, 4, 8 and 16 plies over a range of strike velocities from 90 m/s to 481 m/s. ELVS results consisted of high-resolution timehistories of displacement, velocity and energy for each system tested. The strain wave velocity and ballistic performance of each system was also determined. Results taken from during the impact event were analysed up to just prior to the strain-wave rebounding from the boundary and returning to the impact point---effectively removing boundary influences. Regardless of system type, a constant rate of energy absorption within the pre-rebound timeframe was found to exist, which scales with the strike velocity to approximately the 8/3-power. Well-established single fibre theory was modified and applied to woven materials. It was assumed that three primary energy absorption mechanisms exist; elastic strain, in-plane kinetic and out-of-plane kinetic. This simple model yields the experimentally observed 8/3 exponent and parametrically predicts the difference between the different single-ply material systems, but underpredicts the observed behaviour by a factor of 2 and cannot address the performance reduction with increasing ply count. This combined experimental and analytical work confirms the long-held assumption that single fibre wave physics is applicable to multi-ply woven systems. More significantly, for the first time, it decouples material response from overall system response and provides the experimental tools and methodology required to analyse textile armour systems in a scientific manner.

  3. High-rate lithium thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Goebel, F.

    1982-01-01

    A high-rate C cell with disc electrodes was developed to demonstrate current rates which are comparable to other primary systems. The tests performed established the limits of abuse beyond which the cell becomes hazardous. Tests include: impact, shock, and vibration tests; temperature cycling; and salt water immersion of fresh cells.

  4. 46 CFR 56.50-105 - Low-temperature piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ASTM E 23 (incorporated by reference, see § 56.01-2), “Notched Bar Impact Testing of Metallic Materials”, Type A, Figure 4. The toughness testing requirements of subpart 54.05 of this subchapter shall be... testing of production weldments for low temperature piping systems and assemblies is not required. (3...

  5. Corrosion impact of reductant on DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels, components and piping were not impacted with the presence of glycolic acid or the impact is not expected to affect the service life. However, the presence of the glycolate anion was found to affect corrosion susceptibility of some materials of construction in the DWPF and downstream facilities, especially at elevated temperatures. The following table summarizes the results of the electrochemical and hot wall testing and indicates expected performance in service with the glycolate anion present.« less

  6. Uncorrelated Encounter Model of the National Airspace System, Version 2.0

    DTIC Science & Technology

    2013-08-19

    can exist to certify avoidance systems for operational use. Evaluations typically include flight tests, operational impact studies, and simulation of...appropriate for large-scale air traffic impact studies— for example, examination of sector loading or conflict rates. The focus here includes two types of...between two IFR aircraft in oceanic airspace. The reason for this is that one cannot observe encounters of sufficient fidelity in the available data

  7. Integrating Social impacts on Health and Health-Care Systems in Systemic Seismic Vulnerability Analysis

    NASA Astrophysics Data System (ADS)

    Kunz-Plapp, T.; Khazai, B.; Daniell, J. E.

    2012-04-01

    This paper presents a new method for modeling health impacts caused by earthquake damage which allows for integrating key social impacts on individual health and health-care systems and for implementing these impacts in quantitative systemic seismic vulnerability analysis. In current earthquake casualty estimation models, demand on health-care systems is estimated by quantifying the number of fatalities and severity of injuries based on empirical data correlating building damage with casualties. The expected number of injured people (sorted by priorities of emergency treatment) is combined together with post-earthquake reduction of functionality of health-care facilities such as hospitals to estimate the impact on healthcare systems. The aim here is to extend these models by developing a combined engineering and social science approach. Although social vulnerability is recognized as a key component for the consequences of disasters, social vulnerability as such, is seldom linked to common formal and quantitative seismic loss estimates of injured people which provide direct impact on emergency health care services. Yet, there is a consensus that factors which affect vulnerability and post-earthquake health of at-risk populations include demographic characteristics such as age, education, occupation and employment and that these factors can aggravate health impacts further. Similarly, there are different social influences on the performance of health care systems after an earthquake both on an individual as well as on an institutional level. To link social impacts of health and health-care services to a systemic seismic vulnerability analysis, a conceptual model of social impacts of earthquakes on health and the health care systems has been developed. We identified and tested appropriate social indicators for individual health impacts and for health care impacts based on literature research, using available European statistical data. The results will be used to develop a socio-physical model of systemic seismic vulnerability that enhances the further understanding of societal seismic risk by taking into account social vulnerability impacts for health and health-care system, shelter, and transportation.

  8. Transportation impacts of the Chicago River closure to prevent an asian carp infestation.

    DOT National Transportation Integrated Search

    2012-07-01

    This project develops a simple linear programming model of the Upper Midwest regions rail transportation network to test : whether a closure of the Chicago River to freight traffic would impact the capacity constraint of the rail system. The result :...

  9. Use of Mobile Testing System PeLe for Developing Language Skills

    ERIC Educational Resources Information Center

    Titova, Svetlana

    2015-01-01

    One of the objectives of this paper is to investigate the pedagogical impact of both the mobile testing system PeLe (Norway, HiST) and the enquiry-based learning approach on language skills development in the context of mobile-assisted learning. The research aims to work out a methodological framework of PeLe implementation into the language…

  10. Implementation science: the laboratory as a command centre.

    PubMed

    Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W

    2017-03-01

    Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.

  11. Biomechanical responses of PMHS in moderate-speed rear impacts and development of response targets for evaluating the internal and external biofidelity of ATDS.

    PubMed

    Kang, Yun-Seok; Bolte, John H; Moorhouse, Kevin; Donnelly, Bruce; Herriott, Rodney; Mallory, Ann

    2012-10-01

    The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies. Instrumentation used to measure biomechanical responses of the PMHS included both accelerometers and angular rate sensors (ARS). A total of fourteen sled tests using eight PMHS (males 175.8 ± 6.2 cm of stature and 78.4 ± 7.2 kg of weight) provided data sets of seven PMHS for both test conditions. The biomechanical responses are described at both speeds, and cervical spine injuries are documented. Biomechanical targets are also created for internal and external biofidelity evaluation of rear impact anthropomorphic test devices (ATDs).

  12. Physical basis of tap test as a quantitative imaging tool for composite structures on aircraft

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Barnard, Daniel J.; Peters, John J.; Dayal, Vinay

    2000-05-01

    Tap test is a simple but effective way for finding flaws in composite and honeycomb sandwich structures; it has been practiced in aircraft inspection for decades. The mechanics of tap test was extensively researched by P. Cawley et al., and several versions of instrumented tap test have emerged in recent years. This paper describes a quantitative study of the impact duration as a function of the mass, radius, velocity, and material property of the impactor. The impact response is compared to the predictions of Hertzian-type contact theory and a simple spring model. The electronically measured impact duration, τ, is used for generating images of the tapped region. Using the spring model, the images are converted into images of a spring constant, k, which is a measure of the local contact stiffness. The images of k, largely independent of tapper mass and impact velocity, reveal the size, shape and severity (cf. Percent stiffness reduction) of defects and damages, as well as the presence of substructures and the associated stiffness increase. The studies are carried out on a variety of real aircraft components and the results serve to guide the development of a fieldable tap test imaging system for aircraft inspection.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  13. Developing Soil Models for Dynamic Impact Simulations

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Jackson, Karen E.

    2009-01-01

    This paper describes fundamental soils characterization work performed at NASA Langley Research Center in support of the Subsonic Rotary Wing (SRW) Aeronautics Program and the Orion Landing System (LS) Advanced Development Program (ADP). LS-DYNA(Registered TradeMark)1 soil impact model development and test-analysis correlation results are presented for: (1) a 38-ft/s vertical drop test of a composite fuselage section, outfitted with four blocks of deployable energy absorbers (DEA), onto sand, and (2) a series of impact tests of a 1/2-scale geometric boilerplate Orion capsule onto soil. In addition, the paper will discuss LS-DYNA contact analysis at the soil/structure interface, methods used to estimate frictional forces, and the sensitivity of the model to density, moisture, and compaction.

  14. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  15. 16 CFR 1203.1 - Scope, general requirements, and effective date.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vision, positional stability, dynamic strength of retention system, and impact-attenuation tests described in §§ 1203.7 through 1203.17. (4) Units. The values stated in International System of Units (“SI...

  16. A new class of high-G and long-duration shock testing machines

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir

    2018-03-01

    Currently available methods and systems for testing components for survival and performance under shock loading suffer from several shortcomings for use to simulate high-G acceleration events with relatively long duration. Such events include most munitions firing and target impact, vehicular accidents, drops from relatively high heights, air drops, impact between machine components, and other similar events. In this paper, a new class of shock testing machines are presented that can be used to subject components to be tested to high-G acceleration pulses of prescribed amplitudes and relatively long durations. The machines provide for highly repeatable testing of components. The components are mounted on an open platform for ease of instrumentation and video recording of their dynamic behavior during shock loading tests.

  17. Water impact shock test system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The basic objective was to design, manufacture, and install a shock test system which, in part, would have the ability to subject test articles weighing up to 1,000 pounds to both half sine and/or full sine pulses having peak levels of up to 50 G's with half sine pulse durations of 100 milliseconds or full sine period duration of 200 milliseconds. The tolerances associated with the aforementioned pulses were +20% and -10% for the peak levels and plus or minus 10% for the pulse durations. The subject shock test system was to be capable of accepting test article sizes of up to 4 feet by 4 feet mounting surface by 4 feet in length.

  18. The relationship between subconcussive impacts and concussion history on clinical measures of neurologic function in collegiate football players.

    PubMed

    Gysland, Sonia M; Mihalik, Jason P; Register-Mihalik, Johna K; Trulock, Scott C; Shields, Edgar W; Guskiewicz, Kevin M

    2012-01-01

    Concussions sustained during college and professional football careers have been associated with both acute and chronic neurologic impairment. The contribution of subconcussive impacts to this impairment has not been adequately studied. Therefore, we investigated the relationship between subconcussive impacts and concussion history on clinical measures of neurologic function. Forty-six collegiate football players completed five clinical measures of neurologic function commonly employed in the evaluation of concussion before and after a single season. These tests included the Automated Neuropsychological Assessment Metrics, Sensory Organization Test, Standardized Assessment of Concussion, Balance Error Scoring System, and Graded Symptom Checklist. The Head Impact Telemetry (HIT) System recorded head impact data including the frequency, magnitude, and location of impacts. College football players sustain approximately 1,000 subconcussive impacts to the head over the course of a season, but for the most part, do not demonstrate any clinically meaningful changes from preseason to postseason on measures of neurologic function. Changes in performance were mostly independent of prior concussion history, and the total number, magnitude and location of sustained impacts over one season as observed R(2) values ranged between 0.30 and 0.35. Repetitive subconcussive head impacts over a single season do not appear to result in short-term neurologic impairment, but these relationships should be further investigated for a potential dose-response over a player's career.

  19. Lessons learned on the Ground Test Accelerator control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, A.J.; Weiss, R.E.

    1994-09-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks tomore » deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.« less

  20. An Automatic System of Testing the Best Stress of Installation for Semiconductor Refrigeration Piece

    NASA Astrophysics Data System (ADS)

    Chen, Hongyan; Song, Ping

    Concerning the problems of the impact on the factors of installation about semiconductor refrigeration piece are rarely studied in China and abroad, a reasonable structure of test device is designed, using stepper motor to test the temperature of the cold surface under different stress of installation to get the best stress of installation for the semiconductor refrigeration piece. Experiments shows that the system is of good noise immunity, high controlling and measuring precision.

  1. Nano-Composite Foam Sensor System in Football Helmets.

    PubMed

    Merrell, A Jake; Christensen, William F; Seeley, Matthew K; Bowden, Anton E; Fullwood, David T

    2017-12-01

    American football has both the highest rate of concussion incidences as well as the highest number of concussions of all contact sports due to both the number of athletes and nature of the sport. Recent research has linked concussions with long term health complications such as chronic traumatic encephalopathy and early onset Alzheimer's. Understanding the mechanical characteristics of concussive impacts is critical to help protect athletes from these debilitating diseases and is now possible using helmet-based sensor systems. To date, real time on-field measurement of head impacts has been almost exclusively measured by devices that rely on accelerometers or gyroscopes attached to the player's helmet, or embedded in a mouth guard. These systems monitor motion of the head or helmet, but do not directly measure impact energy. This paper evaluates the accuracy of a novel, multifunctional foam-based sensor that replaces a portion of the helmet foam to measure impact. All modified helmets were tested using a National Operating Committee Standards for Athletic Equipment-style drop tower with a total of 24 drop tests (4 locations with 6 impact energies). The impacts were evaluated using a headform, instrumented with a tri-axial accelerometer, mounted to a Hybrid III neck assembly. The resultant accelerations were evaluated for both the peak acceleration and the severity indices. These data were then compared to the voltage response from multiple Nano Composite Foam sensors located throughout the helmet. The foam sensor system proved to be accurate in measuring both the HIC and Gadd severity index, as well as peak acceleration while also providing additional details that were previously difficult to obtain, such as impact energy.

  2. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of examining rate-dependent behavior for determining the longevity of structures manufactured from composite materials.

  3. On impact damage detection and quantification for CFRP laminates using structural response data only

    NASA Astrophysics Data System (ADS)

    Sultan, M. T. H.; Worden, K.; Pierce, S. G.; Hickey, D.; Staszewski, W. J.; Dulieu-Barton, J. M.; Hodzic, A.

    2011-11-01

    The overall purpose of the research is to detect and attempt to quantify impact damage in structures made from composite materials. A study that uses simplified coupon specimens made from a Carbon Fibre-Reinforced Polymer (CFRP) prepreg with 11, 12 and 13 plies is presented. PZT sensors were placed at three separate locations in each test specimen to record the responses from impact events. To perform damaging impact tests, an instrumented drop-test machine was used and the impact energy was set to cover a range of 0.37-41.72 J. The response signals captured from each sensor were recorded by a data acquisition system for subsequent evaluation. The impacted specimens were examined with an X-ray technique to determine the extent of the damaged areas and it was found that the apparent damaged area grew monotonically with impact energy. A number of simple univariate and multivariate features were extracted from the sensor signals recorded during impact by computing their spectra and calculating frequency centroids. The concept of discordancy from the statistical discipline of outlier analysis is employed in order to separate the responses from non-damaging and damaging impacts. The results show that the potential damage indices introduced here provide a means of identifying damaging impacts from the response data alone.

  4. Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure.

    PubMed

    Epp, Tyler; Svecova, Dagmar; Cha, Young-Jin

    2018-03-29

    Structural Health Monitoring (SHM) has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN) application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC) structures.

  5. Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure

    PubMed Central

    Epp, Tyler; Svecova, Dagmar; Cha, Young-Jin

    2018-01-01

    Structural Health Monitoring (SHM) has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN) application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC) structures. PMID:29596332

  6. Comparison of Asian Aquaculture Products by Use of Statistically Supported Life Cycle Assessment.

    PubMed

    Henriksson, Patrik J G; Rico, Andreu; Zhang, Wenbo; Ahmad-Al-Nahid, Sk; Newton, Richard; Phan, Lam T; Zhang, Zongfeng; Jaithiang, Jintana; Dao, Hai M; Phu, Tran M; Little, David C; Murray, Francis J; Satapornvanit, Kriengkrai; Liu, Liping; Liu, Qigen; Haque, M Mahfujul; Kruijssen, Froukje; de Snoo, Geert R; Heijungs, Reinout; van Bodegom, Peter M; Guinée, Jeroen B

    2015-12-15

    We investigated aquaculture production of Asian tiger shrimp, whiteleg shrimp, giant river prawn, tilapia, and pangasius catfish in Bangladesh, China, Thailand, and Vietnam by using life cycle assessments (LCAs), with the purpose of evaluating the comparative eco-efficiency of producing different aquatic food products. Our starting hypothesis was that different production systems are associated with significantly different environmental impacts, as the production of these aquatic species differs in intensity and management practices. In order to test this hypothesis, we estimated each system's global warming, eutrophication, and freshwater ecotoxicity impacts. The contribution to these impacts and the overall dispersions relative to results were propagated by Monte Carlo simulations and dependent sampling. Paired testing showed significant (p < 0.05) differences between the median impacts of most production systems in the intraspecies comparisons, even after a Bonferroni correction. For the full distributions instead of only the median, only for Asian tiger shrimp did more than 95% of the propagated Monte Carlo results favor certain farming systems. The major environmental hot-spots driving the differences in environmental performance among systems were fishmeal from mixed fisheries for global warming, pond runoff and sediment discards for eutrophication, and agricultural pesticides, metals, benzalkonium chloride, and other chlorine-releasing compounds for freshwater ecotoxicity. The Asian aquaculture industry should therefore strive toward farming systems relying upon pelleted species-specific feeds, where the fishmeal inclusion is limited and sourced sustainably. Also, excessive nutrients should be recycled in integrated organic agriculture together with efficient aeration solutions powered by renewable energy sources.

  7. Study of a Steel’s Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM

    PubMed Central

    López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier

    2015-01-01

    Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM–based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given. PMID:28793607

  8. Study of a Steel's Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM.

    PubMed

    López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier

    2015-10-10

    Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM-based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given.

  9. Impact of an electronic alert notification system embedded in radiologists' workflow on closed-loop communication of critical results: a time series analysis.

    PubMed

    Lacson, Ronilda; O'Connor, Stacy D; Sahni, V Anik; Roy, Christopher; Dalal, Anuj; Desai, Sonali; Khorasani, Ramin

    2016-07-01

    Optimal critical test result communication is a Joint Commission national patient safety goal and requires documentation of closed-loop communication among care providers in the medical record. Electronic alert notification systems can facilitate an auditable process for creating alerts for transmission and acknowledgement of critical test results. We evaluated the impact of a patient safety initiative with an alert notification system on reducing critical results lacking documented communication, and assessed potential overuse of the alerting system for communicating results. We implemented an alert notification system-Alert Notification of Critical Results (ANCR)-in January 2010. We reviewed radiology reports finalised in 2009-2014 which lacked documented communication between the radiologist and another care provider, and assessed the impact of ANCR on the proportion of such reports with critical findings, using trend analysis over 10 semiannual time periods. To evaluate potential overuse of ANCR, we assessed the proportion of reports with non-critical results among provider-communicated reports. The proportion of reports with critical results among reports without documented communication decreased significantly over 4 years (2009-2014) from 0.19 to 0.05 (p<0.0001, Cochran-Armitage trend test). The proportion of provider-communicated reports with non-critical results remained unchanged over time before and after ANCR implementation (0.20 to 0.15, p=0.45, Cochran-Armitage trend test). A patient safety initiative with an alert notification system reduced the proportion of critical results among reports lacking documented communication between care providers. We observed no change in documented communication of non-critical results, suggesting the system did not promote overuse. Future studies are needed to evaluate whether such systems prevent subsequent patient harm. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.

    2014-10-11

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system,more » GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.« less

  11. Testing in Support of Space Fission System Development and Qualification

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bragg-Sitton, Shannon; Garber, Anne; Godfrey, Tom; Martin, Jim; Pearson, Boise; Webster, Kenny

    2007-01-01

    Extensive data would be required for the qualification of a fission surface power (FSP) system. The strategy for qualifying a FSP system could have a significant programmatic impact. This paper explores potential options that could be used for qualifying FSP systems, including cost-effective means for obtaining required data. three methods for obtaining qualification data are analysis, non-nuclear testing, and nuclear testing. It has been over 40 years since the US qualified a space reactor for launch. During that time, advances have been made related to all three methods. Perhaps the greatest advancement has occurred in the area of computational tools for design and analysis. Tools that have been developed, coupled with modem computers, would have a significant impact on a FSP qualification. This would be especially true for systems with materials and fuels operating well within temperature, irradiation damage, and burnup limits. The ability to perform highly realistic non-nuclear testing has also advanced throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modem FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.} and extensive data to be taken from the core region. Both steady-state and transient operation can be tested. For transient testing, reactivity feedback is calculated (or measured in cold/warm criticals) based on reactor temperature and/or dimensional changes. Pin power during a transient is then calculated based on the reactivity feedback that would occur given measured values of temperature and/or dimensional change. In this way nonnuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. Realistic non-nuclear testing is most useful for systems operating within known temperature, irradiation damage, and burnup capabilities.

  12. Pendulum impact testing of an impact-breakaway, windresistant base connection for multi-post ground signs.

    DOT National Transportation Integrated Search

    2012-07-01

    Roadside signs play an important role in traffic control systems and must be placed adjacent to roadways. If they are not designed, : fabricated, and installed properly, ground signs may pose potential hazards to vehicle passengers in the event of a ...

  13. NREL’s Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.

  14. Estimation of the kinetic energy dissipation in fall-arrest system and manikin during fall impact.

    PubMed

    Wu, John Z; Powers, John R; Harris, James R; Pan, Christopher S

    2011-04-01

    Fall-arrest systems (FASs) have been widely applied to provide a safe stop during fall incidents for occupational activities. The mechanical interaction and kinetic energy exchange between the human body and the fall-arrest system during fall impact is one of the most important factors in FAS ergonomic design. In the current study, we developed a systematic approach to evaluate the energy dissipated in the energy absorbing lanyard (EAL) and in the harness/manikin during fall impact. The kinematics of the manikin and EAL during the impact were derived using the arrest-force time histories that were measured experimentally. We applied the proposed method to analyse the experimental data of drop tests at heights of 1.83 and 3.35 m. Our preliminary results indicate that approximately 84-92% of the kinetic energy is dissipated in the EAL system and the remainder is dissipated in the harness/manikin during fall impact. The proposed approach would be useful for the ergonomic design and performance evaluation of an FAS. STATEMENT OF RELEVANCE: Mechanical interaction, especially kinetic energy exchange, between the human body and the fall-arrest system during fall impact is one of the most important factors in the ergonomic design of a fall-arrest system. In the current study, we propose an approach to quantify the kinetic energy dissipated in the energy absorbing lanyard and in the harness/body system during fall impact.

  15. Crash Test of Three Cessna 172 Aircraft at NASA Langley Research Center's Landing and Impact Research Facility

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2015-01-01

    During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.

  16. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  17. Overview of LIDS Docking and Berthing System Seals

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Dunlap, Patrick H., Jr.; deGroh, Henry C., III; Steinetz, Bruce M.; Oswald, Jay J.; Smith, Ian

    2007-01-01

    This viewgraph presentation describes the Low Impact Docking System (LIDS) docking and berthing system seals. The contents include: 1) Description of the Application: Low Impact Docking System (LIDS); 2) LIDS Seal Locations: Vehicle Undocked (Hatch Closed); 3) LIDS Seal Locations: Mechanical Pass Thru; 4) LIDS Seal Locations: Electrical and Pyro Connectors; 5) LIDS Seal Locations: Vehicle Docked (Hatches Open); 6) LIDS Seal Locations: Main Interface Seal; 7) Main Interface Seal Challenges and Specifications; 8) Approach; 9) Seal Concepts Under Development/Evaluation; 10) Elastomer Material Evaluations; 11) Evaluation of Relevant Seal Properties; 12) Medium-Scale (12") Gask-O-Seal Compression Tests; 13) Medium-Scale Compression Results; 14) Adhesion Forces of Elliptical Top Gask-o-seals; 15) Medium-Scale Seals; 16) Medium-Scale Leakage Results: Effect of Configuration; 17) Full Scale LIDS Seal Test Rig Development; 18) Materials International Space Station Experiment (MISSE 6A and 6B); and 19) Schedule.

  18. Director, Operational Test and Evaluation FY 2014 Annual Report

    DTIC Science & Technology

    2015-01-01

    Federal Departments and Agencies. Mitigation measures such as curtailment of wind turbine operations during test periods, identification of alternative...impact of wind turbines on ground-based and airborne radars, and this investment may help mitigate interference of wind turbines with test range...Frequency Active (SURTASS CLFA) Test Plan Tactical Unmanned Aircraft System Tactical Common Data Link (Shadow) FOT&E OTA Test Plan Tempest Wind 2014

  19. The Johnson Space Center Experimental Impact Lab: Contributions Toward Understanding the Evolution of the Solar System

    NASA Technical Reports Server (NTRS)

    See, T. H.; Montes, R.

    2012-01-01

    Impact is the most common and only weathering phenomenon affecting all the planetary bodies (e.g., planets, satellites, asteroids, comets, etc.) in the solar system. NASA Johnson Space Center s Experimental Impact Laboratory (EIL) includes three accelerators that are used in support of research into the effects of impact on the formation and evolution of the solar system. They permit researchers to study a wide variety of phenomena associated with high-velocity impacts into a wide range of geologic targets and materials relevant to astrobiological studies. By studying these processes, researchers can investigate the histories and evolution of planetary bodies and the solar system as a whole. While the majority of research conducted in the EIL addresses questions involving planetary impacts, work involving spacecraft components has been performed on occasion. An example of this is the aerogel collector material flown on the Stardust spacecraft that traveled to Comet Wild-2. This capture medium was tested and flight qualified using the 5 mm Light-Gas Gun located in the EIL.

  20. Travtek Evaluation Safety Study

    DOT National Transportation Integrated Search

    1996-02-01

    One of the major evaluation goals of the TravTek operational test was to assess the safety impact of the TravTek system as implemented in Orlando, Florida during the 1 -year deployment phase. Also, the results of the TravTek operational test, with re...

  1. Debris Impact Detection Instrument for Crewed Modules

    NASA Technical Reports Server (NTRS)

    Opiela, J.; Corsaro, R.; Giovanes, F.; Lio, J.-C.

    2012-01-01

    When micrometeoroid or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. This is especially important because the outer walls of pressurized volumes are often not easily accessible, blocked by racks or cabinets. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules. The HIMS uses multiple passive, thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA s 2010 and 2011 Desert Research and Technologies Studies (Desert-RATS or D-RATS). The HDU lab module, as seen from above, has an open circular floorplan divided into eight wedge-shaped Segments. The side wall of the module -- the surface used for this technology demonstration -- is a hard fiberglass composite covered with a layer of sprayed-on foam insulation. Four sensor locations were assigned near the corners of a rectangular pattern on the wall of one segment of the HDU lab module. The flat, self-adhesive sensors were applied to the module during its initial outfitting. To study the influence of the wall s construction (thickness and materials), three sets of four sensors were installed at different layer depths: on the interior of the module s wall, on the exterior of the same wall, and on the exterior of the foam insulation. The signal produced when a vibration passes through a sensor is first sent through a pre-amplifier. The amplified signal then is sent to the data acquisition and data processing systems. The vibration data from the sensors are then processed and reduced to a form suitable for presentation to the crew.

  2. Evaluating effectiveness of dynamic soundfield system in the classroom

    PubMed Central

    da Cruz, Aline Duarte; Alves Silvério, Kelly Cristina; Da Costa, Aline Roberta Aceituno; Moret, Adriane Lima Mortari; Lauris, José Roberto Pereira; de Souza Jacob, Regina Tangerino

    2016-01-01

    Research has reported on the use of soundfield amplification devices in the classroom. However, no study has used standardized tests to determine the potential advantages of the dynamic soundfield system for normally hearing students and for the teacher's voice. Our aim was to evaluate the impact of using dynamic soundfield system on the noise of the classroom, teacher's voice and students’ academic performance. This was a prospective cohort study in which 20 student participants enrolled in the third year of basic education were divided into two groups (i.e., control and experimental); their teacher participated. The experimental group was exposed to the dynamic soundfield system for 3 consecutive months. The groups were assessed using standardized tests to evaluate their academic performance. Further, questionnaires and statements were collected on the participants’ experience of using the soundfield system. We statistically analyzed the results to compare the academic performance of the control group with that of the experimental group. In all cases, a significance level of P < .05 was adopted. Use of the dynamic soundfield system was effective for improving the students’ academic performance on standardized tests for reading, improving the teacher's speech intelligibility, and reducing the teacher's vocal strain. The dynamic soundfield system minimizes the impact of noise in the classroom as demonstrated by the mensuration of the signal-to-noise ratio (SNR) and pupil performance on standardized tests for reading and student and teacher ratings of amplification system effectiveness. PMID:26780961

  3. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporatormore » serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.« less

  4. Comparing the impacts of sediment-bound bifenthrin on aquatic macroinvertebrates in laboratory bioassays and field microcosms.

    PubMed

    Boyle, Rhianna L; Hoak, Molly N; Pettigrove, Vincent J; Hoffmann, Ary A; Long, Sara M

    2016-11-01

    We conducted two laboratory bioassays and two field microcosm exposures with bifenthrin (a synthetic pyrethroid) in order to evaluate the capacity of single-species laboratory bioassays to predict lethal and sublethal impacts on aquatic invertebrates in microcosms. For the laboratory species, Chironomus tepperi, larval survival was reduced by 24% at 53.66µg/g OC, while adult emergence was reduced at concentrations of 33.33µg/g OC and higher, with a 61% decrease at 77.78µg/g OC and no emergence at 126.67µg/g OC. The abundance of several other microcosm taxa was reduced in the microcosms at a similar concentration range (33.33µg/g OC and above), however there was no impact on the abundance of the congeneric species, Chironomus oppositus. The differences in impacts between test systems were potentially due to both differing species sensitivity and the interaction of ambient temperature with bifenthrin toxicity. Bifenthrin also was associated with early emergence of Chironomus sp. in both test systems, at concentrations of 10µg/g OC and higher (laboratory) and 43.90µg/g OC (microcosm), and with a significant decrease in the proportion of C. oppositus males in a microcosm. These findings indicate that while laboratory bioassays accurately predict many impacts in the field, there are some limitations to the predictive capacity of these tests. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish

    EPA Science Inventory

    Within the field of chemical safety assessment, there is a desire to replace costly whole organism testing with more efficient and cost-effective alternatives based on in vitro test systems. Disruption of thyroid hormone signaling via inhibition of enzymes called deiodinases is o...

  6. High-Stakes Testing in Education: Science and Practice in K-12 Settings

    ERIC Educational Resources Information Center

    Bovaird, James A., Ed.; Geisinger, Kurt F., Ed.; Buckendahl, Chad W., Ed.

    2011-01-01

    Educational assessment and, more broadly, educational research in the United States have entered into an era characterized by a dramatic increase in the prevalence and importance of test score use in accountability systems. This volume covers a selection of contemporary issues about testing science and practice that impact the nation's public…

  7. A Framework of the Use of Information in Software Testing

    ERIC Educational Resources Information Center

    Kaveh, Payman

    2010-01-01

    With the increasing role that software systems play in our daily lives, software quality has become extremely important. Software quality is impacted by the efficiency of the software testing process. There are a growing number of software testing methodologies, models, and initiatives to satisfy the need to improve software quality. The main…

  8. Testing Installed Propulsion for Shielded Exhaust Configurations

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Podboy, Gary G.; Brown, Clifford A.

    2016-01-01

    Jet-surface interaction (JSI) can be a significant factor in the exhaust noise of installed propulsion systems. Tests to further the understanding and prediction of the acoustic impacts of JSI have been described. While there were many objectives for the test, the overall objective was to prepare for a future test validating the design of a low-noise, lowboom supersonic commercial airliner. In this paper we explore design requirements for a partial aircraft model to be used in subscale acoustic testing, especially focusing on the amount of aircraft body that must be included to produce the acoustic environment between propulsion exhaust system and observer. We document the dual-stream jets, both nozzle and flow conditions, which were tested to extend JSI acoustic modeling from simple singlestream jets to realistic dual-stream exhaust nozzles. Sample observations are provided of changes to far-field sound as surface geometry and flow conditions were varied. Initial measurements are presented for integrating the propulsion on the airframe for a supersonic airliner with simulated airframe geometries and nozzles. Acoustic impacts of installation were modest, resulting in variations of less than 3 EPNdB in most configurations.

  9. Proficiency Testing for Evaluating Aerospace Materials Test Anomalies

    NASA Technical Reports Server (NTRS)

    Hirsch, D.; Motto, S.; Peyton, S.; Beeson, H.

    2006-01-01

    ASTM G 86 and ASTM G 74 are commonly used to evaluate materials susceptibility to ignition in liquid and gaseous oxygen systems. However, the methods have been known for their lack of repeatability. The inherent problems identified with the test logic would either not allow precise identification or the magnitude of problems related to running the tests, such as lack of consistency of systems performance, lack of adherence to procedures, etc. Excessive variability leads to increasing instances of accepting the null hypothesis erroneously, and so to the false logical deduction that problems are nonexistent when they really do exist. This paper attempts to develop and recommend an approach that could lead to increased accuracy in problem diagnostics by using the 50% reactivity point, which has been shown to be more repeatable. The initial tests conducted indicate that PTFE and Viton A (for pneumatic impact) and Buna S (for mechanical impact) would be good choices for additional testing and consideration for inter-laboratory evaluations. The approach presented could also be used to evaluate variable effects with increased confidence and tolerance optimization.

  10. Impact of water quality on chlorine demand of corroding copper

    EPA Pesticide Factsheets

    Copper is widely used in drinking water premise plumbing system materials. In buildings such ashospitals, large and complicated plumbing networks make it difficult to maintain good water quality.Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogenssuch as Legionella is particularly challenging since copper and other reactive distribution system materialscan exert considerable demands. The objective of this work was to evaluate the impact of pH andorthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. Acopper test-loop pilot system was used to control test conditions and systematically meet the studyobjectives. Chlorine consumption trends attributed to abiotic reactions with copper over time weredifferent for each pH condition tested, and the total amount of chlorine consumed over the test runsincreased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsedtime (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reducedthe total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorineconsumed and the consumption rate were not pH dependent when orthophosphate was present. Thefindings reflect the complex and competing reactions at the copper pipe wall including corrosion,oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in

  11. A plan for application system verification tests: The value of improved meteorological information, volume 1. [economic consequences of improved meteorological information

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The framework within which the Applications Systems Verification Tests (ASVTs) are performed and the economic consequences of improved meteorological information demonstrated is described. This framework considers the impact of improved information on decision processes, the data needs to demonstrate the economic impact of the improved information, the data availability, the methodology for determining and analyzing the collected data and demonstrating the economic impact of the improved information, and the possible methods of data collection. Three ASVTs are considered and program outlines and plans are developed for performing experiments to demonstrate the economic consequences of improved meteorological information. The ASVTs are concerned with the citrus crop in Florida, the cotton crop in Mississippi and a group of diverse crops in Oregon. The program outlines and plans include schedules, manpower estimates and funding requirements.

  12. 2014 NREL Photovoltaic Reliability Workshops | Photovoltaic Research | NREL

    Science.gov Websites

    Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard-Peter McNutt, NREL Data Determining PV System's Degradation Rate and the Impact of Data Filters-Wilson Zexu Zhang, REC Solar Pte. Ltd " Test in Qualifying Solar PV Inverters-Dutch Uselton, Lennox IND System Reliability for Utility PV

  13. National Tests and Education Reform: Are They Compatible? William H. Angoff Memorial Lecture Series.

    ERIC Educational Resources Information Center

    Jones, Lyle V.

    The President and the Department of Education have advocated national testing, but they have not really justified their use. Most educators argue for the importance of multiple assessments, rather than a single test of achievement with great impact on the future of a student and an educational system. Misuses of test results would plague national…

  14. 75 FR 23271 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... proposed information collection project: ``National Hospital Adverse Event Reporting System: Questionnaire...: Proposed Project National Hospital Adverse Event Reporting System: Questionnaire Redesign and Testing As... the impact of the PSOs and the Patient Safety Act on the use of adverse event reporting systems and...

  15. 75 FR 38102 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... proposed information collection project: ``National Hospital Adverse Event Reporting System: Questionnaire...: Proposed Project National Hospital Adverse Event Reporting System: Questionnaire Redesign and Testing As... the impact of the PSOs and the Patient Safety Act on the use of adverse event reporting systems and...

  16. Mechanical evaluation of hip pads to protect against fracture of elderly femurs in falls.

    PubMed

    Tadano, Shigeru; Nakatsuchi, Hiroki; Goto, Naoko; Fujisaki, Kazuhiro; Nakatsuchi, Yukio

    2011-01-01

    Hip fracture in the aged easily occurs by falls and may cause these persons to become bedridden. Hip pads are effective in protecting hip fracture as they directly deflect and absorb the impact forces by falls. It is necessary for the material and the structure of hip pads to be designed to realize both high impact absorption and compliance (comfort during wearing). In this report, an impact testing system was developed to test the impact absorbing performance of hip pad with air cushions designed by the research group. The impact absorbing performance was evaluated by the impact load, collision time, and maximum load. To confirm the effectiveness in protecting against hip fracture, an impact force was applied to the greater trochanter of the human femur and the degree of fracture was measured by X-ray examination. As a result, the hip pad with air cushions had a high impact absorbing performance and was sufficiently effective to protect against hip fracture.

  17. Testing space weather connections in the solar system

    NASA Astrophysics Data System (ADS)

    Grison, B.; Souček, J.; Krupař, V.; Píša, D.; Santolík, O.; Taubenschuss, U.; Němec, F.

    2017-09-01

    This study aims at testing and validating tools for prediction of the impact of solar events in the vicinity of inner and outer solar system planets using in-situ spacecraft data (primarily MESSENGER, STEREO and ACE, but also VEX and Cassini), remote Jovian observations (Hubble telescope, Nançay decametric array), existing catalogues (HELCATS and Tao et al. (2005)) and the tested propagating models (the ICME radial propagation tool of the CDPP and the 1-D MHD code propagation model presented in Tao et al. (2005)).

  18. Operator adaptation to changes in system reliability under adaptable automation.

    PubMed

    Chavaillaz, Alain; Sauer, Juergen

    2017-09-01

    This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.

  19. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  20. IS Success Model in E-Learning Context Based on Students' Perceptions

    ERIC Educational Resources Information Center

    Freeze, Ronald D.; Alshare, Khaled A.; Lane, Peggy L.; Wen, H. Joseph

    2010-01-01

    This study utilized the Information Systems Success (ISS) model in examining e-learning systems success. The study was built on the premise that system quality (SQ) and information quality (IQ) influence system use and user satisfaction, which in turn impact system success. A structural equation model (SEM), using LISREL, was used to test the…

  1. Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Cheng, A.; Küppers, M.; Pravec, P.; Blum, J.; Delbo, M.; Green, S. F.; Rosenblatt, P.; Tsiganis, K.; Vincent, J. B.; Biele, J.; Ciarletti, V.; Hérique, A.; Ulamec, S.; Carnelli, I.; Galvez, A.; Benner, L.; Naidu, S. P.; Barnouin, O. S.; Richardson, D. C.; Rivkin, A.; Scheirich, P.; Moskovitz, N.; Thirouin, A.; Schwartz, S. R.; Campo Bagatin, A.; Yu, Y.

    2016-06-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to test the kinetic impactor technique to deflect an asteroid. The European Asteroid Impact Mission (AIM) is set to rendezvous with the asteroid system to fully characterize the smaller of the two binary components a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near-Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Having direct information on the surface and internal properties of small asteroids will allow us to understand how the various processes they undergo work and transform these small bodies as well as, for this particular case, how a binary system forms. Making these measurements from up close and comparing them with ground-based data from telescopes will also allow us to calibrate remote observations and improve our data interpretation of other systems. With DART, thanks to the characterization of the target by AIM, the mission will be the first fully documented impact experiment at asteroid scale, which will include the characterization of the target's properties and the outcome of the impact. AIDA will thus offer a great opportunity to test and refine our understanding and models at the actual scale of an asteroid, and to check whether the current extrapolations of material strength from laboratory-scale targets to the scale of AIDA's target are valid. Moreover, it will offer a first check of the validity of the kinetic impactor concept to deflect a small body and lead to improved efficiency for future kinetic impactor designs. This paper focuses on the science return of AIM, the current knowledge of its target from ground-based observations, and the instrumentation planned to get the necessary data.

  2. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Revilock, D. M.; Pereira, J. M.

    2009-01-01

    This report summarizes the ballistic impact testing that was conducted to provide validation data for the development of numerical models of blade-out events in fabric containment systems. The ballistic impact response of two different fiber materials - Kevlar(TradeName) 49 and Zylon(TradeName) AS (as spun) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation, and velocity of the projectile were varied and recorded. In most cases, the tests were designed so the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models to predict the response of fabrics under conditions that simulate those of a jet engine blade-release situation. In addition, some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different fabric materials.

  3. PRELIMINARY EVALUATION OF DWPF IMPACTS OF BORIC ACID USE IN CESIUM STRIP FOR SWPF AND MCU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.

    2010-09-28

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix,more » or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Experimental testing with the improved solvent is required to determine the impact of any changes in the entrained solvent on DWPF processing.« less

  4. A micro-vibration generated method for testing the imaging quality on ground of space remote sensing

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Wu, Qingwen

    2018-03-01

    In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.

  5. Freight Advanced Traveler Information System (FRATIS) impact assessment.

    DOT National Transportation Integrated Search

    2016-01-01

    This report is an independent assessment of three prototype Freight Advanced Traveler Information System (FRATIS) tests at Los Angeles, Dallas/Fort Worth, and South Florida. The FRATIS technologies deployed at one or two drayage companies in each tes...

  6. NASA Double Asteroid Redirection Test (DART) Trajectory Validation and Robutness

    NASA Technical Reports Server (NTRS)

    Sarli, Bruno V.; Ozimek, Martin T.; Atchison, Justin A.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    The Double Asteroid Redirection Test (DART) mission will be the first to test the concept of a kinetic impactor. Several studies have been made on asteroid redirection and impact mitigation, however, to this date no mission tested the proposed concepts. An impact study on a representative body allows the measurement of the effects on the target's orbit and physical structure. With this goal, DART's objective is to verify the effectiveness of the kinetic impact concept for planetary defense. The spacecraft uses solar electric propulsion to escape Earth, fly by (138971) 2001 CB21 for impact rehearsal, and impact Didymos-B, the secondary body of the binary (65803) Didymos system. This work focuses on the heliocentric transfer design part of the mission with the validation of the baseline trajectory, performance comparison to other mission objectives, and assessment of the baseline robustness to missed thrust events. Results show a good performance of the selected trajectory for different mission objectives: latest possible escape date, maximum kinetic energy on impact, shortest possible time of flight, and use of an Earth swing-by. The baseline trajectory was shown to be robust to a missed thrust with 1% of fuel margin being enough to recover the mission for failures of more than 14 days.

  7. Hormonal and Local Regulation of Bone Formation.

    ERIC Educational Resources Information Center

    Canalis, Ernesto

    1985-01-01

    Reviews effects of hormones, systemic factors, and local regulators on bone formation. Identifies and explains the impact on bone growth of several hormones as well as the components of systemic and local systems. Concentrates on bone collagen and DNA synthesis. (Physicians may earn continuing education credit by completing an appended test). (ML)

  8. Characterization of the dynamic behaviour of ALGOTUF armour steel during impact and in torsion

    NASA Astrophysics Data System (ADS)

    Bassim, Nabil; Boakye-Yiadom, Solomon; Toussaint, Genevieve; Bolduc, Manon

    2015-09-01

    Algotuf is a new steel which is proposed as a candidate for armour material. To assess this application, a study of the impact properties of this steel was conducted at the University of Manitoba using two types of Hopkinson Bar systems, namely a torsional bar equipment and a direct impact system capable of producing high strain rates and large strains. Stress strain curves for the steels were obtained in pure shear and in compression. Temperatures of 25 ∘C, 200 ∘C and 500 ∘C were used in the testing. Following the testing, a microstructural examination of the specimens tested was carried out to investigate the effect of microstructure on the mechanism of failure of this material. It was found that, above a value of impact momentum corresponding to a high strain rate, adiabatic shear bands are formed. The microscopic examination showed that the initiation of these shear bands corresponded at locations where martensitic laths were present and around regions of maximum shear stresses. Generally, the shear bands act as precursors to the formation of microcracks that may lead to failure. On the other hand, the high strength and formability of the steel makes it suitable for use as an armour material.

  9. High Speed Videometric Monitoring of Rock Breakage

    NASA Astrophysics Data System (ADS)

    Allemand, J.; Shortis, M. R.; Elmouttie, M. K.

    2018-05-01

    Estimation of rock breakage characteristics plays an important role in optimising various industrial and mining processes used for rock comminution. Although little research has been undertaken into 3D photogrammetric measurement of the progeny kinematics, there is promising potential to improve the efficacy of rock breakage characterisation. In this study, the observation of progeny kinematics was conducted using a high speed, stereo videometric system based on laboratory experiments with a drop weight impact testing system. By manually tracking individual progeny through the captured video sequences, observed progeny coordinates can be used to determine 3D trajectories and velocities, supporting the idea that high speed video can be used for rock breakage characterisation purposes. An analysis of the results showed that the high speed videometric system successfully observed progeny trajectories and showed clear projection of the progeny away from the impact location. Velocities of the progeny could also be determined based on the trajectories and the video frame rate. These results were obtained despite the limitations of the photogrammetric system and experiment processes observed in this study. Accordingly there is sufficient evidence to conclude that high speed videometric systems are capable of observing progeny kinematics from drop weight impact tests. With further optimisation of the systems and processes used, there is potential for improving the efficacy of rock breakage characterisation from measurements with high speed videometric systems.

  10. NASA Double Asteroid Redirection Test (Dart) Trajectory Validation and Robustness

    NASA Technical Reports Server (NTRS)

    Sarli, Bruno V.; Ozimek, Martin T.; Atchison, Justin A.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    The Double Asteroid Redirection Test (DART) mission will be the first to test the concept of a kinetic impactor. Several studies have been made on asteroid redirection and impact mitigation, however, to this date no mission tested the proposed concepts. An impact study on a representative body allows the measurement of the effects on the target's orbit and physical structure. With this goal, DART's objective is to verify the effectiveness of the kinetic impact concept for planetary defense. The spacecraft uses solar electric propulsion to escape Earth, flyby (138971) 2001 CB21 for impart rehearsal, and impact the secondary body of the (65803) Didymos system. This work focuses on the interplanetary trajectory design part of the mission with the validation of the baseline trajectory, performance comparison to other mission objectives, and assessment of the baseline robustness to missed thrust events. Results show a good performance of the selected trajectory for different mission objectives: latest possible escape date, maximum kinetic energy on impact, shortest possible time of flight, and use of an Earth swing-by. The baseline trajectory was shown to be robust to a missed thrust with 1% of fuel margin being enough to recover the mission for failures of more than 14 days.

  11. Space station integrated wall damage and penetration damage control. Task 5: Space debris measurement, mapping and characterization system

    NASA Technical Reports Server (NTRS)

    Lempriere, B. M.

    1987-01-01

    The procedures and results of a study of a conceptual system for measuring the debris environment on the space station is discussed. The study was conducted in two phases: the first consisted of experiments aimed at evaluating location of impact through panel response data collected from acoustic emission sensors; the second analyzed the available statistical description of the environment to determine the probability of the measurement system producing useful data, and analyzed the results of the previous tests to evaluate the accuracy of location and the feasibility of extracting impactor characteristics from the panel response. The conclusions were that for one panel the system would not be exposed to any event, but that the entire Logistics Module would provide a modest amount of data. The use of sensors with higher sensitivity than those used in the tests could be advantageous. The impact location could be found with sufficient accuracy from panel response data. The waveforms of the response were shown to contain information on the impact characteristics, but the data set did not span a sufficient range of the variables necessary to evaluate the feasibility of extracting the information.

  12. Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.

  13. Testing an innovative framework for flood forecasting, monitoring and mapping in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Between May and June 2016, France was hit by severe floods, particularly in the Loire and Seine river basins. In this work, we use this case study to test an innovative framework for flood forecasting, mapping and monitoring. More in detail, the system integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. We explore in detail the performance of each component of the system, demonstrating the improvements in respect to stand-alone flood forecasting and monitoring systems. We show how the performances of the forecasting component can be refined using the real-time feedback from social media monitoring to identify which areas were flooded, to evaluate the flood intensity, and therefore to correct impact estimations. Moreover, we show how the integration with impact forecast and social media monitoring can improve the timeliness and efficiency of satellite based emergency mapping, and reduce the chances of missing areas where flooding is already happening. These results illustrate how the new integrated approach leads to a better and earlier decision making and a timely evaluation of impacts.

  14. Evaluation of wheelchair seating system crashworthiness: "drop hook"-type seat attachment hardware.

    PubMed

    Bertocci, G; Ha, D; Deemer, E; Karg, P

    2001-04-01

    To evaluate the crashworthiness of commercially available hardware that attaches seat surfaces to the wheelchair frame. A low cost static crashworthiness test procedure that simulates a frontal impact motor vehicle crash. Safety testing laboratory. Eleven unique sets of drop-hook hardware made of carbon steel (4), stainless steel (4), and aluminum (3). Replicated seat-loading conditions associated with a 20g/48 kph frontal impact. Test criterion for seat loading was 16,680 N (3750 lb). Failure load and deflection of seat surface. None of the hardware sets tested met the crashworthiness test criterion. All failed at less than 50% of the load that seating hardware could be exposed to in a 20g/48 kph frontal impact. The primary failure mode was excessive deformation, leading to an unstable seat support surface. Results suggest that commercially available seating drop hooks may be unable to withstand loading associated with a frontal crash and may not be the best option for use with transport wheelchairs.

  15. Vapor/Mist Used to Lubricate Gears After Loss of Primary Lubrication System

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Morales, Wilfredo

    2001-01-01

    Loss of lubrication in rotorcraft drive systems is a demanding requirement placed on drive system manufacturers. The drive system must operate for at least 30 minutes once the primary lubrication system has failed. This test is a military requirement that must be passed prior to certification of the aircraft. As new aircraft engines, operating at higher speeds, are fielded, the requirements for the drive system become increasingly more difficult. Also, the drive system must be lightweight, which minimizes the opportunity to use the gear bodies to absorb the tremendous amount of heating that takes place. In many cases, the amount of heat generated because of the high speed and load requires an emergency lubrication system that negatively impacts the aircraft's weight, complexity, and cost. A single mesh spur gear test rig is being used at the NASA Glenn Research Center to investigate possible emergency lubrication system improvements that will minimize the impact of having these systems onboard rotorcraft. A technique currently being investigated uses a vapor/mist system to lubricate the contacting surfaces after the primary lubrication system has been shut down. A number of tests were conducted in which the vapor/mist used the same lubricant as the primary system, but at a greatly reduced flow rate. Each test was initiated with the primary lubrication system operational and at steady-state conditions for a given speed and load. Then the primary lubrication system was shut down, and the vapor/mist lubrication system was initiated. An example of the tests conducted is shown in the figures. These preliminary tests have uncovered a mechanism that provides a lubricious, carbonaceous solid on the surface that actually reduces the surface temperature of the meshing gear teeth during operation. Surface analysis of the carbonaceous solid revealed it was graphitic. This mechanism is the synthetic lubricant "coking" on the active profile of the gears, which reduces the friction between the contacting gear surfaces. The level of load affects the onset of this mechanism: the higher the load, the sooner coking takes place. Future work will investigate several other factors that could improve the already promising results that have been attained.

  16. Rapid detection and identification of pedestrian impacts using a distributed sensor network

    NASA Astrophysics Data System (ADS)

    Kim, Andrew C.; Chang, Fu-Kuo

    2005-05-01

    Pedestrian fatalities from automobile accidents often occur as a result of head injuries suffered from impacts with an automobile front end. Active pedestrian protection systems with proper pedestrian recognition algorithms can protect pedestrians from such head trauma. An investigation was conducted to assess the feasibility of using a network of piezoelectric sensors mounted on the front bumper beam of an automobile to discriminate between impacts with "pedestrian" and "non-pedestrian" objects. This information would be used to activate a safety device (e.g., external airbag or pop-up hood) to provide protection for the vulnerable pedestrian. An analytical foundation for the object-bumper impact problem will be presented, as well as the classical beam impact theory. The mechanical waves that propagate in the structure from an external impact contain a wealth of information about the specifics of a particular impact -- object mass, size, impact speed, etc. -- but most notably the object stiffness, which identifies the impacted object. Using the frequency content of the sensor signals, it can be shown that impacts with a "pedestrian" object of varying size, weight, and speed can be easily differentiated from impacts with other "non-pedestrian" objects. Simulation results will illustrate this phenomenon, and experimental tests will verify the results. A comprehensive series of impact tests were performed for validation, using both a stationary front bumper with a drop-pendulum impactor and a moving car with stationary impact objects. Results from both tests will be presented.

  17. The effect of the impactor diameter and temperature on low velocity impact behavior of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Evci, C.; Uyandıran, I.

    2017-02-01

    Impact damage is one of the major concerns that should be taken into account with the new aircraft and spacecraft structures which employ ever-growing use of composite materials. Considering the thermal loads encountered at different altitudes, both low and high temperatures can affect the properties and impact behavior of composite materials. This study aims to investigate the effect of temperature and impactor diameter on the impact behavior and damage development in balanced and symmetrical CFRP laminates which were manufactured by employing vacuum bagging process with autoclave cure. Instrumented drop-weight impact testing system is used to perform the low velocity impact tests in a range of temperatures ranged from 60 down to -50 °C. Impact tests for each temperature level were conducted using three different hemispherical impactor diameters varying from 10 to 20 mm. Energy profile method is employed to determine the impact threshold energies for damage evolution. The level of impact damage is determined from the dent depth on the impacted face and delamination damage detected using ultrasonic C-Scan technique. Test results reveal that the threshold of penetration energy, main failure force and delamination area increase with impactor diameter at all temperature levels. No clear influence of temperature on the critical force thresholds could be derived. However, penetration threshold energy decreased as the temperature was lowered. Drop in the penetration threshold was more obvious with quite low temperatures. Delamination damage area increased while the temperature decreased from +60 °C to -50 °C.

  18. 12 CFR 252.155 - Methodologies and practices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SYSTEM (CONTINUED) ENHANCED PRUDENTIAL STANDARDS (REGULATION YY) Company-Run Stress Test Requirements for....155 Methodologies and practices. (a) Potential impact on capital. In conducting a stress test under...) Losses, pre-provision net revenue, provision for loan and lease losses, and net income; and (2) The...

  19. 12 CFR 252.155 - Methodologies and practices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SYSTEM (CONTINUED) ENHANCED PRUDENTIAL STANDARDS (REGULATION YY) Company-Run Stress Test Requirements for....155 Methodologies and practices. (a) Potential impact on capital. In conducting a stress test under...) Losses, pre-provision net revenue, provision for loan and lease losses, and net income; and (2) The...

  20. Finite Element Simulation for Analysing the Design and Testing of an Energy Absorption System

    PubMed Central

    Segade, Abraham; López-Campos, José A.; Fernández, José R.; Casarejos, Enrique; Vilán, José A.

    2016-01-01

    It is not uncommon to use profiles to act as energy absorption parts in vehicle safety systems. This work analyses an impact attenuator based on a simple design and discusses the use of a thermoplastic material. We present the design of the impact attenuator and a mechanical test for the prototype. We develop a simulation model using the finite element method and explicit dynamics, and we evaluate the most appropriate mesh size and integration for describing the test results. Finally, we consider the performance of different materials, metallic ones (steel AISI 4310, Aluminium 5083-O) and a thermoplastic foam (IMPAXX500™). This reflects the car industry’s interest in using new materials to make high-performance, low-mass energy absorbers. We show the strength of the models when it comes to providing reliable results for large deformations and strong non-linearities, and how they are highly correlated with respect to the test results both in value and behaviour. PMID:28773778

  1. Survivability characteristics of composite compression structure

    NASA Technical Reports Server (NTRS)

    Avery, John G.; Allen, M. R.; Sawdy, D.; Avery, S.

    1990-01-01

    Test and evaluation was performed to determine the compression residual capability of graphite reinforced composite panels following perforation by high-velocity fragments representative of combat threats. Assessments were made of the size of the ballistic damage, the effect of applied compression load at impact, damage growth during cyclic loading and residual static strength. Several fiber/matrix systems were investigated including high-strain fibers, tough epoxies, and APC-2 thermoplastic. Additionally, several laminate configurations were evaluated including hard and soft laminates and the incorporation of buffer strips and stitching for improved damage resistance of tolerance. Both panels (12 x 20-inches) and full scale box-beam components were tested to assure scalability of results. The evaluation generally showed small differences in the responses of the material systems tested. The soft laminate configurations with concentrated reinforcement exhibited the highest residual strength. Ballistic damage did not grow or increase in severity as a result of cyclic loading, and the effects of applied load at impact were not significant under the conditions tested.

  2. The Influence of Cylinder Lubrication on Piston Slap

    NASA Astrophysics Data System (ADS)

    Gerges, S. N. Y.; de Luca, J. C.; Lalor, N.

    2002-10-01

    A model has been developed for determining the time history of piston slap impact force. This model takes into account the influence of the oil film on the impact behaviour, which was found to be an important factor. However, it was also found that entrapped gas bubbles in the oil are equally significant. Three test rigs were designed and built to study these effects on the impact phenomenon and extensive tests were carried out. The impact force time history has been determined using Reynolds' theory. Results have shown that Reynolds' theory for fluid film squeezing can be applied for oil film damping determination. However, the experimental results have also shown that when gas is entrapped during the impact, this theory considerably overpredicts the magnitude of the impact. An eight-degree-of-freedom lumped parameter model was developed through the dynamic analysis of each component of an internal combustion engine's reciprocating system. The effective damping factor derived from this model was found to be inversely proportional to the oil film thickness cubed, as expected from Reynolds' theory. A dynamic model has been proposed, where the oil film mixed with bubbles is considered to be analogous to a serial spring and damping system. By incorporating a spring in series with this damper, the effect of the bubbles can also be predicted.

  3. Quantitative nondestructive evaluation of materials and structures

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1991-01-01

    An experimental investigation was undertaken to quantify damage tolerance and resistance in composite materials impacted using the drop-weight method. Tests were conducted on laminates of several different carbon-fiber composite systems, such as epoxies, modified epoxies, and amorphous and semicrystalline thermoplastics. Impacted composite specimens were examined using destructive and non-destructive techniques to establish the characteristic damage states. Specifically, optical microscopy, ultrasonic, and scanning electron microscopy techniques were used to identify impact induced damage mechanisms. Damage propagation during post impact compression was also studied.

  4. Connected Lighting Systems Efficiency Study$-$ PoE Cable Energy Losses, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuenge, Jason; Kelly, Karsten; Poplawski, Michael

    First report in a study of the efficiency of connected lighting systems. The report summarizes the results of an exploratory study investigating power losses in Ethernet cables used between PoE switches and luminaires in PoE connected lighting systems. Testing was conducted at the Pacific Northwest National Laboratory (PNNL) Connected Lighting Test Bed in September 2017. The results were analyzed to explore the impact of cable selection on PoE lighting system energy efficiency, as well as the effectiveness of guidelines recently introduced by the American National Standards Institute (ANSI) C137 Lighting Systems Committee.

  5. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish (poster)

    EPA Science Inventory

    Within the field of chemical safety assessment, there is a desire to replace costly whole organism testing with more efficient and cost-effective alternatives based on in vitro test systems. Disruption of thyroid hormone signaling via inhibition of enzymes called deiodinases is o...

  6. The effect of entrapped nonaqueous phase liquids on tracer transport in heterogeneous porous media: Laboratory experiments at the intermediate scale

    USGS Publications Warehouse

    Barth, Gilbert R.; Illangasekare, T.H.; Rajaram, H.

    2003-01-01

    This work considers the applicability of conservative tracers for detecting high-saturation nonaqueous-phase liquid (NAPL) entrapment in heterogeneous systems. For this purpose, a series of experiments and simulations was performed using a two-dimensional heterogeneous system (10??1.2 m), which represents an intermediate scale between laboratory and field scales. Tracer tests performed prior to injecting the NAPL provide the baseline response of the heterogeneous porous medium. Two NAPL spill experiments were performed and the entrapped-NAPL saturation distribution measured in detail using a gamma-ray attenuation system. Tracer tests following each of the NAPL spills produced breakthrough curves (BTCs) reflecting the impact of entrapped NAPL on conservative transport. To evaluate significance, the impact of NAPL entrapment on the conservative-tracer breakthrough curves was compared to simulated breakthrough curve variability for different realizations of the heterogeneous distribution. Analysis of the results reveals that the NAPL entrapment has a significant impact on the temporal moments of conservative-tracer breakthrough curves. ?? 2003 Elsevier B.V. All rights reserved.

  7. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning ofmore » glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.« less

  8. WWC Review of the Report "Interactive Online Learning on Campus: Testing MOOCs and Other Platforms in Hybrid Formats in the University System of Maryland." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2015

    2015-01-01

    In the 2014 study, "Interactive Online Learning on Campus: Testing MOOCs and Other Platforms in Hybrid Formats in the University System of Maryland," researchers examined the impact of using hybrid forms of interactive online learning in seven undergraduate courses across seven universities in Maryland. Hybrid forms of interactive online…

  9. Superior Ballistic Impact Resistance Achieved by the Co-Base Alloy Haynes 25

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Noebe, Ronald D.; Revilock, Duane M.

    2003-01-01

    The fan case in a jet engine is required to contain a fan blade in the rare event of a blade loss during operation. Because of its function, the fan case is the largest structural component in high-bypass-ratio turbofan engines used in commercial aircraft. Therefore, the use of lighter and stronger materials would be advantageous in most engines and is practically a necessity in the latest generation of high-bypass engines. Small panels, 7 in. wide by 7 in. long, of a number of metallic alloys were impact tested at room temperature with a 0.50-caliber blunt-nose titanium alloy projectile at the NASA Glenn Research Center (ref. 1). These metallic systems included several high-strength aluminum (Al) alloys, Al-based laminates, aluminum metal matrix composites (Al-MMCs), nickel-base superalloys (Inconel 718 and 625), several titanium (Ti) alloys in different heat treated conditions, 304L stainless steel, a stainless-steel-based laminate, and a high strength steel (Nitronic 60). It was determined that a simple Co-base alloy (Haynes 25) had the best impact resistance on an areal weight basis. Haynes 25 was at least 10 percent better than IMI 550, the best titanium alloy tested to date, and it was far superior to other metals, especially at higher impact velocities (greater than 1100 ft/sec). Because this material could be ideal for fan containment applications in supersonic aircraft as a replacement for titanium, impact tests were also conducted at 371 oC and compared with results from alloys tested at elevated temperature under previous programs (i.e., Inconel 718, Ti-6242, M-152, Timetal 21S, and Aeromet 100). Although cobalt-base alloys are used in some high-temperature engine applications, to our knowledge they are not used in any containment systems. Advantages of cobalt over titanium include lower cost, easier processing, better high-temperature strength, and no fire hazard if tip rub occurs. Future plans include testing of lightweight sandwich panels with Haynes 25 as a core material in the form of a foam or lattice block structure and scaling up the current tests by using blade-simulating projectiles impacting large plates and half rings.

  10. The costs of accessible quality assured syphilis diagnostics: informing quality systems for rapid syphilis tests in a Tanzanian setting.

    PubMed

    Sweeney, Sedona; Mosha, Jacklin F; Terris-Prestholt, Fern; Sollis, Kimberly A; Kelly, Helen; Changalucha, John; Peeling, Rosanna W

    2014-08-01

    To determine the costs of Rapid Syphilis Test (RSTs) as compared with rapid plasma reagin (RPR) when implemented in a Tanzanian setting, and to determine the relative impact of a quality assurance (QA) system on the cost of RST implementation. The incremental costs for RPR and RST screening programmes in existing antenatal care settings in Geita District, Tanzania were collected for 9 months in subsequent years from nine health facilities that varied in size, remoteness and scope of antenatal services. The costs per woman tested and treated were estimated for each facility. A sensitivity analysis was constructed to determine the impact of parameter and model uncertainty. In surveyed facilities, a total of 6362 women were tested with RSTs compared with 224 tested with RPR. The range of unit costs was $1.76-$3.13 per woman screened and $12.88-$32.67 per woman treated. Unit costs for the QA system came to $0.51 per woman tested, of which 50% were attributed to salaries and transport for project personnel. Our results suggest that rapid syphilis diagnostics are very inexpensive in this setting and can overcome some critical barriers to ensuring universal access to syphilis testing and treatment. The additional costs for implementation of a quality system were found to be relatively small, and could be reduced through alterations to the programme design. Given the potential for a quality system to improve quality of diagnosis and care, we recommend that QA activities be incorporated into RST roll-out. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2013; all rights reserved.

  11. Primary investigation the impacts of the external memory (DDR3) failures on the performance of Xilinx Zynq-7010 SoC based system (MicroZed) using laser irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Shuhuan; Du, Xuecheng; Du, Xiaozhi; Zhang, Yao; Mubashiru, Lawal Olarewaju; Luo, Dongyang; yuan, Yuan; Deng, Tianxiang; Li, Zhuoqi; Zang, Hang; Li, Yonghong; He, Chaohui; Ma, Yingqi; Shangguan, Shipeng

    2017-09-01

    The impacts of the external dynamic memory (DDR3) failures on the performance of 28 nm Xilinx Zynq-7010 SoC based system (MicroZed) were investigated with two sets of 1064 nm laser platforms. The failure sensitive area distributionsons on the back surface of the test DDR3 were primarily localized with a CW laser irradiation platform. During the CW laser scanning on the back surface of the DDR3 of the test board system, various failure modes except SEU and SEL (MBU, SEFI, data storage address error, rebooting, etc) were found in the testing embedded modules (ALU, PL, Register, Cache and DMA, etc) of SoC. Moreover, the experimental results demonstrated that there were 16 failure sensitive blocks symmetrically distributed on the back surface of the DDR3 with every sensitive block area measured was about 1 mm × 0.5 mm. The influence factors on the failure modes of the embedded modules were primarily analyzed and the SEE characteristics of DDR3 induced by the picoseconds pulsed laser were tested. The failure modes of DDR3 found were SEU, SEFI, SEL, test board rebooting by itself, unknown data, etc. Furthermore, the time interval distributions of failure occurrence in DDR3 changes with the pulsed laser irradiation energy and the CPU operating frequency were measured and compared. Meanwhile, the failure characteristics of DDR3 induced by pulsed laser irradiation were primarily explored. The measured results and the testing techniques designed in this paper provide some reference information for evaluating the reliability of the test system or other similar electronic system in harsh environment.

  12. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  13. Evaluation of pediatric ATD biofidelity as compared to child volunteers in low-speed far-side oblique and lateral impacts.

    PubMed

    Seacrist, Thomas; Locey, Caitlin M; Mathews, Emily A; Jones, Dakota L; Balasubramanian, Sriram; Maltese, Matthew R; Arbogast, Kristy B

    2014-01-01

    Motor vehicle crashes are a leading cause of injury and mortality for children. Mitigation of these injuries requires biofidelic anthropomorphic test devices (ATDs) to design and evaluate automotive safety systems. Effective countermeasures exist for frontal and near-side impacts but are limited for far-side impacts. Consequently, far-side impacts represent increased injury and mortality rates compared to frontal impacts. Thus, the objective of this study was to evaluate the biofidelity of the Hybrid III and Q-series pediatric ATDs in low-speed far-side impacts, with and without shoulder belt pretightening. Low-speed (2 g) far-side oblique (60°) and lateral (90°) sled tests were conducted using the Hybrid III and Q-series 6- and 10-year-old ATDs. ATDs were restrained by a lap and shoulder belt equipped with a precrash belt pretightener. Photoreflective targets were attached to the head, spine, shoulders, and sternum. ATDs were exposed to 8 low-speed sled tests: 2 oblique nontightened, 2 oblique pretightened, 2 lateral nontightened, 2 lateral pretightened. ATDs were compared with previously collected 9- to 11-year-old (n=10) volunteer data and newly collected 6- to 8-year-old volunteer data (n=7) tested with similar methods. Kinematic data were collected from a 3D target tracking system. Metrics of comparison included excursion, seat belt and seat pan reaction loads, belt-to-torso angle, and shoulder belt slip-out. The ATDs exhibited increased lateral excursion of the head top, C4, and T1 as well as increased downward excursion of the head top compared to the volunteers. Volunteers exhibited greater forward excursion than the ATDs in oblique nontightened impacts. These kinematics correspond to increased shoulder belt slip-out for the ATDs in oblique tests (ATDs=90%; volunteers=36%). Contrarily, similar shoulder belt slip-out was observed between ATDs and volunteers in lateral impacts (ATDs=80%; volunteers=78%). In pretightened impacts, the ATDs exhibited reduced lateral excursion and torso roll-out angle compared to the volunteers. In general, the ATDs overestimated lateral excursion in both impact directions, while underestimating forward excursion of the head and neck in oblique impacts compared to the pediatric volunteers. This was primarily due to pendulum-like lateral bending of the entire ATD torso compared to translation of the thorax relative to the abdomen prior to the lateral bending of the upper torso in the volunteers, likely due to the multisegmented spinal column in the volunteers. Additionally, the effect of belt pretightening on occupant kinematics was greater for the ATDs than the volunteers.

  14. Demand management: an audit of chemical pathology test rejections by an electronic gate-keeping system at an academic hospital in Cape Town.

    PubMed

    Smit, Ida; Zemlin, Annalise E; Erasmus, Rajiv T

    2015-07-01

    Demand management is an area of laboratory activity, which is becoming increasingly important. Within the health-care system, demand management can be defined as the use of health resources to maximise its utility. Tygerberg Hospital has introduced an electronic gate-keeping system. Chemistry tests which generate the highest cost are subjected to this system and may be automatically rejected according to a set of rules. This study aimed: (1) to identify the number of chemistry tests rejected by the eGK; (2) to identify which of these rejected tests were subsequently restored and (3) to assess the impact of rejections on clinical outcome and cost-saving. A retrospective audit was conducted to determine the number of chemistry tests rejected and subsequently restored over a 6-month period. The case-notes of patients for whom requested tests previously rejected had been restored were randomly selected and investigated to assess clinical impact. Any cost-saving was calculated. A total of 68,480 tests were subjected to gate-keeping, and 4605 tests (6.7%) were rejected while 679 (14.7%) of these were restored by the requestor phoning the laboratory after obtaining authorisation. After examining a subset of clinical notes it was found that in most cases (80%), patient care was unaffected. The total cost saved was £ 25,387. The majority of the rejected tests were unnecessary and following rejection, real savings were made. Electronic gate-keeping is a simple, effective and sustainable method of demand management. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. mDurance: A Novel Mobile Health System to Support Trunk Endurance Assessment

    PubMed Central

    Banos, Oresti; Moral-Munoz, Jose Antonio; Diaz-Reyes, Ignacio; Arroyo-Morales, Manuel; Damas, Miguel; Herrera-Viedma, Enrique; Hong, Choong Seon; Lee, Sungyong; Pomares, Hector; Rojas, Ignacio; Villalonga, Claudia

    2015-01-01

    Low back pain is the most prevalent musculoskeletal condition. This disorder constitutes one of the most common causes of disability worldwide, and as a result, it has a severe socioeconomic impact. Endurance tests are normally considered in low back pain rehabilitation practice to assess the muscle status. However, traditional procedures to evaluate these tests suffer from practical limitations, which potentially lead to inaccurate diagnoses. The use of digital technologies is considered here to facilitate the task of the expert and to increase the reliability and interpretability of the endurance tests. This work presents mDurance, a novel mobile health system aimed at supporting specialists in the functional assessment of trunk endurance by using wearable and mobile devices. The system employs a wearable inertial sensor to track the patient trunk posture, while portable electromyography sensors are used to seamlessly measure the electrical activity produced by the trunk muscles. The information registered by the sensors is processed and managed by a mobile application that facilitates the expert's normal routine, while reducing the impact of human errors and expediting the analysis of the test results. In order to show the potential of the mDurance system, a case study has been conducted. The results of this study prove the reliability of mDurance and further demonstrate that practitioners are certainly interested in the regular use of a system of this nature. PMID:26057034

  16. Empirically evaluating the impact of adjudicative tribunals in the health sector: context, challenges and opportunities.

    PubMed

    Hoffman, Steven J; Sossin, Lorne

    2012-04-01

    Adjudicative tribunals are an integral part of health system governance, yet their real-world impact remains largely unknown. Most assessments focus on internal accountability and use anecdotal methodologies; few, studies if any, empirically evaluate their external impact and use these data to test effectiveness, track performance, inform service improvements and ultimately strengthen health systems. Given that such assessments would yield important benefits and have been conducted successfully in similar settings (e.g. specialist courts), their absence is likely attributable to complexity in the health system, methodological difficulties and the legal environment within which tribunals operate. We suggest practical steps for potential evaluators to conduct empirical impact evaluations along with an evaluation matrix template featuring possible target outcomes and corresponding surrogate endpoints, performance indicators and empirical methodologies. Several system-level strategies for supporting such assessments have also been suggested for academics, health system institutions, health planners and research funders. Action is necessary to ensure that policymakers do not continue operating without evidence but can rather pursue data-driven strategies that are more likely to achieve their health system goals in a cost-effective way.

  17. A unique facility for V/STOL aircraft hover testing

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.

    1979-01-01

    The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.

  18. Design for Verification: Enabling Verification of High Dependability Software-Intensive Systems

    NASA Technical Reports Server (NTRS)

    Mehlitz, Peter C.; Penix, John; Markosian, Lawrence Z.; Koga, Dennis (Technical Monitor)

    2003-01-01

    Strategies to achieve confidence that high-dependability applications are correctly implemented include testing and automated verification. Testing deals mainly with a limited number of expected execution paths. Verification usually attempts to deal with a larger number of possible execution paths. While the impact of architecture design on testing is well known, its impact on most verification methods is not as well understood. The Design for Verification approach considers verification from the application development perspective, in which system architecture is designed explicitly according to the application's key properties. The D4V-hypothesis is that the same general architecture and design principles that lead to good modularity, extensibility and complexity/functionality ratio can be adapted to overcome some of the constraints on verification tools, such as the production of hand-crafted models and the limits on dynamic and static analysis caused by state space explosion.

  19. Final Environmental Impact Statement (EIS) for the Space Nuclear Thermal Propulsion (SNTP) program

    NASA Astrophysics Data System (ADS)

    1991-09-01

    A program has been proposed to develop the technology and demonstrate the feasibility of a high-temperature particle bed reactor (PBR) propulsion system to be used to power an advanced second stage nuclear rocket engine. The purpose of this Final Environmental Impact Statement (FEIS) is to assess the potential environmental impacts of component development and testing, construction of ground test facilities, and ground testing. Major issues and goals of the program include the achievement and control of predicted nuclear power levels; the development of materials that can withstand the extremely high operating temperatures and hydrogen flow environments; and the reliable control of cryogenic hydrogen and hot gaseous hydrogen propellant. The testing process is designed to minimize radiation exposure to the environment. Environmental impact and mitigation planning are included for the following areas of concern: (1) Population and economy; (2) Land use and infrastructure; (3) Noise; (4) Cultural resources; (5) Safety (non-nuclear); (6) Waste; (7) Topography; (8) Geology; (9) Seismic activity; (10) Water resources; (11) Meteorology/Air quality; (12) Biological resources; (13) Radiological normal operations; (14) Radiological accidents; (15) Soils; and (16) Wildlife habitats.

  20. Protein Binding: Do We Ever Learn?▿

    PubMed Central

    Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula

    2011-01-01

    Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013

  1. Impact of Latino Parent Engagement on Student Academic Achievement: A Pilot Study

    ERIC Educational Resources Information Center

    Araque, Juan Carlos; Wietstock, Cathy; Cova, Heather M.; Zepeda, Steffanie

    2017-01-01

    The current pilot study examines the impact of the "Ten Education Commandments for Parents" program on (1) new immigrant Latino parents' knowledge of the U.S. public education system, (2) parent engagement, and (3) their children's academic achievement. Utilizing a pre-experimental, pre- and post-test research design, four schools with…

  2. Low velocity impact of 6082-T6 aluminum plates

    NASA Astrophysics Data System (ADS)

    Mocian, Oana Alexandra; Constantinescu, Dan Mihai; Sandu, Marin; Sorohan, Ştefan

    2018-02-01

    The low velocity domain covers vehicle impacts, ship collisions and even accidentally tool drops. Even though more and more research is needed into these fields, most of the papers concerning impact problems focus on impact at medium and high velocities. Understanding the behavior of structures subjected to low velocity impact is of major importance when referring to impact resistance and damage tolerance. The paper presents an experimental and numerical investigation on the low velocity behavior of 6082-T6 aluminum plates. Impact tests were performed using an Instron Ceast 9340 drop-weight testing machine. In the experimental procedure, square plates were mounted on a circular support, fixed with a pneumatic clamping system and impacted with a hemispherical steel projectile. Specimens were impacted at constant weight and different impact velocities. The effect of different impact energies was investigated. The impact event was then simulated using the nonlinear finite element code LS_DYNA in order to determine the effect of strain rate upon the mechanical behavior of the aluminum plates. Moreover, in order to capture the exact behavior of the material, a special attention has been given to the selection of the correct material model and its parameters, which, in large extent, depend on the observed behavior of the aluminum plate during the test and the actual response of the plate under simulation. The numerical predictions are compared with the experimental observations and the applicability of the numerical model for further researches is analyzed.

  3. Protection of children in forward-facing child restraint systems during oblique side impact sled tests: Intrusion and tether effects.

    PubMed

    Hauschild, Hans W; Humm, John R; Pintar, Frank A; Yoganandan, Narayan; Kaufman, Bruce; Kim, Jinyong; Maltese, Matthew R; Arbogast, Kristy B

    2016-09-01

    Testing was conducted to quantify the kinematics, potential for head impact, and influence on head injury metrics for a center-seated Q3s in a forward-facing child restraint system (FFCRS) in oblique impacts. The influences of a tether and intruded door on these measures were explored. Nine lateral oblique sled tests were conducted on a convertible forward-facing child restraint seat (FFCRS). The FFCRSs were secured to a bench seat from a popular production small SUV at the center seating position utilizing the lower anchor and tether for children (LATCH). The vehicle seat was fixed on the sled carriage at 60° and 80° from full frontal (30° and 10° forward rotation from pure lateral) providing an oblique lateral acceleration to the Q3s and FFCRS. A structure simulating an intruded door was mounted to the near (left) side of vehicle seat. The sled input acceleration was the proposed FMVSS 213 lateral pulse scaled to a 35 km/h delta-V. Tests were conducted with and without the tether attached to the FFCRS. Results indicate the influence of the tether on kinematics and injury measures in oblique side impact crashes for a center- or far-side-seated child occupant. All tests without a tether resulted in head contact with the simulated door, and 2 tests at the less oblique angle (80°) with a tether also resulted in head contact. No head-to-door contact was observed in 2 tests utilizing a tether. High-speed video analysis showed that the head moved beyond the CRS head side wings and made contact with the simulated intruded door. Head injury criterion (HIC) 15 median values were 589 without the tether vs. 332 with the tether attached. Tests utilizing a tether had less lateral head excursion than tests without a tether (median 400 vs. 442 mm). These tests demonstrate the important role of the tether in controlling head excursion for center- or far-side-seated child occupants in oblique side impact crashes and limiting the head injury potential with an intruded door. The tether may not influence the kinematics of a near-side-seated occupant as strongly where the vehicle door or side structure interacts with the CRS and influences its motion. The results indicate that there may be an opportunity to improve child head kinematics and head protection in oblique side impacts through different CRS attachment methods and/or alternative vehicle side structure protection or padding.

  4. Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids

    DOE PAGES

    Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; ...

    2015-05-19

    Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure ofmore » the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted Δv of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.« less

  5. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  6. Suit study - The impact of VMS in subsystem integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, B.; Watts, R.

    1992-02-01

    One of the thrusts of the Wright Laboratory/FIVE-sponsored Subsystem Integration Technology (SUIT) study is to investigate the impact of emerging vehicle management system (VMS) concepts on subsystem integration. This paper summarizes the issues relating to VMS/subsystem integration as examined during the Northrop SUIT study. Projected future weapon system requirements are identified and their impact on VMS and subsystem design interpreted. Integrated VMS/subsystem control and management functions are proposed. A candidate system VMS architecture satisfying the aforementioned weapon system requirements and providing the identified control and management functions is proposed. This architecture is used, together with the environmental control system, asmore » an illustrative subsystem example, to address the risks associated with the design, development, procurement, integration and testing of integrated VMS/subsystem concepts. The conclusion is that the development process requires an airframer to adopt the role of subsystem integrator, the consequences of which are discussed. 2 refs.« less

  7. ISALE impact simulations in support of AIDA mission

    NASA Astrophysics Data System (ADS)

    Oklay, Nilda; Vincent, Jean-Baptiste; Michel, Patrick; Schwartz, Stephen

    2016-07-01

    Introduction: The Asteroid Impact Deflection Assessment (AIDA) mission is a joint project of ESA and NASA with two independent spacecraft. ESA's contribution is an observer satellite called Asteroid Impact Mission (AIM, [1]), and NASA's contribution is a projectile called Double Asteroid Redirection Test (DART, [2]). The target of the mission is a near-Earth binary asteroid system (65803) Didymos. The aim is to study the possibility of deflecting an asteroid by using a kinetic impactor, as well as to characterize the internal properties of the target and test various relevant technologies for other missions. The design is that the DART would impact the secondary of the binary system and AIM would characterize the target asteroid, observe the impact event and measure the changes in the relative orbit after the impact. Impact modeling will be used to interpret the results of the AIDA impact event. There are numerous impact simulation codes, which are planned to be used to understand the AIDA impact results. Therefore an international benchmarking program is ongoing for the comparison of the results of various codes on the defined test cases [3]. We will present the results of the test cases performed by iSALE hydrocode. Modeling: In this work we use the iSALE-2D shock physics code [4], which is based on the SALE hydrocode solution algorithm [5]. To simulate hypervelocity impact processes in solid materials SALE was modified to include an elastoplastic constitutive model, fragmentation models, various EOS, and multiple materials [6, 7]. More recent improvements include a modified strength model [8] and a porosity compaction model [4, 9]. References: [1] Michel P. et al., 2016, ASR, submitted [2] Cheng A. F. et al., (2016) PSS, 121, 27-35 [3] Stickle A. M. et al., (2016). 47th LPSC [4] Wünnemann,K. et al., (2006). Icarus, 180:514-527 [5] Amsden, A., et al., (1980) LANL Report, LA-8095:101p. [6] Melosh, H. J., et al., (1992). J. Geophys. Res., 97(E9):14735-14759 [7] Ivanov, B. A., et al., (1997) Int. J. Imp. Eng., 20:411-430; [8] Collins, G. S., et al., (2004). Met. & Planet. Sci., 39:217-231. [9] Collins, G., et al., (2011) Int. J. Imp. Eng., 38:434-439

  8. Investigation of crew restraint system biomechanics. Report for May 79-Mar 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.S.; Thomson, R.A.; Fiscus, I.B.

    1982-05-01

    Experimental data were collected and analyses were performed to study the influence of the dynamic mechanical properties of restraint system components on human response to impact and restraint system haulback. Tests were accomplished to isolate the characteristics of the restraint system and the human body. Three restraint webbing materials were studied at varied strain rates. A pyrotechnically powered inertia reel was tested, but could not be analytically modeled successfully. Analytical models of the human and restraint system were used to study the influence of restraint material properties changes on human response parameters. An analytical model of a rhesus monkey wasmore » also used to study the efficacy of animal tests and scaling techniques to evaluate restraint systems for human use applications.« less

  9. A review of cryogenic testing performed by the thermochemical test branch, Manned Spacecraft Center in support of Apollo 13 and14

    NASA Technical Reports Server (NTRS)

    Propp, C. E.; Mcgee, J. M.

    1971-01-01

    The Apollo 13 anomaly provided considerable impetus for a variety of types of cryogenic and ignition tests. The logic of the various test program designs, the test techniques, and their final impact upon the investigation findings are described. In addition, several test programs initiated to determine the thermal performance and general performance characteristics of the redesigned Apollo 14 cryogenic storage system are presented.

  10. Test report for single event effects of the 80386DX microprocessor

    NASA Technical Reports Server (NTRS)

    Watson, R. Kevin; Schwartz, Harvey R.; Nichols, Donald K.

    1993-01-01

    The Jet Propulsion Laboratory Section 514 Single Event Effects (SEE) Testing and Analysis Group has performed a series of SEE tests of certain strategic registers of Intel's 80386DX CHMOS 4 microprocessor. Following a summary of the test techniques and hardware used to gather the data, we present the SEE heavy ion and proton test results. We also describe the registers tested, along with a system impact analysis should these registers experience a single event upset.

  11. A method to estimate the environmental impact of an electric city car during six months of testing in an Italian city

    NASA Astrophysics Data System (ADS)

    Donateo, T.; Ingrosso, F.; Licci, F.; Laforgia, D.

    2014-12-01

    The present investigation describes the results of a research project (P.R.I.M.E.) aimed at testing the performance and the environmental impact of an electric city car in Italian cities. The vehicle considered in the project is the Daimler AG Smart ForTwo Electric Drive. A Smart ED vehicle was tested at the University of Salento for six months over different driving conditions (routes, traffic, use of auxiliaries). A data acquisition system has been designed on purpose and assembled on board to provide information about driving cycle and energy flows. The system was also used to evaluate the losses of energy during recharges due to the battery cooling system. The experimental tests were used to identify the average, minimum and maximum consumption of electricity in the Smart ED in Lecce according to driving conditions and in particular according to the usage of auxiliaries. The measured data of electric consumption have been used to quantify the emissions of CO2 and pollution of the vehicle using information about the Italian electricity production mix of each recharging event and the emissions factors of the Italian power plants with an innovative and comprehensive methodology.

  12. Alternative Test Methods for Developmental Neurotoxicity: A History and Path Forward (OECD EFSA workshop)

    EPA Science Inventory

    Exposure to environmental contaminants is well documented to adversely impact the development of the nervous system. However, the time, animal and resource intensive EPA and OECD testing guideline methods for developmental neurotoxicity (DNT) are not a viable solution to characte...

  13. Assessment of a drowsy driver warning system for heavy-vehicle drivers : final report

    DOT National Transportation Integrated Search

    2009-04-01

    Drowsiness has a globally negative impact on performance, slowing reaction time, decreasing situational awareness, and impairing judgment. A field operational test of an early prototype Drowsy Driver Warning System was conducted as a result of 12 yea...

  14. Privacy Impact Assessment for the Lead-based Paint System of Records

    EPA Pesticide Factsheets

    The Lead-based Paint System of Records collects personally identifiable information, test scores, and submitted fees. Learn how this data is collected, how it will be used, access to the data, the purpose of data collection, and record retention policies.

  15. The Impact of Economic Factors and Acquisition Reforms on the Cost of Defense Weapon Systems

    DTIC Science & Technology

    2006-03-01

    test for homoskedasticity, the Breusch - Pagan test is employed. The null hypothesis of the Breusch - Pagan test is that the variance is equal to zero...made. Using the Breusch - Pagan test shown in Table 19 below, the prob>chi2 is greater than 05.=α , therefore we fail to reject the null hypothesis...overrunpercentfp100 Breusch - Pagan Test (Ho=Constant Variance) Estimated Results Variance Standard Deviation overrunpercent100

  16. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    NASA Astrophysics Data System (ADS)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space.

  17. Multi-Dimensional Calibration of Impact Dynamic Models

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Annett, Martin S.; Jackson, Karen E.

    2011-01-01

    NASA Langley, under the Subsonic Rotary Wing Program, recently completed two helicopter tests in support of an in-house effort to study crashworthiness. As part of this effort, work is on-going to investigate model calibration approaches and calibration metrics for impact dynamics models. Model calibration of impact dynamics problems has traditionally assessed model adequacy by comparing time histories from analytical predictions to test at only a few critical locations. Although this approach provides for a direct measure of the model predictive capability, overall system behavior is only qualitatively assessed using full vehicle animations. In order to understand the spatial and temporal relationships of impact loads as they migrate throughout the structure, a more quantitative approach is needed. In this work impact shapes derived from simulated time history data are used to recommend sensor placement and to assess model adequacy using time based metrics and orthogonality multi-dimensional metrics. An approach for model calibration is presented that includes metric definitions, uncertainty bounds, parameter sensitivity, and numerical optimization to estimate parameters to reconcile test with analysis. The process is illustrated using simulated experiment data.

  18. Low Impact Docking System (LIDS)

    NASA Technical Reports Server (NTRS)

    LaBauve, Tobie E.

    2009-01-01

    Since 1996, NASA has been developing a docking system that will simplify operations and reduce risks associated with mating spacecraft. This effort has focused on developing and testing an original, reconfigurable, active, closed-loop, force-feedback controlled docking system using modern technologies. The primary objective of this effort has been to design a docking interface that is tunable to the unique performance requirements for all types of mating operations (i.e. docking and berthing, autonomous and piloted rendezvous, and in-space assembly of vehicles, modules and structures). The docking system must also support the transfer of crew, cargo, power, fluid, and data. As a result of the past 10 years of docking system advancement, the Low Impact Docking System or LIDS was developed. The current LIDS design incorporates the lessons learned and development experiences from both previous and existing docking systems. LIDS feasibility was established through multiple iterations of prototype hardware development and testing. Benefits of LIDS include safe, low impact mating operations, more effective and flexible mission implementation with an anytime/anywhere mating capability, system level redundancy, and a more affordable and sustainable mission architecture with reduced mission and life cycle costs. In 1996 the LIDS project, then known as the Advanced Docking Berthing System (ADBS) project, launched a four year developmental period. At the end of the four years, the team had built a prototype of the soft-capture hardware and verified the control system that will be used to control the soft-capture system. In 2001, the LIDS team was tasked to work with the X- 38 Crew Return Vehicle (CRV) project and build its first Engineering Development Unit (EDU).

  19. Heading Frequency Is More Strongly Related to Cognitive Performance Than Unintentional Head Impacts in Amateur Soccer Players.

    PubMed

    Stewart, Walter F; Kim, Namhee; Ifrah, Chloe; Sliwinski, Martin; Zimmerman, Molly E; Kim, Mimi; Lipton, Richard B; Lipton, Michael L

    2018-01-01

    Compared to heading, unintentional head impacts (e.g., elbow to head, head to head, head to goalpost) in soccer are more strongly related to risk of moderate to very severe Central Nervous System (CNS) symptoms. But, most head impacts associated with CNS symptoms that occur in soccer are mild and are more strongly related to heading. We tested for a differential relation of heading and unintentional head impacts with neuropsychological (NP) test performance. Active adult amateur soccer players were recruited in New York City and the surrounding areas for this repeated measures longitudinal study of individuals who were enrolled if they had 5+ years of soccer play and were active playing soccer 6+ months/year. All participants completed a baseline validated questionnaire ("HeadCount-2w"), reporting 2-week recall of soccer activity, heading and unintentional head impacts. In addition, participants also completed NP tests of verbal learning, verbal memory, psychomotor speed, attention, and working memory. Most participants also completed one or more identical follow-up protocols (i.e., HeadCount-2w and NP tests) at 3- to 6-month intervals over a 2-year period. Repeated measures General Estimating Equations (GEE) linear models were used to determine if variation in NP tests at each visit was related to variation in either heading or unintentional head impacts in the 2-week period before testing. 308 players (78% male) completed 741 HeadCount-2w. Mean (median) heading/2-weeks was 50 (17) for men and 26 (7) for women. Heading was significantly associated with poorer performance on psychomotor speed ( p  < 0.001) and attention ( p  = 0.02) tasks and was borderline significant with poorer performance on the working memory ( p  = 0.06) task. Unintentional head impacts were not significantly associated with any NP test. Results did not differ after excluding 22 HeadCount-2w with reported concussive or borderline concussive symptoms. Poorer NP test performance was consistently related to frequent heading during soccer practice and competition in the 2 weeks before testing. In contrast, unintentional head impacts incurred during soccer were not related to cognitive performance.

  20. Simulation of car movement along circular path

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Tikhov-Tinnikov, D. A.; Ovchinnikova, N. I.; Lysenko, A. V.

    2017-10-01

    Under operating conditions, suspension system performance changes which negatively affects vehicle stability and handling. The paper aims to simulate the impact of changes in suspension system performance on vehicle stability and handling. Methods. The paper describes monitoring of suspension system performance, testing of vehicle stability and handling, analyzes methods of suspension system performance monitoring under operating conditions. The mathematical model of a car movement along a circular path was developed. Mathematical tools describing a circular movement of a vehicle along a horizontal road were developed. Turning car movements were simulated. Calculation and experiment results were compared. Simulation proves the applicability of a mathematical model for assessment of the impact of suspension system performance on vehicle stability and handling.

  1. Promoting Airmen with the Potential to Lead: A Study of the Air Force Master Sergeant Promotion System

    DTIC Science & Technology

    2014-01-01

    than men. A common rule of thumb for measuring the existence of adverse impact is the four-fifths rule, which says that adverse impact is...a test. Similarly, another respondent commented that the current system “ says if you hang in there long enough, then you can get promoted, and I...Consequently, we did not review assessment methods found to be poor predictors of performance (e.g., handwriting analysis known as graphology

  2. Role Of High Speed Photography In The Testing Capabilities Of The Arnold Engineering Development Center (AEDC) Range And Track Facilities

    NASA Astrophysics Data System (ADS)

    Hendrix, Roy E.; Dugger, Paul H.

    1983-03-01

    Since the onset of user testing in the AEDC aeroballistic ranges in 1961, concentrated efforts in such areas as model launching techniques, test environment simulation, and specialized instrumentation have been made to enhance the usefulness of these test facilities. A wide selection of specialized instrumentation has been developed over the years to provide, among other features, panoramic photographic coverage of test models during flight. Pulsed ruby lasers, xenon flash lamps, visible-light spark sources, and flash X-ray systems are employed as short-duration radiation sources in various front-light and back-light photographic systems. Visible-light and near infrared image intensifier diodes are used to achieve high-speed shuttering in photographic pyrometry systems that measure surface temperatures of test models in flight. Turbine-driven framing cameras are used to provide multiframe photography of such high-speed phenomena as impact debris formation and model encounter with erosive fields. As a result, the capabilities of these ballistic range test units have increased significantly in regard to the types of tests that can be accommodated and to the quality and quantity of data that can be provided. Presently, five major range and companion track facilities are active in conducting hypervelocity testing in AEDC's von K6rman Gas Dynamics Facility (VKF): Ranges G, K, and S-1 and Tracks G and K. The following types of tests are conducted in these test units: ablation/erosion, transpiration-cooled nosetip (TCNT), nosetip transition, heat transfer, aerodynamic, cannon projectile, rocket contrail, reentry physics, and hypervelocity impact. The parallel achievements in high-speed photography and testing capabilities are discussed, and the significant role of photographic systems in the development of the overall testing capabilities of the AEDC range and track facilities is illustrated in numerous examples of photographic results.

  3. Safety in the Chemical Laboratory

    ERIC Educational Resources Information Center

    Coffee, Robert D.

    1972-01-01

    The author discusses a system for establishing the relative potential of a chemical to release energy suddenly and to indicate release. This system is applicable to chemical storage and transportation. The system is based upon three simple tests requiring a minimum sample (1 go or 1 ml): (1) computation, (2) impact sensitivity, and (3) thermal…

  4. Sensitivity of dual-wall structures under hypervelocity impact to multi-layer thermal insulation thickness and placement

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    1993-04-01

    Results are presented from an experimental study in which Al dual-wall structures were tested, under various high-speed impact conditions, with a view to the effect of multilayer insulation thickness and location on perforation resistance. Attention is given to comparisons of the damage sustained by dual-wall systems with multilayer insulation blankets of various thicknesses and at various locations within the dual-wall system, under comparable impact loading conditions. The placement of the insulation has a significant effect on the ballistic limit of the dual-wall structures considered, while reducing insulation thickness by as much as a third did not.

  5. Interaction between attentional systems and episodic memory encoding: the impact of conflict on binding of information.

    PubMed

    Sperduti, Marco; Armougum, Allan; Makowski, Dominique; Blondé, Philippe; Piolino, Pascale

    2017-12-01

    Episodic memory (EM) is defined as a long-term memory system that stores information that can be retrieved along with details of the context of the original events (binding). Several studies have shown that manipulation of attention during encoding can impact subsequent memory performance. An influential model of attention distinguishes between three partially independent attentional networks: the alerting, the orienting and the executive or conflict resolution component. To date, the impact of the engagement of these sub-systems during encoding on item and relational context binding has not been investigated. Here, we developed a new task combining the Attentional Network Test and an incidental episodic memory encoding task to study this issue. We reported that when the alerting network was not solicited, resolving conflict hindered item encoding. Moreover, resolving conflict, independently of the cueing condition, had a negative impact on context binding. These novel findings could have a potential impact in the understanding EM formation, and memory disorders in different populations, including healthy elderly people.

  6. Prescription safety eyewear: impact studies of lens and frame failure.

    PubMed

    Vinger, P F; Woods, T A

    2000-02-01

    To determine if a plano lens could be the test lens for all prescription (Rx) lenses and to investigate why Rx lenses pop out of safety eyewear. Plano and Rx polycarbonate lenses (n = 641) with varying thickness and edge geometry, mounted on steel lens holders, and Rx safety eyewear (n = 128) placed on headforms were impacted with test objects of varying diameter and hardness. Impacts were studied with 500 to 2,000 frames-per-second motion analysis. Plano lenses were at least, or more, prone to failure (dislodgment, perforation, shatter, or crack) than -3.00 or +3.00 lenses of the same minimum thickness. More than 40% of safety frames with removable lenses broke or had lenses pop out when impacted with energies expected in industry and sports. Plano lenses can be used as the test lenses for all Rx lenses made of the same material with the same minimal thickness. The ANSI Z87.1-1989 industrial standard for Rx eyewear is inadequate for sports or other activities with high-impact potential. The best lens-retention system has, as a component, a frame with a bevel perpendicular to a frontal impact force.

  7. Mechanisms and factors involved in hip injuries during frontal crashes.

    PubMed

    Yoganandan, N; Pintar, F A; Gennarelli, T A; Maltese, M R; Eppinger, R H

    2001-11-01

    This study was conducted to collect data and gain insights relative to the mechanisms and factors involved in hip injuries during frontal crashes and to study the tolerance of hip injuries from this type of loading. Unembalmed human cadavers were seated on a standard automotive seat (reinforced) and subjected to knee impact test to each lower extremity. Varying combinations of flexion and adduction/abduction were used for initial alignment conditions and pre-positioning. Accelerometers were fixed to the iliac wings and twelfth thoracic vertebral spinous process. A 23.4-kg padded pendulum impacted the knee at velocities ranging from 4.3 to 7.6 m/s. The impacting direction was along the anteroposterior axis, i.e., the global X-axis, in the body-fixed coordinate system. A load cell on the front of the pendulum recorded the impact force. Peak impact forces ranged from 2,450 to 10,950 N. The rate of loading ranged from 123 to 7,664 N/msec. The impulse values ranged from 12.4 to 31.9 Nsec. Injuries were not apparent in three tests. Eight tests resulted in trauma. Fractures involving the pelvis including the acetabulum and proximal femur occurred in five out of the eight tests, and distal femoral bone fracture occurred in one test. These results underscore the importance of leg pre-positioning and the orientation of the impacting axis to produce specific types of trauma to the pelvic region of the lower extremity.

  8. A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.

  9. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less

  10. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    DOE PAGES

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    2014-10-01

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less

  11. Computer-aided system for interactive psychomotor testing

    NASA Astrophysics Data System (ADS)

    Selivanova, Karina G.; Ignashchuk, Olena V.; Koval, Leonid G.; Kilivnik, Volodymyr S.; Zlepko, Alexandra S.; Sawicki, Daniel; Kalizhanova, Aliya; Zhanpeisova, Aizhan; Smailova, Saule

    2017-08-01

    Nowadays research of psychomotor actions has taken a special place in education, sports, medicine, psychology etc. Development of computer system for psychomotor testing could help solve many operational problems in psychoneurology and psychophysiology and also determine the individual characteristics of fine motor skills. This is particularly relevant issue when it comes to children, students, athletes for definition of personal and professional features. The article presents the dynamics of a developing psychomotor skills and application in the training process of means. The results of testing indicated their significant impact on psychomotor skills development.

  12. A virtual test system representing the distribution of pedestrian impact configurations for future vehicle front-end optimization.

    PubMed

    Li, Guibing; Yang, Jikuang; Simms, Ciaran

    2016-07-03

    The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians. The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization. An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered. Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.

  13. Full-Scale Transport controlled Impact Demonstration

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J. (Compiler)

    1986-01-01

    The controlled impact demonstration (CID) test of a transport aircraft took place on December 1, 1984, crashing at a prepared site on Rogers Dry Lakebed, Edwards Air Force Base, California. The demonstration was a setback for the antimisting kerosene (AMK) researchers. The impact conditions, considerably different from the planned scenario, exposed large quantities of degraded AMK and hydraulic fluid and caused unexpectedly hot ignition sources, bulk loss of fuel from the right wing, airflow patterns over the wings and fuselage that were untested on AMK, and fuel intrusion into the lower fuselage. The test was much more severe than planned and is generally considered to be unrepresentative of the type of survivable crash that would benefit from AMK. Ninety-seven percent of the sensors on the fuselage and wing structure, seats, dummies, restraint systems, galley, and bins were active at impact. A wealth of sensor data was collected from this once-in-a-lifetime research test. The flight data recorder experiments on board were also generally successful.

  14. Evaluation of wheelchair back support crashworthiness: combination wheelchair back support surfaces and attachment hardware.

    PubMed

    Ha, D; Bertocci, G; Deemer, E; van Roosmalen, L; Karg, P

    2000-01-01

    Automotive seats are tested for compliance with federal motor vehicle safety standards (FMVSS) to assure safety during impact. Many wheelchair users rely upon their wheelchairs to serve as vehicle seats. However, the crashworthiness of these wheelchairs during impact is often unknown. This study evaluated the crashworthiness of five combinations of wheelchair back support surfaces and attachment hardware using a static test procedure simulating crash loading conditions. The crashworthiness was tested by applying a simulated rearward load to each seat-back system. The magnitude of the applied load was established through computer simulation and biodynamic calculations. None of the five tested wheelchair back supports withstood the simulated crash loads. All failures were associated with attachment hardware.

  15. Pressure-based impact method to count bedload particles

    NASA Astrophysics Data System (ADS)

    Antico, Federica; Mendes, Luís; Aleixo, Rui; Ferreira, Rui M. L.

    2017-04-01

    Bedload transport processes determine morphological changes in fluvial, estuarine and coastal domains, thus impacting the diversity and quality of ecosystems and human activities such as river management, coastal protection or dam operation. In spite of the advancements made in the last 60 years, driven by the improvements in measurement techniques, research efforts on grain-scale mechanics of bedload are still required, especially to clarify the intermittent nature of bedload, its stochastic structure and its scale dependence. A new impact-based device to measure bedload transport - MiCas system - is presented in this work. It was designed to meet the following key requirements: simple data output composed of time instant and location of impacts; no need for post-processing - impacts determined through hardware and firmware; capable of computing simple statistics in real time such as cumulative particle counting and discrete lateral distribution of cumulative particle counts; able to run for very large time periods (days, weeks); ability to detect particle impacts of large size fractions that are separated by a few milliseconds; composed of robust and relatively cheap components. The system's firmware analyses pressure time series, namely recognizing the imprints of impacts of individual particles as they hit pressurized membranes. A pattern analysis algorithm is used to identify the impact events. The implementation of this principle in a dedicated microprocessor allows for the real-time measurements of particle hits and cumulative particle count. To validate the results obtained by the MiCas system, Experiments were carried out in the 12.5m long and 40.5cm wide glass-sided flume of the Laboratory of Hydraulics and Environment of Instituto Superior Técnico, Lisbon. This flume has two independent circuits for water and sediment recirculation. A cohesionless granular bed, composed of 4 layers of 5 mm glass beads, subjected to a steady-uniform turbulent open-channel flow, was analysed. All tests featured a period of 90 s data collection. For a detailed description of the laboratory facilities and test conditions see Mendes et al. (2016). Results from MiCas system were compared with those of obtained from the analysis of a high-speed video footage. The obtained results shown a good agreement between both techniques. The measurements carried out allowed to determine that MiCas system is able to track particle impact in real-time within an error margin of 2.0%. From different tests with the same conditions it was possible to determine the repeatability of MiCas system. Derived quantities such as bedload transport rates, eulerian auto-correlation functions and structure functions are also in close agreement with measurements based on optical methods. The main advantages of MiCas system relatively to digital image processing methods are: a) independence from optical access, thus avoiding problems with light intensity variations and oscillating free surfaces; b) small volume of data associated to particle counting, which allows for the possibility of acquiring very long data series (hours, days) of particle impacts. In the considered cases, it would take more than two hours to generate 1 MB of data. For the current validation tests, 90 s acquisition time generated 25 Gb of images but 11 kB of MiCas data. On the other hand the time necessary to process the digital images may correspond to days, effectively limiting its usage to small time series. c) the possibility of real-time measurements, allowing for detection of problems during the experiments and minimizing some post-processing steps. This research was partially supported by Portuguese and European funds, within programs COMPETE2020 and PORL-FEDER, through project PTDC/ECM-HID/6387/2014 granted by the National Foundation for Science and Technology (FCT). References Mendes L., Antico F., Sanches P., Alegria F., Aleixo R., and Ferreira RML. (2016). A particle counting system for calculation of bedload fluxes. Measurement Science and Technology. DOI: http://dx.doi.org/10.1088/0957-0233/27/12/125305

  16. Lessons Learned From The EMU Fire and How It Impacts CxP Suit Element Development and Testing

    NASA Technical Reports Server (NTRS)

    Metts, Jonathan; Hill, Terry

    2008-01-01

    During testing a Space Shuttle Extravehicular Mobility Unit (EMU) pressure garment and life-support backpack was destroyed in a flash fire in the Johnson Space Center's Crew systems laboratory. This slide presentation reviews the accident, probable causes, the lessons learned and the effect this has on the testing and the environment for testing of the Space Suit for the Constellation Program.

  17. The Shock and Vibration Bulletin. Part 3. Acoustic and Vibration Testing, Impact and Blast

    DTIC Science & Technology

    1976-08-01

    Research Institute, San Antonio, Texas DESIGN OF A BLAST LOAD GENERATOR FOR OVERPRESSURE TESTING .................................. 261I P. Lieberman...Mathews and B. W. Duggin, Sandia Laboratories, Albuquerque, New Mexico ESTIMATION OF SHIP SHOCK PARAMETERS FOR CONSISTENT DESIGN AND TEST SPECIFICATION G. C...Seattle, Washington COMPONENT TESTING OF LIQUID SHOCK ISOLATORS AND ELASTOMERS IN SUPPORT OF RECENT SHOCK ISOLATION SYSTEM DESIGNS AJ.IP. Ashley, Boeing

  18. Naval applications of SC magnet systems

    NASA Astrophysics Data System (ADS)

    Gubser, D. U.

    The US Navy continues to develop advanced systems that utilize superconducting (SC) magnets. Recent impetus toward the “all” electric ship is accelerating the desire to produce “engineering” prototypes that can be field tested to ascertain the overall impact of these new technologies toward meeting Navy mission requirements. SC magnets for motors, energy storage, mine sweeping, and RF amplifiers are all being built and tested. This article provides a brief description of these projects.

  19. Urine Pretreatment History and Perspective in NASA Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Adam, Niklas; Chambers, Antja; Broyan, James

    2015-01-01

    Urine pretreatment is a technology that may seem to have small mass impacts in future spaceflight missions, but can have significant impacts on reliability, life, and performance of the rest of the wastewater management and recovery systems. NASA has experience with several different urine pretreatment systems, including those flow on the space shuttle, evaluated for NASA waste collection systems or used in Russian commodes on ISS, or developed by NASA or industry as alternatives. Each has had unique requirements for shelf life, operational life, and the life or conditions of the stored, treated urine. Each was evaluated under different test conditions depending on mission, and depending on testing experience developed over NASA's history. Those that were flown led to further lessons learned about hardware compatibility and control. As NASA looks forward to human spaceflight missions beyond low Earth orbit, these techniques need to be evaluated in new light. Based on published design reference missions, candidate requirements can be derived for future systems. Initial comparisons between these requirements and previous performance or test results can be performed. In many cases these comparisons reveal data gaps. Successful previous performance is not enough to address current needs.

  20. A distributed data acquisition system for aeronautics test facilities

    NASA Technical Reports Server (NTRS)

    Fronek, Dennis L.; Setter, Robert N.; Blumenthal, Philip Z.; Smalley, Robert R.

    1987-01-01

    The NASA Lewis Research Center is in the process of installing a new data acquisition and display system. This new system will provide small and medium sized aeronautics test facilities with a state-of-the-art real-time data acquisition and display system. The new data system will provide for the acquisition of signals from a variety of instrumentation sources. They include analog measurements of temperatures, pressures, and other steady state voltage inputs; frequency inputs to measure speed and flow; discrete I/O for significant events, and modular instrument systems such as multiplexed pressure modules or electronic instrumentation with a IEEE 488 interface. The data system is designed to acquire data, convert it to engineering units, compute test dependent performance calculations, limit check selected channels or calculations, and display the information in alphanumeric or graphical form with a cycle time of one second for the alphanumeric data. This paper describes the system configuration, its salient features, and the expected impact on testing.

  1. Extended Life Coolant Testing

    DTIC Science & Technology

    2016-06-06

    between the corrosive water and the grease that was leaked into the system. In terms of corrosion, the third test still passed by not exceeding any of...length. While the results of testing showed little corrosion, some negative interactions with the corrosive water mixture were observed. 15...such as temperature, flow rate, or corrosive water concentration might have a larger impact on performance. UNCLASSIFIED UNCLASSIFIED vi

  2. Diverse Studies in the Reactivated NASA/Ames Radiation Facility: From Shock Layer Spectroscopy to Thermal Protection System Impact

    NASA Technical Reports Server (NTRS)

    Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)

    1994-01-01

    NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.

  3. Dynamic testing of a non-proprietary, high-tension, cable end terminal system.

    DOT National Transportation Integrated Search

    2014-03-01

    Two bogie tests were conducted on a high-tension cable end terminal to evaluate the performance of a new design. The : main goals of the new design were to promote quick cable release times, to retain the cable release lever during impact, to : susta...

  4. Elementary Teachers' Knowledge and Self-Efficacy for Measurement Concepts

    ERIC Educational Resources Information Center

    Gotch, Chad M.; French, Brian F.

    2013-01-01

    Educational standardized testing impacts millions of children and educational professionals each year. In the current accountability climate, an effective educational system depends on professionals who are literate in assessment and can take the appropriate actions in response to test results. Measurement researchers should begin to focus more…

  5. Evaluation of Acadia National Park ITS field operational test : Island Explorer data analysis

    DOT National Transportation Integrated Search

    2003-04-01

    This report is one in a series that presents the results of data used to assess the impact of the Intelligent Transportation Systems (ITS) that were part of a field operational test at Acadia National Park on Mount Desert Island off the coast of Main...

  6. Evaluation of Acadia National Park ITS field operational test : state of Maine data analysis

    DOT National Transportation Integrated Search

    2003-04-01

    This report is one in a series that presents the results of data used to assess the impact of the Intelligent Transportation Systems (ITS) that were part of a field operational test at Acadia National Park on Mount Desert Island off the coast of Main...

  7. Evaluation of Acadia National Park ITS field operational test : Acadia National Park data analysis

    DOT National Transportation Integrated Search

    2003-04-01

    This report is one in a series that presents the results of data used to assess the impact of the Intelligent Transportation Systems (ITS) that were part of a field operational test at Acadia National Park on Mount Desert Island off the coast of Main...

  8. Comprehensive evaluation on transit signal priority system impacts using field observed traffic data

    DOT National Transportation Integrated Search

    2007-06-15

    To improve the level of service for Community Transit (CT) buses, the South Snohomish Regional Transit Signal Priority (SS-RTSP) project has been launched. To understand the overall benefit of this project, the SS-RTSP system was tested and evaluated...

  9. Is Student Performance on the Information Systems Analyst Certification Exam Affected by Form of Delivery of Information Systems Coursework?

    ERIC Educational Resources Information Center

    Haga, Wayne; Moreno, Abel; Segall, Mark

    2012-01-01

    In this paper, we compare the performance of Computer Information Systems (CIS) majors on the Information Systems Analyst (ISA) Certification Exam. The impact that the form of delivery of information systems coursework may have on the exam score is studied. Using a sample that spans three years, we test for significant differences between scores…

  10. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  11. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  12. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE PAGES

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  13. Effectiveness of headgear in football

    PubMed Central

    Withnall, C; Shewchenko, N; Wonnacott, M; Dvorak, J; Scott, D

    2005-01-01

    Objectives: Commercial headgear is currently being used by football players of all ages and skill levels to provide protection from heading and direct impact. The clinical and biomechanical effectiveness of the headgear in attenuating these types of impact is not well defined or understood. This study was conducted to determine whether football headgear has an effect on head impact responses. Methods: Controlled laboratory tests were conducted with a human volunteer and surrogate head/neck system. The impact attenuation of three commercial headgears during ball impact speeds of 6–30 m/s and in head to head contact with a closing speed of 2–5 m/s was quantified. The human subject, instrumented to measure linear and angular head accelerations, was exposed to low severity impacts during heading in the unprotected and protected states. High severity heading contact and head to head impacts were studied with a biofidelic surrogate headform instrumented to measure linear and angular head responses. Subject and surrogate responses were compared with published injury assessment functions associated with mild traumatic brain injury (MTBI). Results: For ball impacts, none of the headgear provided attenuation over the full range of impact speeds. Head responses with or without headgear were not significantly different (p>0.05) and remained well below levels associated with MTBI. In head to head impact tests the headgear provided an overall 33% reduction in impact response. Conclusion: The football headgear models tested did not provide benefit during ball impact. This is probably because of the large amount of ball deformation relative to headband thickness. However, the headgear provided measurable benefit during head to head impacts. PMID:16046355

  14. Comparison of two thinning systems. Part 1. Stand and site impacts

    Treesearch

    Bobby L. Lanford; Bryce J. Stokes

    1995-01-01

    During the winter of 1991, a side-by-side comparison was made between two popular thinning systems:a feller-buncher, grapple skidder, loader/slasher system and a harvester, forwarder system. A first commercial thinning was conducted in an 18-year-old loblolly pine stand Test areas were cruised prior to thinning and remeasured after operations were completed The target...

  15. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas J.; Kapernick, Richard J.; Bragg-Sitton, Shannon M.

    2004-02-01

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  16. Assessing land-use impacts on biodiversity using an expert systems tool

    USGS Publications Warehouse

    Crist, P.J.; Kohley, T.W.; Oakleaf, J.

    2000-01-01

    Habitat alteration, in the form of land-use development, is a leading cause of biodiversity loss in the U.S. and elsewhere. Although statutes in the U.S. may require consideration of biodiversity in local land-use planning and regulation, local governments lack the data, resources, and expertise to routinely consider biotic impacts that result from permitted land uses. We hypothesized that decision support systems could aid solution of this problem. We developed a pilot biodiversity expert systems tool (BEST) to test that hypothesis and learn what additional scientific and technological advancements are required for broad implementation of such a system. BEST uses data from the U.S. Geological Survey's Gap Analysis Program (GAP) and other data in a desktop GIS environment. The system provides predictions of conflict between proposed land uses and biotic elements and is intended for use at the start of the development review process. Key challenges were the development of categorization systems that relate named land-use types to ecological impacts, and relate sensitivities of biota to ecological impact levels. Although the advent of GAP and sophisticated desktop GIS make such a system feasible for broad implementation, considerable ongoing research is required to make the results of such a system scientifically sound, informative, and reliable for the regulatory process. We define a role for local government involvement in biodiversity impact assessment, the need for a biodiversity decision support system, the development of a prototype system, and scientific needs for broad implementation of a robust and reliable system.

  17. Performance evaluation of photoacoustic oximetry imaging systems using a dynamic blood flow phantom with tunable oxygen saturation

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Zhou, Xuewen; Andriani, Rudy; Wear, Keith A.; Garra, Brian S.; Pfefer, Joshua

    2018-02-01

    Photoacoustic Imaging (PAI) is an emerging technology with strong potential for broad clinical applications from breast cancer detection to cerebral monitoring due to its ability to compute maps of blood oxygen saturation (SO2) distribution in deep tissues using multispectral imaging. However, no well-validated consensus test methods currently exist for evaluating oximetry-specific performance characteristics of PAI devices. We have developed a phantombased flow system capable of rapid SO2 adjustment to serve as a test bed for elucidation of factors impacting SO2 measurement and quantitative characterization of device performance. The flow system is comprised of a peristaltic pump, membrane oxygenator, oxygen and nitrogen gas, and in-line oxygen, pH, and temperature sensors that enable real-time estimation of SO2 reference values. Bovine blood was delivered through breast-relevant tissue phantoms containing vessel-mimicking fluid channels, which were imaged using a custom multispectral PAI system. Blood was periodically drawn for SO2 measurement in a clinical-grade CO-oximeter. We used this flow phantom system to evaluate the impact of device parameters (e.g.,wavelength-dependent fluence corrections) and tissue parameters (e.g. fluid channel depth, blood SO2, spectral coloring artifacts) on oximetry measurement accuracy. Results elucidated key challenges in PAI oximetry and device design trade-offs, which subsequently allowed for optimization of system performance. This approach provides a robust benchtop test platform that can support PAI oximetry device optimization, performance validation, and clinical translation, and may inform future development of consensus test methods for performance assessment of photoacoustic oximetry imaging systems.

  18. Dynamic kinematic responses of female volunteers in rear impacts and comparison to previous male volunteer tests.

    PubMed

    Carlsson, Anna; Linder, Astrid; Davidsson, Johan; Hell, Wolfram; Schick, Sylvia; Svensson, Mats

    2011-08-01

    The objective was to quantify dynamic responses of 50th percentile females in rear impacts and compare to those from similar tests with males. The results will serve as a basis for future work with models, criteria, and safety systems. A rear impact sled test series with 8 female volunteers was performed at velocity changes of 5 and 7 km/h. The following dynamic response corridors were generated for the head, T1 (first thoracic vertebra) and head relative to T1: (1) accelerations in posterior-anterior direction, (2) horizontal and vertical displacements, (3) angular displacements for 6 females close to the 50th percentile in size. Additionally, the head-to-head restraint distance and contact time and neck injury criterion (NIC) were extracted from the data set. These data were compared to results from previously performed male volunteer tests, representing the 50th percentile male, in equivalent test conditions. T-tests were performed with the statistical significance level of .05 to quantify the significance of the parameter value differences for the males and females. At 7 km/h, the females showed 29 percent earlier head-to-head restraint contact time (p = .0072); 27 percent shorter horizontal rearward head displacement (p = .0017); 36 percent narrower head extension angle (p = .0281); and 52 percent lower NIC value (p = .0239) than the males in previous tests. This was mainly due to 35 percent shorter initial head-to-head restraint distance for the females (p = .0125). The peak head acceleration in the posterior-anterior direction was higher and occurred earlier for the females. The overall result indicated differences in the dynamic response for the female and male volunteers. The results could be used in developing and evaluating a mechanical and/or mathematical average-sized female dummy model for rear impact safety assessment. These models can be used as a tool in the design of protective systems and for further development and evaluation of injury criteria.

  19. Systems Biology Approaches for Discovering Biomarkers for Traumatic Brain Injury

    DTIC Science & Technology

    2013-07-01

    injury (FPI), in which injury is produced by the impact of a pendulum onto a fluid reservoir, or controlled cortical impact (CCI), in which a rigid...algorithm, and the MSigDB Web site in Table 3 allows users to run GSEA on up- loaded data. One drawback to GSEA and the hypergeometric test is that

  20. Simulated impact of climate change on hydrology of multiple watersheds using traditional and recommended snowmelt runoff model methodology

    USDA-ARS?s Scientific Manuscript database

    For more than three decades, researchers have utilized the Snowmelt Runoff Model (SRM) to test the impacts of climate change on streamflow of snow-fed systems. In this study, the hydrological effects of climate change are modeled over three sequential years using SRM with both typical and recommende...

  1. Missile Defense Agency Ballistic Missile Defense System (BMDS): Programmatic Environmental Impact Statement. Volume 1 Final BMDS PEIS

    DTIC Science & Technology

    2007-01-01

    4-22 Exhibit 4-8. Freshwater Species Tolerance to Acidity...environments or specific threatened or endangered species . Radio frequency use and testing would be coordinated with the appropriate resource management...impacts to the environment and the threatened and endangered species , the unique or sensitive environments, and the migratory, breeding, and

  2. A comparative evaluation of piezoelectric sensors for acoustic emission-based impact location estimation and damage classification in composite structures

    NASA Astrophysics Data System (ADS)

    Uprety, Bibhisha; Kim, Sungwon; Mathews, V. John; Adams, Daniel O.

    2015-03-01

    Acoustic Emission (AE) based Structural Health Monitoring (SHM) is of great interest for detecting impact damage in composite structures. Within the aerospace industry the need to detect and locate these events, even when no visible damage is present, is important both from the maintenance and design perspectives. In this investigation, four commercially available piezoelectric sensors were evaluated for usage in an AE-based SHM system. Of particular interest was comparing the acoustic response of the candidate piezoelectric sensors for impact location estimations as well as damage classification resulting from the impact in fiber-reinforced composite structures. Sensor assessment was performed based on response signal characterization and performance for active testing at 300 kHz and steel-ball drop testing using both aluminum and carbon/epoxy composite plates. Wave mode velocities calculated from the measured arrival times were found to be in good agreement with predictions obtained using both the Disperse code and finite element analysis. Differences in the relative strength of the received wave modes, the overall signal strengths and signal-to-noise ratios were observed through the use of both active testing as well as passive steel-ball drop testing. Further comparative is focusing on assessing AE sensor performance for use in impact location estimation algorithms as well as detecting and classifying damage produced in composite structures due to impact events.

  3. Repeated Diagnostic Imaging Studies in Ontario and the Impact of Health Information Exchange Systems.

    PubMed

    Welk, Blayne; Liu, Kuan; Al-Jaishi, Ahmed; McArthur, Eric; Jain, Arsh K; Ordon, Michael

    2016-01-01

    Health information exchange systems can link the results of diagnostic imaging tests across hospitals and geographic areas. One of the potential benefits of these systems is a reduction in imaging studies ordered by physicians who do not know about or have access to the previous imaging results. We used administrative data from Ontario, Canada (from the year 2013), to measure how frequently the same cross-sectional imaging study is repeated in a patient. Overall, 12.8% of the specified imaging tests were repeated within 90 days. An area of Southwestern Ontario with a health information exchange system for diagnostic imaging tests had a 13% lower rate of repeat cross-sectional imaging compared with the rest of the province (11.2 vs 12.8%, p < 0.01). The use of linked radiology systems may be able to reduce the number of repeated imaging tests and improve patient safety and hospital efficiency.

  4. Evaluation of mobility impacts of advanced information systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeta, S.; Poonuru, K.; Sinha, K.

    2000-06-01

    Advanced technologies under the aegis of advanced traveler information systems and advanced traffic management systems are being employed to address the debilitating traffic congestion problem. Broadly identified under the label intelligent transportation systems (ITS), they focus on enhancing the efficiency of the existing roadway utilization. Though ITS has transitioned from the conceptual framework stage to the operational test phase that analyzes real-world feasibility, studies that systematically quantify the multidimensional real-world impacts of these technologies in terms of mobility, safety, and air quality, are lacking. This paper proposes a simulation-based framework to address the mobility impacts of these technologies through themore » provision of information to travelers. The information provision technologies are labeled as advanced information systems (AIS), and include pretrip information, en route information, variable message signs, and combinations thereof. The primary focus of the paper is to evaluate alternative AIS technologies using the heavily traveled Borman Expressway corridor in northwestern Indiana as a case study. Simulation results provide insights into the mobility impacts of AIS technologies, and contrast the effectiveness of alternative information provision sources and strategies.« less

  5. Psychological impact of von Hippel-Lindau genetic screening in patients with a previous history of hemangioblastoma of the central nervous system.

    PubMed

    Rochette, Claire; Baumstarck, Karine; Canoni-Zattara, Hélène; Abdullah, Ahmad Esmaeel; Figarella-Branger, Dominique; Pertuit, Morgane; Barlier, Anne; Castinetti, Frédéric; Pacak, Karel; Metellus, Philippe; Taïeb, David

    2018-05-15

    Von Hippel-Lindau (VHL) syndrome is a hereditary cancer syndrome characterized by a high risk of developing benign and malignant tumors, including central nervous system hemangioblastomas (CNS HBs). For an early diagnosis of VHL, before the occurrence of cancers (especially renal cell carcinoma), it is of huge importance to initiate VHL genetic testing in at-risk patients. The aim of the study was to assess the psychological impact of VHL genetic testing in patients previously diagnosed with a CNS HB. From 1999 until 2015, 55 patients underwent surgery for CNS HBs. Eleven patients were already screened for VHL mutations and 3 patients deceased before the start of the study. From the remaining 42 patients, 24 were accepted to be enrolled in the study. Assessment of psychological impact of VHL genetic testing was performed by measuring anxiety levels, mood disorders, quality of life, and psychological consequences of genetic screening. Twenty-one of the enrolled 24 patients underwent VHL genetic testing and 12 patients came back for the communication of positive genetic results. The baseline psychological status did not differ between these 2 groups. Patients who attended the visit of communication of genetic results had similar anxiety levels compared to those who had not. Furthermore, they also experienced an improvement in the level of anxiety and two QoL dimension scores compared to their baseline status. In summary, there is no evidence of a negative psychosocial impact of VHL genetic testing in patients with a previous history of CNS HB. We, therefore, recommend the recall of patients who have not been previously screened.

  6. The Deep Impact Network Experiment Operations Center

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan

    2009-01-01

    Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.

  7. Impacting load control of floating supported friction plate and its experimental verification

    NASA Astrophysics Data System (ADS)

    Ning, Keyan; Wang, Yu; Huang, Dingchuan; Yin, Lei

    2017-05-01

    Friction plates are key components in automobile transmission system. Unfortunately, due to the tough working condition i.e. high impact, high temperature, fracture and plastic deformation are easily observed in friction plates. In order to reduce the impact load and increase the impact resistance and life span of the friction plate. This paper presents a variable damping design method and structure, by punching holes in the key position of the friction plate and filling it with damping materials, the impact load of the floating support friction plate can be controlled. Simulation is applied to study the effect of the position and number of damping holes on tooth root stress. Furthermore, physic test was designed and conducted to validate the correctness and effectiveness of the proposed method. Test result shows that the impact load of the new structure is reduced by 40% and its fatigue life is 4.7 times larger. The new structure provides a new way for floating supported friction plates design.

  8. Proposed Development of NASA Glenn Research Center's Aeronautical Network Research Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Kerczewski, Robert J.; Wargo, Chris A.; Kocin, Michael J.; Garcia, Manuel L.

    2004-01-01

    Accurate knowledge and understanding of data link traffic loads that will have an impact on the underlying communications infrastructure within the National Airspace System (NAS) is of paramount importance for planning, development and fielding of future airborne and ground-based communications systems. Attempting to better understand this impact, NASA Glenn Research Center (GRC), through its contractor Computer Networks & Software, Inc. (CNS, Inc.), has developed an emulation and test facility known as the Virtual Aircraft and Controller (VAC) to study data link interactions and the capacity of the NAS to support Controller Pilot Data Link Communications (CPDLC) traffic. The drawback of the current VAC test bed is that it does not allow the test personnel and researchers to present a real world RF environment to a complex airborne or ground system. Fortunately, the United States Air Force and Navy Avionics Test Commands, through its contractor ViaSat, Inc., have developed the Joint Communications Simulator (JCS) to provide communications band test and simulation capability for the RF spectrum through 18 GHz including Communications, Navigation, and Identification and Surveillance functions. In this paper, we are proposing the development of a new and robust test bed that will leverage on the existing NASA GRC's VAC and the Air Force and Navy Commands JCS systems capabilities and functionalities. The proposed NASA Glenn Research Center's Aeronautical Networks Research Simulator (ANRS) will combine current Air Traffic Control applications and physical RF stimulation into an integrated system capable of emulating data transmission behaviors including propagation delay, physical protocol delay, transmission failure and channel interference. The ANRS will provide a simulation/stimulation tool and test bed environment that allow the researcher to predict the performance of various aeronautical network protocol standards and their associated waveforms under varying density conditions. The system allows the user to define human-interactive and scripted aircraft and controller models of various standards, such as (but not limited to) Very High Frequency Digital Link (VDL) of various modes.

  9. Rain Simulation for the Test of Automotive Surround Sensors

    NASA Astrophysics Data System (ADS)

    Hasirlioglu, Sinan; Riener, Andreas; Doric, Igor

    2017-04-01

    The WHO Global Health Observatory data indicates that over 1.25 million people die in traffic accidents annually. To save lives, car manufacturers spend lot of efforts on the development of novel safety systems aiming to avoid or mitigate accidents and provide maximum protection for vehicle occupants as well as vulnerable road users. All the safety features mainly rely on data from surround sensors such as radar, lidar and camera and intelligent vehicles today use these environmental data for instant decision making and vehicle control. As already small errors in sensor data measurements could lead to catastrophes like major injuries or road traffic fatalities, it is of utmost importance to ensure high reliability and accuracy of sensors and safety systems. This work focuses on the influence of environmental factors such as rain conditions, as it is known that rain drops scatter the electromagnetic waves. The result is incorrect measurements with a direct negative impact on environment detection. To identify potential problems of sensors under varying environmental conditions, systems are today tested in real-world settings with two main problems: First, tests are time-consuming and second, environmental conditions are not reproducible. Our approach to test the influence of weather on automotive sensors is to use an indoor rain simulator. Our artificial rain maker, installed at CARISSMA (Center of Automotive Research on Integrated Safety Systems and Measurement Area), is parametrized with rain characteristics measured in the field using a standard disdrometer. System behavior on artificial rain is compared and validated with natural rainfall. With this simulator it is finally possible to test environmental influence at various levels and under reproducible conditions. This saves lot of efforts required for the test process itself and furthermore has a positive impact on the reliability of sensor systems due to the fact that test driven development is enabled.

  10. Ballistic impact velocity response of carbon fibre reinforced aluminium alloy laminates for aero-engine

    NASA Astrophysics Data System (ADS)

    Mohammed, I.; Abu Talib, A. R.; Sultan, M. T. H.; Saadon, S.

    2017-12-01

    Aerospace and other industries use fibre metal laminate composites extensively due to their high specific strength, stiffness and fire resistance, in addition to their capability to be tailored into different forms for specific purposes. The behaviours of such composites under impact loading is another factor to be considered due to the impacts that occur in take-off, landing, during maintenance and operations. The aim of the study is to determine the specific perforation energy and impact strength of the fibre metal laminates of different layering pattern of carbon fibre reinforced aluminium alloy and hybrid laminate composites of carbon fibre and natural fibres (kenaf and flax). The composites are fabricated using the hand lay-up method in a mould with high bonding polymer matrix and compressed by a compression machine, cured at room temperature for one day and post cure in an oven for three hours. The impact tests are conducted using a gun tunnel system with a flat cylindrical bullet fired using a helium gas at a distance of 14 inches to the target. Impact and residual velocity of the projectile are recorded by high speed video camera. Specific perforation energy of carbon fibre reinforced aluminium alloy (CF+AA) for both before and after fire test are higher than the specific perforation energy of the other composites considered before and after fire test respectively. CF +AA before fire test is 55.18% greater than after. The same thing applies to impact strength of the composites where CF +AA before the fire test has the highest percentage of 11.7%, 50.0% and 32.98% as respectively compared to carbon fibre reinforced aluminium alloy (CARALL), carbon fibre reinforced flax aluminium alloy (CAFRALL) and carbon fibre reinforced kenaf aluminium alloy (CAKRALL), and likewise for the composites after fire test. The considered composites in this test can be used in the designated fire zone of an aircraft engine to protect external debris from penetrating the engine shield due to higher values of impact strength and specific perforation energy as highlighted by the test results.

  11. Dynamic Open-Rotor Composite Shield Impact Test Report

    NASA Technical Reports Server (NTRS)

    Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.

    2015-01-01

    The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.

  12. A 1055 ft/sec impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A study to determine the feasibility of containing the fission products of a mobile reactor in the event of an impact is presented. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block at 1055 ft/sec. The model was significantly deformed and the concrete block demolished. No leaks were detected nor were any cracks observed in the model after impact.

  13. System Configuration and Operation Plan of Hayabusa2 DCAM3-D Camera System for Scientific Observation During SCI Impact Experiment

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazunori; Shirai, Kei; Sawada, Hirotaka; Arakawa, Masahiko; Honda, Rie; Wada, Koji; Ishibashi, Ko; Iijima, Yu-ichi; Sakatani, Naoya; Nakazawa, Satoru; Hayakawa, Hajime

    2017-07-01

    An artificial impact experiment is scheduled for 2018-2019 in which an impactor will collide with asteroid 162137 Ryugu (1999 JU3) during the asteroid rendezvous phase of the Hayabusa2 spacecraft. The small carry-on impactor (SCI) will shoot a 2-kg projectile at 2 km/s to create a crater 1-10 m in diameter with an expected subsequent ejecta curtain of a 100-m scale on an ideal sandy surface. A miniaturized deployable camera (DCAM3) unit will separate from the spacecraft at about 1 km from impact, and simultaneously conduct optical observations of the experiment. We designed and developed a camera system (DCAM3-D) in the DCAM3, specialized for scientific observations of impact phenomenon, in order to clarify the subsurface structure, construct theories of impact applicable in a microgravity environment, and identify the impact point on the asteroid. The DCAM3-D system consists of a miniaturized camera with a wide-angle and high-focusing performance, high-speed radio communication devices, and control units with large data storage on both the DCAM3 unit and the spacecraft. These components were successfully developed under severe constraints of size, mass and power, and the whole DCAM3-D system has passed all tests verifying functions, performance, and environmental tolerance. Results indicated sufficient potential to conduct the scientific observations during the SCI impact experiment. An operation plan was carefully considered along with the configuration and a time schedule of the impact experiment, and pre-programed into the control unit before the launch. In this paper, we describe details of the system design concept, specifications, and the operating plan of the DCAM3-D system, focusing on the feasibility of scientific observations.

  14. Top tether effectiveness during side impacts.

    PubMed

    Majstorovic, Jordan; Bing, Julie; Dahle, Eric; Bolte, John; Kang, Yun-Seok

    2018-02-28

    Few studies have looked at the effectiveness of the top tether during side impacts. In these studies, limited anthropomorphic test device (ATD) data were collected and/or few side impact scenarios were observed. The goal of this study was to further understand the effects of the top tether on ATD responses and child restraint system (CRS) kinematics during various side impact conditions. A series of high-speed near-side and far-side sled tests were performed using the FMVSS213 side impact sled buck and Q3s ATD. Tests were performed at both 10° and 30° impacts with respect to the pure lateral direction. Two child restraints, CRS A and CRS B, were attached to the bench using flexible lower anchors. Each test scenario was performed with the presence and absence of a top tether. Instrumentation recorded Q3s responses and CRS kinematics, and the identical test scenarios with and without a top tether attachment were compared. For the far-side lateral (10°) and oblique (30°) impacts, top tether attachment increased resultant head accelerations by 8-38% and head injury criterion (HIC 15 ) values by 20-140%. However, the top tether was effective in reducing lateral head excursion by 5-25%. For near-side impacts, the top tether resulted in less than 10% increases in both resultant head acceleration and HIC 15 in the lateral impact direction. For near-side oblique impacts, the top tether increased HIC 15 by 17.3% for CRS A and decreased it by 19.5% for CRS B. However, the injury values determined from both impact conditions were below current injury assessment reference values (IARVs). Additionally, the top tether proved beneficial in preventing forward and lateral CRS rotations. The results show that the effects of the top tether on Q3s responses were dependent on impact type, impact angle, and CRS. Tether attachments that increased head accelerations and HIC 15 values were generally counterbalanced by a reduction in head excursion and CRS rotation compared to nontethered scenarios.

  15. Impact of water quality on chlorine demand of corroding copper.

    PubMed

    Lytle, Darren A; Liggett, Jennifer

    2016-04-01

    Copper is widely used in drinking water premise plumbing system materials. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogens such as Legionella is particularly challenging since copper and other reactive distribution system materials can exert considerable demands. The objective of this work was to evaluate the impact of pH and orthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. A copper test-loop pilot system was used to control test conditions and systematically meet the study objectives. Chlorine consumption trends attributed to abiotic reactions with copper over time were different for each pH condition tested, and the total amount of chlorine consumed over the test runs increased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsed time (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reduced the total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorine consumed and the consumption rate were not pH dependent when orthophosphate was present. The findings reflect the complex and competing reactions at the copper pipe wall including corrosion, oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in chlorine species all as a function of pH. The work has practical applications for maintaining chlorine residuals in premise plumbing drinking water systems including large buildings such as hospitals. Published by Elsevier Ltd.

  16. Modeling of Local BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.

  17. Software Requirements Analysis as Fault Predictor

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores

    2003-01-01

    Waiting until the integration and system test phase to discover errors leads to more costly rework than resolving those same errors earlier in the lifecycle. Costs increase even more significantly once a software system has become operational. WE can assess the quality of system requirements, but do little to correlate this information either to system assurance activities or long-term reliability projections - both of which remain unclear and anecdotal. Extending earlier work on requirements accomplished by the ARM tool, measuring requirements quality information against code complexity and test data for the same system may be used to predict specific software modules containing high impact or deeply embedded faults now escaping in operational systems. Such knowledge would lead to more effective and efficient test programs. It may enable insight into whether a program should be maintained or started over.

  18. Comprehensive evaluation on transit signal priority system impacts using field observed traffic data (Phase One)

    DOT National Transportation Integrated Search

    2006-08-01

    To improve the level of Community Transit (CT) services, the South Snohomish Regional Transit Signal Priority (SS-RTSP) project has been launched. To understand the overall benefit of this project, the SS-RTSP system (phase one) was tested and evalua...

  19. Role of drosophila in chemical mutagenesis testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nix, C.E.; Brewen, B.

    1978-01-01

    An important question facing our society is the impact of numerous chemical insults on the health of man and his environment. Faced with a staggering array of chemicals and enormous testing costs, only a few chemicals can be tested for possible carcinogenic effects. Recent results with the Salmonella/mammalian microsome mutagenesis bioassay system demonstrate a striking correlation between carcinogenicity and mutagenicity of many chemical compounds and offer the possibility that mutagenesis assay systems can provide a quick identification of potential carcinogens. Results from microbial assays can serve as a guideline for further mutagenesis testing as well as identify those compounds requiringmore » more extensive analysis in mammalian systems. Reliance on the results from a single mutagenic assay system is rather risky. It would be preferable to use a battery of tests (the tier approach) which would include the rapid microbial assays as well as mammalian systems. Also the use of Drosophila as a bridge between the microbial and mammalian assays has many desirable features which are discussed.« less

  20. Impact of audio narrated animation on students' understanding and learning environment based on gender

    NASA Astrophysics Data System (ADS)

    Nasrudin, Ajeng Ratih; Setiawan, Wawan; Sanjaya, Yayan

    2017-05-01

    This study is titled the impact of audio narrated animation on students' understanding in learning humanrespiratory system based on gender. This study was conducted in eight grade of junior high school. This study aims to investigate the difference of students' understanding and learning environment at boys and girls classes in learning human respiratory system using audio narrated animation. Research method that is used is quasy experiment with matching pre-test post-test comparison group design. The procedures of study are: (1) preliminary study and learning habituation using audio narrated animation; (2) implementation of learning using audio narrated animation and taking data; (3) analysis and discussion. The result of analysis shows that there is significant difference on students' understanding and learning environment at boys and girls classes in learning human respiratory system using audio narrated animation, both in general and specifically in achieving learning indicators. The discussion related to the impact of audio narrated animation, gender characteristics, and constructivist learning environment. It can be concluded that there is significant difference of students' understanding at boys and girls classes in learning human respiratory system using audio narrated animation. Additionally, based on interpretation of students' respond, there is the difference increment of agreement level in learning environment.

  1. Shuttle avionics and the goal language including the impact of error detection and redundancy management

    NASA Technical Reports Server (NTRS)

    Flanders, J. H.; Helmers, C. T.; Stanten, S. F.

    1973-01-01

    The relationship is examined between the space shuttle onboard avionics and the ground test computer language GOAL when used in the onboard computers. The study is aimed at providing system analysis support to the feasibility analysis of a GOAL to HAL translator, where HAL is the language used to program the onboard computers for flight. The subject is dealt with in three aspects. First, the system configuration at checkout, the general checkout and launch sequences, and the inventory of subsystems are described. Secondly, the hierarchic organization of onboard software and different ways of introducing GOAL-derived software onboard are described. Also the flow of commands and test data during checkout is diagrammed. Finally, possible impact of error detection and redundancy management on the GOAL language is discussed.

  2. Microstructural effects on ignition sensitivity in Ni/Al systems subjected to high strain rate impacts

    NASA Astrophysics Data System (ADS)

    Reeves, Robert; Mukasyan, Alexander; Son, Steven

    2011-06-01

    The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 at%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones occur in shear bands formed during the impact event.

  3. Microstructural effects on ignition sensitivity in Ni/Al systems subjected to high strain rate impacts

    NASA Astrophysics Data System (ADS)

    Reeves, Robert V.; Mukasyan, Alexander S.; Son, Steven

    2012-03-01

    The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 mol%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones shear bands formed during the impact event are observed.

  4. Impact response of US Army and National Football League helmet pad systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, W C; King, M J

    Lawrence Livermore National Laboratory [LLNL] was tasked to compare the impact response of NFL helmet pad systems and U.S. Army pad systems compatible with an Advanced Combat Helmet [ACH] at impact velocities up to 20 ft/s. This was a one-year study funded by the U.S. Army and JIEDDO. The Army/JIEDDO point of contact is COL R. Todd Dombroski, DO, JIEDDO Surgeon. LLNL was chosen by committee to perform the research based on prior published computational studies of the mechanical response of helmets and skulls to blast. Our collaborators include the U.S. Army Aeromedical Research Laboratory [USAARL] (a DoD laboratory responsiblemore » for impact testing helmets), Team Wendy and Oregon Aero (current and former ACH pad manufacturers), Riddell and Xenith (NFL pad manufacturers), and d3o (general purpose sports pad manufacturer). The manufacturer-supplied pad systems that were studied are shown in the figure below. The first two are the Army systems, which are bilayer foam pads with both hard and soft foam and a water-resistant airtight wrapper (Team Wendy) or a water-resistant airtight coating (Oregon Aero). The next two are NFL pad systems. The Xenith system consists of a thin foam pad and a hollow air-filled cylinder that elastically buckles under load. The Riddell system is a bilayer foam pad that is encased in an inflatable airbag with relief channels to neighboring pads in the helmet. The inflatable airbag is for comfort and provides no enhancement to impact mitigation. The d3o system consists of a rate-sensitive homogeneous dense foam. LLNL performed experiments to characterize the material properties of the individual foam materials and the response of the complete pad systems, to obtain parameters needed for the simulations. LLNL also performed X-ray CT scans of an ACH helmet shell that were used to construct a geometrically accurate computational model of the helmet. Two complementary sets of simulations were performed. The first set of simulations reproduced the experimental helmet impact certification tests performed by USAARL, who provided data for comparison. The goal of this set of simulations was to demonstrate the overall validity of LLNL's computational analyses and methods and understand the general physics of helmet impacts. In these tests and the corresponding simulations, an inverted ACH containing pads and a head-form are dropped onto a hemispherical anvil, at 10 and 14.14 ft/s impact velocities. The simulations predicted peak accelerations (the metric used by USAARL for comparing the performance of pad systems), rebound velocities, and impact durations consistent with the experimental data, thus demonstrating the validity and relevance of the simulation methods. Because the NFL pad systems are approximately double the thickness of the U.S. Army pads, they do not fit into the ACH. As a result, the NFL pads could not be simply placed into an ACH shell in either a simulation or an experiment without modifying their size and shape. Since impact mitigation depends critically on the available stopping distance and the area over which the stopping force is applied, it is important to consider identically shaped pads in order to compare their performance in a fair and meaningful manner. Consequently, the second set of simulations utilized a simplified simulation geometry consisting of a 5 kg cylindrical impactor (equal in mass to a head) striking equally sized pads from each manufacturer. The simulated bilayer foam pads had the same proportions of hard and soft foam as the actual pad systems, while the Xenith pads were simulated as a bilayer foam pad with material properties adjusted to give the same response as the actual Xenith pads. The effects of trapped air were included in the simulations of the Team Wendy and Oregon Aero pads. All simulations used material properties derived from the experiments conducted at LLNL. The acceleration history of the center of mass of the impactor was used to calculate the Head Injury Criterion (HIC) for each simulation, to assess the pad performance. The HIC is a well-established metric that combines both acceleration and duration of impact to assess the danger of injury, and is a more robust measure than peak acceleration. Our key findings are: (1) The performance of a pad depends on the range of impact velocities. At lower impact velocity, softer pads perform better. At higher impact velocity, harder pads perform better; (2) Thicker pads perform better at all velocities, but especially at high velocities; and (3) For comparable thicknesses, neither the NFL systems nor the Oregon Aero pads outperform the Team Wendy pads currently used in the ACH system in militarily-relevant impact scenarios (impact speeds less than 20 ft/s). The second finding suggests a commercial off-the-shelf solution for mitigating impact-related traumatic brain injury to soldiers.« less

  5. Experimental Results From Stitched Composite Multi-Bay Fuselage Panels Tested Under Uni-Axial Compression

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2004-01-01

    The experimental results from two stitched VARTM composite panels tested under uni-axial compression loading are presented. The curved panels are divided by frames and stringers into five or six bays with a column of three bays along the compressive loading direction. The frames are supported at the ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field measurement technique that utilizes a camera-based-stero-vision system was used to record displacements. The panels were loaded in increments to determine the first bay to buckle. Loading was discontinued at limit load and the panels were removed from the test machine for impact testing. After impacting at 20 ft-lbs to 25 ft-lbs of energy with a spherical indenter, the panels were loaded in compression until failure. Impact testing reduced the axial stiffness 4 percent and less than 1 percent. Postbuckled axial panel stiffness was 52 percent and 70 percent of the pre-buckled stiffness.

  6. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Subsequent to the design review, a series of tests was conducted on simulated modules to demonstrate that all environmental specifications (wind loading, hailstone impact, thermal cycling, and humidity cycling) are satisfied by the design. All tests, except hailstone impact, were successfully completed. The assembly sequence was simplified by virtue of eliminating the frame components and assembly steps. Performance was improved by reducing the module edge border required to accommodate the frame of the preliminary design module. An ultrasonic rolling spot bonding technique was selected for use in the machine to perform the aluminum interconnect to cell metallization electrical joints required in the MEPSDU module configuration. This selection was based on extensive experimental tests and economic analyses.

  7. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    DOE PAGES

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; ...

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code calledmore » NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.« less

  8. Establishing a Water Resources Resilience Baseline for Mexico City

    NASA Astrophysics Data System (ADS)

    Behzadi, F.; Ray, P. A.

    2017-12-01

    There is a growing concern for the vulnerability of the Mexico City water system to shocks, and the capacity of the system to accommodate climate and demographic change. This study presents a coarse-resolution, lumped model of the water system of Mexico City as a whole, designed to identify system-wide imbalances, and opportunities for large-scale improvements in city-wide resilience through investments in water imports, exports, and storage. In order to investigate the impact of climate change in Mexico City, the annual and monthly trends of precipitation and temperature at 46 stations near or inside the Mexico City were analyzed. The statistical significance of the trends in rainfall and temperature, both over the entire period of record, and the more recent "climate-change-impacted period" (1970-2015), were determined using the non-parametric Mann-Kendall test. Results show a statistically significant increasing trend in the annual mean precipitation, mean temperature, and annual maximum daily temperature. However, minimum daily temperature does not appear to be increasing, and might be decreasing. Water management in Mexico City faces particular challenges, where the winter dry season is warming more quickly than the wet summer season. A stress test of Mexico City water system is conducted to identify vulnerabilities to changes in exogenous factors (esp., climate, demographics, land use). Following on the stress test, the relative merits of adaptation options that might improve the system's resilience and sustainability will be assessed.

  9. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  10. Testing Report: Littleford-Day Dryer Operation: Dryer Operation Impacts of Proposed MIS Mitigation Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimskey, Rick W.; Buchmiller, William C.; Elmore, Monte R.

    2007-06-01

    Pacific Northwest National Laboratory performed a series of tests using the Littleford Day 22-liter dryer during investigations that evaluated changes in the melter-feed composition for the Demonstration Bulk Vitrification System. During testing, a new melter-feed formulation was developed that improved dryer performance while improving the retention of waste salts in the melter feed during vitrification.

  11. Teacher Perceptions toward the Interpretation of Results from the New Norm-Referenced Portion of the Mississippi Assessment System. A Pilot Study.

    ERIC Educational Resources Information Center

    Howe, Mary E.; And Others

    Standardized testing, usually in the form of a multiple choice test, has dominated educational reform throughout Mississippi for the past 2 decades. Because of the minimal impact that standardized testing has traditionally had on curriculum decisions and classroom instruction, a paradigm shift in assessment format was adopted in the State from a…

  12. “Reducing unnecessary testing in a CPOE system through implementation of a targeted CDS intervention”

    PubMed Central

    2013-01-01

    Background We describe and evaluate the development and use of a Clinical Decision Support (CDS) intervention; an alert, in response to an identified medical error of overuse of a diagnostic laboratory test in a Computerized Physician Order Entry (CPOE) system. CPOE with embedded CDS has been shown to improve quality of care and reduce medical errors. CPOE can also improve resource utilization through more appropriate use of laboratory tests and diagnostic studies. Observational studies are necessary in order to understand how these technologies can be successfully employed by healthcare providers. Methods The error was identified by the Test Utilization Committee (TUC) in September, 2008 when they noticed critical care patients were being tested daily, and sometimes twice daily, for B-Type Natriuretic Peptide (BNP). Repeat and/or serial BNP testing is inappropriate for guiding the management of heart failure and may be clinically misleading. The CDS intervention consists of an expert rule that searches the system for a BNP lab value on the patient. If there is a value and the value is within the current hospital stay, an advisory is displayed to the ordering clinician. In order to isolate the impact of this intervention on unnecessary BNP testing we applied multiple regression analysis to the sample of 41,306 patient admissions with at least one BNP test at LVHN between January, 2008 and September, 2011. Results Our regression results suggest the CDS intervention reduced BNP orders by 21% relative to the mean. The financial impact of the rule was also significant. Multiplying by the direct supply cost of $28.04 per test, the intervention saved approximately $92,000 per year. Conclusions The use of alerts has great positive potential to improve care, but should be used judiciously and in the appropriate environment. While these savings may not be generalizable to other interventions, the experience at LVHN suggests that appropriately designed and carefully implemented CDS interventions can have a substantial impact on the efficiency of care provision. PMID:23566021

  13. Refractory Wear Mechanisms in the Nonferrous Metal Industry: Testing and Modeling Results

    NASA Astrophysics Data System (ADS)

    Gregurek, D.; Ressler, A.; Reiter, V.; Franzkowiak, A.; Spanring, A.; Prietl, T.

    2013-11-01

    Nonferrous pyrometallurgical processes today operate at a high intensity requiring the best standards for the furnace refractory systems. From one plant to another, there is a range of process conditions such as temperature, slag chemistry, and feed types, and each of these parameters can influence refractory life. It is generally understood that process changes at plants can impact refractory life. The ability to test and understand refractory responses to a wide range of furnace operating conditions is therefore important. The RHI Technology Centre in Leoben, Austria is well equipped with laboratory and pilot plant facilities to evaluate refractory suitability over the range of conditions encountered in modern nonferrous pyrometallurgical systems. This article describes refractory testing at the RHI Technology Centre of the impact of two metallurgical slags on a number of different RHI test bricks. The slags were a fayalite slag and a calcium ferrite slag supplied by two smelter plants. High-temperature corrosion tests were carried out in a 250-mm-diameter induction furnace and a 165-mm-diameter short rotary kiln; each unit was lined with a number of refractory bricks and tested against attack by the particular slag. After testing, the refractory bricks were subjected to several laboratory tests to determine the extent of corrosion. Optimal refractory choices for the customers' plants were developed based on the test results.

  14. Sustainable Horizontal Bioventing and Vertical Biosparging Implementation (Invited)

    NASA Astrophysics Data System (ADS)

    Leu, J.; Lin, J.; Ferris, S.

    2013-12-01

    A former natural gas processing site with total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylene (BTEX) impacts in both soil and groundwater was partially excavated to remove 2,400 cubic yards of impacted soil. However, due to active natural gas pipelines within the impacted footprint, excavation was discontinued and an area of impacted soil containing maximum concentrations of 5,000 mg/kg gasoline-range organics (GRO), 8,600 mg/kg diesel-range organics (DRO), and 130 mg/kg motor oil-range organics (ORO). Groundwater was impacted with concentrations up to 2,300 μg/L GRO and 4,200 μg/L DRO remained in place. Taking advantage of the open excavation, horizontal-screened piping was placed in the backfill to deliver air for bioventing, which resulted in successful remediation of soil in a physically inaccessible area. The combined use of excavation of the source area, bioventing of surrounding inaccessible soil, and biosparging of the groundwater and smear zone resulted in nearing a no-further-action status at the site. The sustainable bioventing system consisted of one 3-HP blower and eight horizontal air injection wells. Five dual-depth nested vapor monitoring points (VMPs) were installed at 5 feet and 10 feet below ground surface as part of the monitoring system for human health and system performance. The bioventing system operated for one year followed by a three-month rebound test. During the one-year operation, air flow was periodically adjusted to maximize removal of volatile organic compounds (VOCs) from the vent wells with elevated photo-ionization detector readings. After the bioventing successfully remediated the inaccessible impacted soil, the biosparging system incorporated the pre-existing bioventing unit with an upgraded 5-HP blower and three vertical biosparging wells to biodegrade dissolved phase impacts in the groundwater. The subsequent monitoring system includes the VMPs, the air injection wells, and four groundwater monitoring wells including three existing wells. The system is scheduled to operate for at least one year followed by a three-month rebound test. The flow rate was adjusted between 5 and 10 scfm during operations to focus the biosparging in the impacted area of the site. After the bioventing system was operated and optimized for a year, average VOC concentrations were reduced from approximately 120 to 5 ppmv in the vadose zone. TPH gasoline and BTEX concentrations experienced reductions up to 99%. Fugitive VOCs were not detected outside the property boundary or at possible fugitive gas monitoring points. During the rebound test, no significant rebound of VOC concentrations was observed. The average hydrocarbon biodegradation rate was estimated to be approximately 2.5 mg TPH/kg soil/day. During biosparging, the migration of injected air also stimulated biodegradation in the vadose zone. Within six months of operation, the groundwater GRO and DRO concentrations decreased approximately 70% and 50%, respectively, at the monitoring well within the excavation/backfill area. Bioventing followed by biosparging has proven to be successful in decreasing soil vapor chemicals of concern in the native soil of the inaccessible area and in groundwater of the excavation/backfill area.

  15. Head impact mechanisms of a child occupant seated in a child restraint system as determined by impact testing.

    PubMed

    Yoshida, Ryoichi; Okada, Hiroshi; Nomura, Mitsunori; Mizuno, Koji; Tanaka, Yoshinori; Hosokawa, Naruyuki

    2011-11-01

    In side collision accidents, the head is the most frequently injured body region for child occupants seated in a child restraint system (CRS). Accident analyses show that a child's head can move out of the CRS shell, make hard contact with the vehicle interior, and thus sustain serious injuries. In order to improve child head protection in side collisions, it is necessary to understand the injury mechanism of a child in the CRS whose head makes contact with the vehicle interior. In this research, an SUV-to-car oblique side crash test was conducted to reconstruct such head contacts. A Q3s child dummy was seated in a CRS in the rear seat of the target car. The Q3s child dummy's head moved out beyond the CRS side wing, moved laterally, and made contact with the side window glass and the doorsill. It was demonstrated that the hard head contact, which produced a high HIC value, could occur in side collisions. A series of sled tests was carried out to reproduce the dummy kinematic behavior observed in the SUV-to-car crash test, and the sled test conditions such as sled angle, ECE seat slant angle and velocity-time history that duplicated the kinematic behavior were determined. A parametric study also was conducted with the sled tests; and it was found that the impact angle, harness slack, chest clip, and the CRS side wing shape affected the torso motion and head contact with the vehicle interior.

  16. Characterization of Thermal and Mechanical Impact on Aluminum Honeycomb Structures

    NASA Technical Reports Server (NTRS)

    Robinson, Christen M.

    2013-01-01

    This study supports NASA Kennedy Space Center's research in the area of intelligent thermal management systems and multifunctional thermal systems. This project addresses the evaluation of the mechanical and thermal properties of metallic cellular solid (MCS) materials; those that are lightweight; high strength, tunable, multifunctional and affordable. A portion of the work includes understanding the mechanical properties of honeycomb structured cellular solids upon impact testing under ambient, water-immersed, liquid nitrogen-cooled, and liquid nitrogen-immersed conditions. Additionally, this study will address characterization techniques of the aluminum honeycomb's ability to resist multiple high-rate loadings or impacts in varying environmental conditions, using various techniques for the quantitative and qualitative determination for commercial applicability.

  17. Analyzing the Impacts of Increased Wind Power on Generation Revenue Sufficiency: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Wu, Hongyu; Tan, Jin

    2016-08-01

    The Revenue Sufficiency Guarantee (RSG), as part of make-whole (or uplift) payments in electricity markets, is designed to recover the generation resources' offer-based production costs that are not otherwise covered by their market revenues. Increased penetrations of wind power will bring significant impacts to the RSG payments in the markets. However, literature related to this topic is sparse. This paper first reviews the industrial practices of implementing RSG in major U.S. independent system operators (ISOs) and regional transmission operators (RTOs) and then develops a general RSG calculation method. Finally, an 18-bus test system is adopted to demonstrate the impacts ofmore » increased wind power on RSG payments.« less

  18. Analyzing the Impacts of Increased Wind Power on Generation Revenue Sufficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Wu, Hongyu; Tan, Jin

    2016-11-14

    The Revenue Sufficiency Guarantee (RSG), as part of make-whole (or uplift) payments in electricity markets, is designed to recover the generation resources' offer-based production costs that are not otherwise covered by their market revenues. Increased penetrations of wind power will bring significant impacts to the RSG payments in the markets. However, literature related to this topic is sparse. This paper first reviews the industrial practices of implementing RSG in major U.S. independent system operators (ISOs) and regional transmission operators (RTOs) and then develops a general RSG calculation method. Finally, an 18-bus test system is adopted to demonstrate the impacts ofmore » increased wind power on RSG payments.« less

  19. Physical Education and Its Effect on Elementary Testing Results

    ERIC Educational Resources Information Center

    Tremarche, Pamela V.; Robinson, Ellyn M.; Graham, Louise B.

    2007-01-01

    This study was designed to determine the impact of increased quality Physical Education time on Massachusetts Comprehensive Assessment System (MCAS) standardized scores. The MCAS test was given to 311 fourth-grade students in two Southeastern communities in Massachusetts, within a two-month period in April and May of 2001. The participants were…

  20. Potential Psychosocial and Instructional Consequences of the Common Core State Standards: Implications for Research and Practice

    ERIC Educational Resources Information Center

    Saeki, Elina; Pendergast, Laura; Segool, Natasha K.; von der Embse, Nathaniel P.

    2015-01-01

    Despite the recent rollout of the Common Core State Standards (CCSS), CCSS-aligned assessments, and test-based teacher evaluation systems, questions remain regarding the impact that these accountability policies will have on teachers and students. This article discusses the psychosocial and instructional consequences of test-based accountability…

  1. Systems tunnel linear shaped charge lightning strike

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the systems tunnel linear shaped charge (LSC) was performed at the Thiokol Lightning Test Complex in Wendover, Utah, on 23 Jun. 1989. The test article consisted of a 160-in. section of the LSC enclosed within a section of the systems tunnel. The systems tunnel was bonded to a section of a solid rocket motor case. All test article components were full scale. The systems tunnel cover of the test article was subjected to three discharges (each discharge was over a different grounding strap) from the high-current generator. The LSC did not detonate. All three grounding straps debonded and violently struck the LSC through the openings in the systems tunnel floor plates. The LSC copper surface was discolored around the areas of grounding strap impact, and arcing occurred at the LSC clamps and LSC ends. This test verified that the present flight configuration of the redesigned solid rocket motor systems tunnel, when subjected to simulated lightning strikes with peak current levels within 71 percent of the worst-case lightning strike condition of NSTS-07636, is adequate to prevent LSC ignition. It is therefore recommended that the design remain unchanged.

  2. Current Status of Chemical Public Health Risks and Testing Guidelines for Chemical Cardiovascular Safety Assessments

    EPA Science Inventory

    The cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by a variety of chemicals and routes of exposure. A World Health Organization report estimated the impact of environmental chemica...

  3. Crash test and evaluation of temporary wood sign support system for large guide signs.

    DOT National Transportation Integrated Search

    2016-07-01

    The objective of this research task was to evaluate the impact performance of a temporary wood sign support : system for large guide signs. It was desired to use existing TxDOT sign hardware in the design to the extent possible. : The full-scale cras...

  4. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance...; and (3) The impacted tank car is pressurized to at least 6.9 Bar (100 psig). (b) Verification by... design and test requirements of the full-head protection (shields) or full tank-head jackets must meet...

  5. Testing and Risk Assessment of Chemicals that Impact Highly Adaptive Biological Systems: The Case of Endocrine Systems

    EPA Science Inventory

    Animals have evolved a variety of mechanisms for responding to toxic chemicals of both natural and anthropogenic origin. Well-known examples include activation of cellular repair pathways and induction of metabolizing enzymes. From a governmental regulatory perspective, these a...

  6. The Impact of Flagging on the Admission Process.

    ERIC Educational Resources Information Center

    Cahalan-Laitusis, Cara; Mandinach, Ellen B.; Camara, Wayne J.

    2003-01-01

    Study explored issues surrounding flagging test scores taken under non-standard conditions and how the admission process could better serve students with disabilities. Respondents to survey felt current system was not adequately serving subgroups of students, believing some non-disabled students were manipulating the system to gain an advantage on…

  7. The high velocity impact loading on symmetrical and woven hybrid composite laminates

    NASA Astrophysics Data System (ADS)

    Jin, Martin; Richardson, Mel; Zhang, Zhong Yi

    2007-07-01

    Space structures use fibre composite materials, due to their lightweight. This paper examines the impact response of symmetrical and hybrid composite laminates. Special attention is given to the stacking sequences used. The experimental study of structures has always provided a major contribution to our understanding. Even with the formidable growth in the use and capacity of computing power the need for experimental measurement is as compelling as ever. The design of hybrid composite structures is complicated by the number of design variables and the interaction of the constituents is the composite system. Since it is desirable to experimentally test the design and it is not practical to test a full scale model, the structural/material similitude concept is used to create a small scale model with a similar structural response. In the current study, experimental investigations were carried out to determine the response of four different combinations of hybrid laminates to low-velocity impact loading using an instrumented impact testing machine. Hybrid laminates were fabricated with twill weave carbon fabric and plain weave S2-glass fabric using vacuum assisted resin molding process with SC-15 epoxy resin system. Response of carbon/epoxy and glass/epoxy laminates was also investigated to compare with that of hybrid samples. Square laminates of size 100 mm and nominal thickness of 3 mm were subjected to low-velocity impact loading at four energy levels of 10, 20, 30 and 40 J. Results of the study indicate that there is considerable improvement in the load carrying capability of hybrid composites as compared to carbon/epoxy laminates with slight reduction in stiffness.

  8. Computerised Order Entry Systems and Pathology Services - A Synthesis of the Evidence

    PubMed Central

    Georgiou, Andrew; Westbrook, Johanna I

    2006-01-01

    Computerised Physician Order Entry (CPOE) systems have been promoted in Australia and internationally for their potential to improve the quality of care. The existing research of the effect of CPOE on pathology laboratories has been variable, pointing to the potential to increase efficiency and effectiveness and contribute to enhancing the quality of patient care on the one hand, while leading to significant disruptions in work organisation with a negative impact on departmental relations on the other hand. In this paper we provide an overview of the research evidence about the impact of CPOE on four areas associated with pathology services; a) efficiency of the ordering process, e.g. test turnaround times, b) effectiveness as measured by test ordering volumes and test order appropriateness, c) quality of care, particularly its effects on patient care and d) work organisation patterns, which can be severely disrupted by CPOE. We discuss the possible ramifications of CPOE and offer three broad, but important recommendations for pathology laboratories, based on our own research experience investigating CPOE implementations over three years. Firstly, pathology laboratories need to be active participants in planning the implementation of CPOE. Secondly, the importance of building a firm organisational foundation for the introduction of the new system that includes openness and responsiveness to feedback. And thirdly, the implementation process needs to be underpinned by a strong commitment to a multi-method evaluation at every stage of the process to be able to measure the impact of the system on work practices and outcomes. PMID:17077878

  9. Determination of Acoustic Effects on Marine Mammals and Sea Turtles for the Atlantic Fleet Training and Testing Environmental Impact Statement/Overseas Environmental Impact Statement

    DTIC Science & Technology

    2012-03-12

    column than sounds with lower frequencies ( Urick , 1983). Additionally, these systems are generally operated in the vicinity of the sea floor, thus...Water,” TR-76-116, Naval Surface Weapons Center, White Oak, Silver Springs, MD. Urick , R. J. (1983), Principles of Underwater Sound, McGraw-Hill

  10. 14 CFR 23.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... impact. (4) The safety belt must remain on the ATD's pelvis during the impact. (5) The results of the... factor for acrobatic category airplanes need not exceed 5.0g. (2) The seat/restraint system test required... to 61 knots: gp=19.0 (VS0/61)2 or gp=15.0 (VS0/61)2 (B) The peak deceleration need not exceed the...

  11. Low Velocity Impact Damage to Carbon/Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2011-01-01

    Impact damage tends to be more detrimental to a laminate's compression strength as compared to tensile strength. Proper use of Non Destructive Evaluation (NDE) Techniques can remove conservatism (weight) from many structures. Test largest components economically feasible as coupons. If damage tolerance is a driver, then consider different resin systems. Do not use a single knockdown factor to account for damage.

  12. A dynamic motion simulator for future European docking systems

    NASA Technical Reports Server (NTRS)

    Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.

    1990-01-01

    Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.

  13. Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA

    USGS Publications Warehouse

    Sibrell, P.L.; Watten, B.J.; Haines, T.A.; Spaulding, B.W.

    2006-01-01

    Decades of atmospheric acid deposition have resulted in widespread lake and river acidification in the northeastern U.S. Biological effects of acidification include increased mortality of sensitive aquatic species such as the endangered Atlantic salmon (Salmo salar). The purpose of this paper is to describe the development of a limestone-based fluidized bed system for the treatment of acid-impacted waters. The treatment system was tested at the Craig Brook National Fish Hatchery in East Orland, Maine over a period of 3 years. The product water from the treatment system was diluted with hatchery water to prepare water supplies with three different levels of alkalinity for testing of fish health and survival. Based on positive results from a prototype system used in the first year of the study, a larger demonstration system was used in the second and third years with the objective of decreasing operating costs. Carbon dioxide was used to accelerate limestone dissolution, and was the major factor in system performance, as evidenced by the model result: Alk = 72.84 ?? P(CO2)1/2; R2 = 0.975. No significant acidic incursions were noted for the control water over the course of the study. Had these incursions occurred, survivability in the untreated water would likely have been much more severely impacted. Treated water consistently provided elevated alkalinity and pH above that of the hatchery source water. ?? 2005 Elsevier B.V. All rights reserved.

  14. Understanding the medical and nonmedical value of diagnostic testing.

    PubMed

    Lee, David W; Neumann, Peter J; Rizzo, John A

    2010-01-01

    To develop a framework for defining the potential value of diagnostic testing, and discuss its implications for the health-care delivery system. We reviewed the conceptual and empirical literature related to the valuing of diagnostic tests, and used this information to create a framework for characterizing their value. We then made inferences about the impact of this framework on health insurance coverage, health technology assessment, physician-patient relationships, and public health policy. Three dimensions can effectively classify the potential value created by diagnostic tests: 1) medical value (impact on treatment decisions); 2) planning value (affect on patients' ability to make better life decisions); and 3) psychic value (how test information affects patients' sense of self). This comprehensive framework for valuing diagnostics suggests that existing health technology assessments may systematically under- or overvalue diagnostics, leading to potentially incorrect conclusions about cost-effectiveness. Further, failure to account for all value dimensions may lead to distorted payments under a value-based health-care system. The potential value created by medical diagnostics incorporates medical value as well as value associated with well-being and planning. Consideration of all three dimensions has important implications for technology assessment and value-based payment.

  15. A miniaturized solid contact test with Arthrobacter globiformis for the assessment of the environmental impact of silver nanoparticles.

    PubMed

    Engelke, Maria; Köser, Jan; Hackmann, Stephan; Zhang, Huanjun; Mädler, Lutz; Filser, Juliane

    2014-05-01

    Silver nanoparticles (AgNPs) are widely applied for their antibacterial activity. Their increasing use in consumer products implies that they will find their way into the environment via wastewater-treatment plants. The aim of the present study was to compare the ecotoxicological impact of 2 differently designed AgNPs using the solid contact test for the bacterial strain Arthrobacter globiformis. In addition, a miniaturized version of this test system was established, which requires only small-sized samples because AgNPs are produced in small quantities during the design level. The results demonstrate that the solid contact test can be performed in 24-well microplates and that the miniaturized test system fulfills the validity criterion. Soils spiked with AgNPs showed a concentration-dependent reduction of Arthrobacter dehydrogenase activity for both AgNPs and Ag ions (Ag(+)). The toxic effect of the investigated AgNPs on the bacterial viability differed by 1 order of magnitude and can be related to the release of dissolved Ag(+). The release of dissolved Ag(+) can be attributed to particle size and surface area or to the fact that AgNPs are in either metallic or oxide form. Environ © 2014 SETAC.

  16. Model-Based Fault Diagnosis: Performing Root Cause and Impact Analyses in Real Time

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Walker, Mark G.; Kapadia, Ravi; Morris, Jonathan

    2012-01-01

    Generic, object-oriented fault models, built according to causal-directed graph theory, have been integrated into an overall software architecture dedicated to monitoring and predicting the health of mission- critical systems. Processing over the generic fault models is triggered by event detection logic that is defined according to the specific functional requirements of the system and its components. Once triggered, the fault models provide an automated way for performing both upstream root cause analysis (RCA), and for predicting downstream effects or impact analysis. The methodology has been applied to integrated system health management (ISHM) implementations at NASA SSC's Rocket Engine Test Stands (RETS).

  17. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone sparging wells. Startup test was conducted to optimize sparging pressure and flow rate and evaluate radius of influence (ROI) and pulsed sparging frequency. The startup test results indicated the system is optimized at 6 psi pressure and 3 cfm flow rate at ozone sparging rate of 2 lbs/day at each sparging location. The results also indicated a maximized ROI of 20 ft was reached and pulsed sparging frequency was estimated to be 60 minutes. The results at the completion of the pilot test concluded that TPH concentrations in groundwater decreased by 97% during the two months of ozone sparging, but did rebound to near baseline levels for most groundwater monitoring wells. Concentrations of hexavalent chromium and bromate increased from non-detect to 44 and 110 μg/L, respectively, during the ozone sparging but attenuated to non-detect concentrations within three months following the system shut down. Field measurements during the pilot study displayed an increasing trend of both oxidation-reduction potential (ORP) and dissolved oxygen (DO). After ozone sparging was complete, the ORP and DO in the saturated zone returned to near baseline levels. Based on the results of the pilot study, a full scale ISCO using ozone system was recommended.

  18. Common faults and their impacts for rooftop air conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuker, M.S.; Braun, J.E.

    This paper identifies important faults and their performance impacts for rooftop air conditioners. The frequencies of occurrence and the relative costs of service for different faults were estimated through analysis of service records. Several of the important and difficult to diagnose refrigeration cycle faults were simulated in the laboratory. Also, the impacts on several performance indices were quantified through transient testing for a range of conditions and fault levels. The transient test results indicated that fault detection and diagnostics could be performed using methods that incorporate steady-state assumptions and models. Furthermore, the fault testing led to a set of genericmore » rules for the impacts of faults on measurements that could be used for fault diagnoses. The average impacts of the faults on cooling capacity and coefficient of performance (COP) were also evaluated. Based upon the results, all of the faults are significant at the levels introduced, and should be detected and diagnosed by an FDD system. The data set obtained during this work was very comprehensive, and was used to design and evaluate the performance of an FDD method that will be reported in a future paper.« less

  19. New impact sensitivity test of liquid explosives

    NASA Astrophysics Data System (ADS)

    Tiutiaev, Andrei; Trebunskih, Valeri

    The sensitivity of liquid explosive in the presence of gas bubbles increases many times as compared with the liquid without gas bubbles. Local hot spot in this case formed as a result of compression and heating of the gas inside the bubbles. If we consider that in the liquid as a result of convection, wave motion, shock, etc. gas bubbles are easily generated, the need to develop a method for determining sensitivity of liquid explosives to impact and a detailed study of the ignition explosives with bubbles is obvious. On a mathematical model of a single steam bubbles in the fluid theoretically considered the process of initiating explosive liquid systems to impact. For the experimental investigation, the well-known K-44 -II with the metal cap were used. Instead of the metal cap in the standard method in this paper there was polyurethane foam cylindrical container with LHE, which is easily deforms by impact. A large number of tests with different liquid explosives were made. It was found that the test LHE to impact with polyurethane foam to a large extent reflect the real mechanical sensitivity due to the small loss of impact energy on the deformation of the metal cap, as well as the best differentiation LHE sensitivity due to the higher resolution method . Results obtained in the samara state technical university.

  20. The Perceived Ease of Use and Usefulness of Loop: Evaluation and Content Analysis of a Web-Based Clinical Collaboration System

    PubMed Central

    Kurahashi, Allison M; Stinson, Jennifer N; van Wyk, Margaret; Luca, Stephanie; Jamieson, Trevor; Weinstein, Peter; Cafazzo, Joseph A; Lokuge, Bhadra; Cohen, Eyal; Rapoport, Adam

    2018-01-01

    Background Patients with complex health care needs require the expertise of many health care providers. Communication, collaboration, and patient-centered care positively impact care quality and patient outcomes. Few technologies exist that facilitate collaboration between providers across settings of care and also engage the patient. We developed a Web-based clinical collaboration system, Loop, to address this gap. The likelihood of a technological system’s uptake is associated with its perceived ease of use and perceived usefulness. We engaged stakeholders in the conceptualization and development of Loop in an effort to maximize its intuitiveness and utility. Objective This study aimed to report end users’ perceptions about the ease of use and usefulness of Loop captured during usability tests of Loop. Methods Participants represented three user types (patients, caregivers, and health care providers) recruited from three populations (adults with cancer, adolescents and young adults with cancer, and children with medical complexity). We conducted usability testing over three iterative cycles of testing and development in both laboratory-based and off-site environments. We performed a content analysis of usability testing transcripts to summarize and describe participant perceptions about the ease of use and usefulness of Loop. Results Participants enjoyed testing Loop and were able to use the core functions—composing, posting, and reading messages—with little difficulty. They had difficulty interpreting certain visual cues and design elements or the purpose of some features. This difficulty negatively impacted perceived ease of use but was primarily limited to auxiliary features. Participants predicted that Loop could improve the efficiency and effectiveness of communication between care team members; however, this perceived usefulness could be compromised by disruptions to personal workflow such as additional time or task requirements. Conclusions Loop was perceived to have value as a collaboration system; however, usability testing findings indicate that some design and functional elements need to be addressed to improve ease of use. Additionally, participant concerns highlight the need to consider how a system can be implemented so as to minimize impact on workflow and optimize usefulness. PMID:29317386

Top