Sample records for impair endothelial function

  1. The effect on endothelial function of vitamin C during methionine induced hyperhomocysteinaemia.

    PubMed

    Hanratty, C G; McGrath, L T; McAuley, D F; Young, I S; Johnston, D G

    2001-01-01

    Manipulation of total homocysteine concentration with oral methionine is associated with impairment of endothelial-dependent vasodilation. This may be caused by increased oxidative stress. Vitamin C is an aqueous phase antioxidant vitamin and free radical scavenger. We hypothesised that if the impairment of endothelial function related to experimental hyperhomocysteinaemia was free radically mediated then co-administration of vitamin C should prevent this. Ten healthy adults took part in this crossover study. Endothelial function was determined by measuring forearm blood flow (FBF) in response to intra-arterial infusion of acetylcholine (endothelial-dependent) and sodium nitroprusside (endothelial-independent). Subjects received methionine (100 mg/Kg) plus placebo tablets, methionine plus vitamin C (2 g orally) or placebo drink plus placebo tablets. Study drugs were administered at 9 am on each study date, a minimum of two weeks passed between each study. Homocysteine (tHcy) concentration was determined at baseline and after 4 hours. Endothelial function was determined at 4 hours. Responses to the vasoactive substances are expressed as the area under the curve of change in FBF from baseline. Data are mean plus 95% Confidence Intervals. Following oral methionine tHcy concentration increased significantly versus placebo. At this time endothelial-dependent responses were significantly reduced compared to placebo (31.2 units [22.1-40.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo). Endothelial-independent responses were unchanged. Co-administration of vitamin C did not alter the increase in homocysteine or prevent the impairment of endothelial-dependent responses (31.4 [19.5-43.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo) This study demonstrates that methionine increased tHcy with impairment of the endothelial-dependent vasomotor responses. Administration of vitamin C did not prevent this impairment and our results do not support the hypothesis that the endothelial impairment is mediated by adverse oxidative stress.

  2. Sirtuin1 protects endothelial Caveolin-1 expression and preserves endothelial function via suppressing miR-204 and endoplasmic reticulum stress.

    PubMed

    Kassan, M; Vikram, A; Kim, Y R; Li, Q; Kassan, A; Patel, H H; Kumar, S; Gabani, M; Liu, J; Jacobs, J S; Irani, K

    2017-02-09

    Sirtuin1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including endothelial function. Caveolin1 (Cav1) is also an important determinant of endothelial function. We asked if Sirt1 governs endothelial Cav1 and endothelial function by regulating miR-204 expression and endoplasmic reticulum (ER) stress. Knockdown of Sirt1 in endothelial cells, and in vivo deletion of endothelial Sirt1, induced endothelial ER stress and miR-204 expression, reduced Cav1, and impaired endothelium-dependent vasorelaxation. All of these effects were reversed by a miR-204 inhibitor (miR-204 I) or with overexpression of Cav1. A miR-204 mimic (miR-204 M) decreased Cav1 in endothelial cells. In addition, high-fat diet (HFD) feeding induced vascular miR-204 and reduced endothelial Cav1. MiR-204-I protected against HFD-induced downregulation of endothelial Cav1. Moreover, pharmacologic induction of ER stress with tunicamycin downregulated endothelial Cav1 and impaired endothelium-dependent vasorelaxation that was rescued by overexpressing Cav1. In conclusion, Sirt1 preserves Cav1-dependent endothelial function by mitigating miR-204-mediated vascular ER stress.

  3. Association of Abacavir and Impaired Endothelial Function in Treated and Suppressed HIV-Infected Patients

    PubMed Central

    Hsue, Priscilla Y.; Hunt, Peter W.; Wu, Yuaner; Schnell, Amanda; Ho, Jennifer E.; Hatano, Hiroyu; Xie, Yu; Martin, Jeffrey N.; Ganz, Peter; Deeks, Steven G.

    2009-01-01

    Background HIV-infected patients have accelerated atherosclerosis. Abacavir has been associated with increased risk of cardiovascular events, for reasons that remain to be elucidated. As endothelial dysfunction is central to the pathogenesis of atherosclerosis, we tested the hypothesis that current treatment with abacavir is associated with impaired endothelial function. Methods We studied a cohort of 61 antiretroviral-treated patients who had undetectable plasma HIV RNA levels. Endothelial function was assessed by measuring flow-mediated vasodilation (FMD) of the brachial artery. We compared FMD in patients treated with or without abacavir, while adjusting for traditional risk factors and HIV-specific characteristics. Results The median age was 50 years (IQR 45–57). The median duration of HIV infection was 18 years, and the median CD4 cell count was 369 cells/mm3. Thirty subjects (49%) were receiving abacavir. Overall, the median FMD in the HIV-infected patients was low (3.5%; IQR 2.3–5.6%). The FMD was lower in the abacavir-treated patients than those not on abacavir (2.8% vs. 4.9%, p=0.01). After adjustment for traditional risk factors, HIV specific factors, and baseline brachial artery diameter, current abacavir use was independently associated with lower FMD (p=0.017). Duration of therapy and CD4 count were not associated with reduced FMD. Conclusions Endothelial function, a central mechanism in atherosclerosis and a marker of cardiovascular risk, is impaired among antiretroviral-treated patients with undetectable viral loads. Current use of abacavir was independently associated with impaired endothelial function. This finding suggests that abnormal endothelial function may underlie the clinically observed increased risk in myocardial infarction among abacavir-treated patients. PMID:19542863

  4. Ethnic differences in macrovascular and microvascular function in systolic heart failure.

    PubMed

    Shantsila, Eduard; Wrigley, Benjamin; Shantsila, Alena; Tapp, Luke D; Blann, Andrew D; Gill, Paramjit S; Lip, Gregory Y H

    2011-11-01

    Endothelial dysfunction is implicated in the pathophysiological features of heart failure (HF), and ethnic differences in the presentation of cardiovascular disease are evident, with an excess seen among South Asians (SAs). However, data on ethnic differences in endothelial function in HF are limited. In a cross-sectional study, we recruited 128 subjects with systolic HF: 50 SAs, 50 whites, and 28 African Caribbeans (ACs). In addition, SAs with systolic HF were compared with 40 SAs with coronary artery disease without HF ("disease controls") and 40 SA healthy controls. Macrovascular endothelial function was assessed by measurement of flow-mediated dilation (FMD) in response to hyperemia, arterial stiffness was assessed by the pulse-wave velocity, and microvascular endothelial function was assessed by forearm laser Doppler flowmetry. CD144-expressing endothelial microparticles were measured by flow cytometry. When compared with disease controls and healthy controls, SAs with HF had an impaired microvascular response to acetylcholine (P=0.001) and reduced FMD (P<0.001). In comparing ethnic groups, SAs with HF had an impaired response to acetylcholine (123±95.5%) compared with whites (258±156%) and ACs (286±173%, P<0.001 for both). Whites had a higher FMD (8.49±4.63%) than SAs (4.76±4.78%, P<0.001) and ACs (4.55±3.56%, P=0.01). No difference in endothelial-independent response was observed between study groups or in pulse-wave velocity. Ethnicity remained associated with microvascular endothelial function even after adjustment for age, presence of hypertension and diabetes mellitus, blood pressure, and glucose levels (P=0.003). There were no differences in numbers of endothelial microparticles. The SAs with HF have impaired microvascular and macrovascular endothelial function but preserved arterial elastic properties. Significant ethnic differences in endothelial function are evident in subjects with HF, with ethnicity being associated with microvascular endothelial dysfunction in this disorder.

  5. Prokineticin Receptor‐1 Is a New Regulator of Endothelial Insulin Uptake and Capillary Formation to Control Insulin Sensitivity and Cardiovascular and Kidney Functions

    PubMed Central

    Dormishian, Mojdeh; Turkeri, Gulen; Urayama, Kyoji; Nguyen, Thu Lan; Boulberdaa, Mounia; Messaddeq, Nadia; Renault, Gilles; Henrion, Daniel; Nebigil, Canan G.

    2013-01-01

    Background Reciprocal relationships between endothelial dysfunction and insulin resistance result in a vicious cycle of cardiovascular, renal, and metabolic disorders. The mechanisms underlying these impairments are unclear. The peptide hormones prokineticins exert their angiogenic function via prokineticin receptor‐1 (PKR1). We explored the extent to which endothelial PKR1 contributes to expansion of capillary network and the transcapillary passage of insulin into the heart, kidney, and adipose tissues, regulating organ functions and metabolism in a specific mice model. Methods and Results By combining cellular studies and studies in endothelium‐specific loss‐of‐function mouse model (ec‐PKR1−/−), we showed that a genetically induced PKR1 loss in the endothelial cells causes the impaired capillary formation and transendothelial insulin delivery, leading to insulin resistance and cardiovascular and renal disorders. Impaired insulin delivery in endothelial cells accompanied with defective expression and activation of endothelial nitric oxide synthase in the ec‐PKR1−/− aorta, consequently diminishing endothelium‐dependent relaxation. Despite having a lean body phenotype, ec‐PKR1−/− mice exhibited polyphagia, polydipsia, polyurinemia, and hyperinsulinemia, which are reminiscent of human lipodystrophy. High plasma free fatty acid levels and low leptin levels further contribute to the development of insulin resistance at the later age. Peripheral insulin resistance and ectopic lipid accumulation in mutant skeletal muscle, heart, and kidneys were accompanied by impaired insulin‐mediated Akt signaling in these organs. The ec‐PKR1−/− mice displayed myocardial fibrosis, low levels of capillary formation, and high rates of apoptosis, leading to diastolic dysfunction. Compact fibrotic glomeruli and high levels of phosphate excretion were found in mutant kidneys. PKR1 restoration in ec‐PKR1−/− mice reversed the decrease in capillary recruitment and insulin uptake and improved heart and kidney function and insulin resistance. Conclusions We show a novel role for endothelial PKR1 signaling in cardiac, renal, and metabolic functions by regulating transendothelial insulin uptake and endothelial cell proliferation. Targeting endothelial PKR1 may serve as a therapeutic strategy for ameliorating these disorders. PMID:24152983

  6. Inhibition of Endothelial Progenitor Cells May Explain the High Cardiovascular Event Rate in Patients with Rheumatoid Arthritis.

    PubMed

    Adawi, Mohamad; Pastuck, Nina; Saaida, Golan; Sirchan, Rizak; Watad, Abdalla; Blum, Arnon

    2018-05-16

    Rheumatoid arthritis (RA) patients may suffer cardiovascular (CV) events much more than the general population, and CV disease is the leading cause of death in patients with RA. Our hypothesis was that impaired function of endothelial progenitor cells may contribute to endothelial dysfunction and the clinical CV events of patients with RA. 27 RA patients (9 males and 18 females) with an active disease and 13 healthy subjects who served as the control group (9 males and 4 females) were enrolled to this prospective study. The ability to grow in culture colony-forming units of endothelial progenitor cells (CFU-EPCs) was measured, as well as their endothelial function using high-resolution ultrasonography of the brachial artery, and levels of C reactive protein (CRP) in the serum. For statistical analysis we used the students T-test test. As a group, patients with RA were older (p < 0.0001), had severe endothelial dysfunction (<0.0001), with impaired ability to grow CFU-EPCs (<0.0001), and a higher inflammatory state (p = 0001). No difference was observed in BMI. All RA patients had an active disease (DAS28 3.9±0.9) for 9.2±6.5 years. The same differences were observed in both genders. Patients with RA had an impaired ability to grow endothelial progenitor cells and severe endothelial dysfunction. Inability to grow colonies of endothelial progenitor cells reflects the impaired regenerative capacity of patients with RA, and may explain the endothelial dysfunction and the high CV event rate among patients with RA.

  7. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells

    PubMed Central

    2012-01-01

    Background Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1) and Akt). Results We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. Conclusion These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk. PMID:22709426

  8. Brief Exposure to Secondhand Smoke Reversibly Impairs Endothelial Vasodilatory Function

    PubMed Central

    2014-01-01

    Introduction: We sought to determine the effects of brief exposures to low concentrations of tobacco secondhand smoke (SHS) on arterial flow-mediated dilation (FMD, a nitric oxide-dependent measure of vascular endothelial function), in a controlled animal model never before exposed to smoke. In humans, SHS exposure for 30min impairs FMD. It is important to gain a better understanding of the acute effects of exposure to SHS at low concentrations and for brief periods of time. Methods: We measured changes in FMD in rats exposed to a range of real-world levels of SHS for durations of 30min, 10min, 1min, and 4 breaths (roughly 15 s). Results: We observed a dose-response relationship between SHS particle concentration over 30min and post-exposure impairment of FMD, which was linear through the range typically encountered in smoky restaurants and then saturated at higher concentrations. One min of exposure to SHS at moderate concentrations was sufficient to impair FMD. Conclusions: Brief SHS exposure at real-world levels reversibly impairs FMD. Even 1min of SHS exposure can cause reduction of endothelial function. PMID:24302638

  9. Role of Extracellular Vesicles and microRNAs on Dysfunctional Angiogenesis during Preeclamptic Pregnancies.

    PubMed

    Escudero, Carlos A; Herlitz, Kurt; Troncoso, Felipe; Acurio, Jesenia; Aguayo, Claudio; Roberts, James M; Truong, Grace; Duncombe, Gregory; Rice, Gregory; Salomon, Carlos

    2016-01-01

    Preeclampsia is a syndrome characterized by hypertension during pregnancy, which is a leading cause of morbidity and mortality in both mother and newborn in developing countries. Some advances have increased the understanding of pathophysiology of this disease. For example, reduced utero-placental blood flow associated with impaired trophoblast invasion may lead to a hypoxic placenta that releases harmful materials into the maternal and feto-placental circulation and impairs endothelial function. Identification of these harmful materials is one of the hot topics in the literature, since these provide potential biomarkers. Certainty, such knowledge will help us to understand the miscommunication between mother and fetus. In this review we highlight how placental extracellular vesicles and their cargo, such as small RNAs (i.e., microRNAs), might be involved in endothelial dysfunction, and then in the angiogenesis process, during preeclampsia. Currently only a few reports have addressed the potential role of endothelial regulatory miRNA in the impaired angiogenesis in preeclampsia. One of the main limitations in this area is the variability of the analyses performed in the current literature. This includes variability in the size of the particles analyzed, and broad variation in the exosomes considered. The quantity of microRNA targets genes suggest that practically all endothelial cell metabolic functions might be impaired. More studies are required to investigate mechanisms underlying miRNA released from placenta upon endothelial function involved in the angiogenenic process.

  10. microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira

    2013-01-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154

  11. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling.

    PubMed

    Yan, Ting-Ting; Li, Qian; Zhang, Xuan-Hong; Wu, Wei-Kang; Sun, Juan; Li, Lin; Zhang, Quan; Tan, Hong-Mei

    2010-11-01

    1. Hyperhomocysteinaemia (HHcy) is associated with endothelial dysfunction and has been recognized as a risk factor of cardiovascular disease. The present study aimed to investigate the effect of homocysteine (Hcy) on endothelial function in vivo and in vitro, and the underlying signalling pathways. 2. The HHcy animal model was established by intragastric administration with l-methionine in rats. Plasma Hcy and nitric oxide (NO) concentration were measured by fluorescence immunoassay or nitrate reductase method, respectively. Vasorelaxation in response to acetylcholine and sodium nitroprusside were carried out on aortic rings. Human umbilical vein endothelial cells (HUVEC) were treated with indicated concentrations of Hcy in the in vitro experiments. Intracellular NO level and NO concentration in culture medium were assayed. The alterations of possible signalling proteins were detected by western blot analysis. 3. l-methionine administration induced a significant increase in plasma Hcy and decrease in plasma NO. Endothelium-dependent relaxation of aortic rings in response to acetylcholine was impaired in l-methionine-administrated rats. The in vitro study showed that Hcy reduced both intracellular and culture medium NO levels. Furthermore, Hcy decreased phosphorylation of endothelial nitric oxide synthase (eNOS) at serine-1177 and phosphorylation of Akt at serine-473. Hcy-induced dephosphorylation of eNOS at Ser-1177 was partially reversed by insulin (Akt activator) and GF109203X (PKC inhibitor). Furthermore, Hcy reduced vascular endothelial growth factor (VEGF) expression in a dose-dependent manner. 4. In conclusion, Hcy impaired endothelial function through compromised VEGF/Akt/endothelial nitric oxide synthase signalling. These findings will be beneficial for further understanding the role of Hcy in cardiovascular disease. © 2010 Blackwell Publishing Asia Pty Ltd.

  12. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    PubMed

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  13. Impaired postprandial endothelial function depends on the type of fat consumed by healthy men.

    PubMed

    Berry, Sarah E E; Tucker, Sally; Banerji, Radhika; Jiang, Benyu; Chowienczyk, Phillip J; Charles, Sonia M; Sanders, Thomas A B

    2008-10-01

    Postprandial lipemia impairs endothelial function possibly via an oxidative stress mechanism. A stearic acid-rich triacylglycerol (TAG) (shea butter) results in a blunted postprandial increase in plasma TAG compared with an oleic acid-rich TAG; however, its acute effects on endothelial function and oxidative stress are unknown. A randomized crossover trial (n = 17 men) compared the effects of 50 g fat, rich in stearic acid [shea butter blend (SA)] or oleic acid [high oleic sunflower oil (HO)], on changes in endothelial function [brachial artery flow-mediated dilatation (FMD)], arterial tone [pulse wave analysis (PWA), and carotid-femoral pulse wave velocity (PWV(c-f))], and oxidative stress (plasma 8-isoprostane F2alpha) at fasting and 3 h following the test meals. The postprandial increase in plasma TAG was lower (66% lower incremental area under curve) following the SA meal [28.3 (9.7, 46.9)] than after the HO meal [83.4 (57.0, 109.8); P < 0.001] (geometric means with 95% CI, arbitary units). Following the HO meal, there was a decrease in FMD [-3.0% (-4.4, -1.6); P < 0.001] and an increase in plasma 8-isoprostane F2alpha [10.4ng/L (3.8, 16.9); P = 0.005] compared with fasting values, but no changes followed the SA meal. The changes in 8-isoprostane F2alpha and FMD differed between meals and were 14.0 ng/L (6.4, 21.6; P = 0.001) and 1.75% (0.10, 3.39; P = 0.02), respectively. The reductions in PWA and PWV c-f did not differ between meals. This study demonstrates that a stearic acid-rich fat attenuates the postprandial impairment in endothelial function compared with an oleic acid-rich fat and supports the hypothesis that postprandial lipemia impairs endothelial function via an increase in oxidative stress.

  14. Type 2 diabetes mellitus and exercise impairment.

    PubMed

    Reusch, Jane E B; Bridenstine, Mark; Regensteiner, Judith G

    2013-03-01

    Limitations in physical fitness, a consistent finding in individuals with both type I and type 2 diabetes mellitus, correlate strongly with cardiovascular and all-cause mortality. These limitations may significantly contribute to the persistent excess cardiovascular mortality affecting this group. Exercise impairments in VO2 peak and VO2 kinetics manifest early on in diabetes, even with good glycemic control and in the absence of clinically apparent complications. Subclinical cardiac dysfunction is often present but does not fully explain the observed defect in exercise capacity in persons with diabetes. In part, the cardiac limitations are secondary to decreased perfusion with exercise challenge. This is a reversible defect. Similarly, in the skeletal muscle, impairments in nutritive blood flow correlate with slowed (or inefficient) exercise kinetics and decreased exercise capacity. Several correlations highlight the likelihood of endothelial-specific impairments as mediators of exercise dysfunction in diabetes, including insulin resistance, endothelial dysfunction, decreased myocardial perfusion, slowed tissue hemoglobin oxygen saturation, and impairment in mitochondrial function. Both exercise training and therapies targeted at improving insulin sensitivity and endothelial function improve physical fitness in subjects with type 2 diabetes. Optimization of exercise functions in people with diabetes has implications for diabetes prevention and reductions in mortality risk. Understanding the molecular details of endothelial dysfunction in diabetes may provide specific therapeutic targets for the remediation of this defect. Rat models to test this hypothesis are under study.

  15. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, Yujiro; Zullo, Joseph A.; Renal Research Institute, Department of Physiology, New York Medical College, Valhalla, NY

    Peritubular capillary (PTC) rarefaction along with tissue fibrosis is a hallmark of chronic kidney disease (CKD). However, molecular mechanisms of PTC loss have been poorly understood. Previous studies have demonstrated that functional loss of endothelial sirtuin 1 (SIRT1) impairs angiogenesis during development and tissue damage. Here, we found that endothelial SIRT1 dysfunction causes activation of endothelial Notch1 signaling, which leads to PTC rarefaction and fibrosis following kidney injury. In mice lacking functional SIRT1 in the endothelium (Sirt1 mutant), kidney injury enhanced apoptosis and senescence of PTC endothelial cells with impaired endothelial proliferation and expanded myofibroblast population and collagen deposition. Comparedmore » to wild-type kidneys, Sirt1 mutant kidneys up-regulated expression of Delta-like 4 (DLL4, a potent Notch1 ligand), Hey1 and Hes1 (Notch target genes), and Notch intracellular domain-1 (NICD1, active form of Notch1) in microvascular endothelial cells (MVECs) post-injury. Sirt1 mutant primary kidney MVECs reduced motility and vascular assembly and enhanced senescence compared to wild-type kidney MVECs. This difference in the phenotype was negated with Notch inhibition. Concurrent stimulation of DLL4 and transforming growth factor (TGF)-β1 increased trans-differentiation of primary kidney pericytes into myofibroblast more than TGF-β1 treatment alone. Collectively, these results indicate that endothelial SIRT1 counteracts PTC rarefaction by repression of Notch1 signaling and antagonizes fibrosis via suppression of endothelial DLL4 expression. - Highlights: • SIRT1 represses Notch1 signaling in capillary endothelial cells in the kidney. • Endothelial SIRT1 is depleted in the kidney following injury. • Activation of endothelial Notch impairs angiogenesis in the kidney. • Increased expression of endothelial DLL4 enhances renal fibrosis.« less

  16. Age-related changes in endothelial function and blood flow regulation.

    PubMed

    Toda, Noboru

    2012-02-01

    Vascular endothelial dysfunction is regarded as a primary phenotypic expression of normal human aging. This senescence-induced disorder is the likely culprit underlying the increased cardiovascular and metabolic disease risks associated with aging. The rate of this age-dependent deterioration is largely influenced by the poor-quality lifestyle choice, such as smoking, sedentary daily life, chronic alcohol ingestion, high salt intake, unbalanced diet, and mental stress; and it is accelerated by cardiovascular and metabolic diseases. Although minimizing these detrimental factors is the best course of action, nonetheless chronological age steadily impairs endothelial function through reduced endothelial nitric oxide synthase (eNOS) expression/action, accelerated nitric oxide (NO) degradation, increased phosphodiesterase activity, inhibition of NOS activity by endogenous NOS inhibitors, increased production of reactive oxygen species, inflammatory reactions, decreased endothelial progenitor cell number and function, and impaired telomerase activity or telomere shortening. Endothelial dysfunction in regional vasculatures results in cerebral hypoperfusion triggering cognitive dysfunction and Alzheimer's disease, coronary artery insufficiency, penile erectile dysfunction, and circulatory failures in other organs and tissues. Possible prophylactic measures to minimize age-related endothelial dysfunction are also summarized in this review. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144.

    PubMed

    Fu, Xiaodong; Huang, Xiuwei; Li, Ping; Chen, Weiyu; Xia, Min

    2014-06-01

    Oxysterol is associated with the induction of endothelial oxidative stress and impaired endothelial function. Mitochondria play a central role in oxidative energy metabolism and the maintenance of proper redox status. The purpose of this study was to determine the effects and mechanisms of 7-ketocholesterol (7-KC) on isocitrate dehydrogenase 2 (IDH2) and its impact on endothelial function in both human aortic endothelial cells (HAECs) and C57BL/6J mice. HAECs treated with 7-KC showed significant reductions of IDH2 mRNA and protein levels and enzyme activity, leading to decreased NADPH concentration and an increased ratio of reduced-to-oxidized glutathione in the mitochondria. 7-KC induced the expression of a specific microRNA, miR-144, which in turn targets and downregulates IDH2. In silico analysis predicted that miR-144 could bind to the 3'-untranslated region of IDH2 mRNA. Overexpression of miR-144 decreased the expression of IDH2 and the levels of NADPH. A complementary finding is that a miR-144 inhibitor increased the mRNA and protein expression levels of IDH2. Furthermore, miR-144 level was elevated in HAECs in response to 7-KC. Anti-Ago1/2 immunoprecipitation coupled with a real-time polymerase chain reaction assay revealed that 7-KC increased the functional targeting of miR-144/IDH2 mRNA in HAECs. Infusion of 7-KC in vivo decreased vascular IDH2 expression and impaired vascular reactivity via miR-144. 7-KC controls miR-144 expression, which in turn decreases IDH2 expression and attenuates NO bioavailability to impair endothelial homeostasis. The newly identified 7-KC-miR-144-IDH2 pathway may contribute to atherosclerosis progression and provides new insight into 7-KC function and microRNA biology in cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease.

    PubMed

    Toda, Noboru; Okamura, Tomio

    2016-08-01

    Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic) nerves and nitric oxide (NO) liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS)/neuronal NOS (nNOS) inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD). Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Impaired activity of adherens junctions contributes to endothelial dilator dysfunction in ageing rat arteries.

    PubMed

    Chang, Fumin; Flavahan, Sheila; Flavahan, Nicholas A

    2017-08-01

    Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old compared to young arteries. Disruption of VE-cadherin clustering at AJs (function-blocking antibody, FBA) inhibited dilatation to acetylcholine in young, but not old, arteries. After the FBA, there was no longer any difference in dilatation between old and young arteries. Src activity and tyrosine phosphorylation of VE-cadherin were increased in old compared to young arteries. In old arteries, Src inhibition (saracatinib) increased: (i) 140 kDa VE-cadherin in the TTX-insoluble fraction, (ii) VE-cadherin intensity at AJs, (iii) AJ width, and (iv) acetylcholine dilatation. In old arteries treated with the FBA, saracatinib no longer increased acetylcholine dilatation. Saracatinib did not affect dilatation in young arteries. Therefore, ageing impairs AJ activity, which appears to reflect Src-induced phosphorylation, internalization and degradation of VE-cadherin. Moreover, impaired AJ activity can account for the endothelial dilator dysfunction in old arteries. Restoring endothelial AJ activity may be a novel therapeutic approach to vascular ageing. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    PubMed

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  1. Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function.

    PubMed

    Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M; Volkman, Brian F; Majetschak, Matthias

    2017-01-01

    Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03-3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.

  2. Traumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through Arginase-1-Dependent Uncoupling of Endothelial Nitric Oxide Synthase.

    PubMed

    Villalba, Nuria; Sackheim, Adrian M; Nunez, Ivette A; Hill-Eubanks, David C; Nelson, Mark T; Wellman, George C; Freeman, Kalev

    2017-01-01

    Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O 2 - production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.

  3. TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1

    PubMed Central

    Grolez, Guillaume P.; Bernardini, Michela; Richard, Elodie; Scianna, Marco; Lemonnier, Loic; Munaron, Luca; Mattot, Virginie; Prevarskaya, Natalia; Gkika, Dimitra

    2017-01-01

    Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein–protein interaction, thus preventing its cytoplasm–plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration. PMID:28550110

  4. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Hypertensive Patients With Primary Hyperaldosteronemia: Role of 5,6,7,8-Tetrahydrobiopterin Oxidation and Endothelial Nitric Oxide Synthase Uncoupling.

    PubMed

    Chen, Long; Ding, Mei-Lin; Wu, Fang; He, Wen; Li, Jin; Zhang, Xiao-Yu; Xie, Wen-Li; Duan, Sheng-Zhong; Xia, Wen-Hao; Tao, Jun

    2016-02-01

    Although hyperaldosteronemia exerts detrimental impacts on vascular endothelium in addition to elevating blood pressure, the effects and molecular mechanisms of hyperaldosteronemia on early endothelial progenitor cell (EPC)-mediated endothelial repair after arterial damage are yet to be determined. The aim of this study was to investigate the endothelial repair capacity of early EPCs from hypertensive patients with primary hyperaldosteronemia (PHA). In vivo endothelial repair capacity of early EPCs from PHAs (n=20), age- and blood pressure-matched essential hypertension patients (n=20), and age-matched healthy subjects (n=20) was evaluated by transplantation into a nude mouse carotid endothelial denudation model. Endothelial function was evaluated by flow-mediated dilation of brachial artery in human subjects. In vivo endothelial repair capacity of early EPCs and flow-mediated dilation were impaired both in PHAs and in essential hypertension patients when compared with age-matched healthy subjects; however, the early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs were impaired more severely than essential hypertension patients. Oral spironolactone improved early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs. Increased oxidative stress, oxidative 5,6,7,8-tetrahydrobiopterin degradation, endothelial nitric oxide synthase uncoupling and decreased nitric oxide production were found in early EPCs from PHAs. Nicotinamide adenine dinucleotide phosphate oxidase subunit p47(phox) knockdown or 5,6,7,8-tetrahydrobiopterin supplementation attenuated endothelial nitric oxide synthase uncoupling and enhanced in vivo endothelial repair capacity of early EPCs from PHAs. In conclusion, PHAs exhibited more impaired endothelial repair capacity of early EPCs than did essential hypertension patients independent of blood pressure, which was associated with mineralocorticoid receptor-dependent oxidative stress and subsequently 5,6,7,8-tetrahydrobiopterin degradation and endothelial nitric oxide synthase uncoupling. © 2015 American Heart Association, Inc.

  5. Hypothesis: Pentoxifylline explores new horizons in treatment of preeclampsia.

    PubMed

    Azimi, Arsalan; Ziaee, Seyyed Mohyeddin; Farhadi, Pouya; Sagheb, Mohammad Mahdi

    2015-10-01

    Preeclampsia, the leading cause of maternal morbidity and perinatal mortality, initiates as inappropriate immune response to trophoblastic invasion impairs placentation and placental circulation. A poorly perfused placenta generates superoxide anions as well as anti-angiogenic factors and this series of events result in impairment of endothelial function, followed by maternal morbidities such as hypertension, kidney injury and proteinuria. Renal loss of anti-coagulant proteins and subsequent hyper-coagulable state along with endothelial dysfunction accelerates progression of the disease toward eclampsia. Since Pentoxifylline, a methyl-xanthine derivative known for enhancement of vascular endothelial function, down-regulation of many inflammatory cytokines increased during preeclampsia, improvement of placental circulation, reduction of ischemia-reperfusion injury, enhancement of vasodilatation and endothelial function, ameliorating proteinuria, inhibition of platelet aggregation and decreasing risk of preterm labor, which are all amongst morbidities of preeclampsia, here it is hypothesized that Pentoxifylline prevents development of preeclampsia and/or decelerate progression of the disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. LIM Domain Only 2 Regulates Endothelial Proliferation, Angiogenesis, and Tissue Regeneration.

    PubMed

    Meng, Shu; Matrone, Gianfranco; Lv, Jie; Chen, Kaifu; Wong, Wing Tak; Cooke, John P

    2016-10-06

    LIM domain only 2 (LMO2, human gene) is a key transcription factor that regulates hematopoiesis and vascular development. However, its role in adult endothelial function has been incompletely characterized. In vitro loss- and gain-of-function studies on LMO2 were performed in human umbilical vein endothelial cells with lentiviral overexpression or short hairpin RNA knockdown (KD) of LMO2, respectively. LMO2 KD significantly impaired endothelial proliferation. LMO2 controls endothelial G1/S transition through transcriptional regulation of cyclin-dependent kinase 2 and 4 as determined by reverse transcription polymerase chain reaction (PCR), western blot, and chromatin immunoprecipitation, and also influences the expression of Cyclin D1 and Cyclin A1. LMO2 KD also impaired angiogenesis by reducing transforming growth factor-β (TGF-β) expression, whereas supplementation of exogenous TGF-β restored defective network formation in LMO2 KD human umbilical vein endothelial cells. In a zebrafish model of caudal fin regeneration, RT-PCR revealed that the lmo2 (zebrafish gene) gene was upregulated at day 5 postresection. The KD of lmo2 by vivo-morpholino injections in adult Tg(fli1:egfp) y1 zebrafish reduced 5-bromo-2'-deoxyuridine incorporation in endothelial cells, impaired neoangiogenesis in the resected caudal fin, and substantially delayed fin regeneration. The transcriptional factor LMO2 regulates endothelial proliferation and angiogenesis in vitro. Furthermore, LMO2 is required for angiogenesis and tissue healing in vivo. Thus, LMO2 is a critical determinant of vascular and tissue regeneration. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T; Kallen, Caleb B; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-06-12

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans.

  8. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury

    PubMed Central

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T.; Kallen, Caleb B.; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-01-01

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans. PMID:26068229

  9. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons.

    PubMed

    Varela, Luis; Suyama, Shigetomo; Huang, Yan; Shanabrough, Marya; Tschöp, Matthias H; Gao, Xiao-Bing; Giordano, Frank J; Horvath, Tamas L

    2017-06-01

    Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders. © 2017 by the American Diabetes Association.

  10. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores endothelial function impaired by reduced Nrf2 activity in chronic kidney disease.

    PubMed

    Aminzadeh, Mohammad A; Reisman, Scott A; Vaziri, Nosratola D; Shelkovnikov, Stan; Farzaneh, Seyed H; Khazaeli, Mahyar; Meyer, Colin J

    2013-01-01

    Chronic kidney disease (CKD) is associated with endothelial dysfunction and accelerated cardiovascular disease, which are largely driven by systemic oxidative stress and inflammation. Oxidative stress and inflammation in CKD are associated with and, in part, due to impaired activity of the cytoprotective transcription factor Nrf2. RTA dh404 is a synthetic oleanane triterpenoid compound which potently activates Nrf2 and inhibits the pro-inflammatory transcription factor NF-κB. This study was designed to test the effects of RTA dh404 on endothelial function, inflammation, and the Nrf2-mediated antioxidative system in the aorta of rats with CKD induced by 5/6 nephrectomy. Sham-operated rats served as controls. Subgroups of CKD rats were treated orally with RTA dh404 (2 mg/kg/day) or vehicle for 12 weeks. The aortic rings from untreated CKD rats exhibited a significant reduction in the acetylcholine-induced relaxation response which was restored by RTA dh404 administration. Impaired endothelial function in the untreated CKD rats was accompanied by significant reduction of Nrf2 activity (nuclear translocation) and expression of its cytoprotective target genes, as well as accumulation of nitrotyrosine and upregulation of NAD(P)H oxidases, 12-lipoxygenase, MCP-1, and angiotensin II receptors in the aorta. These abnormalities were ameliorated by RTA dh404 administration, as demonstrated by the full or partial restoration of the expression of all the above analytes to sham control levels. Collectively, the data demonstrate that endothelial dysfunction in rats with CKD induced by 5/6 nephrectomy is associated with impaired Nrf2 activity in arterial tissue, which can be reversed with long term administration of RTA dh404.

  11. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects.

    PubMed

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads; Slingsby, Martina H Lundberg; Åkerström, Thorbjörn; Sylow, Lykke; Richter, Erik A; Hellsten, Ylva

    2017-08-15

    Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day -1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2%) and to 12 W of active exercise (by 9 ± 1%), indicating impaired vascular function. A reduced flow response to passive and active exercise was paralleled by a significant up-regulation of platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho family GTPase Rac1 protein expression in the muscle tissue, as well as an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. The phosphorylation status was not acutely altered with passive leg movement. These findings indicate that a regular intake of high levels of sucrose can impair vascular mechanotransduction and increase the oxidative stress potential, and suggest that dietary excessive sugar intake may contribute to the development of vascular disease. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  12. Low intrinsic exercise capacity in rats predisposes to age-dependent cardiac remodeling independent of macrovascular function

    PubMed Central

    Ritchie, Rebecca H.; Leo, Chen Huei; Qin, Chengxue; Stephenson, Erin J.; Bowden, Marissa A.; Buxton, Keith D.; Lessard, Sarah J.; Rivas, Donato A.; Koch, Lauren G.; Britton, Steven L.; Woodman, Owen L.

    2013-01-01

    Rats selectively bred for low (LCR) or high (HCR) intrinsic running capacity simultaneously present with contrasting risk factors for cardiovascular and metabolic disease. However, the impact of these phenotypes on left ventricular (LV) morphology and microvascular function, and their progression with aging, remains unresolved. We tested the hypothesis that the LCR phenotype induces progressive age-dependent LV remodeling and impairments in microvascular function, glucose utilization, and β-adrenergic responsiveness, compared with HCR. Hearts and vessels isolated from female LCR (n = 22) or HCR (n = 26) were studied at 12 and 35 wk. Nonselected N:NIH founder rats (11 wk) were also investigated (n = 12). LCR had impaired glucose tolerance and elevated plasma insulin (but not glucose) and body-mass at 12 wk compared with HCR, with early LV remodeling. By 35 wk, LV prohypertrophic and glucose transporter GLUT4 gene expression were up- and downregulated, respectively. No differences in LV β-adrenoceptor expression or cAMP content between phenotypes were observed. Macrovascular endothelial function was predominantly nitric oxide (NO)-mediated in both phenotypes and remained intact in LCR for both age-groups. In contrast, mesenteric arteries microvascular endothelial function, which was impaired in LCR rats regardless of age. At 35 wk, endothelial-derived hyperpolarizing factor-mediated relaxation was impaired whereas the NO contribution to relaxation is intact. Furthermore, there was reduced β2-adrenoceptor responsiveness in both aorta and mesenteric LCR arteries. In conclusion, diminished intrinsic exercise capacity impairs systemic glucose tolerance and is accompanied by progressive development of LV remodeling. Impaired microvascular perfusion is a likely contributing factor to the cardiac phenotype. PMID:23262135

  13. Elevated CXCL1 expression in gp130-deficient endothelial cells impairs neutrophil migration in mice

    PubMed Central

    Yao, Longbiao; Yago, Tadayuki; Shao, Bojing; Liu, Zhenghui; Silasi-Mansat, Robert; Setiadi, Hendra; Lupu, Florea

    2013-01-01

    Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered β2 integrin–dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti–P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation. PMID:24081661

  14. Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implications

    PubMed Central

    Toda, Noboru; Nakanishi, Sadanobu; Tanabe, Shinichi

    2013-01-01

    Aldosterone, in doses inappropriate to the salt status, plays an important role in the development of cardiovascular injury, including endothelial dysfunction, independent of its hypertensive effects. Acute non-genomic effects of aldosterone acting on mineralocorticoid receptors are inconsistent in healthy humans: vasoconstriction or forearm blood flow decrease via endothelial dysfunction, vasodilatation mediated by increased NO actions, or no effects. However, in studies with experimental animals, aldosterone mostly enhances vasodilatation mediated by endothelium-derived NO. Chronic exposure to aldosterone, which induces genomic responses, results in impairments of endothelial function through decreased NO synthesis and action in healthy individuals, experimental animals and isolated endothelial cells. Chronic aldosterone reduces NO release from isolated human endothelial cells only when extracellular sodium is raised. Oxidative stress is involved in the impairment of endothelial function by promoting NO degradation. Aldosterone liberates endothelin-1 (ET-1) from endothelial cells, which elicits ETA receptor–mediated vasoconstriction by inhibiting endothelial NO synthesis and action and through its own direct vasoconstrictor action. Ca2+ flux through T-type Ca2+ channels activates aldosterone synthesis and thus enhances unwanted effects of aldosterone on the endothelium. Mineralocorticoid receptor inhibitors, ETA receptor antagonists and T-type Ca2+ channel blockers appear to diminish the pathophysiological participation of aldosterone in cardiovascular disease and exert beneficial actions on bioavailability of endothelium-derived NO, particularly in resistant hypertension and aldosteronism. PMID:23190073

  15. WAVE2 is required for directed cell migration and cardiovascular development.

    PubMed

    Yamazaki, Daisuke; Suetsugu, Shiro; Miki, Hiroaki; Kataoka, Yuki; Nishikawa, Shin-Ichi; Fujiwara, Takashi; Yoshida, Nobuaki; Takenawa, Tadaomi

    2003-07-24

    WAVE2, a protein related to Wiskott-Aldrich syndrome protein, is crucial for Rac-induced membrane ruffling, which is important in cell motility. Cell movement is essential for morphogenesis, but it is unclear how cell movement is regulated or related to morphogenesis. Here we show the physiological functions of WAVE2 by disruption of the WAVE2 gene in mice. WAVE2 was expressed predominantly in vascular endothelial cells during embryogenesis. WAVE2-/- embryos showed haemorrhages and died at about embryonic day 10. Deficiency in WAVE2 had no significant effect on vasculogenesis, but it decreased sprouting and branching of endothelial cells from existing vessels during angiogenesis. In WAVE2-/- endothelial cells, cell polarity formed in response to vascular endothelial growth factor, but the formation of lamellipodia at leading edges and capillaries was severely impaired. These findings indicate that WAVE2-regulated actin reorganization might be required for proper cell movement and that a lack of functional WAVE2 impairs angiogenesis in vivo.

  16. Phosphodiesterase-3 inhibitor cilostazol reverses endothelial dysfunction with ageing in rat mesenteric resistance arteries.

    PubMed

    Moreira, Hicla S; Lima-Leal, Geórgia A; Santos-Rocha, Juliana; Gomes-Pereira, Leonardo; Duarte, Gloria P; Xavier, Fabiano E

    2018-03-05

    Ageing impairs endothelial function, which is considered a hallmark of the development of cardiovascular diseases in elderly. Cilostazol, a phosphodiesterase-3 inhibitor, has antiplatelet, antithrombotic and protective effects on endothelial cells. Here, we hypothesized that cilostazol could improve endothelial function in mesenteric resistance arteries (MRA) from old rats. Using eight-week cilostazol-treated (100mg/kg/day) or untreated 72-week-old Wistar rats, we evaluate the relaxation to acetylcholine, sodium nitroprusside (SNP), forskolin and isoproterenol and the noradrenaline-induced contraction in MRA. Superoxide anion and nitric oxide (NO) was measured by dihydroethidium- and diaminofluorescein-2-emitted fluorescence, respectively. Normotensive old rats had impaired acetylcholine-induced NO- and EDHF-mediated relaxation and increased noradrenaline vasoconstriction than young rats. This age-associated endothelial dysfunction was restored by cilostazol treatment. Relaxation to SNP, forskolin or isoproterenol remained unmodified by cilostazol. Diaminofluorescein-2-emitted fluorescence was increased while dihydroethidium-emitted was decreased by cilostazol, indicating increased NO and reduced superoxide generation, respectively. Cilostazol improves endothelial function in old MRA without affecting blood pressure. This protective effect of cilostazol could be attributed to reduced oxidative stress, increased NO bioavailability and EDHF-type relaxation. Although these results are preliminary, we believe that should stimulate further interest in cilostazol as an alternative for the treatment of age-related vascular disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Impaired function of endothelial progenitor cells in children with primary systemic vasculitis.

    PubMed

    Hong, Ying; Eleftheriou, Despina; Klein, Nigel J; Brogan, Paul A

    2015-10-16

    Previously, we demonstrated that children with active systemic vasculitis (SV) have higher circulating CD34 + CD133 + KDR+ endothelial progenitor cells (EPC); the function of these EPCs, and their relationship with disease activity in vasculitis remains largely unexplored. We hypothesized that although EPC numbers are higher, EPC function is impaired in active SV of the young. The aims of this study were therefore to: 1. investigate the relationship between disease activity and EPC function in children with SV; and 2. study the influence of systemic inflammation on EPC function by investigating the effects of hyperthermia and TNF-α on EPC function. We performed a cross-sectional study of unselected children with SV with different levels of disease activity attending a single center (Great Ormond Street Hospital, London) between October 2008 and December 2014. EPCs were isolated from peripheral blood of children with SV, and healthy child controls. EPC function was assessed by their potential to form colonies (EPC-CFU), and ability to form clusters and incorporate into human umbilical vein endothelial cell (HUVEC) vascular structures in matrigel. The effects of hyperthermia and TNF-α on EPC function were also studied. Twenty children, median age 12-years (5-16.5; nine males) were studied. EPC-CFU and the number of EPC clusters formed on matrigel were significantly reduced in children with active vasculitis compared with healthy controls (p = 0.02 for EPC-CFU; p = 0.01 for EPC cluster formation). Those with active vasculitis had lower EPC-CFU and EPC cluster formation than those with inactive disease, although non-significantly so. In addition, EPC incorporation into matrigel HUVEC networks was lower in children with SV compared with healthy children, irrespective of disease activity. Ex-vivo pre-treatment of EPC with hyperthermia impaired EPC function; TNF-α down-regulated EPC expression of CD18/CD11b and resulted in decreased incorporation into HUVEC networks. Whilst our previous work showed that circulating CD34 + EPC numbers are well preserved, this study revealed that EPC function is significantly impaired in children with vasculitis. It is possible that the chronic inflammatory milieu associated with vasculitis may impair EPC function, and thus contribute to an unfavourable balance between endothelial injury and repair. The mechanism of this remains to be established, however.

  18. Tissue Engineering of the Corneal Endothelium: A Review of Carrier Materials

    PubMed Central

    Teichmann, Juliane; Valtink, Monika; Nitschke, Mirko; Gramm, Stefan; Funk, Richard H.W.; Engelmann, Katrin; Werner, Carsten

    2013-01-01

    Functional impairment of the human corneal endothelium can lead to corneal blindness. In order to meet the high demand for transplants with an appropriate human corneal endothelial cell density as a prerequisite for corneal function, several tissue engineering techniques have been developed to generate transplantable endothelial cell sheets. These approaches range from the use of natural membranes, biological polymers and biosynthetic material compositions, to completely synthetic materials as matrices for corneal endothelial cell sheet generation. This review gives an overview about currently used materials for the generation of transplantable corneal endothelial cell sheets with a special focus on thermo-responsive polymer coatings. PMID:24956190

  19. Endothelial Cell Autonomous Role of Akt1: Regulation of Vascular Tone and Ischemia-Induced Arteriogenesis.

    PubMed

    Lee, Monica Y; Gamez-Mendez, Ana; Zhang, Jiasheng; Zhuang, Zhenwu; Vinyard, David J; Kraehling, Jan; Velazquez, Heino; Brudvig, Gary W; Kyriakides, Themis R; Simons, Michael; Sessa, William C

    2018-04-01

    The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair. © 2018 American Heart Association, Inc.

  20. Endothelial dysfunction in metabolic and vascular disorders.

    PubMed

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  1. Celiac Disease–Specific TG2-Targeted Autoantibodies Inhibit Angiogenesis Ex Vivo and In Vivo in Mice by Interfering with Endothelial Cell Dynamics

    PubMed Central

    Kalliokoski, Suvi; Sulic, Ana-Marija; Korponay-Szabó, Ilma R.; Szondy, Zsuzsa; Frias, Rafael; Perez, Mileidys Alea; Martucciello, Stefania; Roivainen, Anne; Pelliniemi, Lauri J.; Esposito, Carla; Griffin, Martin; Sblattero, Daniele; Mäki, Markku; Kaukinen, Katri; Lindfors, Katri; Caja, Sergio

    2013-01-01

    A characteristic feature of celiac disease is the presence of circulating autoantibodies targeted against transglutaminase 2 (TG2), reputed to have a function in angiogenesis. In this study we investigated whether TG2-specific autoantibodies derived from celiac patients inhibit angiogenesis in both ex vivo and in vivo models and sought to clarify the mechanism behind this phenomenon. We used the ex vivo murine aorta-ring and the in vivo mouse matrigel-plug assays to address aforementioned issues. We found angiogenesis to be impaired as a result of celiac disease antibody supplementation in both systems. Our results also showed the dynamics of endothelial cells was affected in the presence of celiac antibodies. In the in vivo angiogenesis assays, the vessels formed were able to transport blood despite impairment of functionality after treatment with celiac autoantibodies, as revealed by positron emission tomography. We conclude that celiac autoantibodies inhibit angiogenesis ex vivo and in vivo and impair vascular functionality. Our data suggest that the anti-angiogenic mechanism of the celiac disease-specific autoantibodies involves extracellular TG2 and inhibited endothelial cell mobility. PMID:23824706

  2. Anger, depression and anxiety associated with endothelial function in childhood and adolescence.

    PubMed

    Osika, W; Montgomery, S M; Dangardt, F; Währborg, P; Gan, L M; Tideman, E; Friberg, P

    2011-01-01

    Psychosocial adversity is a risk factor for cardiovascular disease (CVD) in adults. The authors assessed associations of reactive hyperaemia peripheral arterial tonometry (RH-PAT), a measure of endothelial function predictive of CVD, with self-assessed psychological health among school children. A total of 248 healthy school children (mean (SD) age 14.0 (1.0); 136 girls and 112 boys) underwent RH-PAT testing. They completed the Beck Youth Inventories (BYI) of emotional and social impairment scales, which is used to screen for depression, anxiety, anger and disruptive behaviour. No sex differences were observed for the RH-PAT score. Statistically significant differences were observed for the BYI scores; girls had higher scores for depression, anger and anxiety. Among the girls, there were statistically significant associations between lower RH-PAT scores and higher scores for anger (B coefficient=-0.100, p=0.040), depression (-0.108, p=0.009) and anxiety (-0.138, p=0.039) after adjustment for age. Among the boys, disruptive behaviour was associated with higher RH-PAT scores (0.09, p=0.006). The girls have higher levels of self-assessed anger; depression and anxiety compared with the boys, and these characteristics are associated with lower RH-PAT scores, indicating attenuated endothelial function. Among the boys, disruptive behaviour was associated with better endothelial function. Although psychological ill-health is associated with impaired endothelial function and CVD among adults, such processes may also be relevant to children. Psychosocial adversity in childhood might be a risk factor for subsequent CVD.

  3. Functional interplay between endothelial nitric oxide synthase and membrane type 1–matrix metalloproteinase in migrating endothelial cells

    PubMed Central

    Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S.; Gálvez, Beatriz G.; Martínez-Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S.

    2007-01-01

    Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1–matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motility-associated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NO-induced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders. PMID:17606763

  4. Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria

    PubMed Central

    Brussee, Janneke M.; Yeo, Tsin W.; Lampah, Daniel A.; Anstey, Nicholas M.

    2015-01-01

    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine, the substrate for endothelial cell NO synthase. We quantified the time course of the effects of adjunctive l-arginine treatment on endothelial function in 73 patients with moderately severe falciparum malaria derived from previous studies. Three groups of 10 different patients received 3 g, 6 g, or 12 g of l-arginine as a half-hour infusion. The remaining 43 received saline placebo. A pharmacokinetic-pharmacodynamic (PKPD) model was developed to describe the time course of changes in exhaled NO concentrations and reactive hyperemia-peripheral arterial tonometry (RH-PAT) index values describing endothelial function and then used to explore optimal dosing regimens for l-arginine. A PK model describing arginine concentrations in patients with moderately severe malaria was extended with two pharmacodynamic biomeasures, the intermediary biochemical step (NO production) and endothelial function (RH-PAT index). A linear model described the relationship between arginine concentrations and exhaled NO. NO concentrations were linearly related to RH-PAT index. Simulations of dosing schedules using this PKPD model predicted that the time within therapeutic range would increase with increasing arginine dose. However, simulations demonstrated that regimens of continuous infusion over longer periods would prolong the time within the therapeutic range even more. The optimal dosing regimen for l-arginine is likely to be administration schedule dependent. Further studies are necessary to characterize the effects of such continuous infusions of l-arginine on NO and microvascular reactivity in severe malaria. PMID:26482311

  5. Hydroquinone stimulates inflammatory functions in microvascular endothelial cells via NF-κB nuclear activation.

    PubMed

    Hebeda, Cristina Bichels; Pinedo, Fernanda Júdice; Vinolo, Marco Aurélio Ramirez; Curi, Rui; Farsky, Sandra Helena Poliselli

    2011-11-01

    Hydroquinone impairs several leucocyte cell functions, which alter the immune response. Although endothelial cell functions are important for the development of immune responses, hydroquinone actions on endothelial cell have not been shown. Therefore, the effect of hydroquinone exposure (10 or 100 μM for 2 hr) on primary culture of microvascular endothelial cells (PMECs) obtained from the cremaster muscle of Wistar rats incubated in the presence or absence of lipopolysaccharide (LPS, 2 μg/mL) was investigated. Hydroquinone treatment induced the membrane expression of cell adhesion molecules (CAMs) from the immunoglobulin superfamilies ICAM-1 (intercellular), VCAM-1(vascular) and PECAM-1 (platelet endothelial) and induced the secretion of cytokines interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α). The effects were dependent on transcriptional modifications because enhanced CAM mRNA expression as well as both cytokines and nuclear factor κB (NF-κB) nuclear activation was found. These effects may be due to the direct action of hydroquinone rather than its quinone metabolites, because endothelial cells do not present myeloperoxidase enzyme and hydroquinone incubation did not induce the expression of cytochrome P450 2E1 (CYP2E1) or prostaglandin H synthase 1. In addition, the incubation of endothelial cells with benzoquinone (10 μM, 2 hr) impaired PECAM-1 expression and did not modify NF-κB nuclear activation. Taken together, the data herein presented reveal that hydroquinone evokes pro-inflammatory properties in endothelial cells that are triggered by the enhancement of NF-κB nuclear translocation-dependent gene transcription. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  6. Is endothelial microvascular function equally impaired among patients with chronic Chagas and ischemic cardiomyopathy?

    PubMed

    Borges, Juliana Pereira; Mendes, Fernanda de Souza Nogueira Sardinha; Lopes, Gabriella de Oliveira; Sousa, Andréa Silvestre de; Mediano, Mauro Felippe Felix; Tibiriçá, Eduardo

    2018-08-15

    Chronic Chagas cardiomyopathy (CCC) and cardiomyopathies due to other etiologies involve differences in pathophysiological pathways that are still unclear. Systemic microvascular abnormalities are associated with the pathogenesis of ischemic heart disease. However, systemic microvascular endothelial function in CCC remains to be elucidated. Thus, we compared the microvascular endothelial function of patients presenting with CCC to those with ischemic cardiomyopathy disease. Microvascular reactivity was assessed in 21 patients with cardiomyopathy secondary to Chagas disease, 21 patients with cardiomyopathy secondary to ischemic disease and 21 healthy controls. Microvascular blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with iontophoresis of acetylcholine (ACh). Peak increase in forearm blood flow with ACh iontophoresis in relation to baseline was greater in healthy controls than in patients with heart disease (controls: 162.7 ± 58.4% vs. ischemic heart disease: 74.1 ± 48.3% and Chagas: 85.1 ± 68.1%; p < 0.0001). Patients with Chagas and ischemic cardiomyopathy presented similar ACh-induced changes from baseline in skin blood flow (p = 0.55). Endothelial microvascular function was equally impaired among patients with CCC and ischemic cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Impaired endothelial function in patients with mild primary hyperparathyroidism improves after parathyroidectomy.

    PubMed

    Tuna, Mazhar M; Doğan, Berçem A; Arduç, Ayşe; Imga, Narin Nasiroğlu; Tütüncü, Yasemin; Berker, Dilek; Güler, Serdar

    2015-12-01

    Primary hyperparathyroidism (PHPT) is associated with cardiovascular morbidity; however, data on the reversibility of cardiovascular disease in mild primary hyperparathyroidism are conflicting. The aim of this study was to assess endothelial function in patients with mild PHPT before and after parathyroidectomy (Ptx). We prospectively evaluated 53 patients with mild PHPT (Group 1; 45 women, eight men; aged 52 ± 3·1 years) and 46 healthy control subjects (Group 2; 38 women, eight men; aged 46 ± 9·5 years). Endothelial function was measured as flow-mediated dilation (FMD) and carotid intima-media thickness (CIMT) using Doppler ultrasonography. Patients with diabetes mellitus, coronary heart disease, impaired renal function, hyperthyroidism, hypothyroidism and a history of smoking were excluded from the study. Patients were studied at baseline and 6-12 months after the first evaluation. There were no differences with respect to age, gender and BMI between the two groups. Hypertension prevalence was three times higher in group 1 than in controls. % FMD was lower in group 1 than in group 2 (2·6 ± 1·2 vs 14·8 ± 9·6, P < 0·001). CIMT was higher in patients with PHPT than controls (0·69 ± 0·18 vs 0·61 ± 0·12, P = 0·045). This significance remained when hypertensive patients were excluded from the analysis. While FMD and CIMT improved significantly after Ptx, there were no differences in mild PHPT patients who followed without parathyroidectomy. FMD and CIMT are impaired in patients with mild PHPT compared to controls and improved significantly after a successful Ptx. Ptx improves endothelial function in patients with mild PHPT that may lead to decreased cardiovascular morbidity and mortality. © 2014 John Wiley & Sons Ltd.

  8. Effect of diabetes on the cutaneous microcirculation of the feet in patients with intermittent claudication.

    PubMed

    Klonizakis, M; Manning, G; Lingam, K; Donnelly, R; Yeung, J M C

    2015-01-01

    To evaluate endothelial-dependent and - independent cutaneous vasodilator responses in the feet of patients with peripheral arterial disease (PAD) with or without Type 2 diabetes. Cutaneous microvascular responses in the dorsum of both lower limbs were measured in the supine position using Laser Doppler Fluximetry combined with iontophoretic administration of endothelial-dependent (acetylcholine, Ach) and -independent (sodium nitroprusside, SNP) vasodilators in diabetic (n = 19) and non diabetic (n = 17) patients with PAD (presenting as unilateral calf intermittent claudication (IC). In patients with diabetes and IC, endothelial-dependent vasodilation was significantly impaired in the symptomatic limb [74 (57,105) vs 68 (24,81) PU, Z =-2.79, p = 0.005] compared to the asymptomatic limb. Patients without diabetes showed no impairment of vasodilation. Resting ankle-brachial pressure index did not identify the presence of abnormalities in microvascular function. The combination of diabetes and PAD is associated with a reduction in endothelial-dependent cutaneous vasodilation in the feet without an associated reduction in endothelial independent vasodilation.

  9. Endothelial dysfunction and amyloid-β-induced neurovascular alterations

    PubMed Central

    Koizumi, Kenzo; Wang, Gang; Park, Laibaik

    2015-01-01

    Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the nonselective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca2+ overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781

  10. Nitric Oxide-Mediated Coronary Flow Regulation in Patients with Coronary Artery Disease: Recent Advances

    PubMed Central

    Toda, Noboru; Tanabe, Shinichi; Nakanishi, Sadanobu

    2011-01-01

    Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance, and in inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. Endothelial function is impaired by several pathogenic factors including smoking, chronic alcohol intake, hypercholesterolemia, obesity, hyperglycemia, and hypertension. The mechanisms underlying endothelial dysfunction include reduced NO synthase (NOS) expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. Atrial fibrillation appears to be a risk factor for endothelial dysfunction. Endothelial dysfunction is an important predictor of coronary artery disease (CAD) in humans. Penile erectile dysfunction, associated with impaired bioavailability of NO produced by eNOS and neuronal NOS, is also considered to be highly predictive of ischemic heart disease. There is evidence suggesting an important role of nitrergic innervation in coronary blood flow regulation. Prophylactic and therapeutic measures to eliminate pathogenic factors inducing endothelial and nitrergic nerve dysfunction would be quite important in preventing the genesis and development of CAD. PMID:22942627

  11. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    PubMed Central

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  12. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    PubMed

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  13. Assessment of endothelial dysfunction: the role of symmetrical dimethylarginine and proinflammatory markers in chronic kidney disease and renal transplant recipients.

    PubMed

    Memon, Lidija; Spasojevic-Kalimanovska, Vesna; Bogavac-Stanojevic, Natasa; Kotur-Stevuljevic, Jelena; Simic-Ogrizovic, Sanja; Giga, Vojislav; Dopsaj, Violeta; Jelic-Ivanovic, Zorana; Spasic, Slavica

    2013-01-01

    The study was designed to evaluate associations between symmetric dimethylarginine (SDMA), inflammation, and superoxide anion (O2∙-) with endothelial function and to determine their potential for screening of endothelial dysfunction in patients with chronic kidney disease (CKD) and renal transplant (RT) recipients. We included 64 CKD and 52 RT patients. Patients were stratified according to brachial artery flow-mediated dilation (FMD). Logistic regression analysis showed that high SDMA and high sensitive C-reactive protein (hs-CRP) were associated with impaired FMD in CKD and RT patients, after adjustment for glomerular filtration rate. The ability of inflammation, SDMA, and O2∙- to detect impaired FMD was investigated by receiving operative characteristic analysis. Hs-CRP (area under the curves (AUC) = 0.754, P < 0.001), IL-6 (AUC = 0.699, P = 0.002), and SDMA (AUC = 0.689, P = 0.007) had the highest ability to detect impaired FMD. SDMA in combination with inflammatory parameters and/or O2∙- had better screening performance than SDMA alone. Our results indicate a strong predictable association between hs-CRP, SDMA, and endothelial dysfunction in CKD patients and RT recipients. The individual marker that showed the strongest discriminative ability for endothelial dysfunction is hs-CRP, but its usefulness as a discriminatory marker for efficient diagnosis of endothelial dysfunction should be examined in prospective studies.

  14. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Liver X receptor agonist alleviated high glucose-induced endothelial progenitor cell dysfunction via inhibition of reactive oxygen species and activation of AMP-activated protein kinase.

    PubMed

    Li, Xiaoxia; Song, Yimeng; Han, Yingying; Wang, Dawei; Zhu, Yi

    2012-08-01

    Liver X receptors (LXRs) are key regulators of cholesterol homeostasis. Synthetic LXR agonists are anti-atherogenic and anti-inflammatory. However, the effect of LXR agonists on endothelial progenitor cell (EPC) function is largely unknown. Here, we explored the effect of the LXR agonist TO901317 (TO) on EPC biology and the underlying mechanisms. Endothelial progenitor cells were cultured in mannitol or 30 mm glucose (high glucose) for 24 hours. For TO treatments, cells were pretreated with TO (10 μm) for 12 hours, then mannitol or high glucose was added for an additional 24 hours. EPCs function, reactive oxygen species (ROS) release, and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) were analyzed. TO could restore the high glucose-impaired adhesion and migration capacity of EPCs. High glucose impaired EPC-mediated angiogenesis, and TO reversed the impairment. TO also alleviated ROS release induced by high glucose. Western blot analysis revealed that high glucose downregulated the phosphorylation of AMPK and endothelial nitric oxide synthase, which could be reversed with TO treatment. Furthermore, inhibiting AMPK activation by compound C could abolish the protective effects of TO on EPCs. TO had a protective effect on EPCs under high glucose by inhibiting ROS release and activating AMPK. © 2012 John Wiley & Sons Ltd.

  16. Hyperhomocysteinemia impairs regional blood flow: involvements of endothelial and neuronal nitric oxide.

    PubMed

    Toda, Noboru; Okamura, Tomio

    2016-09-01

    Increasing evidence support the idea that hyperhomocysteinemia (HHcy) is responsible for pathogenesis underlying cerebral, coronary, renal, and other vascular circulatory disorders and for hypertension. Impaired synthesis of nitric oxide (NO) in the endothelium or increased production of asymmetric dimethylarginine and activated oxygen species are involved in the impairment of vasodilator effects of NO. Impaired circulation in the brain derived from reduced synthesis and actions of NO would be an important triggering factor to dementia and Alzheimer's disease. Reduced actions of NO and brain hypoperfusion trigger increased production of amyloid-β that inhibits endothelial function, thus establishing a vicious cycle for impairing brain circulation. HHcy is involved in the genesis of anginal attack and coronary myocardial infarction. HHcy is also involved in renal circulatory diseases. The homocysteine (Hcy)-induced circulatory failure is promoted by methionine and is prevented by increased folic acid and vitamin B6/B12. Eliminating poor life styles, such as smoking and being sedentary; keeping favorable dietary habits; and early treatment maintaining constitutive NOS functions healthy, reducing oxidative stresses would be beneficial in protecting HHcy-induced circulatory failures.

  17. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function

    PubMed Central

    Touat-Hamici, Zahia; Weidmann, Henri; Blum, Yuna; Proust, Carole; Durand, Hervé; Iannacci, Francesca; Codoni, Veronica; Gaignard, Pauline; Thérond, Patrice; Civelek, Mete; Karabina, Sonia A.; Lusis, Aldons J.; Cambien, François; Ninio, Ewa

    2016-01-01

    Aims Lipid phosphate phosphatase 3; type 2 phosphatidic acid phosphatase β (LPP3; PPAP2B) is a transmembrane protein dephosphorylating and thereby terminating signalling of lipid substrates including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Human LPP3 possesses a cell adhesion motif that allows interaction with integrins. A polymorphism (rs17114036) in PPAP2B is associated with coronary artery disease, which prompted us to investigate the possible role of LPP3 in human endothelial dysfunction, a condition promoting atherosclerosis. Methods and results To study the role of LPP3 in endothelial cells we used human primary aortic endothelial cells (HAECs) in which LPP3 was silenced or overexpressed using either wild type or mutated cDNA constructs. LPP3 silencing in HAECs enhanced secretion of inflammatory cytokines, leucocyte adhesion, cell survival, and migration and impaired angiogenesis, whereas wild-type LPP3 overexpression reversed these effects and induced apoptosis. We also demonstrated that LPP3 expression was negatively correlated with vascular endothelial growth factor expression. Mutations in either the catalytic or the arginine-glycine-aspartate (RGD) domains impaired endothelial cell function and pharmacological inhibition of S1P or LPA restored it. LPA was not secreted in HAECs under silencing or overexpressing LPP3. However, the intra- and extra-cellular levels of S1P tended to be correlated with LPP3 expression, indicating that S1P is probably degraded by LPP3. Conclusions We demonstrated that LPP3 is a negative regulator of inflammatory cytokines, leucocyte adhesion, cell survival, and migration in HAECs, suggesting a protective role of LPP3 against endothelial dysfunction in humans. Both the catalytic and the RGD functional domains were involved and S1P, but not LPA, might be the endogenous substrate of LPP3. PMID:27694435

  18. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging.

    PubMed

    Zarzuelo, María José; López-Sepúlveda, Rocío; Sánchez, Manuel; Romero, Miguel; Gómez-Guzmán, Manuel; Ungvary, Zoltan; Pérez-Vizcaíno, Francisco; Jiménez, Rosario; Duarte, Juan

    2013-05-01

    Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Pyridostigmine prevents peripheral vascular endothelial dysfunction in rats with myocardial infarction.

    PubMed

    Qin, Fangfang; Lu, Yi; He, Xi; Zhao, Ming; Bi, Xueyuan; Yu, Xiaojiang; Liu, Jinjun; Zang, Weijin

    2014-03-01

    1. Myocardial infarction (MI) is characterized by the withdrawal of vagal activity and increased sympathetic activity. We have shown previously that pyridostigmine (PYR), an acetylcholinesterase inhibitor, was able to improve vagal activity and ameliorate cardiac dysfunction following MI. However, the effect of PYR on endothelial dysfunction in peripheral arteries after MI remains unclear. 2. In the present study, MI was induced by coronary artery ligation in adult Sprague-Dawley rats. Rats were treated intragastrically with saline or PYR (approximately 31 mg/kg per day) for 2 weeks, at which time haemodynamic and parasympathetic parameters and the vascular reactivity of isolated mesenteric arteries were measured and the ultrastructure of the endothelium evaluated. 3. Compared with the MI group, PYR not only improved cardiac function, vagal nerve activity and endothelial impairment, but also reduced intravascular superoxide anion and malondialdehyde. In addition, in the PYR-treated MI group, nitric oxide (NO) bioavailability was increased and attenuated endothelium-dependent relaxations were improved, whereas restored vasodilator responses were inhibited by N(G)-nitro-L-arginine methyl ester. 4. Based on our results, PYR is able to attenuate the impairment of peripheral endothelial function and maintain endothelial ultrastructural integrity in MI rats by inhibiting reactive oxygen species production, enhancing NO bioavailability and improving vagal activity. © 2014 Wiley Publishing Asia Pty Ltd.

  20. Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence.

    PubMed

    Vasko, Radovan; Xavier, Sandhya; Chen, Jun; Lin, Chi Hua Sarah; Ratliff, Brian; Rabadi, May; Maizel, Julien; Tanokuchi, Rina; Zhang, Frank; Cao, Jian; Goligorsky, Michael S

    2014-02-01

    Sirtuin 1 (SIRT1) depletion in vascular endothelial cells mediates endothelial dysfunction and premature senescence in diverse cardiovascular and renal diseases. However, the molecular mechanisms underlying these pathologic effects remain unclear. Here, we examined the phenotype of a mouse model of vascular senescence created by genetically ablating exon 4 of Sirt1 in endothelial cells (Sirt1(endo-/-)). Under basal conditions, Sirt1(endo-/-) mice showed impaired endothelium-dependent vasorelaxation and angiogenesis, and fibrosis occurred spontaneously at low levels at an early age. In contrast, induction of nephrotoxic stress (acute and chronic folic acid-induced nephropathy) in Sirt1(endo-/-) mice resulted in robust acute renal functional deterioration followed by an exaggerated fibrotic response compared with control animals. Additional studies identified matrix metalloproteinase-14 (MMP-14) as a target of SIRT1. In the kidneys of Sirt1(endo-/-) mice, impaired angiogenesis, reduced matrilytic activity, and retention of the profibrotic cleavage substrates tissue transglutaminase and endoglin accompanied MMP-14 suppression. Furthermore, restoration of MMP-14 expression in SIRT1-depeleted mice improved angiogenic and matrilytic functions of the endothelium, prevented renal dysfunction, and attenuated nephrosclerosis. Our findings establish a novel mechanistic molecular link between endothelial SIRT1 depletion, downregulation of MMP-14, and the development of nephrosclerosis.

  1. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    PubMed

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart Association, Inc.

  2. GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function.

    PubMed

    Lin, Yi-Wen; Huang, Chun-Yao; Chen, Yung-Hsiang; Shih, Chun-Ming; Tsao, Nai-Wen; Lin, Cheng-Yen; Chang, Nen-Chung; Tsai, Chien-Sung; Tsai, Hsiao-Ya; Tsai, Jui-Chi; Huang, Po-Hsun; Li, Chi-Yuan; Lin, Feng-Yen

    2013-01-01

    The number and function of endothelial progenitor cells (EPCs) are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4) mutation) mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS) in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae.

  3. Intrauterine growth restriction decreases nuclear factor-kappa B signaling in fetal pulmonary artery endothelial cells of fetal sheep.

    PubMed

    Dodson, R Blair; Powers, Kyle N; Gien, Jason; Rozance, Paul J; Seedorf, Gregory J; Astling, David; Jones, Kenneth Lloyd; Crombleholme, Timothy M; Abman, Steven H; Alvira, Cristina M

    2018-05-03

    Intrauterine growth restriction (IUGR) in premature newborns increases the risk for bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted pulmonary angiogenesis and alveolarization. We previously showed that experimental IUGR impairs angiogenesis, however, mechanisms that impair pulmonary artery endothelial cell (PAEC) function are uncertain. The nuclear factor-kappa-B (NFκB) pathway promotes vascular growth in the developing mouse lung, and we hypothesized that IUGR disrupts NFκB-regulated pro-angiogenic targets in fetal PAEC. PAECs were isolated from lungs of control fetal sheep and sheep with experimental IUGR from an established model of chronic placental insufficiency. Microarray analysis identified suppression of NFκB signaling and significant alterations in extracellular matrix (ECM) pathways in IUGR PAEC, including decreases in collagen 4α1 and laminin α4, components of the basement membrane and putative NFκB targets. In comparison with controls: (i) immunostaining of active NFκB complexes; (ii) NFκB-DNA binding; (iii) baseline expression of NFκB subunits, p65 and p50; and (iv) LPS-mediated inducible activation of NFκB signaling were decreased in IUGR PAEC. Although pharmacologic NFκB inhibition did not affect angiogenic function in IUGR PAEC, angiogenic function of control PAEC was reduced to a similar degree as that observed in IUGR PAEC. These data identify reductions in endothelial NFκB signaling as central to the disrupted angiogenesis observed in IUGR, likely by impairing both intrinsic PAEC angiogenic function and NFκB-mediated regulation of ECM components necessary for vascular development. These data further suggest that strategies that preserve endothelial NFκB activation may be useful in lung diseases marked by disrupted angiogenesis such as IUGR.

  4. CLA does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects.

    PubMed

    Pfeuffer, Maria; Fielitz, Kerstin; Laue, Christiane; Winkler, Petra; Rubin, Diana; Helwig, Ulf; Giller, Katrin; Kammann, Julia; Schwedhelm, Edzard; Böger, Rainer H; Bub, Achim; Bell, Doris; Schrezenmeir, Jürgen

    2011-02-01

    Conjugated linoleic acid (CLA) showed a wide range of beneficial biological effects with relevance for cardiovascular health in animal models and humans. Most human studies used olive oil as a reference. This study assessed the effect of CLA as compared with safflower oil on endothelial function and markers of cardiovascular risk in overweight and obese men. Heated safflower oil and olive oil were given for additional descriptive control. Eighty-five overweight men (aged 45-68 years, body mass index 25-35 kg/m(2)) were randomized to receive 4.5 g/d of the CLA isomeric mixture, safflower oil, heated safflower oil, or olive oil in a 4-week double-blind study. Endothelial function was assessed by peripheral arterial tonometry (PAT) index determination in the fasting and postprandial state (i.e., 4 hours after consumption of a fat- and sucrose-rich meal). CLA as compared with safflower oil consumption did not impair fasting or postprandial PAT index but decreased body weight. CLA as compared with safflower oil did not change total, low-density lipoprotein (LDL), or high-density lipoprotein (HDL) cholesterol; triglycerides; insulin sensitivity indices; C-reactive protein; soluble adhesion molecules; oxidized LDL; lipoprotein a (Lp[a]); paraoxonase; or platelet-activating factor acetylhydrolase (PAF-AH) activity, but significantly reduced arylesterase activity and increased concentrations of the F(2)-isoprostane 8-iso-prostaglandin F (PGF)(2α). CLA did not impair endothelial function. Other parameters associated with metabolic syndrome and oxidative stress were not changed or were slightly improved. Results suggest that CLA does not increase cardiovascular risk. Increased F(2)-isoprostane concentrations in this context may not indicate increased oxidative stress.

  5. Premature aging of cardiovascular/platelet function in polycystic ovarian syndrome.

    PubMed

    Chan, Wai Ping A; Ngo, Doan T; Sverdlov, Aaron L; Rajendran, Sharmalar; Stafford, Irene; Heresztyn, Tamila; Chirkov, Yuliy Y; Horowitz, John D

    2013-07-01

    The objective of this study was to compare the impact of aging on nitric oxide (NO) modulation of platelet and vascular function in healthy women and women with polycystic ovary syndrome. A case-control study of women ages 18 to 60 years, comparing women with polycystic ovarian syndrome against age-matched healthy controls, was performed. A total of 242 women, of whom 109 had polycystic ovarian syndrome (based on Rotterdam criteria), participated in the study. Women who were pregnant or on clopidogrel were excluded from the study. Inhibition of platelet aggregation by nitric oxide (primary outcome measure), vascular endothelial function, plasma concentrations of N(G), N(G)-dimethyl-L-arginine (ADMA), endothelial progenitor cell count, and high-sensitivity C-reactive protein (markers of endothelial dysfunction and inflammation) were assessed. With increasing age in control women, there was progressive attenuation of platelet responses to NO, impairment of endothelial function, and elevation of ADMA levels (P ≤.001). Irrespective of age, women with polycystic ovarian syndrome exhibited greater impairment of all these parameters (all P <.05, 2-way analysis of variance) and demonstrated these anomalies earlier in life. Normal aging in women is associated with attenuation of NO-based signaling in platelets and blood vessels. In women with polycystic ovarian syndrome, these changes are present from early adult life and may contribute to premature atherogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Induction of oxidative stress and human leukocyte/endothelial cell interactions in polycystic ovary syndrome patients with insulin resistance.

    PubMed

    Victor, Victor M; Rocha, Milagros; Bañuls, Celia; Alvarez, Angeles; de Pablo, Carmen; Sanchez-Serrano, Maria; Gomez, Marcelino; Hernandez-Mijares, Antonio

    2011-10-01

    Insulin resistance is a feature of polycystic ovary syndrome (PCOS) and is related to mitochondrial and endothelial function. We tested whether hyperandrogenic insulin-resistant women with PCOS, who have an increased risk of vascular disease, display impaired leukocyte-endothelium interactions, and mitochondrial dysfunction. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 43 lean reproductive-age women with PCOS and 39 controls subjects. We evaluated anthropometric and metabolic parameters, adhesion molecules, and interactions between leukocytes and human umbilical vein endothelial cells. Mitochondrial function was studied by assessing mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels (GSH), and the oxidized glutathione (GSSG)/GSH ratio in polymorphonuclear cells. Impairment of mitochondrial function was observed in the PCOS patients, evident in a decrease in oxygen consumption, an increase in reactive oxygen species production, a decrease in the GSH/GSSG ratio and GSH levels, and an undermining of the membrane potential. PCOS was related to a decrease in polymorphonuclear cell rolling velocity and an increase in rolling flux and adhesion. Increases in IL-6 and TNFα and adhesion molecules (vascular cell adhesion molecule-1 and E-selectin) were also observed. This study supports the hypothesis of an association between insulin resistance and an impaired endothelial and mitochondrial oxidative metabolism. The evidence obtained shows that the inflammatory state related to insulin resistance in PCOS induces a leukocyte-endothelium interaction. These findings may explain the increased risk of vascular disease in women with PCOS.

  7. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.

    PubMed

    Jain, Swati; Sharma, Bhupesh

    2015-12-01

    Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The effects of anti-obesity intervention with orlistat and sibutramine on microvascular endothelial function.

    PubMed

    Al-Tahami, Belqes Abdullah Mohammad; Ismail, Ab Aziz Al-Safi; Bee, Yvonne Tee Get; Awang, Siti Azima; Salha Wan Abdul Rani, Wan Rimei; Sanip, Zulkefli; Rasool, Aida Hanum Ghulam

    2015-01-01

    Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR). 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations. 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group. 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.

  9. Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling

    PubMed Central

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.

    2016-01-01

    Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561

  10. Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets.

    PubMed

    Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Bloch, Wilhelm; Eberbeck, Dietmar; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela

    2016-01-26

    Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS(-/-) mice ex and in vivo. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function.

  11. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment ofmore » learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.« less

  12. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function.

  13. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice.

    PubMed

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-06-15

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  14. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice

    PubMed Central

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-01-01

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093

  15. Assessment of Endothelial Dysfunction: The Role of Symmetrical Dimethylarginine and Proinflammatory Markers in Chronic Kidney Disease and Renal Transplant Recipients

    PubMed Central

    Giga, Vojislav; Dopsaj, Violeta; Jelic-Ivanovic, Zorana

    2013-01-01

    Objectives. The study was designed to evaluate associations between symmetric dimethylarginine (SDMA), inflammation, and superoxide anion (O2∙−) with endothelial function and to determine their potential for screening of endothelial dysfunction in patients with chronic kidney disease (CKD) and renal transplant (RT) recipients. Materials and Methods. We included 64 CKD and 52 RT patients. Patients were stratified according to brachial artery flow-mediated dilation (FMD). Results. Logistic regression analysis showed that high SDMA and high sensitive C-reactive protein (hs-CRP) were associated with impaired FMD in CKD and RT patients, after adjustment for glomerular filtration rate. The ability of inflammation, SDMA, and O2∙− to detect impaired FMD was investigated by receiving operative characteristic analysis. Hs-CRP (area under the curves (AUC) = 0.754, P < 0.001), IL-6 (AUC = 0.699, P = 0.002), and SDMA (AUC = 0.689, P = 0.007) had the highest ability to detect impaired FMD. SDMA in combination with inflammatory parameters and/or O2∙− had better screening performance than SDMA alone. Conclusions. Our results indicate a strong predictable association between hs-CRP, SDMA, and endothelial dysfunction in CKD patients and RT recipients. The individual marker that showed the strongest discriminative ability for endothelial dysfunction is hs-CRP, but its usefulness as a discriminatory marker for efficient diagnosis of endothelial dysfunction should be examined in prospective studies. PMID:24167363

  16. Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Glycocalyx Reconstitution

    PubMed Central

    Yang, Yimu; Haeger, Sarah M.; Suflita, Matthew A.; Zhang, Fuming; Dailey, Kyrie L.; Colbert, James F.; Ford, Joshay A.; Picon, Mario A.; Stearman, Robert S.; Lin, Lei; Liu, Xinyue; Han, Xiaorui; Linhardt, Robert J.

    2017-01-01

    The endothelial glycocalyx is a heparan sulfate (HS)–rich endovascular structure critical to endothelial function. Accordingly, endothelial glycocalyx degradation during sepsis contributes to tissue edema and organ injury. We determined the endogenous mechanisms governing pulmonary endothelial glycocalyx reconstitution, and if these reparative mechanisms are impaired during sepsis. We performed intravital microscopy of wild-type and transgenic mice to determine the rapidity of pulmonary endothelial glycocalyx reconstitution after nonseptic (heparinase-III mediated) or septic (cecal ligation and puncture mediated) endothelial glycocalyx degradation. We used mass spectrometry, surface plasmon resonance, and in vitro studies of human and mouse samples to determine the structure of HS fragments released during glycocalyx degradation and their impact on fibroblast growth factor receptor (FGFR) 1 signaling, a mediator of endothelial repair. Homeostatic pulmonary endothelial glycocalyx reconstitution occurred rapidly after nonseptic degradation and was associated with induction of the HS biosynthetic enzyme, exostosin (EXT)-1. In contrast, sepsis was characterized by loss of pulmonary EXT1 expression and delayed glycocalyx reconstitution. Rapid glycocalyx recovery after nonseptic degradation was dependent upon induction of FGFR1 expression and was augmented by FGF-promoting effects of circulating HS fragments released during glycocalyx degradation. Although sepsis-released HS fragments maintained this ability to activate FGFR1, sepsis was associated with the downstream absence of reparative pulmonary endothelial FGFR1 induction. Sepsis may cause vascular injury not only via glycocalyx degradation, but also by impairing FGFR1/EXT1–mediated glycocalyx reconstitution. PMID:28187268

  17. Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Weinberg, J Brice; Granger, Donald L; Price, Ric N; Anstey, Nicholas M

    2014-11-15

    Endothelial nitric oxide (NO) bioavailability, microvascular function, and host oxygen consumption have not been assessed in pediatric malaria. We measured NO-dependent endothelial function by using peripheral artery tonometry to determine the reactive hyperemia index (RHI), and microvascular function and oxygen consumption (VO2) using near infrared resonance spectroscopy in 13 Indonesian children with severe falciparum malaria and 15 with moderately severe falciparum malaria. Compared with 19 controls, children with severe malaria and those with moderately severe malaria had lower RHIs (P = .03); 12% and 8% lower microvascular function, respectively (P = .03); and 29% and 25% higher VO2, respectively. RHIs correlated with microvascular function in all children with malaria (P < .001) and all with severe malaria (P < .001). Children with malaria have decreased endothelial and microvascular function and increased oxygen consumption, likely contributing to the pathogenesis of the disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.

    PubMed

    Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L

    2015-09-15

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.

  19. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    PubMed

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  20. Microvascular endothelial function and cognitive performance: The ELSA-Brasil cohort study.

    PubMed

    Brant, Luisa; Bos, Daniel; Araujo, Larissa Fortunato; Ikram, M Arfan; Ribeiro, Antonio Lp; Barreto, Sandhi M

    2018-06-01

    Impaired microvascular endothelial function may be implicated in the etiology of cognitive decline. Yet, current data on this association are inconsistent. Our objective is to investigate the relation of microvascular endothelial function to cognitive performance in the ELSA-Brasil cohort study. A total of 1521 participants from ELSA-Brasil free of dementia underwent peripheral arterial tonometry (PAT) to quantify microvascular endothelial function (PAT-ratio and mean baseline pulse amplitude (BPA)) and cognitive tests that covered the domains of memory, verbal fluency, and executive function at baseline. Cognitive tests in participants aged 55 years old and above were repeated during the second examination (mean follow-up: 3.5 (0.3) years). Linear regression and generalized linear models were used to evaluate the association between endothelial function, global cognitive performance, and performance on specific cognitive domains. In unadjusted cross-sectional analyses, we found that BPA and PAT-ratio were associated with worse global cognitive performance (mean difference for BPA: -0.07, 95% CI: -0.11; -0.03, p<0.01; mean difference for PAT-ratio: 0.11, 95% CI: 0.01; 0.20, p=0.02), worse performance on learning, recall, and word recognition tests (BPA: -0.87, 95% CI: -1.21; -0.52, p<0.01; PAT-ratio: 1.58, 95% CI: 0.80; 2.36, p<0.01), and only BPA was associated with worse performance in verbal fluency tests (-0.70, 95% CI: -1.19; -0.21, p<0.01). Adjustments for age, sex, and level of education rendered the associations statistically non-significant. Longitudinally, there was no association between microvascular endothelial and cognitive functions. The associations between microvascular endothelial function and cognition are explained by age, sex, and educational level. Measures of microvascular endothelial function may be of limited value with regard to preclinical cognitive deficits.

  1. Protective effects of flavanol-rich dark chocolate on endothelial function and wave reflection during acute hyperglycemia.

    PubMed

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; Ruggieri, Fabrizio; Blumberg, Jeffrey B; Stornello, Michele; Ferri, Claudio

    2012-09-01

    Nitric oxide plays a pivotal role in regulating vascular tone. Different studies show endothelial function is impaired during hyperglycemia. Dark chocolate increases flow-mediated dilation in healthy and hypertensive subjects with and without glucose intolerance; however, the effect of pretreatment with dark chocolate on endothelial function and other vascular responses to hyperglycemia has not been examined. Therefore, we aimed to investigate the effects of flavanol-rich dark chocolate administration on (1) flow-mediated dilation and wave reflections; (2) blood pressure, endothelin-1 and oxidative stress, before and after oral glucose tolerance test (OGTT). Twelve healthy volunteers (5 males, 28.2±2.7 years) randomly received either 100 g/d dark chocolate or flavanol-free white chocolate for 3 days. After 7 days washout period, volunteers were switched to the other treatment. Flow-mediated dilation, stiffness index, reflection index, peak-to-peak time, blood pressure, endothelin-1 and 8-iso-PGF(2α) were evaluated after each treatment phase and OGTT. Compared with white chocolate, dark chocolate ingestion improved flow-mediated dilation (P=0.03), wave reflections, endothelin-1 and 8-iso-PGF(2α) (P<0.05). After white chocolate ingestion, flow-mediated dilation was reduced after OGTT from 7.88±0.68 to 6.07±0.76 (P=0.027), 6.74±0.51 (P=0.046) at 1 and 2 h after the glucose load, respectively. Similarly, after white chocolate but not after dark chocolate, wave reflections, blood pressure, and endothelin-1 and 8-iso-PGF(2α) increased after OGTT. OGTT causes acute, transient impairment of endothelial function and oxidative stress, which is attenuated by flavanol-rich dark chocolate. These results suggest cocoa flavanols may contribute to vascular health by reducing the postprandial impairment of arterial function associated with the pathogenesis of atherosclerosis.

  2. Endothelial progenitor cells dysfunction and impaired tissue reparation: The missed link in diabetes mellitus development.

    PubMed

    Berezin, Alexander E

    Diabetes mellitus (DM) is considered a leading cause of premature cardiovascular (CV) mortality and morbidity in general population and in individuals with known CV disease. Recent animal and clinical studies have shown that reduced number and weak function of endothelial progenitor cells (EPCs) may not only indicate to higher CV risk, but contribute to the impaired heart and vessels reparation in patients with DM. Moreover, EPCs having a protective impact on the vasculature may mediate the functioning of other organs and systems. Therefore, EPCs dysfunction is probably promising target for DM treatment strategy, while the role of restoring of EPCs number and functionality in CV risk diminish and reduce of DM-related complications is not fully clear. The aim of the review is summary of knowledge regarding EPCs dysfunction in DM patients. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  3. Downregulation of endothelial adhesion molecules by dimethylfumarate, but not monomethylfumarate, and impairment of dynamic lymphocyte-endothelial cell interactions.

    PubMed

    Wallbrecht, Katrin; Drick, Nora; Hund, Anna-Carina; Schön, Michael P

    2011-12-01

    Although fumaric acid esters (FAE) have a decade-long firm place in the therapeutic armamentarium for psoriasis, their pleiotropic mode of action is not yet fully understood. While most previous studies have focused on the effects of FAE on leucocytes, we have addressed their activity on macro- and microvascular endothelial cells. As detected both on mRNA and protein levels, dimethylfumarate effected a profound reduction of TNFα-induced expression of E-selectin (CD62E), ICAM-1 (CD54) and VCAM-1 (CD106) on two different endothelial cell populations in a concentration-dependent manner. This reduction of several endothelial adhesion molecules was accompanied by a dramatic diminution of both rolling and firm adhesive interactions between endothelial cells and lymphocytes in a dynamic flow chamber system. Dimethylfumarate, at a concentration of 50 μm, reduced lymphocyte rolling on endothelial cells by 85.9% (P<0.001 compared to untreated controls), and it diminished the number of adherent cells by 88% (P<0.001). In contrast, monomethylfumarate (MMF) influenced neither surface expression of adhesion molecules nor interactions between endothelial cells and lymphocytes. These observations demonstrate that endothelial cells, in addition to the known effects on leucocytes, undergo profound functional changes in response to dimethylfumarate. These changes are accompanied by severely impaired dynamic interactions with lymphocytes, which constitute the critical initial step of leucocyte recruitment to inflamed tissues in psoriasis and other TNF-related inflammatory disorders. © 2011 John Wiley & Sons A/S.

  4. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction.

    PubMed

    Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Schwartzman, Michal Laniado; Rocic, Petra

    2017-03-01

    Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO ·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS. NEW & NOTEWORTHY Elevated 20-hydroxyeicosatetraenoic acid (20-HETE) impairs coronary collateral growth (CCG) in metabolic syndrome by eliciting endothelial dysfunction and apoptosis via excessive neutrophil infiltration. 20-HETE antagonists completely restore coronary collateral growth in metabolic syndrome. microRNA-145 (miR-145) is an upstream regulator of 20-HETE production in metabolic syndrome; low expression of miR-145 in metabolic syndrome promotes elevated production of 20-HETE. Copyright © 2017 the American Physiological Society.

  5. Low Molecular Weight Heparin Improves Endothelial Function in Pregnant Women at High Risk of Preeclampsia.

    PubMed

    McLaughlin, Kelsey; Baczyk, Dora; Potts, Audrey; Hladunewich, Michelle; Parker, John D; Kingdom, John C P

    2017-01-01

    Low molecular weight heparin (LMWH) has been investigated for the prevention of severe preeclampsia, although the mechanisms of action are unknown. The objective of this study was to investigate the cardiovascular effects of LMWH in pregnant women at high risk of preeclampsia. Pregnant women at high risk of preeclampsia (n=25) and low-risk pregnant controls (n=20) at 22 to 26 weeks' gestation underwent baseline cardiovascular assessments. High-risk women were then randomized to LMWH or saline placebo (30 mg IV bolus and 1 mg/kg subcutaneous dose). Cardiovascular function was assessed 1 and 3 hours post randomization. The in vitro endothelial effects of patient serum and exogenous LMWH on human umbilical venous endothelial cells were determined. High-risk women demonstrated a reduced cardiac output, high resistance hemodynamic profile with impaired radial artery flow-mediated dilation compared with controls. LMWH increased flow-mediated dilation in high-risk women 3 hours after randomization compared with baseline and increased plasma levels of placental growth factor, soluble fms-like tyrosine kinase-1, and myeloperoxidase. Serum from high-risk women impaired endothelial cell angiogenesis and increased PlGF-1 and PlGF-2 transcription compared with serum from low-risk controls. Coexposure of high-risk serum with LMWH improved the in vitro angiogenic response such that it was equivalent to that of low-risk serum and promoted placental growth factor secretion. LMWH improves maternal endothelial function in pregnant women at high risk of developing preeclampsia, possibly mediated through increased placental growth factor bioavailability. © 2016 American Heart Association, Inc.

  6. Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation.

    PubMed

    Tsuji-Tamura, Kiyomi; Ogawa, Minetaro

    2018-02-26

    Elongation of endothelial cells is an important process in vascular formation and is expected to be a therapeutic target for inhibiting tumor angiogenesis. We have previously demonstrated that inhibition of mTORC1 and mTORC2 impaired endothelial cell elongation, although the mechanism has not been well defined. In this study, we analyzed the effects of the mTORC1-specific inhibitor everolimus and the mTORC1/mTORC2 dual inhibitor KU0063794 on the cytoskeletal organization and morphology of endothelial cell lines. While both inhibitors equally inhibited cell proliferation, KU0063794 specifically caused abnormal accumulation of F-actin and disordered distribution of microtubules, thereby markedly impairing endothelial cell elongation and tube formation. The effects of KU0063794 were phenocopied by paclitaxel treatment, suggesting that KU0063794 might impair endothelial cell morphology through over-stabilization of microtubules. Although mTORC1 is a key signaling molecule in cell proliferation and has been considered a target for preventing angiogenesis, mTORC1 inhibitors have not been sufficient to suppress angiogenesis. Our results suggest that mTORC1/mTORC2 dual inhibition is more effective for anti-angiogenic therapy, as it impairs not only endothelial cell proliferation, but also endothelial cell elongation. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    PubMed

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair endothelial function via COX-2 and ROS-dependent mechanisms. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. Nebivolol: impact on cardiac and endothelial function and clinical utility.

    PubMed

    Toblli, Jorge Eduardo; DiGennaro, Federico; Giani, Jorge Fernando; Dominici, Fernando Pablo

    2012-01-01

    Endothelial dysfunction is a systemic pathological state of the endothelium characterized by a reduction in the bioavailability of vasodilators, essentially nitric oxide, leading to impaired endothelium-dependent vasodilation, as well as disarrangement in vascular wall metabolism and function. One of the key factors in endothelial dysfunction is overproduction of reactive oxygen species which participate in the development of hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and stroke. Because impaired endothelial activity is believed to have a major causal role in the pathophysiology of vascular disease, hypertension, and heart failure, therapeutic agents which modify this condition are of clinical interest. Nebivolol is a third-generation β-blocker with high selectivity for β1-adrenergic receptors and causes vasodilation by interaction with the endothelial L-arginine/ nitric oxide pathway. This dual mechanism of action underscores several hemodynamic qualities of nebivolol, which include reductions in heart rate and blood pressure and improvements in systolic and diastolic function. Although nebivolol reduces blood pressure to a degree similar to that of conventional β-blockers and other types of antihypertensive drugs, it may have advantages in populations with difficult-to-treat hypertension, such as patients with heart failure along with other comorbidities, like diabetes and obesity, and elderly patients in whom nitric oxide-mediated endothelial dysfunction may be more pronounced. Furthermore, recent data indicate that nebivolol appears to be a cost-effective treatment for elderly patients with heart failure compared with standard care. Thus, nebivolol is an effective and well tolerated agent with benefits above those of traditional β-blockers due to its influence on nitric oxide release, which give it singular hemodynamic effects, cardioprotective activity, and a good tolerability profile. This paper reviews the pharmacology structure and properties of nebivolol, focusing on endothelial dysfunction, clinical utility, comparative efficacy, side effects, and quality of life in general with respect to the other antihypertensive agents.

  9. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Franklin, Bernardo S; Hoelscher, Marion; Schmitz, Theresa; Bedorf, Jörg; Nickenig, Georg; Werner, Nikos

    2013-04-01

    Diabetes is a major risk factor for cardiovascular diseases. Circulating endothelial microparticles (EMP) are increased in diabetic patients, but their potential contribution in atherogenesis is unclear. We sought to determine the role of EMP derived under high glucose conditions in the development of atherosclerosis. EMP were generated from human coronary endothelial cells (HCAEC) exposed to high glucose concentrations in order to mimic diabetic conditions. These EMP were defined as 'injured' EMP (iEMP) and their effects were compared with EMP generated from 'healthy' untreated HCAEC. iEMP injection significantly impaired endothelial function in ApoE(-/-) mice compared with EMP and vehicle treatment. Immunofluorescent experiments showed increased macrophage infiltration and adhesion protein expression in atherosclerotic lesions of iEMP-treated ApoE(-/-) mice compared with controls. To further investigate the underlying mechanism of iEMP-induced vascular inflammation, additional in vitro experiments were performed. iEMP, but not EMP, induced activation of HCAEC in a time- and dose-dependent manner and increased monocyte adhesion. Further experiments demonstrated that iEMP induced activation of HCAEC by phosphorylation of p38 into its biologically active form phospho-p38. Inhibition of p38 activation abrogated iEMP-dependent induction of adhesion proteins and monocyte adhesion on HCAEC. Moreover, we could demonstrate that iEMP show increased NADPH oxidase activity and contain significantly higher level of reactive oxygen species (ROS) than EMP. iEMP triggered ROS production in HCAEC and thereby activate p38 in an ROS-dependent manner. High glucose condition increases NADPH oxidase activity in endothelial microparticles that amplify endothelial inflammation and impair endothelial function by promoting activation of the endothelium. These findings provide new insights into the pathogenesis of diabetes-associated atherosclerosis.

  10. Endothelial effects of hemostatic devices for continuous cardioplegia or minimally invasive operations.

    PubMed

    Perrault, L P; Menasché, P; Wassef, M; Bidouard, J P; Janiak, P; Villeneuve, N; Jacquemin, C; Bloch, G; Vilaine, J P; Vanhoutte, P M

    1996-10-01

    Improvements in myocardial protection may include the continuous delivery of normothermic blood cardioplegia. Technical aids are required for optimal visualization of the operative field during the performance of coronary anastomoses if cardioplegia is to be given continuously or during minimally invasive operations. However, the effects of the different hemostatic devices on coronary endothelial function are unknown. We compared the effects on endothelial function of two commonly used hemostatic techniques, coronary clamping and gas jet insufflation, with those of a technique using extravascular balloon occlusion to mimic systolic luminal closure by the surrounding myocardium. The three techniques were applied for 15 minutes on porcine epicardial coronary arteries from explanted hearts. For coronary clamping, standard bulldog clamps were used. Gas jet insufflation was applied by blowing oxygen (12 L/min) tangentially at a 45-degree angle 1 cm away from a 3-mm arteriotomy. Extravascular balloon occlusion was achieved with a needle-tipped silicone loop, the midportion of which, once positioned beneath the coronary artery, was inflated to push a myocardial "cushion" against the back of the vessel until its occlusion. Control rings were taken from the same coronary artery. The endothelial function of control and instrumented arterial rings was then studied in organ chambers filled with modified Krebs-Ringer bicarbonate solution. Contractions to potassium chloride and prostaglandin F2 alpha and endothelium-independent relaxation to sin-1, a nitric oxide donor, were unaffected in all groups. Endothelium-dependent relaxation to serotonin was impaired after clamping and preserved after gas jet insufflation and extravascular balloon occlusion. Maximal endothelium-dependent relaxation to serotonin was as follows: for coronary clamping, 63% +/- 6% versus 87% +/- 3% in controls; for gas jet insufflation, 67% +/- 12% versus 88% +/- 7%; and for extraluminal balloon occlusion, 79% +/- 6% versus 85% +/- 5%. Whereas commonly used hemostatic devices may impair endothelial function, extravascular balloon occlusion appears to achieve effective hemostasis while preserving endothelial integrity.

  11. Alterations in NO- and PGI2- dependent function in aorta in the orthotopic murine model of metastatic 4T1 breast cancer: relationship with pulmonary endothelial dysfunction and systemic inflammation.

    PubMed

    Buczek, E; Denslow, A; Mateuszuk, L; Proniewski, B; Wojcik, T; Sitek, B; Fedorowicz, A; Jasztal, A; Kus, E; Chmura-Skirlinska, A; Gurbiel, R; Wietrzyk, J; Chlopicki, S

    2018-05-22

    Patients with cancer develop endothelial dysfunction and subsequently display a higher risk of cardiovascular events. The aim of the present work was to examine changes in nitric oxide (NO)- and prostacyclin (PGI 2 )-dependent endothelial function in the systemic conduit artery (aorta), in relation to the formation of lung metastases and to local and systemic inflammation in a murine orthotopic model of metastatic breast cancer. BALB/c female mice were orthotopically inoculated with 4T1 breast cancer cells. Development of lung metastases, lung inflammation, changes in blood count, systemic inflammatory response (e.g. SAA, SAP and IL-6), as well as changes in NO- and PGI 2 -dependent endothelial function in the aorta, were examined 2, 4, 5 and 6 weeks following cancer cell transplantation. As early as 2 weeks following transplantation of breast cancer cells, in the early metastatic stage, lungs displayed histopathological signs of inflammation, NO production was impaired and nitrosylhemoglobin concentration in plasma was decreased. After 4 to 6 weeks, along with metastatic development, progressive leukocytosis and systemic inflammation (as seen through increased SAA, SAP, haptoglobin and IL-6 plasma concentrations) were observed. Six weeks following cancer cell inoculation, but not earlier, endothelial dysfunction in aorta was detected; this involved a decrease in basal NO production and a decrease in NO-dependent vasodilatation, that was associated with a compensatory increase in cyclooxygenase-2 (COX-2)- derived PGI 2 production. In 4 T1 metastatic breast cancer in mice early pulmonary metastasis was correlated with lung inflammation, with an early decrease in pulmonary as well as systemic NO availability. Late metastasis was associated with robust, cancer-related, systemic inflammation and impairment of NO-dependent endothelial function in the aorta that was associated with compensatory upregulation of the COX-2-derived PGI 2 pathway.

  12. Flavorings in Tobacco Products Induce Endothelial Cell Dysfunction.

    PubMed

    Fetterman, Jessica L; Weisbrod, Robert M; Feng, Bihua; Bastin, Reena; Tuttle, Shawn T; Holbrook, Monica; Baker, Gregory; Robertson, Rose Marie; Conklin, Daniel J; Bhatnagar, Aruni; Hamburg, Naomi M

    2018-06-14

    Use of alternative tobacco products including electronic cigarettes is rapidly rising. The wide variety of flavored tobacco products available is of great appeal to smokers and youth. The flavorings added to tobacco products have been deemed safe for ingestion, but the cardiovascular health effects are unknown. The purpose of this study was to examine the effect of 9 flavors on vascular endothelial cell function. Freshly isolated endothelial cells from participants who use nonmenthol- or menthol-flavored tobacco cigarettes showed impaired A23187-stimulated nitric oxide production compared with endothelial cells from nonsmoking participants. Treatment of endothelial cells isolated from nonsmoking participants with either menthol (0.01 mmol/L) or eugenol (0.01 mmol/L) decreased A23187-stimulated nitric oxide production. To further evaluate the effects of flavoring compounds on endothelial cell phenotype, commercially available human aortic endothelial cells were incubated with vanillin, menthol, cinnamaldehyde, eugenol, dimethylpyrazine, diacetyl, isoamyl acetate, eucalyptol, and acetylpyrazine (0.1-100 mmol/L) for 90 minutes. Cell death, reactive oxygen species production, expression of the proinflammatory marker IL-6 (interleukin-6), and nitric oxide production were measured. Cell death and reactive oxygen species production were induced only at high concentrations unlikely to be achieved in vivo. Lower concentrations of selected flavors (vanillin, menthol, cinnamaldehyde, eugenol, and acetylpyridine) induced both inflammation and impaired A23187-stimulated nitric oxide production consistent with endothelial dysfunction. Our data suggest that short-term exposure of endothelial cells to flavoring compounds used in tobacco products have adverse effects on endothelial cell phenotype that may have relevance to cardiovascular toxicity. © 2018 American Heart Association, Inc.

  13. Neutrophil proteinase 3 (PR3) acts on protease-activated receptor-2 (PAR-2) to enhance vascular endothelial cell barrier function

    PubMed Central

    Kuckleburg, Christopher J.; Newman, Peter J.

    2013-01-01

    The principle role of the vascular endothelium is to present a semi-impermeable barrier to soluble factors and circulating cells, while still permitting the passage of leukocytes from the bloodstream into the tissue. The process of diapedesis involves the selective disruption of endothelial cell junctions, an event that could in theory compromise vascular integrity. It is therefore somewhat surprising that neutrophil transmigration does not significantly impair endothelial barrier function. We examined whether neutrophils might secrete factors that promote vascular integrity during the latter stages of neutrophil transmigration, and found that neutrophil proteinase 3 (PR3) – a serine protease harbored in azurophilic granules – markedly enhanced barrier function in endothelial cells. PR3 functioned in this capacity both in its soluble form and in a complex with cell-surface NB1. PR3-mediated enhancement of endothelial cell junctional integrity required its proteolytic activity, as well as endothelial cell expression of the protease-activated receptor, PAR-2. Importantly, PR3 suppressed the vascular permeability changes and disruption of junctional proteins induced by the action of PAR-1 agonists. These findings establish the potential for neutrophil-derived PR3 to play a role in reestablishing vascular integrity following leukocyte transmigration, and in protecting endothelial cells from PAR-1-induced permeability changes that occur during thrombotic and inflammatory events. PMID:23202369

  14. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence.

    PubMed

    Yamagata, Kazuo

    2018-02-04

    Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome.

  15. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence

    PubMed Central

    Yamagata, Kazuo

    2018-01-01

    Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome. PMID:29401716

  16. Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function.

    PubMed

    Yiu, Kai-Hang; Tse, Hung-Fat

    2014-06-01

    The disease burden of diabetes mellitus (DM) and its associated cardiovascular complications represent a growing and major global health problem. Recent studies suggest that circulating exogenous endothelial progenitor cells (EPCs) play an important role in endothelial repair and neovascularization at sites of injury or ischemia. Both experimental and clinical studies have demonstrated that hyperglycemia related to DM can induce alterations to EPCs. The reduction and dysfunction of EPCs related to DM correlate with the occurrence and severity of microvascular and macrovascular complications, suggesting a close mechanistic link between EPC dysfunction and impaired vascular function/repair in DM. These alterations to EPCs, likely mediated by multiple pathophysiological mechanisms, including inflammation, oxidative stress, and alterations in Akt and the nitric oxide pathway, affect EPCs at multiple stages: differentiation and mobilization in the bone marrow, trafficking and survival in the circulation, and homing and neovascularization. Several different therapeutic approaches have consequently been proposed to reverse the reduction and dysfunction of EPCs in DM and may represent a novel therapeutic approach to prevent and treat DM-related cardiovascular complications. © 2014 American Heart Association, Inc.

  17. Atorvastatin affects negatively respiratory function of isolated endothelial mitochondria.

    PubMed

    Broniarek, Izabela; Jarmuszkiewicz, Wieslawa

    2018-01-01

    The purpose of this research was to elucidate the direct effects of two popular blood cholesterol-lowering drugs used to treat cardiovascular diseases, atorvastatin and pravastatin, on respiratory function, membrane potential, and reactive oxygen species formation in mitochondria isolated from human umbilical vein endothelial cells (EA.hy926 cell line). Hydrophilic pravastatin did not significantly affect endothelial mitochondria function. In contrast, hydrophobic calcium-containing atorvastatin induced a loss of outer mitochondrial membrane integrity, an increase in hydrogen peroxide formation, and reductions in maximal (phosphorylating or uncoupled) respiratory rate, membrane potential and oxidative phosphorylation efficiency. The atorvastatin-induced changes indicate an impairment of mitochondrial function at the level of ATP synthesis and at the level of the respiratory chain, likely at complex I and complex III. The atorvastatin action on endothelial mitochondria was highly dependent on calcium ions and led to a disturbance in mitochondrial calcium homeostasis. Uptake of calcium ions included in atorvastatin molecule induced mitochondrial uncoupling that enhanced the inhibition of the mitochondrial respiratory chain by atorvastatin. Our results indicate that hydrophobic calcium-containing atorvastatin, widely used as anti-atherosclerotic agent, has a direct negative action on isolated endothelial mitochondria. Copyright © 2017. Published by Elsevier Inc.

  18. Diabetes impairs endothelium-dependent relaxation of human penile vascular tissues mediated by NO and EDHF.

    PubMed

    Angulo, Javier; Cuevas, Pedro; Fernández, Argentina; Gabancho, Sonia; Allona, Antonio; Martín-Morales, Antonio; Moncada, Ignacio; Videla, Sebastián; Sáenz de Tejada, Iñigo

    2003-12-26

    Standard treatments for erectile dysfunction (ED) (i.e., PDE5 inhibitors) are less effective in diabetic patients for unknown reasons. Endothelium-dependent relaxation (EDR) of human corpus cavernosum (HCC) depends on nitric oxide (NO), while in human penile resistance arteries (HPRA) endothelium-derived hyperpolarizing factor (EDHF) and NO participate. Here we show that diabetes significantly reduced EDR induced by acetylcholine (ACh) in HCC and HPRA. Relaxation attributed to EDHF was also impaired in HPRA from diabetic patients. The PDE5 inhibitor, sildenafil (10nM), reversed diabetes-induced endothelial dysfunction in HCC, but not in HPRA. Calcium dobesilate (DOBE; 10 microM) fully reversed diabetes-induced endothelial dysfunction in HPRA by specifically potentiating the EDHF-mediated component of EDR. Impairment by diabetes of NO and EDHF-dependent responses precluded the complete recovery of endothelial function in HPRA by sildenafil. This could explain the poor clinical response to PDE5 inhibitors of diabetic men with ED and suggests that a pharmacological approach that combines enhancement of NO/cGMP and EDHF pathways could be necessary to treat ED in many diabetic men.

  19. Flow-mediated changes in pulse wave velocity: a new clinical measure of endothelial function.

    PubMed

    Naka, Katerina K; Tweddel, Ann C; Doshi, Sagar N; Goodfellow, Jonathan; Henderson, Andrew H

    2006-02-01

    To test whether measuring hyperaemic changes in pulse wave velocity (PWV) could be used as a new method of assessing endothelial function for use in clinical practice. Flow-mediated changes in vascular tone may be used to assess endothelial function and may be induced by distal hyperaemia, while endothelium-mediated changes in vascular tone can influence PWV. These three known principles were combined to provide and test a novel method of measuring endothelial function by the acute effects of distal hyperaemia on upper and lower limb PWV (measured by a recently developed method). Flow-mediated changes in upper and lower limb PWV were compared in 17 healthy subjects and seven patients with stable chronic heart failure (CHF), as a condition where endothelial function is impaired but endothelium-independent dilator responses are retained. Corroborative measurements of PWV and brachial artery diameter responses to endothelium-dependent and -independent pharmacological stimuli were performed in a further eight healthy subjects. Flow-mediated reduction of PWV (by 14% with no change in blood pressure) was found in normal subjects but was almost abolished in patients with CHF. PWV responses appear to be inversely related to and relatively greater than brachial artery diameter responses. The method may offer potential advantages of practical use and sensitivity over conduit artery diameter responses to measure endothelial dysfunction.

  20. Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Fung, Moses; Shelley, William Chris; Critser, Paul John; Ionescu, Lavinia; O'Reilly, Megan; Ohls, Robin K; McConaghy, Suzanne; Eaton, Farah; Zhong, Shumei; Yoder, Merv; Thébaud, Bernard

    2014-05-27

    Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage. © 2014 American Heart Association, Inc.

  1. Endothelial E-type prostanoid 4 receptors promote barrier function and inhibit neutrophil trafficking.

    PubMed

    Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos

    2013-02-01

    Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Endothelial cells of extremely premature infants display impaired immune response after proinflammatory stimulation.

    PubMed

    Wisgrill, Lukas; Muck, Martina; Wessely, Isabelle; Berger, Angelika; Spittler, Andreas; Förster-Waldl, Elisabeth; Sadeghi, Kambis

    2018-01-01

    BackgroundEndothelial cells (ECs) exert immunological functions such as production of proinflammatory cytokines/chemokines as well as facilitation of extravasation of immune cells into infected tissue. Limited data are available on the functionality of ECs from extremely preterm neonates during infection. Accordingly, the aim of our study was to investigate the immune response of premature ECs after proinflammatory stimulation.MethodsCell adhesion receptors' expression and function, nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFκB) signaling, and chemokine production were analyzed in umbilical cord ECs from extremely preterm and term neonates after proinflammatory stimulation.ResultsP-selectin and E-selectin surface expression as well as NFκB signaling were lower after lipopolysaccharide (LPS) stimulation in premature ECs. Preterm ECs exhibited lower, but significant, cell-adhesive functions after LPS stimulation compared with term ECs. CCL2/CXCL8 chemokine secretion was significantly upregulated after proinflammatory stimulation in both groups. CXCL10 production was significantly increased in term but not in preterm ECs upon stimulation with tumor necrosis factor compared with unstimulated ECs.ConclusionExtremely premature ECs showed partly reduced expression levels and function of cell adhesion molecules. Both NFκB signaling and chemokine/cytokine production were reduced in premature ECs. The diminished endothelial proinflammatory immune response might result in impaired infection control of preterm newborns rendering them prone to severe infection.

  3. Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus.

    PubMed

    Negrean, Monica; Stirban, Alin; Stratmann, Bernd; Gawlowski, Thomas; Horstmann, Tina; Götting, Christian; Kleesiek, Knut; Mueller-Roesel, Michaela; Koschinsky, Theodor; Uribarri, Jaime; Vlassara, Helen; Tschoepe, Diethelm

    2007-05-01

    An advanced glycation endproducts (AGEs)-rich diet induces significant increases in inflammatory and endothelial dysfunction markers in type 2 diabetes mellitus (T2DM). The aim was to investigate the acute effects of dietary AGEs on vascular function in T2DM patients. Twenty inpatients with T2DM [x (+/-SEM) age: 55.4 +/- 2.2 y; glycated hemoglobin: 8.8 +/- 0.5%] were investigated. In a randomized crossover design, the effects of a low-AGE (LAGE) and high-AGE (HAGE) meal on macrovascular [by flow-mediated dilatation (FMD)] and microvascular (by Laser-Doppler flowmetry) function, serum markers of endothelial dysfunction (E-selectin, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), oxidative stress, and serum AGE were assessed. The meals had identical ingredients but different AGE amounts (15.100 compared with 2.750 kU AGE for the HAGE and LAGE meals, respectively), which were obtained by varying the cooking temperature and time. The measurements were performed at baseline and 2, 4, and 6 h after each meal. After the HAGE meal, FMD decreased by 36.2%, from 5.77 +/- 0.65% (baseline) to 3.93 +/- 0.48 (2 h), 3.70 +/- 0.42 (4 h), and 4.42 +/- 0.54% (6 h) (P<0.01 for all compared with baseline). After the LAGE meal, FMD decreased by 20.9%, from 6.04 +/- 0.68% (baseline) to 4.75 +/- 0.48% (2 h), 4.69 +/- 0.51% (4 h), and 5.62 +/- 0.63% (6 h), respectively (P<0.01 for all compared with baseline; P<0.001 for all compared with the HAGE meal). This impairment of macrovascular function after the HAGE meal was paralleled by an impairment of microvascular function (-67.2%) and increased concentrations of serum AGE and markers of endothelial dysfunction and oxidative stress. In patients with T2DM, a HAGE meal induces a more pronounced acute impairment of vascular function than does an otherwise identical LAGE meal. Therefore, chemical modifications of food by means of cooking play a major role in influencing the extent of postprandial vascular dysfunction.

  4. Aromatherapy alleviates endothelial dysfunction of medical staff after night-shift work: preliminary observations.

    PubMed

    Shimada, Kenei; Fukuda, Shota; Maeda, Kumiko; Kawasaki, Toshihiro; Kono, Yasushi; Jissho, Satoshi; Taguchi, Haruyuki; Yoshiyama, Minoru; Yoshikawa, Junichi

    2011-02-01

    Night-shift work causes mental stress and lifestyle changes, and is recognized as a risk of cardiovascular diseases associated with impaired endothelial function. Aromatherapy is becoming popular as a complementary therapy that is beneficial for mental relaxation. The purpose of this study was to investigate the effect of aromatherapy on the endothelial function of medical staff after night-shift work. This study consisted of 19 healthy medical personnel (19 men, mean age 32 ± 7 years), including 11 physicians and 8 technicians. Aromatherapy was performed for 30 min by inhalation of the essential oil of lavender. Flow-mediated dilation (FMD) of the brachial artery was measured three times in each subject: on a regular workday, and after night-shift work before and immediately after aromatherapy. A control study was performed to assess the effect of a 30-min rest without aromatherapy. The mean value of sleep time during night-shift work was 3.3 ± 1.3 h. FMD after night-shift work was lower than on a regular workday (10.4 ± 1.8 vs. 12.5 ± 1.7%, P<0.001), which improved after aromatherapy (11.8 ± 2.5%, P=0.02 vs. before aromatherapy). FMD was stable in the control study (10.1 ± 1.9 vs. 10.1 ± 2.2%, P=0.9). This study demonstrated that night-shift work impaired endothelial function in medical staff, an effect that was alleviated by short-term aromatherapy.

  5. Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses--relevance to cardiovascular pathologies and drug discovery.

    PubMed

    Grgic, Ivica; Kaistha, Brajesh P; Hoyer, Joachim; Köhler, Ralf

    2009-06-01

    The arterial endothelium critically contributes to blood pressure control by releasing vasodilating autacoids such as nitric oxide, prostacyclin and a third factor or pathway termed 'endothelium-derived hyperpolarizing factor' (EDHF). The nature of EDHF and EDHF-signalling pathways is not fully understood yet. However, endothelial hyperpolarization mediated by the Ca(2+)-activated K(+) channels (K(Ca)) has been suggested to play a critical role in initializing EDHF-dilator responses in conduit and resistance-sized arteries of many species including humans. Endothelial K(Ca) currents are mediated by the two K(Ca) subtypes, intermediate-conductance K(Ca) (KCa3.1) (also known as, a.k.a. IK(Ca)) and small-conductance K(Ca) type 3 (KCa2.3) (a.k.a. SK(Ca)). In this review, we summarize current knowledge about endothelial KCa3.1 and KCa2.3 channels, their molecular and pharmacological properties and their specific roles in endothelial function and, particularly, in the EDHF-dilator response. In addition we focus on recent experimental evidences derived from KCa3.1- and/or KCa2.3-deficient mice that exhibit severe defects in EDHF signalling and elevated blood pressures, thus highlighting the importance of the KCa3.1/KCa2.3-EDHF-dilator system for blood pressure control. Moreover, we outline differential and overlapping roles of KCa3.1 and KCa2.3 for EDHF signalling as well as for nitric oxide synthesis and discuss recent evidence for a heterogeneous (sub) cellular distribution of KCa3.1 (at endothelial projections towards the smooth muscle) and KCa2.3 (at inter-endothelial borders and caveolae), which may explain their distinct roles for endothelial function. Finally, we summarize the interrelations of altered KCa3.1/KCa2.3 and EDHF system impairments with cardiovascular disease states such as hypertension, diabetes, dyslipidemia and atherosclerosis and discuss the therapeutic potential of KCa3.1/KCa2.3 openers as novel types of blood pressure-lowering drugs.

  6. Favorable effects of concord grape juice on endothelial function and arterial stiffness in healthy smokers.

    PubMed

    Siasos, Gerasimos; Tousoulis, Dimitris; Kokkou, Eleni; Oikonomou, Evangelos; Kollia, Maria-Eleni; Verveniotis, Aleksis; Gouliopoulos, Nikolaos; Zisimos, Konstantinos; Plastiras, Aris; Maniatis, Konstantinos; Stefanadis, Christodoulos

    2014-01-01

    Smoking is associated with impaired vascular function. Concord grape juice (CGJ), a rich source of flavonoids, can modify cardiovascular risk factors. Endothelial function and arterial stiffness are surrogate markers of arterial health. We examined the impact of CGJ on arterial wall properties in healthy smokers. We studied the effect of a 2-week oral treatment with CGJ in 26 healthy smokers on 3 occasions (day 0 (baseline), day 7, and day 14) in a randomized, placebo-controlled, double-blind, crossover study. Measurements were taken before (pSm), immediately after (Sm0), and 20 minutes after (Sm20) cigarette smoking. Endothelial function was evaluated by flow-mediated dilation (FMD) of the brachial artery. Carotid-femoral pulse wave velocity (PWV) was measured as an index of aortic stiffness. Compared with placebo, treatment with CGJ resulted in a significant improvement in pSm values of FMD (P = 0.02) and PWV (P = 0.04). At baseline, smoking decreased FMD in both the CGJ group (P < 0.001) and the placebo group (P < 0.001). Compared with placebo, CGJ treatment prevented the acute smoking-induced decrease in FMD on day 7 (P = 0.02) and day 14 (P < 0.001). Moreover, at baseline, smoking induced a significant elevation in PWV in both the CGJ group (P = 0.02) and the placebo group (P = 0.04). Treatment with CGJ prevented the smoking-induced elevation in PWV on day 7 (P = 0.003) and day 14 (P < 0.001). CGJ consumption improved endothelial function and vascular elastic properties of the arterial tree in healthy smokers and attenuated acute smoking-induced impairment of arterial wall properties.

  7. [The Role of GRK2 and Its Potential as a New Therapeutic Target in Diabetic Vascular Complications].

    PubMed

    Taguchi, Kumiko

    2015-01-01

    A decrease in nitric oxide (NO) production may induce pathological conditions associated with endothelial dysfunction and diabetes. Although a decrease in NO production caused by impaired Akt/endothelial nitric oxide synthesis (eNOS) signaling has been demonstrated at the aorta in the presence of diabetic vascular complications, little is known regarding the details of the mechanism. We identified G-protein-coupled receptor kinase 2 (GRK2) as a critical factor in diabetic endothelial dysfunction. GRK2 plays a role in many physiological functions including regulation of G-protein-coupled receptors (GPCRs). We found that the vasculature affected by type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction caused by impaired Akt/eNOS signaling. GRK2 activation also induces changes in the subcellular localization of GRK2 and β-arrestin 2, a downstream protein, from the cytosol to membrane. In mouse aorta GRK2 may be, on translocation, a key negative regulator and an important regulator of β-arrestin 2/Akt/eNOS signaling, which has been implicated in diabetic endothelial dysfunction. Furthermore, in the aortic membrane of type 2 diabetic model mice under insulin stimulation, the impaired Akt/eNOS signaling was improved by a selective GRK2 inhibitor. These results suggest that in diabetes the GRK2 inhibitor ameliorates vascular endothelial dysfunction via Akt/eNOS signaling by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation to the membrane under GPCR or non-GPCR stimulation, thereby contributing to blood pressure- and blood glucose-lowering effects. We propose that the GRK2 inhibitor may be a promising therapeutic target for cardiovascular complications in type 2 diabetes.

  8. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morbidelli, Lucia; Monici, Monica; Marziliano, Nicola

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompaniedmore » by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness.« less

  9. HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.

    PubMed

    Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E

    2011-10-01

    Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.

  10. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes

    PubMed Central

    Bitar, Milad S.; Al-Mulla, Fahd

    2015-01-01

    Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs) of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE) transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could also point to CREM/ICER as a potential therapeutic target in the treatment of pathological angiogenesis. PMID:25381014

  11. Arginase Inhibition Improves Microvascular Endothelial Function in Patients With Type 2 Diabetes Mellitus.

    PubMed

    Kövamees, Oskar; Shemyakin, Alexey; Checa, Antonio; Wheelock, Craig E; Lundberg, Jon O; Östenson, Claes-Göran; Pernow, John

    2016-11-01

    The development of microvascular complications in diabetes is a complex process in which endothelial dysfunction is important. Emerging evidence suggests that arginase is a key mediator of endothelial dysfunction in type 2 diabetes mellitus by reciprocally regulating nitric oxide bioavailability. The aim of this prospective intervention study was to test the hypothesis that arginase activity is increased and that arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Microvascular endothelium-dependent and -independent dilatation was determined in patients with type 2 diabetes (n = 12) and healthy age-matched control subjects (n = 12) with laser Doppler flowmetry during iontophoretic application of acetylcholine and sodium nitroprusside, respectively, before and after administration of the arginase inhibitor N ω -hydroxy-nor-L-arginine (120 min). Plasma ratios of amino acids involved in arginase and nitric oxide synthase activities were determined. The laser Doppler flowmetry data were the primary outcome variable. Microvascular endothelium-dependent dilatation was impaired in subjects with type 2 diabetes (P < .05). After administration of N ω -hydroxy-nor-L-arginine, microvascular endothelial function improved significantly in patients with type 2 diabetes to the level observed in healthy controls. Endothelium-independent vasodilatation did not change significantly. Subjects with type 2 diabetes had higher levels of ornithine and higher ratios of ornithine/citrulline and ornithine/arginine (P < .05), suggesting increased arginase activity. Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Arginase inhibition may represent a novel therapeutic strategy to improve microvascular endothelial function in patients with type 2 diabetes.

  12. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance.

    PubMed

    Lambert, Elisabeth A; Teede, Helena; Sari, Carolina Ika; Jona, Eveline; Shorakae, Soulmaz; Woodington, Kiri; Hemmes, Robyn; Eikelis, Nina; Straznicky, Nora E; De Courten, Barbora; Dixon, John B; Schlaich, Markus P; Lambert, Gavin W

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition underpinned by insulin resistance and associated with increased risk of obesity, type 2 diabetes and adverse cardiovascular risk profile. Previous data suggest autonomic imbalance [elevated sympathetic nervous system (SNS) activity and decreased heart rate variability (HRV)] as well as endothelial dysfunction in PCOS. However, it is not clear whether these abnormalities are driven by obesity and metabolic disturbance or whether they are independently related to PCOS. We examined multiunit and single-unit muscle SNS activity (by microneurography), HRV (time and frequency domain analysis) and endothelial function [ischaemic reactive hyperaemia index (RHI) using the EndoPAT device] in 19 overweight/obese women with PCOS (BMI: 31·3 ± 1·5 kg/m(2), age: 31·3 ± 1·6 years) and compared them with 21 control overweight/obese women (BMI: 33·0 ± 1·4 kg/m(2), age: 28·2 ± 1·6 years) presenting a similar metabolic profile (fasting total, HDL and LDL cholesterol, glucose, triglycerides, insulin sensitivity and blood pressure). Women with PCOS had elevated multiunit muscle SNS activity (41 ± 2 vs 33 ± 3 bursts per 100 heartbeats, P < 0·05). Single-unit analysis showed that vasoconstrictor neurons were characterized by elevated firing rate and probability and incidence of multiple spikes (P < 0·01 for all parameters). Women with PCOS also had impaired endothelial function (RHI: 1·77 ± 0·14 vs 2·18 ± 0·14, P < 0·05). HRV did not differ between the groups. Women with PCOS have increased sympathetic drive and impaired endothelial function independent of obesity and metabolic disturbances. Sympathetic activation and endothelial dysfunction may confer greater cardiovascular risk in women with PCOS. © 2015 John Wiley & Sons Ltd.

  13. Forearm ischemia decreases endothelial colony-forming cell angiogenic potential.

    PubMed

    Mauge, Laetitia; Sabatier, Florence; Boutouyrie, Pierre; D'Audigier, Clément; Peyrard, Séverine; Bozec, Erwan; Blanchard, Anne; Azizi, Michel; Dizier, Blandine; Dignat-George, Françoise; Gaussem, Pascale; Smadja, David M

    2014-02-01

    Circulating endothelial progenitor cells and especially endothelial colony-forming cells (ECFCs) are promising candidate cells for endothelial regenerative medicine of ischemic diseases, but the conditions for an optimal collection from adult blood must be improved. On the basis of a recently reported vascular niche of ECFCs, we hypothesized that a local ischemia could trigger ECFC mobilization from the vascular wall into peripheral blood to optimize their collection for autologous implantation in critical leg ischemia. Because the target population with critical leg ischemia is composed of elderly patients in whom a vascular impairment has been documented, we also analyzed the impact of aging on ECFC mobilization and vascular integrity. After having defined optimized ECFC culture conditions, we studied the effect of forearm ischemia on ECFC numbers and functions in 26 healthy volunteers (13 volunteers ages 20-30-years old versus 13 volunteers ages 60-70 years old). The results show that forearm ischemia induced an efficient local ischemia and a normal endothelial response but did not mobilize ECFCs regardless of the age group. Moreover, we report an alteration of angiogenic properties of ECFCs obtained after forearm ischemia, in vitro as well as in vivo in a hindlimb ischemia murine model. This impaired ECFC angiogenic potential was not associated with a quantitative modification of the circulating endothelial compartment. The procedure of local ischemia, although reulting in a preserved endothelial reactivity, did not mobilize ECFCs but altered their angiogenic potential. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. JunB is required for endothelial cell morphogenesis by regulating core-binding factor β

    PubMed Central

    Licht, Alexander H.; Pein, Oliver T.; Florin, Lore; Hartenstein, Bettina; Reuter, Hendrik; Arnold, Bernd; Lichter, Peter; Angel, Peter; Schorpp-Kistner, Marina

    2006-01-01

    The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis. PMID:17158955

  15. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring.

    PubMed

    Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M

    2016-03-01

    Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  16. Arterial endothelial function measurement method and apparatus

    DOEpatents

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  17. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes.

    PubMed

    Chapouly, Candice; Yao, Qinyu; Vandierdonck, Soizic; Larrieu-Lahargue, Frederic; Mariani, John N; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2016-02-01

    Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  18. Impaired coronary flow reserve in metastatic cancer patients treated with sunitinib.

    PubMed

    Sen, F; Yildiz, I; Basaran, M; Ekenel, M; Oz, F; Kilic, L; Toz, B; Gurdal, A; Camlica, H; Bavbek, S; Oflaz, H

    2013-01-01

    Hypertension is one of the major side effects of sunitinib, an angiogenesis inhibitor used in the treatment of metastatic renal cell carcinomas (mRCC) and gastrointestinal stromal tumors (GIST). Endothelial dysfunction, an early and reversible event in the pathogenesis of atherosclerosis, is suggested to be one of the possible underlying mechanisms of hypertension caused by angiogenesis inhibitors. Coronary flow reserve (CFR) measurement by trans-thoracic Doppler echocardiography (TTDE) reflects coronary microvascular and endothelial functions, as a cheaper and an easy screening test. We have used TTDE to evaluate endothelial function and coronary microvascular function in mRCC and GIST patients under sunitinib treatment. Eighteen metastatic cancer patients (16 mRCC and 2 GIST) on sunitinib treatment and 27 healthy subjects were enrolled in this cross-sectional study. Thyroid stimulating hormone (TSH), lipid profile, creatinine, hemoglobin, glucose, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), anthropometric and physical parameters of patients were recorded. CFR recordings were performed by the Vivid 7 echocardiography device. CFR was significantly lower in patients when compared with controls (1.82±0.4 vs 2.71±0.8, respectively; p < 0.001). Impaired CFR was found in 13 (72%) patients whereas all controls had normal CFR values. CFR was inversely correlated with the duration of sunitinib treatment (r=-0.36, p =0.01), high sensitivite (hs) CRP (r = -0.574, p =0.01) and ESR (r = - 0.5, p = 0.02). Our findings indicate that CFR is significantly impaired in cancer patients on sunitinib treatment. There is an inverse correlation between CFR and duration of sunitinib treatment and inflammation markers.

  19. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    PubMed

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  20. WNT5A-JNK regulation of vascular insulin resistance in human obesity

    PubMed Central

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2017-01-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298

  1. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease.

    PubMed

    Schmidt, Frank; Kolle, Kristoffer; Kreuder, Katharina; Schnorbus, Boris; Wild, Philip; Hechtner, Marlene; Binder, Harald; Gori, Tommaso; Münzel, Thomas

    2015-01-01

    Epidemiological studies suggest the existence of a relationship between aircraft noise exposure and increased risk for myocardial infarction and stroke. Patients with established coronary artery disease and endothelial dysfunction are known to have more future cardiovascular events. We therefore tested the effects of nocturnal aircraft noise on endothelial function in patients with or at high risk for coronary artery disease. 60 Patients (50p 1-3 vessels disease; 10p with a high Framingham Score of 23%) were exposed in random and blinded order to aircraft noise and no noise conditions. Noise was simulated in the patients' bedroom and consisted of 60 events during one night. Polygraphy was recorded during study nights, endothelial function (flow-mediated dilation of the brachial artery), questionnaires and blood sampling were performed on the morning after each study night. The mean sound pressure levels L eq(3) measured were 46.9 ± 2.0 dB(A) in the Noise 60 nights and 39.2 ± 3.1 dB(A) in the control nights. Subjective sleep quality was markedly reduced by noise from 5.8 ± 2.0 to 3.7 ± 2.2 (p < 0.001). FMD was significantly reduced (from 9.6 ± 4.3 to 7.9 ± 3.7%; p < 0.001) and systolic blood pressure was increased (from 129.5 ± 16.5 to 133.6 ± 17.9 mmHg; p = 0.030) by noise. The adverse vascular effects of noise were independent from sleep quality and self-reported noise sensitivity. Nighttime aircraft noise markedly impairs endothelial function in patients with or at risk for cardiovascular disease. These vascular effects appear to be independent from annoyance and attitude towards noise and may explain in part the cardiovascular side effects of nighttime aircraft noise.

  2. Laminar shear stress promotes mitochondrial homeostasis in endothelial cells.

    PubMed

    Wu, Li-Hong; Chang, Hao-Chun; Ting, Pei-Ching; Wang, Danny L

    2018-06-01

    Vascular endothelial cells (ECs) are constantly subjected to flow-induced shear stress that is crucial for endothelial functions. Laminar shear stress (LSS) exerts atheroprotection to ECs. Mitochondrial homeostasis is essential for cellular survival. However, the effects of LSS on mitochondrial homeostasis in ECs remain unclear. Mitochondrial homeostasis in ECs exposed to LSS was examined. Cultured human umbilical vein ECs were subjected to LSS (12 dynes/cm 2 ) generated by a parallel-plate flow chamber system. ECs subjected to LSS demonstrated an increment of mitochondria in tubular form coupled with the increase of fusion proteins (Mfn2, OPA1) and the decrease of fission protein (Fis1). An increase of both long- and short- OPA1 along with a higher protease YME1L level were observed. LSS triggered a rapid phosphorylation on S637 but a decrease on S616 of fission-controlled protein Drp1. Consistently, Drp1 translocation to mitochondria was decreased in sheared ECs, suggesting that LSS promotes mitochondrial fusion. Enhanced mitochondrial biogenesis in sheared ECs was shown by the increase of mitochondrial mass and its regulatory proeins (PGC1α, TFAM, Nrf1). LSS enhances the expression of mitochondrial antioxidant enzymes and improves mitochondrial functions indicated by the increase of mitochondrial membrane potential (ΔΨm) and ATP generation. TNFα treatment decreased mitochondrial tubular network and its functions in ECs. LSS mitigated TNFα-induced mitochondrial impairments in ECs. Our results clearly indicate that LSS promotes mitochondrial homeostasis and attenuates inflammation-induced mitochondrial impairments in ECs. Our results provide novel insights into the manner of mitochondrial dynamics and functions modulated by LSS that contribute to endothelial integrity. © 2017 Wiley Periodicals, Inc.

  3. Comprehensive assessment of impaired peripheral and coronary artery endothelial functions in smokers using brachial artery ultrasound and oxygen-15-labeled water PET.

    PubMed

    Ochi, Noriki; Yoshinaga, Keiichiro; Ito, Yoichi M; Tomiyama, Yuuki; Inoue, Mamiko; Nishida, Mutsumi; Manabe, Osamu; Shibuya, Hitoshi; Shimizu, Chikara; Suzuki, Eriko; Fujii, Satoshi; Katoh, Chietsugu; Tamaki, Nagara

    2016-10-01

    Comprehensive evaluation of endothelium-dependent and endothelium-independent vascular functions in peripheral arteries and coronary arteries in smokers has never been performed previously. Through the use of brachial artery ultrasound and oxygen-15-labeled water positron emission tomography (PET), we sought to investigate peripheral and coronary vascular dysfunctions in smokers. Eight smokers and 10 healthy individuals underwent brachial artery ultrasound at rest, during reactive hyperemia [250mmHg cuff occlusion (flow-mediated dilatation (FMD)], and following sublingual nitroglycerin (NTG) administration. Myocardial blood flow (MBF) was assessed through O-15-labeled water PET at rest, during adenosine triphosphate (ATP) administration, and during a cold pressor test (CPT). Through ultrasound, smokers were shown to have significantly reduced %FMD compared to controls (6.62±2.28% vs. 11.29±2.75%, p=0.0014). As assessed by O-15-labeled water PET, smokers were shown to have a significantly lower CPT response than were controls (21.1±9.5% vs. 50.9±16.9%, p=0.0004). There was no relationship between %FMD and CPT response (r=0.40, p=0.097). Endothelium-independent vascular dilatation was similar for both groups in terms of coronary flow reserve with PET (p=0.19). Smokers tended to have lower %NTG in the brachial artery (p=0.055). Smokers exhibited impaired coronary endothelial function as well as peripheral brachial artery endothelial function. In addition, there was no correlation between PET and ultrasound measurements, possibly implying that while smokers may have systemic vascular endothelial dysfunction, the characteristics of that dysfunction may be different in peripheral arteries and coronary arteries. Copyright © 2016. Published by Elsevier Ltd.

  4. Copper Transporter ATP7A Protects Against Endothelial Dysfunction in Type 1 Diabetic Mice by Regulating Extracellular Superoxide Dismutase

    PubMed Central

    Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Llanos, Roxana M.; Mercer, Julian F.B.; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-01-01

    Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2•− production in aortas of streptozotocin-induced and genetically induced Ins2Akita T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2•− production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2•− overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress–dependent vascular and metabolic diseases. PMID:23884884

  5. Nitric oxide-mediated blood flow regulation as affected by smoking and nicotine.

    PubMed

    Toda, Noboru; Toda, Hiroshi

    2010-12-15

    Cigarette smoking is a major risk factor for atherosclerosis, cerebral and coronary vascular diseases, hypertension, and diabetes mellitus. Chronic smoking impairs endothelial function by decreasing the formation of nitric oxide and increasing the degradation of nitric oxide via generation of oxygen free radicals. Nitric oxide liberated from efferent nitrergic nerves is also involved in vasodilatation, increased regional blood flow, and hypotension that are impaired through nitric oxide sequestering by smoking-induced factors. Influence of smoking on nitric oxide-induced blood flow regulation is not necessarily the same in all organs and tissues. However, human studies are limited mainly to the forearm blood flow measurement that assesses endothelial function under basal and stimulated conditions and also determination of penile tumescence and erection in response to endothelial and neuronal nitric oxide. Therefore, information about blood flow regulation in other organs, such as the brain and placenta, has been provided mainly from studies on experimental animals. Nicotine, a major constituent of cigarette smoke, acutely dilates cerebral arteries and arterioles through nitric oxide liberated from nitrergic neurons, but chronically interferes with endothelial function in various vasculatures, both being noted in studies on experimental animals. Cigarette smoke constituents other than nicotine also have some vascular actions. Not only active but also passive smoking is undoubtedly harmful for both the smokers themselves and their neighbors, who should bear in mind that they can face serious diseases in the future, which may result in lengthy hospitalization, and a shortened lifespan. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Regulation and function of endothelial glycocalyx layer in vascular diseases.

    PubMed

    Sieve, Irina; Münster-Kühnel, Anja K; Hilfiker-Kleiner, Denise

    2018-01-01

    In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. The glycocalyx, composed of glycoconjugates and proteoglycans, is an integral component of the ESL and a key element in inter- and intracellular communication and tissue homeostasis. In pathophysiological conditions (atherosclerosis, infection, ischemia/reperfusion injury, diabetes, trauma and acute lung injury) glycocalyx-degrading factors, i.e. reactive oxygen and nitrogen species, matrix metalloproteinases, heparanase and sialidases, damage the ESL, thereby impairing endothelial functions. This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure.

    PubMed

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim; Riezler, Reiner; Zidek, Walter; Tepel, Martin

    2004-01-27

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure. We investigated the metabolic and hemodynamic effects of intravenous administration of acetylcysteine, a thiol-containing antioxidant, during a hemodialysis session in a prospective, randomized, placebo-controlled crossover study in 20 patients with end-stage renal failure. Under control conditions, a hemodialysis session reduced plasma homocysteine concentration to 58+/-22% predialysis (mean+/-SD), whereas in the presence of acetylcysteine, the plasma homocysteine concentration was significantly more reduced to 12+/-7% predialysis (P<0.01). The reduction of plasma homocysteine concentration was significantly correlated with a reduction of pulse pressure. A 10% decrease in plasma homocysteine concentration was associated with a decrease of pulse pressure by 2.5 mm Hg. Analysis of the second derivative of photoplethysmogram waveform showed changes of arterial wave reflectance during hemodialysis in the presence of acetylcysteine, indicating improved endothelial function. Acetylcysteine-dependent increase of homocysteine removal during a hemodialysis session improves plasma homocysteine concentration, pulse pressure, and endothelial function in patients with end-stage renal failure.

  8. Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome

    PubMed Central

    Sharda, Anish; Kim, Sarah H.; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C.

    2015-01-01

    Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6−/− mice after vascular injury. HPS6−/− platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5′-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6−/− mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336

  9. Ticagrelor protects against AngII-induced endothelial dysfunction by alleviating endoplasmic reticulum stress.

    PubMed

    Wang, Xiaoyu; Han, Xuejie; Li, Minghui; Han, Yu; Zhang, Yun; Zhao, Shiqi; Li, Yue

    2018-05-16

    Ticagrelor has been reported to decrease cardiovascular mortality compared with clopidogrel. This benefit cannot be fully explained by the more efficient platelet inhibition. Many studies demonstrated that ticagrelor improved endothelial function, leaving the mechanism elusive though. The present study aims to investigate whether ticagrelor protects against endothelial dysfunction induced by angiotensinII (AngII) through alleviating endoplasmic reticulum (ER) stress. Male Sprague Dawley rats were infused with AngII or vehicle and administrated with ticagrelor or vehicle for 14 days. Reactive oxygen species (ROS) was detected. Aortas from normal mice were incubated with endoplasmic reticulum stress inducer tunicamycin with or without ticagrelor. Vasorecactivity was measured on wire myography. Rat aortic endothelial cells (RAECs) were pretreated with ticagrelor followed by AngII or tunicamycin. Endothelial nitric oxide synthase (eNOS) phosphorylation and ER stress markers were determined by western blotting. Impaired endothelial function, induction of ER stress, reduced eNOS phosphorylation and elevated ROS generation was restored by ticagrelor treatment in vivo. In addition, tunicamycin induced endothelial dysfunction was improved by ticagrelor. In vitro, the induction of ER stress and inhibited eNOS phosphorylation in REACs exposed to AngII as well as tunicamycin was reversed by co-culturing with ticagrelor. In conclusion, ticagrelor protects against AngII-induced endothelial dysfunction via alleviating ER stress. Copyright © 2017. Published by Elsevier Inc.

  10. Mechanisms of erosion of atherosclerotic plaques.

    PubMed

    Quillard, Thibaut; Franck, Grégory; Mawson, Thomas; Folco, Eduardo; Libby, Peter

    2017-10-01

    The present review explores the mechanisms of superficial intimal erosion, a common cause of thrombotic complications of atherosclerosis. Human coronary artery atheroma that give rise to thrombosis because of erosion differ diametrically from those associated with fibrous cap rupture. Eroded lesions characteristically contain few inflammatory cells, abundant extracellular matrix, and neutrophil extracellular traps (NETs). Innate immune mechanisms such as engagement of Toll-like receptor 2 (TLR2) on cultured endothelial cells can impair their viability, attachment, and ability to recover a wound. Hyaluronan fragments may serve as endogenous TLR2 ligands. Mouse experiments demonstrate that flow disturbance in arteries with neointimas tailored to resemble features of human eroded plaques disturbs endothelial cell barrier function, impairs endothelial cell viability, recruits neutrophils, and provokes endothelial cells desquamation, NET formation, and thrombosis in a TLR2-dependent manner. Mechanisms of erosion have received much less attention than those that provoke plaque rupture. Intensive statin treatment changes the characteristic of plaques that render them less susceptible to rupture. Thus, erosion may contribute importantly to the current residual burden of risk. Understanding the mechanisms of erosion may inform the development and deployment of novel therapies to combat the remaining atherothrombotic risk in the statin era.

  11. A novel immunotoxin reveals a new role for CD321 in endothelial cells

    PubMed Central

    Kim, Jia; Hokaiwado, Shintaro; Nawa, Makiko; Okamoto, Hayato; Kogiso, Tomohiko; Watabe, Tetsuro; Hattori, Nobutaka

    2017-01-01

    There are currently several antibody therapies that directly target tumors, and antibody-drug conjugates represent a novel moiety as next generation therapeutics. Here, we used a unique screening probe, DT3C, to identify functional antibodies that recognized surface molecules and functional epitopes, and which provided toxin delivery capability. Accordingly, we generated the 90G4 antibody, which induced DT3C-dependent cytotoxicity in endothelial cells. Molecular analysis revealed that 90G4 recognized CD321, a protein localized at tight junctions. Although CD321 plays a pivotal role in inflammation and lymphocyte trans-endothelial migration, little is known about its mechanism of action in endothelial cells. Targeting of CD321 by the 90G4 immunotoxin induced cell death. Moreover, 90G4 immunotoxin caused cytotoxicity primarily in migratory endothelial cells, but not in those forming sheets, suggesting a critical role for CD321 in tumor angiogenesis. We also found that hypoxia triggered redistribution of CD321 to a punctate localization on the basal side of cells, resulting in functional impairment of tight junctions and increased motility. Thus, our findings raise the intriguing possibility that endothelial CD321 presented cellular localization in tight junction as well as multifunctional dynamics in several conditions, leading to illuminate the importance of widely-expressed CD321 as a potential target for antitumor therapy. PMID:29028806

  12. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity

    PubMed Central

    Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan

    2013-01-01

    Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904

  13. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    PubMed

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment.

    PubMed

    Williamson, Matthew R; Shuttleworth, Adrian; Canfield, Ann E; Black, Richard A; Kielty, Cay M

    2007-12-01

    The endothelium is an essential modulator of vascular tone and thrombogenicity and a critical barrier between the vessel wall and blood components. In tissue-engineered small-diameter vascular constructs, endothelial cell detachment in flow can lead to thrombosis and graft failure. The subendothelial extracellular matrix provides stable endothelial cell anchorage through interactions with cell surface receptors, and influences the proliferation, migration, and survival of both endothelial cells and smooth muscle cells. We have tested the hypothesis that these desired physiological characteristics can be conferred by surface coatings of natural vascular matrix components, focusing on the elastic fiber molecules, fibrillin-1, fibulin-5 and tropoelastin. On fibrillin-1 or fibulin-5-coated surfaces, endothelial cells exhibited strong integrin-mediated attachment in static conditions (82% and 76% attachment, respectively) and flow conditions (67% and 78% cell retention on fibrillin-1 or fibulin-5, respectively, at 25 dynes/cm2), confluent monolayer formation, and stable functional characteristics. Adhesion to these two molecules also strongly inhibited smooth muscle cell migration to the endothelial monolayer. In contrast, on elastin, endothelial cells attached poorly, did not spread, and had markedly impaired functional properties. Thus, fibrillin-1 and fibulin-5, but not elastin, can be exploited to enhance endothelial stability, and to inhibit SMC migration within vascular graft scaffolds. These findings have important implications for the design of vascular graft scaffolds, the clinical performance of which may be enhanced by exploiting natural cell-matrix biology to regulate cell attachment and function.

  15. Glutathione adducts on sarcoplasmic/endoplasmic reticulum Ca2+ ATPase Cys-674 regulate endothelial cell calcium stores and angiogenic function as well as promote ischemic blood flow recovery.

    PubMed

    Thompson, Melissa D; Mei, Yu; Weisbrod, Robert M; Silver, Marcy; Shukla, Praphulla C; Bolotina, Victoria M; Cohen, Richard A; Tong, Xiaoyong

    2014-07-18

    The sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) is key to Ca(2+) homeostasis and is redox-regulated by reversible glutathione (GSH) adducts on the cysteine (C) 674 thiol that stimulate Ca(2+) uptake activity and endothelial cell angiogenic responses in vitro. We found that mouse hind limb muscle ischemia induced S-glutathione adducts on SERCA in both whole muscle tissue and endothelial cells. To determine the role of S-glutathiolation, we used a SERCA 2 C674S heterozygote knock-in (SKI) mouse lacking half the key thiol. Following hind limb ischemia, SKI animals had decreased SERCA S-glutathione adducts and impaired blood flow recovery. We studied SKI microvascular endothelial cells in which total SERCA 2 expression was unchanged. Cultured SKI microvascular endothelial cells showed impaired migration and network formation compared with wild type (WT). Ca(2+) studies showed decreased nitric oxide (·NO)-induced (45)Ca(2+) uptake into the endoplasmic reticulum (ER) of SKI cells, while Fura-2 studies revealed lower Ca(2+) stores and decreased vascular endothelial growth factor (VEGF)- and ·NO-induced Ca(2+) influx. Adenoviral overexpression of calreticulin, an ER Ca(2+) binding protein, increased ionomycin-releasable stores, VEGF-induced Ca(2+) influx and endothelial cell migration. Taken together, these data indicate that the redox-sensitive Cys-674 thiol on SERCA 2 is required for normal endothelial cell Ca(2+) homeostasis and ischemia-induced angiogenic responses, revealing a novel redox control of angiogenesis via Ca(2+) stores. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation.

    PubMed

    Hung, Ching-Hsia; Chan, Shih-Hung; Chu, Pei-Ming; Tsai, Kun-Ling

    2015-10-01

    Atherosclerosis is believed to be an independent predictor of cardiovascular diseases. A growing body of evidence suggests that quercetin is a potent antioxidant and anti-inflammatory compound. The molecular mechanisms underlying its protective effects against oxidative stress in human endothelial cells remain unclear. This study was designed to confirm the hypothesis that quercetin inhibits oxidized LDL (oxLDL) induced endothelial oxidative damage by activating sirtuin 1 (SIRT1) and to explore the role of adenosine monophosphate activated protein kinase (AMPK), which is a negative regulator of Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) and free radicals. Human umbilical vein endothelial cells were treated with oxLDL with or without quercetin pretreatment. We found that quercetin pretreatment increased SIRT1 mRNA expression. In fact, quercetin protected against oxLDL-impaired SIRT1 and AMPK activities and reduced oxLDL-activated NOX2 and NOX4. However, silencing SIRT1 and AMPK diminished the protective function of quercetin against oxidative injuries. The results also indicated that oxLDL suppressed AKT/endothelial NO synthase, impaired mitochondrial dysfunction, and enhanced reactive oxygen species formation, activating the Nuclear Factor Kappa B (NF-κB) pathway. These results provide new insight regarding the possible molecular mechanisms of quercetin. Quercetin suppresses oxLDL-induced endothelial oxidative injuries by activating SIRT1 and modulating the AMPK/NADPH oxidase/AKT/endothelial NO synthase signaling pathway. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization

    PubMed Central

    Loges, Sonja; Schmidt, Thomas; Jonckx, Bart; Tian, Ya-Min; Lanahan, Anthony A.; Pollard, Patrick; de Almodovar, Carmen Ruiz; De Smet, Frederik; Vinckier, Stefan; Aragonés, Julián; Debackere, Koen; Luttun, Aernout; Wyns, Sabine; Jordan, Benedicte; Pisacane, Alberto; Gallez, Bernard; Lampugnani, Maria Grazia; Dejana, Elisabetta; Simons, Michael; Ratcliffe, Peter; Maxwell, Patrick; Carmeliet, Peter

    2014-01-01

    SUMMARY A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2+/− mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy. PMID:19217150

  18. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    PubMed

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  19. Coronary hemodynamic regulation by nitric oxide in experimental animals: recent advances.

    PubMed

    Toda, Noboru; Toda, Hiroshi

    2011-09-30

    Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance and in the inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. NO restrains myocardial oxygen consumption, when coronary perfusion is restricted. Endothelial function is impaired by pathogenic factors including smoking, excess salt intake, obesity, aging, hypercholesterolemia, hyperglycemia, and hypertension. The mechanisms involved in endothelial dysfunction are reduced NOS expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. NADPH oxidase, xanthine oxidase, and NOS uncoupling are involved in increased superoxide generation. Plasma levels of asymmetric dimethylarginine, the endogenous NOS inhibitor, are increased by an impairment of enzymatic degradation by dimethylarginine dimethylaminohydrolase and alanine-glyoxylate aminotransferase 2. Impairment of coronary arteriolar dilatation induced by perivascular nitrergic nerve activation is involved in decreased coronary blood flow. NO derived from nNOS singly or in combination with eNOS protects against serious myocardial injury through ischemic insults. Ischemia-induced iNOS upregulation contributes to myocardial contractile dysfunction. Preventive and therapeutic measures, such as improvement of life-style and treatment with therapeutic agents, to eliminate pathogenic factors for endothelial dysfunction or nNOS-derived NO deprivation would be quite important for the prophylaxis and minimizing the development of coronary artery disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Vitamin D rescues dysfunction of fetal endothelial colony forming cells from individuals with gestational diabetes.

    PubMed

    Gui, J; Rohrbach, A; Borns, K; Hillemanns, P; Feng, L; Hubel, C A; von Versen-Höynck, F

    2015-04-01

    Gestational diabetes (GDM) is associated with long-term cardiovascular and metabolic diseases in offspring. However, the mechanisms are not well understood. We explored whether fetal exposure to a diabetic environment is associated with fetal endothelial progenitor cell dysfunction, and whether vitamin D can reverse the impairment. Nineteen women with uncomplicated pregnancies and 18 women with GDM were recruited before delivery. Time to first appearance of endothelial colony forming cell (ECFC) colonies and number of ECFC colonies formed from culture of cord peripheral blood mononuclear cells were determined. Angiogenesis-related functions of ECFCs in vitro were tested in the presence or absence of vitamin D. Fetal ECFCs from GDM pregnancies formed fewer colonies in culture (P = 0.04) and displayed reduced proliferation (P = 0.02), migration (P = 0.04) and tubule formation (P = 0.03) compared to uncomplicated pregnancies. Fetal ECFCs exposed to hyperglycemia in vitro exhibited less migration (P < 0.05) and less tubule formation (P < 0.05) than normoglycemic control. Vitamin D significantly improved the dysfunction of fetal ECFCs from pregnancies complicated by GDM or after exposure of healthy ECFCs to hyperglycemia. Fetal ECFCs from GDM pregnancies or ECFCs exposed to hyperglycemia in vitro exhibit reduced quantity and impaired angiogenesis-related functions. Vitamin D significantly rescues these functions. These findings may have implications for vascular function of infants exposed to a diabetic intrauterine environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I Interferons*

    PubMed Central

    Denny, Michael F.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Thacker, Seth G.; Anderson, Marc; Sandy, Ashley R.; McCune, W. Joseph; Kaplan, Mariana J.

    2010-01-01

    Neutrophil-specific genes are abundant in PBMC microarrays from lupus patients due to presence of low density granulocytes (LDGs) in mononuclear cell fractions. The functionality and pathogenicity of these LDGs have not been characterized. We developed a technique to purify LDGs from lupus PBMCs and assessed their phenotype, function and potential role in disease pathogenesis. LDGs, their autologous lupus neutrophils and healthy control neutrophils were compared in their microbicidal and phagocytic capacities, generation of reactive oxygen species, activation status, inflammatory cytokine profile and type I IFN expression and signatures. The capacity of LDGs to kill endothelial cells and their antiangiogenic potential were also assessed. LDGs display an activated phenotype, secrete increased levels of type I IFNs, TNF-α and IFN-γ, but show impaired phagocytic potential. LDGs induce significant endothelial cell cytotoxicity and synthesize sufficient levels of type I IFNs to disrupt the capacity of endothelial progenitor cells to differentiate into mature endothelial cells. Further, LDG depletion restores the functional capacity of endothelial progenitor cells. We conclude that lupus LDGs are proinflammatory and display pathogenic features, including the capacity to synthesize type I IFNs. They may play an important dual role in premature cardiovascular disease development in SLE by simultaneously mediating enhanced vascular damage while inhibiting vascular repair. PMID:20164424

  2. Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell

    PubMed Central

    Fang, Shentong; Wei, Jing; Pentinmikko, Nalle; Leinonen, Hannele; Salven, Petri

    2012-01-01

    In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. PMID:23091420

  3. The Effect of the Oral Administration of Leucine on Endothelial Function, Glucose and Insulin Concentrations in Healthy Subjects.

    PubMed

    Argyrakopoulou, Georgia; Kontrafouri, Paraskevi; Eleftheriadou, Ioanna; Kokkinos, Alexander; Arapostathi, Christina; Kyriaki, Despoina; Perrea, Despoina; Revenas, Constantinos; Katsilambros, Nicholas; Tentolouris, Nicholas

    2018-06-11

    The aim of our study was to investigate the potential differential effect of hyperglycaemia and hyperinsulinaemia induced by glucose infusion alone and in combination with leucine consumption on endothelial function in healthy individuals. Ten male volunteers were examined in random order twice. In one visit, they consumed 250 ml water (baseline) and 30 min later glucose was infused iv. In the other visit, they consumed 250 ml water with 25 g of leucine and 30 min later the same amount of glucose was infused. Serum glucose and insulin were measured at baseline and every 10 min after glucose infusion for 1 h. Endothelial function was evaluated by measurement of flow mediated vasodilatation (FMD) at baseline, 10 and 60 min after glucose infusion. In both visits, glucose levels increased to the same degree, whereas insulin response was significantly higher after leucine administration. FMD values declined significantly compared to baseline 10 min after glucose infusion in the control visit (6.9±2.7 vs. 3.2±3.5%, respectively, p=0.006), while no significant change was observed when glucose infusion was followed by leucine consumption. Acute hyperglycaemia impairs endothelial function in healthy male individuals. Leucine administration prevents hyperglycaemia-mediated endothelial dysfunction probably due to enhanced insulin secretion. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure.

    PubMed

    Van Craenenbroeck, Emeline M; Hoymans, Vicky Y; Beckers, Paul J; Possemiers, Nadine M; Wuyts, Kurt; Paelinck, Bernard P; Vrints, Christiaan J; Conraads, Viviane M

    2010-09-01

    Alterations in circulating angiogenic cells (CAC) and endothelial progenitor cells (EPC), known to contribute to endothelial repair, could explain the reversal of endothelial function in response to exercise training. Moreover, training-induced vascular remodeling might affect the acute response of EPC and CAC following a single exercise bout. We studied the impact of exercise training on CAC function and numbers of CD34(+)/KDR(+) EPC in patients with chronic heart failure (CHF) and we assessed the effect of acute exercise on CAC and EPC in sedentary and trained patients. Twenty-one sedentary CHF patients underwent 6-month exercise training and were compared to a non-trained control group (n = 17) and 10 healthy age-matched subjects. At baseline and follow-up, flow-mediated dilation was assessed and graded exercise testing (GXT) was performed. Before and immediately after GXT, CAC migratory capacity was assessed in vitro and circulating CD34(+)/KDR(+) EPC were quantified using flow cytometry. At baseline, CAC migration was significantly impaired in sedentary CHF patients but normalized acutely after GXT. Training corrected endothelial dysfunction, which coincided with a 77% increase in CAC migration (P = 0.0001). Moreover, the GXT-induced improvement detected at baseline was no longer observed after training. Numbers of CD34(+)/KDR(+) EPC increased following 6-month exercise training (P = 0.021), but were not affected by GXT, either prior or post-training. In conclusion, the present findings demonstrate for the first time that exercise training in CHF reverses CAC dysfunction and increases numbers of CD34(+)/KDR(+) EPC, which is accompanied by improvement of peripheral endothelial function. The acute exercise-induced changes in CAC function wane with exercise training, suggesting that repetitive exercise bouts progressively lead to functional endothelial repair.

  5. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity.

    PubMed

    Dai, Haibin; Yu, Zhanyang; Fan, Xiang; Liu, Ning; Yan, Min; Chen, Zhong; Lo, Eng H; Hajjar, Katherine A; Wang, Xiaoying

    2013-06-01

    Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes.

  6. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity

    PubMed Central

    Dai, Haibin; Yu, Zhanyang; Fan, Xiang; Liu, Ning; Yan, Min; Chen, Zhong; Lo, Eng H.; Hajjar, Katherine A.; Wang, Xiaoying

    2014-01-01

    Summary Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes. PMID:23572070

  7. Effect of repaglinide on endothelial dysfunction during a glucose tolerance test in subjects with impaired glucose tolerance

    PubMed Central

    Schmoelzer, Isabella; Wascher, Thomas C

    2006-01-01

    Background Impaired glucose tolerance (IGT) is associated with increased cardiovascular risk. The pathophysiological mechanisms linking post-challenge hyperglycemia to accelerated atherosclerosis, however remain to be elucidated. Methods A prospective, open, randomised, cross-over study was performed to investigate the effect of 2 mg repaglinide on hyperglycemia and endothelial function during an oral glucose tolerance test (75 g glucose) in 12 subjects with diagnosed IGT. Blood samples for determination of plasma glucose were drawn fasting, 1 and 2 hours after glucose ingestion. Endothelial function was assessed by measuring flow-mediated dilatation (FMD) of the brachial artery with high-resolution ultrasound. Results Administration of repaglinide resulted in a significant reduction of plasma glucose at 2 hours (172.8+/-48.4 vs. 138.3+/-41.2 mg/dl; p < 0.001). The flow-mediated dilatation (FMD) 2 hours after the glucose-load was significantly reduced in comparison to fasting in the control group (6.21+/-2.69 vs. 7.98+/-2.24 %; p = 0.028), whereas after theadministration of repaglinide the FMD was not significantly different to fasting values (7.24+/-2.57 vs. 8.18+/-2.93 %; p = n.s.). Linear and logistic regression analysis revealed that only the change of glucose was significantly correlated to the change of FMD observed (p < 0.001). Regression analysis after grouping for treatment and time confirmed the strong negative association of the changes of plasma glucose and FMD and indicate that the effect of repaglinide observed is based on the reduction glycemia. Conclusion In subjects with IGT, the endothelial dysfunction observed after a glucose challenge is related to the extent of hyperglycemia. Reduction of hyperglycemia by repaglinide reduces endothelial dysfunction in a glucose dependent manner. PMID:16606452

  8. Effect of repaglinide on endothelial dysfunction during a glucose tolerance test in subjects with impaired glucose tolerance.

    PubMed

    Schmoelzer, Isabella; Wascher, Thomas C

    2006-04-10

    Impaired glucose tolerance (IGT) is associated with increased cardiovascular risk. The pathophysiological mechanisms linking post-challenge hyperglycemia to accelerated atherosclerosis, however remain to be elucidated. A prospective, open, randomised, cross-over study was performed to investigate the effect of 2 mg repaglinide on hyperglycemia and endothelial function during an oral glucose tolerance test (75 g glucose) in 12 subjects with diagnosed IGT. Blood samples for determination of plasma glucose were drawn fasting, 1 and 2 hours after glucose ingestion. Endothelial function was assessed by measuring flow-mediated dilatation (FMD) of the brachial artery with high-resolution ultrasound. Administration of repaglinide resulted in a significant reduction of plasma glucose at 2 hours (172.8+/-48.4 vs. 138.3+/-41.2 mg/dl; p < 0.001). The flow-mediated dilatation (FMD) 2 hours after the glucose-load was significantly reduced in comparison to fasting in the control group (6.21+/-2.69 vs. 7.98+/-2.24 %; p = 0.028), whereas after theadministration of repaglinide the FMD was not significantly different to fasting values (7.24+/-2.57 vs. 8.18+/-2.93 %; p = n.s.). Linear and logistic regression analysis revealed that only the change of glucose was significantly correlated to the change of FMD observed (p < 0.001). Regression analysis after grouping for treatment and time confirmed the strong negative association of the changes of plasma glucose and FMD and indicate that the effect of repaglinide observed is based on the reduction glycemia. In subjects with IGT, the endothelial dysfunction observed after a glucose challenge is related to the extent of hyperglycemia. Reduction of hyperglycemia by repaglinide reduces endothelial dysfunction in a glucose dependent manner.

  9. Nitric Oxide-Dependent Endothelial Dysfunction and Reduced Arginine Bioavailability in Plasmodium vivax Malaria but No Greater Increase in Intravascular Hemolysis in Severe Disease.

    PubMed

    Barber, Bridget E; William, Timothy; Grigg, Matthew J; Piera, Kim A; Chen, Youwei; Wang, Hao; Weinberg, J Brice; Yeo, Tsin W; Anstey, Nicholas M

    2016-11-15

     Pathogenesis of severe Plasmodium vivax malaria is poorly understood. Endothelial dysfunction and reduced nitric oxide (NO) bioavailability characterize severe falciparum malaria, but have not been assessed in severe vivax malaria.  In patients with severe vivax malaria (n = 9), patients with nonsevere vivax malaria (n = 58), and healthy controls (n = 79), we measured NO-dependent endothelial function by using reactive hyperemia-peripheral arterial tonometry (RH-PAT) and assessed associations with arginine, asymmetric dimethylarginine (ADMA), and hemolysis.  The L-arginine level and the L-arginine to ADMA ratio (a measure of L-arginine bioavailability) were reduced in patients with severe vivax malaria and those with nonsevere vivax malaria, compared with healthy controls (median L-arginine level, 65, 66, and 98 µmol/mL, respectively [P = .0001]; median L-arginine to ADMA ratio, 115, 125, and 187, respectively [P = .0001]). Endothelial function was impaired in proportion to disease severity (median RH-PAT index, 1.49, 1.73, and 1.97 in patients with severe vivax malaria, those with nonsevere vivax malaria, and healthy controls, respectively; P = .018) and was associated with the L-arginine to ADMA ratio. While the posttreatment fall in hemoglobin level was greater in severe vivax malaria as compared to nonsevere vivax malaria (2.5 vs 1 g/dL; P = .0001), markers of intravascular hemolysis were not higher in severe disease.  Endothelial function is impaired in nonsevere and severe vivax malaria, is associated with reduced L-arginine bioavailability, and may contribute to microvascular pathogenesis. Severe disease appears to be more associated with extravascular hemolysis than with intravascular hemolysis. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Angiotensin II promotes iron accumulation and depresses PGI₂ and NO synthesis in endothelial cells: effects of losartan and propranolol analogs.

    PubMed

    Mak, I Tong; Landgraf, Kenneth M; Chmielinska, Joanna J; Weglicki, William B

    2012-10-01

    Angiotensin may promote endothelial dysfunction through iron accumulation. To research this, bovine endothelial cells (ECs) were incubated with iron (30 µmol·L⁻¹) with or without angiotensin II (100 nmol·L⁻¹). After incubation for 6 h, it was observed that the addition of angiotensin enhanced EC iron accumulation by 5.1-fold compared with a 1.8-fold increase for cells incubated with iron only. This enhanced iron uptake was attenuated by losartan (100 nmol·L⁻¹), d-propranolol (10 µmol·L⁻¹), 4-HO-propranolol (5 µmol·L⁻¹), and methylamine, but not by vitamin E or atenolol. After 6 h of incubation, angiotensin plus iron provoked intracellular oxidant formation (2'7'-dichlorofluorescein diacetate (DCF-DA) fluorescence) and elevated oxidized glutathione; significant loss of cell viability occurred at 48 h. Stimulated prostacyclin release decreased by 38% (6 h) and NO synthesis was reduced by 41% (24 h). Both oxidative events and functional impairment were substantially attenuated by losartan or d-propranolol. It is concluded that angiotensin promoted non-transferrin-bound iron uptake via AT-1 receptor activation, leading to EC oxidative functional impairment. The protective effects of d-propranolol and 4-HO-propranolol may be related to their lysosomotropic properties.

  11. Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary circulation.

    PubMed

    Dick, Gregory M; Katz, Paige S; Farias, Martin; Morris, Michael; James, Jeremy; Knudson, Jarrod D; Tune, Johnathan D

    2006-12-01

    Elevated plasma levels of fat-derived signaling molecules are associated with obesity, vascular endothelial dysfunction, and coronary heart disease; however, little is known about their direct coronary vascular effects. Accordingly, we examined mechanisms by which one adipokine, resistin, affects coronary vascular tone and endothelial function. Studies were conducted in anesthetized dogs and isolated coronary artery rings. Resistin did not change coronary blood flow, mean arterial pressure, or heart rate. Resistin had no effect on acetylcholine-induced relaxation of artery rings; however, resistin did impair bradykinin-induced relaxation. Selective impairment was also observed in vivo, as resistin attenuated vasodilation to bradykinin but not to acetylcholine. Resistin had no effect on dihydroethidium fluorescence, an indicator of superoxide (O(2)(-)) production, and the inhibitory effect of resistin on bradykinin-induced relaxation persisted in the presence of Tempol, a superoxide dismutase mimetic. To determine whether resistin impaired production of and/or responses to nitric oxide (NO) or prostaglandins (e.g., prostacyclin; PGI(2)), we performed experiments with N(omega)-nitro-L-arginine methyl ester (L-NAME) and indomethacin. The effect of resistin to attenuate bradykinin-induced vasodilation persisted in the presence of L-NAME or indomethacin, suggesting resistin may act at a cell signaling point upstream of NO or PGI(2) production. Resistin-induced endothelial dysfunction is not generalized, and it is not consistent with effects mediated by O(2)(-) or interference with NO or PGI(2) signaling. The site of the resistin-induced impairment is unknown but may be at the bradykinin receptor or a closely associated signal transduction machinery proximal to NO synthase or cyclooxygenase.

  12. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice

    PubMed Central

    Roos, Carolyn M.; Hagler, Michael; Zhang, Bin; Oehler, Elise A.; Arghami, Arman

    2013-01-01

    The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD+/+) and manganese SOD heterozygous haploinsufficient (MnSOD+/−) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16ink4a, a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD+/+ and MnSOD+/− mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD+/+ and MnSOD+/− mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD+/+ mice but significantly impaired endothelial function in MnSOD+/− mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific. PMID:23997094

  13. Exercise Training Prevents Coronary Endothelial Dysfunction in Type 2 Diabetic Mice.

    PubMed

    Lee, Sewon; Park, Yoonjung; Zhang, Cuihua

    2011-10-01

    Type 2 diabetes (T2D) is a leading risk factor for cardiovascular diseases including atherosclerosis and coronary heart disease. Exercise training (ET) is thought to have a beneficial effect on these disorders, but the basis for this effect is not fully understood. Because endothelial dysfunction plays a key role in the pathological events leading to cardiovascular complications in T2D, we hypothesized that the effects of ET will be evidenced by improvements in coronary endothelial function. To test this hypothesis, we assessed the effects of ET on vascular function of diabetic (db/db, Lepr(db)) mice by evaluating endothelial function of isolated coronary arterioles of wild-type (WT) and db/db mice with/without ET. Although dilation of vessels to the endothelial-independent vasodilator, sodium nitroprusside was not different between db/db and WT, dilation to the endothelial-dependent agonist, acetylcholine (ACh), was impaired in db/db compared to WT mice. Vasodilation to ACh was restored in db/db with ET and insulin sensitivity was improved in the db/db after ET. Exercise did not change body weight of db/db, but superoxide dismutase (SOD1 and SOD2) and phosphorylated- eNOS protein (Ser1177) expression in heart tissue was up-regulated whereas tumor necrosis factor-alpha (TNF-α) protein level was decreased by ET. Serum level of interleukin-6 (IL-6) was higher in db/db mice but ET decreased IL-6. This suggests that ET may improve endothelial function by increasing nitric oxide bioavailability as well as decreasing chronic inflammation. We suggest this connection may be the basis for the benefit of ET in T2D.

  14. Endothelial ErbB4 deficit induces alterations in exploratory behavior and brain energy metabolism in mice.

    PubMed

    Wu, Gang; Liu, Xiu-Xiu; Lu, Nan-Nan; Liu, Qi-Bing; Tian, Yun; Ye, Wei-Feng; Jiang, Guo-Jun; Tao, Rong-Rong; Han, Feng; Lu, Ying-Mei

    2017-06-01

    The receptor tyrosine kinase ErbB4 is present throughout the primate brain and has a distinct functional profile. In this study, we investigate the potential role of endothelial ErbB4 receptor signaling in the brain. Here, we show that the endothelial cell-specific deletion of ErbB4 induces decreased exploratory behavior in adult mice. However, the water maze task for spatial memory and the memory reconsolidation test reveal no changes; additionally, we observe no impairment in CaMKII phosphorylation in Cdh5Cre;ErbB4 f/f mice, which indicates that the endothelial ErbB4 deficit leads to decreased exploratory activity rather than direct memory deficits. Furthermore, decreased brain metabolism, which was measured using micro-positron emission tomography, is observed in the Cdh5Cre;ErbB4 f/f mice. Consistently, the immunoblot data demonstrate the downregulation of brain Glut1, phospho-ULK1 (Ser555), and TIGAR in the endothelial ErbB4 conditional knockout mice. Collectively, our findings suggest that endothelial ErbB4 plays a critical role in regulating brain function, at least in part, through maintaining normal brain energy homeostasis. Targeting ErbB4 or the modulation of endothelial ErbB4 signaling may represent a rational pharmacological approach to treat neurological disorders. © 2017 John Wiley & Sons Ltd.

  15. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis.

    PubMed

    Espinosa-Díez, Cristina; Miguel, Verónica; Vallejo, Susana; Sánchez, Francisco J; Sandoval, Elena; Blanco, Eva; Cannata, Pablo; Peiró, Concepción; Sánchez-Ferrer, Carlos F; Lamas, Santiago

    2018-04-01

    Glutathione (GSH) biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL), which is composed of the catalytic (GCLc) and the modulatory (GCLm) subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice). In murine lung endothelial cells (MLEC) derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177) and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT) mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+) male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH 4 . To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+) mice. We observed that obstructed kidneys from Gclc(e/+) mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The chemokine receptor CX3CR1 coordinates monocyte recruitment and endothelial regeneration after arterial injury.

    PubMed

    Getzin, Tobias; Krishnasamy, Kashyap; Gamrekelashvili, Jaba; Kapanadze, Tamar; Limbourg, Anne; Häger, Christine; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Limbourg, Florian P

    2018-02-01

    Regeneration of arterial endothelium after injury is critical for the maintenance of normal blood flow, cell trafficking, and vascular function. Using mouse models of carotid injury, we show that the transition from a static to a dynamic phase of endothelial regeneration is marked by a strong increase in endothelial proliferation, which is accompanied by induction of the chemokine CX 3 CL1 in endothelial cells near the wound edge, leading to progressive recruitment of Ly6C lo monocytes expressing high levels of the cognate CX 3 CR1 chemokine receptor. In Cx3cr1 -deficient mice recruitment of Ly6C lo monocytes, endothelial proliferation and regeneration of the endothelial monolayer after carotid injury are impaired, which is rescued by acute transfer of normal Ly6C lo monocytes. Furthermore, human non-classical monocytes induce proliferation of endothelial cells in co-culture experiments in a VEGFA-dependent manner, and monocyte transfer following carotid injury promotes endothelial wound closure in a hybrid mouse model in vivo Thus, CX 3 CR1 coordinates recruitment of specific monocyte subsets to sites of endothelial regeneration, which promote endothelial proliferation and arterial regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Treating fat grafts with human endothelial progenitor cells promotes their vascularization and improves their survival in diabetes mellitus.

    PubMed

    Hamed, Saher; Ben-Nun, Ohad; Egozi, Dana; Keren, Aviad; Malyarova, Nastya; Kruchevsky, Danny; Gilhar, Amos; Ullmann, Yehuda

    2012-10-01

    Bone marrow-derived endothelial progenitor cells are required for vascularization of a fat graft to form a functional microvasculature within the graft and to facilitate its integration into the surrounding tissues. Organ transplantation carries a high risk of graft loss and rejection in patients with diabetes mellitus because endothelial progenitor cell function is impaired. The authors investigated the influence of endothelial progenitor cell treatment on the phenotype and survival of human fat grafts in immunocompromised mice with experimentally induced diabetes mellitus. The authors injected 1 ml of human fat tissue into the scalps of 14 nondiabetic and 28 diabetic immunocompromised mice, and then treated some of the grafts with endothelial progenitor cells that was isolated from the blood of a human donor. The phenotype of the endothelial progenitor cell-treated fat grafts from the 14 diabetic mice was compared with that of the untreated fat grafts from 14 nondiabetic and 14 diabetic mice, 18 days and 15 weeks after fat transplantation. Determination of graft phenotype included measurements of weight and volume, vascular endothelial growth factor levels, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and caspase 3 expression levels, and histologic analysis of the extent of vascularization. The untreated grafts from the diabetic mice were fully resorbed 15 weeks after fat transplantation. The phenotype of endothelial progenitor cell-treated fat grafts from the diabetic mice was similar to that of the untreated fat grafts from the nondiabetic mice. Endothelial progenitor cell treatment of transplanted fat can increase the survival of a fat graft by inducing its vascularization and decreasing the extent of apoptosis.

  18. De Novo Lipogenesis Maintains Vascular Homeostasis through Endothelial Nitric-oxide Synthase (eNOS) Palmitoylation*♦

    PubMed Central

    Wei, Xiaochao; Schneider, Jochen G.; Shenouda, Sherene M.; Lee, Ada; Towler, Dwight A.; Chakravarthy, Manu V.; Vita, Joseph A.; Semenkovich, Clay F.

    2011-01-01

    Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease. PMID:21098489

  19. Expansion and cryopreservation of porcine and human corneal endothelial cells.

    PubMed

    Marquez-Curtis, Leah A; McGann, Locksley E; Elliott, Janet A W

    2017-08-01

    Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me 2 SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me 2 SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway.

    PubMed

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Liu, Ping-Yen; Lee, Cheng-Han; Cho, Chung-Lung; Wu, Hua-Lin; Chen, Jyh-Hong

    2016-04-01

    Cilostazol is an antiplatelet agent with vasodilatory effects that works by increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP). This study investigated the effects of cilostazol in preventing high glucose (HG)-induced impaired angiogenesis and examined the potential mechanisms involving activation of AMP-activated protein kinase (AMPK). Assays for colony formation, adhesion, proliferation, migration, and vascular tube formation were used to determine the effect of cilostazol in HG-treated endothelial progenitor cells (EPCs) or human umbilical vein endothelial cells (HUVECs). Animal-based assays were performed in hyperglycemic ICR mice undergoing hind limb ischemia. An immnunoblotting assay was used to identify the expression and activation of signaling molecules in vitro and in vivo. Cilostazol treatment significantly restored endothelial function in EPCs and HUVECs through activation of AMPK/acetyl-coenzyme A carboxylase (ACC)-dependent pathways and cAMP/protein kinase A (PKA)-dependent pathways. Recovery of blood flow in the ischemic hind limb and the population of circulating CD34(+) cells were significantly improved in cilostazol-treated mice, and these effects were abolished by local AMPK knockdown. Cilostazol increased the phosphorylation of AMPK/ACC and Akt/endothelial nitric oxide synthase signaling molecules in parallel with or downstream of the cAMP/PKA-dependent signaling pathway in vitro and in vivo. Cilostazol prevents HG-induced endothelial dysfunction in EPCs and HUVECs and enhances angiogenesis in hyperglycemic mice by interactions with a broad signaling network, including activation of AMPK/ACC and probably cAMP/PKA pathways. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  1. Circuit resistance training attenuates acute exertion-induced reductions in arterial function but not inflammation in obese women.

    PubMed

    Franklin, Nina C; Robinson, Austin T; Bian, Jing-Tan; Ali, Mohamed M; Norkeviciute, Edita; McGinty, Patrick; Phillips, Shane A

    2015-06-01

    Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Eighteen obese [body mass index (BMI) 30.0-40.0 kg · m(-2)] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation.

  2. Reduced neural baroreflex sensitivity is related to enhanced endothelial function in patients with end-stage liver disease.

    PubMed

    Sárközi, Adrienn; Cseh, Domonkos; Gerlei, Zsuzsanna; Kollai, Márk

    2018-02-01

    Reduced baroreflex sensitivity (BRS) is a frequent complication in end-stage liver disease, but the underlying mechanism is unknown. We investigated the mechanical and neural components of BRS. Increased nitric oxide (NO) production has been reported in end-stage liver failure. Based on earlier experiments, we hypothesised that enhanced endothelial function might affect baroreflex function. Therefore, we explored the relation between endothelial function and the components of BRS. We enrolled 24 patients and 23 controls. BRS was determined by the spontaneous sequence method. Mechanical component was characterised by the distensibility coefficient (DC) of common carotid artery. Neural component was estimated as the ratio of integrated BRS and DC. Endothelial function was quantified by flow-mediated dilation (FMD) of the brachial artery. Integrated BRS was reduced in patients [7.00 (5.80-9.25) vs. 11.1 (8.50-14.80) ms/mmHg]. The mechanical component was not different in the two groups, whereas neural component showed significant reduction in patients (3.54 ± 1.20 vs. 4.48 ± 1.43 ms/10 -3 ). FMD was higher in patients (9.81 ± 3.77 vs. 5.59 ± 1.36%). FMD and neural BRS were directly related in controls (r = 0.62), but inversely related in patients (r = -0.49). Baroreflex impairment in end-stage liver disease might be explained by deterioration of the neural component, while the mechanical component appears to be preserved. Endothelial NO may enhance BRS in health; however, central endothelial overproduction of NO likely contributes to the reduction of neural component of BRS in patients awaiting liver transplantation.

  3. Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice

    PubMed Central

    Andrukhova, Olena; Slavic, Svetlana; Zeitz, Ute; Riesen, Sabine C.; Heppelmann, Monika S.; Ambrisko, Tamas D.; Markovic, Mato; Kuebler, Wolfgang M.

    2014-01-01

    The vitamin D hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] is essential for the preservation of serum calcium and phosphate levels but may also be important for the regulation of cardiovascular function. Epidemiological data in humans have shown that vitamin D insufficiency is associated with hypertension, left ventricular hypertrophy, increased arterial stiffness, and endothelial dysfunction in normal subjects and in patients with chronic kidney disease and type 2 diabetes. However, the pathophysiological mechanisms underlying these associations remain largely unexplained. In this study, we aimed to decipher the mechanisms by which 1,25(OH)2D3 may regulate systemic vascular tone and cardiac function, using mice carrying a mutant, functionally inactive vitamin D receptor (VDR). To normalize calcium homeostasis in VDR mutant mice, we fed the mice lifelong with the so-called rescue diet enriched with calcium, phosphate, and lactose. Here, we report that VDR mutant mice are characterized by lower bioavailability of the vasodilator nitric oxide (NO) due to reduced expression of the key NO synthesizing enzyme, endothelial NO synthase, leading to endothelial dysfunction, increased arterial stiffness, increased aortic impedance, structural remodeling of the aorta, and impaired systolic and diastolic heart function at later ages, independent of changes in the renin-angiotensin system. We further demonstrate that 1,25(OH)2D3 is a direct transcriptional regulator of endothelial NO synthase. Our data demonstrate the importance of intact VDR signaling in the preservation of vascular function and may provide a mechanistic explanation for epidemiological data in humans showing that vitamin D insufficiency is associated with hypertension and endothelial dysfunction. PMID:24284821

  4. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  5. Exposure to Lipopolysaccharide and/or Unconjugated Bilirubin Impair the Integrity and Function of Brain Microvascular Endothelial Cells

    PubMed Central

    Cardoso, Filipa L.; Kittel, Ágnes; Veszelka, Szilvia; Palmela, Inês; Tóth, Andrea; Brites, Dora; Deli, Mária A.; Brito, Maria A.

    2012-01-01

    Background Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS) is known to alter the integrity of the blood-brain barrier (BBB), little is known on the effects of unconjugated bilirubin (UCB) and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC). Methodology/Principal Findings Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. Conclusions LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period. PMID:22586454

  6. Skin grafting impairs postsynaptic cutaneous vasodilator and sweating responses.

    PubMed

    Davis, Scott L; Shibasaki, Manabu; Low, David A; Cui, Jian; Keller, David M; Purdue, Gary F; Hunt, John L; Arnoldo, Brett D; Kowalske, Karen J; Crandall, Craig G

    2007-01-01

    This study tested the hypothesis that postsynaptic cutaneous vascular responses to endothelial-dependent and -independent vasodilators, as well as sweat gland function, are impaired in split-thickness grafted skin 5 to 9 months after surgery. Intradermal microdialysis membranes were placed in grafted and adjacent control skin, thereby allowing local delivery of the endothelial-dependent vasodilator, acetylcholine (ACh; 1 x 10(-7) to 1 x 10(-1) M at 10-fold increments) and the endothelial-independent nitric oxide donor, sodium nitroprusside (SNP; 5 x 10(-8) to 5 x 10(-2) M at 10-fold increments). Skin blood flow and sweat rate were simultaneously assessed over the semipermeable portion of the membrane. Cutaneous vascular conductance (CVC) was calculated from the ratio of laser Doppler-derived skin blood flow to mean arterial blood pressure. deltaCVC responses from baseline to these drugs were modeled via nonlinear regression curve fitting to identify the dose of ACh and SNP causing 50% of the maximal vasodilator response (EC50). A rightward shift in the CVC dose response curve for ACh was observed in grafted (EC50 = -2.61 +/- 0.44 log M) compared to adjacent control skin (EC50 = -3.34 +/- 0.46 log M; P = .003), whereas the mean EC50 for SNP was similar between grafted (EC50 = -4.21 +/- 0.94 log M) and adjacent control skin (EC50 = -3.87 +/- 0.65 log M; P = 0.332). Only minimal sweating to exogenous ACh was observed in grafted skin whereas normal sweating was observed in control skin. Increased EC50 and decreased maximal CVC responses to the exogenous administration of ACh suggest impairment of endothelial-dependent cutaneous vasodilator responses in grafted skin 5 to 9 months after surgery. Greatly attenuated sweating responses to ACh suggests either abnormal or an absence of functional sweat glands in the grafted skin.

  7. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma.

    PubMed

    Nakadate, Hiromichi; Inuzuka, Koji; Akanuma, Suguru; Kakuta, Akira; Aomura, Shigeru

    2014-04-16

    Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (-72 kPa/41 ms, -67 kPa/104 ms, and -91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. The pressure loading device could produce positive pressure pulses with amplitudes of 53-1348 kPa and durations of 9-29.1 ms and negative pressure pulses with amplitudes of -52 - -93 kPa and durations of 42.9-179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure.

  8. Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis

    PubMed Central

    Lee, Monica Y.; Skoura, Athanasia; Park, Eon Joo; Landskroner-Eiger, Shira; Jozsef, Levente; Luciano, Amelia K.; Murata, Takahisa; Pasula, Satish; Dong, Yunzhou; Bouaouina, Mohamed; Calderwood, David A.; Ferguson, Shawn M.; De Camilli, Pietro; Sessa, William C.

    2014-01-01

    Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of β1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of β1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo. PMID:24598168

  9. Rhynchophylla total alkaloid rescues autophagy, decreases oxidative stress and improves endothelial vasodilation in spontaneous hypertensive rats.

    PubMed

    Li, Chao; Jiang, Feng; Li, Yun-Lun; Jiang, Yue-Hua; Yang, Wen-Qing; Sheng, Jie; Xu, Wen-Juan; Zhu, Qing-Jun

    2018-03-01

    Autophagy plays an important role in alleviating oxidative stress and stabilizing atherosclerotic plaques. However, the potential role of autophagy in endothelial vasodilation function has rarely been studied. This study aimed to investigate whether rhynchophylla total alkaloid (RTA) has a positive role in enhancing autophagy through decreasing oxidative stress, and improving endothelial vasodilation. In oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), RTA (200 mg/L) significantly suppressed ox-LDL-induced oxidative stress through rescuing autophagy, and decreased cell apoptosis. In spontaneous hypertensive rats (SHR), administration of RTA (50 mg·kg -1 ·d -1 , ip, for 6 weeks) improved endothelin-dependent vasodilation of thoracic aorta rings. Furthermore, RTA administration significantly increased the antioxidant capacity and alleviated oxidative stress through enhancing autophagy in SHR. In ox-LDL-treated HUVECs, we found that the promotion of autophagy by RTA resulted in activation of the AMP-activated protein kinase (AMPK) signaling pathway. Our results show that RTA treatment rescues the ox-LDL-induced autophagy impairment in HUVECs and improves endothelium-dependent vasodilation function in SHR.

  10. Intermedin Stabilized Endothelial Barrier Function and Attenuated Ventilator-induced Lung Injury in Mice

    PubMed Central

    Müller-Redetzky, Holger Christian; Kummer, Wolfgang; Pfeil, Uwe; Hellwig, Katharina; Will, Daniel; Paddenberg, Renate; Tabeling, Christoph; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2012-01-01

    Background Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Methodology/Principal Findings Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1–3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. Conclusions/Significance IMD may possibly provide a new approach to attenuate VILI. PMID:22563471

  11. Epigenetic Regulation of Placenta-Specific 8 Contributes to Altered Function of Endothelial Colony-Forming Cells Exposed to Intrauterine Gestational Diabetes Mellitus.

    PubMed

    Blue, Emily K; Sheehan, BreAnn M; Nuss, Zia V; Boyle, Frances A; Hocutt, Caleb M; Gohn, Cassandra R; Varberg, Kaela M; McClintick, Jeanette N; Haneline, Laura S

    2015-07-01

    Intrauterine exposure to gestational diabetes mellitus (GDM) is linked to development of hypertension, obesity, and type 2 diabetes in children. Our previous studies determined that endothelial colony-forming cells (ECFCs) from neonates exposed to GDM exhibit impaired function. The current goals were to identify aberrantly expressed genes that contribute to impaired function of GDM-exposed ECFCs and to evaluate for evidence of altered epigenetic regulation of gene expression. Genome-wide mRNA expression analysis was conducted on ECFCs from control and GDM pregnancies. Candidate genes were validated by quantitative RT-PCR and Western blotting. Bisulfite sequencing evaluated DNA methylation of placenta-specific 8 (PLAC8). Proliferation and senescence assays of ECFCs transfected with siRNA to knockdown PLAC8 were performed to determine functional impact. Thirty-eight genes were differentially expressed between control and GDM-exposed ECFCs. PLAC8 was highly expressed in GDM-exposed ECFCs, and PLAC8 expression correlated with maternal hyperglycemia. Methylation status of 17 CpG sites in PLAC8 negatively correlated with mRNA expression. Knockdown of PLAC8 in GDM-exposed ECFCs improved proliferation and senescence defects. This study provides strong evidence in neonatal endothelial progenitor cells that GDM exposure in utero leads to altered gene expression and DNA methylation, suggesting the possibility of altered epigenetic regulation. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border

    PubMed Central

    Marcos-Ramiro, Beatriz; García-Weber, Diego; Barroso, Susana; Feito, Jorge; Ortega, María C.; Cernuda-Morollón, Eva; Reglero-Real, Natalia; Fernández-Martín, Laura; Durán, Maria C.; Alonso, Miguel A.; Correas, Isabel; Cox, Susan; Ridley, Anne J.

    2016-01-01

    Endothelial barrier dysfunction underlies chronic inflammatory diseases. In searching for new proteins essential to the human endothelial inflammatory response, we have found that the endosomal GTPase RhoB is up-regulated in response to inflammatory cytokines and expressed in the endothelium of some chronically inflamed tissues. We show that although RhoB and the related RhoA and RhoC play additive and redundant roles in various aspects of endothelial barrier function, RhoB specifically inhibits barrier restoration after acute cell contraction by preventing plasma membrane extension. During barrier restoration, RhoB trafficking is induced between vesicles containing RhoB nanoclusters and plasma membrane protrusions. The Rho GTPase Rac1 controls membrane spreading and stabilizes endothelial barriers. We show that RhoB colocalizes with Rac1 in endosomes and inhibits Rac1 activity and trafficking to the cell border during barrier recovery. Inhibition of endosomal trafficking impairs barrier reformation, whereas induction of Rac1 translocation to the plasma membrane accelerates it. Therefore, RhoB-specific regulation of Rac1 trafficking controls endothelial barrier integrity during inflammation. PMID:27138256

  13. Comparison of Endothelial Function in Asian Indians Versus Caucasians.

    PubMed

    Pusalavidyasagar, Snigdha; Sert Kuniyoshi, Fatima H; Shamsuzzaman, Abu S M; Singh, Prachi; Maharaj, Shantal; Leinveber, Pavel; Nykodym, Jiri; Somers, Virend K

    2016-09-01

    Asian Indians have markedly increased mortality due to coronary artery disease (CAD). Impaired endothelial function has been linked to an increased risk of acute cardiovascular events. We tested the hypothesis that endothelial function was attenuated in Asian Indians and Caucasians. We studied 14 Asian Indians [mean age: 30 ± 6 years; mean body mass index (BMI): 25 ± 3 kg/m(2)] and 11 Caucasians (mean age: 30 ± 5 years; mean BMI: 26 ± 2 kg/m(2)). All 25 subjects were healthy men and nonsmokers without any history of CAD or diabetes and were not taking medications. Endothelial function was evaluated by ultrasound measures of flow-mediated dilatation (FMD) and endothelium-independent nonflow mediated vasodilatation (NFMD) of the brachial artery, in the morning immediately after awakening (6 a.m.) in a fasting state. Mean age, BMI, apnea-hypopnea index, heart rate, and blood pressure were similar in both groups (P = >0.05). When correcting for body surface area, brachial artery diameter was not different between the two groups (2.1% ± 0.3% vs. 2.2% ± 0.4%; P = 0.29). FMD and NFMD were similar in Asian Indians and Caucasians (5.9% ± 4.1% vs. 5.7% ± 2.6%, P = 0.70; 16.4% ± 8% vs. 14.8% ± 4.1%, P = 0.58, respectively). Endothelial function in Asian Indian men is not attenuated in comparison to Caucasian men.

  14. Comparison of Endothelial Function in Asian Indians Versus Caucasians

    PubMed Central

    Sert Kuniyoshi, Fatima H.; Shamsuzzaman, Abu S.M.; Singh, Prachi; Maharaj, Shantal; Leinveber, Pavel; Nykodym, Jiri; Somers, Virend K.

    2016-01-01

    Abstract Background: Asian Indians have markedly increased mortality due to coronary artery disease (CAD). Impaired endothelial function has been linked to an increased risk of acute cardiovascular events. We tested the hypothesis that endothelial function was attenuated in Asian Indians and Caucasians. Methods: We studied 14 Asian Indians [mean age: 30 ± 6 years; mean body mass index (BMI): 25 ± 3 kg/m2] and 11 Caucasians (mean age: 30 ± 5 years; mean BMI: 26 ± 2 kg/m2). All 25 subjects were healthy men and nonsmokers without any history of CAD or diabetes and were not taking medications. Endothelial function was evaluated by ultrasound measures of flow-mediated dilatation (FMD) and endothelium-independent nonflow mediated vasodilatation (NFMD) of the brachial artery, in the morning immediately after awakening (6 a.m.) in a fasting state. Results: Mean age, BMI, apnea–hypopnea index, heart rate, and blood pressure were similar in both groups (P = >0.05). When correcting for body surface area, brachial artery diameter was not different between the two groups (2.1% ± 0.3% vs. 2.2% ± 0.4%; P = 0.29). FMD and NFMD were similar in Asian Indians and Caucasians (5.9% ± 4.1% vs. 5.7% ± 2.6%, P = 0.70; 16.4% ± 8% vs. 14.8% ± 4.1%, P = 0.58, respectively). Conclusion: Endothelial function in Asian Indian men is not attenuated in comparison to Caucasian men. PMID:27172431

  15. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function.

    PubMed

    Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J

    2017-11-01

    Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r  = -0.49, P = 0.003), p21 ( r  = -0.38, P = 0.03), and p16 ( r  = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed ( P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function. Copyright © 2017 the American Physiological Society.

  16. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through NO and Akt

    PubMed Central

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J.

    2011-01-01

    Objective Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous NO synthase (NOS) inhibitors ADMA and L-NMMA. This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA independent effects that influence endothelial function. Methods and Results Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in HUVEC, we found that DDAH1 acts to promote endothelial cell proliferation, migration and tube formation both by Akt phosphorylation as well as through the traditional role of degrading ADMA. Incubation of HUVEC with the NOS inhibitors L-NAME or ADMA, the soluble guanylyl cyclase inhibitor ODQ, or the cGMP analog 8-pCPT-cGMP had no effect on p-AktSer473, indicating that the increase of p-AktSer473 produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase of p-AktSer473. Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. Conclusions DDAH1 exerts a unique role in activating Akt that affects endothelial function independent of degrading endogenous NOS inhibitors. PMID:21212404

  17. IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells.

    PubMed

    Elshabrawy, Hatem A; Volin, Michael V; Essani, Abdul B; Chen, Zhenlong; McInnes, Iain B; Van Raemdonck, Katrien; Palasiewicz, Karol; Arami, Shiva; Gonzalez, Mark; Ashour, Hossam M; Kim, Seung-Jae; Zhou, Guofei; Fox, David A; Shahrara, Shiva

    2018-05-01

    IL-11 has been detected in inflamed joints; however, its role in the pathogenesis of arthritis is not yet clear. Studies were conducted to characterize the expression and functional significance of IL-11 and IL-11Rα in rheumatoid arthritis (RA). IL-11 levels were elevated in RA synovial fluid (SF) compared to osteoarthritis (OA) SF and plasma from RA, OA and normal individuals (NLs). Morphologic studies established that IL-11 was detected in lining fibroblasts and macrophages in addition to sublining endothelial cells and macrophages at higher levels in RA compared to NL synovial tissues. Since IL-11Rα was exclusively expressed in RA fibroblasts and endothelial cells, macrophages were not involved in IL-11 effector function. Ligation of IL-11 to IL-11Rα strongly provoked fibroblast infiltration into RA joint, while cell proliferation was unaffected by this process. Secretion of IL-8 and VEGF from IL-11 activated RA fibroblasts was responsible for the indirect effect of IL-11 on endothelial cell transmigration and tube formation. Moreover, IL-11 blockade impaired RA SF capacity to elicit endothelial cell transmigration and tube formation. We conclude that IL-11 binding to endothelial IL-11Rα can directly induce RA angiogenesis. In addition, secretion of proangiogenic factors from migrating fibroblasts potentiated by IL-11 can indirectly contribute to RA neovascularization.

  18. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt.

    PubMed

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J

    2011-04-01

    Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous nitric oxide (NO) synthase (NOS) inhibitors asymmetrical dimethylarginine (ADMA) and L-NG-monomethyl arginine (L-NMMA). This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA-independent effects that influence endothelial function. Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in human umbilical vein endothelial cells, we found that DDAH1 acts to promote endothelial cell proliferation, migration, and tube formation by Akt phosphorylation, as well as through the traditional role of degrading ADMA. Incubation of human umbilical vein endothelial cells with the NOS inhibitors l-NG-nitro-arginine methyl ester (L-NAME) or ADMA, the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-2)quinoxalin-1-one, or the cGMP analog 8-(4-Chlorophenylthio)-cGMP had no effect on phosphorylated (p)-Akt(Ser473), indicating that the increase in p-Akt(Ser473) produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase in p-Akt(Ser473). Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. DDAH1 exerts a unique role in activating Akt that affects endothelial function independently of degrading endogenous NOS inhibitors.

  19. GPER Mediates Functional Endothelial Aging in Renal Arteries.

    PubMed

    Meyer, Matthias R; Rosemann, Thomas; Barton, Matthias; Prossnitz, Eric R

    2017-01-01

    Aging is associated with impaired renal artery function, which is partly characterized by arterial stiffening and a reduced vasodilatory capacity due to excessive generation of reactive oxygen species by NADPH oxidases (Nox). The abundance and activity of Nox depends on basal activity of the heptahelical transmembrane receptor GPER; however, whether GPER contributes to age-dependent functional changes in renal arteries is unknown. This study investigated the effect of aging and Nox activity on renal artery tone in wild-type and GPER-deficient (Gper-/-) mice (4 and 24 months old). In wild-type mice, aging markedly impaired endothelium-dependent, nitric oxide (NO)-mediated relaxations to acetylcholine, which were largely preserved in renal arteries of aged Gper-/- mice. The Nox inhibitor gp91ds-tat abolished this difference by greatly enhancing relaxations in wild-type mice, while having no effect in Gper-/- mice. Contractions to angiotensin II and phenylephrine in wild-type mice were partly sensitive to gp91ds-tat but unaffected by aging. Again, deletion of GPER abolished effects of Nox inhibition on contractile responses. In conclusion, basal activity of GPER is required for the age-dependent impairment of endothelium-dependent, NO-mediated relaxation in the renal artery. Restoration of relaxation by a Nox inhibitor in aged wild-type but not Gper-/- mice strongly supports a role for Nox-derived reactive oxygen species as the underlying cause. Pharmacological blockers of GPER signaling may thus be suitable to inhibit functional endothelial aging of renal arteries by reducing Nox-derived oxidative stress and, possibly, the associated age-dependent deterioration of kidney function. © 2017 S. Karger AG, Basel.

  20. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    PubMed

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting. © 2017 American Heart Association, Inc.

  1. Effects of 7-ketocholesterol on the activity of endothelial poly(ADP-ribose) polymerase and on endothelium-dependent relaxant function.

    PubMed

    Kiss, Levente; Chen, Min; Gero, Domokos; Módis, Katalin; Lacza, Zsombor; Szabó, Csaba

    2006-12-01

    Oxidative and nitrosative stress play an important role in the development of endothelial vascular dysfunction during early atherosclerosis. Oxidative stress activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in endothelial cells. In patients with atherosclerosis the level of oxidized LDL in the plasma is elevated. In oxidized LDL various oxysterols have been identified, such as 7-ketocholesterol (7K). 7K has been shown to induce PARP activation in microglial cells. The aim of the current study was to clarify the effects of 7K on the activity of endothelial PARP and on the endothelium-dependent relaxant function of blood vessels. We treated human umbilical vein endothelial (HUVEC) cells with 2-16 microg/ml 7K as well as vascular rings harvested from BALB/c mouse thoracic aorta with 90 microg/ml 7K for 2 h. A group of mice was treated with 7K subcutaneously for 1 week (10 mg/kg/day). We also conducted in vitro and in vivo experiments using pretreatment with buthionine sulphoximine (BSO), a glutathione-lowering agent. The activity of PARP was calculated by measurement of tritiated NAD incorporation. The activity of PARP increased significantly in 7K-treated HUVEC cells. After BSO pretreatment, this increase was higher. Isolated vascular rings demonstrated no change in endothelium-dependent relaxant function after 2 h of incubation with 7K, even after BSO pretreatment. In vivo treatment with 7K for 1 week had no effect on the relaxant function. Our experimental results suggest that although 7-ketocholesterol can activate PARP enzyme in endothelial cells, it is not sufficient on its own to cause impairment in the endothelium-dependent vascular reactivity.

  2. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.

    PubMed

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2009-12-01

    Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.

  3. Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation

    PubMed Central

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2013-01-01

    Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis. PMID:19917882

  4. Abrogation of Antibody-Induced Arthritis in Mice by a Self-Activating Viridin Prodrug and Association With Impaired Neutrophil and Endothelial Cell Function

    PubMed Central

    Stangenberg, Lars; Ellson, Chris; Cortez-Retamozo, Virna; Ortiz-Lopez, Adriana; Yuan, Hushan; Blois, Joseph; Smith, Ralph A.; Yaffe, Michael B.; Weissleder, Ralph; Benoist, Christophe; Mathis, Diane; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Objective To test a novel self-activating viridin (SAV) prodrug that slowly releases wortmannin, a potent phosphoinositide 3-kinase inhibitor, in a model of antibody-mediated inflammatory arthritis. Methods The SAV prodrug was administered to K/BxN mice or to C57BL/6 (B6) mice that had been injected with K/BxN serum. Ankle thickness was measured, and histologic changes were scored after a 10-day disease course (serum-transfer arthritis). Protease activity was measured by a near-infrared imaging approach using a cleavable cathepsin–selective probe. Further near-infrared imaging techniques were used to analyze early changes in vascular permeability after serum injection, as well as neutrophil–endothelial cell interactions. Neutrophil functions were assessed using an oxidative burst assay as well as a degranulation assay. Results SAV prevented ankle swelling in mice with serum-transfer arthritis in a dose-dependent manner. It also markedly reduced the extent of other features of arthritis, such as protease activity and histology scores for inflammation and joint erosion. Moreover, SAV was an effective therapeutic agent. The underlying mechanisms for the antiinflammatory activity were manifold. Endothelial permeability after serum injection was reduced, as was firm neutrophil attachment to endothelial cells. Endothelial cell activation by tumor necrosis factor α was impeded by SAV, as measured by the expression of vascular cell adhesion molecule. Crucial neutrophil functions, such as generation of reactive oxygen species and degranulation of protease-laden vesicles, were decreased by SAV administration. Conclusion A novel SAV prodrug proved strongly antiinflammatory in a murine model of antibody-induced inflammatory arthritis. Its activity could be attributed, at least in part, to the inhibition of neutrophil and endothelial cell functions. PMID:19644878

  5. Associations between endothelial dysfunction and clinical and laboratory parameters in children and adolescents with sickle cell anemia

    PubMed Central

    Ferreira, Tatiane Anunciação; Machado, Vinícius Ramos; Perdiz, Marya Izadora; Lyra, Isa Menezes; Nascimento, Valma Lopes; Boa-Sorte, Ney; Andrade, Bruno B.; Ladeia, Ana Marice

    2017-01-01

    Background Hematological changes can drive damage of endothelial cells, which potentially lead to an early endothelial dysfunction in patients with sickle cell anemia (SCA). An association may exist between endothelial dysfunction and several clinical manifestations of SCA. The present study aims to evaluate the links between changes in endothelial function and clinical and laboratory parameters in children and adolescents with SCA. Methods This study included 40 children and adolescents with stable SCA as well as 25 healthy children; aged 6–18 years. All study subjects were evaluated for endothelial function using Doppler ultrasonography. In addition, a number of laboratory assays were performed, including reticulocyte and leukocyte counts as well as measurement of circulating levels of total bilirubin, C-reactive protein (CRP), glucose, lipoproteins and peripheral oxyhemoglobin saturation. These parameters were also compared between SCA patients who were undertaking hydroxyurea (HU) and those who were not. Results Flow-mediated vasodilation (FMD) values were found to be reduced in SCA patients compared with those detected in healthy controls. SCA individuals with lower FMD values exhibited higher number of hospital admissions due to vaso-occlusive events. Additional analyses revealed that patients who had decreased FMD values exhibited higher odds of acute chest syndrome (ACS) episodes. A preliminary analysis with limited number of individuals failed to demonstrate significant differences in FMD values between SCA individuals who were treated with HU and those who were not. Conclusions Children and adolescents with SCA exhibit impaired endothelial function. Reductions in FMD values are associated with ACS. These findings underline the potential use of FMD as screening strategy of SCA patients with severe prognosis at early stages. PMID:28863145

  6. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells.

    PubMed

    Ungvari, Zoltan; Tucsek, Zsuzsanna; Sosnowska, Danuta; Toth, Peter; Gautam, Tripti; Podlutsky, Andrej; Csiszar, Agnes; Losonczy, Gyorgy; Valcarcel-Ares, M Noa; Sonntag, William E; Csiszar, Anna

    2013-08-01

    Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.

  7. Impact of an endothelial progenitor cell capturing stent on coronary microvascular function: comparison with drug-eluting stents.

    PubMed

    Choi, Woong Gil; Kim, Soo Hyun; Yoon, Hyung Seok; Lee, Eun Joo; Kim, Dong Woon

    2015-01-01

    Although drug-eluting stents (DESs) effectively reduce restenosis following percutaneous coronary intervention (PCI), they also delay re-endothelialization and impair microvascular function, resulting in adverse clinical outcomes. Endothelial progenitor cell (EPC) capturing stents, by providing a functional endothelial layer on the stent, have beneficial effects on microvascular function. However, data on coronary microvascular function in patients with EPC stents versus DESs are lacking. Seventy-four patients who previously underwent PCI were enrolled in this study. Microvascular function was evaluated 6 months after PCI based on the index of microvascular resistance (IMR) and the coronary flow reserve (CFR). IMR was calculated as the ratio of the mean distal coronary pressure at maximal hyperemia to the inverse of the hyperemic mean transit time (hTmn). The CFR was calculated by dividing the hTmn by the baseline mean transit time. Twenty-one patients (age, 67.2 ± 9.6 years; male:female, 15:6) with an EPC stent and 53 patients (age, 61.5 ± 14.7 years; male:female, 40:13) with second-generation DESs were included in the study. There were no significant differences in the baseline clinical and angiographic characteristics of the two groups. Angiography performed 6 months postoperatively did not show significant differences in their CFR values. However, patients with the EPC stent had a significantly lower IMR than patients with second-generation DESs (median, 25.5 [interquartile range, 12.85 to 28.18] vs. 29.0 [interquartile range, 15.42 to 39.23]; p = 0.043). Microvascular dysfunction was significantly improved after 6 months in patients with EPC stents compared to those with DESs. The complete re-endothelialization achieved with the EPC stent may provide clinical benefits over DESs, especially in patients with microvascular dysfunction.

  8. Circuit Resistance Training Attenuates Acute Exertion-Induced Reductions in Arterial Function but Not Inflammation in Obese Women

    PubMed Central

    Franklin, Nina C.; Robinson, Austin T.; Bian, Jing-Tan; Ali, Mohamed M.; Norkeviciute, Edita; McGinty, Patrick

    2015-01-01

    Abstract Background: Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Methods: Eighteen obese [body mass index (BMI) 30.0–40.0 kg·m−2] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Results: Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. Conclusions: This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation. PMID:25844686

  9. Brilliant Blue FCF as an Alternative Dye for Saphenous Vein Graft Marking Effect on Conduit Function

    PubMed Central

    Voskresensky, Igor V.; Wise, Eric S.; Hocking, Kyle M.; Li, Fan Dong; Osgood, Michael J.; Komalavilas, Padmini; Brophy, Colleen; Cheung-Flynn, Joyce

    2014-01-01

    IMPORTANCE Surgical skin markers are used off-label to mark human saphenous veins (HSVs) to maintain orientation before implantation as aortocoronary or peripheral arterial bypass grafts. These surgical skin markers impair functional responses of the HSV tissue. OBJECTIVES To investigate the effect of brilliant blue dye 1 (brilliant blue FCF [for food coloring]; hereinafter, FCF) as a nontoxic alternative marking dye and to determine whether FCF has pharmacological properties. DESIGN, SETTING, AND PARTICIPANTS Segments of HSVs were collected in university hospitals from patients undergoing coronary artery bypass grafting procedures immediately after harvest (unmanipulated) or after typical intraoperative surgical graft preparation (after manipulation). Rat inferior venae cavae were used to determine the pharmacological properties and cellular targets of FCF. Endothelial and smooth muscle functional responses were determined in a muscle bath, and intimal thickening in HSVs was determined after 14 days in organ culture. MAIN OUTCOMES AND MEASURES Contractile responses were measured in force and converted to stress. Smooth muscle function was expressed as maximal responses to potassium chloride depolarization contractions. Endothelial function was defined as the percentage of relaxation of maximal agonist-induced contraction. Neointimal thickness was measured by histomorphometric analysis. RESULTS Human saphenous veins stored in the presence of FCF had no loss of endothelial or smooth muscle function. Unmanipulated HSVs preserved in the presence of FCF demonstrated a significant increase in endothelial-dependent relaxation (mean [SEM], 25.2% [6.4%] vs 30.2% [6.7%]; P = .02). Application of FCF to functionally nonviable tissue significantly enhanced the smooth muscle responses (mean [SEM], 0.018 [0.004] × 105N/m2 vs 0.057 [0.016] × 105 N/m2; P = .05). Treatment with FCF reduced intimal thickness in organ culture (mean [SEM], −17.5% [2.1%] for unmanipulated HSVs vs −27.9% [3.7%] for HSVs after manipulation; P < .001). In rat inferior venae cavae, FCF inhibited the contraction induced by the P2X7 receptor agonist 2′(3′)-O-(4-benzoyl)benzoyl-adenosine-5′-triphosphate (mean [SEM], 14.8% [2.2%] vs 6.5% [1.8%]; P = .02) to an extent similar to the P2X7 receptor antagonist oxidized adenosine triphosphate (mean [SEM], 5.0% [0.9%]; P < .02 vs control) or the pannexin hemichannel inhibitor probenecid (mean [SEM], 7.3% [1.6%] and 4.7% [0.9%] for 0.5mM and 2mM, respectively; P < .05). CONCLUSIONS AND RELEVANCE Treatment with FCF did not impair endothelial or smooth muscle function in HSVs. Brilliant blue FCF enhanced endothelial-dependent relaxation, restored smooth muscle function, and prevented intimal hyperplasia in HSVs in organ culture. These pharmacological properties of FCF may be due to P2X7 receptor or pannexin channel inhibition. Brilliant blue FCF is an alternative, nontoxic marking dye that may improve HSV conduit function and decrease intimal hyperplasia. PMID:25251505

  10. Brilliant blue FCF as an alternative dye for saphenous vein graft marking: effect on conduit function.

    PubMed

    Voskresensky, Igor V; Wise, Eric S; Hocking, Kyle M; Li, Fan Dong; Osgood, Michael J; Komalavilas, Padmini; Brophy, Colleen; Cheung-Flynn, Joyce

    2014-11-01

    Surgical skin markers are used off-label to mark human saphenous veins (HSVs) to maintain orientation before implantation as aortocoronary or peripheral arterial bypass grafts. These surgical skin markers impair functional responses of the HSV tissue. To investigate the effect of brilliant blue dye 1 (brilliant blue FCF [for food coloring]; hereinafter, FCF) as a nontoxic alternative marking dye and to determine whether FCF has pharmacological properties. Segments of HSVs were collected in university hospitals from patients undergoing coronary artery bypass grafting procedures immediately after harvest (unmanipulated) or after typical intraoperative surgical graft preparation (after manipulation). Rat inferior venae cavae were used to determine the pharmacological properties and cellular targets of FCF. Endothelial and smooth muscle functional responses were determined in a muscle bath, and intimal thickening in HSVs was determined after 14 days in organ culture. Contractile responses were measured in force and converted to stress. Smooth muscle function was expressed as maximal responses to potassium chloride depolarization contractions. Endothelial function was defined as the percentage of relaxation of maximal agonist-induced contraction. Neointimal thickness was measured by histomorphometric analysis. Human saphenous veins stored in the presence of FCF had no loss of endothelial or smooth muscle function. Unmanipulated HSVs preserved in the presence of FCF demonstrated a significant increase in endothelial-dependent relaxation (mean [SEM], 25.2% [6.4%] vs 30.2% [6.7%]; P = .02). Application of FCF to functionally nonviable tissue significantly enhanced the smooth muscle responses (mean [SEM], 0.018 [0.004] × 10⁵ N/m² vs 0.057 [0.016] × 10⁵ N/m²; P = .05). Treatment with FCF reduced intimal thickness in organ culture (mean [SEM], -17.5% [2.1%] for unmanipulated HSVs vs -27.9% [3.7%] for HSVs after manipulation; P < .001). In rat inferior venae cavae, FCF inhibited the contraction induced by the P2X7 receptor agonist 2'(3')-O-(4-benzoyl)benzoyl-adenosine-5'-triphosphate (mean [SEM], 14.8% [2.2%] vs 6.5% [1.8%]; P = .02) to an extent similar to the P2X7 receptor antagonist oxidized adenosine triphosphate (mean [SEM], 5.0% [0.9%]; P < .02 vs control) or the pannexin hemichannel inhibitor probenecid (mean [SEM], 7.3% [1.6%] and 4.7% [0.9%] for 0.5mM and 2mM, respectively; P < .05). Treatment with FCF did not impair endothelial or smooth muscle function in HSVs. Brilliant blue FCF enhanced endothelial-dependent relaxation, restored smooth muscle function, and prevented intimal hyperplasia in HSVs in organ culture. These pharmacological properties of FCF may be due to P2X7 receptor or pannexin channel inhibition. Brilliant blue FCF is an alternative, nontoxic marking dye that may improve HSV conduit function and decrease intimal hyperplasia.

  11. Maspin impairs the function of endothelial cells: an implying pathway of preeclampsia.

    PubMed

    Zhang, Ying; Liu, Hao; Shi, Xinwei; Qiao, Fuyuan; Zeng, Wanjiang; Feng, Ling; Deng, Dongrui; Liu, Haiyi; Wu, Yuanyuan

    2017-09-29

    Widespread endothelial injury contributes to the occurrence of preeclampsia. Maspin, first identified as a tumor suppressor, plays a critical role in cell invasion and angiogenesis. Our previous studies found that the expression of maspin was increased in preeclampsic placenta. In this research, we studied the function of human umbilical vein endothelial cells (HUVECs) to explore the role and possible mechanism of maspin gene in the pathogenesis of preeclampsia. HUVECs were treated with different concentration of recombinant human maspin protein (r-maspin) during normoxia and hypoxia, we detected the proliferation, apoptosis, migration and tube formation of HUVECs. We also assessed nitride oxide (NO) synthesis and the expression of matrix metalloproteinase 2 (MMP2) to further explore the underlying molecular mechanism. There was only slight maspin expression at mRNA level in HUVECs. Treated HUVECs with r-maspin, the proliferation of HUVECs was significantly promoted both under normoxia and hypoxia. The tubes formed by HUVECs were significantly inhibited and NO synthesis was significantly reduced by r-maspin. Meantime, r-maspin also inhibited MMP2 expression and activity in HUVECs. However, there was no significant change in the migration and apoptosis of HUVECs. Maspin may be an important participant for mediating endothelial function and ultimately leads to the occurence of preeclamsia.

  12. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension.

    PubMed

    Afolayan, Adeleye J; Eis, Annie; Alexander, Maxwell; Michalkiewicz, Teresa; Teng, Ru-Jeng; Lakshminrusimha, Satyan; Konduri, Girija G

    2016-01-01

    Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and PPHN lambs with detaNONOate, an NO donor. We observed decreased mitochondrial (mt) DNA copy number, electron transport chain (ETC) complex subunit levels, and ATP levels in PAECs and lung tissue of PPHN fetal lambs at baseline compared with gestation matched controls. Phosphorylation of AMP-activated kinase (AMPK) and levels of peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and sirtuin-1, which facilitate mitochondrial biogenesis, were decreased in PPHN. Ventilation with 100% O2 was associated with larger decreases in ETC subunits in the lungs of PPHN lambs compared with unventilated PPHN lambs. iNO administration, which facilitated weaning of FiO2 , partly restored mtDNA copy number, ETC subunit levels, and ATP levels. DetaNONOate increased eNOS phosphorylation and its interaction with heat shock protein 90 (HSP90); increased levels of superoxide dismutase 2 (SOD2) mRNA, protein, and activity; and decreased the mitochondrial superoxide levels in PPHN-PAECs. Knockdown of eNOS decreased ETC protein levels in control PAECs. We conclude that ventilation with 100% O2 amplifies oxidative stress and mitochondrial dysfunction in PPHN, which are partly improved by iNO and weaning of oxygen. Copyright © 2016 the American Physiological Society.

  13. Diabetes Impairs the Vascular Recruitment of Normal Stem Cells by Oxidant Damage, Reversed by Increases in pAMPK, Heme Oxygenase-1, and Adiponectin

    PubMed Central

    Sambuceti, Gianmario; Morbelli, Silvia; Vanella, Luca; Kusmic, Claudia; Marini, Cecilia; Massollo, Michela; Augeri, Carla; Corselli, Mirko; Ghersi, Chiara; Chiavarina, Barbara; Rodella, Luigi F; L'Abbate, Antonio; Drummond, George; Abraham, Nader G; Frassoni, Francesco

    2009-01-01

    Background Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage. Aim We examined if DM specifically impairs vascular signaling, thereby reducing the recruitment of normal EPCs, and if increases in antioxidant levels by induction of heme oxygenase-1 (HO-1) can reverse this condition. Methods Control and diabetic rats were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) once a week for 3 weeks. Eight weeks after the development of diabetes, EPCs harvested from the aorta of syngenic inbred normal rats and labeled with technetium-99m-exametazime were infused via the femoral vein to estimate their blood clearance and aortic recruitment. Circulating endothelial cells (CECs) and the aortic expression of thrombomodulin (TM), CD31, and endothelial nitric oxide synthase (eNOS) were used to measure endothelial damage. Results DM reduced blood clearance and aortic recruitment of EPCs. Both parameters were returned to control levels by CoPP treatment without affecting EPC kinetics in normal animals. These abnormalities of EPCs in DM were paralleled by reduced serum adiponectin levels, increased numbers of CECs, reduced endothelial expression of phosphorylated eNOS, and reduced levels of TM, CD31, and phosphorylated AMP-activated protein kinase (pAMPK). CoPP treatment restored all of these parameters to normal levels. Conclusion Type II DM and its related oxidant damage hamper the interaction between the vascular wall and normal EPCs by mechanisms that are, at least partially, reversed by the induction of HO-1 gene expression, adiponectin, and pAMPK levels. PMID:19038792

  14. Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE−/− mice

    PubMed Central

    Peng, Juan; Yang, Qin; Li, A-Fang; Li, Rong-Qing; Wang, Zuo; Liu, Lu-Shan; Ren, Zhong; Zheng, Xi-Long; Tang, Xiao-Qing; Li, Guo-Hua; Tang, Zhi-Han; Jiang, Zhi-Sheng; Wei, Dang-Heng

    2016-01-01

    Tet methylcytosine dioxygenase 2 (TET2) mediates the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). The loss of TET2 is associated with advanced atherosclerotic lesions. Our previous study showed that TET2 improves endothelial cell function by enhancing endothelial cell autophagy. Accordingly, this study determined the role of TET2 in atherosclerosis and potential mechanisms. In ApoE−/− mice fed high-fat diet, TET2 overexpression markedly decreased atherosclerotic lesions with uniformly increased level of 5hmC and decreased level of 5mC in genomic DNA. TET2 overexpression also promoted autophagy and downregulated inflammation factors, such as vascular cell adhesion molecule 1, intercellular adhesion molecule 1, monocyte chemotactic protein 1, and interleukin-1. Consistently, TET2 knockdown with small hairpin RNA (shRNA) in ApoE−/− mice decreased 5hmC and increased 5mC levels in atherosclerotic lesions. Meanwhile, autophagy was inhibited and atherosclerotic lesions progressed with an unstable lesion phenotype characterized by large lipid core, macrophage accumulation, and upregulated inflammation factor expression. Experiments with the cultured endothelial cells revealed that oxidized low-density lipoprotein (ox-LDL) inhibited endothelial cell autophagy. TET2 shRNA strengthened impaired autophagy and autophagic flux in the ox-LDL-treated endothelial cells. TET2 overexpression reversed these effects by decreasing the methylation level of the Beclin 1 promoter, which contributed to the downregulation of inflammation factors. Overall, we identified that TET2 was downregulated during the pathogenesis of atherosclerosis. The downregulation of TET2 promotes the methylation of the Beclin 1 promoter, leading to endothelial cell autophagy, impaired autophagic flux, and inflammatory factor upregulation. Upregulation of TET2 may be a novel therapeutic strategy for treating atherosclerosis. PMID:27821816

  15. Smooth muscle‐generated methylglyoxal impairs endothelial cell‐mediated vasodilatation of cerebral microvessels in type 1 diabetic rats

    PubMed Central

    Alomar, Fadhel; Singh, Jaipaul; Jang, Hee‐Seong; Rozanzki, George J; Shao, Chun Hong; Padanilam, Babu J; Mayhan, William G

    2016-01-01

    Background and Purpose Endothelial cell‐mediated vasodilatation of cerebral arterioles is impaired in individuals with Type 1 diabetes (T1D). This defect compromises haemodynamics and can lead to hypoxia, microbleeds, inflammation and exaggerated ischaemia‐reperfusion injuries. The molecular causes for dysregulation of cerebral microvascular endothelial cells (cECs) in T1D remains poorly defined. This study tests the hypothesis that cECs dysregulation in T1D is triggered by increased generation of the mitochondrial toxin, methylglyoxal, by smooth muscle cells in cerebral arterioles (cSMCs). Experimental Approach Endothelial cell‐mediated vasodilatation, vascular transcytosis inflammation, hypoxia and ischaemia‐reperfusion injury were assessed in brains of male Sprague‐Dawley rats with streptozotocin‐induced diabetes and compared with those in diabetic rats with increased expression of methylglyoxal‐degrading enzyme glyoxalase‐I (Glo‐I) in cSMCs. Key Results After 7–8 weeks of T1D, endothelial cell‐mediated vasodilatation of cerebral arterioles was impaired. Microvascular leakage, gliosis, macrophage/neutrophil infiltration, NF‐κB activity and TNF‐α levels were increased, and density of perfused microvessels was reduced. Transient occlusion of a mid‐cerebral artery exacerbated ischaemia‐reperfusion injury. In cSMCs, Glo‐I protein was decreased, and the methylglyoxal‐synthesizing enzyme, vascular adhesion protein 1 (VAP‐1) and methylglyoxal were increased. Restoring Glo‐I protein in cSMCs of diabetic rats to control levels via gene transfer, blunted VAP‐1 and methylglyoxal increases, cECs dysfunction, microvascular leakage, inflammation, ischaemia‐reperfusion injury and increased microvessel perfusion. Conclusions and Implications Methylglyoxal generated by cSMCs induced cECs dysfunction, inflammation, hypoxia and exaggerated ischaemia‐reperfusion injury in diabetic rats. Lowering methylglyoxal produced by cSMCs may be a viable therapeutic strategy to preserve cECs function and blunt deleterious downstream consequences in T1D. PMID:27611446

  16. Effect of breaking up sedentary time with callisthenics on endothelial function.

    PubMed

    Carter, Sophie E; Gladwell, Valerie F

    2017-08-01

    Periods of prolonged sitting impairs endothelial function in lower limb conduit arteries, which is attenuated with physical activity breaks. The effect of activity breaks on upper limb arteries has not been examined. This study assessed changes in brachial artery endothelial function following either a prolonged sitting period or breaking up this sedentary time by performing sets of callisthenics exercises. Ten healthy participants (6 men) completed 2 conditions in a counterbalanced order: (a) 1-h 26-min sitting, or (b) breaking up this period every 20 min by performing a set of 5 callisthenics exercises. Brachial artery endothelial function was assessed via ultrasound using the flow-mediated dilation (FMD) technique prior to and following each condition, while brachial shear rate (SR) was acquired after each set of callisthenics. There was no significant change in FMD over time (P = 0.09) or between conditions (P = 0.12). Compared to sitting, brachial SR increased following each set of callisthenics, with a significant difference after the third break (Sit: 33.94 ± 12.79 s -1 ; Callisthenics: 57.16 ± 30.48 s -1 , P = 0.02). Alterations in SR in the upper limbs suggest callisthenics may be an effective intervention to break up sedentary time and attenuate the potentially deleterious effects of prolonged sitting on cardiovascular health.

  17. The effect of α1 -adrenergic blockade on post-exercise brachial artery flow-mediated dilatation at sea level and high altitude.

    PubMed

    Tymko, Michael M; Tremblay, Joshua C; Hansen, Alex B; Howe, Connor A; Willie, Chris K; Stembridge, Mike; Green, Daniel J; Hoiland, Ryan L; Subedi, Prajan; Anholm, James D; Ainslie, Philip N

    2017-03-01

    Our objective was to quantify endothelial function (via brachial artery flow-mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate-intensity cycling exercise with and without administration of an α 1 -adrenergic blockade. Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise. At sea level, endothelial function decreased following 30 min of moderate-intensity exercise, and this decrease was abolished with α 1 -adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate-intensity exercise, and administration of α 1 -adrenergic blockade resulted in an increase in flow-mediated dilatation. Our data indicate that post-exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high-altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate-intensity exercise at both sea level and high altitude are mediated via an α 1 -adrenergic pathway. In a double-blinded, counterbalanced, randomized and placebo-controlled design, nine healthy participants performed a maximal-exercise test, and two 30 min sessions of semi-recumbent cycling exercise at 50% peak output following either placebo or α 1 -adrenergic blockade (prazosin; 0.05 mg kg  -1 ). These experiments were completed at both sea-level (344 m) and high altitude (3800 m). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (ultrasound) were recorded before, during and following exercise. Endothelial function assessed by brachial artery flow-mediated dilatation (FMD) was measured before, immediately following and 60 min after exercise. Our findings were: (1) at rest, FMD remained unchanged between sea level and high altitude (placebo P = 0.287; prazosin: P = 0.110); (2) FMD remained unchanged after maximal exercise at sea level and high altitude (P = 0.244); and (3) the 2.9 ± 0.8% (P = 0.043) reduction in FMD immediately after moderate-intensity exercise at sea level was abolished via α 1 -adrenergic blockade. Conversely, at high altitude, FMD was unaltered following moderate-intensity exercise, and administration of α 1 -adrenergic blockade elevated FMD (P = 0.032). Our results suggest endothelial function is differentially affected by exercise when exposed to hypobaric hypoxia. These findings have implications for understanding the chronic impacts of hypoxaemia on exercise, and the interactions between the α 1 -adrenergic pathway and endothelial function. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. The effect of α1‐adrenergic blockade on post‐exercise brachial artery flow‐mediated dilatation at sea level and high altitude

    PubMed Central

    Tremblay, Joshua C.; Hansen, Alex B.; Howe, Connor A.; Willie, Chris K.; Stembridge, Mike; Green, Daniel J.; Hoiland, Ryan L.; Subedi, Prajan; Anholm, James D.; Ainslie, Philip N.

    2016-01-01

    Key points Our objective was to quantify endothelial function (via brachial artery flow‐mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate‐intensity cycling exercise with and without administration of an α1‐adrenergic blockade.Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise.At sea level, endothelial function decreased following 30 min of moderate‐intensity exercise, and this decrease was abolished with α1‐adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate‐intensity exercise, and administration of α1‐adrenergic blockade resulted in an increase in flow‐mediated dilatation.Our data indicate that post‐exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high‐altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. Abstract We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate‐intensity exercise at both sea level and high altitude are mediated via an α1‐adrenergic pathway. In a double‐blinded, counterbalanced, randomized and placebo‐controlled design, nine healthy participants performed a maximal‐exercise test, and two 30 min sessions of semi‐recumbent cycling exercise at 50% peak output following either placebo or α1‐adrenergic blockade (prazosin; 0.05 mg kg −1). These experiments were completed at both sea‐level (344 m) and high altitude (3800 m). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (ultrasound) were recorded before, during and following exercise. Endothelial function assessed by brachial artery flow‐mediated dilatation (FMD) was measured before, immediately following and 60 min after exercise. Our findings were: (1) at rest, FMD remained unchanged between sea level and high altitude (placebo P = 0.287; prazosin: P = 0.110); (2) FMD remained unchanged after maximal exercise at sea level and high altitude (P = 0.244); and (3) the 2.9 ± 0.8% (P = 0.043) reduction in FMD immediately after moderate‐intensity exercise at sea level was abolished via α1‐adrenergic blockade. Conversely, at high altitude, FMD was unaltered following moderate‐intensity exercise, and administration of α1‐adrenergic blockade elevated FMD (P = 0.032). Our results suggest endothelial function is differentially affected by exercise when exposed to hypobaric hypoxia. These findings have implications for understanding the chronic impacts of hypoxaemia on exercise, and the interactions between the α1‐adrenergic pathway and endothelial function. PMID:28032333

  19. Downregulation of Endothelial Transient Receptor Potential Vanilloid Type 4 Channel and Small-Conductance of Ca2+-Activated K+ Channels Underpins Impaired Endothelium-Dependent Hyperpolarization in Hypertension.

    PubMed

    Seki, Takunori; Goto, Kenichi; Kiyohara, Kanako; Kansui, Yasuo; Murakami, Noboru; Haga, Yoshie; Ohtsubo, Toshio; Matsumura, Kiyoshi; Kitazono, Takanari

    2017-01-01

    Endothelium-dependent hyperpolarization (EDH)-mediated responses are impaired in hypertension, but the underlying mechanisms have not yet been determined. The activation of small- and intermediate-conductance of Ca 2+ -activated K + channels (SK Ca and IK Ca ) underpins EDH-mediated responses. It was recently reported that Ca 2+ influx through endothelial transient receptor potential vanilloid type 4 channel (TRPV4) is a prerequisite for the activation of SK Ca /IK Ca in endothelial cells in specific beds. Here, we attempted to determine whether the impairment of EDH in hypertension is attributable to the dysfunction of TRPV4 and S/IK Ca , using isolated superior mesenteric arteries of 20-week-old stroke-prone spontaneously hypertensive rats (SHRSP) and age-matched Wistar-Kyoto (WKY) rats. In the WKY arteries, EDH-mediated responses were reduced by a combination of SK Ca /IK Ca blockers (apamin plus TRAM-34; 1-[(2-chlorophenyl)diphenylmethl]-1H-pyrazole) and by the blockade of TRPV4 with the selective antagonist RN-1734 or HC-067047. In the SHRSP arteries, EDH-mediated hyperpolarization and relaxation were significantly impaired when compared with WKY. GSK1016790A, a selective TRPV4 activator, evoked robust hyperpolarization and relaxation in WKY arteries. In contrast, in SHRSP arteries, the GSK1016790A-evoked hyperpolarization was small and relaxation was absent. Hyperpolarization and relaxation to cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine, a selective SK Ca activator, were marginally decreased in SHRSP arteries compared with WKY arteries. The expression of endothelial TRPV4 and SK Ca protein was significantly decreased in the SHRSP mesenteric arteries compared with those of WKY, whereas function and expression of IK Ca were preserved in SHRSP arteries. These findings suggest that EDH-mediated responses are impaired in superior mesenteric arteries of SHRSP because of a reduction in both TRPV4 and SK Ca input to EDH. © 2016 American Heart Association, Inc.

  20. Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial.

    PubMed

    Cross, M D; Mills, N L; Al-Abri, M; Riha, R; Vennelle, M; Mackay, T W; Newby, D E; Douglas, N J

    2008-07-01

    The obstructive sleep apnoea/hypopnoea syndrome (OSAHS) is associated with hypertension and increased cardiovascular risk, particularly when accompanied by marked nocturnal hypoxaemia. The mechanisms of these associations are unclear. We hypothesised that OSAHS combined with severe nocturnal hypoxaemia causes impaired vascular function that can be reversed by continuous positive airways pressure (CPAP) therapy. We compared vascular function in two groups of patients with OSAHS: 27 with more than 20 4% desaturations/h (desaturator group) and 19 with no 4% and less than five 3% desaturations/h (non-desaturator group). In a randomised, double blind, placebo controlled, crossover trial, the effect of 6 weeks of CPAP therapy on vascular function was determined in the desaturator group. In all studies, vascular function was assessed invasively by forearm venous occlusion plethysmography during intra-arterial infusion of endothelium dependent (acetylcholine 5-20 microg/min and substance P 2-8 pmol/min) and independent (sodium nitroprusside 2-8 microg/min) vasodilators. Compared with the non-desaturator group, patients with OSAHS and desaturations had reduced vasodilatation to all agonists (p = 0.007 for all). The apnoea/hypopnoea index and desaturation frequency were inversely related to peak vasodilatation with acetylcholine (r = -0.44, p = 0.002 and r = -0.43, p = 0.003) and sodium nitroprusside (r = -0.42, p = 0.009 and r = -0.37, p = 0.02). In comparison with placebo, CPAP therapy improved forearm blood flow to all vasodilators (p = 0.01). Patients with OSAHS and frequent nocturnal desaturations have impaired endothelial dependent and endothelial independent vasodilatation that is proportional to hypoxaemia and is improved by CPAP therapy. Impaired vascular function establishes an underlying mechanism for the adverse cardiovascular consequences of OSAHS.

  1. [Effect of Alloxan-induced diabetes mellitus on the functions of bone marrow-derived and circulating endothelial progenitor cells].

    PubMed

    Tan, Q; Li, G P; Wang, Q S; Zheng, C H; Zhang, S Y

    2017-07-25

    Objective: To explore whether diabetes mellitus (DM) impairs functions of bone marrow-derived endothelial progenitor cells (BM-EPC) and circulating EPC. Methods: Diabetic model of rabbit was induced by Alloxan injection and the rabbits were then randomly divided into three groups: BM-EPC group, circulating EPC group, and DM group, with six rabbits in each group. Another 6 normal rabbits were enrolled as normal control group as well. 8 weeks later, BM-EPC and circulating EPC from diabetic and healthy rabbits were isolated and cultured. Colony number, proliferation, adhesion and tube formation function were detected. Exogenous diabetic BM-EPC and circulating EPC were analyzed for therapeutic efficacy in acute ischemia model of diabetic rabbits. Left ventricular (LV) function was assessed using Echocardiography. Capillary density and fibrosis area were evaluated by confocal laser scanning microscope (CLSM) and Masson-trichrome staining. The mRNA expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was analyzed using real-time quantitive PCR. Results: Colony number, proliferation, adhesion and tube formation function of diabetic circulating EPC were significantly reduced compared with healthy rabbits. DM impaired tube-forming ability of BM-EPC, but did not influence colony number, proliferation and adhesion function. Compared with circulating EPC and control group, BM-EPC group had fewer fibrosis area (6.98%±0.94% vs 13.03%±2.97% and 15.84%±4.74%, both P =0.001), higher capillary density [(792±87) vs (528±71) and (372±77) vessels/mm(2,) both P <0.001], higher mRNA expression of VEGF (6.25±2.33 vs 2.19±1.01 and 1.55±0.52, both P <0.001) and bFGF (6.38±2.65 vs 1.24±0.76 and 1.18±0.82, both P <0.001), higher left ventricular ejection fraction (LVEF) (61%±4% vs 47%±5% and 50%±10%, both P <0.05). Conclusions: DM not only impaired functions of circulating EPC, but also influenced tube formation function of BM-EPC. Auto transplantation of BM-EPC may rescue the ischemic myocardium by neovascularization and paracrine effect in diabetic rabbits.

  2. Proanthocyanidins from Vitis vinifera inhibit oxidative stress-induced vascular impairment in pulmonary arteries from diabetic rats.

    PubMed

    Pinna, Christian; Morazzoni, Paolo; Sala, Angelo

    2017-02-15

    Vitis vinifera L. (grape seed extract) is a natural source of proanthocyanidins with antioxidant and free radical-scavenging activities. Grape seed extract supplementation may prevent vascular endothelium impairment associated with diabetes mellitus in rat pulmonary artery. We evaluated endothelial function of rat pulmonary artery ex-vivo at the intermediate stage (4 weeks) of streptozotocin (STZ)-induced diabetes mellitus. We also evaluated the protective effect of grape seed extract administered daily, beginning the day after diabetes induction, or 15 days after diabetes induction, until the day of sacrifice. In addition, we compared the effect of grape seed extract supplementation with that of vitamin C. Rats were made diabetic with streptozotocin (STZ, 65mg/kg i.v.). Thirty days later rats were sacrificed and pulmonary vessels reactivity and endothelial function compared to that of age-matched healthy animals. Concentration-response curves to ACh, NE, sodium nitroprusside (NO donor), but not to histamine and iloprost (prostacyclin analog), were significantly altered 4 weeks after STZ-injection. Antioxidant supplementation (3mg/kg/day) with either vitamin C or grape seed extract, starting the day after diabetes induction, significantly improved vasodilation to ACh and SNP. Norepinephrine-induced contractions were preserved by grape seed extract, but not vitamin C supplementation. Conversely, vitamin C but not grape seed extract showed beneficial effects contrasting the loss of body weight in diabetic animals. Abnormal vascular function was not reversed when antioxidant supplementations were postponed 15 days after the induction of diabetes. This study provides scientific support for the therapeutic potential of an antioxidant therapy in endothelial impairment associated with diabetes. A daily supplementation of grape seed proanthocyanidins and/or vitamin C given at the earlier stage of disease may have a complementary role in the pharmacological therapy of diabetes and pulmonary vascular dysfunction. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Vascular endothelial function and oxidative stress mechanisms in patients with Behçet's syndrome.

    PubMed

    Chambers, J C; Haskard, D O; Kooner, J S

    2001-02-01

    We sought to test the hypothesis that vascular endothelial function is impaired in Behçet's syndrome and reflects increased levels of oxidative stress. Behçet's syndrome is a multisystem inflammatory disorder commonly complicated by vascular thrombosis and arterial aneurysm formation. The precise mechanisms underlying vascular disease in Behçet's syndrome are not known. We studied 19 patients with Behçet's syndrome (18 to 50 years old, 9 men) and 21 healthy volunteers (18 to 50 years old, 10 men). Brachial artery flow-mediated dilation (endothelium-dependent), and nitroglycerin (NTG)-induced dilation (endothelium-independent) were measured. To investigate oxidative stress mechanisms, vascular studies were repeated 1 h after administration of vitamin C (1 g, intravenous) in 12 patients and 12 control subjects. Flow-mediated dilation was reduced in patients with Behcet's syndrome as compared with control subjects (0.7 +/- 0.9% vs. 5.7 +/- 0.9%, p = 0.001). In contrast, there were no significant differences in the brachial artery diameter (4.2 +/- 0.2 vs. 4.0 +/- 0.2 mm, p = 0.47) or NTG-induced dilation (19.7 +/- 1.9% vs. 19.7 +/- 1.2%, p = 0.98). In regression analysis, Behçet's syndrome was associated with impaired flow-mediated dilation independent of age, gender, brachial artery diameter, blood pressure, cholesterol and glucose. Vitamin C increased flow-mediated dilation in Behçet's syndrome (0.2 +/- 0.7% to 3.5 +/- 1.0%, p = 0.002), but not in control subjects (4.3 +/- 0.6% to 4.7 +/- 0.4%, p = 0.51). In both groups, NTG-induced dilation and brachial artery diameter were unchanged after vitamin C treatment. Vascular endothelial function is impaired in Behcet's syndrome and can be rapidly improved by vitamin C treatment. Our results support a role for oxidative stress in the pathophysiology of Behçet's syndrome and provide a rationale for therapeutic studies aimed at reducing vascular complications in this disorder.

  4. Functional and Biochemical Endothelial Profiling In Vivo in a Murine Model of Endothelial Dysfunction; Comparison of Effects of 1-Methylnicotinamide and Angiotensin-converting Enzyme Inhibitor

    PubMed Central

    Bar, Anna; Olkowicz, Mariola; Tyrankiewicz, Urszula; Kus, Edyta; Jasinski, Krzysztof; Smolenski, Ryszard T.; Skorka, Tomasz; Chlopicki, Stefan

    2017-01-01

    Although it is known that 1-methylnicotinamide (MNA) displays vasoprotective activity in mice, as yet the effect of MNA on endothelial function has not been demonstrated in vivo. Here, using magnetic resonance imaging (MRI) we profile the effects of MNA on endothelial phenotype in mice with atherosclerosis (ApoE/LDLR-/-) in vivo, in comparison to angiotensin (Ang) -converting enzyme (ACE) inhibitor (perindopril), with known vasoprotective activity. On a biochemical level, we analyzed whether MNA- or perindopril-induced improvement in endothelial function results in changes in ACE/Ang II-ACE2/Ang-(1–7) balance, and L-arginine/asymmetric dimethylarginine (ADMA) ratio. Endothelial function and permeability were evaluated in the brachiocephalic artery (BCA) in 4-month-old ApoE/LDLR-/- mice that were non-treated or treated for 1 month or 2 months with either MNA (100 mg/kg/day) or perindopril (10 mg/kg/day). The 3D IntraGate®FLASH sequence was used for evaluation of BCA volume changes following acetylcholine (Ach) administration, and for relaxation time (T1) mapping around BCA to assess endothelial permeability using an intravascular contrast agent. Activity of ACE/Ang II and ACE2/Ang-(1–7) pathways as well as metabolites of L-arginine/ADMA pathway were measured using liquid chromatography/mass spectrometry-based methods. In non-treated 6-month-old ApoE/LDLR-/- mice, Ach induced a vasoconstriction in BCA that amounted to –7.2%. 2-month treatment with either MNA or perindopril resulted in the reversal of impaired Ach-induced response to vasodilatation (4.5 and 5.5%, respectively) and a decrease in endothelial permeability (by about 60% for MNA-, as well as perindopril-treated mice). Improvement of endothelial function by MNA and perindopril was in both cases associated with the activation of ACE2/Ang-(1–7) and the inhibition of ACE/Ang II axes as evidenced by an approximately twofold increase in Ang-(1–9) and Ang-(1–7) and a proportional decrease in Ang II and its active metabolites. Finally, MNA and perindopril treatment resulted in an increase in L-arginine/ADMA ratio by 107% (MNA) and 140% (perindopril), as compared to non-treated mice. Functional and biochemical endothelial profiling in ApoE/LDLR-/- mice in vivo revealed that 2-month treatment with MNA (100 mg/kg/day) displayed a similar profile of vasoprotective effect as 2-month treatment with perindopril (10 mg/kg/day): i.e., the improvement in endothelial function that was associated with the beneficial changes in ACE/Ang II-ACE2/Ang (1–7) balance and in L-arginine/ADMA ratio in plasma. PMID:28443021

  5. NO Signaling in the Cardiovascular System and Exercise.

    PubMed

    Fernandes, Tiago; Gomes-Gatto, Camila V; Pereira, Noemy P; Alayafi, Yahya R; das Neves, Vander J; Oliveira, Edilamar M

    2017-01-01

    Nitric oxide (NO) is a small molecule implicated in multiple signal transduction pathways thus contributing to the regulation of many cellular functions. The identification of NO synthase (NOS) isoforms and the subsequent characterization of the mechanisms of cell activation of the enzymes permitted the partial understanding of both the physiological and pathological processes. NO bioavailability plays an important role in the pathophysiology of cardiovascular disease and its reduction in endothelial cells is strictly associated to endothelial dysfunction which, in turn, correlates with cardiovascular mortality. Indeed, endothelial NO synthase (eNOS) has a key role in limiting cardiac dysfunction and remodeling in heart diseases, in part by decreasing myocyte hypertrophy. Conversely, exercise training is recommended to prevent and treat cardiovascular diseases-associated disorders at least by enhanced NO synthase activity and expression, and increased production of antioxidants, which prevents premature breakdown of NO. Exercise training may cause an improvement in endothelial function for both experimental animals and humans; Studies in both healthy subjects and patients with impaired NO-related vasorelaxation remarked exercise training ability to improve vascular structure and function and endothelial homeostasis. This chapter will briefly consider the importance of NO signaling in the maintenance of cardiovascular physiology, and discuss recent insights into the effect of exercise training on the signaling pathways that modulate NO synthesis and degradation in health and cardiovascular disease. In addition, we will highlight the molecular mechanisms via which microRNAs (miRs) target NO signaling in the cardiovascular system, and NO as a candidate molecule for development of new therapies.

  6. Age-related impairment of endothelial progenitor cell migration correlates with structural alterations of heparan sulfate proteoglycans.

    PubMed

    Williamson, Kate A; Hamilton, Andrew; Reynolds, John A; Sipos, Peter; Crocker, Ian; Stringer, Sally E; Alexander, Yvonne M

    2013-02-01

    Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit-Hill cells and circulating angiogenic cells are subject to age-associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age-related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age-associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2-O-sulfated-uronic acid, N, 6-O-sulfated-glucosamine (UA[2S]-GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood-derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age-related vascular pathologies. © 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  7. Participation of reactive oxygen species in diabetes-induced endothelial dysfunction.

    PubMed

    Zúrová-Nedelcevová, Jana; Navarová, Jana; Drábiková, Katarína; Jancinová, Viera; Petríková, Margita; Bernátová, Iveta; Kristová, Viera; Snirc, Vladimír; Nosál'ová, Viera; Sotníková, Ruzena

    2006-12-01

    In the present study, the relationship between diabetes-induced hyperglycemia, reactive oxygen species production and endothelium-mediated arterial function was examined. The effect of antioxidant on the reactive oxygen species induced damage was tested. Diabetes was induced by streptozotocin (STZ), 3 x 30 mg/kg i.p., administered on three consecutive days. After 10 weeks of diabetes, the functional state of the endothelium of the aorta was tested, endothelemia evaluation was performed and systolic blood pressure was measured. Reactive oxygen species (ROS) formation in blood and the aorta was measured using luminol-enhanced chemiluminescence (CL). Levels of reduced glutathione (GSH) were determined in the aorta, kidney, and plasma. To study the involvement of hyperglycemia in functional impairment of the endothelium, aortal rings incubated in solution with high glucose concentration were tested in in vitro experiments. After 10 weeks of diabetes, endothelial injury was observed, exhibited by diminished endothelium-dependent relaxation of the aorta, increased endothelemia and by elevated systolic blood pressure. Using luminol-enhanced CL, a significant increase of ROS production was found in arterial tissue and blood. GSH levels were significantly increased in the kidney, while there were no GSH changes in plasma and the aorta. Incubation of aortic rings in solution with high glucose concentration led to impairment of endothelium-dependent relaxation. The synthetic antioxidant SMe1EC2 was able to restore reduced endothelium-mediated relaxation. Our results suggest an important role of hyperglycemia-induced ROS production in mediating endothelial dysfunction in experimental diabetes, confirmed by CL and the protective effect of the antioxidant SMe1EC2.

  8. Cerebral Hemodynamics and Systemic Endothelial Function Are Already Impaired in Well-Controlled Type 2 Diabetic Patients, with Short-Term Disease

    PubMed Central

    Altavilla, Riccardo; Di Flaviani, Alessandra; Giordani, Ilaria; Malandrucco, Ilaria; Picconi, Fabiana; Passarelli, Francesco; Pasqualetti, Patrizio; Ercolani, Matilde; Vernieri, Fabrizio; Frontoni, Simona

    2013-01-01

    Objective Impaired cerebral vasomotor reactivity (VMR) and flow-mediated dilation (FMD) were found in selected subgroups of type 2 diabetes mellitus (T2DM) patients with long-term disease. Our study aimed to evaluate cerebral hemodynamics, systemic endothelial function and sympatho-vagal balance in a selected population of well-controlled T2DM patients with short-term disease and without cardiac autonomic neuropathy (CAN). Research Design and Methods Twenty-six T2DM patients with short-term (4.40±4.80 years) and well-controlled (HbA1C = 6.71±1.29%) disease, without any complications, treated with diet and/or metformin, were consecutively recruited. Eighteen controls, comparable by sex and age, were enrolled also. Results FMD and shear rate FMD were found to be reduced in T2DM subjects with short-term disease (8.5% SD 3.5 and 2.5 SD 1.3, respectively) compared to controls (15.4% SD 4.1 and 3.5 SD 1.4; p<.001 and p<.05). T2DM patients also displayed reduced VMR values than controls (39.4% SD 12.4 vs 51.7%, SD 15.5; p<.05). Sympatho-vagal balance was not different in T2DM patients compared to healthy subjects. FMD and shear rate FMD did not correlate with VMR in T2DM patients or in controls (p>.05). Conclusions In well-controlled T2DM patients with short-term disease cerebral hemodynamics and systemic endothelial function are altered while autonomic balance appeared to be preserved. PMID:24391751

  9. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Metabolic Syndrome and Endothelial Functional Risk Biomarkers in Healthy Adults: A Randomized Double-Blind Controlled Trial

    PubMed Central

    Sanchez-Rodriguez, Estefania; Lima-Cabello, Elena; Biel-Glesson, Sara; Fernandez-Navarro, Jose R.; Calleja, Miguel A.; Roca, Maria; Espejo-Calvo, Juan A.; Gil-Extremera, Blas; de la Torre, Rafael; Fito, Montserrat; Covas, Maria-Isabel; Alche, Juan de Dios; Martinez de Victoria, Emilio; Mesa, Maria D.

    2018-01-01

    The aim of this study was to evaluate the effect of virgin olive oils (VOOs) enriched with phenolic compounds and triterpenes on metabolic syndrome and endothelial function biomarkers in healthy adults. The trial was a three-week randomized, crossover, controlled, double-blind, intervention study involving 58 subjects supplemented with a daily dose (30 mL) of three oils: (1) a VOO (124 ppm of phenolic compounds and 86 ppm of triterpenes); (2) an optimized VOO (OVOO) (490 ppm of phenolic compounds and 86 ppm of triterpenes); and (3) a functional olive oil (FOO) high in phenolic compounds (487 ppm) and enriched with triterpenes (389 ppm). Metabolic syndrome and endothelial function biomarkers were determined in vivo and ex vivo. Plasma high density lipoprotein cholesterol (HDLc) increased after the OVOO intake. Plasma endothelin-1 levels decreased after the intake of the three olive oils, and in blood cell cultures challenged. Daily intake of VOO enriched in phenolic compounds improved plasma HDLc, although no differences were found at the end of the three interventions, while VOO with at least 124 ppm of phenolic compounds, regardless of the triterpenes content improved the systemic endothelin-1 levels in vivo and ex vivo. No effect of triterpenes was observed after three weeks of interventions. Results need to be confirmed in subjects with metabolic syndrome and impaired endothelial function (Clinical Trials number NCT02520739). PMID:29772657

  10. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Metabolic Syndrome and Endothelial Functional Risk Biomarkers in Healthy Adults: A Randomized Double-Blind Controlled Trial.

    PubMed

    Sanchez-Rodriguez, Estefania; Lima-Cabello, Elena; Biel-Glesson, Sara; Fernandez-Navarro, Jose R; Calleja, Miguel A; Roca, Maria; Espejo-Calvo, Juan A; Gil-Extremera, Blas; Soria-Florido, Maria; de la Torre, Rafael; Fito, Montserrat; Covas, Maria-Isabel; Alche, Juan de Dios; Martinez de Victoria, Emilio; Gil, Angel; Mesa, Maria D

    2018-05-16

    The aim of this study was to evaluate the effect of virgin olive oils (VOOs) enriched with phenolic compounds and triterpenes on metabolic syndrome and endothelial function biomarkers in healthy adults. The trial was a three-week randomized, crossover, controlled, double-blind, intervention study involving 58 subjects supplemented with a daily dose (30 mL) of three oils: (1) a VOO (124 ppm of phenolic compounds and 86 ppm of triterpenes); (2) an optimized VOO (OVOO) (490 ppm of phenolic compounds and 86 ppm of triterpenes); and (3) a functional olive oil (FOO) high in phenolic compounds (487 ppm) and enriched with triterpenes (389 ppm). Metabolic syndrome and endothelial function biomarkers were determined in vivo and ex vivo. Plasma high density lipoprotein cholesterol (HDLc) increased after the OVOO intake. Plasma endothelin-1 levels decreased after the intake of the three olive oils, and in blood cell cultures challenged. Daily intake of VOO enriched in phenolic compounds improved plasma HDLc, although no differences were found at the end of the three interventions, while VOO with at least 124 ppm of phenolic compounds, regardless of the triterpenes content improved the systemic endothelin-1 levels in vivo and ex vivo. No effect of triterpenes was observed after three weeks of interventions. Results need to be confirmed in subjects with metabolic syndrome and impaired endothelial function (Clinical Trials number NCT02520739).

  11. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    PubMed

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. The association between endothelial microparticles and inflammation in patients with systemic sclerosis and Raynaud's phenomenon as detected by functional imaging.

    PubMed

    Jung, Christian; Drummer, Karl; Oelzner, Peter; Figulla, Hans R; Boettcher, Joachim; Franz, Marcus; Betge, Stefan; Foerster, Martin; Wolf, Gunter; Pfeil, Alexander

    2015-01-01

    Systemic sclerosis (SSc) is a systemic, autoimmune connective tissue disease characterized by vasculopathy and microvascular changes. Fluorescence Optical Imaging (FOI) is a technique used to assess inflammation in patients with arthritis; in this study FOI is used to quantify inflammation in the hand. Endothelial Microparticle (EMP) can reflect damage or activation of the endothelium but also actively modulate processes of inflammation, coagulation and vascular function. The aim of the present study was to quantify EMP and FOI, to determine an association between these microparticles and inflammation and to endothelial function. EMP were quantified in plasma samples of 25 patients (24 female, 1 male, age: 41 ± 9 years) with SSc using flow cytometry. EMP was defined as CD31+/CD42- MP, and CD62+ MP. Perivascular inflammation was assessed using fluorescence optical imaging (FOI) of the hand. Macrovascular endothelial function was non-invasively estimated using the Endopat system. Plasma levels of CD31+/CD42- EMP and CD62+ EMP were lower in patients with SSc compared to controls (both p <  0.05). An impaired endothelial function with an increased hyperemia index was observed. A strong association could be demonstrated between CD62+ EMP and perivascular soft tissue inflammation as assessed by the FOI global score (Spearman, p = 0.002, r = 0.61). EMP indicate molecular vascular damage in SSc; in this study a strong association between EMP and perivascular inflammation as quantified by FOI is demonstrated. Consequently EMP, using FOI, may be a potential marker benefitting the diagnosis and therapy monitoring of patients with SSc with associated Raynaud's phenomenon.

  13. Testosterone Deficiency Accelerates Neuronal and Vascular Aging of SAMP8 Mice: Protective Role of eNOS and SIRT1

    PubMed Central

    Ota, Hidetaka; Akishita, Masahiro; Akiyoshi, Takuyu; Kahyo, Tomoaki; Setou, Mitsutoshi; Ogawa, Sumito; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi

    2012-01-01

    Oxidative stress and atherosclerosis-related vascular disorders are risk factors for cognitive decline with aging. In a small clinical study in men, testosterone improved cognitive function; however, it is unknown how testosterone ameliorates the pathogenesis of cognitive decline with aging. Here, we investigated whether the cognitive decline in senescence-accelerated mouse prone 8 (SAMP8), which exhibits cognitive impairment and hypogonadism, could be reversed by testosterone, and the mechanism by which testosterone inhibits cognitive decline. We found that treatment with testosterone ameliorated cognitive function and inhibited senescence of hippocampal vascular endothelial cells of SAMP8. Notably, SAMP8 showed enhancement of oxidative stress in the hippocampus. We observed that an NAD+-dependent deacetylase, SIRT1, played an important role in the protective effect of testosterone against oxidative stress-induced endothelial senescence. Testosterone increased eNOS activity and subsequently induced SIRT1 expression. SIRT1 inhibited endothelial senescence via up-regulation of eNOS. Finally, we showed, using co-culture system, that senescent endothelial cells promoted neuronal senescence through humoral factors. Our results suggest a critical role of testosterone and SIRT1 in the prevention of vascular and neuronal aging. PMID:22238626

  14. Viscoelastic response of a model endothelial glycocalyx

    NASA Astrophysics Data System (ADS)

    Nijenhuis, Nadja; Mizuno, Daisuke; Spaan, Jos A. E.; Schmidt, Christoph F.

    2009-06-01

    Many cells cover themselves with a multifunctional polymer coat, the pericellular matrix (PCM), to mediate mechanical interactions with the environment. A particular PCM, the endothelial glycocalyx (EG), is formed by vascular endothelial cells at their luminal side, forming a mechanical interface between the flowing blood and the endothelial cell layer. The glycosaminoglycan (GAG) hyaluronan (HA) is involved in the main functions of the EG, mechanotransduction of fluid shear stress and molecular sieving. HA, due to its length, is the only GAG in the EG or any other PCM able to form an entangled network. The mechanical functions of the EG are, however, impaired when any one of its components is removed. We here used microrheology to measure the effect of the EG constituents heparan sulfate, chondroitin sulfate, whole blood plasma and albumin on the high-bandwidth mechanical properties of a HA solution. Furthermore, we probed the effect of the hyaldherin aggrecan, a constituent of the PCM of chondrocytes, and very similar to versican (present in the PCM of various cells, and possibly in the EG). We show that components directly interacting with HA (chondroitin sulfate and aggrecan) can increase the viscoelastic shear modulus of the polymer composite.

  15. The Interaction Between IGF-1, Atherosclerosis and Vascular Aging

    PubMed Central

    Higashi, Yusuke; Quevedo, Henry C.; Tiwari, Summit; Sukhanov, Sergiy; Shai, Shaw-Yung; Anwar, Asif; Delafontaine, Patrice

    2014-01-01

    The process of vascular aging encompasses alterations in the function of endothelial (EC) and vascular smooth muscle cells (VSMCs) via oxidation, inflammation, cell senescence and epigenetic modifications, increasing the probability of atherosclerosis. Aged vessels exhibit decreased endothelial antithrombogenic properties, increased reactive oxygen species (ROS) generation and inflammatory signaling, increased migration of VSMCs to the subintimal space, impaired angiogenesis and increased elastin degradation. The key initiating step in atherogenesis is subendothelial accumulation of apolipoprotein-B containing low density lipoproteins resulting in activation of endothelial cells and recruitment of monocytes. Activated endothelial cells secrete “chemokines” that interact with cognate chemokine receptors on monocytes and promote directional migration. Recruitment of immune cells establishes a pro-inflammatory status, further causing elevated oxidative stress, which in turn triggers a series of events including apoptotic or necrotic death of vascular and non-vascular cells. Increased oxidative stress is also considered to be a key factor in mechanisms of aging-associated changes in tissue integrity and function. Experimental evidence indicates that insulin-like growth factor-1 (IGF-1) exerts anti-oxidant, anti-inflammatory and pro-survival effects on the vasculature, reducing atherosclerotic plaque burden and promoting features of atherosclerotic plaque stability. PMID:24943302

  16. [Correlation analysis between biochemical and biophysical markers of endothelium damage in children with diabetes type 1].

    PubMed

    Głowińska-Olszewska, Barbara; Urban, Mirosława; Tołwińska, Joanna; Peczyńska, Jadwiga; Florys, Bozena

    2005-01-01

    Endothelial damage is one of the earliest stages in the atherosclerosis process. Adhesion molecules, secreted from dysfunctional endothelial cells are considered as early markers of atherosclerotic disease. Ultrasonographic evaluation of brachial arteries serves to detect biophysical changes in endothelial function, and evaluation of carotid arteries intima-media thickness allows to evaluate the earliest structural changes in the vessels. The aim of the study was to the evaluate levels of selected adhesion molecules (sICAM-1, sVCAM-1, sE-selectin, sP-selectin) and endothelial function with use of brachial artery dilatation study (flow mediated dilation--FMD, nitroglycerine mediated dilation--NTGMD) and IMT in carotid arteries in children and adolescents with diabetes type 1, as well as the correlation analysis between biochemical and biophysical markers of endothelial dysfunction. We studied 76 children and adolescents, with mean age--15.6+/-2.5 years, suffering from diabetes mean 7.8+/-2.8 years, mean HbA1c--8.4+/-1.5%. Control group consisted of 33 healthy children age and gender matched. Adhesion molecules levels were estimated with the use of immunoenzymatic methods (R&D Systems). Endothelial function was evaluated by study of brachial arteries dilation--FMD, NTGMD, with ultrasonographic evaluation (Hewlett Packard Sonos 4500) after Celermajer method, and IMT after Pignoli method. In the study group we found elevated levels of sICAM-1: 309.54+/-64 vs. 277.85+/-52 ng/ml in the control group (p<00.05) and elevated level of sE-selectin: 87.81+/-35 vs. 66.21+/-22 ng/ml (p<00.05). We found significantly impaired FMD in brachial arteries in the study group--7.51+/-4.52 vs. 12.61+/-4.65% (p<00.05) and significantly higher IMT value: 0.51+/-0.07 vs. 0.42+/-0.05 mm (p<00.001). Correlation analysis revealed a significant negative correlation between sE-selectin and FMD - r=-0.33 (p=0.004), and a positive correlation between E-selectin and IMT: r=0.32 (p=0.005). 1. In children and adolescents with diabetes type 1 we found elevated levels of adhesion molecules sICAM-1 and sE-selectin, what can confirm an endothelial dysfunction in these patients. 2. Significant negative correlation between sE-selectin level and FMD, and positive correlation between sE-selectin and IMT were found. 3. Biophysical proof of this damage is impaired brachial artery dilatation--FMD, and increased IMT values provide information about structural changes in the vessels.

  17. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  18. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    PubMed

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  19. Hypercholesterolemia potentiates aortic endothelial response to inhaled diesel exhaust

    PubMed Central

    Maresh, J. Gregory; Campen, Matthew J.; Reed, Matthew D.; Darrow, April L.; Shohet, Ralph V.

    2012-01-01

    Background Inhalation of diesel exhaust induces vascular effects including impaired endothelial function and increased atherosclerosis. Objective To examine the in vivo effects of subchronic diesel exhaust exposure on endothelial cell transcriptional responses in the presence of hypercholesterolemia. Methods ApoE (−/−) and ApoE (+/+) mice inhaled diesel exhaust diluted to particulate matter levels of 300 or 1000 μg/m3 vs. filtered air. After 30 days, endothelial cells were harvested from dispersed aortic cells by fluorescent-activated cell sorting (FACS). Relative mRNA abundance was evaluated by microarray analysis to measure strain-specific transcriptional responses in mice exposed to dilute diesel exhaust vs. filtered air. Results Forty-nine transcripts were significantly dysregulated by >2.8-fold in the endothelium of ApoE (−/−) mice receiving diesel exhaust at 300 or 1000 μg/m3. These included transcripts with roles in plasminogen activation, endothelial permeability, inflammation, genomic stability, and atherosclerosis; similar responses were not observed in ApoE (+/+) mice. Conclusions The potentiation of diesel exhaust-related endothelial gene regulation by hypercholesterolemia helps to explain air pollution-induced vascular effects in animals and humans. The observed regulated transcripts implicate pathways important in the acceleration of atherosclerosis by air pollution. PMID:21222557

  20. Role of tumour necrosis factor receptor-1 and nuclear factor-κB in production of TNF-α-induced pro-inflammatory microparticles in endothelial cells.

    PubMed

    Lee, S K; Yang, S-H; Kwon, I; Lee, O-H; Heo, J H

    2014-09-02

    Tumour necrosis factor-α (TNF-α) is upregulated in many inflammatory diseases and is also a potent agent for microparticle (MP) generation. Here, we describe an essential role of TNF-α in the production of endothelial cell-derived microparticles (EMPs) in vivo and the function of TNF-α-induced EMPs in endothelial cells. We found that TNF-α rapidly increased blood levels of EMPs in mice. Treatment of human umbilical vein endothelial cells (HUVECs) with TNF-α also induced EMP formation in a time-dependent manner. Silencing of TNF receptor (TNFR)-1 or inhibition of the nuclear factor-κB (NF-κB) in HUVECs impaired the production of TNF-α-induced EMP. Incubation of HUVECs with PKH-67-stained EMPs showed that endothelial cells readily engulfed EMPs, and the engulfed TNF-α-induced EMPs promoted the expression of pro-apoptotic molecules and upregulated intercellular adhesion molecule-1 level on the cell surface, which led to monocyte adhesion. Collectively, our findings indicate that the generation of TNF-α-induced EMPs was mediated by TNFR1 or NF-κB and that EMPs can contribute to apoptosis and inflammation of endothelial cells.

  1. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma

    PubMed Central

    2014-01-01

    Background Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Methods Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (−72 kPa/41 ms, −67 kPa/104 ms, and −91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. Results The pressure loading device could produce positive pressure pulses with amplitudes of 53–1348 kPa and durations of 9–29.1 ms and negative pressure pulses with amplitudes of −52–−93 kPa and durations of 42.9–179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. Conclusions The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure. PMID:24739360

  2. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats.

    PubMed

    Friques, Andreia G F; Arpini, Clarisse M; Kalil, Ieda C; Gava, Agata L; Leal, Marcos A; Porto, Marcella L; Nogueira, Breno V; Dias, Ananda T; Andrade, Tadeu U; Pereira, Thiago Melo C; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2015-12-30

    The beverage obtained by fermentation of milk with kefir grains, a complex matrix containing acid bacteria and yeasts, has been shown to have beneficial effects in various diseases. However, its effects on hypertension and endothelial dysfunction are not yet clear. In this study, we evaluated the effects of kefir on endothelial cells and vascular responsiveness in spontaneously hypertensive rats (SHR). SHR were treated with kefir (0.3 mL/100 g body weight) for 7, 15, 30 and 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Vascular endothelial function was evaluated in aortic rings through the relaxation response to acetylcholine (ACh). The balance between reactive oxygen species (ROS) and nitric oxide (NO) synthase was evaluated through specific blockers in the ACh-induced responses and through flow cytometry in vascular tissue. Significant effects of kefir were observed only after treatment for 60 days. The high blood pressure and tachycardia exhibited by the SHR were attenuated by approximately 15 % in the SHR-kefir group. The impaired ACh-induced relaxation of the aortic rings observed in the SHR (37 ± 4 %, compared to the Wistar rats: 74 ± 5 %), was significantly attenuated in the SHR group chronically treated with kefir (52 ± 4 %). The difference in the area under the curve between before and after the NADPH oxidase blockade or NO synthase blockade of aortic rings from SHR were of approximately +90 and -60 %, respectively, when compared with Wistar rats. In the aortic rings from the SHR-kefir group, these values were reduced to +50 and -40 %, respectively. Flow cytometric analysis of aortic endothelial cells revealed increased ROS production and decreased NO bioavailability in the SHR, which were significantly attenuated by the treatment with kefir. Scanning electronic microscopy showed vascular endothelial surface injury in SHR, which was partially protected following administration of kefir for 60 days. In addition, the recruitment of endothelial progenitor cells was decreased in the non-treated SHR and partially restored by kefir treatment. Kefir treatment for 60 days was able to improve the endothelial function in SHR by partially restoring the ROS/NO imbalance and the endothelial architecture due to endothelial progenitor cells recruitment.

  3. Relationship between S-adenosylmethionine, S-adenosylhomocysteine, asymmetric dimethylarginine, and endothelial function in healthy human subjects during experimental hyper- and hypohomocysteinemia.

    PubMed

    Doshi, Sagar; McDowell, Ian; Goodfellow, Jonathan; Stabler, Sally; Boger, Rainer; Allen, Robert; Newcombe, Robert; Lewis, Malcolm; Moat, Stuart

    2005-03-01

    Experimental hyperhomocysteinemia after an oral methionine or homocysteine load is associated with impaired nitric oxide-dependent vasodilatation in healthy human beings. However, it remains unproven that this effect is mediated by elevations in plasma homocysteine. There is evidence that an increase in plasma homocysteine may increase the formation of asymmetric dimethylarginine (ADMA), an inhibitor of nitric oxide synthase. The methyl groups within ADMA are derived from the conversion of S -adenosylmethionine to S -adenosylhomocysteine intermediates in the methionine/homocysteine pathway. No previous study has assessed the role of methylation status, its impact on ADMA formation, and their association with endothelial function in healthy human beings. In a randomized, placebo-controlled, crossover study, 10 healthy subjects (mean age, 29.1 +/- 3.9 years) were administered an oral dose of methionine (0.1 g/kg), l -homocysteine (0.01 g/kg), N-acetylcysteine (NAC) (0.1 g/kg), or placebo. Endothelial function as assessed by flow-mediated dilatation (FMD) of the brachial artery was impaired after both the methionine and homocysteine load compared with placebo at 4 hours (36 +/- 15, 67 +/- 23 vs 219 +/- 26 microm, respectively, P < .001). N-Acetylcysteine had no effect on flow-mediated dilatation. Plasma total homocysteine was significantly elevated at 4 hours after methionine (23.1 +/- 6.2) and homocysteine (41.5 +/- 8.9) loading, but significantly reduced after NAC 2.4 +/- 0.6 vs 7.1 +/- 2.1 micromol/L in the placebo (P < .001). Plasma S-adenosylmethionine/S-adenosylhomocysteine ratio was significantly (P < .001) increased at 4 hours after methionine (10.9 +/- 0.7) compared with homocysteine (5.4 +/- 0.4), NAC (5.0 +/- 0.3), and placebo (6.0 +/- 0.5). Plasma ADMA concentrations were not altered by any intervention. Our results suggest that endothelial dysfunction due to methionine or homocysteine loading is not associated with an increase in plasma ADMA or a disruption in methylation status.

  4. Aging and vascular endothelial function in humans

    PubMed Central

    SEALS, Douglas R.; JABLONSKI, Kristen L.; DONATO, Anthony J.

    2012-01-01

    Advancing age is the major risk factor for the development of CVD (cardiovascular diseases). This is attributable, in part, to the development of vascular endothelial dysfunction, as indicated by reduced peripheral artery EDD (endothelium-dependent dilation) in response to chemical [typically ACh (acetylcholine)] or mechanical (intravascular shear) stimuli. Reduced bioavailability of the endothelium-synthesized dilating molecule NO (nitric oxide) as a result of oxidative stress is the key mechanism mediating reduced EDD with aging. Vascular oxidative stress increases with age as a consequence of greater production of reactive oxygen species (e.g. superoxide) without a compensatory increase in antioxidant defences. Sources of increased superoxide production include up-regulation of the oxidant enzyme NADPH oxidase, uncoupling of the normally NO-producing enzyme, eNOS (endothelial NO synthase) (due to reduced availability of the cofactor tetrahydrobiopterin) and increased mitochondrial synthesis during oxidative phosphorylation. Increased bioactivity of the potent endothelial-derived constricting factor ET-1 (endothelin-1), reduced endothelial production of/responsiveness to dilatory prostaglandins, the development of vascular inflammation, formation of AGEs (advanced glycation end-products), an increased rate of endothelial apoptosis and reduced expression of oestrogen receptor α (in postmenopausal females) also probably contribute to impaired EDD with aging. Several lifestyle and biological factors modulate vascular endothelial function with aging, including regular aerobic exercise, dietary factors (e.g. processed compared with non-processed foods), body weight/fatness, vitamin D status, menopause/oestrogen deficiency and a number of conventional and non-conventional risk factors for CVD. Given the number of older adults now and in the future, more information is needed on effective strategies for the prevention and treatment of vascular endothelial aging. PMID:21244363

  5. Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis.

    PubMed

    Imamaki, Rie; Ogawa, Kazuko; Kizuka, Yasuhiko; Komi, Yusuke; Kojima, Soichi; Kotani, Norihiro; Honke, Koichi; Honda, Takashi; Taniguchi, Naoyuki; Kitazume, Shinobu

    2018-05-02

    Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 -/- mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 -/- endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 -/- mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.

  6. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    USDA-ARS?s Scientific Manuscript database

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  7. Heterozygous Null Bone Morphogenetic Protein Receptor Type 2 Mutations Promote SRC Kinase-dependent Caveolar Trafficking Defects and Endothelial Dysfunction in Pulmonary Arterial Hypertension*

    PubMed Central

    Prewitt, Allison R.; Ghose, Sampa; Frump, Andrea L.; Datta, Arumima; Austin, Eric D.; Kenworthy, Anne K.; de Caestecker, Mark P.

    2015-01-01

    Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients. PMID:25411245

  8. Longitudinal assessment of maternal endothelial function and markers of inflammation and placental function throughout pregnancy in lean and obese mothers.

    PubMed

    Stewart, Frances M; Freeman, Dilys J; Ramsay, Jane E; Greer, Ian A; Caslake, Muriel; Ferrell, William R

    2007-03-01

    Obesity in pregnancy is increasing and is a risk factor for metabolic pathology such as preeclampsia. In the nonpregnant, obesity is associated with dyslipidemia, vascular dysfunction, and low-grade chronic inflammation. Our aim was to measure microvascular endothelial function in lean and obese pregnant women at intervals throughout their pregnancies and at 4 months after delivery. Plasma markers of endothelial function, inflammation, and placental function and their association with microvascular function were also assessed. Women in the 1st trimester of pregnancy were recruited, 30 with a body mass index (BMI) less than 30 kg/m(2) and 30 with a BMI more than or equal to 30 kg/m(2) matched for age, parity, and smoking status. In vivo endothelial-dependent and -independent microvascular function was measured using laser Doppler imaging in the 1st, 2nd, and 3rd trimesters of pregnancy and at 4 months postnatal. Plasma markers of endothelial activation [soluble intercellular cell adhesion molecule-1 (sVCAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF), and plasminogen activator inhibitor (PAI)-1], inflammation (IL-6, TNFalpha, C-reactive protein, and IL-10), and placental function (PAI-1/PAI-2 ratio) were also assessed at each time point. The pattern of improving endothelial function during pregnancy was the same for lean and obese, but endothelial-dependent vasodilation was significantly lower (P < 0.05) in the obese women at each trimester (51, 41, and 39%, respectively). In the postpartum period, the improvement in endothelial-dependent vasodilation persisted in the lean women but declined to near 1st trimester levels in the obese (lean/obese difference, 115%; P < 0.01). There was a small but significant difference in endothelial-independent vasodilation between the two groups, lean response being greater than obese (P = 0.021), and response declined in both groups in the postpartum period. In multivariate analysis, time of sampling had the most impact on endothelial-independent function [18.5% (adjusted sum of squares expressed as a percentage of total means squared), P < 0.001 for sodium nitroprusside response; 9.8%, P < 0.001 for acetylcholine response], and obesity had the most impact on endothelial-dependent microvascular function (1.7%, P = 0.046 for sodium nitroprusside response; 19.3%, P < 0.001 for acetylcholine response). Time of sampling (11.2%, P < 0.001), IL-6 (4.0%, P = 0.002), and IL-10 (2.4%, P = 0.018) were significant independent contributors to variation in endothelial-dependent microvascular function. When obesity was entered into the model, the association with IL-6 and IL-10 was no longer significant, and obesity explained 6.8% (P < 0.001) of the variability in endothelial-dependent microvascular function. In the 1st trimester, obese women had a significantly higher PAI-1/PAI-2 ratio [obese median (interquartile range), 0.87 (0.54-1.21) vs. lean 0.30 (0.21-0.47), P < 0.001), reflecting the lower PAI-2 levels in obese pregnant women. In a multivariate analysis, 1st trimester BMI (7.6%, P = 0.012), IL-10 (8.2%, P < 0.001), and sVCAM-1 (0.73%, P = 0.007) contributed to the 1st trimester PAI-1/PAI-2 ratio. Obese mothers have a lower endothelium-dependent and -independent vasodilation when compared with lean counterparts. There was a higher PAI-1/ PAI-2 ratio in the 1st trimester in obese women, which improved later in pregnancy. Obese pregnancy is associated with chronic preexisting endothelial activation and impairment of endothelial function secondary to increased production of inflammatory T-helper cells-2 cytokines.

  9. Nanomechanics and Sodium Permeability of Endothelial Surface Layer Modulated by Hawthorn Extract WS 1442

    PubMed Central

    Peters, Wladimir; Drueppel, Verena; Kusche-Vihrog, Kristina; Schubert, Carola; Oberleithner, Hans

    2012-01-01

    The endothelial glycocalyx (eGC) plays a pivotal role in the physiology of the vasculature. By binding plasma proteins, the eGC forms the endothelial surface layer (ESL) which acts as an interface between bloodstream and endothelial cell surface. The functions of the eGC include mechanosensing of blood flow induced shear stress and thus flow dependent vasodilation. There are indications that levels of plasma sodium concentrations in the upper range of normal and beyond impair flow dependent regulation of blood pressure and may therefore increase the risk for hypertension. Substances, therefore, that prevent sodium induced endothelial dysfunction may be attractive for the treatment of cardiovascular disease. By means of combined atomic force - epifluorescence microscopy we studied the impact of the hawthorn (Crataegus spp.) extract WS 1442, a herbal therapeutic with unknown mechanism of action, on the mechanics of the ESL of ex vivo murine aortae. Furthermore, we measured the impact of WS 1442 on the sodium permeability of endothelial EA.hy 926 cell monolayer. The data show that (i) the ESL contributes by about 11% to the total endothelial barrier resistance for sodium and (ii) WS 1442 strengthens the ESL resistance for sodium up to about 45%. This mechanism may explain some of the vasoprotective actions of this herbal therapeutic. PMID:22253842

  10. Nanomechanics and sodium permeability of endothelial surface layer modulated by hawthorn extract WS 1442.

    PubMed

    Peters, Wladimir; Drüppel, Verena; Drueppel, Verena; Kusche-Vihrog, Kristina; Schubert, Carola; Oberleithner, Hans

    2012-01-01

    The endothelial glycocalyx (eGC) plays a pivotal role in the physiology of the vasculature. By binding plasma proteins, the eGC forms the endothelial surface layer (ESL) which acts as an interface between bloodstream and endothelial cell surface. The functions of the eGC include mechanosensing of blood flow induced shear stress and thus flow dependent vasodilation. There are indications that levels of plasma sodium concentrations in the upper range of normal and beyond impair flow dependent regulation of blood pressure and may therefore increase the risk for hypertension. Substances, therefore, that prevent sodium induced endothelial dysfunction may be attractive for the treatment of cardiovascular disease. By means of combined atomic force-epifluorescence microscopy we studied the impact of the hawthorn (Crataegus spp.) extract WS 1442, a herbal therapeutic with unknown mechanism of action, on the mechanics of the ESL of ex vivo murine aortae. Furthermore, we measured the impact of WS 1442 on the sodium permeability of endothelial EA.hy 926 cell monolayer. The data show that (i) the ESL contributes by about 11% to the total endothelial barrier resistance for sodium and (ii) WS 1442 strengthens the ESL resistance for sodium up to about 45%. This mechanism may explain some of the vasoprotective actions of this herbal therapeutic.

  11. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    PubMed

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  12. Resveratrol induces mitochondrial biogenesis in endothelial cells

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T.; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-01-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1α, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases. PMID:19429820

  13. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans is mediated by NADPH Oxidase; Influence of Exercise Training

    PubMed Central

    La Favor, Justin D.; Dubis, Gabriel S.; Yan, Huimin; White, Joseph D.; Nelson, Margaret A.M.; Anderson, Ethan J.; Hickner, Robert C.

    2016-01-01

    Objective The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and to determine the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results Young, sedentary men and women were divided into lean (BMI 18–25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered (normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox were increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions This study implicates Nox as a source of excessive ROS production in skeletal muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. PMID:27765769

  14. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    PubMed Central

    2010-01-01

    Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds. PMID:20653945

  15. MicroRNA-134 Contributes to Glucose-Induced Endothelial Cell Dysfunction and This Effect Can Be Reversed by Far-Infrared Irradiation

    PubMed Central

    Wang, Yen-Li; Chang, Shih-Ting; Liao, Ko-Hsun; Lo, Hung-Hao; Chiu, Ya-Lin; Hsieh, Tsung-Han; Huang, Tse-Shun; Lin, Chin-Sheng; Cheng, Shu-Meng; Cheng, Cheng-Chung

    2016-01-01

    Diabetes mellitus (DM) is a metabolic disease that is increasing worldwide. Furthermore, it is associated with the deregulation of vascular-related functions, which can develop into major complications among DM patients. Endothelial colony forming cells (ECFCs) have the potential to bring about medical repairs because of their post-natal angiogenic activities; however, such activities are impaired by high glucose- (HG) and the DM-associated conditions. Far-infrared radiation (FIR) transfers energy as heat that is perceived by the thermoreceptors in human skin. Several studies have revealed that FIR improves vascular endothelial functioning and boost angiogenesis. FIR has been used as anti-inflammatory therapy and as a clinical treatment for peripheral circulation improvement. In addition to vascular repair, there is increasing evidence to show that FIR can be applied to a variety of diseases, including cardiovascular disorders, hypertension and arthritis. Yet mechanism of action of FIR and the biomarkers that indicate FIR effects remain unclear. MicroRNA-134 (miR-134-5p) was identified by small RNA sequencing as being increased in high glucose (HG) treated dfECFCs (HG-dfECFCs). Highly expressed miR-134 was also validated in dmECFCs by RT-qPCR and it is associated with impaired angiogenic activities of ECFCs. The functioning of ECFCs is improved by FIR treatment and this occurs via a reduction in the level of miR-134 and an increase in the NRIP1 transcript, a direct target of miR-134. Using a mouse ischemic hindlimb model, the recovery of impaired blood flow in the presence of HG-dfECFCs was improved by FIR pretreatment and this enhanced functionality was decreased when there was miR-134 overexpression in the FIR pretreated HG-dfECFCs. In conclusion, our results reveal that the deregulation of miR-134 is involved in angiogenic defects found in DM patients. FIR treatment improves the angiogenic activity of HG-dfECFCs and dmECFCs and FIR has potential as a treatment for DM. Detection of miR-134 expression in FIR-treated ECFCs should help us to explore further the effectiveness of FIR therapy. PMID:26799933

  16. MicroRNA-134 Contributes to Glucose-Induced Endothelial Cell Dysfunction and This Effect Can Be Reversed by Far-Infrared Irradiation.

    PubMed

    Wang, Hsei-Wei; Su, Shu-Han; Wang, Yen-Li; Chang, Shih-Ting; Liao, Ko-Hsun; Lo, Hung-Hao; Chiu, Ya-Lin; Hsieh, Tsung-Han; Huang, Tse-Shun; Lin, Chin-Sheng; Cheng, Shu-Meng; Cheng, Cheng-Chung

    2016-01-01

    Diabetes mellitus (DM) is a metabolic disease that is increasing worldwide. Furthermore, it is associated with the deregulation of vascular-related functions, which can develop into major complications among DM patients. Endothelial colony forming cells (ECFCs) have the potential to bring about medical repairs because of their post-natal angiogenic activities; however, such activities are impaired by high glucose- (HG) and the DM-associated conditions. Far-infrared radiation (FIR) transfers energy as heat that is perceived by the thermoreceptors in human skin. Several studies have revealed that FIR improves vascular endothelial functioning and boost angiogenesis. FIR has been used as anti-inflammatory therapy and as a clinical treatment for peripheral circulation improvement. In addition to vascular repair, there is increasing evidence to show that FIR can be applied to a variety of diseases, including cardiovascular disorders, hypertension and arthritis. Yet mechanism of action of FIR and the biomarkers that indicate FIR effects remain unclear. MicroRNA-134 (miR-134-5p) was identified by small RNA sequencing as being increased in high glucose (HG) treated dfECFCs (HG-dfECFCs). Highly expressed miR-134 was also validated in dmECFCs by RT-qPCR and it is associated with impaired angiogenic activities of ECFCs. The functioning of ECFCs is improved by FIR treatment and this occurs via a reduction in the level of miR-134 and an increase in the NRIP1 transcript, a direct target of miR-134. Using a mouse ischemic hindlimb model, the recovery of impaired blood flow in the presence of HG-dfECFCs was improved by FIR pretreatment and this enhanced functionality was decreased when there was miR-134 overexpression in the FIR pretreated HG-dfECFCs. In conclusion, our results reveal that the deregulation of miR-134 is involved in angiogenic defects found in DM patients. FIR treatment improves the angiogenic activity of HG-dfECFCs and dmECFCs and FIR has potential as a treatment for DM. Detection of miR-134 expression in FIR-treated ECFCs should help us to explore further the effectiveness of FIR therapy.

  17. Lack of Fibronectin Extra Domain A Alternative Splicing Exacerbates Endothelial Dysfunction in Diabetes

    PubMed Central

    Gortan Cappellari, Gianluca; Barazzoni, Rocco; Cattin, Luigi; Muro, Andrés F.; Zanetti, Michela

    2016-01-01

    Glucose-induced changes of artery anatomy and function account for diabetic vascular complications, which heavily impact disease morbidity and mortality. Since fibronectin containing extra domain A (EDA + FN) is increased in diabetic vessels and participates to vascular remodeling, we wanted to elucidate whether and how EDA + FN is implicated in diabetes-induced endothelial dysfunction using isometric-tension recording in a murine model of diabetes. In thoracic aortas of EDA−/−, EDA+/+ (constitutively lacking and expressing EDA + FN respectively), and of wild-type mice (EDAwt/wt), streptozotocin (STZ)-induced diabetes impaired endothelial vasodilation to acetylcholine, irrespective of genotype. However STZ + EDA−/− mice exhibited increased endothelial dysfunction compared with STZ + EDA+/+ and with STZ + EDAwt/wt. Analysis of the underlying mechanisms revealed that STZ + EDA−/− mice show increased oxidative stress as demonstrated by enhanced aortic superoxide anion, nitrotyrosine levels and expression of NADPH oxidase NOX4 and TGF-β1, the last two being reverted by treatment with the antioxidant n-acetylcysteine. In contrast, NOX1 expression and antioxidant potential were similar in aortas from the three genotypes. Interestingly, reduced eNOS expression in STZ + EDA+/+ vessels is counteracted by increased eNOS coupling and function. Although EDA + FN participates to vascular remodelling, these findings show that it plays a crucial role in limiting diabetic endothelial dysfunction by preventing vascular oxidative stress. PMID:27897258

  18. Plasma membrane calcium ATPase isoform 4 inhibits vascular endothelial growth factor-mediated angiogenesis through interaction with calcineurin.

    PubMed

    Baggott, Rhiannon R; Alfranca, Arantzazu; López-Maderuelo, Dolores; Mohamed, Tamer M A; Escolano, Amelia; Oller, Jorge; Ornes, Beatriz C; Kurusamy, Sathishkumar; Rowther, Farjana B; Brown, James E; Oceandy, Delvac; Cartwright, Elizabeth J; Wang, Weiguang; Gómez-del Arco, Pablo; Martínez-Martínez, Sara; Neyses, Ludwig; Redondo, Juan Miguel; Armesilla, Angel Luis

    2014-10-01

    Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis. © 2014 American Heart Association, Inc.

  19. Heterozygous deficiency of δ-catenin impairs pathological angiogenesis | Center for Cancer Research

    Cancer.gov

    About the Cover: DeBusk et al. find that δ-catenin expression in vascular endothelial cells is boosted by inflammatory cytokines, and that δ-catenin deficiency impairs tumor angiogenesis in mice. The original immunofluorescence image (right) shows the endothelial marker CD31 (green) in tumor tissue sections from mice injected subcutaneously with Lewis lung carcinoma cells.

  20. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao; Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiacmore » TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in normal mouse heart. IPC preserves the integrity of TJ structure and function that are vulnerable to IR injury.« less

  1. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance

    PubMed Central

    Zolla, Valerio; Nizamutdinova, Irina Tsoy; Scharf, Brian; Clement, Cristina C; Maejima, Daisuke; Akl, Tony; Nagai, Takashi; Luciani, Paola; Leroux, Jean-Christophe; Halin, Cornelia; Stukes, Sabriya; Tiwari, Sangeeta; Casadevall, Arturo; Jacobs, William R; Entenberg, David; Zawieja, David C; Condeelis, John; Fooksman, David R; Gashev, Anatoliy A; Santambrogio, Laura

    2015-01-01

    The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic’s endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport. PMID:25982749

  2. Apigenin and naringenin ameliorate PKCβII-associated endothelial dysfunction via regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose.

    PubMed

    Qin, Weiwei; Ren, Bei; Wang, Shanshan; Liang, Shujun; He, Baiqiu; Shi, Xiaoji; Wang, Liying; Liang, Jingyu; Wu, Feihua

    2016-10-01

    Endothelial dysfunction is a key event in the progression of atherosclerosis with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction. Apigenin and naringenin are two kinds of widely used flavones. In the present study, we investigated whether and how apigenin and naringenin reduced endothelial dysfunction induced by high glucose in endothelial cells. We showed that apigenin and naringenin protected against endothelial dysfunction via inhibiting phosphorylation of protein kinase C βII (PKCβII) expression and downstream reactive oxygen species (ROS) production in endothelial cells exposed to high glucose. Furthermore, we demonstrated that apigenin and naringenin reduced high glucose-increased apoptosis, Bax expression, caspase-3 activity and phosphorylation of NF-κB in endothelial cells. Moreover, apigenin and naringenin effectively restored high glucose-reduced Bcl-2 expression and Akt phosphorylation. Importantly, apigenin and naringenin significantly increased NO production in endothelial cells subjected to high glucose challenge. Consistently, high glucose stimulation impaired acetylcholine (ACh)-mediated vasodilation in the rat aorta, apigenin and naringenin treatment restored the impaired endothelium-dependent vasodilation via dramatically increasing eNOS activity and nitric oxide (NO) level. Taken together, our results manifest that apigenin and naringenin can ameliorate endothelial dysfunction via regulating ROS/caspase-3 and NO pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Endothelial Nitric Oxide Synthase Overexpression Restores the Efficiency of Bone Marrow Mononuclear Cell-Based Therapy

    PubMed Central

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. PMID:21224043

  4. Association of serum IGF1 with endothelial function: results from the population-based study of health in Pomerania.

    PubMed

    Empen, Klaus; Lorbeer, Roberto; Völzke, Henry; Robinson, Daniel M; Friedrich, Nele; Krebs, Alexander; Nauck, Matthias; Reffelmann, Thorsten; Ewert, Ralf; Felix, Stephan B; Wallaschofski, Henri; Dörr, Marcus

    2010-10-01

    IGF1 mediates multiple physiological and pathophysiological responses in the cardiovascular system. The aim of this study was to analyze the association between serum IGF1 as well as IGF-binding protein 3 (IGFBP3) levels and endothelial function measured by flow-mediated dilation (FMD). Cross-sectional population-based observational study. The study population comprised 1482 subjects (736 women) aged 25-85 years from the Study of Health in Pomerania. Serum IGF1 and IGFBP3 levels were determined by chemiluminescence immunoassays. FMD measurements were performed using standardized ultrasound techniques. FMD values below the sex-specific median were considered low. In males, logistic regression analyses revealed an odds ratio (OR) of 1.27 (95% confidence interval (CI) 1.07-1.51; P=0.008) for decreased FMD for each decrement of IGF1 s.d. after adjustment for major cardiovascular confounders. In females, no significant relationship between serum IGF1 and FMD was found (OR 0.88, CI 0.74-1.05; P=0.147). After exclusion of subjects with the current use of antihypertensive medication, these findings were similar (males: OR 1.40, CI 1.12-1.75; P=0.003; females: OR 0.95, CI 0.77-1.16; P=0.595). There was no association between serum IGFBP3 levels and FMD in both sexes. Low serum IGF1 levels are associated with impaired endothelial function in males. In women, serum IGF1 is not associated with endothelial function.

  5. Acid Sphingomyelinase-Derived Ceramide Regulates ICAM-1 Function during T Cell Transmigration across Brain Endothelial Cells.

    PubMed

    Lopes Pinheiro, Melissa A; Kroon, Jeffrey; Hoogenboezem, Mark; Geerts, Dirk; van Het Hof, Bert; van der Pol, Susanne M A; van Buul, Jaap D; de Vries, Helga E

    2016-01-01

    Multiple sclerosis (MS) is a chronic demyelinating disorder of the CNS characterized by immune cell infiltration across the brain vasculature into the brain, a process not yet fully understood. We previously demonstrated that the sphingolipid metabolism is altered in MS lesions. In particular, acid sphingomyelinase (ASM), a critical enzyme in the production of the bioactive lipid ceramide, is involved in the pathogenesis of MS; however, its role in the brain vasculature remains unknown. Transmigration of T lymphocytes is highly dependent on adhesion molecules in the vasculature such as intercellular adhesion molecule-1 (ICAM-1). In this article, we hypothesize that ASM controls T cell migration by regulating ICAM-1 function. To study the role of endothelial ASM in transmigration, we generated brain endothelial cells lacking ASM activity using a lentiviral shRNA approach. Interestingly, although ICAM-1 expression was increased in cells lacking ASM activity, we measured a significant decrease in T lymphocyte adhesion and consequently transmigration both in static and under flow conditions. As an underlying mechanism, we revealed that upon lack of endothelial ASM activity, the phosphorylation of ezrin was perturbed as well as the interaction between filamin and ICAM-1 upon ICAM-1 clustering. Functionally this resulted in reduced microvilli formation and impaired transendothelial migration of T cells. In conclusion, in this article, we show that ASM coordinates ICAM-1 function in brain endothelial cells by regulating its interaction with filamin and phosphorylation of ezrin. The understanding of these underlying mechanisms of T lymphocyte transmigration is of great value to develop new strategies against MS lesion formation. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Elevation in blood flow and shear rate prevents hyperglycemia-induced endothelial dysfunction in healthy subjects and those with type 2 diabetes.

    PubMed

    Greyling, Arno; Schreuder, Tim H A; Landman, Thijs; Draijer, Richard; Verheggen, Rebecca J H M; Hopman, Maria T E; Thijssen, Dick H J

    2015-03-01

    Hyperglycemia, commonly present after a meal, causes transient impairment in endothelial function. We examined whether increases in blood flow (BF) protect against the hyperglycemia-mediated decrease in endothelial function in healthy subjects and patients with type 2 diabetes mellitus (T2DM). Ten healthy subjects and 10 age- and sex-matched patients with T2DM underwent simultaneous bilateral assessment of brachial artery endothelial function by means of flow-mediated dilation (FMD) using high-resolution echo-Doppler. FMD was examined before and 60, 120, and 150 min after a 75-g oral glucose challenge. We unilaterally manipulated BF by heating one arm between minute 30 and minute 60. Oral glucose administration caused a statistically significant, transient increase in blood glucose in both groups (P < 0.001). Forearm skin temperature, brachial artery BF, and shear rate significantly increased in the heated arm (P < 0.001), and to a greater extent compared with the nonheated arm in both groups (interaction effect P < 0.001). The glucose load caused a transient decrease in FMD% (P < 0.05), whereas heating significantly prevented the decline (interaction effect P < 0.01). Also, when correcting for changes in diameter and shear rate, we found that the hyperglycemia-induced decrease in FMD can be prevented by local heating (P < 0.05). These effects on FMD were observed in both groups. Our data indicate that nonmetabolically driven elevation in BF and shear rate can similarly prevent the hyperglycemia-induced decline in conduit artery endothelial function in healthy volunteers and in patients with type 2 diabetes. Additional research is warranted to confirm that other interventions that increase BF and shear rate equally protect the endothelium when challenged by hyperglycemia. Copyright © 2015 the American Physiological Society.

  7. Effect of paricalcitol on endothelial function and inflammation in type 2 diabetes and chronic kidney disease.

    PubMed

    Thethi, Tina K; Bajwa, Muhammad A; Ghanim, Husam; Jo, Chanhee; Weir, Monica; Goldfine, Allison B; Umpierrez, Guillermo; Desouza, Cyrus; Dandona, Paresh; Fang-Hollingsworth, Ying; Raghavan, Vasudevan; Fonseca, Vivian A

    2015-04-01

    Patients with type 2 diabetes (T2DM) and chronic kidney disease (CKD) have impaired endothelial function. Vitamin D and its analogs may play a role in regulation of endothelial function and inflammation. We studied effects of paricalcitol compared to placebo on endothelial function and markers of inflammation and oxidative stress in patients with T2DM and CKD. A double blind, randomized, placebo-controlled trial was conducted in 60 patients with T2DM and stage 3 or 4 CKD. Paricalcitol 1 mcg or placebo was administered orally once daily for three months. Brachial artery flow mediated dilatation (FMD), nitroglycerine mediated dilation (NMD), and plasma concentrations of inflammatory cytokines, tumor necrosis factor -α and interleukin-6, highly-sensitive C-reactive protein; endothelial surface proteins, intercellular adhesion molecule -1 and monocyte chemo attractant protein-1, and plasma glucose, insulin, free fatty acids, and urinary isoprostane were measured at baseline and end of three months. 27 patients in the paricalcitol group and 28 patients in the control group completed the study, though analysis of FMD at both time points was possible in 23 patients in each group. There was no significant difference in the change in FMD, NMD or the biomarkers examined after paricalcitol or placebo treatment. Treatment with paricalcitol at this dose and duration did not affect brachial artery FMD or biomarkers of inflammation and oxidative stress. The lack of significance may be due to the fact that the study patients had advanced CKD and that effects of paricalcitol are not additive to the effects of glycemic, lipid and anti-hypertensive therapies. Published by Elsevier Inc.

  8. Protein Kinase-C Beta Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus

    PubMed Central

    Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109

  9. Overexpression of stearoyl-CoA desaturase 1 in bone marrow mesenchymal stem cells enhance the expression of induced endothelial cells

    PubMed Central

    2014-01-01

    Background Bone marrow mesenchymal stem cells (BM-MSCs) are capable of differentiating into endothelial cells in vitro and acquire major characteristics of mature endothelial-like expression of vWF and CD31. SFAs and lipid oxidation products have been linked with postprandial endothelial dysfunction. Consumption of SFAs impairs arterial endothelial function, while a Mediterranean-type MUFA-diet has a beneficial effect on endothelial function by producing a decrease in levels of vWF, TFPI and PAI-1. Stearoyl-CoA desaturase 1 (SCD1), which converts SFA to MUFA, is involved in the cellular biosynthesis of MUFAs from SFA substrates. High expression of SCD1 is corresponded with low rates of fatty acid oxidation, therefore it might reduce inflammatory responses and be beneficial for the growth of induced endothelial cells. Overexpression of SCD1 in BM-MSCs might increase the growth of induced endothelial cells. The goal of this research is to study the relationship between overexpression of SCD1 and the expression of induced endothelial cells in BM-MSCs in vitro. Methods The gene SCD1 was integrated into a lentiviral vector, and then 293 T cells were transfected by the connected product to produce a packaged virus. BM-MSCs were infected by the packaged virus. Cell culture and endothelial induction were performed. Fluorescent quantitative PCR of CD31, vWF and VE-cad was performed after 1 week and 2 weeks to test the growth of induced endothelial cells. Results The mRNA amount of CD31, vWF and VE-cad of the SCD1 overexpressed group was statistically higher than that of the empty vector (EV) group and that of the normal group after 1 week and 2 weeks, respectively (p < 0.05). Immunocytochemical staining of CD31 or vWF was detected by visualizing red color. Conclusions This study suggested that overexpression of SCD1 in BM-MSCs could increase the expression of induced endothelial cells in vitro. PMID:24650127

  10. Mild Hyperthermia Downregulates Receptor-dependent Neutrophil Function

    PubMed Central

    Fröhlich, Dieter; Wittmann, Sigrid; Rothe, Gregor; Sessler, Daniel I.; Vogel, Peter; Taeger, Kai

    2005-01-01

    Mild hypothermia impairs resistance to infection and, reportedly, impairs phagocytosis and oxidative killing of un-opsonized bacteria. We evaluated various functions at 33 to 41°C in neutrophils taken from volunteers. Adhesion on endothelial cells was determined using light microscopy. Adhesion molecules expression and receptors, phagocytosis, and release of reactive oxidants were assessed using flow cytometric assays. Adhesion protein CD11b expression on resting neutrophils was temperature independent. However, upregulation of CD11b with TNF-α was increased by hypothermia and decreased with hyperthermia. Neutrophil adhesion to either resting or activated endothelial cells was not temperature dependent. Bacterial uptake was inversely related to temperature, more so with E. coli than S. aureus. Temperature dependence of phagocytosis occurred only with opsonized bacteria. Hypothermia slightly increased N-Formyl-L-methionyl-L-leucyl-phenylalanine (FMLP) receptors on neutrophils: hyperthermia decreased expression, especially with TNF-α. FMLP-induced H2O2 production was inversely related to temperature, especially in the presence of TNF-α. Conversely, phorbol-13-myristate-12-acetate, an activator of protein kinase C, induced an extreme and homogenous release of reactive oxidants that increased with temperature. In contrast to non-receptor dependent phagocytosis and oxidative killing, several crucial receptor-dependent neutrophil activities show temperature-dependent regulation, with hypothermia increasing function. The temperature dependence of neutrophil function is thus more complicated than previously appreciated. PMID:15281545

  11. Elevated plasma migration inhibitory factor in hypertension–hyperlipidemia patients correlates with impaired endothelial function

    PubMed Central

    Zhou, Boda; Ren, Chuan; Zu, Lingyun; Zheng, Lemin; Guo, Lijun; Gao, Wei

    2016-01-01

    Abstract Migration inhibitory factor (MIF) has been shown to be critical in the pathology of early artherosclerosis; this article aim to investigate the plasma levels of MIF in hypertension plus hyperlipidemia patients. A total of 39 hypertension plus hyperlipidemia patients without any previous treatment were enrolled (HTN-HLP). Twenty-five healthy subjects were enrolled as the healthy control group (HEALTHY). Plasma MIF was measured by ELISA; laboratory and clinical characteristics were analyzed. HUVECs were treated with pooled plasma from HTN-HLP and HEALTHY groups, and the protein levels of adhesion molecules VCAM-1 and ICAM-1 were determined by ELISA. We found that plasma MIF was significantly elevated in the HTN-HLP group. Serum NO and eNOS levels were significantly lower; serum ET-1 (endothelin) levels were significantly higher in the HTN-HLP group. Furthermore, blood pressure, baPWV (brachial–ankle pulse wave velocity), and serum ET-1 level were significantly positively; serum NO and eNOS levels were negatively correlated with plasma MIF levels. Plasma from HTN-HLP significantly stimulated VCAM-1 and ICAM-1 protein expression on the surface of HUVECs. Plasma MIF was elevated in HTN-HLP patients and correlates with impaired endothelial function. PMID:27787379

  12. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    PubMed

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  13. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians.

    PubMed

    Yim, Jongeun; Petrofsky, Jerrold; Berk, Lee; Daher, Noha; Lohman, Everett; Moss, Abigail; Cavalcanti, Paula

    2012-08-01

    Previous studies show that Asians have an impaired blood flow response (BFR) to occlusion after a single high fat (HF) meal. The mechanism is believed to be the presence and susceptibility to high free radicals in their blood. The free radical concentration after a HF meal has not been examined in Asians. Further the BFR to heat after a single HF meal in Koreans has not been measured. This study evaluated postprandial endothelial function by measuring the BFR to vascular occlusion and local heat before and after a HF meal and the interventional effects of anti-oxidant vitamins on improving endothelial function in young Korean-Asians (K) compared to Caucasians (C) with these assessments. Ten C and ten K participated in the study (mean age 25.3±3.6 years old). BFR to vascular occlusion and local heat and oxidative stress were assessed after a single low fat (LF) and HF meal at 2 hours compared to baseline. After administration of vitamins (1000 mg of vitamin C, 800 IU of vitamin E, and 300 mg of Coenzyme Q-10) for 14 days, the same measurements were made. This study showed that the skin BFR to vascular occlusion and local heat following a HF meal significantly decreased and free radicals significantly increased at 2 hours compared to baseline in K (p<.001), but not in C. When vitamins were given, the BFR to vascular occlusion and local heat before and after HF meal were not significantly different in K and C. These findings suggest that even a single HF meal can reduce endothelial response to stress through an oxidative stress mechanism but can be blocked by antioxidants, probably through scavenging free radicals in K. Since endothelial function improved even before a HF meal in K, endothelial damage from an Americanized diet may be reduced in K by antioxidants.

  14. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians

    PubMed Central

    Yim, Jongeun; Petrofsky, Jerrold; Berk, Lee; Daher, Noha; Lohman, Everett; Moss, Abigail; Cavalcanti, Paula

    2012-01-01

    Summary Background Previous studies show that Asians have an impaired blood flow response (BFR) to occlusion after a single high fat (HF) meal. The mechanism is believed to be the presence and susceptibility to high free radicals in their blood. The free radical concentration after a HF meal has not been examined in Asians. Further the BFR to heat after a single HF meal in Koreans has not been measured. Material/Methods This study evaluated postprandial endothelial function by measuring the BFR to vascular occlusion and local heat before and after a HF meal and the interventional effects of anti-oxidant vitamins on improving endothelial function in young Korean-Asians (K) compared to Caucasians (C) with these assessments. Ten C and ten K participated in the study (mean age 25.3±3.6 years old). BFR to vascular occlusion and local heat and oxidative stress were assessed after a single low fat (LF) and HF meal at 2 hours compared to baseline. After administration of vitamins (1000 mg of vitamin C, 800 IU of vitamin E, and 300 mg of Coenzyme Q-10) for 14 days, the same measurements were made. Results This study showed that the skin BFR to vascular occlusion and local heat following a HF meal significantly decreased and free radicals significantly increased at 2 hours compared to baseline in K (p<.001), but not in C. When vitamins were given, the BFR to vascular occlusion and local heat before and after HF meal were not significantly different in K and C. Conclusions These findings suggest that even a single HF meal can reduce endothelial response to stress through an oxidative stress mechanism but can be blocked by antioxidants, probably through scavenging free radicals in K. Since endothelial function improved even before a HF meal in K, endothelial damage from an Americanized diet may be reduced in K by antioxidants. PMID:22847195

  15. Coexistence of Eph receptor B1 and ephrin B2 in port-wine stain endothelial progenitor cells contributes to clinicopathological vasculature dilatation.

    PubMed

    Tan, W; Wang, J; Zhou, F; Gao, L; Yin, R; Liu, H; Sukanthanag, A; Wang, G; Mihm, M C; Chen, D-B; Nelson, J S

    2017-12-01

    Port-wine stain (PWS) is a vascular malformation characterized by progressive dilatation of postcapillary venules, but the molecular pathogenesis remains obscure. To illustrate that PWS endothelial cells (ECs) present a unique molecular phenotype that leads to pathoanatomical PWS vasculatures. Immunohistochemistry and transmission electron microscopy were used to characterize the ultrastructure and molecular phenotypes of PWS blood vessels. Primary culture of human dermal microvascular endothelial cells and in vitro tube formation assay were used for confirmative functional studies. Multiple clinicopathological features of PWS blood vessels during the development and progression of the disease were shown. There were no normal arterioles and venules observed phenotypically and morphologically in PWS skin; arterioles and venules both showed differentiation impairments, resulting in a reduction of arteriole-like vasculatures and defects in capillary loop formation in PWS lesions. PWS ECs showed stemness properties with expression of endothelial progenitor cell markers CD133 and CD166 in non-nodular lesions. They also expressed dual venous/arterial identities, Eph receptor B1 (EphB1) and ephrin B2 (EfnB2). Co-expression of EphB1 and EfnB2 in normal human dermal microvascular ECs led to the formation of PWS-like vasculatures in vitro, for example larger-diameter and thick-walled capillaries. PWS ECs are differentiation-impaired, late-stage endothelial progenitor cells with a specific phenotype of CD133 + /CD166 + /EphB1 + /EfnB2 + , which form immature venule-like pathoanatomical vasculatures. The disruption of normal EC-EC interactions by coexistence of EphB1 and EfnB2 contributes to progressive dilatation of PWS vasculatures. © 2017 British Association of Dermatologists.

  16. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction

    PubMed Central

    Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto

    2015-01-01

    Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers. PMID:26473356

  17. Human SLC4A11-C functions as a DIDS-stimulatable H+(OH−) permeation pathway: partial correction of R109H mutant transport

    PubMed Central

    Kao, Liyo; Azimov, Rustam; Abuladze, Natalia; Newman, Debra

    2014-01-01

    The SLC4A11 gene mutations cause a variety of genetic corneal diseases, including congenital hereditary endothelial dystrophy 2 (CHED2), Harboyan syndrome, some cases of Fuchs' endothelial dystrophy (FECD), and possibly familial keratoconus. Three NH2-terminal variants of the human SLC4A11 gene, named SLC4A11-A, -B, and -C are known. The SLC4A11-B variant has been the focus of previous studies. Both the expression of the SLC4A11-C variant in the cornea and its functional properties have not been characterized, and therefore its potential pathophysiological role in corneal diseases remains to be explored. In the present study, we demonstrate that SLC4A11-C is the predominant SLC4A11 variant expressed in human corneal endothelial mRNA and that the transporter functions as an electrogenic H+(OH−) permeation pathway. Disulfonic stilbenes, including 4,4′-diisothiocyano-2,2′-stilbenedisulfonate (DIDS), 4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonate (H2DIDS), and 4-acetamido-4′-isothiocyanato-stilbene-2,2′-disulfonate (SITS), which are known to bind covalently, increased SLC4A11-C-mediated H+(OH−) flux by 150–200% without having a significant effect in mock-transfected cells. Noncovalently interacting 4,4′-diaminostilbene-2,2′-disulfonate (DADS) was without effect. We tested the efficacy of DIDS on the functionally impaired R109H mutant (SLC4A11-C numbering) that causes CHED2. DIDS (1 mM) increased H+(OH−) flux through the mutant transporter by ∼40–90%. These studies provide a basis for future testing of more specific chemically modified dilsulfonic stilbenes as potential therapeutic agents to improve the functional impairment of specific SLC4A11 mutant transporters. PMID:25394471

  18. Regular physical exercise improves endothelial function in heart transplant recipients.

    PubMed

    Schmidt, Alice; Pleiner, Johannes; Bayerle-Eder, Michaela; Wiesinger, Günther F; Rödler, Suzanne; Quittan, Michael; Mayer, Gert; Wolzt, Michael

    2002-04-01

    Impaired endothelial function is detectable in heart transplant (HTX) recipients and regarded as risk factor for coronary artery disease. We have studied whether endothelial function can be improved in HTX patients participating in a regular physical training program as demonstrated in patients with chronic heart failure, hypertension and coronary artery disease. Male HTX patients and healthy, age-matched controls were studied. Seven HTX patients (age: 60 +/- 6 yr; 6 +/- 2 yr of HTX) participated in an outpatient training program, six HTX patients (age: 63 +/- 8 yr; 7 +/- 1 yr of HTX) maintained a sedentary lifestyle without regular physical exercise since transplantation. A healthy control group comprised six subjects (age: 62 +/- 6 yr). Vascular function was assessed by flow-mediated dilation of the brachial artery (FMD). Systemic haemodynamic responses to intravenous infusion of the endothelium independent vasodilator sodium nitroprusside (SNP) and to NG-monomethyl-L-arginine (L-NMMA), an inhibitor of constitutive nitric oxide synthase, were also measured. Resting heart rate was significantly lower (p < 0.05) in healthy controls (66 +/- 13) than in the HTX training group (83 +/- 11) and in non-training HTX patients (91 +/- 9), baseline blood pressure also tended to be lower in healthy subjects and in the training HTX patients. FMD was significantly higher (p < 0.05) in the control group (8.4 +/- 2.2%) and in the training group (7.1 +/- 2.4%), compared with non-training HTX patients (1.4 +/- 0.8%). The response of systolic blood pressure (p = 0.08) and heart rate (p < 0.05) to L-NMMA was reduced in sedentary HTX patients compared with healthy controls and heart rate response to SNP was also impaired in sedentary HTX patients. Regular aerobic physical training restores vascular function in HTX patients, who are at considerable risk for developing vascular complications. This effect is demonstrable in conduit and systemic resistance arteries.

  19. Renal toxicity of anticancer agents targeting vascular endothelial growth factor (VEGF) and its receptors (VEGFRs).

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Liguigli, Wanda; Porta, Camillo

    2017-04-01

    Since angiogenesis plays a key role in tumor growth, progression and metastasization, anti-vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) agents have been developed over the years as anticancer agents, and have changed, for the better, the natural history of a number of cancer types. In the present review, the renal safety profile of presently available agents targeting either VEGF or VEGFRs will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, renal toxicity (especially, but not exclusively, hypertension and proteinuria) are quite commonly observed with these agents, and may be increased by the concomitant use of cytoxic chemotherapeutics. Despite all the above, kidney impairment or dialysis must not be regarded di per se as reasons not to administer or to stop an active anticancer treatment, especially considering the possibility of a significant survival improvement in many cancer patients treated with these agents.

  20. Acute and subacute effects of EV iron sucrose on endothelial functions in hemodialysis patients.

    PubMed

    Ozkurt, Sultan; Ozenc, Fatma; Degirmenci, Nevbahar Akcar; Temiz, Gokhan; Musmul, Ahmet; Sahin, Garip; Yalcin, Ahmet Ugur

    2012-01-01

    Iron support is an important component of treatment of anemia in hemodialysis (HD) patients. However, there are concerns about endovenous (EV) iron therapy that may cause endothelial dysfunction (ED) by increasing oxidative stress (OS) and lead to cardiovascular events. In this study, we aimed to evaluate the effects of high and repeated doses of EV iron sucrose on endothelial functions in acute and subacute phases. We included 15 HD patients to our study. There were 16 patients with iron deficiency but normal kidney functions in control group. We also evaluated endothelium-dependent vasodilatation (EDV) and nitroglycerin-induced vasodilatation (NIV) from the brachial artery by ultrasonography at the beginning of the study, and then 200 mg EV iron sucrose was given initially to both groups for 1 h in 250 cc 0.9% saline and 4 h after the end of the infusion (acute phase) sonographic vasodilatation parameters were measured from brachial artery. These measurements and laboratory tests were repeated 1 week after the end of a total 1000 mg EV iron sucrose replacement (200 mg/week). There was a statistically significant increase in hemoglobin and ferritin levels after the EV iron sucrose therapy in both control and patient groups. EDV values in the HD group were significantly lower than that in the control group before therapy (6.25% vs. 10.53%, p < 0.05). EV iron sucrose therapy did not alter EDV and NIV values at the 4th hour and 6th week in both control and patient groups. According to our study, compared with the control group with normal kidney functions, HD patients had impaired endothelial functions. However, in HD patients, high and repeated doses of EV iron sucrose do not have deleterious effects on endothelial functions at acute and subacute phases and can be used safely in that patient group.

  1. Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age.

    PubMed

    Boerman, Erika M; Segal, Steven S

    2016-04-15

    The dilatory role for sensory innervation of mesenteric arteries (MAs) is impaired in Old (∼24 months) versus Young (∼4 months) mice. We investigated the nature of this impairment in isolated pressurized MAs. With perivascular sensory nerve stimulation, dilatation and inhibition of sympathetic vasoconstriction observed in Young MAs were lost in Old MAs along with impaired dilatation to calcitonin gene-related peptide (CGRP). Inhibiting NO and prostaglandin synthesis increased CGRP EC50 in Young and Old MAs. Endothelial denudation attenuated dilatation to CGRP in Old MAs yet enhanced dilatation to CGRP in Young MAs while abolishing all dilatations to ACh. In Old MAs, sensory nerve density was reduced and RAMP1 (CGRP receptor component) associated with nuclear regions of endothelial cells in a manner not seen in Young MAs or in smooth muscle cells of either age. With advanced age, loss of dilatory signalling mediated through perivascular sensory nerves may compromise perfusion of visceral organs. Vascular dysfunction and sympathetic nerve activity increase with advancing age. In the gut, blood flow is governed by perivascular sensory and sympathetic nerves but little is known of how their functional role is affected by advanced age. We tested the hypothesis that functional sensory innervation of mesenteric arteries (MAs) is impaired for Old (24 months) versus Young (4 months) C57BL/6 male mice. In cannulated pressurized MAs preconstricted 50% with noradrenaline and treated with guanethidine (to inhibit sympathetic neurotransmission), perivascular nerve stimulation (PNS) evoked dilatation in Young but not Old MAs while dilatations to ACh were not different between age groups. In Young MAs, capsaicin (to inhibit sensory neurotransmission) blocked dilatation and increased constriction during PNS. With no difference in efficacy, the EC50 of CGRP as a vasodilator was ∼6-fold greater in Old versus Young MAs. Inhibiting nitric oxide (l-NAME) and prostaglandin (indomethacin) synthesis increased CGRP EC50 in both age groups. Endothelial denudation reduced the efficacy of dilatation to CGRP by ∼30% in Old MAs yet increased this efficacy ∼15% in Young MAs while all dilatations to ACh were abolished. Immunolabelling revealed reduced density of sensory (CGRP) but not sympathetic (tyrosine hydroxylase) innervation for Old versus Young MAs. Whereas the distribution of CGRP receptor proteins was similar in SMCs, RAMP1 associated with nuclear regions of endothelial cells of Old but not Young MAs. With advanced age, the loss of sensory nerve function and diminished effectiveness of CGRP as a vasodilator is multifaceted and may adversely affect splanchnic perfusion. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  2. Alteration of Developmental and Pathological Retinal Angiogenesis in angptl4-deficient Mice*

    PubMed Central

    Perdiguero, Elisa Gomez; Galaup, Ariane; Durand, Mélanie; Teillon, Jérémie; Philippe, Josette; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Thurston, Gavin; Germain, Stéphane

    2011-01-01

    Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions. PMID:21832056

  3. Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by DL-α-Lipoic Acid.

    PubMed

    Coletta, Ciro; Módis, Katalin; Szczesny, Bartosz; Brunyánszki, Attila; Oláh, Gábor; Rios, Ester C S; Yanagi, Kazunori; Ahmad, Akbar; Papapetropoulos, Andreas; Szabo, Csaba

    2015-02-18

    Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and μmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3-1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1-3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants DL-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia.

  4. Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by dl-α-Lipoic Acid

    PubMed Central

    Coletta, Ciro; Módis, Katalin; Szczesny, Bartosz; Brunyánszki, Attila; Oláh, Gábor; Rios, Ester CS; Yanagi, Kazunori; Ahmad, Akbar; Papapetropoulos, Andreas; Szabo, Csaba

    2015-01-01

    Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and μmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3–1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1–3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants dl-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia. PMID:25715337

  5. PEGylated-nanoliposomal clusterin for amyloidogenic light chain-induced endothelial dysfunction.

    PubMed

    Guzman-Villanueva, Diana; Migrino, Raymond Q; Truran, Seth; Karamanova, Nina; Franco, Daniel A; Burciu, Camelia; Senapati, Subhadip; Nedelkov, Dobrin; Hari, Parameswaran; Weissig, Volkmar

    2018-06-01

    Light chain (AL) amyloidosis is a disease associated with significant morbidity and mortality arising from multi-organ injury induced by amyloidogenic light chain proteins (LC). There is no available treatment to reverse the toxicity of LC. We previously showed that chaperone glycoprotein clusterin (CLU) and nanoliposomes (NL), separately, restore human microvascular endothelial function impaired by LC. In this work, we aim to prepare PEGylated-nanoliposomal clusterin (NL-CLU) formulations that could allow combined benefit against LC while potentially enabling efficient delivery to microvascular tissue, and test efficacy on human arteriole endothelial function. NL-CLU was prepared by a conjugation reaction between the carboxylated surface of NL and the primary amines of the CLU protein. NL were made of phosphatidylcholine (PC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG 2000 carboxylic acid) at 70:25:5 mol%. The protective effect of NL-CLU was tested by measuring the dilation response to acetylcholine and papaverine in human adipose arterioles exposed to LC. LC treatment significantly reduced the dilation response to acetylcholine and papaverine; co-treatment of LC with PEGylated-nanoliposomal CLU or free CLU restored the dilator response. NL-CLU is a feasible and promising approach to reverse LC-induced endothelial damage.

  6. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: Roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine.

    PubMed

    Jiang, Jiaye; Gan, Zhongyuan; Li, Yuan; Zhao, Wenqi; Li, Hanqing; Zheng, Jian-Pu; Ke, Yan

    2017-01-01

    Sleep loss can induce or aggravate the development of cardiovascular and cerebrovascular diseases. However, the molecular mechanism underlying this phenomenon is poorly understood. The present study was designed to investigate the effects of REM sleep deprivation on blood pressure in rats and the underlying mechanisms of these effects. After Sprague-Dawley rats were subjected to REM sleep deprivation for 5 days, their blood pressures and endothelial function were measured. In addition, one group of rats was given continuous access to L-arginine supplementation (2% in distilled water) for the 5 days before and the 5 days of REM sleep deprivation to reverse sleep deprivation-induced pathological changes. The results showed that REM sleep deprivation decreased body weight, increased blood pressure, and impaired endothelial function of the aortas in middle-aged rats but not young rats. Moreover, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) concentrations as well as endothelial NO synthase (eNOS) phosphorylation in the aorta were decreased by REM sleep deprivation. Supplementation with L-arginine could protect against REM sleep deprivation-induced hypertension, endothelial dysfunction, and damage to the eNOS/NO/cGMP signaling pathway. The results of the present study suggested that REM sleep deprivation caused endothelial dysfunction and hypertension in middle-aged rats via the eNOS/NO/cGMP pathway and that these pathological changes could be inhibited via L-arginine supplementation. The present study provides a new strategy to inhibit the signaling pathways involved in insomnia-induced or insomnia-enhanced cardiovascular diseases.

  7. Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets

    PubMed Central

    Pan, Yanfang; Yago, Tadayuki; Fu, Jianxin; Herzog, Brett; McDaniel, J. Michael; Mehta-D’Souza, Padmaja; Cai, Xiaofeng; Ruan, Changgeng; McEver, Rodger P.; West, Christopher; Dai, Kesheng; Chen, Hong

    2014-01-01

    O-glycosylation of podoplanin (PDPN) on lymphatic endothelial cells is critical for the separation of blood and lymphatic systems by interacting with platelet C-type lectin-like receptor 2 during development. However, how O-glycosylation controls endothelial PDPN function and expression remains unclear. In this study, we report that core 1 O-glycan–deficient or desialylated PDPN was highly susceptible to proteolytic degradation by various proteases, including metalloproteinases (MMP)-2/9. We found that the lymph contained activated MMP-2/9 and incubation of the lymph reduced surface levels of PDPN on core 1 O-glycan–deficient endothelial cells, but not on wild-type ECs. The lymph from mice with sepsis induced by cecal ligation and puncture, which contained bacteria-derived sialidase, reduced PDPN levels on wild-type ECs. The MMP inhibitor, GM6001, rescued these reductions. Additionally, GM6001 treatment rescued the reduction of PDPN level on lymphatic endothelial cells in mice lacking endothelial core 1 O-glycan or cecal ligation and puncture-treated mice. Furthermore, core 1 O-glycan–deficient or desialylated PDPN impaired platelet interaction under physiological flow. These data indicate that sialylated O-glycans of PDPN are essential for platelet adhesion and prevent PDPN from proteolytic degradation primarily mediated by MMPs in the lymph. PMID:25336627

  8. Angiogenic dysfunction in bone marrow-derived early outgrowth cells from diabetic animals is attenuated by SIRT1 activation.

    PubMed

    Yuen, Darren A; Zhang, Yanling; Thai, Kerri; Spring, Christopher; Chan, Lauren; Guo, Xiaoxin; Advani, Andrew; Sivak, Jeremy M; Gilbert, Richard E

    2012-12-01

    Impaired endothelial repair is a key contributor to microvascular rarefaction and consequent end-organ dysfunction in diabetes. Recent studies suggest an important role for bone marrow-derived early outgrowth cells (EOCs) in mediating endothelial repair, but the function of these cells is impaired in diabetes, as in advanced age. We sought to determine whether diabetes-associated EOC dysfunction might be attenuated by pharmacological activation of silent information regulator protein 1 (SIRT1), a lysine deacetylase implicated in nutrient-dependent life span extension in mammals. Despite being cultured in normal (5.5 mM) glucose for 7 days, EOCs from diabetic rats expressed less SIRT1 mRNA, induced less endothelial tube formation in vitro and neovascularization in vivo, and secreted less of the proangiogenic ELR(+) CXC chemokines CXCL1, CXCL3, and CXCL5. Ex vivo SIRT1 activation restored EOC chemokine secretion and increased the in vitro and in vivo angiogenic activity of EOC conditioned medium derived from diabetic animals to levels similar to that derived from control animals. These findings suggest a pivotal role for SIRT1 in diabetes-induced EOC dysfunction and that its pharmacologic activation may provide a new strategy for the restoration of EOC-mediated repair mechanisms.

  9. Deregulation of tumor angiogenesis and blockade of tumor growth in PPARbeta-deficient mice.

    PubMed

    Müller-Brüsselbach, Sabine; Kömhoff, Martin; Rieck, Markus; Meissner, Wolfgang; Kaddatz, Kerstin; Adamkiewicz, Jürgen; Keil, Boris; Klose, Klaus J; Moll, Roland; Burdick, Andrew D; Peters, Jeffrey M; Müller, Rolf

    2007-08-08

    The peroxisome proliferator-activated receptor-beta (PPARbeta) has been implicated in tumorigenesis, but its precise role remains unclear. Here, we show that the growth of syngeneic Pparb wild-type tumors is impaired in Pparb(-/-) mice, concomitant with a diminished blood flow and an abundance of hyperplastic microvascular structures. Matrigel plugs containing pro-angiogenic growth factors harbor increased numbers of morphologically immature, proliferating endothelial cells in Pparb(-/-) mice, and retroviral transduction of Pparb triggers microvessel maturation. We have identified the Cdkn1c gene encoding the cell cycle inhibitor p57(Kip2) as a PPARbeta target gene and a mediator of the PPARbeta-mediated inhibition of cell proliferation, which provides a possible mechanistic explanation for the observed tumor endothelial hyperplasia and deregulation of tumor angiogenesis in Pparb(-/-) mice. Our data point to an unexpected essential role for PPARbeta in constraining tumor endothelial cell proliferation to allow for the formation of functional tumor microvessels.

  10. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: Possible role of nuclear factor-κB

    PubMed Central

    Walker, Ashley E; Kaplon, Rachelle E; Pierce, Gary L; Nowlan, Molly J; Seals, Douglas R

    2014-01-01

    Habitual aerobic exercise prevents age-related impairments in endothelium-dependent dilation (EDD). We hypothesized that the pro-inflammatory transcription factor nuclear factor κB (NF-κB) impairs EDD with sedentary aging and habitual aerobic exercise prevents this age-related suppression of EDD by NF-κB. To test this hypothesis, we inhibited NF-κB signaling via oral salsalate administration in healthy older aerobic exercise-trained adults (OT, n=14, 58±2 years), older non-exercising adults (ON, n=16, 61±1 years) and young non-exercising controls (YN, n=8, 23±1 years). Salsalate reduced endothelial cell expression of NF-κB p65 by ~25% in ON (P<0.05), but did not significantly change expression in OT or YN (P>0.05). EDD, assessed by brachial artery flow-mediated dilation (FMD), was improved by salsalate in ON (4.0±0.7% vs. 6.8±0.7%, placebo vs. salsalate, P<0.001), but did not change with salsalate in OT or YN (OT: 7.2±0.7% vs. 7.7±0.6%; YN: 7.6±0.9% vs. 8.1±0.8%; placebo vs. salsalate, P>0.05). Endothelium-independent dilation was not affected by salsalate in any group (P>0.05). In ON, vitamin C infusion improved FMD by ~30% during placebo (P<0.001), but had no affect during salsalate (P>0.05). In OT and YN, vitamin C infusion did not affect FMD during either placebo or salsalate (P>0.05). Salsalate reduced endothelial cell nitrotyrosine content by ~25% and NADPH oxidase p47phox expression by ~30% in ON (P<0.05), but had no effect in OT or YN (P>0.05). Our results suggest that endothelial NF-κB signaling is associated with oxidative stress-related impairment of EDD in healthy non-exercising, but not aerobically exercising older adults. This may be a key mechanism by which regular aerobic exercise preserves endothelial function and reduces cardiovascular risk with aging. PMID:24947434

  11. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB.

    PubMed

    Walker, Ashley E; Kaplon, Rachelle E; Pierce, Gary L; Nowlan, Molly J; Seals, Douglas R

    2014-12-01

    Habitual aerobic exercise prevents age-related impairments in endothelium-dependent dilation (EDD). We have hypothesized that the pro-inflammatory transcription factor nuclear factor κB (NF-κB) impairs EDD with sedentary aging, and habitual aerobic exercise prevents this age-related suppression of EDD by NF-κB. To test this hypothesis, we have inhibited NF-κB signalling via oral salsalate administration in healthy older aerobic exercise-trained adults (OT, n=14, 58 ± 2 years), older non-exercising adults (ON, n=16, 61 ± 1 years) and young non-exercising controls (YN, n=8, 23 ± 1 years). Salsalate reduced endothelial cell expression of NF-κB p65 by ~25% in ON (P<0.05) but did not significantly change expression in OT or YN (P>0.05). EDD, assessed by brachial artery flow-mediated dilation (FMD), was improved by salsalate in ON (4.0 ± 0.7% compared with 6.8 ± 0.7%, placebo compared with salsalate, P<0.001) but did not change with salsalate in OT or YN (OT: 7.2 ± 0.7% compared with 7.7 ± 0.6%; YN: 7.6 ± 0.9% compared with 8.1 ± 0.8%; placebo compared with salsalate, P>0.05). Endothelium-independent dilation was not affected by salsalate in any group (P>0.05). In ON, vitamin C infusion improved FMD by ~30% during placebo (P<0.001) but had no affect during salsalate (P>0.05). In OT and YN, vitamin C infusion did not affect FMD during either placebo or salsalate (P>0.05). Salsalate reduced endothelial cell nitrotyrosine content by ~25% and NADPH oxidase p47phox expression by ~30% in ON (P<0.05) but had no effect in OT or YN (P>0.05). Our results suggest that endothelial NF-κB signalling is associated with oxidative stress-related impairment of EDD in healthy non-exercising but not aerobically exercising older adults. This may be a key mechanism by which regular aerobic exercise preserves endothelial function and reduces cardiovascular risk with aging.

  12. Vitamin D(2) supplementation induces the development of aortic stenosis in rabbits: interactions with endothelial function and thioredoxin-interacting protein.

    PubMed

    Ngo, Doan T M; Stafford, Irene; Kelly, Darren J; Sverdlov, Aaron L; Wuttke, Ronald D; Weedon, Helen; Nightingale, Angus K; Rosenkranz, Anke C; Smith, Malcolm D; Chirkov, Yuliy Y; Kennedy, Jennifer A; Horowitz, John D

    2008-08-20

    Understanding of the pathophysiology of aortic valve stenosis (AVS) and finding potentially effective treatments are impeded by the lack of suitable AVS animal models. A previous study demonstrated the development of AVS in rabbits with vitamin D(2) and cholesterol supplementation without any hemodynamic changes in the cholesterol supplemented group alone. The current study aimed to determine whether AVS develops in an animal model with vitamin D(2) supplementation alone, and to explore pathophysiological mechanisms underlying this process. The effects of 8 weeks' treatment with vitamin D(2) alone (n=8) at 25,000 IU/4 days weekly on aortic valve structure and function were examined in male New Zealand white rabbits. Echocardiographic aortic valve backscatter (AV(BS)), transvalvular velocity, and transvalvular pressure gradient were utilized to quantitate changes in valve structure and function. Valvular histology/immunochemistry and function were examined after 8 weeks. Changes in valves were compared with those in endothelial function and in valvular measurement of thioredoxin-interacting protein (TXNIP), a marker/mediator of reactive oxygen species-induced oxidative stress. Vitamin D(2) treated rabbits developed AVS with increased AV(BS) (17.6+/-1.4 dB vs 6.7+/-0.8 dB, P<0.0001), increased transvalvular velocity and transvalvular pressure gradient (both P<0.01 via 2-way ANOVA) compared to the control group. There was associated valve calcification, lipid deposition and macrophage infiltration. Endothelial function was markedly impaired, and intravalvular TXNIP concentration increased. In this model, vitamin D(2) induces the development of AVS with histological features similar to those of early AVS in humans and associated endothelial dysfunction/redox stress. AVS development may result from the loss of nitric oxide suppression of TXNIP expression.

  13. Impaired endothelial function in lone atrial fibrillation.

    PubMed

    Polovina, Marija; Potpara, Tatjana; Giga, Vojislav; Stepanović, Jelena; Ostojić, Miodrag

    2013-10-01

    Impaired endothelial function has been previously documented in patients with atrial fibrillation (AF) and underlying comorbidities or older patients with idiopathic AF. The aim of this study was to evaluate systemic endothelial function in younger AF patients (less than < 60 years old) with lone AF (that is, without associated cardiopulmonary comorbidities, including arterial hypertension), by comparing brachial artery flow-mediated dilation (FMD) in lone AF patients with FMD of healthy subjects in sinus rhythm. Two groups of participants were prospectively enrolled. The first group comprised of 38 AF patients (the mean age 45 +/- 11 years, 68% male) with persistent (> 7 days) lone AF. The second group comprised of 28 healthy controls in sinus rhythm (the mean age 43 +/- 13, 53% male), matched by age, gender and atherosclerotic risk factors. All the participants underwent physical examination, laboratory analysis [including determination of C-reactive protein (CRP)], standard echocardiography and exercise-stress testing. Brachial artery FMD and endothelium independent dilation (NMD) were assessed with a high-resolution ultrasound probe and arterial diameters taken from 5 consecutive cardiac cycles were averaged for each measurement to accommodate to beat-to-beat flow variations in AF. There were no differences between the 2 groups regarding age, gender and most clinical, laboratory and echocardiographic characteristics (all p > 0.05), apart from the increased heart rate (p = 0.018), body mass index (p = 0.027), CRP levels (p = 0.007) and left atrial anteroposterior dimension (p < 0.001) in AF patients. FMD of AF patients [median value 5.0%, interquartile range (IQR) 2.87%-7.50%] was significantly lower (p < 0.001) than FMD of healthy controls (median value 8.85%, IQR 5.80%-12.50%), whereas there were no differences in median NMD values (p > 0.05). In the multivariate analysis, the independent FMD determinants in our study population were the presence of AF, smoking and total cholesterol levels (all p < 0.001). In patients with AF, the strongest independent FMD determinant was arrhythmia duration (p < 0.001), followed by smoking (p = 0.013) and total cholesterol levels (p = 0.045). Our findings confirm that sustained AF is associated with systemic endothelial dysfunction even in relatively young patients with no cardiovascular disorders or risk factors. AF is an independent contributor to lower FMD and a prolonged arrhythmia duration may confer the risk for more profound endothelial damage.

  14. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial.

    PubMed

    Sawada, Takahiro; Tsubata, Hideo; Hashimoto, Naoko; Takabe, Michinori; Miyata, Taishi; Aoki, Kosuke; Yamashita, Soichiro; Oishi, Shogo; Osue, Tsuyoshi; Yokoi, Kiminobu; Tsukishiro, Yasue; Onishi, Tetsuari; Shimane, Akira; Taniguchi, Yasuyo; Yasaka, Yoshinori; Ohara, Takeshi; Kawai, Hiroya; Yokoyama, Mitsuhiro

    2016-08-26

    Recent experimental studies have revealed that n-3 fatty acids, such as eicosapentaenoic acid (EPA) regulate postprandial insulin secretion, and correct postprandial glucose and lipid abnormalities. However, the effects of 6-month EPA treatment on postprandial hyperglycemia and hyperlipidemia, insulin secretion, and concomitant endothelial dysfunction remain unknown in patients with impaired glucose metabolism (IGM) and coronary artery disease (CAD). We randomized 107 newly diagnosed IGM patients with CAD to receive either 1800 mg/day of EPA (EPA group, n = 53) or no EPA (n = 54). Cookie meal testing (carbohydrates: 75 g, fat: 28.5 g) and endothelial function testing using fasting-state flow-mediated dilatation (FMD) were performed before and after 6 months of treatment. The primary outcome of this study was changes in postprandial glycemic and triglyceridemic control and secondary outcomes were improvement of insulin secretion and endothelial dysfunction. After 6 months, the EPA group exhibited significant improvements in EPA/arachidonic acid, fasting triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The EPA group also exhibited significant decreases in the incremental TG peak, area under the curve (AUC) for postprandial TG, incremental glucose peak, AUC for postprandial glucose, and improvements in glycometabolism categorization. No significant changes were observed for hemoglobin A1c and fasting plasma glucose levels. The EPA group exhibited a significant increase in AUC-immune reactive insulin/AUC-plasma glucose ratio (which indicates postprandial insulin secretory ability) and significant improvements in FMD. Multiple regression analysis revealed that decreases in the TG/HDL-C ratio and incremental TG peak were independent predictors of FMD improvement in the EPA group. EPA corrected postprandial hypertriglyceridemia, hyperglycemia and insulin secretion ability. This amelioration of several metabolic abnormalities was accompanied by recovery of concomitant endothelial dysfunction in newly diagnosed IGM patients with CAD. Clinical Trial Registration UMIN Registry number: UMIN000011265 ( https://www.upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000013200&language=E ).

  15. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    PubMed Central

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  16. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{submore » 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and intimal area. • Lovastatin promoted smooth muscle cell recruitment into plaques. • Lovastatin reduced the expression of vasoactive mediators (iNOS, COX-2, and ET-1). • Lovastatin did not reduce blood lipid levels in PM{sub 10}-exposed rabbits.« less

  17. Soluble CD40 Ligand Stimulates the Pro-Angiogenic Function of Peripheral Blood Angiogenic Outgrowth Cells via Increased Release of Matrix Metalloproteinase-9

    PubMed Central

    Bou Khzam, Lara; Boulahya, Rahma; Abou-Saleh, Haissam; Hachem, Ahmed; Zaid, Younes; Merhi, Yahye

    2013-01-01

    The role of endothelial progenitor cells in vascular repair is related to their incorporation at sites of vascular lesions, differentiation into endothelial cells, and release of various angiogenic factors specifically by a subset of early outgrowth endothelial progenitor cells (EOCs). It has been shown that patients suffering from cardiovascular disease exhibit increased levels of circulating and soluble CD40 ligand (sCD40L), which may influence the function of EOCs. We have previously shown that the inflammatory receptor CD40 is expressed on EOCs and its ligation with sCD40L impairs the anti-platelet function of EOCs. In the present study, we aimed at investigating the effect of sCD40L on the function of EOCs in endothelial repair. Human peripheral blood mononuclear cell-derived EOCs express CD40 and its adaptor proteins, the tumor necrosis factor receptor-associated factors; TRAF1, TRAF2 and TRAF3. Stimulation of EOCs with sCD40L increased the expression of TRAF1, binding of TRAF2 to CD40 and phosphorylation of p38 mitogen activated protein kinase (MAPK). In an in vitro wound healing assay, stimulation of EOCs with sCD40L increased the release of matrix metalloproteinase 9 (MMP-9) in a concentration-dependent manner and significantly enhanced the angiogenic potential of cultured human umbilical vein endothelial cells (HUVECs). Inhibition of p38 MAPK reversed sCD40L-induced MMP-9 release by EOCs, whereas inhibition of MMP-9 reversed their pro-angiogenic effect on HUVECs. This study reveals the existence of a CD40L/CD40/TRAF axis in EOCs and shows that sCD40L increases the pro-angiogenic function of EOCs on cultured HUVECs by inducing a significant increase in MMP-9 release via, at least, the p38 MAPK signaling pathway. PMID:24358353

  18. Soluble CD40 ligand stimulates the pro-angiogenic function of peripheral blood angiogenic outgrowth cells via increased release of matrix metalloproteinase-9.

    PubMed

    Bou Khzam, Lara; Boulahya, Rahma; Abou-Saleh, Haissam; Hachem, Ahmed; Zaid, Younes; Merhi, Yahye

    2013-01-01

    The role of endothelial progenitor cells in vascular repair is related to their incorporation at sites of vascular lesions, differentiation into endothelial cells, and release of various angiogenic factors specifically by a subset of early outgrowth endothelial progenitor cells (EOCs). It has been shown that patients suffering from cardiovascular disease exhibit increased levels of circulating and soluble CD40 ligand (sCD40L), which may influence the function of EOCs. We have previously shown that the inflammatory receptor CD40 is expressed on EOCs and its ligation with sCD40L impairs the anti-platelet function of EOCs. In the present study, we aimed at investigating the effect of sCD40L on the function of EOCs in endothelial repair. Human peripheral blood mononuclear cell-derived EOCs express CD40 and its adaptor proteins, the tumor necrosis factor receptor-associated factors; TRAF1, TRAF2 and TRAF3. Stimulation of EOCs with sCD40L increased the expression of TRAF1, binding of TRAF2 to CD40 and phosphorylation of p38 mitogen activated protein kinase (MAPK). In an in vitro wound healing assay, stimulation of EOCs with sCD40L increased the release of matrix metalloproteinase 9 (MMP-9) in a concentration-dependent manner and significantly enhanced the angiogenic potential of cultured human umbilical vein endothelial cells (HUVECs). Inhibition of p38 MAPK reversed sCD40L-induced MMP-9 release by EOCs, whereas inhibition of MMP-9 reversed their pro-angiogenic effect on HUVECs. This study reveals the existence of a CD40L/CD40/TRAF axis in EOCs and shows that sCD40L increases the pro-angiogenic function of EOCs on cultured HUVECs by inducing a significant increase in MMP-9 release via, at least, the p38 MAPK signaling pathway.

  19. Endothelial nitric oxide synthase overexpression restores the efficiency of bone marrow mononuclear cell-based therapy.

    PubMed

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Effect of exercise training and food restriction on endothelium-dependent relaxation in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous NIDDM.

    PubMed

    Sakamoto, S; Minami, K; Niwa, Y; Ohnaka, M; Nakaya, Y; Mizuno, A; Kuwajima, M; Shima, K

    1998-01-01

    We investigated whether endothelial function may be impaired in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous NIDDM. The effect of exercise training and food restriction on endothelial function was also studied. OLETF rats were divided into three groups at age 16 weeks: sedentary, exercise trained, and food restricted (70% of the food intake of sedentary rats). Otsuka Long-Evans Tokushima rats were used as the age-matched nondiabetic controls. Endothelium-dependent relaxation of the thoracic aorta induced by histamine was significantly attenuated in the sedentary or food-restricted rats, and exercise training improved endothelial function. Relaxation induced by sodium nitroprusside, a donor of nitric oxide, did not differ significantly among groups. Both exercise training and food restriction significantly suppressed plasma levels of glucose and insulin and serum levels of triacylglycerol and cholesterol and reduced the accumulation of abdominal fat. Insulin sensitivity, as measured by the hyperinsulinemic-euglycemic clamp technique, was significantly decreased in sedentary rats but was enhanced in exercise-trained and food-restricted rats. The urinary excretion of nitrite was significantly decreased in sedentary and food-restricted rats compared with nondiabetic rats and was significantly increased in exercise-trained rats. These results indicate that exercise training, but not food restriction, prevents endothelial dysfunction in NIDDM rats, presumably due to the exercise-induced increase in the production of nitric oxide.

  1. Effect of fresh orange juice intake on physiological characteristics in healthy volunteers.

    PubMed

    Asgary, Sedigheh; Keshvari, Mahtab; Afshani, Mohammad Reza; Amiri, Masoud; Laher, Ismail; Javanmard, Shaghayegh Haghjooy

    2014-01-01

    Background. Impaired endothelial function is a predictor of cardiovascular events. Orange juice (OJ) is rich in dietary flavonoids and could inhibit oxidative stress and inflammatory responses. We examined the effects of commercial (COJ) and fresh orange juice (FOJ) on endothelial function and physiological characteristics in healthy humans. Materials and Methods. Twenty-two healthy volunteers years were enrolled in a single blind randomized crossover controlled trial. The two groups consumed either COJ for the first 4 weeks and then FOJ (CFOJ, 4 weeks), or FOJ for the first 4 weeks and then COJ (FCOJ, 4 weeks). We assessed endothelial function by measuring flow-mediated dilation, serum concentrations of lipids, apolipoproteins A and B (apo A-1 and apo B), and inflammatory markers such as vascular endothelial adhesion molecule 1 (VCAM-1), E-selectin, high-sensitivity C-reactive protein (hs-CRP), and interleukin-6. Results. Consumption of both juices decreased VCAM, hs-CRP, and E-selectin but increased apo A-1. A decline in LDL occurred in the FOJ group. There were no differences between the characteristics of two groups, with the exception of apo A-1 levels that were increased with both forms of OJ. The largest variations occurred with hs-CRP, VCAM in both groups. Conclusion. Consumption of COJ and FOJ produced beneficial effects on the physiological characteristics of healthy volunteers. Although these results could encourage the consumption of OJ, intervention studies are needed to determine the long-term effects of these types of OJ on metabolic and cardiovascular endpoints.

  2. Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model.

    PubMed

    Park, Inwon; Choe, Kibaek; Seo, Howon; Hwang, Yoonha; Song, Eunjoo; Ahn, Jinhyo; Hwan Jo, You; Kim, Pilhan

    2018-05-01

    Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo , suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction.

  3. Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model

    PubMed Central

    Park, Inwon; Choe, Kibaek; Seo, Howon; Hwang, Yoonha; Song, Eunjoo; Ahn, Jinhyo; Hwan Jo, You; Kim, Pilhan

    2018-01-01

    Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo, suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction. PMID:29760995

  4. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion.

    PubMed

    Ma, GuoHua; Pan, Bing; Chen, Yue; Guo, CaiXia; Zhao, MingMing; Zheng, LeMin; Chen, BuXing

    2017-04-30

    Several studies have reported a strong association between high plasma level of trimethylamine N-oxide (TMAO) and atherosclerosis development. However, the exact mechanism underlying this correlation is unknown. In the present study, we try to explore the impact of TMAO on endothelial dysfunction. After TMAO treatment, human umbilical vein endothelial cells (HUVECs) showed significant impairment in cellular proliferation and HUVECs-extracellular matrix (ECM) adhesion compared with control. Likewise, TMAO markedly suppressed HUVECs migration in transwell migration assay and wound healing assay. In addition, we found TMAO up-regulated vascular cell adhesion molecule-1 (VCAM-1) expression, promoted monocyte adherence, activated protein kinase C (PKC) and p-NF-κB. Interestingly, TMAO-stimulated VCAM-1 expression and monocyte adherence were diminished by PKC inhibitor. These results demonstrate that TMAO promotes early pathological process of atherosclerosis by accelerating endothelial dysfunction, including decreasing endothelial self-repair and increasing monocyte adhesion. Furthermore, TMAO-induced monocyte adhesion is partly attributable to activation of PKC/NF-κB/VCAM-1. © 2017 The Author(s).

  5. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury

    PubMed Central

    Castro, Angela M.; Lupu, Traian S.; Weinheimer, Carla; Smith, Craig; Kovacs, Attila

    2016-01-01

    Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling that mediates different cardioprotective endpoints is not known. To determine the requirement for FGFR signaling in endothelium in cardiac ischemia-reperfusion injury, we conditionally inactivated the Fgfr1 and Fgfr2 genes in endothelial cells with Tie2-Cre (Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice). Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice had normal baseline cardiac morphometry, function, and vessel density. When subjected to closed-chest, regional cardiac ischemia-reperfusion injury, Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice showed a significantly increased hypokinetic area at 7 days, but not 1 day, after reperfusion. Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice also showed significantly worsened cardiac function compared with controls at 7 days but not 1 day after reperfusion. Pathophysiological analysis showed significantly decreased vessel density, increased endothelial cell apoptosis, and worsened tissue hypoxia in the peri-infarct area at 7 days following reperfusion. Notably, Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice showed no impairment in the cardiac hypertrophic response. These data demonstrate an essential role for FGFR1 and FGFR2 in endothelial cells for cardiac functional recovery and vascular remodeling following in vivo cardiac ischemia-reperfusion injury, without affecting the cardiac hypertrophic response. This study suggests the potential for therapeutic benefit from activation of endothelial FGFR pathways following ischemic injury to the heart. PMID:26747503

  6. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury.

    PubMed

    House, Stacey L; Castro, Angela M; Lupu, Traian S; Weinheimer, Carla; Smith, Craig; Kovacs, Attila; Ornitz, David M

    2016-03-01

    Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling that mediates different cardioprotective endpoints is not known. To determine the requirement for FGFR signaling in endothelium in cardiac ischemia-reperfusion injury, we conditionally inactivated the Fgfr1 and Fgfr2 genes in endothelial cells with Tie2-Cre (Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice). Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice had normal baseline cardiac morphometry, function, and vessel density. When subjected to closed-chest, regional cardiac ischemia-reperfusion injury, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed a significantly increased hypokinetic area at 7 days, but not 1 day, after reperfusion. Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice also showed significantly worsened cardiac function compared with controls at 7 days but not 1 day after reperfusion. Pathophysiological analysis showed significantly decreased vessel density, increased endothelial cell apoptosis, and worsened tissue hypoxia in the peri-infarct area at 7 days following reperfusion. Notably, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed no impairment in the cardiac hypertrophic response. These data demonstrate an essential role for FGFR1 and FGFR2 in endothelial cells for cardiac functional recovery and vascular remodeling following in vivo cardiac ischemia-reperfusion injury, without affecting the cardiac hypertrophic response. This study suggests the potential for therapeutic benefit from activation of endothelial FGFR pathways following ischemic injury to the heart. Copyright © 2016 the American Physiological Society.

  7. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity

    PubMed Central

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J.; Miranda, Melroy X.; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F.; Verrey, François; Matter, Christian M.

    2013-01-01

    Received 22 July 2012; revised 29 January 2013; accepted 4 March 2013 Aims Aldosterone plays a crucial role in cardiovascular disease. ‘Systemic’ inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the ‘endothelial’ MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. Methods and results C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high ‘endogenous’ aldosterone) and in ‘exogenous’ aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Conclusion Obesity-induced endothelial dysfunction depends on the ‘endothelial’ MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications. PMID:23594590

  8. Differential effects of low and high dose folic acid on endothelial dysfunction in a murine model of mild hyperhomocysteinaemia.

    PubMed

    Clarke, Zoe L; Moat, Stuart J; Miller, Alastair L; Randall, Michael D; Lewis, Malcolm J; Lang, Derek

    2006-12-03

    The exact mechanism(s) by which hyperhomocysteinaemia promotes vascular disease remains unclear. Moreover, recent evidence suggests that the beneficial effect of folic acid on endothelial function is independent of homocysteine-lowering. In the present study the effect of a low (400 microg/70 kg/day) and high (5 mg/70 kg/day) dose folic acid supplement on endothelium-dependent relaxation in the isolated perfused mesenteric bed of heterozygous cystathionine beta-synthase deficient mice was investigated. Elevated total plasma homocysteine and impaired relaxation responses to methacholine were observed in heterozygous mice. In the presence of N(G)-nitro-L-arginine methyl ester relaxation responses in wild-type tissues were reduced, but in heterozygous tissues were abolished. Clotrimazole and 18alpha-glycyrrhetinic acid, both inhibitors of non-nitric oxide/non-prostanoid-induced endothelium-dependent relaxation, reduced responses to methacholine in wild-type but not heterozygous tissues. The combination of N(G)-nitro-L-arginine methyl ester and either clotrimazole or 18alpha-glycyrrhetinic acid completely inhibited relaxation responses in wild-type tissues. Both low and high dose folic acid increased plasma folate, reduced total plasma homocysteine and reversed endothelial dysfunction in heterozygous mice. A greater increase in plasma folate in the high dose group was accompanied by a more significant effect on endothelial function. In the presence of N(G)-nitro-L-arginine methyl ester, a significant residual relaxation response was evident in tissues from low and high dose folic acid treated heterozygous mice. These data suggest that the impaired mesenteric relaxation in heterozygous mice is largely due to loss of the non-nitric oxide/non-prostanoid component. While low dose folic acid may restore this response in a homocysteine-dependent manner, the higher dose has an additional effect on nitric oxide-mediated relaxation that would appear to be independent of homocysteine lowering.

  9. Vascular wall function in insulin-resistant JCR:LA-cp rats: role of male and female sex.

    PubMed

    O'Brien, S F; Russell, J C; Dolphin, P J; Davidge, S T

    2000-08-01

    Vascular wall function was assessed in obese insulin-resistant (cp/cp) and lean normal (+/?), male and female, JCR:LA-cp rats. Both male and female cp/cp rats showed enhanced maximum contractility in response to norepinephrine; impaired smooth muscle in response to sodium nitroprusside, a nitric oxide (NO) donor; and impaired relaxation in response to acetylcholine (ACh), compared with their lean counterparts. The abnormalities were similar in male and female cp/cp rats. The NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), inhibited ACh-mediated relaxation significantly in male rats, both cp/cp and +/?. The inhibition of ACh-mediated relaxation by L-NAME in +/? females was less, with no reduction in maximal relaxation, and was absent in cp/cp females. These effects suggest that the relative importance of NO in the endothelial modulation of smooth muscle contractility is greater in male rats. The results are consistent with a decreased role for endothelial NO in the cp/cp rats of both sexes and a reduction in NO-independent cholinergic relaxation in the male cp/cp rat. This NO-independent mechanism is not affected in the female cp/cp rats. The relatively small differences between males and females in smooth muscle cell and vascular function may contribute to sex-related differences in the atherogenesis, vasospasm, and ischemic damage associated with the obese insulin-resistant state.

  10. Exercise Training Stimulates Ischemia-Induced Neovascularization via Phosphatidylinositol 3-Kinase/Akt-Dependent Hypoxia-Induced Factor-1α Reactivation in Mice of Advanced Age

    PubMed Central

    Cheng, Xian Wu; Kuzuya, Masafumi; Kim, Weon; Song, Haizhen; Hu, Lina; Inoue, Aiko; Nakamura, Kae; Di, Qun; Sasaki, Takeshi; Tsuzuki, Michitaka; Shi, Guo-Ping; Okumura, Kenji; Murohara, Toyoaki

    2011-01-01

    Background Exercise stimulates the vascular response in pathological conditions, including ischemia; however, the molecular mechanisms by which exercise improves the impaired hypoxia-induced factor (HIF)-1α–mediated response to hypoxia associated with aging are poorly understood. Here, we report that swimming training (ST) modulates the vascular response to ischemia in aged (24-month-old) mice. Methods and Results Aged wild-type mice (MMP-2+/+) that maintained ST (swimming 1 h/d) from day 1 after surgery were randomly assigned to 4 groups that were treated with either vehicle, LY294002, or deferoxamine for 14 days. Mice that were maintained in a sedentary condition served as controls. ST increased blood flow, capillary density, and levels of p-Akt, HIF-1α, vascular endothelial growth factor, Fit-1, and matrix metalloproteinase-2 (MMP-2) in MMP-2+/+ mice. ST also increased the numbers of circulating endothelial progenitor cells and their function associated with activation of HIF-1α. All of these effects were diminished by LY294002, an inhibitor of phosphatidylinositol 3-kinase; enhanced by deferoxamine, an HIF-1α stabilizer; and impaired by knockout of MMP-2. Finally, bone marrow transplantation confirmed that ST enhanced endothelial progenitor cell homing to ischemic sites in aged mice. Conclusions ST can improve neovascularization in response to hypoxia via a phosphatidylinositol 3-kinase–dependent mechanism that is mediated by the HIF-1α/vascular endothelial growth factor/MMP-2 pathway in advanced age. PMID:20679550

  11. Differential sex-specific effects of oxygen toxicity in human umbilical vein endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuhao; Lingappan, Krithika

    Despite the well-established sex-specific differences in the incidence of bronchopulmonary dysplasia (BPD), the molecular mechanism(s) behind these are not completely understood. Pulmonary angiogenesis is critical for alveolarization and arrest in vascular development adversely affects lung development. Human neonatal umbilical vein endothelial cells (HUVECs) provide a robust in vitro model for the study of endothelial cell physiology and function. Male and Female HUVECs were exposed to room air (21% O{sub 2}, 5% CO{sub 2}) or hyperoxia (95% O{sub 2}, 5% CO{sub 2}) for up to 72 h. Cell viability, proliferation, H{sub 2}O{sub 2} production and angiogenesis were analyzed. Sex-specific differences in the expressionmore » of VEGFR2 and modulation of NF-kappa B pathway were measured. Male HUVECs have decreased survival, greater oxidative stress and impairment in angiogenesis compared to similarly exposed female cells. There is differential expression of VEGFR2 between male and female HUVECs and greater activation of the NF-kappa B pathway in female HUVECs under hyperoxic conditions. The results indicate that sex differences exist between male and female HUVECs in vitro after hyperoxia exposure. Since endothelial dysfunction has a major role in the pathogenesis of BPD, these differences could explain in part the mechanisms behind sex-specific differences in the incidence of this disease. - Highlights: • Cellular sex effects viability and oxidative stress in HUVECs exposed to hyperoxia. • Male HUVECs show greater impairment in angiogenesis compared to female cells. • Sex-specific modulation of VEGFR2 and the NF-kappaB pathway was noted.« less

  12. Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model.

    PubMed

    Berghoff, Stefan A; Düking, Tim; Spieth, Lena; Winchenbach, Jan; Stumpf, Sina K; Gerndt, Nina; Kusch, Kathrin; Ruhwedel, Torben; Möbius, Wiebke; Saher, Gesine

    2017-12-01

    In neuroinflammatory disorders such as multiple sclerosis, the physiological function of the blood-brain barrier (BBB) is perturbed, particularly in demyelinating lesions and supposedly secondary to acute demyelinating pathology. Using the toxic non-inflammatory cuprizone model of demyelination, we demonstrate, however, that the onset of persistent BBB impairment precedes demyelination. In addition to a direct effect of cuprizone on endothelial cells, a plethora of inflammatory mediators, which are mainly of astroglial origin during the initial disease phase, likely contribute to the destabilization of endothelial barrier function in vivo. Our study reveals that, at different time points of pathology and in different CNS regions, the level of gliosis correlates with the extent of BBB hyperpermeability and edema. Furthermore, in mutant mice with abolished type 3 CXC chemokine receptor (CXCR3) signaling, inflammatory responses are dampened and BBB dysfunction ameliorated. Together, these data have implications for understanding the role of BBB permeability in the pathogenesis of demyelinating disease.

  13. Memantine Attenuates Delayed Vasospasm after Experimental Subarachnoid Hemorrhage via Modulating Endothelial Nitric Oxide Synthase.

    PubMed

    Huang, Chih-Yuan; Wang, Liang-Chao; Shan, Yan-Shen; Pan, Chia-Hsin; Tsai, Kuen-Jer

    2015-06-23

    Delayed cerebral vasospasm is an important pathological feature of subarachnoid hemorrhage (SAH). The cause of vasospasm is multifactorial. Impairs nitric oxide availability and endothelial nitric oxide synthase (eNOS) dysfunction has been reported to underlie vasospasm. Memantine, a low-affinity uncompetitive N-methyl-d-aspartate (NMDA) blocker has been proven to reduce early brain injury after SAH. This study investigated the effect of memantine on attenuation of vasospasm and restoring eNOS functionality. Male Sprague-Dawley rats weighing 350-450 g were randomly divided into three weight-matched groups, sham surgery, SAH + vehicle, and SAH + memantine groups. The effects of memantine on SAH were evaluated by assessing the severity of vasospasm and the expression of eNOS. Memantine effectively ameliorated cerebral vasospasm by restoring eNOS functionality. Memantine can prevent vasospasm in experimental SAH. Treatment strategies may help combat SAH-induced vasospasm in the future.

  14. Optimizing donor heart outcome after prolonged storage with endothelial function analysis and continuous perfusion.

    PubMed

    Poston, Robert S; Gu, Junyan; Prastein, Deyanira; Gage, Fred; Hoffman, John W; Kwon, Michael; Azimzadeh, Agnes; Pierson, Richard N; Griffith, Bartley P

    2004-10-01

    By minimizing tissue ischemia, continuous perfusion (CP) during organ transport may increase the safety of "marginal donors." My colleagues and I investigated whether an analysis of donor heart viability predicts recovery of grafts challenged with a 24-hour preservation interval. Dog hearts underwent cold static storage (CS) for 8 hours (n = 8) or 24 hours (n = 2) or CP for 24 hours with cold asanguinous, oxygenated solution (n = 8). Myocardial systolic and diastolic function and oxygen and lactate consumption were assessed at base line, during CP, and after Langendorff blood reperfusion. Base line endothelial function was evaluated by the percentage transcoronary change ([coronary sinus - aorta]/aorta) in myeloperoxidase and by platelet function and coronary flow reserve after 20 seconds of coronary artery occlusion. During CP, the endothelium was assessed by transcoronary protein release and coronary resistance. Edema was assessed by weight gain and histology. Base line systolic and metabolic functions showed no relation to post-Langendorff function. Compared with CS, CP resulted in a greater recovery in systolic function (87% +/- 35% vs 65% +/- 15% of baseline; p = 0.05) and a shorter interval required for lactate consumption to exceed production (7.0 +/- 6.8 minutes vs 15.0 +/- 8.9 minutes; p = 0.06). Endothelial function was heterogeneous: coronary flow reserve, 2.7 +/- 0.7; percentage change in myeloperoxidase, -8.4% +/- 6.8%; and change in platelet function, 4.3% +/- 3.5%, as determined by thromboelastography angle at base line. Protein release during CP for 24 hours was 8.3 +/- 7.1 g. Two factors predicted more than 75% systolic pressure generation recovery: use of CP and normal endothelial function (p = 0.05; Fisher's exact test). However, CP led to edema according to histology, weight gain (72 +/- 29 g), and impaired diastolic function versus CS (end-diastolic pressure-volume relationship, 1.4 +/- 0.4 mm Hg/mL vs 0.8 +/- 0.3 mm Hg/mL; p = 0.08). Better systolic function despite 16 hours' more preservation than cold storage corroborates the idea that CP supports aerobic metabolism at physiologically important levels. Viability analysis focused on endothelial function and identified organs that were able to tolerate this 24-hour preservation interval.

  15. TNF-alpha inhibition could reduce biomarkers of endothelial dysfunction in patients with moderate to severe psoriasis: A 52-week echo-Doppler based quasi-experimental study.

    PubMed

    Molina-Leyva, Alejandro; Garrido-Pareja, Fermín; Ruiz-Carrascosa, José Carlos; Ruiz-Villaverde, Ricardo

    2018-06-22

    Psoriasis is associated to endothelial dysfunction, which causes impaired vascular functioning. TNF-α blockers have shown the ability to improve vascular functioning in psoriasis. The nailfold vessel resistance index (NVRI) assesses microvascular functioning at nailfold. The objectives of the study is to assess the effect of the TNF-α inhibition with adalimumab on NVRI. Quasi-experimental study. Fifteen patients with moderate-severe psoriasis received adalimumab 40mg sc according to label information. Participants were assessed at baseline and at 12, 24 and 52 weeks after study intervention. A reduction of -0.09±0.02 (P<.01) in NVRI and a -11.2±2,41ng/ml (P<.001) in E-selectin was observed at week 52. Adalimumab could produce a progressive and sustained reduction of vessel resistance at nailfold and E-selectin in patients with psoriasis. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  16. Change in the immune function of porcine iliac artery endothelial cells infected with porcine circovirus type 2 and its inhibition on monocyte derived dendritic cells maturation

    PubMed Central

    Liu, Shiyu; Zou, Zhanming; Zhu, Linlin; Liu, Xinyu; Zhou, Shuanghai

    2017-01-01

    Porcine circovirus-associated disease is caused by porcine circovirus type 2 (PCV2) infection, which targets iliac artery endothelial cells (PIECs); it leads to severe immunopathologies and is associated with major economic losses in the porcine industry. Here, we report that in vitro PCV2 infection of PIECs causes cell injury, which affects DC function as well as adaptive immunity. Specifically, PCV2 infection downregulated PIEC antigen-presenting molecule expression, upregulated cytokines involved in the immune and inflammatory response causing cell damage and repair, and altered the migratory capacity of PIECs. In addition, PCV2-infected PIECs inhibited DC maturation, enhanced the endocytic ability of DCs, and weakened the stimulatory effect of DCs on T lymphocytes. Together, these findings indicate that profound functional impairment of DCs in the presence of PCV2-infected PIECs may be a potential pathogenic mechanism associated with PCV2-induced porcine disease. PMID:29073194

  17. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  18. Inducible Knockdown of Endothelial Protein Tyrosine Phosphatase-1B Promotes Neointima Formation in Obese Mice by Enhancing Endothelial Senescence.

    PubMed

    Jäger, Marianne; Hubert, Astrid; Gogiraju, Rajinikanth; Bochenek, Magdalena L; Münzel, Thomas; Schäfer, Katrin

    2018-02-01

    Protein tyrosine phosphatase-1B (PTP1B) is a negative regulator of receptor tyrosine kinase signaling. In this study, we determined the importance of PTP1B expressed in endothelial cells for the vascular response to arterial injury in obesity. Morphometric analysis of vascular lesions generated by 10% ferric chloride (FeCl 3 ) revealed that tamoxifen-inducible endothelial PTP1B deletion (Tie2.ER T2 -Cre × PTP1B fl/fl ; End.PTP1B knockout, KO) significantly increased neointima formation, and reduced numbers of (endothelial lectin-positive) luminal cells in End.PTP1B-KO mice suggested impaired lesion re-endothelialization. Significantly higher numbers of proliferating cell nuclear antigen (PCNA)-positive proliferating cells as well as smooth muscle actin (SMA)-positive or vascular cell adhesion molecule-1 (VCAM1)-positive activated smooth muscle cells or vimentin-positive myofibroblasts were detected in neointimal lesions of End.PTP1B-KO mice, whereas F4/80-positive macrophage numbers did not differ. Activated receptor tyrosine kinase and transforming growth factor-beta (TGFβ) signaling and oxidative stress markers were also significantly more abundant in End.PTP1B-KO mouse lesions. Genetic knockdown or pharmacological inhibition of PTP1B in endothelial cells resulted in increased expression of caveolin-1 and oxidative stress, and distinct morphological changes, elevated numbers of senescence-associated β-galactosidase-positive cells, and increased expression of tumor suppressor protein 53 (p53) or the cell cycle inhibitor cyclin-dependent kinase inhibitor-2A (p16INK4A) suggested senescence, all of which could be attenuated by small interfering RNA (siRNA)-mediated downregulation of caveolin-1. In vitro, senescence could be prevented and impaired re-endothelialization restored by preincubation with the antioxidant Trolox. Our results reveal a previously unknown role of PTP1B in endothelial cells and provide mechanistic insights how PTP1B deletion or inhibition may promote endothelial senescence. Absence of PTP1B in endothelial cells impairs re-endothelialization, and the failure to induce smooth muscle cell quiescence or to protect from circulating growth factors may result in neointimal hyperplasia. Antioxid. Redox Signal. 00, 000-000.

  19. High fat diet-induced diabetes in mice exacerbates cognitive deficit due to chronic hypoperfusion

    PubMed Central

    Zuloaga, Kristen L; Johnson, Lance A; Roese, Natalie E; Marzulla, Tessa; Zhang, Wenri; Nie, Xiao; Alkayed, Farah N; Hong, Christine; Grafe, Marjorie R; Pike, Martin M; Raber, Jacob

    2015-01-01

    Diabetes causes endothelial dysfunction and increases the risk of vascular cognitive impairment. However, it is unknown whether diabetes causes cognitive impairment due to reductions in cerebral blood flow or through independent effects on neuronal function and cognition. We addressed this using right unilateral common carotid artery occlusion to model vascular cognitive impairment and long-term high-fat diet to model type 2 diabetes in mice. Cognition was assessed using novel object recognition task, Morris water maze, and contextual and cued fear conditioning. Cerebral blood flow was assessed using arterial spin labeling magnetic resonance imaging. Vascular cognitive impairment mice showed cognitive deficit in the novel object recognition task, decreased cerebral blood flow in the right hemisphere, and increased glial activation in white matter and hippocampus. Mice fed a high-fat diet displayed deficits in the novel object recognition task, Morris water maze and fear conditioning tasks and neuronal loss, but no impairments in cerebral blood flow. Compared to vascular cognitive impairment mice fed a low fat diet, vascular cognitive impairment mice fed a high-fat diet exhibited reduced cued fear memory, increased deficit in the Morris water maze, neuronal loss, glial activation, and global decrease in cerebral blood flow. We conclude that high-fat diet and chronic hypoperfusion impair cognitive function by different mechanisms, although they share commons features, and that high-fat diet exacerbates vascular cognitive impairment pathology. PMID:26661233

  20. Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets.

    PubMed

    Pan, Yanfang; Yago, Tadayuki; Fu, Jianxin; Herzog, Brett; McDaniel, J Michael; Mehta-D'Souza, Padmaja; Cai, Xiaofeng; Ruan, Changgeng; McEver, Rodger P; West, Christopher; Dai, Kesheng; Chen, Hong; Xia, Lijun

    2014-12-04

    O-glycosylation of podoplanin (PDPN) on lymphatic endothelial cells is critical for the separation of blood and lymphatic systems by interacting with platelet C-type lectin-like receptor 2 during development. However, how O-glycosylation controls endothelial PDPN function and expression remains unclear. In this study, we report that core 1 O-glycan-deficient or desialylated PDPN was highly susceptible to proteolytic degradation by various proteases, including metalloproteinases (MMP)-2/9. We found that the lymph contained activated MMP-2/9 and incubation of the lymph reduced surface levels of PDPN on core 1 O-glycan-deficient endothelial cells, but not on wild-type ECs. The lymph from mice with sepsis induced by cecal ligation and puncture, which contained bacteria-derived sialidase, reduced PDPN levels on wild-type ECs. The MMP inhibitor, GM6001, rescued these reductions. Additionally, GM6001 treatment rescued the reduction of PDPN level on lymphatic endothelial cells in mice lacking endothelial core 1 O-glycan or cecal ligation and puncture-treated mice. Furthermore, core 1 O-glycan-deficient or desialylated PDPN impaired platelet interaction under physiological flow. These data indicate that sialylated O-glycans of PDPN are essential for platelet adhesion and prevent PDPN from proteolytic degradation primarily mediated by MMPs in the lymph. © 2014 by The American Society of Hematology.

  1. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    NASA Astrophysics Data System (ADS)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  2. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy.

    PubMed

    Sackey-Aboagye, Bridget; Olsen, Abby L; Mukherjee, Sarmistha M; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E; Lee, Gi Yun; Naga, Hani; Wells, Rebecca G

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN.

  3. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy

    PubMed Central

    Sackey-Aboagye, Bridget; Olsen, Abby L.; Mukherjee, Sarmistha M.; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E.; Lee, Gi Yun; Naga, Hani

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN. PMID:27741254

  4. Kisspeptin-10 induces endothelial cellular senescence and impaired endothelial cell growth.

    PubMed

    Usui, Sayaka; Iso, Yoshitaka; Sasai, Masahiro; Mizukami, Takuya; Mori, Hiroyoshi; Watanabe, Takuya; Shioda, Seiji; Suzuki, Hiroshi

    2014-07-01

    The KPs (kisspeptins) are a family of multifunctional peptides with established roles in cancer metastasis, puberty and vasoconstriction. The effects of KPs on endothelial cells have yet to be determined. The aim of the present study was to investigate the effects of KP-10 on endothelial cell growth and the mechanisms underlying those effects. The administration of recombinant KP-10 into the hindlimbs of rats with ischaemia significantly impaired blood flow recovery, as shown by laser Doppler, and capillary growth, as shown using histology, compared with the controls. HUVECs (human umbilical vein endothelial cells) express the KP receptor and were treated with KP-10 in culture studies. KP-10 inhibited endothelial cell tube formation and proliferation in a significant and dose-dependent manner. The HUVECs treated with KP exhibited the senescent phenotype, as determined using a senescence-associated β-galactosidase assay, cell morphology analysis, and decreased Sirt1 (sirtuin 1) expression and increased p53 expression shown by Western blot analysis. Intriguingly, a pharmacological Rho kinase inhibitor, Y-27632, was found to increase the proliferation of HUVECs and to reduce the number of senescent phenotype cells affected by KP-10. In conclusion, KP-10 suppressed endothelial cells growth both in vivo and in vitro in the present study. The adverse effect of KP on endothelial cells was attributable, at least in part, to the induction of cellular senescence.

  5. Vascular Function, Insulin Action and Exercise: An Intricate Interplay

    PubMed Central

    Zheng, Chao; Liu, Zhenqi

    2015-01-01

    Insulin enhances the compliance of conduit arteries, relaxes resistance arterioles to increase tissue blood flow and dilates precapillary arterioles to expand muscle microvascular blood volume. These actions are impaired in the insulin resistant states. Exercise ameliorates endothelial dysfunction and improves insulin responses in insulin resistant patients, but the precise underlying mechanisms remain unclear. The microvasculature critically regulates insulin action in muscle by modulating insulin delivery to the capillaries nurturing the myocytes and trans-endothelial insulin transport. Recent data suggest that exercise may exert its insulin-sensitizing effect via recruiting muscle microvasculature to increase insulin delivery to and action in muscle. The current review focuses on how the interplay among exercise, insulin action and the vasculature contributes to exercise-mediated insulin sensitization in muscle. PMID:25735473

  6. Plasma markers of inflammation and hemostatic and endothelial activity in naturally overweight and obese dogs.

    PubMed

    Barić Rafaj, R; Kuleš, J; Marinculić, A; Tvarijonaviciute, A; Ceron, J; Mihaljević, Ž; Tumpa, A; Mrljak, V

    2017-01-06

    Obesity is one of the most prevalent health problems in the canine population. While haemostatic parameters and markers of endothelial function have been evaluated in various disease conditions in dogs, there are no studies of these markers in canine obesity. This study was designed to evaluate the effect of naturally gained weight excess and obesity on inflammatory, hemostatic and endothelial biomarkers in dogs. A total of 37 overweight and obese dogs were compared with 28 normal weight dogs. Overweight and obese dogs had significantly elevated concentrations of serum interleukin-6 (IL-6) and C-reactive protein (hsCRP). Number of platelets, activity of factor X and factor VII were significantly higher, while activated partial thromboplastine time (aPTT) and soluble plasminogen activator receptor (suPAR) were significantly decreased. Statistical analysis of high mobility group box - 1 protein (HMGB-1), soluble intercellular adhesive molecule -1 (sICAM-1) and plasminogen activator inhibitor type 1 (PAI-1) concentrations did not show significant differences between the total overweight and obese group and the normal weight group of dogs. Analytical changes in the dogs in our study reflects that weight excess in dogs can be associated with a chronic low degree of inflammation and a hypercoagulable state, where primary and secondary hemostasis are both affected. However obesity is not associated with impairment of endothelial function in dogs.

  7. Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ran; Xie, Jun; Wu, Han

    Purpose: Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan cell surface receptor that modulates cell proliferation, migration, mechanotransduction, and endocytosis. The extracellular domain of synd4 sheds heavily in acute inflammation, but the shedding of synd4 in chronic inflammation, such as diabetes mellitus (DM), is still undefined. We investigated the alterations of synd4 endothelial expression in DM and the influence of impaired synd4 signaling on angiogenesis in human umbilical vein endothelial cells (HUVECs), diabetic rats, synd4 null mice, and db/db mice. Material and methods: HUVECs were incubated with advanced glycation end products (AGEs). Western blot analysis was used to determine synd4more » protein expression and ELISA was used to detect soluble synd4 fragments. The concentration of synd4 in the aortic endothelia of diabetic rats was detected by immunohistochemical staining. Aortic ring assays were performed to study the process of angiogenesis in the diabetic rats and in synd4 null and db/db mice. Recombinant adenoviruses containing the synd4 gene or null were constructed to enhance synd4 aortic expression in db/db mice. Results: Western blot analysis showed decreased expression of the synd4 extracellular domain in HUVECs, and ELISA detected increased soluble fragments of synd4 in the media. Synd4 endothelial expression in the aortas of diabetic rats was decreased. Aortic ring assay indicated impaired angiogenesis in synd4 null and db/db mice, which was partially reversed by synd4 overexpression in db/db mice. Conclusion: Synd4 shedding from vascular endothelial cells played an important role in the diabetes-related impairment of angiogenesis. -- Highlights: •Synd4 shedding from endothelial cells is accelerated under the stimulation of AGEs. •Extracellular domain of synd4 is diminished in the endothelium of DM rats. •Aortic rings of synd4 null mice showed impaired angiogenesis. •Overexpression of synd4 partly rescues macrovascular angiogenesis in db/db mice.« less

  8. Selective deletion of Connexin 40 in renin-producing cells impairs renal baroreceptor function and is associated with arterial hypertension

    PubMed Central

    Wagner, Charlotte; Jobs, Alexander; Schweda, Frank; Kurtz, Lisa; Kurt, Birguel; Sequeira Lopez, Maria L.; Gomez, R. Ariel; van Veen, Toon A.B.; de Wit, Cor; Kurtz, Armin

    2011-01-01

    Renin-producing juxtaglomerular cells are connected to each other and to endothelial cells of afferent arterioles by gap junctions containing Connexin 40 (Cx40), abundantly expressed by these two cell types. Here, we generated mice with cell-specific deletion of Cx40 in endothelial and in renin-producing cells, as its global deletion caused local dissociation of renin-producing cells from endothelial cells, renin hypersecretion, and hypertension. In mice lacking endothelial Cx40, the blood pressure, renin-producing cell distribution, and the control of renin secretion were similar to wild-type mice. In contrast, mice deficient for Cx40 in renin-producing cells were hypertensive and these cells were ectopically localized. Although plasma renin activity and kidney renin mRNA levels of these mice were not different from controls, the negative regulation of renin secretion by pressure was inverted to a positive feedback in kidneys lacking Cx40 in renin-producing cells. Thus, our findings show that endothelial Cx40 is not essential for the control of renin expression and/or release. Cx40 in renin-producing cells is required for their correct positioning in the juxtaglomerular area and the control of renin secretion by pressure. PMID:20686449

  9. Interdialytic ambulatory blood pressure in patients with intradialytic hypertension.

    PubMed

    Van Buren, Peter N; Toto, Robert; Inrig, Jula K

    2012-01-01

    Hypertension is common in hemodialysis patients and contributes to this population's high risk for cardiovascular morbidity and mortality. Patients with intradialytic hypertension, or increases in blood pressure during hemodialysis, have been shown to have the highest risk for these outcomes. The purpose of this review is to describe new findings that shed light on the epidemiology and pathophysiology of intradialytic hypertension and discuss how a better understanding of these mechanisms may lead to improved blood pressure management and outcomes in hemodialysis patients. Our laboratory demonstrated that intradialytic hypertension occurs at least sporadically in most hemodialysis patients, but in 25% of patients it occurs in over 31% of their hemodialysis treatments. We also identified that, compared with hemodialysis patients without intradialytic hypertension, those with intradialytic hypertension have worse endothelial cell function and have higher interdialytic ambulatory blood pressure. Pilot study data show that carvedilol reduces the frequency of intradialytic hypertension and improves endothelial cell dysfunction. Intradialytic hypertension is associated with increased morbidity and mortality, impaired endothelial cell function, and higher overall blood pressure burden. Further investigation is required to determine whether interventions aimed at preventing or treating intradialytic hypertension improve long-term outcomes.

  10. Atorvastatin Restores Endothelial Function in Normocholesterolemic Smokers Independent of Changes in Low-Density Lipoprotein

    PubMed Central

    Beckman, Joshua A.; Liao, James K.; Hurley, Shauna; Garrett, Leslie A.; Chui, Daoshan; Mitra, Debi; Creager, Mark A.

    2009-01-01

    Cigarette smoking impairs endothelial function. Hydroxymethylglutaryl (HMG) CoA reductase inhibitors (statins) may favorably affect endothelial function via nonlipid mechanisms. We tested the hypothesis that statins would improve endothelial function independent of changes in lipids in cigarette smokers. Twenty normocholesterolemic cigarette smokers and 20 matched healthy control subjects were randomized to atorvastatin 40 mg daily or placebo for 4 weeks, washed out for 4 weeks, and then crossed-over to the other treatment. Baseline low-density lipoprotein (LDL) levels were similar in smokers and healthy subjects, 103±22 versus 95±27 mg/dL, respectively (P=NS) and were reduced similarly in smokers and control subjects by atorvastatin, to 55±30 and 58±20 mg/dL, respectively (P=NS). Vascular ultrasonography was used to determine brachial artery, flow-mediated, endothelium-dependent, and nitroglycerin-mediated, endothelium-independent vasodilation. To elucidate potential molecular mechanisms that may account for changes in endothelial function, skin biopsy specimens were assayed for eNOS mRNA, eNOS activity, and nitrotyrosine. Endothelium-dependent vasodilation was less in smokers than nonsmoking control subjects during placebo treatment, 8.0±0.6% versus 12.1±1.1%, (P=0.003). Atorvastatin increased endothelium-dependent vasodilation in smokers to 10.5±1.3% (P=0.017 versus placebo) but did not change endothelium-dependent vasodilation in control subjects (to 11.0±0.8%, P=NS). Endothelium-independent vasodilation did not differ between groups during placebo treatment and was not significantly affected by atorvastatin. Multivariate analysis did not demonstrate any association between baseline lipid levels or the change in lipid levels and endothelium-dependent vasodilation. Cutaneous nitrotyrosine levels and skin microvessel eNOS mRNA, but not ENOS activity, were increased in smokers compared with controls but unaffected by atorvastatin treatment. Atorvastatin restores endothelium-dependent vasodilation in normocholesterolemic cigarette smokers independent of changes in lipids. These results are consistent with a lipid-independent vascular benefit of statins but could not be explained by changes in eNOS message and tissue oxidative stress. These findings implicate a potential role for statin therapy to restore endothelial function and thereby investigate vascular disease in cigarette smokers. PMID:15178637

  11. REACTIVE OXYGEN AND NITROGEN SPECIES IN PULMONARY HYPERTENSION

    PubMed Central

    Tabima, Diana M.; Frizzell, Sheila; Gladwin, Mark T.

    2013-01-01

    Pulmonary vascular disease can be defined as either a disease affecting the pulmonary capillaries and pulmonary arterioles, termed pulmonary arterial hypertension, or as a disease affecting the left ventricle, called pulmonary venous hypertension. Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary circulation characterized by endothelial dysfunction, as well as intimal and smooth muscle proliferation. Progressive increases in pulmonary vascular resistance and pressure impair the performance of the right ventricle, resulting in declining cardiac output, reduced exercise capacity, right heart failure, and ultimately death. While the primary and heritable forms of the disease are thought to affect over 5,000 patients in the U.S., the disease can occur secondary to congenital heart disease, most advanced lung diseases, and many systemic diseases. Multiple studies implicate oxidative stress in the development of PAH. Further, this oxidative stress has been shown to be associated with alterations in reactive oxygen species (ROS), reactive nitrogen species (RNS) and nitric oxide (NO) signaling pathways, whereby bioavailable NO is decreased and ROS and RNS production are increased. Many canonical ROS and NO signaling pathways are simultaneously disrupted in PAH, with increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and xanthine oxidoreductase, uncoupling of endothelial NO synthase (eNOS), and reduction in mitochondrial number, as well as impaired mitochondrial function. Upstream dysregulation of ROS/NO redox homeostasis impairs vascular tone and contributes to the pathological activation of anti-apoptotic and mitogenic pathways, leading to cell proliferation and obliteration of the vasculature. This manuscript will review the available data regarding the role of oxidative and nitrosative stress and endothelial dysfunction in the pathophysiology of pulmonary hypertension, and provide a description of targeted therapies for this disease. PMID:22401856

  12. Stromal cell-derived factor 2 is critical for Hsp90-dependent eNOS activation.

    PubMed

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C; Sessa, William C

    2015-08-18

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell-derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser(1177), a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser(1177) in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. Copyright © 2015, American Association for the Advancement of Science.

  13. G-protein-coupled receptor-2-interacting protein-1 is required for endothelial cell directional migration and tumor angiogenesis via cortactin-dependent lamellipodia formation.

    PubMed

    Majumder, Syamantak; Sowden, Mark P; Gerber, Scott A; Thomas, Tamlyn; Christie, Christine K; Mohan, Amy; Yin, Guoyong; Lord, Edith M; Berk, Bradford C; Pang, Jinjiang

    2014-02-01

    Recent evidence suggests G-protein-coupled receptor-2-interacting protein-1 (GIT1) overexpression in several human metastatic tumors, including breast, lung, and prostate. Tumor metastasis is associated with an increase in angiogenesis. We have showed previously that GIT1 is required for postnatal angiogenesis during lung development. However, the functional role of GIT1 in pathological angiogenesis during tumor growth is unknown. In the present study, we show inhibition of angiogenesis in matrigel implants as well as reduced tumor angiogenesis and melanoma tumor growth in GIT1-knockout mice. We demonstrate that this is a result of impaired directional migration of GIT1-depleted endothelial cells toward a vascular endothelial growth factor gradient. Cortactin-mediated lamellipodia formation in the leading edge is critical for directional migration. We observed a significant reduction in cortactin localization and lamellipodia formation in the leading edge of GIT1-depleted endothelial cells. We specifically identified that the Spa homology domain (aa 250-420) of GIT1 is required for GIT1-cortactin complex localization to the leading edge. The mechanisms involved extracellular signal-regulated kinases 1 and 2-mediated Cortactin-S405 phosphorylation and activation of Rac1/Cdc42. Finally, using gain of function studies, we show that a constitutively active mutant of cortactin restored directional migration of GIT1-depleted cells. Our data demonstrated that a GIT1-cortactin association through GIT1-Spa homology domain is required for cortactin localization to the leading edge and is essential for endothelial cell directional migration and tumor angiogenesis.

  14. Experimental sleep restriction causes endothelial dysfunction in healthy humans.

    PubMed

    Calvin, Andrew D; Covassin, Naima; Kremers, Walter K; Adachi, Taro; Macedo, Paula; Albuquerque, Felipe N; Bukartyk, Jan; Davison, Diane E; Levine, James A; Singh, Prachi; Wang, Shihan; Somers, Virend K

    2014-11-25

    Epidemiologic evidence suggests a link between short sleep duration and cardiovascular risk, although the nature of any relationship and mechanisms remain unclear. Short sleep duration has also been linked to an increase in cardiovascular events. Endothelial dysfunction has itself been implicated as a mediator of heightened cardiovascular risk. We sought to determine the effect of 8 days/8 nights of partial sleep restriction on endothelial function in healthy humans. Sixteen healthy volunteers underwent a randomized study of usual sleep versus sleep restriction of two-thirds normal sleep time for 8 days/8 nights in a hospital-based clinical research unit. The main outcome was endothelial function measured by flow-mediated brachial artery vasodilatation (FMD). Those randomized to sleep restriction slept 5.1 hours/night during the experimental period compared with 6.9 hours/night in the control group. Sleep restriction was associated with significant impairment in FMD (8.6±4.6% during the initial pre-randomization acclimation phase versus 5.2±3.4% during the randomized experimental phase, P=0.01) whereas no change was seen in the control group (5.0±3.0 during the acclimation phase versus 6.73±2.9% during the experimental phase, P=0.10) for a between-groups difference of -4.40% (95% CI -7.00 to -1.81%, P=0.003). No change was seen in non-flow mediated vasodilatation (NFMD) in either group. In healthy individuals, moderate sleep restriction causes endothelial dysfunction. ClinicalTrials.gov. Unique identifier: NCT01334788. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation

    PubMed Central

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023

  16. Short-term exercise training improves flow-mediated dilation and circulating angiogenic cell number in older sedentary adults.

    PubMed

    Landers-Ramos, Rian Q; Corrigan, Kelsey J; Guth, Lisa M; Altom, Christine N; Spangenburg, Espen E; Prior, Steven J; Hagberg, James M

    2016-08-01

    Cardiovascular disease risk increases with age due, in part, to impaired endothelial function and decreased circulating angiogenic cell (CAC) number and function. We sought to determine if 10 days of aerobic exercise training improves endothelial function, CAC number, and intracellular redox balance in older sedentary adults. Eleven healthy subjects (4 men, 7 women), 61 ± 2 years of age participated in 60 min of aerobic exercise at 70% maximal oxygen consumption for 10 consecutive days while maintaining body weight. Before and after training, endothelial function was measured as flow-mediated dilation of the brachial artery and fasting blood was drawn to enumerate 3 CAC subtypes. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) in CD34+ CACs were measured using fluorescent probes and reinforced via real-time quantitative polymerase chain reaction. Flow-mediated dilation improved significantly following training (10% ± 1.3% before vs. 16% ± 1.4% after training; P < 0.05). Likewise, CD34+/KDR+ number increased 104% and KDR+ number increased 151% (P < 0.05 for both), although CD34+ number was not significantly altered (P > 0.05). Intracellular NO and ROS levels in CD34+ CACs were not different after training (P > 0.05 for both). Messenger RNA expression of SOD1, endothelial nitric oxide synthase, and NADPH oxidase 2 and neutrophil cytosolic factor 1 in CD34+ CACs was not significantly altered with training (P > 0.05). In conclusion, 10 consecutive days of aerobic exercise increased flow-mediated dilation and CAC number in older, previously sedentary adults, but did not affect intracellular redox balance in CD34+ CACs. Overall, these data indicate that even short-term aerobic exercise training can have a significant impact on cardiovascular disease risk factors.

  17. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease.

    PubMed

    Stein, J H; Keevil, J G; Wiebe, D A; Aeschlimann, S; Folts, J D

    1999-09-07

    In vitro, the flavonoid components of red wine and purple grape juice are powerful antioxidants that induce endothelium-dependent vasodilation of vascular rings derived from rat aortas and human coronary arteries. Although improved endothelial function and inhibition of LDL oxidation may be potential mechanisms by which red wine and flavonoids reduce cardiovascular risk, the in vivo effects of grape products on endothelial function and LDL oxidation have not been investigated. This study assessed the effects of ingesting purple grape juice on endothelial function and LDL susceptibility to oxidation in patients with coronary artery disease (CAD). Fifteen adults with angiographically documented CAD ingested 7.7+/-1.2 mL. kg(-1). d(-1) of purple grape juice for 14 days. Flow-mediated vasodilation (FMD) was measured using high-resolution brachial artery ultrasonography. Susceptibility of LDL particles to oxidation was determined from the rate of conjugated diene formation after exposure to copper chloride. At baseline, FMD was impaired (2.2+/-2. 9%). After ingestion of grape juice, FMD increased to 6.4+/-4.7% (P=0.003). In a linear regression model that included age, artery diameter, lipid values, and use of lipid-lowering and antioxidant therapies, the effect of grape juice on FMD remained significant (mean change 4.2+/-4.4%, P<0.001). After ingestion of grape juice, lag time increased by 34.5% (P=0.015). Short-term ingestion of purple grape juice improves FMD and reduces LDL susceptibility to oxidation in CAD patients. Improved endothelium-dependent vasodilation and prevention of LDL oxidation are potential mechanisms by which flavonoids in purple grape products may prevent cardiovascular events, independent of alcohol content.

  18. Obstructive sleep apnea and endothelial progenitor cells.

    PubMed

    Wang, Qing; Wu, Qi; Feng, Jing; Sun, Xin

    2013-10-18

    Obstructive sleep apnea (OSA) occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow-derived endothelial progenitor cells (EPCs) within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has emerged. The possible mechanisms underlying the decrease in the number or function of EPCs include prolonged inflammation response, oxidative stress, increased sympathetic activation, physiological adaptive responses of tissue to hypoxia, reduced EPC mobilization, EPC apoptosis, and functional impairment in untreated OSA. Continuous positive airway pressure (CPAP) therapy for OSA affects the mobilization, apoptosis, and function of EPCs through preventing intermittent hypoxia episodes, improving sleep quality, and reducing systemic inflammation, oxidative stress levels, and sympathetic overactivation. To improve CPAP adherence, the medical staff should pay attention to making the titration trial a comfortable first CPAP experience for the patients; for example, using the most appropriate ventilators or proper humidification. It is also important to give the patients education and support about CPAP use in the follow-up, especially in the early stage of the treatment.

  19. Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction.

    PubMed

    Morishima, Takuma; Restaino, Robert M; Walsh, Lauren K; Kanaley, Jill A; Padilla, Jaume

    2017-06-01

    We have previously shown that local heating or leg fidgeting can prevent prolonged sitting-induced leg endothelial dysfunction. However, whether physical activity prevents subsequent sitting-induced leg endothelial dysfunction remains unknown. Herein, we tested the hypothesis that sitting-induced leg endothelial dysfunction would be prevented by prior exercise. We also examined if, in the absence of exercise, standing is an effective alternative strategy to sitting for conserving leg endothelial function. Fifteen young healthy subjects completed three randomized experimental trials: (1) sitting without prior exercise; (2) sitting with prior exercise; and (3) standing without prior exercise. Following baseline popliteal artery flow-mediated dilation (FMD) measurements, subjects maintained a supine position for 45 min in the sitting and standing trials, without prior exercise, or performed 45 min of leg cycling before sitting (i.e. sitting with prior exercise trial). Thereafter, subjects were positioned into a seated or standing position, according to the trial, for 3 h. Popliteal artery FMD measures were then repeated. Three hours of sitting without prior exercise caused a significant impairment in popliteal artery FMD (baseline: 3.8±0.5%, post-sitting: 1.5±0.5%, P <0.05), which was prevented when sitting was preceded by a bout of cycling exercise (baseline: 3.8±0.5%, post-sitting: 3.6±0.7%, P >0.05). Three hours of standing did not significantly alter popliteal artery FMD (baseline: 4.1±0.4%, post-standing: 4.3±0.4%, P >0.05). In conclusion, prolonged sitting-induced leg endothelial dysfunction can be prevented by prior aerobic exercise. In addition, in the absence of exercise, standing represents an effective substitute to sitting for preserving leg conduit artery endothelial function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  20. The relationships among hyperuricemia, body mass index and impaired renal function in type 2 diabetic patients.

    PubMed

    Li, Yongmei; Fan, Xing; Li, Chunjun; Zhi, Xinyue; Peng, Liyuan; Han, Hongling; Sun, Bei

    2018-03-28

    Chronic kidney disease (CKD) is a common chronic microvascular complication and the major cause of death in diabetic patients. This study was conceived to explore the possible mechanisms of how hyperuricemia and obesity contribute to renal function impairment in type 2 diabetic (T2DM) patients. A cross-sectional study in 609 participants recruited from a T2DM population in North China was conducted. The multiplicative interaction between body mass index (BMI) and uric acid (UA) level was assessed using an interaction term in a logistic regression analysis. Our results indicate that male T2DM patients having higher BMI (OR 1.711, p = 0.038), blood urine nitrogen (BUN) (OR 1.100, p = 0.034), and 24-hour urinary micro-albumin levels (OR 1.004, p = 0.021) were much more likely to have high UA. Whereas, for female T2DM patients, the OR of BMI, BUN, and triglyceride were 1.169 (p = 0.001), 1.337 (p = 0.000), and 1.359 (p = 0.006), respectively. In this study population, obesity and elevated UA work together to increase the risk of renal injury. In vitro experiments indicate that reactive oxygen species (ROS) production increased with UA treatment in human renal glomerular endothelial cells (HRGECs), while endothelial nitric oxide synthase (eNOS) production level dropped. UA also increased monocyte chemotactic protein-1 (MCP-1) expression and nuclear factor kappa B (NF-κB) activation. Taken together, our results indicate that high concentrations of UA lead to endothelial dysfunction through the activation of the inflammatory response and induction of oxidative stress, even in non-obese T2DM patients.

  1. Mechanisms in the loss of capillaries in systemic sclerosis: angiogenesis versus vasculogenesis

    PubMed Central

    Manetti, Mirko; Guiducci, Serena; Ibba-Manneschi, Lidia; Matucci-Cerinic, Marco

    2010-01-01

    Abstract Systemic sclerosis (SSc, scleroderma) is a chronic, multisystem connective tissue disorder affecting the skin and various internal organs. Although the disease is characterized by a triad of widespread microangiopathy, fibrosis and autoimmunity, increasing evidence indicates that vascular damage is a primary event in the pathogenesis of SSc. The progressive vascular injury includes persistent endothelial cell activation/damage and apoptosis, intimal thickening, delamination, vessel narrowing and obliteration. These profound vascular changes lead to vascular tone dysfunction and reduced capillary blood flow, with consequent tissue ischemia and severe clinical manifestations, such as digital ulceration or amputation, pulmonary arterial hypertension and scleroderma renal crisis. The resulting tissue hypoxia induces complex cellular and molecular mechanisms in the attempt to recover endothelial cell function and tissue perfusion. Nevertheless, in SSc patients there is no evidence of significant angiogenesis and the disease evolves towards chronic tissue ischemia, with progressive and irreversible structural changes in multiple vascular beds culminating in the loss of capillaries. A severe imbalance between pro-angiogenic and angiostatic factors may also lead to impaired angiogenic response during SSc. Besides insufficient angiogenesis, defective vasculogenesis with altered numbers and functional defects of bone marrow-derived endothelial progenitor cells may contribute to the vascular pathogenesis of SSc. The purpose of this article is to review the contribution of recent studies to the understanding of the complex mechanisms of impaired vascular repair in SSc. Indeed, understanding the pathophysiology of SSc-associated vascular disease may be the key in dissecting the disease pathogenesis and developing novel therapies. Either angiogenic or vasculogenic mechanisms may potentially become in the future the target of therapeutic strategies to promote capillary regeneration in SSc. PMID:20132409

  2. Deregulation of tumor angiogenesis and blockade of tumor growth in PPARβ-deficient mice

    PubMed Central

    Müller-Brüsselbach, Sabine; Kömhoff, Martin; Rieck, Markus; Meissner, Wolfgang; Kaddatz, Kerstin; Adamkiewicz, Jürgen; Keil, Boris; Klose, Klaus J; Moll, Roland; Burdick, Andrew D; Peters, Jeffrey M; Müller, Rolf

    2007-01-01

    The peroxisome proliferator-activated receptor-β (PPARβ) has been implicated in tumorigenesis, but its precise role remains unclear. Here, we show that the growth of syngeneic Pparb wild-type tumors is impaired in Pparb−/− mice, concomitant with a diminished blood flow and an abundance of hyperplastic microvascular structures. Matrigel plugs containing pro-angiogenic growth factors harbor increased numbers of morphologically immature, proliferating endothelial cells in Pparb−/− mice, and retroviral transduction of Pparb triggers microvessel maturation. We have identified the Cdkn1c gene encoding the cell cycle inhibitor p57Kip2 as a PPARβ target gene and a mediator of the PPARβ-mediated inhibition of cell proliferation, which provides a possible mechanistic explanation for the observed tumor endothelial hyperplasia and deregulation of tumor angiogenesis in Pparb−/− mice. Our data point to an unexpected essential role for PPARβ in constraining tumor endothelial cell proliferation to allow for the formation of functional tumor microvessels. PMID:17641685

  3. Proteasome inhibitors enhance endothelial thrombomodulin expression via induction of Krüppel-like transcription factors

    PubMed Central

    Hiroi, Toyoko; Deming, Clayton B.; Zhao, Haige; Hansen, Baranda S.; Arkenbout, Elisabeth K.; Myers, Thomas J.; McDevitt, Michael A.; Rade, Jeffrey J.

    2009-01-01

    Objective Impairment of the thrombomodulin-protein C anticoagulant pathway has been implicated in pathologic thrombosis associated with malignancy. Patients who receive proteasome inhibitors as part of their chemotherapeutic regimen appear to be at decreased risk for thromboembolic events. We investigated the effects of proteasome inhibitors on endothelial thrombomodulin expression and function. Methods and Results Proteasome inhibitors as a class markedly induced the expression thrombomodulin and enhanced the protein C activating capacity of endothelial cells. Thrombomodulin upregulation was independent of NF-κB signaling, a principal target of proteasome inhibitors, but was instead a direct consequence of increased expression of the Krüppel-like transcription factors, KLF2 and KLF4. These effects were confirmed in vivo, where systemic administration of a proteasome inhibitor enhanced thrombomodulin expression that was paralleled by changes in the expression of KLF2 and KLF4. Conclusions These findings identify a novel mechanism of action of proteasome inhibitors that may help to explain their clinically observed thromboprotective effects. PMID:19661484

  4. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sitesmore » of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.« less

  5. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals.

    PubMed

    Sawaguchi, Shogo; Varshney, Shweta; Ogawa, Mitsutaka; Sakaidani, Yuta; Yagi, Hirokazu; Takeshita, Kyosuke; Murohara, Toyoaki; Kato, Koichi; Sundaram, Subha; Stanley, Pamela; Okajima, Tetsuya

    2017-04-11

    The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4. EOGT functions were investigated in retinal angiogenesis that depends on Notch signaling. Global or endothelial cell-specific deletion of Eogt resulted in defective retinal angiogenesis, with a mild phenotype similar to that caused by reduced Notch signaling in retina. Combined deficiency of different Notch1 mutant alleles exacerbated the abnormalities in Eogt -/- retina, and Notch target gene expression was decreased in Eogt -/- endothelial cells. Thus, O-GlcNAc on EGF repeats of Notch receptors mediates ligand-induced Notch signaling required in endothelial cells for optimal vascular development.

  6. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.

    PubMed

    Hall, Wendy L

    2009-06-01

    The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.

  7. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation

    PubMed Central

    Kvietys, Peter R.; Granger, D. Neil

    2012-01-01

    Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653

  8. Effect of Fresh Orange Juice Intake on Physiological Characteristics in Healthy Volunteers

    PubMed Central

    Asgary, Sedigheh; Keshvari, Mahtab; Afshani, Mohammad Reza; Javanmard, Shaghayegh Haghjooy

    2014-01-01

    Background. Impaired endothelial function is a predictor of cardiovascular events. Orange juice (OJ) is rich in dietary flavonoids and could inhibit oxidative stress and inflammatory responses. We examined the effects of commercial (COJ) and fresh orange juice (FOJ) on endothelial function and physiological characteristics in healthy humans. Materials and Methods. Twenty-two healthy volunteers years were enrolled in a single blind randomized crossover controlled trial. The two groups consumed either COJ for the first 4 weeks and then FOJ (CFOJ, 4 weeks), or FOJ for the first 4 weeks and then COJ (FCOJ, 4 weeks). We assessed endothelial function by measuring flow-mediated dilation, serum concentrations of lipids, apolipoproteins A and B (apo A-1 and apo B), and inflammatory markers such as vascular endothelial adhesion molecule 1 (VCAM-1), E-selectin, high-sensitivity C-reactive protein (hs-CRP), and interleukin-6. Results. Consumption of both juices decreased VCAM, hs-CRP, and E-selectin but increased apo A-1. A decline in LDL occurred in the FOJ group. There were no differences between the characteristics of two groups, with the exception of apo A-1 levels that were increased with both forms of OJ. The largest variations occurred with hs-CRP, VCAM in both groups. Conclusion. Consumption of COJ and FOJ produced beneficial effects on the physiological characteristics of healthy volunteers. Although these results could encourage the consumption of OJ, intervention studies are needed to determine the long-term effects of these types of OJ on metabolic and cardiovascular endpoints. PMID:24967267

  9. The free-radical scavenger, edaravone, augments NO release from vascular cells and platelets after laser-induced, acute endothelial injury in vivo.

    PubMed

    Yamashita, T; Shoge, M; Oda, E; Yamamoto, Y; Giddings, J C; Kashiwagi, S; Suematsu, M; Yamamoto, J

    2006-05-01

    In vitro and in vivo experimental models have demonstrated that vascular endothelial function is significantly impaired as a result of oxidative stress, mediated by the generation of oxygen-derived free radicals in response to chronic or acute inflammation. In particular, super-oxide () at specific concentrations leads to the impairment of nitric oxide (NO) bioactivity, and it is known that NO plays a fundamental role in the maintenance of vascular homeostasis. The relationship between reactive oxygen species (ROS) and NO release in thrombosis-related endothelial damage in the peripheral microvasculature remains unclear, however. The purpose of the present study was to investigate the effect of the free-radical scavenger, edaravone, on NO synthesis and thrombotic potential in arterioles after exposure to laser irradiation. Highly sensitive electrochemical NO microsensors were positioned in femoral arterioles of mice, and the kinetics of NO release were recorded in response to standardized laser irradiation in vivo. In addition, images of NO release from damaged vascular cells were investigated in a similar rat model using the NO-sensitive dye 4,5-diaminofluorescein diacetate (DAF-2DA). Thrombogenesis was assessed in carotid arterioles by continuous video microscopy using image analysis software. Laser irradiation led to NO release from perturbed endothelial cells and from platelet-rich thrombi. Edaravone had no significant effect on NO release in non-laser treated, intact endothelium compared with placebo. In contrast, edaravone demonstrated a dose-dependent effect on NO release and thrombogenicity. At a concentration of 10.5 mg/kg per h, edaravone promoted a 5-fold increase in NO and a reduction in platelet-rich thrombus volume to 58% of the placebo values. Our data provide direct evidence to confirm that acute endothelial damage in peripheral microvessels initially induces NO release and that the free-radical scavenger, edaravone, augments NO synthesis leading to suppression of platelet thrombus formation.

  10. Monosialoganglioside-Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins.

    PubMed

    Franco, Daniel A; Truran, Seth; Weissig, Volkmar; Guzman-Villanueva, Diana; Karamanova, Nina; Senapati, Subhadip; Burciu, Camelia; Ramirez-Alvarado, Marina; Blancas-Mejia, Luis M; Lindsay, Stuart; Hari, Parameswaran; Migrino, Raymond Q

    2016-06-13

    Light chain amyloidosis (AL) is associated with high mortality, especially in patients with advanced cardiovascular involvement. It is caused by toxicity of misfolded light chain proteins (LC) in vascular, cardiac, and other tissues. There is no treatment to reverse LC tissue toxicity. We tested the hypothesis that nanoliposomes composed of monosialoganglioside, phosphatidylcholine, and cholesterol (GM1 ganglioside-containing nanoliposomes [NLGM1]) can protect against LC-induced human microvascular dysfunction and assess mechanisms behind the protective effect. The dilator responses of ex vivo abdominal adipose arterioles from human participants without AL to acetylcholine and papaverine were measured before and after exposure to LC (20 μg/mL) with or without NLGM1 (1:10 ratio for LC:NLGM1 mass). Human umbilical vein endothelial cells were exposed for 18 to 20 hours to vehicle, LC with or without NLGM1, or NLGM1 and compared for oxidative and nitrative stress response and cellular viability. LC impaired arteriole dilator response to acetylcholine, which was restored by co-treatment with NLGM1. LC decreased endothelial cell nitric oxide production and cell viability while increasing superoxide and peroxynitrite; these adverse effects were reversed by NLGM1. NLGM1 increased endothelial cell protein expression of antioxidant enzymes heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1 and increased nuclear factor, erythroid 2 like 2 (Nrf-2) protein. Nrf-2 gene knockdown reduced antioxidant stress response and reversed the protective effects of NLGM1. NLGM1 protects against LC-induced human microvascular endothelial dysfunction through increased nitric oxide bioavailability and reduced oxidative and nitrative stress mediated by Nrf-2-dependent antioxidant stress response. These findings point to a potential novel therapeutic approach for light chain amyloidosis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  11. SFAs do not impair endothelial function and arterial stiffness123

    PubMed Central

    Sanders, Thomas AB; Lewis, Fiona J; Goff, Louise M; Chowienczyk, Philip J

    2013-01-01

    Background: It is uncertain whether saturated fatty acids (SFAs) impair endothelial function and contribute to arterial stiffening. Objective: We tested the effects of replacing SFAs with monounsaturated fatty acids (MUFAs) or carbohydrates on endothelial function and arterial stiffness. Design: With the use of a parallel-designed randomized controlled trial in 121 insulin-resistant men and women, we measured vascular function after 1 mo of consumption of a high-SFA (HS) diet and after 24 wk after random assignment to the HS diet or diets that contained <10% SFAs and were high in either MUFAs or carbohydrates. The primary outcome was a change in flow-mediated dilation (FMD), and secondary outcomes were changes in carotid to femoral pulse wave velocity (PWV) and plasma 8-isoprostane F2α-III concentrations. Results: For 112 participants with data available for analysis on the specified outcomes, no significant differences were shown. FMD with the HS reference diet was 6.7 ± 2.2%, and changes (95% CIs) after 6 mo of intervention were +0.3 (−0.4, 1.1), −0.2 (−0.8, 0.5), and −0.1 (−0.6, 0.7) with HS, high-MUFA (HM), and high-carbohydrate (HC) diets, respectively. After consumption of the HS reference diet, the geometric mean (±SD) PWV was 7.67 ± 1.62 m/s, and mean percentages of changes (95% CIs) were −1.0 (−6.2, 4.3) with the HS diet, 2.7 (−1.4, 6.9) with the HM diet, and −1.0 (−5.5, 3.4) with the HC diet. With the HS reference diet, the geometric mean (±SD) plasma 8-isoprostane F2α-III concentration was 176 ± 85 pmol/L, and mean percentage of changes (95% CIs) were 1 (−12, 14) with the HS diet, 6 (−5, 16) with the HM diet, and 4 (−7, 16) with the HC diet. Conclusion: The replacement of SFAs with MUFAs or carbohydrates in healthy subjects does not affect vascular function. This trial was registered at Current Controlled Trials (http://www.controlled-trials.com/ISRCTN) as ISRCTN 29111298. PMID:23964054

  12. Endothelial Snail Regulates Capillary Branching Morphogenesis via Vascular Endothelial Growth Factor Receptor 3 Expression

    PubMed Central

    Park, Jeong Ae; Kim, Dong Young; Kim, Young-Myeong; Kwon, Young-Guen

    2015-01-01

    Vascular branching morphogenesis is activated and maintained by several signaling pathways. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) signaling is largely presented in arteries, and VEGFR3 signaling is in veins and capillaries. Recent reports have documented that Snail, a well-known epithelial-to-mesenchymal transition protein, is expressed in endothelial cells, where it regulates sprouting angiogenesis and embryonic vascular development. Here, we identified Snail as a regulator of VEGFR3 expression during capillary branching morphogenesis. Snail was dramatically upregulated in sprouting vessels in the developing retinal vasculature, including the leading-edged vessels and vertical sprouting vessels for capillary extension toward the deep retina. Results from in vitro functional studies demonstrate that Snail expression colocalized with VEGFR3 and upregulated VEGFR3 mRNA by directly binding to the VEGFR3 promoter via cooperating with early growth response protein-1. Snail knockdown in postnatal mice attenuated the formation of the deep capillary plexus, not only by impairing vertical sprouting vessels but also by downregulating VEGFR3 expression. Collectively, these data suggest that the Snail-VEGFR3 axis controls capillary extension, especially in vessels expressing VEGFR2 at low levels. PMID:26147525

  13. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantino Rosa Santos, Susana; Instituto de Biopatologia Quimica, Faculdade de Medicina de Lisboa/Unidade de Biopatologia Vascular, Instituto de Medicina Molecular, Lisbon; Instituto Gulbenkian de Ciencia

    2007-05-01

    Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this processmore » required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.« less

  14. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression.

    PubMed

    Gurevich, David B; Severn, Charlotte E; Twomey, Catherine; Greenhough, Alexander; Cash, Jenna; Toye, Ashley M; Mellor, Harry; Martin, Paul

    2018-06-04

    Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti-angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor-α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications

    PubMed Central

    Kumar VR, Santhosh; Darisipudi, Murthy N.; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P.; Mulay, Shrikant R.; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D.; Lindenmeyer, Maja T.; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W.; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido

    2016-01-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia–induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68+ intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage–derived circulating PAR2 agonist and mediator of endothelial dysfunction–related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases. PMID:26567242

  16. Angiogenic function of prostacyclin biosynthesis in human endothelial progenitor cells

    PubMed Central

    He, Tongrong; Lu, Tong; d’Uscio, Livius V.; Lam, Chen-Fuh; Lee, Hon-Chi; Katusic, Zvonimir S.

    2009-01-01

    The role of prostaglandins production in the control of regenerative function of endothelial progenitor cells (EPCs) has not been studied. We hypothesized that activation of cyclooxygenase (COX) enzymatic activity and the subsequent production of prostacyclin (PGI2) is an important mechanism responsible for the regenerative function of EPCs. In the present study, we detected high levels of COX-1 protein expression and PGI2 biosynthesis in human EPCs outgrown from blood mononuclear cells. Expression of COX-2 protein was almost undetectable under basal conditions but significantly elevated after treatment with tumor necrosis factor-α. Condition medium derived from EPCs hyperpolarized human coronary artery smooth muscle cells, similar to the effect of the PGI2 analogue iloprost. The proliferation and in vitro tube formation by EPCs were inhibited by the COX inhibitor indomethacin, or by genetic inactivation of COX-1 or PGI2 synthase (PGIS) with small interfering RNA (siRNA). Impaired tube formation and cell proliferation induced by inactivation of COX-1 were rescued by the treatment with iloprost or selective peroxisome-proliferator activated receptor-δ (PPARδ) agonist, GW501516, but not by the selective PGI2 receptor agonist, cicaprost. Down regulation of PPARδ by siRNA also reduced angiogenic capacity of EPCs. Iloprost failed to reverse PPARδ-siRNA-induced impairment of angiogenesis. Furthermore, transfection of PGIS-siRNA, COX-1-siRNA, or PPARδ-siRNA into EPCs decreased the capillary formation in vivo after transplantation of human EPCs into the nude mice. These results suggest that activation of COX-1-PGI2-PPARδ pathway is an important mechanism underlying pro-angiogenic function of EPCs. PMID:18511850

  17. Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load

    PubMed Central

    Walsh, Lauren K.; Restaino, Robert M.; Neuringer, Martha; Manrique, Camila; Padilla, Jaume

    2017-01-01

    Postprandial hyperglycemia leads to a transient impairment in endothelial function; however, the mechanisms remain largely unknown. Previous work in cell culture models demonstrate that high glucose results in endoplasmic reticulum (ER) stress and, in animal studies, ER stress has been implicated as a cause of endothelial dysfunction. Herein we tested the hypothesis that acute oral administration of tauroursodeoxycholic acid (TUDCA, 1500mg), a chemical chaperone known to alleviate ER stress, would prevent hyperglycemia-induced endothelial dysfunction. In 12 young healthy subjects (seven men, five women), brachial artery flow-mediated dilation (FMD) was assessed at baseline, 1 hour, and 2 hours post an oral glucose challenge. Subjects were tested on two separate visits in a single-blind randomized crossover design: after oral ingestion of TUDCA or placebo capsules. FMD was reduced from baseline during hyperglycemia under the placebo condition (−32% at 1 hr and −28% at 2 hr post oral glucose load; p<0.05 from baseline) but not under the TUDCA condition (−4% at 1 hr and +0.3% at 2 hr post oral glucose load; p>0.05 from baseline). Postprandial plasma glucose and insulin were not altered by TUDCA ingestion. Plasma oxidative stress markers 3-nitrotyrosine and TBARs remained unaltered throughout the oral glucose challenge in both conditions. These results suggest that hyperglycemia-induced endothelial dysfunction can be mitigated by oral administration of TUDCA, thus supporting the hypothesis that ER stress may contribute to endothelial dysfunction during postprandial hyperglycemia. PMID:27503949

  18. Decreased production of neuronal NOS-derived hydrogen peroxide contributes to endothelial dysfunction in atherosclerosis

    PubMed Central

    Capettini, LSA; Cortes, SF; Silva, JF; Alvarez-Leite, JI; Lemos, VS

    2011-01-01

    BACKGROUND AND PURPOSE Reduced NO availability has been described as a key mechanism responsible for endothelial dysfunction in atherosclerosis. We previously reported that neuronal NOS (nNOS)-derived H2O2 is an important endothelium-derived relaxant factor in the mouse aorta. The role of H2O2 and nNOS in endothelial dysfunction in atherosclerosis remains undetermined. We hypothesized that a decrease in nNOS-derived H2O2 contributes to the impaired vasodilatation in apolipoprotein E-deficient mice (ApoE−/−). EXPERIMENTAL APPROACH Changes in isometric tension were recorded on a myograph; simultaneously, NO and H2O2 were measured using carbon microsensors. Antisense oligodeoxynucleotides were used to knockdown eNOS and nNOS in vivo. Western blot and confocal microscopy were used to analyse the expression and localization of NOS isoforms. KEY RESULTS Aortas from ApoE−/− mice showed impaired vasodilatation paralleled by decreased NO and H2O2 production. Inhibition of nNOS with L-ArgNO2-L-Dbu, knockdown of nNOS and catalase, which decomposes H2O2 into oxygen and water, decreased ACh-induced relaxation by half, produced a small diminution of NO production and abolished H2O2 in wild-type animals, but had no effect in ApoE−/− mice. Confocal microscopy showed increased nNOS immunostaining in endothelial cells of ApoE−/− mice. However, ACh stimulation of vessels resulted in less phosphorylation on Ser852 in ApoE−/− mice. CONCLUSIONS AND IMPLICATIONS Our data show that endothelial nNOS-derived H2O2 production is impaired and contributes to endothelial dysfunction in ApoE−/− aorta. The present study provides a new mechanism for endothelial dysfunction in atherosclerosis and may represent a novel target to elaborate the therapeutic strategy for vascular atherosclerosis. PMID:21615722

  19. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    PubMed

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms.

    PubMed

    Athanasopoulos, Athanasios N; Economopoulou, Matina; Orlova, Valeria V; Sobke, Astrid; Schneider, Darius; Weber, Holger; Augustin, Hellmut G; Eming, Sabine A; Schubert, Uwe; Linn, Thomas; Nawroth, Peter P; Hussain, Muzaffar; Hammes, Hans-Peter; Herrmann, Mathias; Preissner, Klaus T; Chavakis, Triantafyllos

    2006-04-01

    Staphylococcus aureus is a major human pathogen interfering with host-cell functions. Impaired wound healing is often observed in S aureus-infected wounds, yet, the underlying mechanisms are poorly defined. Here, we identify the extracellular adherence protein (Eap) of S aureus to be responsible for impaired wound healing. In a mouse wound-healing model wound closure was inhibited in the presence of wild-type S aureus and this effect was reversible when the wounds were incubated with an isogenic Eap-deficient strain. Isolated Eap also delayed wound closure. In the presence of Eap, recruitment of inflammatory cells to the wound site as well as neovascularization of the wound were prevented. In vitro, Eap significantly reduced intercellular adhesion molecule 1 (ICAM-1)-dependent leukocyte-endothelial interactions and diminished the consequent activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB) in leukocytes associated with a decrease in expression of tissue factor. Moreover, Eap blocked alphav-integrin-mediated endothelial-cell migration and capillary tube formation, and neovascularization in matrigels in vivo. Collectively, the potent anti-inflammatory and antiangiogenic properties of Eap provide an underlying mechanism that may explain the impaired wound healing in S aureus-infected wounds. Eap may also serve as a lead compound for new anti-inflammatory and antiangiogenic therapies in several pathologies.

  1. Role of eNOS in water exchange index maintenance-MRI studies

    NASA Astrophysics Data System (ADS)

    Atochin, D.; Litvak, M.; Huang, S.; Kim, Y. R.; Huang, P.

    2017-08-01

    Stroke studies employ experimental models of cerebral ischemic and reperfusion injury in rodents. MRI provides valuable supravital data of cerebral blood flow and brain tissue damage. This paper presents MRI applications for cerebral blood flow research in mice lines with impaired nitric oxide production by endothelial nitric oxide synthase. Our data demonstrates that specific modifications of MRI methodology in transgenic mouse models help to evaluate the role of eNOS in the brain-blood barrier function.

  2. Endothelial Arginine Resynthesis Contributes to the Maintenance of Vasomotor Function in Male Diabetic Mice

    PubMed Central

    Chennupati, Ramesh; Meens, Merlijn J. P. M. T.; Marion, Vincent; Janssen, Ben J.; Lamers, Wouter H.; De Mey, Jo G. R.; Köhler, S. Eleonore

    2014-01-01

    Aim Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. Methods and Results Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice. Conclusions Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes. PMID:25033204

  3. Inhibitor-κB kinase attenuates Hsp90-dependent endothelial nitric oxide synthase function in vascular endothelial cells

    PubMed Central

    Konopinski, Ryszard; Krishnan, Manickam; Roman, Linda; Bera, Alakesh; Hongying, Zheng; Habib, Samy L.; Mohan, Sumathy

    2015-01-01

    Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity. In our earlier study we demonstrated an inhibitor-κB kinase-β (IKKβ)-Hsp90 interaction in a high-glucose environment. In the present study we further define the putative binding domain of IKKβ on Hsp90. Interestingly, IKKβ binds to the middle domain of Hsp90, which has been shown to interact with eNOS to stimulate its activity. This new finding suggests a tighter regulation of eNOS activity than was previously assumed. Furthermore, addition of purified recombinant IKKβ to the eNOS-Hsp90 complex reduces the eNOS-Hsp90 interaction and eNOS activity, indicating a competition for Hsp90 between eNOS and IKKβ. The pathophysiological relevance of the IKKβ-Hsp90 interaction has also been demonstrated using in vitro vascular endothelial growth factor-mediated signaling and an Ins2Akita in vivo model. Our study further defines the preferential involvement of α- vs. β-isoforms of Hsp90 in the IKKβ-eNOS-Hsp90 interaction, even though both Hsp90α and Hsp90β stimulate NO production. These studies not only reinforce the significance of maintaining a homeostatic balance of eNOS and IKKβ within the cell system that regulates NO production, but they also confirm that the IKKβ-Hsp90 interaction is favored in a high-glucose environment, leading to impairment of the eNOS-Hsp90 interaction, which contributes to endothelial dysfunction and vascular complications in diabetes. PMID:25652452

  4. Effects of simvastatin on CAT-1-mediated arginine transport and NO level under high glucose conditions in conditionally immortalized rat inner blood-retinal barrier cell lines (TR-iBRB).

    PubMed

    Tun, Temdara; Kang, Young-Sook

    2017-05-01

    Hyperglycemia causes the breakdown of the blood-retinal barrier by impairing endothelial nitric oxide synthase (eNOS) function. Statins have many pleiotropic effects such as improving endothelial barrier permeability and increasing eNOS mRNA stability. The objective of this study was to determine effect of simvastatin on l-arginine transport and NO production under high-glucose conditions in conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB). Changes in l-arginine transport uptake and, expression levels of cationic amino acid transporter 1 (CAT-1) and eNOS mRNA were investigated after pre-treatment with simvastatin and NOS inhibitors (l-NMMA and l-NAME) under high-glucose conditions using TR-iBRB, an in vitro model of iBRB. The NO level released from TR-iBRB cells was examined using Griess reagents. Under high glucose conditions, [ 3 H]l-arginine uptake was decreased in TR-iBRB cells. Simvastatin pretreatment elevated [ 3 H]l-arginine uptake, the expression levels of CAT-1 and eNOS mRNA, and NO production under high-glucose conditions. Moreover, the co-treatment with simvastatin and NOS inhibitors reduced [ 3 H]l-arginine uptake compared to pretreatment with simvastatin alone. Our results suggest that, in the presence of high-glucose levels, increased l-arginine uptake due to simvastatin treatment was associated with increased CAT-1 and eNOS mRNA levels, leading to higher NO production in TR-iBRB cells. Thus, simvastatin might be a good modulator for diabetic retinopathy therapy by increasing of the l-arginine uptake and improving endothelial function in retinal capillary endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome

    PubMed Central

    Rocha, Natalia G.; Sales, Allan R. K.; Penedo, Leticia A.; Pereira, Felipe S.; Silva, Mayra S.; Miranda, Renan L.; Silva, Jemima F. R.; Silva, Bruno M.; Santos, Aline A.; Nobrega, Antonio C. L.

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise. PMID:26557715

  6. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome.

    PubMed

    Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  7. Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes.

    PubMed

    Mackenzie, Ruth M; Salt, Ian P; Miller, William H; Logan, Angela; Ibrahim, Hagar A; Degasperi, Andrea; Dymott, Jane A; Hamilton, Carlene A; Murphy, Michael P; Delles, Christian; Dominiczak, Anna F

    2013-03-01

    The aim of the present study was to determine whether the endothelial dysfunction associated with CAD (coronary artery disease) and T2D (Type 2 diabetes mellitus) is concomitant with elevated mtROS (mitochondrial reactive oxygen species) production in the endothelium and establish if this, in turn, regulates the activity of endothelial AMPK (AMP-activated protein kinase). We investigated endothelial function, mtROS production and AMPK activation in saphenous veins from patients with advanced CAD. Endothelium-dependent vasodilation was impaired in patients with CAD and T2D relative to those with CAD alone. Levels of mitochondrial H(2)O(2) and activity of AMPK were significantly elevated in primary HSVECs (human saphenous vein endothelial cells) from patients with CAD and T2D compared with those from patients with CAD alone. Incubation with the mitochondria-targeted antioxidant, MitoQ(10) significantly reduced AMPK activity in HSVECs from patients with CAD and T2D but not in cells from patients with CAD alone. Elevated mtROS production in the endothelium of patients with CAD and T2D increases AMPK activation, supporting a role for the kinase in defence against oxidative stress. Further investigation is required to determine whether pharmacological activators of AMPK will prove beneficial in the attenuation of endothelial dysfunction in patients with CAD and T2D.

  8. Exercise Protects against PCB-Induced Inflammation and Associated Cardiovascular Risk Factors

    PubMed Central

    Murphy, Margaret O.; Petriello, Michael C.; Han, Sung Gu; Sunkara, Manjula; Morris, Andrew J; Esser, Karyn; Hennig, Bernhard

    2015-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to the initiation of cardiovascular disease. Exercise has been shown to reduce the risk of cardiovascular disease; however, whether exercise can modulate PCB-induced vascular endothelial dysfunction and associated cardiovascular risk factors is unknown. We examined the effects of exercise on coplanar PCB- induced cardiovascular risk factors including oxidative stress, inflammation, impaired glucose tolerance, hypercholesteremia, and endothelium-dependent relaxation. Male ApoE−/− mice were divided into sedentary and exercise groups (voluntary wheel running) over a 12 week period. Half of each group was exposed to vehicle or PCB 77 at weeks 1, 2, 9, and 10. For ex vivo studies, male C57BL/6 mice exercised via voluntary wheel training for 5 weeks and then were administered with vehicle or PCB 77 24 hours before vascular reactivity studies were performed. Exposure to coplanar PCB increased risk factors associated with cardiovascular disease, including oxidative stress and systemic inflammation, glucose intolerance, and hypercholesteremia. The 12 week exercise intervention significantly reduced these pro-atherogenic parameters. Exercise also upregulated antioxidant enzymes including phase II detoxification enzymes. Sedentary animals exposed to PCB 77 exhibited endothelial dysfunction as demonstrated by significant impairment of endothelium-dependent relaxation, which was prevented by exercise. Lifestyle modifications such as aerobic exercise could be utilized as a therapeutic approach for the prevention of adverse cardiovascular health effects induced by environmental pollutants such as PCBs. Keywords: exercise, polychlorinated biphenyl, endothelial function, antioxidant response, cardiovascular disease, inflammation, oxidative stress PMID:25586614

  9. The role of oxidative stress in the metabolic syndrome.

    PubMed

    Whaley-Connell, Adam; McCullough, Peter A; Sowers, James R

    2011-01-01

    Loss of reduction-oxidation (redox) homeostasis and generation of excess free oxygen radicals play an important role in the pathogenesis of diabetes, hypertension, and consequent cardiovascular disease. Reactive oxygen species are integral in routine in physiologic mechanisms. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways that promote impairments in insulin metabolic signaling, reduced endothelial-mediated vasorelaxation, and associated cardiovascular and renal structural and functional abnormalities. Redox control of metabolic function is a dynamic process with reversible pro- and anti-free radical processes. Labile iron is necessary for the catalysis of superoxide anion, hydrogen peroxide, and the generation of the damaging hydroxyl radical. Acute hypoxia and cellular damage in cardiovascular tissue liberate larger amounts of cytosolic and extracellular iron that is poorly liganded; thus, large increases in the generation of oxygen free radicals are possible, causing tissue damage. The understanding of iron and the imbalance of redox homeostasis within the vasculature is integral in hypertension and progression of metabolic dysregulation that contributes to insulin resistance, endothelial dysfunction, and cardiovascular and kidney disease.

  10. Heavy Alcohol Consumption is Associated with Impaired Endothelial Function: The Circulatory Risk in Communities Study (CIRCS)

    PubMed Central

    Tanaka, Aoi; Cui, Renzhe; Kitamura, Akihiko; Liu, Keyang; Imano, Hironori; Yamagishi, Kazumasa; Kiyama, Masahiko; Okada, Takeo

    2016-01-01

    Aim: Previous studies have reported that moderate alcohol consumption is protective against cardiovascular disease, but heavy alcohol consumption increases its risk. Endothelial dysfunction is hypothesized to contribute to the development of atherosclerosis and cardiovascular disease. However, few population-based studies have examined a potential effect of alcohol consumption on endothelial function. Methods: This study included 404 men aged 30–79 years who were recruited from residents in 2 communities under the Circulatory Risk in Communities Study in 2013 and 2014. We asked the individuals about the frequency and volume of alcohol beverages and converted the data into grams of ethanol per day. Endothelial function was assessed by brachial artery flow-mediated dilation (FMD) measurements during reactive hyperemia. We performed cross-sectional analysis of alcohol consumption and %FMD by logistic regression analysis, adjusting for age, baseline brachial artery diameter, body mass index, systolic blood pressure, low-density lipoprotein cholesterol, HbA1c, smoking, antihypertensive medication use, and community. Results: Individuals who drank ≥ 46 g/day ethanol had a lower age-adjusted mean %FMD than non-drinkers (p<0.01). Compared with non-drinkers, the age-adjusted odds ratios (ORs) (95% confidence interval) of low %FMD (<5.3%) for former, light (<23.0 g/day ethanol), moderate (23.0–45.9 g/day ethanol), and heavy (≥ 46.0 g/day ethanol) drinkers were 1.61 (0.67–3.89), 0.84 (0.43–1.66), 1.09 (0.52–2.25), and 2.99 (1.56–5.70), respectively. The corresponding multivariable-adjusted ORs were 1.76 (0.69–4.50), 0.86 (0.42–1.76), 0.98 (0.45–2.12), and 2.39 (1.15–4.95), respectively. Conclusions: Heavy alcohol consumption may be an independent risk factor of endothelial dysfunction in Japanese men. PMID:27025680

  11. Lack of angiopoietin-like-2 expression limits the metabolic stress induced by a high-fat diet and maintains endothelial function in mice.

    PubMed

    Yu, Carol; Luo, Xiaoyan; Farhat, Nada; Daneault, Caroline; Duquette, Natacha; Martel, Cécile; Lambert, Jean; Thorin-Trescases, Nathalie; Rosiers, Christine Des; Thorin, Eric

    2014-08-15

    Angiopoietin-like-2 (angptl2) is produced by several cell types including endothelial cells, adipocytes and macrophages, and contributes to the inflammatory process in cardiovascular diseases. We hypothesized that angptl2 impairs endothelial function, and that lowering angptl2 levels protects the endothelium against high-fat diet (HFD)-induced fat accumulation and hypercholesterolemia. Acute recombinant angptl2 reduced (P<0.05) acetylcholine-mediated vasodilation of isolated wild-type (WT) mouse femoral artery, an effect reversed (P<0.05) by the antioxidant N-acetylcysteine. Accordingly, in angptl2 knockdown (KD) mice, ACh-mediated endothelium-dependent vasodilation was greater (P<0.05) than in WT mice. In arteries from KD mice, prostacyclin contributed to the overall dilation unlike in WT mice. After a 3-month HFD, overall vasodilation was not altered, but dissecting out the endothelial intrinsic pathways revealed that NO production was reduced in arteries isolated from HFD-fed WT mice (P<0.05), while NO release was maintained in KD mice. Similarly, endothelium-derived hyperpolarizing factor (EDHF) was preserved in mesenteric arteries from HFD-fed KD mice but not in those from WT mice. Finally, the HFD increased (P<0.05) total cholesterol-to-high-density lipoprotein ratios, low-density lipoprotein-to-high-density lipoprotein ratios, and leptin levels in WT mice only, while glycemia remained similar in the 2 strains. KD mice displayed less triglyceride accumulation in the liver (P<0.05 versus WT), and adipocyte diameters in mesenteric and epididymal white adipose tissues were smaller (P<0.05) in KD than in WT fed an HFD, while inflammatory gene expression increased (P<0.05) in the fat of WT mice only. Lack of angptl2 expression limits the metabolic stress induced by an HFD and maintains endothelial function in mice. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. Lack of Angiopoietin‐Like‐2 Expression Limits the Metabolic Stress Induced by a High‐Fat Diet and Maintains Endothelial Function in Mice

    PubMed Central

    Yu, Carol; Luo, Xiaoyan; Farhat, Nada; Daneault, Caroline; Duquette, Natacha; Martel, Cécile; Lambert, Jean; Thorin‐Trescases, Nathalie; Rosiers, Christine Des; Thorin, Éric

    2014-01-01

    Background Angiopoietin‐like‐2 (angptl2) is produced by several cell types including endothelial cells, adipocytes and macrophages, and contributes to the inflammatory process in cardiovascular diseases. We hypothesized that angptl2 impairs endothelial function, and that lowering angptl2 levels protects the endothelium against high‐fat diet (HFD)‐induced fat accumulation and hypercholesterolemia. Methods and Results Acute recombinant angptl2 reduced (P<0.05) acetylcholine‐mediated vasodilation of isolated wild‐type (WT) mouse femoral artery, an effect reversed (P<0.05) by the antioxidant N‐acetylcysteine. Accordingly, in angptl2 knockdown (KD) mice, ACh‐mediated endothelium‐dependent vasodilation was greater (P<0.05) than in WT mice. In arteries from KD mice, prostacyclin contributed to the overall dilation unlike in WT mice. After a 3‐month HFD, overall vasodilation was not altered, but dissecting out the endothelial intrinsic pathways revealed that NO production was reduced in arteries isolated from HFD‐fed WT mice (P<0.05), while NO release was maintained in KD mice. Similarly, endothelium‐derived hyperpolarizing factor (EDHF) was preserved in mesenteric arteries from HFD‐fed KD mice but not in those from WT mice. Finally, the HFD increased (P<0.05) total cholesterol–to–high‐density lipoprotein ratios, low‐density lipoprotein–to–high‐density lipoprotein ratios, and leptin levels in WT mice only, while glycemia remained similar in the 2 strains. KD mice displayed less triglyceride accumulation in the liver (P<0.05 versus WT), and adipocyte diameters in mesenteric and epididymal white adipose tissues were smaller (P<0.05) in KD than in WT fed an HFD, while inflammatory gene expression increased (P<0.05) in the fat of WT mice only. Conclusions Lack of angptl2 expression limits the metabolic stress induced by an HFD and maintains endothelial function in mice. PMID:25128474

  13. Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis.

    PubMed

    Cipriani, P; Guiducci, S; Miniati, I; Cinelli, M; Urbani, S; Marrelli, A; Dolo, V; Pavan, A; Saccardi, R; Tyndall, A; Giacomelli, R; Cerinic, M Matucci

    2007-06-01

    Systemic sclerosis (SSc) is a disorder characterized by vascular damage and fibrosis of the skin and internal organs. Despite marked tissue hypoxia, there is no evidence of compensatory angiogenesis. The ability of mesenchymal stem cells (MSCs) to differentiate into endothelial cells was recently demonstrated. The aim of this study was to determine whether impaired differentiation of MSCs into endothelial cells in SSc might contribute to disease pathogenesis by decreasing endothelial repair. MSCs obtained from 7 SSc patients and 15 healthy controls were characterized. The number of colony-forming unit-fibroblastoid colonies was determined. After culture in endothelial-specific medium, the endothelial-like MSC (EL-MSC) phenotype was assessed according to the surface expression of vascular endothelial growth factor receptors (VEGFRs). Senescence, chemoinvasion, and capillary morphogenesis studies were also performed. MSCs from SSc patients displayed the same phenotype and clonogenic activity as those from controls. In SSc MSCs, a decreased percentage of VEGFR-2+, CXCR4+, VEGFR-2+/CXCR4+ cells and early senescence was detected. After culturing, SSc EL-MSCs showed increased expression of VEGFR-1, VEGFR-2, and CXCR4, did not express CD31 or annexin V, and showed significantly decreased migration after specific stimuli. Moreover, the addition of VEGF and stromal cell-derived factor 1 to cultured SSc EL-MSCs increased their angiogenic potential less than that in controls. Our data strongly suggest that endothelial repair may be affected in SSc. The possibility that endothelial progenitor cells could be used to increase vessel growth in chronic ischemic tissues may open up new avenues in the treatment of vascular damage caused by SSc.

  14. Restoration of Autophagy in Endothelial Cells from Patients with Diabetes Mellitus Improves Nitric Oxide Signaling

    PubMed Central

    Fetterman, Jessica L.; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A.; Berk, Brittany D.; Duess, Mai-Ann; Farb, Melissa G.; Gokce, Noyan; Shirihai, Orian S.; Hamburg, Naomi M.; Vita, Joseph A.

    2016-01-01

    Background Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. Methods and Results We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n=45) and non-diabetic controls (n=41). p62 levels were higher in cells from diabetics (34.2±3.6 vs. 20.0±1.6, P=0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (−21±5% vs. 64±22%, P=0.003) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P=0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P=0.01) in cells from diabetics to a lesser extent than in cells from controls (P=0.04), suggesting ongoing, but inadequate autophagic clearance. Conclusion Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. PMID:26926601

  15. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling.

    PubMed

    Fetterman, Jessica L; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Duess, Mai-Ann; Farb, Melissa G; Gokce, Noyan; Shirihai, Orian S; Hamburg, Naomi M; Vita, Joseph A

    2016-04-01

    Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Maternal Body-Mass Index and Cord Blood Circulating Endothelial Colony-Forming Cells

    PubMed Central

    Lin, Ruei-Zeng; Miranda, Maria L.; Vallejo-Vaz, Antonio J.; Stiefel, Pablo; Praena-Fernández, Juan M.; Bernal-Bermejo, Jose; Jimenez-Jimenez, Luis M.; Villar, Jose; Melero-Martin, Juan M.

    2013-01-01

    Objective Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that are particularly abundant in umbilical cord blood. We sought to determine whether ECFC abundance in cord blood is associated with maternal body-mass index (BMI) in non-pathological pregnancies. Study design We measured the level of ECFCs in the cord blood of neonates (n=27) born from non-obese healthy mothers with non-pathological pregnancies and examined whether ECFC abundance correlated with maternal BMI. We also examined the effect of maternal BMI on ECFC phenotype and function using angiogenic and vasculogenic assays. Results We observed variation in ECFC abundance among subjects and found a positive correlation between pre-pregnancy maternal BMI and ECFC content (r=0.51, P=0.007), which was independent of other obstetric factors. Despite this variation, ECFC phenotype and functionality were deemed normal and highly similar between subjects with maternal BMI <25 kg/m2 and BMI between 25–30 kg/m2, including the ability to form vascular networks in vivo. Conclusions This study underlines the need to consider maternal BMI as a potential confounding factor for cord blood levels of ECFCs in future comparative studies between healthy and pathological pregnancies. Endothelial colony-forming cells (ECFCs) are a subset of progenitor cells that circulate in peripheral blood and can give rise to endothelial cells (1,2), contributing to the formation of new vasculature and the maintenance of vascular integrity (3–5). The mechanisms that regulate the abundance of these cells in vivo remain poorly understood. ECFCs are rare in adult peripheral blood (1,2,10). In contrast, there is an elevated number of these cells in fetal blood during the third trimester of pregnancy (11–13). Emerging evidence indicates that deleterious conditions during fetal life can impair ECFC content and function. For instance, offspring of diabetic mothers have been shown to have reduced number of circulating ECFCs and impaired cell functionality (14), which may contribute to the long-term cardiovascular complications. Similar observations have been reported in neonates with bronchopulmonary dysplasia (15,16). The adverse association between maternal weight and the outcome of pregnancy is well known (17,18). Epidemiologic studies have shown that cardiovascular disease may have origins during fetal development (19). Excessive maternal pre-pregnancy weight and gestational weight gain are associated with adverse cardiovascular risk factors in the offspring (20). The fetal adaptations that occur in response to changes in maternal weight during pregnancy and whether these adaptations affect the level of ECFCs is completely unknown. In this study we quantified the baseline variation in ECFC abundance and function among neonates born from non-obese healthy mothers with non-pathological pregnancies and examined whether this normal variation was associated with differences in maternal weight. PMID:24315508

  17. Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects.

    PubMed

    Davison, K; Coates, A M; Buckley, J D; Howe, P R C

    2008-08-01

    Impaired endothelial function in obesity may reduce blood flow to sites of metabolism, contributing to impaired fat oxidation and insulin resistance. This study investigated the effects of cocoa flavanols and regular exercise, interventions known to improve endothelial function, on cardiometabolic function and body composition in obese individuals. Overweight and obese adults were randomly assigned to high-flavanol cocoa (HF, 902 mg flavanols), HF and exercise, low-flavanol cocoa (LF, 36 mg flavanols), or LF and exercise for 12 weeks (exercise duration was 3 x 45 min per week at 75% of age-predicted maximum heart rate). Body composition was assessed by dual-energy X-ray absorptiometry at 0 and 12 weeks. Brachial artery flow-mediated dilatation (FMD), supine blood pressure (BP) and fasting plasma insulin, and glucose levels were assessed at 0, 6 and 12 weeks, respectively. Insulin sensitivity/resistance was determined using the modified homeostasis model assessment of insulin resistance (HOMA2). A total of 49 subjects (M=18; F=31) completed the intervention. Baseline averages were as follows: body mass index=33.5 kg/m(2); BP=123/76 mm Hg; HOMA2=2.4; FMD=4.3%; rate of fat oxidation during exercise=0.34 g min(-1); abdominal fat=45.7% of total abdominal mass. Compared to LF, HF increased FMD acutely (2 h post-dose) by 2.4% (P<0.01) and chronically (over 12 weeks; P<0.01) by 1.6% and reduced insulin resistance by 0.31% (P<0.05), diastolic BP by 1.6 mm Hg and mean arterial BP by 1.2 mm Hg (P<0.05), independent of exercise. Regular exercise increased fat oxidation during exercise by 0.10 g min(-1) (P<0.01) and reduced abdominal fat by 0.92% (P<0.05). Although HF consumption was shown to improve endothelial function, it did not enhance the effects of exercise on body fat and fat metabolism in obese subjects. However, it may be useful for reducing cardiometabolic risk factors in this population.

  18. Exercise training improves obesity‐related lymphatic dysfunction

    PubMed Central

    Hespe, Geoffrey E.; Kataru, Raghu P.; Savetsky, Ira L.; García Nores, Gabriela D.; Torrisi, Jeremy S.; Nitti, Matthew D.; Gardenier, Jason C.; Zhou, Jie; Yu, Jessie Z.; Jones, Lee W.

    2016-01-01

    Key points Obesity results in perilymphatic inflammation and lymphatic dysfunction.Lymphatic dysfunction in obesity is characterized by decreased lymphatic vessel density, decreased collecting lymphatic vessel pumping frequency, decreased lymphatic trafficking of immune cells, increased lymphatic vessel leakiness and changes in the gene expression patterns of lymphatic endothelial cells.Aerobic exercise, independent of weight loss, decreases perilymphatic inflammatory cell accumulation, improves lymphatic function and reverses pathological changes in gene expression in lymphatic endothelial cells. Abstract Although previous studies have shown that obesity markedly decreases lymphatic function, the cellular mechanisms that regulate this response remain unknown. In addition, it is unclear whether the pathological effects of obesity on the lymphatic system are reversible with behavioural modifications. The purpose of this study, therefore, was to analyse lymphatic vascular changes in obese mice and to determine whether these pathological effects are reversible with aerobic exercise. We randomized obese mice to either aerobic exercise (treadmill running for 30 min per day, 5 days a week, for 6 weeks) or a sedentary group that was not exercised and analysed lymphatic function using a variety of outcomes. We found that sedentary obese mice had markedly decreased collecting lymphatic vessel pumping capacity, decreased lymphatic vessel density, decreased lymphatic migration of immune cells, increased lymphatic vessel leakiness and decreased expression of lymphatic specific markers compared with lean mice (all P < 0.01). Aerobic exercise did not cause weight loss but markedly improved lymphatic function compared with sedentary obese mice. Exercise had a significant anti‐inflammatory effect, resulting in decreased perilymphatic accumulation of inflammatory cells and inducible nitric oxide synthase expression. In addition, exercise normalized isolated lymphatic endothelial cell gene expression of lymphatic specific genes, including VEGFR‐3 and Prox1. Taken together, our findings suggest that obesity impairs lymphatic function via multiple mechanisms and that these pathological changes can be reversed, in part, with aerobic exercise, independent of weight loss. In addition, our study shows that obesity‐induced lymphatic endothelial cell gene expression changes are reversible with behavioural modifications. PMID:26931178

  19. Treatment with CB2 Agonist JWH-133 Reduces Histological Features Associated with Erectile Dysfunction in Hypercholesterolemic Mice

    PubMed Central

    Fraga-Silva, Rodrigo Araujo; Costa-Fraga, Fabiana Pereira; Faye, Younouss; Savergnini, Silvia Quintao; Lenglet, Sébastien; Mach, François; Steffens, Sabine; Stergiopulos, Nikolaos; Souza dos Santos, Robson Augusto; da Silva, Rafaela Fernandes

    2013-01-01

    Hypercholesterolemia is one of the most important risk factors for erectile dysfunction, mostly due to the impairment of oxidative stress and endothelial function in the penis. The cannabinoid system might regulate peripheral mechanisms of sexual function; however, its role is still poorly understood. We investigated the effects of CB2 activation on oxidative stress and fibrosis within the corpus cavernosum of hypercholesterolemic mice. Apolipoprotein-E-knockout mice were fed with a western-type diet for 11 weeks and treated with JWH-133 (selective CB2 agonist) or vehicle during the last 3 weeks. CB2 receptor expression, total collagen content, and reactive oxygen species (ROS) production within the penis were assessed. In vitro corpus cavernosum strips preparation was performed to evaluate the nitric oxide (NO) bioavailability. CB2 protein expression was shown in cavernosal endothelial and smooth muscle cells of wild type and hypercholesterolemic mice. Treatment with JWH-133 reduced ROS production and NADPH-oxidase expression in hypercholesterolemic mice penis. Furthermore, JWH-133 increased endothelial NO synthase expression in the corpus cavernosum and augmented NO bioavailability. The decrease in oxidative stress levels was accompanied with a reduction in corpus cavernosum collagen content. In summary, CB2 activation decreased histological features, which were associated with erectile dysfunction in hypercholesterolemic mice. PMID:24302957

  20. Effects of Aged Stored Autologous Red Blood Cells on Human Endothelial Function

    PubMed Central

    Kanias, Tamir; Triulzi, Darrel; Donadee, Chenell; Barge, Suchitra; Badlam, Jessica; Jain, Shilpa; Belanger, Andrea M.; Kim-Shapiro, Daniel B.

    2015-01-01

    Rationale: A major abnormality that characterizes the red cell “storage lesion” is increased hemolysis and reduced red cell lifespan after infusion. Low levels of intravascular hemolysis after transfusion of aged stored red cells disrupt nitric oxide (NO) bioavailabity, via accelerated NO scavenging reaction with cell-free plasma hemoglobin. The degree of intravascular hemolysis post-transfusion and effects on endothelial-dependent vasodilation responses to acetylcholine have not been fully characterized in humans. Objectives: To evaluate the effects of blood aged to the limits of Food and Drug Administration–approved storage time on the human microcirculation and endothelial function. Methods: Eighteen healthy individuals donated 1 U of leukopheresed red cells, divided and autologously transfused into the forearm brachial artery 5 and 42 days after blood donation. Blood samples were obtained from stored blood bag supernatants and the antecubital vein of the infusion arm. Forearm blood flow measurements were performed using strain-gauge plethysmography during transfusion, followed by testing of endothelium-dependent blood flow with increasing doses of intraarterial acetylcholine. Measurements and Main Results: We demonstrate that aged stored blood has higher levels of arginase-1 and cell-free plasma hemoglobin. Compared with 5-day blood, the transfusion of 42-day packed red cells decreases acetylcholine-dependent forearm blood flows. Intravascular venous levels of arginase-1 and cell-free plasma hemoglobin increase immediately after red cell transfusion, with more significant increases observed after infusion of 42-day-old blood. Conclusions: We demonstrate that the transfusion of blood at the limits of Food and Drug Administration–approved storage has a significant effect on the forearm circulation and impairs endothelial function. Clinical trial registered with www.clinicaltrials.gov (NCT 01137656) PMID:26222884

  1. Early Endothelial Bioactivity of Serum after Diesel Exhaust Inhalation: A Driver of Latent Impairment in Left Ventricular Pressure in the Heart?

    EPA Science Inventory

    Adverse cardiovascular effects of air pollution are often associated with a spike in systemic proinflammatory biomarkers, but causative linkage between circulating factors and deleterious outcomes following exposure remains elusive. Endothelial dysfunction is a consequence of sys...

  2. Endothelial progenitor cells inhibit platelet function in a P-selectin-dependent manner.

    PubMed

    Abou-Saleh, Haissam; Hachem, Ahmed; Yacoub, Daniel; Gillis, Marc-Antoine; Merhi, Yahye

    2015-05-07

    The role of endothelial progenitor cells (EPCs) in vascular repair is related to their recruitment at the sites of injury and their interaction with different components of the circulatory system. We have previously shown that EPCs bind and inhibit platelet function and impair thrombus formation via prostacyclin secretion, but the role of EPC binding to platelet P-selectin in this process has not been fully characterized. In the present study, we assessed the impact of EPCs on thrombus formation and we addressed the implication of P-selectin in this process. EPCs were generated from human peripheral blood mononuclear cells cultured on fibronectin in conditioned media. The impact of EPCs on platelet aggregation and thrombus formation was investigated in P-selectin deficient (P-sel(-/-)) mice and their wild-type (WT) counterparts. EPCs significantly and dose-dependently impaired collagen-induced whole blood platelet aggregation in WT mice, whereas no effects were observed in P-sel(-/-) mice. Moreover, in a ferric chloride-induced arterial thrombosis model, infusion of EPCs significantly reduced thrombus formation in WT, but not in P-sel(-/-) mice. Furthermore, the relative mass of thrombi generated in EPC-treated P-sel(-/-) mice were significantly larger than those in EPC-treated WT mice, and the number of EPCs recruited within the thrombi and along the arterial wall was reduced in P-sel(-/-) mice as compared to WT mice. This study shows that EPCs impair platelet aggregation and reduce thrombus formation via a cellular mechanism involving binding to platelet P-selectin. These findings add new insights into the role of EPC-platelet interactions in the regulation of thrombotic events during vascular repair.

  3. Body composition, nutritional status, and endothelial function in physically active men without metabolic syndrome--a 25 year cohort study.

    PubMed

    Pigłowska, Małgorzata; Kostka, Tomasz; Drygas, Wojciech; Jegier, Anna; Leszczyńska, Joanna; Bill-Bielecka, Mirosława; Kwaśniewska, Magdalena

    2016-04-27

    The purpose of this analysis was to investigate the relationship between body composition, metabolic parameters and endothelial function among physically active healthy middle-aged and older men. Out of 101 asymptomatic men prospectively tracked for traditional cardiovascular risk factors (mean observation period 25.1 years), 55 metabolically healthy individuals who maintained stable leisure time physical activity (LTPA) level throughout the observation and agreed to participate in the body composition assessment were recruited (mean age 60.3 ± 9.9 years). Body composition and raw bioelectrical parameters were measured with bioelectrical impedance analysis (BIA). Microvascular endothelial function was evaluated by means of the reactive hyperemia index (RHI) using Endo-PAT2000 system. Strong correlations were observed between lifetime physical activity (PA), aerobic fitness and most of analyzed body composition parameters. The strongest inverse correlation was found for fat mass (p < 0.01) while positive relationship for fat-free mass (p < 0.01), total body water (p < 0.05 for current aerobic capacity and p < 0.01 for historical PA), body cell mass (p < 0.001), muscle mass (p < 0.001), calcium and potassium (p < 0.01 and p < 0.001 for current aerobic capacity and p < 0.001 and p < 0.01 for historical PA, respectively) and glycogen mass (p < 0.001). Among metabolic parameters, HDL cholesterol (HDL-C) and uric acid were significantly associated with most body composition indicators. Regarding endothelial function, a negative correlation was found for RHI and body mass (p < 0.05) while positive relationship for RHI and body cell mass (p < 0.05), calcium (p < 0.05) and potassium mass (p < 0.05). Impaired endothelial function was observed among 8 subjects. Among bioelectrical parameters, impedance (Z) and resistance (R) normalized for subjects' height were negatively related with body mass, body mass index (BMI) and waist circumference (p < 0.001); while reactance (Xc) normalized for patients' height was negatively related with body mass (p < 0.05). The mean phase angle value was relatively high (8.83 ± 1.22) what reflects a good level of cellularity and cell function. Phase angle was positively related with body mass and BMI (p < 0.05). Both fat mass and muscle mass components are important predictors of metabolic profile. Maintaining regular high PA level and metabolically healthy status through young and middle adulthood may have beneficial influence on body composition parameters and may prevent age-related decrease of fat-free mass and endothelial dysfunction.

  4. High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure

    PubMed Central

    Matthews, Evan L.; Brian, Michael S.; Ramick, Meghan G.; Lennon-Edwards, Shannon; Edwards, David G.

    2015-01-01

    Recent studies demonstrate that high dietary sodium (HS) impairs endothelial function in those with salt-resistant (SR) blood pressure (BP). The effect of HS on endothelial function in those with salt-sensitive (SS) BP is not currently known. We hypothesized that HS would impair brachial artery flow-mediated dilation (FMD) to a greater extent in SS compared with SR adults. Ten SR (age 42 ± 5 yr, 5 men, 5 women) and 10 SS (age 39 ± 5 yr, 5 men, 5 women) healthy, normotensive participants were enrolled in a controlled feeding study consisting of a run-in diet followed by a 7-day low dietary sodium (LS) (20 mmol/day) and a 7-day HS (300 mmol/day) diet in random order. Brachial artery FMD and 24-h BP were assessed on the last day of each diet. SS BP was individually assessed and defined as a change in 24-h mean arterial pressure (MAP) of >5 mmHg between the LS and HS diets (ΔMAP: SR −0.6 ± 1.2, SS 7.7 ± 0.4 mmHg). Brachial artery FMD was lower in both SS and SR individuals during the HS diet (P < 0.001), and did not differ between groups (P > 0.05) (FMD: SR LS 10.6 ± 1.3%, SR HS 7.2 ± 1.5%, SS LS 12.5 ± 1.7%, SS HS 7.8 ± 1.4%). These data indicate that an HS diet impairs brachial artery FMD to a similar extent in adults with SS BP and SR BP. PMID:26078434

  5. Noninvasive assessment of arterial function in children: clinical applications

    PubMed Central

    Aggoun, Y; Beghetti, M

    2002-01-01

    Non invasive methods to assess arterial function are widely used in adults. The development and progression of arterial vascular disease is a multifactorial process that can start early in life, thus even in a pediatric population. Risk factors for cardiovascular disease mediate their effects by altering the structure, properties and function of wall and endothelial components of the arterial blood vessels. The ability to detect and monitor sub-clinical damage, representing the cumulative and integrated influence of risk factors in impairing arterial wall integrity, holds potential to further refine cardiovascular risk stratification and enable early intervention to prevent or attenuate disease progression. Measurements that provide more direct information in relation to changes in arterial wall integrity clearly hold predictive and therapeutic potential. The aim of this current review will be to describe the non-invasive procedure used in children to investigate the mechanical properties of a great elastic artery, the common carotid, and the endothelial function of the brachial artery. The accuracy of recording noninvasively the blood pressure wave contour along the arterial tree has been improved by the technique of applanation tonometry. The results obtained with these methods in previous studies are described. PMID:22368620

  6. Chronic heart failure and aging - effects of exercise training on endothelial function and mechanisms of endothelial regeneration: Results from the Leipzig Exercise Intervention in Chronic heart failure and Aging (LEICA) study.

    PubMed

    Sandri, Marcus; Viehmann, Manuel; Adams, Volker; Rabald, Kristin; Mangner, Norman; Höllriegel, Robert; Lurz, Philipp; Erbs, Sandra; Linke, Axel; Kirsch, Katharina; Möbius-Winkler, Sven; Thiery, Joachim; Teupser, Daniel; Hambrecht, Rainer; Schuler, Gerhard; Gielen, Stephan

    2016-03-01

    A reduction in number and function of endothelial progenitor cells (EPCs) occurs in both physiologic aging and chronic heart failure (CHF). We assessed whether disease and aging have additive effects on EPCs or whether beneficial effects of exercise training are diminished in old age. We randomized 60 patients with stable CHF and 60 referent controls to a training or a control group. To detect possible aging effects we included subjects below 55 (young) and above 65 years (older). Subjects in the training group exercised four times daily at 60% to 70% of VO2max for four weeks under supervision. At baseline and after the intervention the number and function of EPCs were assessed. As compared with young referent controls, older referent controls showed at baseline a reduced EPC number (young: 190 ± 37 CD34/KDR positive cells/ml blood; older: 131 ± 26 CD34/KDR positive cells/ml blood; p < 0.05) and function (young: 230 ± 41 migrated cells/1000 plated cells; older: 185 ± 28 cells/1000 plated cells; p < 0.05). In young and older CHF patients EPC-number (young: 85 ± 21 CD34/KDR positive cells/ml blood; older: 78 ± 20 CD34/KDR positive cells/ml blood) and EPC-function (young: 113 ± 26 cells/1000 plated cells; older: 120 ± 27 cells/1000 plated cells) were impaired. As a result of exercise training, EPC function improved by 24% in older referent controls (p < 0.05), while it remained unchanged in young training referent controls and controls respectively. In young and older patients with CHF four weeks of exercise training resulted in a significant improvement in EPC numbers and EPC function (young: number +66% function +43%; p < 0.05; older: number +69% function +36%; p < 0.05). These results were accompanied by a significant increase in flow mediated dilatation in the training groups of young/older CHF patients and in older referent controls. Four weeks of exercise training are effective in improving EPC number and EPC function in CHF patients. These training effects were not impaired among older patients, emphasizing the potentials of rehabilitation interventions in a patient group where CHF has a high prevalence. © The European Society of Cardiology 2015.

  7. Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Lagoda, Gwen A.; Strong, Travis D.; Sezen, Sena F.; Johnson, Justin M.; Burnett, Arthur L.

    2010-01-01

    INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)–null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67phox, p47phox, and gp91phox), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES Molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared to WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67phox, p47phox and gp91phox, eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P < 0.05) the abnormalities in protein expressions of gp67phox and gp47phox, 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters. Protein expressions of P-eNOS-Ser-1177 and total eNOS were unaffected by hypercholesterolemia. CONCLUSION Activated NAD(P)H oxidase in the penis is an initial source of oxidative stress resulting in eNOS uncoupling, thus providing a mechanism of eNOS uncoupling and endothelial dysfunction in hypercholesterolemia-induced ED. PMID:20626609

  8. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    PubMed

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-05

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein

    PubMed Central

    d'Uscio, Livius V.; Das, Pritam; Santhanam, Anantha V.R.; He, Tongrong; Younkin, Steven G.; Katusic, Zvonimir S.

    2012-01-01

    Aims Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Methods and results Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser1177 in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH4) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH4 and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH4 bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91phox and SODs, thereby reducing production of superoxide anion in the aortas. Conclusion Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production. PMID:22886847

  10. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein.

    PubMed

    d'Uscio, Livius V; Das, Pritam; Santhanam, Anantha V R; He, Tongrong; Younkin, Steven G; Katusic, Zvonimir S

    2012-12-01

    Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser(1177) in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH(4)) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH(4) and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH(4) bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91(phox) and SODs, thereby reducing production of superoxide anion in the aortas. Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production.

  11. Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis.

    PubMed

    Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A

    2015-07-31

    Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes. © 2015 American Heart Association, Inc.

  12. Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury.

    PubMed

    Migliori, Massimiliano; Cantaluppi, Vincenzo; Mannari, Claudio; Bertelli, Alberto A E; Medica, Davide; Quercia, Alessandro Domenico; Navarro, Victor; Scatena, Alessia; Giovannini, Luca; Biancone, Luigi; Panichi, Vincenzo

    2015-01-01

    Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF), an active component with known antioxidant activities. The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury. CAF increased basal as well as acetylcholine-induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM) increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration. The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury.

  13. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    PubMed

    Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  14. Differential response of endothelial cells to simvastatin when conditioned with steady, non-reversing pulsatile or oscillating shear stress.

    PubMed

    Rossi, Joanna; Jonak, Paul; Rouleau, Leonie; Danielczak, Lisa; Tardif, Jean-Claude; Leask, Richard L

    2011-01-01

    Few studies have investigated whether fluid mechanics can impair or enhance endothelial cell response to pharmacological agents such as statin drugs. We evaluated and compared Kruppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and thrombomodulin (TM) expression in human abdominal aortic endothelial cells (HAAEC) treated with increasing simvastatin concentrations (0.1, 1 or 10 μM) under static culture and shear stress (steady, non-reversing pulsatile, and oscillating). Simvastatin, steady flow, and non-reversing pulsatile flow each separately upregulated KLF2, eNOS, and TM mRNA. At lower simvastatin concentrations (0.1 and 1 μM), the combination of statin and unidirectional steady or pulsatile flow produced an overall additive increase in mRNA levels. At higher simvastatin concentration (10 μM), a synergistic increase in eNOS and TM mRNA expression was observed. In contrast, oscillating flow impaired KLF2 and TM, but not eNOS expression by simvastatin at 1 μM. A higher simvastatin concentration of 10 μM overcame the inhibitory effect of oscillating flow. Our findings suggest that oscillating shear stress renders the endothelial cells less responsive to simvastatin than cells exposed to unidirectional steady or pulsatile flow. Consequently, the pleiotropic effects of statins in vivo may be less effective in endothelial cells exposed to atheroprone hemodynamics.

  15. FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth

    PubMed Central

    Slebe, Felipe; Rojo, Federico; Vinaixa, Maria; García-Rocha, Mar; Testoni, Giorgia; Guiu, Marc; Planet, Evarist; Samino, Sara; Arenas, Enrique J.; Beltran, Antoni; Rovira, Ana; Lluch, Ana; Salvatella, Xavier; Yanes, Oscar; Albanell, Joan; Guinovart, Joan J.; Gomis, Roger R.

    2016-01-01

    The mechanisms that allow breast cancer (BCa) cells to metabolically sustain rapid growth are poorly understood. Here we report that BCa cells are dependent on a mechanism to supply precursors for intracellular lipid production derived from extracellular sources and that the endothelial lipase (LIPG) fulfils this function. LIPG expression allows the import of lipid precursors, thereby contributing to BCa proliferation. LIPG stands out as an essential component of the lipid metabolic adaptations that BCa cells, and not normal tissue, must undergo to support high proliferation rates. LIPG is ubiquitously and highly expressed under the control of FoxA1 or FoxA2 in all BCa subtypes. The downregulation of either LIPG or FoxA in transformed cells results in decreased proliferation and impaired synthesis of intracellular lipids. PMID:27045898

  16. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    PubMed Central

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (P<0.05). Myostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of myostatin improves NO‐, but not PGI2‐ or EDHF‐mediated vasodilation in obese mice; this vasodilation improvement is mediated by down‐regulation of superoxide. PMID:24965025

  17. Low-molecular-weight hyaluronan (LMW-HA) accelerates lymph node metastasis of melanoma cells by inducing disruption of lymphatic intercellular adhesion.

    PubMed

    Du, Yan; Cao, Manlin; Liu, Yiwen; He, Yiqing; Yang, Cuixia; Wu, Man; Zhang, Guoliang; Gao, Feng

    2016-01-01

    Endothelial integrity defects initiate lymphatic metastasis of tumor cells. Low-molecular-weight hyaluronan (LMW-HA) derived from plasma and interstitial fluid was reported to be associated with tumor lymphatic metastasis. In addition, LMW-HA was proved to disrupt lymphatic vessel endothelium integrity, thus promoting lymphatic metastasis of tumor cells. Until now, there are few reports on how LMW-HA modulates lymphatic endothelial cells adhesion junctions and affects cancer cells metastasizing into lymph vessels. The aim of our study is to unravel the novel mechanism of LMW-HA in mediating tumor lymphatic metastasis. Here, we employed a melanoma metastasis model to investigate whether LMW-HA facilitates tumor cells transferring from foci to remote lymph nodes by disrupting the lymphatic endothelial integrity. Our data indicate that LMW-HA significantly induces metastasis of melanoma cells to lymph nodes and accelerates interstitial-lymphatic flow in vivo . Further experiments show that increased migration of melanoma cells across human dermal lymphatic endothelial cell (HDLEC) monolayers is accompanied by impaired lymphatic endothelial barrier function and increased permeability. The mechanism study reveals that VE-cadherin-β-catenin pathway and relevant signals are involved in modulating the interactions between endothelial cells and that a significant inhibition of lymphatic endothelium disruption is observed when antibodies to the LMW-HA receptor (LYVE-1) are present. Thus, our findings demonstrate a disruptive effect of LMW-HA on lymphatic endothelium continuity which leads to a promotion on melanoma lymphatic metastasis and also suggest a cellular signaling mechanism associated with VE-cadherin-mediated lymphatic intercellular junctions.

  18. Endothelial FoxM1 Mediates Bone Marrow Progenitor Cell-Induced Vascular Repair and Resolution of Inflammation following Inflammatory Lung Injury

    PubMed Central

    Zhao, Yidan D.; Huang, Xiaojia; Yi, Fan; Dai, Zhiyu; Qian, Zhijian; Tiruppathi, Chinnaswamy; Tran, Khiem; Zhao, You-Yang

    2015-01-01

    Adult stem cell treatment is a potential novel therapeutic approach for acute respiratory distress syndrome. Given the extremely low rate of cell engraftment, it is believed that these cells exert their beneficial effects via paracrine mechanisms. However, the endogenous mediator(s) in the pulmonary vasculature remains unclear. Employing the mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO), here we show that endothelial expression of the reparative transcriptional factor FoxM1 is required for the protective effects of bone marrow progenitor cells (BMPC) against LPS-induced inflammatory lung injury and mortality. BMPC treatment resulted in rapid induction of FoxM1 expression in WT but not FoxM1 CKO lungs. BMPC-induced inhibition of lung vascular injury, resolution of lung inflammation, and survival, as seen in WT mice, were abrogated in FoxM1 CKO mice following LPS challenge. Mechanistically, BMPC treatment failed to induce lung EC proliferation in FoxM1 CKO mice, which was associated with impaired expression of FoxM1 target genes essential for cell cycle progression. We also observed that BMPC treatment enhanced endothelial barrier function in WT, but not in FoxM1-deficient EC monolayers. Restoration of β-catenin expression in FoxM1-deficient ECs normalized endothelial barrier enhancement in response to BMPC treatment. These data demonstrate the requisite role of endothelial FoxM1 in the mechanism of BMPC-induced vascular repair to restore vascular integrity and accelerate resolution of inflammation, thereby promoting survival following inflammatory lung injury. PMID:24578354

  19. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells.

    PubMed

    Gardner, T W; Lieth, E; Khin, S A; Barber, A J; Bonsall, D J; Lesher, T; Rice, K; Brennan, W A

    1997-10-01

    Diabetic retinopathy and other diseases associated with retinal edema are characterized by increased microvascular leakage. Astrocytes have been proposed to maintain endothelial function in the brain, suggesting that glial impairment may underlie the development of retinal edema. The purpose of this study was to test the effects of astrocytes on barrier properties in retinal microvascular endothelial cells. Bovine retinal microvascular endothelial cells were exposed to conditioned media from rat brain astrocytes. Transendothelial electrical resistance (TER) was determined on 24-mm Transwell (Cambridge, MA) polycarbonate filters with the End-Ohm device (World Precision Instruments, Sarasota, FL). ZO-1 protein content was quantified by microtiter enzyme-linked immunosorbent assay. Astrocyte-conditioned medium (ACM) significantly increased TER (P < 0.0001) and ZO-1 content (P < 0.01). Both serum-containing and serum-free N1B defined ACM increased ZO-1 expression, but heating abolished the effect. Serum-free ACM decreased cell proliferation by 16%. Astrocytes release soluble, heat-labile factors that increase barrier properties and tight junction protein content. These results suggest that astrocytes enhance blood-retinal barrier properties, at least in part by increasing tight junction protein expression. Our findings suggest that glial malfunction plays an important role in the pathogenesis of vasogenic retinal edema.

  20. Suppressed G-protein-coupled receptor kinase 2 activity protects female diabetic-mouse aorta against endothelial dysfunction.

    PubMed

    Taguchi, K; Matsumoto, T; Kamata, K; Kobayashi, T

    2013-01-01

    Pre-menopausal women have less cardiovascular disease and lower cardiovascular morbidity and mortality than men the same age. Previously, we noted in mice that G-protein-coupled receptor kinase 2 (GRK2) negatively regulates the Akt/eNOS pathway in male diabetic aortas and that endothelial function via the Akt/eNOS pathway is less affected in female diabetic aortas. The cellular mechanisms underlying these sex differences remain unclear. We aimed to investigate the ways in which GRK2 might modulate vascular functions in male and female diabetic mice (DM). Vascular functions were examined in aortic rings. GRK2, β-arrestin 2 and Akt/eNOS-signalling-pathway protein levels and activities were assayed by Western blotting. Phenylephrine-induced contraction was greater, while both clonidine-induced and insulin-induced relaxations were weaker (vs. male controls), in aortas from male type 2 DM, suggesting impairments of the Akt/eNOS pathway and α-adrenoceptor function. GRK2-inhibitor reversed only the impairment in Akt/eNOS-pathway-mediated relaxation in male DM. Increases in GRK2 activity, GRK2 expression in the membrane, plasma Ang II and systolic blood pressure were seen in male DM (vs. male controls) but not in female DM; these increases were attenuated by GRK2-inhibitor treatment. Repeatedly obtaining clonidine concentration-response curves led to reduced relaxation in male and in female DM aortas, indicating similar desensitization between female DM and male DM. This effect was reversed by GRK2-inhibitor in both sexes. GRK2 plays a key role in modulating the aortic vasodilator effect of clonidine by selectively affecting the Akt/eNOS pathway. This action of GRK2 is more powerful in male than in female DM. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  1. Coincidence of moderately elevated N-terminal pro-B-type natriuretic peptide, endothelial progenitor cells deficiency and propensity to exercise-induced myocardial ischemia in stable angina.

    PubMed

    Surdacki, Andrzej; Marewicz, Ewa; Rakowski, Tomasz; Szumańska, Monika; Szastak, Grzegorz; Pryjma, Juliusz; Dubiel, Jacek S

    2010-01-01

    To assess endothelial progenitor cells (EPC) counts, a novel prognostic marker, in relation to classical adverse outcome predictors - N-terminal pro-B-type natriuretic peptide (NT-proBNP), impaired left ventricular (LV) relaxation and exercise-induced ischemia - in stable coronary artery disease (CAD) with preserved LV systolic function. We studied 30 non-diabetic men with one-vessel CAD, LV ejection fraction 60% and normal LV diastolic function (n=16) or impaired LV relaxation (by ultrasound including tissue Doppler) (n=14), and 14 non-CAD controls matched for risk profile and medication. CD34+/kinase-insert domain receptor (KDR)+ cells (CD34+/KDR+ cells), a leukocytes subpopulation enriched for EPC, were enumerated by flow cytometry. CAD patients with abnormal LV relaxation exhibited significantly elevated NT-proBNP and decreased CD34+/KDR+ cells vs. CAD with regular diastolic function and non-CAD controls. An inverse NT-proBNP-CD34+/KDR+ cells relationship was precipitated by the clustering of high resting NT-proBNP and low CD34+/KDR+ cells in the subjects with a lower Duke treadmill score. Propensity to symptomatic exertional ischemia may underlie the coincidence of moderately elevated NT-proBNP and EPC deficiency in stable angina. Additionally, chronic subclinical ischemia can also be involved in these associations. These might result from BNP overexpression in the ischemic myocardium and a hypothetical exhaustion of the bone marrow capacity to mobilize EPC at multiple ischemic episodes, thus contributing to NT-proBNP prognostic effect irrespective of hemodynamic factors.

  2. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells.

    PubMed

    You, Jinzhi; Sun, Jiacheng; Ma, Teng; Yang, Ziying; Wang, Xu; Zhang, Zhiwei; Li, Jingjing; Wang, Longgang; Ii, Masaaki; Yang, Junjie; Shen, Zhenya

    2017-08-03

    Neovascularization is impaired in diabetes mellitus, which leads to the development of peripheral arterial disease and is mainly attributed to the dysfunction of endothelial progenitor cells (EPCs). Previous studies proved the promotional effect of curcumin on neovascularization in wound healing of diabetes. Thus, we hypothesize that curcumin could promote neovascularization at sites of hindlimb ischemia in diabetes and might take effect via modulating the function of EPCs. Streptozotocin-induced type 1 diabetic mice and nondiabetic mice both received unilateral hindlimb ischemic surgery. Curcumin was then administrated to the mice by lavage for 14 days consecutively. Laser Doppler perfusion imaging was conducted to demonstrate the blood flow reperfusion. Capillary density was measured in the ischemic gastrocnemius muscle. In addition, angiogenesis, migration, proliferation abilities, and senescence were determined in EPCs isolated from diabetic and nondiabetic mice. Quantitative PCR was then used to determine the mRNA expression of vascular endothelial growth factor (VEGF) and angiopoetin-1 (Ang-1) in EPCs. Curcumin application to type 1 diabetic mice significantly improved blood reperfusion and increased the capillary density in ischemic hindlimbs. The in-vitro study also revealed that the angiogenesis, migration, and proliferation abilities of EPCs and the number of senescent EPCs were reversed by curcumin application. Quantitative PCR confirmed the overexpression of VEGF-A and Ang-1 in EPCs after curcumin treatment. Curcumin could enhance neovascularization via promoting the function of EPCs in a diabetic mouse hindlimb ischemia model.

  3. Vascular endothelial dysfunction in Duchenne muscular dystrophy is restored by bradykinin through upregulation of eNOS and nNOS

    PubMed Central

    Dabiré, Hubert; Barthélémy, Inès; Blanchard-Gutton, Nicolas; Sambin, Lucien; Sampedrano, Carolina Carlos; Gouni, Vassiliki; Unterfinger, Yves; Aguilar, Pablo; Thibaud, Jean-Laurent; Ghaleh, Bijan; Bizé, Alain; Pouchelon, Jean-Louis; Blot, Stéphane; Berdeaux, Alain; Hittinger, Luc; Chetboul, Valérie; Su, Jin Bo

    2012-01-01

    Little is known about the vascular function and expression of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) in Duchenne muscular dystrophy (DMD). Bradykinin is involved in the regulation of eNOS expression induced by angiotensin-converting enzyme inhibitors. We characterized the vascular function and eNOS and nNOS expression in a canine model of DMD and evaluated the effects of chronic bradykinin treatment. Vascular function was examined in conscious golden retriever muscular dystrophy (GRMD) dogs with left ventricular dysfunction (measured by echocardiography) and in isolated coronary arteries. eNOS and nNOS proteins in carotid arteries were measured by western blot and cyclic guanosine monophosphate (cGMP) content was analyzed by radioimmunoassay. Compared with controls, GRMD dogs had an impaired vasodilator response to acetylcholine. In isolated coronary artery, acetylcholine-elicited relaxation was nearly absent in placebo-treated GRMD dogs. This was explained by reduced nNOS and eNOS proteins and cGMP content in arterial tissues. Chronic bradykinin infusion (1 μg/min, 4 weeks) restored in vivo and in vitro vascular response to acetylcholine to the level of control dogs. This effect was NO-mediated through upregulation of eNOS and nNOS expression. In conclusion, this study is the first to demonstrate that DMD is associated with NO-mediated vascular endothelial dysfunction linked to an altered expression of eNOS and nNOS, which can be overcome by bradykinin. PMID:22193759

  4. Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study.

    PubMed

    Kaur, Savneet; Kumar, T R Santhosh; Uruno, Akira; Sugawara, Akira; Jayakumar, Karunakaran; Kartha, Chandrasekharan Cheranellore

    2009-11-01

    Recent studies have reported a marked impairment in the number and functions of endothelial progenitor cells (EPCs) in patients with coronary artery disease (CAD). In view of an important role of eNOS in angiogenesis, in the present study, we evaluated the effects of eNOS gene transfer in ex vivo expanded EPCs isolated from patients with CAD. The expanded EPCs were transfected with mammalian expression vector pcDNA3.1-eNOS containing the full-length human eNOS gene using lipofectamine. About 35-40% of the eNOS-EPCs had higher expression of eNOS as compared to untransfected EPCs. EPCs transfected with pcDNA3.0-EGFP, the plasmid vector expressing green fluorescent protein (GFP) were used as control. The untransfected, GFP-transfected and eNOS-transfected EPCs were compared in terms of important functional attributes of angiogenesis such as proliferation, migration, differentiation and adhesion/integration into tube-like structures in vitro. Functional studies revealed that in the presence of defined growth conditions, compared to the untransfected and GFP-transfected cells, eNOS-EPCs from patients with CAD have a significant increase in [3H] thymidine-labeled DNA (P < 0.01), migration (14.6 +/- 1.8 and 16.5 +/- 1.9 vs. 23.5 +/- 3.4 cells/field, P < 0.01), ability to differentiate into endothelial-like spindle-shaped cells (46 +/- 4.5 and 56.5 +/- 2.1 vs. 93.2 +/- 6.6 cells/field, P < 0.001) and also incorporation into tube-like structures on the matrigel (GFP-EPCs: 21.25 +/- 2.9 vs. GFP-eNOS-EPCs: 34.5 +/- 5.5 cells/field, P < 0.05). We conclude that eNOS gene transfection is a valuable approach to augment angiogenic properties of ex vivo expanded EPCs and eNOS-modified EPCs may offer significant advantages than EPCs alone in terms of their clinical use in patients with myocardial ischemia.

  5. Caloric restriction improves endothelial dysfunction during vascular aging: Effects on nitric oxide synthase isoforms and oxidative stress in rat aorta.

    PubMed

    Zanetti, Michela; Gortan Cappellari, Gianluca; Burekovic, Ismet; Barazzoni, Rocco; Stebel, Marco; Guarnieri, Gianfranco

    2010-11-01

    Aging is characterized by activation of inducible over endothelial nitric oxide synthase (iNOS and eNOS), impaired antioxidant activity and increased oxidative stress, which reduces nitric oxide bioavailability and causes endothelial dysfunction. Caloric restriction (CR) blunts oxidative stress. We investigated whether CR impacts endothelial dysfunction in aging and the underlying mechanisms. Aortas from young (YC, 6 months of age) and old (OC, 24 months of age) rats ad-libitum fed and from old rats caloric-restricted for 3-weeks (OR, 26%) were investigated. Endothelium-dependent vasorelaxation was impaired in OC, associated with reduced eNOS and increased iNOS expression (P<0.05). Aortic nitrite was similar in OC and YC, but the contribution of calcium-independent NOS to total NOS activity was increased whereas that of calcium-dependent NOS was reduced (p≤0.0003). Plasma thiobarbituric acid-reactive substances (TBARS) were elevated in OC as well as aortic nitrotyrosine (P<0.05). Expression of manganese superoxide dismutase (MnSOD) and total SOD activity were impaired in OC (P<0.05 vs. YC), whereas copper-zinc (CuZn) SOD expression was similar in OC and YC. CR restored endothelial dysfunction in old rats, reduced iNOS expression, total nitrite and calcium-independent NOS activity in aorta (P<0.05) without changes in eNOS expression and calcium-dependent NOS activity. Sirtuin-1 expression did not differ among groups. Plasma TBARS and aortic nitrotyrosine were reduced (P<0.05) in OR compared with OC. In OR CuZnSOD protein and SOD activity increased (P<0.05) without changes in MnSOD expression. Short-term CR improves age-related endothelial dysfunction. Reversal of altered iNOS/eNOS ratio, reduced oxidative stress and increased SOD enzyme activity rather than enhanced NO production appear to be involved in this effect. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Elevated pressure causes endothelial dysfunction in mouse carotid arteries by increasing local angiotensin signaling

    PubMed Central

    Zhao, Yingzi; Flavahan, Sheila; Leung, Susan W.; Xu, Aimin; Vanhoutte, Paul M.

    2014-01-01

    Experiments were performed to determine whether or not acute exposure to elevated pressure would disrupt endothelium-dependent dilatation by increasing local angiotensin II (ANG II) signaling. Vasomotor responses of mouse-isolated carotid arteries were analyzed in a pressure myograph at a control transmural pressure (PTM) of 80 mmHg. Acetylcholine-induced dilatation was reduced by endothelial denudation or by inhibition of nitric oxide synthase (NG-nitro-l-arginine methyl ester, 100 μM). Transient exposure to elevated PTM (150 mmHg, 180 min) inhibited dilatation to acetylcholine but did not affect responses to the nitric oxide donor diethylamine NONOate. Elevated PTM also increased endothelial reactive oxygen species, and the pressure-induced endothelial dysfunction was prevented by the direct antioxidant and NADPH oxidase inhibitor apocynin (100 μM). The increase in endothelial reactive oxygen species in response to elevated PTM was reduced by the ANG II type 1 receptor (AT1R) antagonists losartan (3 μM) or valsartan (1 μM). Indeed, elevated PTM caused marked expression of angiotensinogen, the precursor of ANG II. Inhibition of ANG II signaling, by blocking angiotensin-converting enzyme (1 μM perindoprilat or 10 μM captopril) or blocking AT1Rs prevented the impaired response to acetylcholine in arteries exposed to 150 mmHg but did not affect dilatation to the muscarinic agonist in arteries maintained at 80 mmHg. After the inhibition of ANG II, elevated pressure no longer impaired endothelial dilatation. In arteries treated with perindoprilat to inhibit endogenous formation of the peptide, exogenous ANG II (0.3 μM, 180 min) inhibited dilatation to acetylcholine. Therefore, elevated pressure rapidly impairs endothelium-dependent dilatation by causing ANG expression and enabling ANG II-dependent activation of AT1Rs. These processes may contribute to the pathogenesis of hypertension-induced vascular dysfunction and organ injury. PMID:25485905

  7. Elevated pressure causes endothelial dysfunction in mouse carotid arteries by increasing local angiotensin signaling.

    PubMed

    Zhao, Yingzi; Flavahan, Sheila; Leung, Susan W; Xu, Aimin; Vanhoutte, Paul M; Flavahan, Nicholas A

    2015-02-15

    Experiments were performed to determine whether or not acute exposure to elevated pressure would disrupt endothelium-dependent dilatation by increasing local angiotensin II (ANG II) signaling. Vasomotor responses of mouse-isolated carotid arteries were analyzed in a pressure myograph at a control transmural pressure (PTM) of 80 mmHg. Acetylcholine-induced dilatation was reduced by endothelial denudation or by inhibition of nitric oxide synthase (NG-nitro-L-arginine methyl ester, 100 μM). Transient exposure to elevated PTM (150 mmHg, 180 min) inhibited dilatation to acetylcholine but did not affect responses to the nitric oxide donor diethylamine NONOate. Elevated PTM also increased endothelial reactive oxygen species, and the pressure-induced endothelial dysfunction was prevented by the direct antioxidant and NADPH oxidase inhibitor apocynin (100 μM). The increase in endothelial reactive oxygen species in response to elevated PTM was reduced by the ANG II type 1 receptor (AT1R) antagonists losartan (3 μM) or valsartan (1 μM). Indeed, elevated PTM caused marked expression of angiotensinogen, the precursor of ANG II. Inhibition of ANG II signaling, by blocking angiotensin-converting enzyme (1 μM perindoprilat or 10 μM captopril) or blocking AT1Rs prevented the impaired response to acetylcholine in arteries exposed to 150 mmHg but did not affect dilatation to the muscarinic agonist in arteries maintained at 80 mmHg. After the inhibition of ANG II, elevated pressure no longer impaired endothelial dilatation. In arteries treated with perindoprilat to inhibit endogenous formation of the peptide, exogenous ANG II (0.3 μM, 180 min) inhibited dilatation to acetylcholine. Therefore, elevated pressure rapidly impairs endothelium-dependent dilatation by causing ANG expression and enabling ANG II-dependent activation of AT1Rs. These processes may contribute to the pathogenesis of hypertension-induced vascular dysfunction and organ injury. Copyright © 2015 the American Physiological Society.

  8. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing

    PubMed Central

    Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.

    2012-01-01

    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498

  9. Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier Regulates Endogenous Brain Docosahexaenoic Acid Levels and Cognitive Function.

    PubMed

    Pan, Yijun; Short, Jennifer L; Choy, Kwok H C; Zeng, Annie X; Marriott, Philip J; Owada, Yuji; Scanlon, Martin J; Porter, Christopher J H; Nicolazzo, Joseph A

    2016-11-16

    Fatty acid-binding protein 5 (FABP5) at the blood-brain barrier contributes to the brain uptake of docosahexaenoic acid (DHA), a blood-derived polyunsaturated fatty acid essential for maintenance of cognitive function. Given the importance of DHA in cognition, the aim of this study was to investigate whether deletion of FABP5 results in cognitive dysfunction and whether this is associated with reduced brain endothelial cell uptake of exogenous DHA and subsequent attenuation in the brain levels of endogenous DHA. Cognitive function was assessed in male and female FABP5 +/+ and FABP5 -/- mice using a battery of memory paradigms. FABP5 -/- mice exhibited impaired working memory and short-term memory, and these cognitive deficits were associated with a 14.7 ± 5.7% reduction in endogenous brain DHA levels. The role of FABP5 in the blood-brain barrier transport of DHA was assessed by measuring 14 C-DHA uptake into brain endothelial cells and capillaries isolated from FABP5 +/+ and FABP5 -/- mice. In line with a crucial role of FABP5 in the brain uptake of DHA, 14 C-DHA uptake into brain endothelial cells and brain capillaries of FABP5 -/- mice was reduced by 48.4 ± 14.5% and 14.0 ± 4.2%, respectively, relative to those of FABP5 +/+ mice. These results strongly support the hypothesis that FABP5 is essential for maintaining brain endothelial cell uptake of DHA, and that cognitive deficits observed in FABP5 -/- mice are associated with reduced CNS access of DHA. Genetic deletion of fatty acid-binding protein 5 (FABP5) in mice reduces uptake of exogenous docosahexaenoic acid (DHA) into brain endothelial cells and brain capillaries and reduces brain parenchymal levels of endogenous DHA. Therefore, FABP5 in the brain endothelial cell is a crucial contributor to the brain levels of DHA. Critically, lowered brain DHA levels in FABP5 -/- mice occurred in tandem with cognitive deficits in a battery of memory paradigms. This study provides evidence of a critical role for FABP5 in the maintenance of cognitive function via regulating the brain uptake of DHA, and suggests that upregulation of FABP5 in neurodegenerative diseases, where brain DHA levels are possibly diminished (e.g., Alzheimer's disease), may provide a novel therapeutic approach for restoring cognitive function. Copyright © 2016 the authors 0270-6474/16/3611756-13$15.00/0.

  10. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nintasen, Rungrat; Multidisciplinary Cardiovascular Research Center; Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protectivemore » effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there was no modulation by E2 in either cell-type. In conclusion, TNF-{alpha} induced SV neointima formation, increased SMC proliferation and migration, impaired SV-EC migration and increased expression of adhesion molecules. E2 exerted distinct cell-type and function-specific modulation, the mechanisms underlying which are worthy of further detailed study.« less

  11. Improved endothelial function and lipid profile compensate for impaired hemostatic and inflammatory status in iatrogenic chronic subclinical hyperthyroidism of thyroid cancer patients on L-t4 therapy.

    PubMed

    Gazdag, A; Nagy, E V; Burman, K D; Paragh, G; Jenei, Z

    2010-06-01

    We aimed to compare the changes of endothelial function and haemostatic, inflammatory and metabolic parameters of short-term iatrogenic hypothyroidism to the characteristics of subclinical hyperthyroidism in patients with differentiated thyroid cancer. Twenty four women (mean age 42.4+/-8.1 years) had undergone total thyroidectomy and radioiodine ablation in treatment for differentiated thyroid cancer. We measured serum thyroglobulin, thyroid function, plasma levels of lipid parameters, homocystine, C-reactive protein, fibrinogen, von Willebrandt factor activity (vWF), nitric oxide, as well as flow-mediated vasodilatation (FMD) and nitroglycerin-mediated vasodilatation of the brachial artery during iatrogenic hypothyroidism (TSH 89.82+/-29.36 mU/L) and again in the same patients during subclinical hyperthyroidism secondary to exogenous levothyroxine administration (TSH 0.24+/-0.11 mU/L). In hypothyroidism, FMD was markedly lower than in subclinical hyperthyroidism (6.79+/-4.44 vs. 14.37+/-8.33%, p<0.005). Total cholesterol (7.34+/-1.23 vs. 4.75+/-1.14 mmol/L, p<0.001), LDL-cholesterol (4.55+/-1.10 vs. 2.70+/-0.89 mmol/L, p<0.005) and homocystine (12.95+/-4.49 vs. 9.62+/-2.29 micromol/L, p<0.005) were significantly higher in hypothyroidism. There was no difference in nitroglycerin-mediated vasodilatation, blood pressure, serum triglyceride and HDL-cholesterol levels according to thyroid function. Fibrinogen (3.23+/-0.50 vs. 4.01+/-0.84 g/L, p<0.005), vWF (90.09+/-25.92 vs.130.63+/-29.97%, p<0.001), C-reactive protein (4.39+/-5.16 vs. 5.55+/-5.15 mg/L, p<0.001) and plasma nitric oxide (24.56+/-6.71 vs. 32.34+/-7.0 micromol/L, <0.005) values were significantly lower in hypothyroidism. FMD correlated in a positive manner with fibrinogen, vWF and nitrogen oxide. Chronic subclinical hyperthyroidism was associated with improved endothelial function and lipid profile, while haemostatic and inflammatory parameters were impaired. The two opposite mechanisms may well compensate for each other at the level of the vessel wall. (c) J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart, New York.

  12. Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits.

    PubMed Central

    Keaney, J F; Gaziano, J M; Xu, A; Frei, B; Curran-Celentano, J; Shwaery, G T; Loscalzo, J; Vita, J A

    1993-01-01

    Recent evidence suggests that dietary therapy with lipid-soluble antioxidants may be beneficial for patients with atherosclerotic vascular disease but the potential mechanism(s) for these observations remain obscure. Abnormalities in endothelium-dependent control of vascular tone develop early in the course of atherosclerosis and may result from oxidative modification of low density lipoproteins. We examined the role of dietary antioxidants in preserving normal endothelial cell vasodilator function in cholesterol-fed rabbits with particular attention to possible effects on serum lipoproteins, low density lipoprotein oxidation, and atherogenesis. Male New Zealand White rabbits were fed diets containing no additive (controls), 1% cholesterol (cholesterol group), or 1% cholesterol chow supplemented with either beta-carotene (0.6 g/kg of chow) or alpha-tocopherol (1000 international units/kg of chow) for a 28-day period. After dietary therapy, thoracic aortae were harvested for assay of vascular function and for pathologic examination and tissue antioxidant levels. Compared to controls, acetylcholine- and A23187-mediated endothelium-dependent relaxations were significantly impaired in vessels from the cholesterol group (P < 0.001), whereas vessels from animals treated with beta-carotene or alpha-tocopherol demonstrated normal endothelium-dependent arterial relaxation. Preservation of endothelial function was associated with vascular incorporation of alpha-tocopherol and beta-carotene but was unrelated to plasma lipoprotein levels, smooth muscle cell function, or the extent of atherosclerosis. Increased low density lipoprotein resistance to ex vivo copper-mediated oxidation was observed only in the alpha-tocopherol group. Our results suggest that dietary antioxidants may benefit patients with atherosclerosis by preserving endothelial vasodilator function through a mechanism related to vascular tissue antioxidant content and not reflected by assay of low density lipoprotein resistance to ex vivo oxidation. PMID:8265642

  13. Adult males with haemophilia have a different macrovascular and microvascular endothelial function profile compared with healthy controls.

    PubMed

    Sun, H; Yang, M; Fung, M; Chan, S; Jawi, M; Anderson, T; Poon, M-C; Jackson, S

    2017-09-01

    Endothelial function has been identified as an independent predictor of cardiovascular risk in the general population. It is unclear if the haemophilia population has a different endothelial function profile compared to the healthy population. This prospective study aims to assess if there is a difference in endothelial function between haemophilia patients and healthy controls, and the impact of endothelial function on vascular outcomes in the haemophilia population. Baseline cardiovascular risk factors and endothelial function were presented. Adult males with haemophilia A or B recruited from the British Columbia and Southern Alberta haemophilia treatment centres were matched to healthy male controls by age and cardiovascular risk factors. Macrovascular endothelial function was assessed by brachial artery flow-mediated dilation (FMD) and nitroglycerin-mediated dilation (NMD), and microvascular endothelial function was assessed by hyperaemic velocity time integral (VTI). Multivariable linear regression was used to assess the association between haemophilia and endothelial function. A total of 81 patients with haemophilia and 243 controls were included. Patients with haemophilia had a similar FMD and NMD compared to controls, although haemophilia was associated with higher FMD on multivariable analysis. Haemophilia was associated with significantly lower VTI on univariate and multivariable analyses, regardless of haemophilia type and severity. Adult males with haemophilia appear to have lower microvascular endothelial function compared to healthy controls. Future studies to assess the impact of endothelial dysfunction on cardiovascular events in the haemophilia population are needed. © 2017 John Wiley & Sons Ltd.

  14. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing

    PubMed Central

    Strauss, Juliette A.; Shepherd, Sam O.; Keske, Michelle A.; Cocks, Matthew

    2015-01-01

    Abstract This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF‐A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age‐related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF‐B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. PMID:25627798

  15. Treatment with salvianolic acid B restores endothelial function in angiotensin II-induced hypertensive mice.

    PubMed

    Ling, Wei Chih; Liu, Jian; Lau, Chi Wai; Murugan, Dharmani Devi; Mustafa, Mohd Rais; Huang, Yu

    2017-07-15

    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT 1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT 1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT 1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Sex differences in the combined effect of chronic stress with impaired vascular endothelium functioning and the development of early atherosclerosis: The Cardiovascular Risk in Young Finns study

    PubMed Central

    2010-01-01

    Background The syndrome of vital exhaustion (VE), characterized by fatigue and irritability, may contribute to an increased risk of atherosclerosis. The aim of the study was to explore sex differences in the interactions of VE with endothelial dysfunction and VE with reduced carotid elasticity, the important contributors to the development of early atherosclerosis, on preclinical atherosclerosis. Methods The participants were 1002 women and 719 men aged 24-39 examined in the Cardiovascular Risk in Young Finns study. Vital exhaustion was measured using the Maastricht Questionnaire. Preclinical atherosclerosis was assessed by carotid intima-media thickness (IMT), endothelial function was measured by brachial flow-mediated dilatation (FMD), and arterial elasticity by carotid artery compliance (CAC) using ultrasound techniques. Results We found a significant CAC x VE interaction for IMT only for the men. Our results imply that high VE level significantly related to high IMT levels among the men with low CAC, but not among the women with low CAC or among the women or men with high CAC. No significant FMD x VE interactions for IMT for the women or men were found. Conclusions High VE may exert an effect on IMT for men with impaired arterial elasticity. The results suggest that high vitally exhausted men with reduced arterial elasticity are at increased risk of atherosclerosis in early life and imply men's decreased stress coping in relation to stressful psychological coronary risk factors. PMID:20624297

  17. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    PubMed

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms, which may play an important role in DR4-mediated redox signaling in CAECs and consequently endothelial dysfunction.

  18. Alzheimer's disease-like impaired cognition in endothelial-specific megalin-null mice.

    PubMed

    Dietrich, Marcelo; Antequera, Desiree; Pascual, Consuelo; Castro, Nerea; Bolos, Marta; Carro, Eva

    2014-01-01

    Megalin has been suggested to be involved in Alzheimer's disease (AD), mediating blood-brain barrier (BBB) transport of multiple ligands, including amyloid-β peptide (Aβ), but also neuroprotective factors. Because no transgenic model is currently available to study this concept, we have obtained transgenic mice blocking megalin expression at the BBB. These endothelial megalin deficient (EMD) mice developed increased anxiety behavior and impaired learning ability and recognition memory, similar to symptoms described in AD. Degenerating neurons were also observed in the cerebral cortex of EMD mice. In view of our findings we suggest that, in mice, megalin deficiency at the BBB leads to neurodegeneration.

  19. Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo.

    PubMed

    Schnoor, Michael; Lai, Frank P L; Zarbock, Alexander; Kläver, Ruth; Polaschegg, Christian; Schulte, Dörte; Weich, Herbert A; Oelkers, J Margit; Rottner, Klemens; Vestweber, Dietmar

    2011-08-01

    Neutrophil extravasation and the regulation of vascular permeability require dynamic actin rearrangements in the endothelium. In this study, we analyzed in vivo whether these processes require the function of the actin nucleation-promoting factor cortactin. Basal vascular permeability for high molecular weight substances was enhanced in cortactin-deficient mice. Despite this leakiness, neutrophil extravasation in the tumor necrosis factor-stimulated cremaster was inhibited by the loss of cortactin. The permeability defect was caused by reduced levels of activated Rap1 (Ras-related protein 1) in endothelial cells and could be rescued by activating Rap1 via the guanosine triphosphatase (GTPase) exchange factor EPAC (exchange protein directly activated by cAMP). The defect in neutrophil extravasation was caused by enhanced rolling velocity and reduced adhesion in postcapillary venules. Impaired rolling interactions were linked to contributions of β(2)-integrin ligands, and firm adhesion was compromised by reduced ICAM-1 (intercellular adhesion molecule 1) clustering around neutrophils. A signaling process known to be critical for the formation of ICAM-1-enriched contact areas and for transendothelial migration, the ICAM-1-mediated activation of the GTPase RhoG was blocked in cortactin-deficient endothelial cells. Our results represent the first physiological evidence that cortactin is crucial for orchestrating the molecular events leading to proper endothelial barrier function and leukocyte recruitment in vivo.

  20. High-fructose corn syrup causes vascular dysfunction associated with metabolic disturbance in rats: protective effect of resveratrol.

    PubMed

    Akar, Fatma; Uludağ, Orhan; Aydın, Ali; Aytekin, Yasin Atacan; Elbeg, Sehri; Tuzcu, Mehmet; Sahin, Kazim

    2012-06-01

    High-fructose corn syrup (HFCS) is used in many prepared foods and soft drinks. However, limited data is available on the consequences of HFCS consumption on metabolic and cardiovascular functions. This study was, therefore, designed to assess whether HFCS drinking influences the endothelial and vascular function in association with metabolic disturbances in rats. Additionally, resveratrol was tested at challenge with HFCS. We investigated the effects of HFCS (10% and 20%) and resveratrol (50mg/l) beverages on several metabolic parameters as well as endothelial relaxation, vascular contractions, expressions of endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), gp91(phox) and p22(phox) proteins and superoxide generation in the aortas. Consumption of HFCS (20%) increased serum triglyceride, VLDL and insulin levels as well as blood pressure. Impaired relaxation to acetylcholine and intensified contractions to phenylephrine and angiotensin II were associated with decreased eNOS and SIRT1 whereas increased gp91(phox) and p22(phox) proteins, along with provoked superoxide production in the aortas from HFCS-treated rats. Resveratrol supplementation efficiently restored HFCS-induced deteriorations. Thus, intake of HFCS leads to vascular dysfunction by decreasing vasoprotective factors and provoking oxidative stress in association with metabolic disturbances. Resveratrol has a protective potential against the harmful consequences of HFCS consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Antioxidant pretreatment and reduced arterial endothelial dysfunction after diving.

    PubMed

    Obad, Ante; Valic, Zoran; Palada, Ivan; Brubakk, Alf O; Modun, Darko; Dujić, Zeljko

    2007-12-01

    We have recently shown that a single air dive leads to acute arterial vasodilation and impairment of endothelium-dependent vasodilatation in humans. Additionally we have found that predive antioxidants at the upper recommended daily allowance partially prevented some of the negative effects of the dive. In this study we prospectively evaluated the effect of long-term antioxidants at a lower RDA dose on arterial endothelial function. Eight professional male divers performed an open sea air dive to 30 msw. Brachial artery flow-mediated dilation (FMD) was assessed before and after diving. The first dive, without antioxidants, caused significant brachial arterial diameter increase from 3.85 +/- 0.55 to 4.04 +/- 0.5 mm and a significant reduction of FMD from 7.6 +/- 2.7 to 2.8 +/- 2.1%. The second dive, with antioxidants, showed unchanged arterial diameter and significant reduction of FMD from 8.11 +/- 2.4 to 6.8 +/- 1.4%. The FMD reduction was significantly less with antioxidants. Vascular smooth muscle function, assessed by nitroglycerine (endothelium-independent dilation), was unaffected by diving. This study shows that long-term antioxidant treatment at a lower RDA dose ending 3-4 h before a dive reduces the endothelial dysfunction in divers. Since the scuba dive was of a similar depth and duration to those practiced by numerous recreational divers, this study raises the possibility of routine predive supplementation with antioxidants.

  2. Coculture with endothelial cells enhances osteogenic differentiation of periodontal ligament stem cells via cyclooxygenase-2/prostaglandin E2/vascular endothelial growth factor signaling under hypoxia.

    PubMed

    Zhao, Lixing; Wu, Yeke; Tan, Lijun; Xu, Zhenrui; Wang, Jun; Zhao, Zhihe; Li, Xiaoyu; Li, Yu; Yang, Pu; Tang, Tian

    2013-12-01

    During periodontitis and orthodontic tooth movement, periodontal vasculature is severely impaired, leading to a hypoxic microenvironment of periodontal cells. However, the impact of hypoxia on periodontal cells is poorly defined. The present study investigates responses of cocultured endothelial cells (ECs) and periodontal ligament stem cells (PDLSCs) to hypoxia. Osteogenic differentiation, molecular characterization, and various behaviors of PDLSCs and human umbilical venous ECs under hypoxia were assessed by quantitative real-time reverse-transcription polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay. Moreover, the effect of ECs on PDLSC osteogenic differentiation was tested using NS398 (cyclooxygenase 2 blocker), SU5416 (vascular endothelial growth factor [VEGF] receptor inhibitor), AH6809, L-798106, and L-161982 (EP1/2/3/4 antagonists). First, hypoxia promoted osteogenic differentiation in PDLSCs and enhanced EC migration, whereas PD98059 (extracellular signal-regulated protein kinase [ERK] inhibitor) blocked, and cocultured ECs further enhanced, hypoxia-induced osteogenic differentiation. Second, NS398 impaired EC migration and prostaglandin E2 (PGE2)/VEGF release, whereas cocultured PDLSCs and exogenous PGE2 partially reversed it. Third, NS398 (pretreated ECs) decreased PGE2/VEGF concentrations. NS398-treated ECs and AH6809/SU5416-treated PDLSCs impaired cocultured EC-induced enhancement of PDLSC osteogenic differentiation. Hypoxia enhances ERK-mediated osteogenic differentiation in PDLSCs. Coculture with EC further augments PDLSC osteogenic differentiation via cyclooxygenase-2/PGE2/VEGF signaling.

  3. The Prothrombotic Tendency in Metabolic Syndrome: Focus on the Potential Mechanisms Involved in Impaired Haemostasis and Fibrinolytic Balance

    PubMed Central

    Russo, Isabella

    2012-01-01

    The metabolic syndrome is a clinical disorder characterized by impairment of glucose metabolism, increased arterial blood pressure, and abdominal obesity. The presence of these clinical features exposes patients to a high risk of atherothrombotic cardiovascular events. The pathogenesis of atherothrombosis in the metabolic syndrome is multifactorial, requiring a close relationship among the main components of the metabolic syndrome, including insulin resistance, alterations of glycaemic and lipid pattern, haemodynamic impairment, and early appearance of endothelial dysfunction. Furthermore, haemostatic alterations involving coagulation balance, fibrinolysis, and platelet function play a relevant role both in the progression of the arterial wall damage and in acute vascular events. The mechanisms linking abdominal obesity with prothrombotic changes in the metabolic syndrome have been identified and partially elucidated on the basis of alterations of each haemostatic variable and defined through the evidence of peculiar dysfunctions in the endocrine activity of adipose tissue responsible of vascular impairment, prothrombotic tendency, and low-grade chronic inflammation. This paper will focus on the direct role of adipose tissue on prothrombotic tendency in patients affected by metabolic syndrome, with adipocytes being able to produce and/or release cytokines and adipokines which deeply influence haemostatic/fibrinolytic balance, platelet function, and proinflammatory state. PMID:24278711

  4. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish

    PubMed Central

    Kanada, Masamitsu; Zhang, Jinyan; Yan, Libo; Sakurai, Takashi

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility. Paradoxically, the anti-angiogenic treatment showed the promotion, rather than the inhibition, of the endothelial covering-type extravasation of cancer cells, with structural changes in the endothelial walls. These findings may be a set of clues to the full understanding of the metastatic process as well as the metastatic acceleration by anti-angiogenic reagents observed in preclinical studies. PMID:25551022

  5. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish.

    PubMed

    Kanada, Masamitsu; Zhang, Jinyan; Yan, Libo; Sakurai, Takashi; Terakawa, Susumu

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility. Paradoxically, the anti-angiogenic treatment showed the promotion, rather than the inhibition, of the endothelial covering-type extravasation of cancer cells, with structural changes in the endothelial walls. These findings may be a set of clues to the full understanding of the metastatic process as well as the metastatic acceleration by anti-angiogenic reagents observed in preclinical studies.

  6. Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors.

    PubMed

    Joseph, Elizabeth K; Green, Paul G; Bogen, Oliver; Alvarez, Pedro; Levine, Jon D

    2013-02-13

    Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.

  7. Better microvascular function on long-term treatment with lisinopril than with nifedipine in renal transplant recipients.

    PubMed

    Asberg, A; Midtvedt, K; Vassbotn, T; Hartmann, A

    2001-07-01

    The prevalence of hypertension in renal transplant recipients is high but the pathophysiology is poorly defined. Impaired endothelial function may be a factor of major importance. The present study addresses the effects of long-term treatment with either lisinopril or slow-release nifedipine on microvascular function and plasma endothelin in renal transplant recipients on cyclosporin A (CsA). Seventy-five hypertensive renal transplant recipients were double-blind randomized to receive slow-release nifedipine (NIF, n=40) or lisinopril (LIS, n=35). Ten normotensive, age-matched recipients served as controls. All patients received CsA-based immunosuppressive therapy including prednisolone and azathioprine. Microvascular function was assessed in the forearm skin vasculature, using laser Doppler flowmetry in combination with post-occlusive reactive hyperaemia and endothelial-dependent function during local acetylcholine (ACh) stimulation. The analysis of microvascular function (AUC(rh)) showed that nifedipine-treated patients had significantly lower responses compared with lisinopril-treated patients (20+/-17 and 43+/-20 AU x min respectively, P=0.0016). Endothelial function was borderline significantly lower in the NIF group compared with the LIS group (640+/-345 and 817+/-404 AU x min respectively, P=0.056). The responses in the LIS group were comparable with those in non-hypertensive controls (AUC(rh) was 37+/-16 and AUC(ACh) was 994+/-566 AU x min). Plasma endothelin-1 concentrations were significantly higher in the NIF group compared with the LIS group (0.44+/-0.19 vs. 0.34+/-0.10 fmol/ml respectively, P=0.048), and were 0.29+/-0.09 fmol/ml in the control patients. AUC(ACh) was associated with plasma endothelin-1 (P=0.0053), while AUC(rh) was not (P=0.080). The study indicates that long-term treatment with lisinopril, when compared with nifedipine, yields a more beneficial effect on microvascular function in hypertensive renal transplant recipients on CsA. The beneficial microvascular effect may be mediated in part by an endothelin-1-associated effect on the endothelium.

  8. The relationship between insulin resistance and endothelial dysfunction in obese adolescents.

    PubMed

    Brar, Preneet Cheema; Patel, Payal; Katz, Stuart

    2017-05-24

    Insulin resistance and endothelial dysfunction share a reciprocal relationship that links the metabolic and cardiovascular sequelae of obesity. We characterized the brachial artery reactivity testing (BART) and carotid artery-intima media thickness (CIMT) in adolescents categorized as obese insulin resistant (OIR) and obese not insulin resistant (ONIR). Lipoprotein particle (p) analysis and inflammatory cytokines in OIR and ONIR groups were also analyzed. Obese adolescents (n=40; mean body mass index [BMI] 35.6) were categorized as ONIR and OIR based on their homeostatic model assessment of insulin resistance (HOMA-IR) calculation (≤or> than 3.4). Ultrasound measured conduit arterial function BART, microvascular function (post-ischemic hyperemia) and conduit artery structure CIMT. BART did not differ according to IR status (mean±SD: 7.0±4.3% vs. 5.9±3.4% in ONIR and OIR, respectively, p=0.3, but post-ischemic hyperemia was significantly greater in the ONIR group (4.5±2.2 vs. 3.5±3, p=0.04). Atherogenic lipoprotein particles; large VLDL particles and small LDL particles were higher in the OIR compared to ONIR group. OIR adolescents demonstrate an inflamed atherogenic milieu compared to the ONIR adolescents. Microvascular function, but not conduit vessel structure or function, was impaired in association with IR.

  9. Complement inhibition prevents gut ischemia and endothelial cell dysfunction after hemorrhage/resuscitation.

    PubMed

    Fruchterman, T M; Spain, D A; Wilson, M A; Harris, P D; Garrison, R N

    1998-10-01

    Complement, a nonspecific immune response, is activated during hemorrhage/resuscitation (HEM/RES) and is involved in cellular damage. We hypothesized that activated complement injures endothelial cells (ETCs) and is responsible for intestinal microvascular hypoperfusion after HEM/RES. Four groups of rats were studied by in vivo videomicroscopy of the intestine: SHAM, HEM/RES, HEM/RES + sCR1 (complement inhibitor, 15 mg/kg intravenously given before resuscitation), and SHAM + sCR1. Hemorrhage was to 50% of mean arterial pressure for 60 minutes followed by resuscitation with shed blood plus an equal volume of saline. ETC function was assessed by response to acetylcholine. Resuscitation restored central hemodynamics to baseline after hemorrhage. After resuscitation, inflow A1 and premucosal A3 arterioles progressively constricted (-24% and -29% change from baseline, respectively), mucosal blood flow was reduced, and ETC function was impaired. Complement inhibition prevented postresuscitation vasoconstriction and gut ischemia. This protective effect appeared to involve preservation of ETC function in the A3 vessels (SHAM 76% of maximal dilation, HEM/RES 61%, HEM/RES + sCR1 74%, P < .05). Complement inhibition preserved ETC function after HEM/RES and maintained gut perfusion. Inhibition of complement activation before resuscitation may be a useful adjunct in patients experiencing major hemorrhage and might prevent the sequelae of gut ischemia.

  10. The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease.

    PubMed

    Hohman, Timothy J; Bell, Susan P; Jefferson, Angela L

    2015-05-01

    A subset of older adults present post mortem with Alzheimer disease (AD) pathologic features but without any significant clinical manifestation of dementia. Vascular endothelial growth factor (VEGF) has been implicated in staving off AD-related neurodegeneration. To evaluate whether VEGF levels are associated with brain aging outcomes (hippocampal volume and cognition) and to further evaluate whether VEGF modifies relations between AD biomarkers and brain aging outcomes. Biomarker analysis using neuroimaging and neuropsychological outcomes from the Alzheimer's Disease Neuroimaging Initiative. This prospective longitudinal study across North America included individuals with normal cognition (n = 90), mild cognitive impairment (n = 130), and AD (n = 59) and began in October 2004, with follow-up ongoing. Cerebrospinal fluid VEGF was cross-sectionally related to brain aging outcomes (hippocampal volume, episodic memory, and executive function) using a general linear model and longitudinally using mixed-effects regression. Alzheimer disease biomarker (cerebrospinal fluid β-amyloid 42 and total tau)-by-VEGF interactions evaluated the effect of VEGF on brain aging outcomes in the presence of enhanced AD biomarkers. Vascular endothelial growth factor was associated with baseline hippocampal volume (t277 = 2.62; P = .009), longitudinal hippocampal atrophy (t858 = 2.48; P = .01), and longitudinal decline in memory (t1629 = 4.09; P < .001) and executive function (t1616 = 3.00; P = .003). Vascular endothelial growth factor interacted with tau in predicting longitudinal hippocampal atrophy (t845 = 4.17; P < .001), memory decline (t1610 = 2.49; P = .01), and executive function decline (t1597 = 3.71; P < .001). Vascular endothelial growth factor interacted with β-amyloid 42 in predicting longitudinal memory decline (t1618 = -2.53; P = .01). Elevated cerebrospinal fluid VEGF was associated with more optimal brain aging in vivo. The neuroprotective effect appeared strongest in the presence of enhanced AD biomarkers, suggesting that VEGF may be particularly beneficial in individuals showing early hallmarks of the AD cascade. Future work should evaluate the interaction between VEGF expression in vitro and pathologic burden to address potential mechanisms.

  11. Fatty acids rather than hormones restore in vitro angiogenesis in human male and female endothelial cells cultured in charcoal-stripped serum

    PubMed Central

    Vanetti, Claudia; Bifari, Francesco; Vicentini, Lucia M.

    2017-01-01

    Charcoal-stripped serum (CSS) is a well-accepted method to model effects of sex hormones in cell cultures. We have recently shown that human endothelial cells (ECs) fail to growth and to undergo in vitro angiogenesis when cultured in CSS. However, the mechanism(s) underlying the CSS-induced impairment of in vitro EC properties are still unknown. In addition, whether there is any sexual dimorphism in the CSS-induced EC phenotype remains to be determined. Here, by independently studying human male and female ECs, we found that CSS inhibited both male and female EC growth and in vitro angiogenesis, with a more pronounced effect on male EC sprouting. Reconstitution of CSS with 17-β estradiol, dihydrotestosterone, or the lipophilic thyroid hormone did not restore EC functions in both sexes. On the contrary, supplementation with palmitic acid or the acetyl-CoA precursor acetate significantly rescued the CSS-induced inhibition of growth and sprouting in both male and female ECs. We can conclude that the loss of metabolic precursors (e.g., fatty acids) rather than of hormones is involved in the impairment of in vitro proliferative and angiogenic properties of male and female ECs cultured with CSS. PMID:29232396

  12. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging

    PubMed Central

    Toth, Peter; Tarantini, Stefano; Csiszar, Anna

    2017-01-01

    Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer’s disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined. PMID:27793855

  13. Cognitive Changes in Chronic Kidney Disease and After Transplantation.

    PubMed

    Van Sandwijk, Marit S; Ten Berge, Ineke J M; Majoie, Charles B L M; Caan, Matthan W A; De Sonneville, Leo M J; Van Gool, Willem A; Bemelman, Frederike J

    2016-04-01

    Cognitive impairment is very common in chronic kidney disease (CKD) and is strongly associated with increased mortality. This review article will discuss the pathophysiology of cognitive impairment in CKD, as well as the effect of dialysis and transplantation on cognitive function. In CKD, uremic toxins, hyperparathyroidism and Klotho deficiency lead to chronic inflammation, endothelial dysfunction and vascular calcifications. This results in an increased burden of cerebrovascular disease in CKD patients, who consistently have more white matter hyperintensities, microbleeds, microinfarctions and cerebral atrophy on magnetic resonance imaging scans. Hemodialysis, although beneficial in terms of uremic toxin clearance, also contributes to cognitive decline by causing rapid fluid and osmotic shifts. Decreasing the dialysate temperature and increasing total dialysis time limits these shifts and helps maintain cognitive function in hemodialysis patients. For many patients, kidney transplantation is the preferred treatment modality, because it reverses the underlying mechanisms causing cognitive impairment in CKD. These positive effects have to be balanced against the possible neurotoxicity of infections and immunosuppressive medications, especially glucocorticosteroids and calcineurin inhibitors. A limited number of studies have addressed the overall effect of transplantation on cognitive function. These have mostly found an improvement after transplantation, but have a limited applicability to daily practice because they have only included relatively young patients.

  14. Obesity suppresses circulating level and function of endothelial progenitor cells and heart function

    PubMed Central

    2012-01-01

    Background and aim This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs) and left ventricular ejection fraction (LVEF). Methods High fat diet (45 Kcal% fat) was given to 8-week-old C57BL/6 J mice (n = 8) for 20 weeks to induce obesity (group 1). Another age-matched group (n = 8) were fed with control diet for 20 weeks as controls (group 2). The animals were sacrificed at the end of 20 weeks after obesity induction. Results By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all p<0.01). The circulating level of EPCs (C-kit/CD31, Sca-1/KDR, CXCR4/CD34) was significantly lower in group 1 than in group 2 (p<0.03) at 18 h after critical limb ischemia induction. The angiogenesis and migratory ability of bone marrow-derived EPCs was remarkably impaired in group 1 compared to that in group 2 (all p<0.01). The repair ability of aortic endothelium damage by lipopolysaccharide was notably attenuated in group 1 compared with that in group 2 (p<0.01). Collagen deposition (Sirius red staining) and fibrotic area (Masson's Trichrome staining) in LV myocardium were notably increased in group 1 compared with group 2 (p<0.001). LVEF was notably lower, whereas LV end-diastolic and end-systolic dimensions were remarkably higher in group 1 than in group 2 (all p<0.001). Conclusions Obesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling. PMID:22747715

  15. Oxidative stress and vascular inflammation in aging.

    PubMed

    El Assar, Mariam; Angulo, Javier; Rodríguez-Mañas, Leocadio

    2013-12-01

    Vascular aging, a determinant factor for cardiovascular disease and health status in the elderly, is now viewed as a modifiable risk factor. Impaired endothelial vasodilation is a early hallmark of arterial aging that precedes the clinical manifestations of vascular dysfunction, the first step to cardiovascular disease and influencing vascular outcomes in the elderly. Accordingly, the preservation of endothelial function is thought to be an essential determinant of healthy aging. With special attention on the effects of aging on the endothelial function, this review is focused on the two main mechanisms of aging-related endothelial dysfunction: oxidative stress and inflammation. Aging vasculature generates an excess of the reactive oxygen species (ROS), superoxide and hydrogen peroxide, that compromise the vasodilatory activity of nitric oxide (NO) and facilitate the formation of the deleterious radical, peroxynitrite. Main sources of ROS are mitochondrial respiratory chain and NADPH oxidases, although NOS uncoupling could also account for ROS generation. In addition, reduced antioxidant response mediated by erythroid-2-related factor-2 (Nrf2) and downregulation of mitochondrial manganese superoxide dismutase (SOD2) contributes to the establishment of chronic oxidative stress in aged vessels. This is accompanied by a chronic low-grade inflammatory phenotype that participates in defective endothelial vasodilation. The redox-sensitive transcription factor, nuclear factor-κB (NF-κB), is upregulated in vascular cells from old subjects and drives a proinflammatory shift that feedbacks oxidative stress. This chronic NF-κB activation is contributed by increased angiotensin-II signaling and downregulated sirtuins and precludes adequate cellular response to acute ROS generation. Interventions targeted to recover endogenous antioxidant capacity and cellular stress response rather than exogenous antioxidants could reverse oxidative stress-inflammation vicious cycle in vascular aging. Lifestyle attitudes such as caloric restriction and exercise training appear as effective ways to overcome defective antioxidant response and inflammation, favoring successful vascular aging and decreasing the risk for cardiovascular disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment.

    PubMed

    Versari, Silvia; Longinotti, Giulia; Barenghi, Livia; Maier, Jeanette Anne Marie; Bradamante, Silvia

    2013-11-01

    Exposure to microgravity generates alterations that are similar to those involved in age-related diseases, such as cardiovascular deconditioning, bone loss, muscle atrophy, and immune response impairment. Endothelial dysfunction is the common denominator. To shed light on the underlying mechanism, we participated in the Progress 40P mission with Spaceflight of Human Umbilical Vein Endothelial Cells (HUVECs): an Integrated Experiment (SPHINX), which consisted of 12 in-flight and 12 ground-based control modules and lasted 10 d. Postflight microarray analysis revealed 1023 significantly modulated genes, the majority of which are involved in cell adhesion, oxidative phosphorylation, stress responses, cell cycle, and apoptosis. Thioredoxin-interacting protein was the most up-regulated (33-fold), heat-shock proteins 70 and 90 the most down-regulated (5.6-fold). Ion channels (TPCN1, KCNG2, KCNJ14, KCNG1, KCNT1, TRPM1, CLCN4, CLCA2), mitochondrial oxidative phosphorylation, and focal adhesion were widely affected. Cytokine detection in the culture media indicated significant increased secretion of interleukin-1α and interleukin-1β. Nitric oxide was found not modulated. Our data suggest that in cultured HUVECs, microgravity affects the same molecular machinery responsible for sensing alterations of flow and generates a prooxidative environment that activates inflammatory responses, alters endothelial behavior, and promotes senescence.

  17. Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways.

    PubMed

    Fratantonio, D; Speciale, A; Ferrari, D; Cristani, M; Saija, A; Cimino, F

    2015-12-15

    Free fatty acids (FFA), commonly elevated in diabetes and obesity, have been shown to impair endothelial functions and cause oxidative stress, inflammation, and insulin resistance. Anthocyanins represent one of the most important and interesting classes of flavonoids and seem to play a role in preventing cardiovascular diseases. Herein, we investigated the in vitro protective effects of cyanidin-3-O-glucoside (C3G) on cell signaling pathways in human umbilical vein endothelial cells (HUVECs) exposed to palmitic acid (PA), the most prevalent saturated FFA in circulation. Our data reported a significant augmentation of free radicals and oxidative stress in HUVECs exposed to PA for 3h, while C3G pretreatment improved intracellular redox status altered by FFA. Moreover, C3G significantly inhibited NF-κB proinflammatory pathway and adhesion molecules induced by PA, and these effects were attributed to the activation of Nrf2/EpRE pathway. In fact, C3G induced Nrf2 nuclear localization and activation of cellular antioxidant and cytoprotective genes at baseline and after PA exposure in endothelial cells. Our data confirm the hypothesis that natural Nrf2 inducers, such as C3G, might be a potential therapeutic strategy to protect vascular system against various stressors preventing several pathological conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Elevated levels of endothelial cell-derived microparticles following short-term withdrawal of continuous positive airway pressure in patients with obstructive sleep apnea: data from a randomized controlled trial.

    PubMed

    Ayers, Lisa; Stoewhas, Anne-Christin; Ferry, Berne; Stradling, John; Kohler, Malcolm

    2013-01-01

    Obstructive sleep apnea has been associated with impaired endothelial function; however, the mechanisms underlying this association are not completely understood. Cell-derived microparticles may provide a link between obstructive sleep apnea and endothelial dysfunction. This randomized controlled trial aimed to examine the effect of a 2-week withdrawal of continuous positive airway pressure (CPAP) therapy on levels of circulating microparticles. Forty-one obstructive sleep apnea patients established on CPAP treatment were randomized to either CPAP withdrawal (subtherapeutic CPAP) or continuing therapeutic CPAP, for 2 weeks. Polysomnography was performed and circulating levels of microparticles were analyzed by flow cytometry at baseline and 2 weeks. CPAP withdrawal led to a recurrence of obstructive sleep apnea. Levels of CD62E+ endothelium-derived microparticles increased significantly in the CPAP withdrawal group compared to the continuing therapeutic CPAP group (median difference in change +32.4 per µl; 95% CI +7.3 to +64.1 per µl, p = 0.010). CPAP withdrawal was not associated with a statistically significant increase in granulocyte, leukocyte, and platelet-derived microparticles when compared with therapeutic CPAP. Short-term withdrawal of CPAP therapy leads to a significant increase in endothelium-derived microparticles, suggesting that microparticle formation may be causally linked to obstructive sleep apnea and may promote endothelial activation. Copyright © 2012 S. Karger AG, Basel.

  19. Pretreatment with β-Boswellic Acid Improves Blood Stasis Induced Endothelial Dysfunction: Role of eNOS Activation

    PubMed Central

    Wang, Mingming; Chen, Minchun; Ding, Yi; Zhu, Zhihui; Zhang, Yikai; Wei, Peifeng; Wang, Jingwen; Qiao, Yi; Li, Liang; Li, Yuwen; Wen, Aidong

    2015-01-01

    Vascular endothelial cells play an important role in modulating anti-thrombus and maintaining the natural function of vascular by secreting many active substances. β-boswellic acid (β-BA) is an active triterpenoid compound from the extract of boswellia serrate. In this study, it is demonstrated that β-BA ameliorates plasma coagulation parameters, protects endothelium from blood stasis induced injury and prevents blood stasis induced impairment of endothelium-dependent vasodilatation. Moreover, it is found that β-BA significantly increases nitric oxide (NO) and cyclic guanosine 3’, 5’-monophosphate (cGMP) levels in carotid aortas of blood stasis rats. To stimulate blood stasis-like conditions in vitro, human umbilical vein endothelial cells (HUVECs) were exposed to transient oxygen and glucose deprivation (OGD). Treatment of β-BA significantly increased intracellular NO level. Western blot and immunofluorescence as well as immunohistochemistry reveal that β-BA increases phosphorylation of enzyme nitric oxide synthase (eNOS) at Ser1177. In addition, β-BA mediated endothelium-dependent vasodilatation can be markedly blocked by eNOS inhibitor L-NAME in blood stasis rats. In OGD treated HUEVCs, the protective effect of β-BA is attenuated by knockdown of eNOS. In conclusion, the above findings provide convincing evidence for the protective effects of β-BA on blood stasis induced endothelial dysfunction by eNOS signaling pathway. PMID:26482008

  20. Loss of Female Sex Hormones Exacerbates Cerebrovascular and Cognitive Dysfunction in Aortic Banded Miniswine Through a Neuropeptide Y-Ca2+-Activated Potassium Channel-Nitric Oxide Mediated Mechanism.

    PubMed

    Olver, T Dylan; Hiemstra, Jessica A; Edwards, Jenna C; Schachtman, Todd R; Heesch, Cheryl M; Fadel, Paul J; Laughlin, M Harold; Emter, Craig A

    2017-10-31

    Postmenopausal women represent the largest cohort of patients with heart failure with preserved ejection fraction, and vascular dementia represents the most common form of dementia in patients with heart failure with preserved ejection fraction. Therefore, we tested the hypotheses that the combination of cardiac pressure overload (aortic banding [AB]) and the loss of female sex hormones (ovariectomy [OVX]) impairs cerebrovascular control and spatial memory. Female Yucatan miniswine were separated into 4 groups (n=7 per group): (1) control, (2) AB, (3) OVX, and (4) AB-OVX. Pigs underwent OVX and AB at 7 and 8 months of age, respectively. At 14 months, cerebral blood flow velocity and spatial memory (spatial hole-board task) were lower in the OVX groups ( P <0.05), with significant impairments in the AB-OVX group ( P <0.05). Resting carotid artery β stiffness and vascular resistance during central hypovolemia were increased in the AB-OVX group ( P <0.05), and blood flow recovery after central hypovolemia was reduced in both OVX groups ( P <0.05). Isolated pial artery (pressure myography) vasoconstriction to neuropeptide Y was greatest in the AB-OVX group ( P <0.05), and vasodilation to the Ca 2+ -activated potassium channel α-subunit agonist NS-1619 was impaired in both AB groups ( P <0.05). The ratio of phosphorylated endothelial nitric oxide synthase:total endothelial nitric oxide synthase was depressed and Ca 2+ -activated potassium channel α-subunit protein was increased in AB groups ( P <0.05). Mechanistically, impaired cerebral blood flow control in experimental heart failure may be the result of heightened neuropeptide Y-induced vasoconstriction along with reduced vasodilation associated with decreased Ca 2+ -activated potassium channel function and impaired nitric oxide signaling, the effects of which are exacerbated in the absence of female sex hormones. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Exercise training improves obesity-related lymphatic dysfunction.

    PubMed

    Hespe, Geoffrey E; Kataru, Raghu P; Savetsky, Ira L; García Nores, Gabriela D; Torrisi, Jeremy S; Nitti, Matthew D; Gardenier, Jason C; Zhou, Jie; Yu, Jessie Z; Jones, Lee W; Mehrara, Babak J

    2016-08-01

    Obesity results in perilymphatic inflammation and lymphatic dysfunction. Lymphatic dysfunction in obesity is characterized by decreased lymphatic vessel density, decreased collecting lymphatic vessel pumping frequency, decreased lymphatic trafficking of immune cells, increased lymphatic vessel leakiness and changes in the gene expression patterns of lymphatic endothelial cells. Aerobic exercise, independent of weight loss, decreases perilymphatic inflammatory cell accumulation, improves lymphatic function and reverses pathological changes in gene expression in lymphatic endothelial cells. Although previous studies have shown that obesity markedly decreases lymphatic function, the cellular mechanisms that regulate this response remain unknown. In addition, it is unclear whether the pathological effects of obesity on the lymphatic system are reversible with behavioural modifications. The purpose of this study, therefore, was to analyse lymphatic vascular changes in obese mice and to determine whether these pathological effects are reversible with aerobic exercise. We randomized obese mice to either aerobic exercise (treadmill running for 30 min per day, 5 days a week, for 6 weeks) or a sedentary group that was not exercised and analysed lymphatic function using a variety of outcomes. We found that sedentary obese mice had markedly decreased collecting lymphatic vessel pumping capacity, decreased lymphatic vessel density, decreased lymphatic migration of immune cells, increased lymphatic vessel leakiness and decreased expression of lymphatic specific markers compared with lean mice (all P < 0.01). Aerobic exercise did not cause weight loss but markedly improved lymphatic function compared with sedentary obese mice. Exercise had a significant anti-inflammatory effect, resulting in decreased perilymphatic accumulation of inflammatory cells and inducible nitric oxide synthase expression. In addition, exercise normalized isolated lymphatic endothelial cell gene expression of lymphatic specific genes, including VEGFR-3 and Prox1. Taken together, our findings suggest that obesity impairs lymphatic function via multiple mechanisms and that these pathological changes can be reversed, in part, with aerobic exercise, independent of weight loss. In addition, our study shows that obesity-induced lymphatic endothelial cell gene expression changes are reversible with behavioural modifications. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  2. Low dose prednisolone and insulin sensitivity differentially affect arterial stiffness and endothelial function: An open interventional and cross-sectional study.

    PubMed

    Petersons, Carolyn J; Mangelsdorf, Brenda L; Poljak, Anne; Smith, Malcolm D; Greenfield, Jerry R; Thompson, Campbell H; Burt, Morton G

    2017-03-01

    Glucocorticoids could impair vascular function directly, or indirectly by reducing insulin sensitivity. The aim of this study was to determine the direct and indirect effects of acute and chronic low dose prednisolone on arterial stiffness and endothelial function. Twelve subjects with inflammatory arthritis, who had not taken oral glucocorticoids for ≥6 months, and 12 subjects with inflammatory arthritis, taking chronic (>6 months) low dose (6.3 ± 2.2 mg/day) prednisolone, were studied. Patients not on glucocorticoids underwent measurement of arterial stiffness (pulse wave velocity (PWV)) and endothelial function (reactive hyperaemia index (RHI)) before and after 7-10 days of prednisolone (6 mg/day), to assess the acute effects of prednisolone. Baseline data from patients not on glucocorticoids were compared with patients on long-term prednisolone to assess the chronic effects of prednisolone. Hepatic insulin sensitivity was estimated from percentage suppression of endogenous glucose production and peripheral insulin sensitivity as glucose infusion rate (M/I) during a hyperinsulinaemic-euglycaemic clamp. There were no significant changes in PWV with acute (9.2 ± 0.8 vs. 8.9 ± 0.8 m/sec, p = 0.33) or chronic (8.9 ± 0.8 vs. 9.0 ± 0.7 m/sec, p = 0.69) prednisolone. In multiple regression analysis, PWV was negatively associated with M/I during hyperinsulinemic-euglycemic clamp (p = 0.02), but not with suppression of endogenous glucose production (p = 0.15) or glucocorticoid use (p = 0.70). Chronic (2.4 ± 0.2 vs. 1.9 ± 0.1, p = 0.02), but not acute (1.8 ± 0.2 vs. 1.9 ± 0.1, p = 0.24), prednisolone resulted in a higher RHI. Arterial stiffness is not affected by low dose prednisolone per se, but is negatively associated with peripheral insulin sensitivity. Patients with rheumatoid arthritis taking long-term prednisolone had better endothelial function. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.

    PubMed

    Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind

    2017-05-01

    Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P < 0.05) without overt airway destruction (P > 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P < 0.05), but these were either attenuated or reversed by exercise training (P < 0.05). Compared with controls, smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P < 0.05), but these were attenuated by exercise training (P < 0.05). Prolonged cigarette smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.

  4. Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity: Evidence From Mouse and Human Studies.

    PubMed

    Döring, Yvonne; Noels, Heidi; van der Vorst, Emiel P C; Neideck, Carlos; Egea, Virginia; Drechsler, Maik; Mandl, Manuela; Pawig, Lukas; Jansen, Yvonne; Schröder, Katrin; Bidzhekov, Kiril; Megens, Remco T A; Theelen, Wendy; Klinkhammer, Barbara M; Boor, Peter; Schurgers, Leon; van Gorp, Rick; Ries, Christian; Kusters, Pascal J H; van der Wal, Allard; Hackeng, Tilman M; Gäbel, Gabor; Brandes, Ralf P; Soehnlein, Oliver; Lutgens, Esther; Vestweber, Dietmar; Teupser, Daniel; Holdt, Lesca M; Rader, Daniel J; Saleheen, Danish; Weber, Christian

    2017-07-25

    The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the CXCR4 gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection. We examined the role of vascular CXCR4 in atherosclerosis and plaque composition by inducing an endothelial cell (BmxCreER T2 -driven)-specific or smooth muscle cell (SMC, SmmhcCreER T2 - or TaglnCre-driven)-specific deficiency of CXCR4 in an apolipoprotein E-deficient mouse model. To identify underlying mechanisms for effects of CXCR4, we studied endothelial permeability, intravital leukocyte adhesion, involvement of the Akt/WNT/β-catenin signaling pathway and relevant phosphatases in VE-cadherin expression and function, vascular tone in aortic rings, cholesterol efflux from macrophages, and expression of SMC phenotypic markers. Finally, we analyzed associations of common genetic variants at the CXCR4 locus with the risk for coronary heart disease, along with CXCR4 transcript expression in human atherosclerotic plaques. The cell-specific deletion of CXCR4 in arterial endothelial cells (n=12-15) or SMCs (n=13-24) markedly increased atherosclerotic lesion formation in hyperlipidemic mice. Endothelial barrier function was promoted by CXCL12/CXCR4, which triggered Akt/WNT/β-catenin signaling to drive VE-cadherin expression and stabilized junctional VE-cadherin complexes through associated phosphatases. Conversely, endothelial CXCR4 deficiency caused arterial leakage and inflammatory leukocyte recruitment during atherogenesis. In arterial SMCs, CXCR4 sustained normal vascular reactivity and contractile responses, whereas CXCR4 deficiency favored a synthetic phenotype, the occurrence of macrophage-like SMCs in the lesions, and impaired cholesterol efflux. Regression analyses in humans (n=259 796) identified the C-allele at rs2322864 within the CXCR4 locus to be associated with increased risk for coronary heart disease. In line, C/C risk genotype carriers showed reduced CXCR4 expression in carotid artery plaques (n=188), which was furthermore associated with symptomatic disease. Our data clearly establish that vascular CXCR4 limits atherosclerosis by maintaining arterial integrity, preserving endothelial barrier function, and a normal contractile SMC phenotype. Enhancing these beneficial functions of arterial CXCR4 by selective modulators might open novel therapeutic options in atherosclerosis. © 2017 American Heart Association, Inc.

  5. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    NASA Astrophysics Data System (ADS)

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V.; Noll, Thomas; Funk, Richard H. W.; Engelmann, Katrin; Werner, Carsten

    2015-08-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.

  6. Minor Type IV Collagen α5 Chain Promotes Cancer Progression through Discoidin Domain Receptor-1

    PubMed Central

    Xiao, Qian; Jiang, Yan; Liu, Qingbo; Yue, Jiao; Liu, Chunying; Zhao, Xiaotong; Qiao, Yuemei; Ji, Hongbin; Chen, Jianfeng; Ge, Gaoxiang

    2015-01-01

    Type IV collagens (Col IV), components of basement membrane, are essential in the maintenance of tissue integrity and proper function. Alteration of Col IV is related to developmental defects and diseases, including cancer. Col IV α chains form α1α1α2, α3α4α5 and α5α5α6 protomers that further form collagen networks. Despite knowledge on the functions of major Col IV (α1α1α2), little is known whether minor Col IV (α3α4α5 and α5α5α6) plays a role in cancer. It also remains to be elucidated whether major and minor Col IV are functionally redundant. We show that minor Col IV α5 chain is indispensable in cancer development by using α5(IV)-deficient mouse model. Ablation of α5(IV) significantly impeded the development of KrasG12D-driven lung cancer without affecting major Col IV expression. Epithelial α5(IV) supports cancer cell proliferation, while endothelial α5(IV) is essential for efficient tumor angiogenesis. α5(IV), but not α1(IV), ablation impaired expression of non-integrin collagen receptor discoidin domain receptor-1 (DDR1) and downstream ERK activation in lung cancer cells and endothelial cells. Knockdown of DDR1 in lung cancer cells and endothelial cells phenocopied the cells deficient of α5(IV). Constitutively active DDR1 or MEK1 rescued the defects of α5(IV)-ablated cells. Thus, minor Col IV α5(IV) chain supports lung cancer progression via DDR1-mediated cancer cell autonomous and non-autonomous mechanisms. Minor Col IV can not be functionally compensated by abundant major Col IV. PMID:25992553

  7. Characterisation of Hypertensive Patients with Improved Endothelial Function after Dark Chocolate Consumption

    PubMed Central

    d'El-Rei, Jenifer; Cunha, Ana Rosa; Burlá, Adriana; Burlá, Marcelo; Oigman, Wille

    2013-01-01

    Recent findings indicate an inverse relationship between cardiovascular disease and consumption of flavonoids. We aimed to identify clinical and vascular parameters of treated hypertensive who present beneficial effects of dark chocolate for one-week period on vascular function. Twenty-one hypertensive subjects, aged 40–65 years, were included in a prospective study with measurement of blood pressure (BP), brachial flow-mediated dilatation (FMD), peripheral arterial tonometry, and central hemodynamic parameters. These tests were repeated after seven days of eating dark chocolate 75 g/day. Patients were divided according to the response in FMD: responders (n = 12) and nonresponders (n = 9). The responder group presented lower age (54 ± 7 versus 61 ± 6 years, P = 0.037), Framingham risk score (FRS) (2.5 ± 1.8 versus 8.1 ± 5.1%, P = 0.017), values of peripheral (55 ± 9 versus 63 ± 5 mmHg, P = 0.041), and central pulse pressure (PP) (44 ± 10 versus 54 ± 6 mmHg, P = 0.021). FMD response showed negative correlation with FRS (r = −0.60, P = 0.014), baseline FMD (r = −0.54, P = 0.011), baseline reactive hyperemia index (RHI; r = −0.56, P = 0.008), and central PP (r = −0.43, P = 0.05). However, after linear regression analysis, only FRS and baseline RHI were associated with FMD response. In conclusion, one-week dark chocolate intake significantly improved endothelial function and reduced BP in younger hypertensive with impaired endothelial function in spite of lower cardiovascular risk. PMID:23533716

  8. Characterisation of hypertensive patients with improved endothelial function after dark chocolate consumption.

    PubMed

    d'El-Rei, Jenifer; Cunha, Ana Rosa; Burlá, Adriana; Burlá, Marcelo; Oigman, Wille; Neves, Mario Fritsch; Virdis, Agostino; Medeiros, Fernanda

    2013-01-01

    Recent findings indicate an inverse relationship between cardiovascular disease and consumption of flavonoids. We aimed to identify clinical and vascular parameters of treated hypertensive who present beneficial effects of dark chocolate for one-week period on vascular function. Twenty-one hypertensive subjects, aged 40-65 years, were included in a prospective study with measurement of blood pressure (BP), brachial flow-mediated dilatation (FMD), peripheral arterial tonometry, and central hemodynamic parameters. These tests were repeated after seven days of eating dark chocolate 75 g/day. Patients were divided according to the response in FMD: responders (n = 12) and nonresponders (n = 9). The responder group presented lower age (54 ± 7 versus 61 ± 6 years, P = 0.037), Framingham risk score (FRS) (2.5 ± 1.8 versus 8.1 ± 5.1%, P = 0.017), values of peripheral (55 ± 9 versus 63 ± 5 mmHg, P = 0.041), and central pulse pressure (PP) (44 ± 10 versus 54 ± 6 mmHg, P = 0.021). FMD response showed negative correlation with FRS (r = -0.60, P = 0.014), baseline FMD (r = -0.54, P = 0.011), baseline reactive hyperemia index (RHI; r = -0.56, P = 0.008), and central PP (r = -0.43, P = 0.05). However, after linear regression analysis, only FRS and baseline RHI were associated with FMD response. In conclusion, one-week dark chocolate intake significantly improved endothelial function and reduced BP in younger hypertensive with impaired endothelial function in spite of lower cardiovascular risk.

  9. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)-the effect of biomolecular ligands to balance cell adhesion and stimulated detachment.

    PubMed

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V; Noll, Thomas; Funk, Richard H W; Engelmann, Katrin; Werner, Carsten

    2015-08-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly( N -isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na + /K + -ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro . The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.

  10. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    PubMed Central

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V; Noll, Thomas; Funk, Richard H W; Engelmann, Katrin; Werner, Carsten

    2015-01-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty. PMID:27877823

  11. Thymosin β4 promotes endothelial progenitor cell angiogenesis via a vascular endothelial growth factor‑dependent mechanism.

    PubMed

    Zhao, Yanbo; Song, Jiale; Bi, Xukun; Gao, Jing; Shen, Zhida; Zhu, Junhui; Fu, Guosheng

    2018-06-20

    Endothelial progenitor cells (EPCs) are a promising cell source for tissue repair and regeneration, predominantly through angiogenesis promotion. Paracrine functions serve a pivotal role in EPC‑mediated angiogenesis, which may be impaired by various cardiovascular risk factors. Therefore, it is important to identify a solution that optimizes the paracrine function of EPCs. Thymosin β4 (Tβ4) is a peptide with the potential to promote tissue regeneration and wound healing. A previous study demonstrated that Tβ4 enhances the EPC‑mediated angiogenesis of the ischemic myocardium. In the present study, whether Tβ4 improved angiogenesis by enhancing the paracrine effects of EPCs was investigated. A tube formation assay was used to assess the effect of angiogenesis, and the paracrine effects were measured using an ELISA kit. The results indicated that Tβ4 improved the paracrine effects of EPCs, evidenced by an increase in the expression of vascular endothelial growth factor (VEGF). EPC‑conditioned medium (EPC‑CM) significantly promoted human umbilical vein endothelial cell angiogenesis in vitro, which was further enhanced by pretreatment with Tβ4. The effect of Tβ4 pretreated EPC‑CM on angiogenesis was abolished by VEGF neutralizing antibody in vitro, indicating that increased VEGF secretion had a pivotal role in Tβ4‑mediated EPC angiogenesis. Furthermore, transplantation of EPCs pretreated with Tβ4 into infarcted rat hearts resulted in significantly higher VEGF expression in the border zone, compared with EPC transplantation alone. To further investigate whether the Akt/eNOS pathway was involved in Tβ4‑induced VEGF secretion in EPCs, the expression levels of VEGF in EPC‑CM were significantly decreased following knockdown of Akt or eNOS by small interfering RNA transfection. In conclusion, Tβ4 significantly increased angiogenesis by enhancing the paracrine effects of EPCs, evidenced by the increased expression of VEGF. The RAC‑α serine/threonine‑protein kinase/endothelial nitric oxide synthase signal transduction pathway was involved in the regulation of Tβ4‑induced VEGF secretion in EPCs. Further studies are required to investigate the long‑term prognosis of patients with coronary heart disease following Tβ4‑pretreated EPC transplantation.

  12. Catechin treatment improves cerebrovascular flow-mediated dilation and learning abilities in atherosclerotic mice

    PubMed Central

    Drouin, Annick; Bolduc, Virginie; Thorin-Trescases, Nathalie; Bélanger, Élisabeth; Fernandes, Priscilla; Baraghis, Edward; Lesage, Frédéric; Gillis, Marc-Antoine; Villeneuve, Louis; Hamel, Edith; Ferland, Guylaine; Thorin, Eric

    2013-01-01

    Severe dyslipidemia and the associated oxidative stress could accelerate the age-related decline in cerebrovascular endothelial function and cerebral blood flow (CBF), leading to neuronal loss and impaired learning abilities. We hypothesized that a chronic treatment with the polyphenol catechin would prevent endothelial dysfunction, maintain CBF responses, and protect learning abilities in atherosclerotic (ATX) mice. We treated ATX (C57Bl/6-LDLR−/− hApoB+/+; 3 mo old) mice with catechin (30 mg·kg−1·day−1) for 3 mo, and C57Bl/6 [wild type (WT), 3 and 6 mo old] mice were used as controls. ACh- and flow-mediated dilations (FMD) were recorded in pressurized cerebral arteries. Basal CBF and increases in CBF induced by whisker stimulation were measured by optical coherence tomography and Doppler, respectively. Learning capacities were evaluated with the Morris water maze test. Compared with 6-mo-old WT mice, cerebral arteries from 6-mo-old ATX mice displayed a higher myogenic tone, lower responses to ACh and FMD, and were insensitive to NOS inhibition (P < 0.05), suggesting endothelial dysfunction. Basal and increases in CBF were lower in 6-mo-old ATX than WT mice (P < 0.05). A decline in the learning capabilities was also observed in ATX mice (P < 0.05). Catechin 1) reduced cerebral superoxide staining (P < 0.05) in ATX mice, 2) restored endothelial function by reducing myogenic tone, improving ACh- and FMD and restoring the sensitivity to nitric oxide synthase inhibition (P < 0.05), 3) increased the changes in CBF during stimulation but not basal CBF, and 4) prevented the decline in learning abilities (P < 0.05). In conclusion, catechin treatment of ATX mice prevents cerebrovascular dysfunctions and the associated decline in learning capacities. PMID:21186270

  13. Postprandial endothelial dysfunction: role of glucose, lipids and insulin.

    PubMed

    Nitenberg, A; Cosson, E; Pham, I

    2006-09-01

    Endothelium plays a key role in the regulation of vascular tone and development of atherosclerosis. Endothelial function is impaired early in patients with risk factors and endothelial dysfunction is a strong and independent predictor of cardiovascular events. Because in normal subjects blood concentrations of glucose, lipids and insulin are increased after each meals, and postprandial changes last a long time after the meals, these changes might be of importance in the process of atherosclerosis initiation and development. Experimental and human studies have shown that a transient increase of blood concentrations of glucose, triglycerides and fatty acids, and insulin are able to depress endothelium-dependent vasodilation in healthy subjects and that hyperglycemia, hypertriglyceridemia and hyperinsulinemia are generator of reactive oxygen species at the origin of a cascade of pathophysiological events resulting in the activation of nuclear factor-kappaB. Nuclear factor-kappaB is an ubiquitous transcription factor controlling the expression of numerous genes and is involved in immunity, inflammation, regulation of cell proliferation and growth and apoptosis. These mechanisms may be involved in the development of atherosclerosis in normal subjects when food intake is chronically modified towards glucids and lipids with cumulative effects both on depression of endothelium dependent dilation and oxidative stress.

  14. Apoptosis in capillary endothelial cells in ageing skeletal muscle

    PubMed Central

    Wang, Huijuan; Listrat, Anne; Meunier, Bruno; Gueugneau, Marine; Coudy-Gandilhon, Cécile; Combaret, Lydie; Taillandier, Daniel; Polge, Cécile; Attaix, Didier; Lethias, Claire; Lee, Kijoon; Goh, Kheng Lim; Béchet, Daniel

    2014-01-01

    The age-related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein-7 (Pax7) or laminin-2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age-related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre-associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7+ satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age-dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing. PMID:24245531

  15. Changes in meal composition and duration affect postprandial endothelial function in healthy humans.

    PubMed

    Thazhath, Sony S; Wu, Tongzhi; Bound, Michelle J; Checklin, Helen L; Jones, Karen L; Willoughby, Scott; Horowitz, Michael; Rayner, Christopher K

    2014-12-15

    Endothelial function, measured by flow-mediated dilatation (FMD), predicts cardiovascular events and is impaired postprandially. The objective of this study was to evaluate the effects of changes in composition or duration of ingestion of a meal, which slows gastric emptying and/or small intestinal nutrient exposure, on postprandial endothelial function. Twelve healthy subjects (6 male, 6 female; 33 ± 6 yr) were each studied on three occasions, in a randomized crossover design. After an overnight fast, subjects consumed a [(13)C]octanoic acid-labeled mashed potato meal ("meal 1"), or meal 1 mixed with 9 g guar ("meal 2") within 10 min, or meal 1 divided into 12 equal portions over 60 min ("meal 3"). Brachial artery FMD was measured every 30 min for 120 min. Blood glucose, serum insulin, and gastric emptying (breath test) were evaluated for 240 min. Data are means ± SE. Compared with meal 1, meal 2 was associated with slower gastric emptying (half-emptying time 285 ± 27 vs. 208 ± 15 min, P < 0.05), lower postprandial blood glucose and insulin (P < 0.001 for both), and a delayed, but more sustained, suppression of FMD (P < 0.001). After meal 3, both glycemic increment and reduction in FMD were less than after meal 2 (P < 0.05 for both). The decrement in FMD was directly related to the increment in blood glucose (r = 0.46, P = 0.02). We conclude that, in health, postprandial FMD is influenced by perturbation of gastric emptying and the duration of meal consumption, which also impact on glycemia. Copyright © 2014 the American Physiological Society.

  16. Impaired Expression of Uncoupling Protein 2 (UCP2) Causes Defective Post-ischemic Angiogenesis in Mice Deficient in AMP-activated Protein Kinase α Subunits

    PubMed Central

    Xu, Ming-Jiang; Song, Ping; Shirwany, Najeeb; Liang, Bin; Xing, Junjie; Viollet, Benoit; Wang, Xian; Zhu, Yi; Zou, Ming-Hui

    2011-01-01

    Objective The aim of the present study was to determine whether mitochondrial uncoupling protein (UCP)-2 is required for AMPK-dependent angiogenesis in ischemia in vivo. Methods and Results Angiogenesis was assayed by monitoring endothelial tube formation (a surrogate for angiogenesis) in human umbilical vein endothelial cells (HUVECs), isolated mouse aortic endothelial cells (MAECs), and pulmomary microvascular endothelial cells (PMECs), or in ischemic thigh adductor muscles from wild-type (WT) mice or mice deficient in either AMPKα1 or AMPKα2. AMPK inhibition with pharmacological inhibitor (compound C) or genetic means (transfection of AMPKα-specific siRNA) significantly lowered the tube formation in HUVECs. Consistently, compared with WT mice, tube formation in MAECs isolated from either AMPKα1−/− or AMPKα2−/− mice, which exhibited oxidative stress and reduced expression of UCP2, were significantly impaired. In addition, adenoviral overexpression of UCP2, but not adenoviruses encoding green florescence protein (GFP), normalized tube formation in MAECs from either AMPKα1−/− or AMPKα2−/− mice. Similarly, supplementation with sodium nitroprusside (SNP), a nitric oxide (NO) donor, restored tube formation. Furthermore, ischemia significantly increased angiogenesis, serine 1177 phosphorylation of endothelial NO synthase (eNOS), and UCP2 in ischemic thigh adductor muscles from WT mice, but not from either AMPKα1−/− or AMPKα2−/− mice. Conclusion We conclude that AMPK-dependent UCP2 expression in endothelial cells promotes angiogenesis in vivo. PMID:21597006

  17. Reduction of obesity, as induced by leptin, reverses endothelial dysfunction in obese (Lep(ob)) mice

    NASA Technical Reports Server (NTRS)

    Winters, B.; Mo, Z.; Brooks-Asplund, E.; Kim, S.; Shoukas, A.; Li, D.; Nyhan, D.; Berkowitz, D. E.

    2000-01-01

    Obesity is a major health care problem and is associated with significant cardiovascular morbidity. Leptin, a neuroendocrine hormone released by adipose tissue, is important in modulating obesity by signaling satiety and increasing metabolism. Moreover, leptin receptors are expressed on vascular endothelial cells (ECs) and mediate angiogenesis. We hypothesized that leptin may also play an important role in vasoregulation. We investigated vasoregulatory mechanisms in the leptin-deficient obese (ob/ob) mouse model and determined the influence of leptin replacement on endothelial-dependent vasorelaxant responses. The direct effect of leptin on EC nitric oxide (NO) production was also tested by using 4, 5-diaminofluorescein-2 diacetate staining and measurement of nitrate and nitrite concentrations. Vasoconstrictor responses to phenylephrine, norepinephrine, and U-46619 were markedly enhanced in aortic rings from ob/ob mice and were modulated by NO synthase inhibition. Vasorelaxant responses to ACh were markedly attenuated in mesenteric microvessels from ob/ob mice. Leptin replacement resulted in significant weight loss and reversal of the impaired endothelial-dependent vasorelaxant responses observed in ob/ob mice. Preincubation of ECs with leptin enhanced the release of NO production. Thus leptin-deficient ob/ob mice demonstrate marked abnormalities in vasoregulation, including impaired endothelial-dependent vasodilation, which is reversed by leptin replacement. These findings may be partially explained by the direct effect of leptin on endothelial NO production. These vascular abnormalities are similar to those observed in obese, diabetic, leptin-resistant humans. The ob/ob mouse may, therefore, be an excellent new model for the study of the cardiovascular effects of obesity.

  18. Moon Dust may Simulate Vascular Hazards of Urban Pollution

    NASA Astrophysics Data System (ADS)

    Rowe, W. J.

    A long duration mission to the moon presents several potential cardiovascular complications. To the risks of microgravity and hypokinesia, and the fact that pharmaceuticals cannot be always depended upon in the space fight conditions, there is a possible additional risk due to inhalation in the lunar module of ultra-fine dust (<100 nm). This may trigger endothelial dysfunction by mechanisms similar to those shown to precipitate endothelial insults complicating ultra-fine urban dust exposure. Vascular constriction and a significant increase in diastolic blood pressures have been found in subjects inhaling urban dust within just two hours, possibly triggered by oxidative stress, inflammatory effects, and calcium overload with a potential magnesium ion deficit playing an important contributing role. Both Irwin and Scott on Apollo 15, experienced arrhythmias, and in Irwin's case associated with syncope and severe dyspnea with angina during reentry. After the mission both had impairment in cardiac function, and delay in cardiovascular recovery, with Irwin in addition having stress test- induced extremely high blood pressures, with no available stress test results in Scott's case for comparison. It is conceivable that the chemical nature or particle size of the lunar dust is sufficiently variable to account for these complications, which were not described on the other Apollo missions. This could be determined by non-invasive endothelial-dependent flow-mediated dilatation studies in the lunar environment at various sites, thereby determining the site with the least endothelial vulnerability to dysfunction. These studies could be used also to demonstrate possible intensification of endothelial dysfunction from inhalation of ultra-fine moon dust in the lunar module.

  19. Comparison of skin microvascular reactivity with hemostatic markers of endothelial dysfunction and damage in type 2 diabetes

    PubMed Central

    Beer, Sandra; Feihl, François; Ruiz, Juan; Juhan-Vague, Irène; Aillaud, Marie-Françoise; Wetzel, Sandrine Golay; Liaudet, Lucas; Gaillard, Rolf C; Waeber, Bernard

    2008-01-01

    Aim: Patients with non-insulin-dependent diabetes mellitus (NIDDM) are at increased cardiovascular risk due to an accelerated atherosclerotic process. The present study aimed to compare skin microvascular function, pulse wave velocity (PWV), and a variety of hemostatic markers of endothelium injury [von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (t-PA), tissue factor pathway inhibitor (TFPI), and the soluble form of thrombomodulin (s-TM)] in patients with NIDDM. Methods: 54 patients with NIDDM and 38 sex- and age-matched controls were studied. 27 diabetics had no overt micro- and/or macrovascular complications, while the remainder had either or both. The forearm skin blood flow was assessed by laser-Doppler imaging, which allowed the measurement of the response to iontophoretically applied acetylcholine (endothelium-dependent vasodilation) and sodium nitroprusside (endothelium-independent vasodilation), as well as the reactive hyperemia triggered by the transient occlusion of the circulation. Results: Both endothelial and non-endothelial reactivity were significantly blunted in diabetics, regardless of the presence or the absence of vascular complications. Plasma vWF, TFPI and s-TM levels were significantly increased compared with controls only in patients exhibiting vascular complications. Concentrations of t-PA and PAI-1 were significantly increased in the two groups of diabetics versus controls. Conclusion: In NIDDM, both endothelium-dependent and -independent microvascular skin reactivity are impaired, whether or not underlying vascular complications exist. It also appears that microvascular endothelial dysfunction is not necessarily associated in NIDDM with increased circulating levels of hemostatic markers of endothelial damage known to reflect a hypercoagulable state. PMID:19337558

  20. Assessing the Impact of Diabetes Mellitus on Donor Corneal Endothelial Cell Density.

    PubMed

    Liaboe, Chase A; Aldrich, Benjamin T; Carter, Pamela C; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Greiner, Mark A

    2017-05-01

    To quantify changes in endothelial cell density (ECD) of donor corneal tissue in relation to the presence or absence of a medical history of diabetes mellitus diagnosis, treatment, and complications. A retrospective review was performed for all corneas collected at Iowa Lions Eye Bank between January 2012 and December 2015. For purposes of analysis, donor corneas were divided into 4 groups: nondiabetic, non-insulin-dependent diabetic, insulin-dependent diabetic without medical complications due to diabetes, and insulin-dependent diabetic with medical complications due to diabetes. ECD values (obtained through specular microscopy) and transplant suitability for endothelial transplantation (determined by the standard protocol of the eye bank) were compared among groups using linear mixed model analysis. In total, 4185 corneas from 2112 donors were included for analysis. Insulin-dependent diabetic samples with medical complications due to diabetes (N = 231 from 119 donors) showed lower ECD values compared with nondiabetic samples (-102 cells/mm, P = 0.049) and non-insulin-dependent diabetic samples (-117 cells/mm, P = 0.031). ECD values did not differ significantly among the remaining groups. The likelihood of suitability for endothelial transplantation did not differ among all 4 groups. Corneas from donors with insulin-dependent diabetes mellitus and medical complications resulting from the disease have lower mean ECD values compared with other donors. However, our analysis suggests that these corneas are equally likely to be included in the donor pool for corneal transplantation. Additional studies are needed to determine the mechanism(s) contributing to cell loss in donors with advanced diabetes and to assess associated endothelial cell functional impairment.

  1. Circulating angiogenic cell function is inhibited by cortisol in vitro and associated with psychological stress and cortisol in vivo.

    PubMed

    Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L

    2016-05-01

    Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Circulating Angiogenic Cell Function is Inhibited by Cortisol in Vitro and Associated with Psychological Stress and Cortisol in Vivo

    PubMed Central

    Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J.; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L.

    2016-01-01

    Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age = 26 years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. PMID:26925833

  3. The natural compound codonolactone impairs tumor induced angiogenesis by downregulating BMP signaling in endothelial cells.

    PubMed

    Wang, Shan; Cai, Rui; Ma, Junchao; Liu, Ting; Ke, Xiaoqin; Lu, Hong; Fu, Jianjiang

    2015-10-15

    Angiogenesis, the recruitment of new blood vessels, was demonstrated that is an essential component of the growth of a tumor beyond a certain size and the metastatic pathway. The potential use of angiogenesis-based agents, such as those involving natural and synthetic inhibitors as anticancer drugs is currently under intense investigation. In this study, the anti-angiogenic properties of codonolactone (CLT), a sesquiterpene lactone from Atractylodes lancea, were examined in endothelial cells. Our published study reported that CLT shows significant anti-metastatic properties in vitro and in vivo. In order to determine whether angiogenic-involved mechanisms contribute to the anti-metastatic effects of CLT, we checked the anti-angiogenic properties of CLT and its potential mechanisms. Human umbilical vein endothelial cells (HUVECs) and EA.hy 926 cells were involved in this study. Immunofluorescence assay for cells and immunohistochemistry assay for tissues were used to check the expression of angiogenic markers. In vitro migration and invasion of endothelial cells treated with and without CLT were analyzed. Protein expressions were measured by Western blot analysis. For MMPs activity assay, fluorescence resonance energy transfer-based MMPs activity assay and gelatin zymography assay were involved in this study. Here we demonstrated that CLT exhibited inhibition on cancer cell induced angiogenesis in vivo, and direct inhibited migration and invasion of endothelial cells in vitro. Moreover, we observed that the down-regulation of MMPs and VEGF-VEGFR2 was involved in the anti-angiogenic effects of CLT. Data from Western blotting showed that, in endothelial cells, CLT reduced Runx2 activation and BMP signaling. Our findings demonstrated that CLT impaired the development of angiogenesis both in vitro and in vivo by direct inhibition on endothelial cells. These inhibitory effects were depended on its ability to interference with BMP signaling in endothelial cells, which may cause inhibition of MMPs expression and VEGF secretion by down-regulating Runx2 activation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Impaired blood rheology is associated with endothelial dysfunction in patients with coronary risk factors.

    PubMed

    Yagi, Hideki; Sumino, Hiroyuki; Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Kimura, Takao; Nara, Makoto; Ogiwara, Takayuki; Murakami, Masami

    2016-01-01

    To investigate the relationship between blood rheology and endothelial function in patients with coronary risk factors, brachial arterial flow-mediated vasodilatation (FMD), an index of endothelial function and blood passage time (BPT), an index of blood rheology, and fasting blood cell count, glucose metabolism, and plasma fibrinogen, lipid, C-reactive protein, and whole blood viscosity levels were measured in 95 patients with coronary risk factors and 37 healthy controls. Brachial arterial FMD after reactive hyperemia was assessed by ultrasonography. BPT was assessed using the microchannel method. In healthy controls, BPT significantly correlated with FMD (r = - 0.325, p <  0.05), HDL cholesterol (r = - 0.393, p <  0.05), body mass index (BMI; r = 0.530, p <  0.01), and plasma fibrinogen concentration (r = 0.335, p <  0.05). In a multivariate regression analysis adjusted for all clinical variables, BPT remained significantly associated with BMI and fibrinogen, but not with FMD, in healthy controls. In patients with coronary risk factors, BPT significantly correlated with FMD (r = - 0.331, p <  0.01), HDL cholesterol (r = - 0.241, p <  0.05), BMI (r = 0.290, p <  0.01), hematocrit (r = 0.422, p <  0.001), white blood cell count (r = 0.295, p <  0.01), platelet count (r = 0.204, p <  0.05), and insulin (r = 0.210, p <  0.05). In a multivariate regression analysis adjusted for all clinical variables, BPT remained strongly associated with FMD and hematocrit in patients with coronary risk factors. These data indicate that BPT is closely associated with FMD in patients with coronary risk factors and suggest that the measurement of blood rheology using the microchannel method may be useful in evaluating brachial arterial endothelial function as a marker of atherosclerosis in these patients.

  5. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth

    NASA Astrophysics Data System (ADS)

    Holmgren, Lars; Ambrosino, Elena; Birot, Olivier; Tullus, Carl; Veitonmäki, Niina; Levchenko, Tetyana; Carlson, Lena-Maria; Musiani, Piero; Iezzi, Manuela; Curcio, Claudia; Forni, Guido; Cavallo, Federica; Kiessling, Rolf

    2006-06-01

    Endogenous angiogenesis inhibitors have shown promise in preclinical trials, but clinical use has been hindered by low half-life in circulation and high production costs. Here, we describe a strategy that targets the angiostatin receptor angiomotin (Amot) by DNA vaccination. The vaccination procedure generated antibodies that detected Amot on the endothelial cell surface. Purified Ig bound to the endothelial cell membrane and inhibited endothelial cell migration. In vivo, DNA vaccination blocked angiogenesis in the matrigel plug assay and prevented growth of transplanted tumors for up to 150 days. We further demonstrate that a combination of DNA vaccines encoding Amot and the extracellular and transmembrane domains of the human EGF receptor 2 (Her-2)/neu oncogene inhibited breast cancer progression and impaired tumor vascularization in Her-2/neu transgenic mice. No toxicity or impairment of normal blood vessels could be detected. This work shows that DNA vaccination targeting Amot may be used to mimic the effect of angiostatin. cancer vaccines | neoplasia | neovascularization | breast cancer | angiostatin

  6. Fatty acid carbon is essential for dNTP synthesis in endothelial cells

    PubMed Central

    Missiaen, Rindert; Queiroz, Karla CS; Borgers, Gitte; Elia, Ilaria; Zecchin, Annalisa; Cantelmo, Anna Rita; Christen, Stefan; Goveia, Jermaine; Heggermont, Ward; Goddé, Lucica; Vinckier, Stefan; Van Veldhoven, Paul P.; Eelen, Guy; Schoonjans, Luc; Gerhardt, Holger; Dewerchin, Mieke; Baes, Myriam; De Bock, Katrien; Ghesquière, Bart; Lunt, Sophia Y.; Fendt, Sarah-Maria; Carmeliet, Peter

    2015-01-01

    The metabolism of endothelial cells (ECs) during vessel sprouting remains poorly studied. Here, we report that endothelial loss of CPT1a, a rate-limiting enzyme of fatty acid oxidation (FAO), caused vascular sprouting defects due to impaired proliferation, not migration of ECs. Reduction of FAO in ECs did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labeling studies in control ECs showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1a silencing reduced these processes and depleted EC stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1a-silenced ECs. Finally, CPT1 blockade inhibited pathological ocular angiogenesis, suggesting a novel strategy for blocking angiogenesis. PMID:25830893

  7. KRN633, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, induces intrauterine growth restriction in mice.

    PubMed

    Abe, Naomichi; Nakahara, Tsutomu; Morita, Akane; Wada, Yoshiko; Mori, Asami; Sakamoto, Kenji; Nagamitsu, Tohru; Ishii, Kunio

    2013-08-01

    We previously reported that treatment with KRN633, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, during mid-pregnancy caused intrauterine growth restriction resulting from impairment of blood vessel growth in the labyrinthine zone of the placenta and fetal organs. However, the relative sensitivities of blood vessels in the placenta and fetal organs to vascular endothelial growth factor (VEGF) inhibitors have not been determined. In this study, we aimed to examine the effects of KRN633 on the vasculatures of organs in mother mice and their newborn pups by immunohistochemical analysis. Pregnant mice were treated daily with KRN633 (5 mg/kg) either from embryonic day 13.5 (E13.5) to E17.5 or from E13.5 to the day of delivery. The weights of the pups of KRN633-treated mice were lower than those of the pups of vehicle-treated mothers. However, no significant difference in body weight was observed between the vehicle- and KRN633-treated mice. The vascular development in the organs (the pancreas, kidney, and intestine) and intestinal lymphatic formation of the pups of KRN633-treated mothers was markedly impaired. In contrast, the KRN633 treatment showed no significant effect on the vascular beds in the organs, including the labyrinthine zone of the placenta, of the mother mice. These results suggest that blood vessels in fetal organs are likely to be more sensitive to reduced VEGF signaling than those in the mother. A partial loss of VEGF function during pregnancy could suppress vascular growth in the fetus without affecting the vasculature in the mother mouse, thereby increasing the risk of intrauterine growth restriction. © 2013 Wiley Periodicals, Inc.

  8. Blocking mitochondrial cyclophilin D ameliorates TSH-impaired defensive barrier of artery.

    PubMed

    Liu, Xiaojing; Du, Heng; Chai, Qiang; Jia, Qing; Liu, Lu; Zhao, Meng; Li, Jun; Tang, Hui; Chen, Wenbin; Zhao, Lifang; Fang, Li; Gao, Ling; Zhao, Jiajun

    2018-05-01

    Endothelial cells (ECs) constitute the defensive barrier of vasculature, which maintains the vascular homeostasis. Mitochondrial oxidative stress (mitoOS) in ECs significantly affects the initiation and progression of vascular diseases. The higher serum thyroid stimulating hormone (TSH) level is being recognized as a nonconventional risk factor responsible for the increased risk of cardiovascular diseases in subclinical hypothyroidism (SCH). However, effects and underlying mechanisms of elevated TSH on ECs are still ambiguous. We sought to investigate whether cyclophilin D (CypD), emerging as a crucial mediator in mitoOS, regulates effects of TSH on ECs. SCH patients with TSH > = 10mIU/L showed a positive correlation between serum TSH and endothelin-1 levels. When TSH levels declined to normal in these subjects after levothyroxine therapy, serum endothelin-1 levels were significantly reduced. Supplemented with exogenous thyroxine to keep normal thyroid hormones, thyroid-specific TSH receptor (TSHR)-knockout mice with injection of exogenous TSH exhibited elevated serum TSH levels, significant endothelial oxidative injuries and disturbed endothelium-dependent vasodilation. However, Tshr -/- mice resisted to TSH-impaired vasotonia. We further confirmed that elevated TSH triggered excessive mitochondrial permeability transition pore (mPTP) opening and mitochondrial oxidative damages in mouse aorta, as well as in cultured ECs. Genetic or pharmacological inhibition of CypD (the key regulator for mPTP opening) attenuated TSH-induced mitochondrial oxidative damages and further rescued endothelial functions. Finally, we confirmed that elevated TSH could activate CypD by enhancing CypD acetylation via inhibiting adenosine monophosphate-activated protein kinase/sirtuin-3 signaling pathway in ECs. These findings reveal that elevated TSH triggers mitochondrial perturbations in ECs and provide insights that blocking mitochondrial CypD enhances the defensive ability of ECs under TSH exposure. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification.

    PubMed

    Douglas, Gillian; Van Kampen, Erik; Hale, Ashley B; McNeill, Eileen; Patel, Jyoti; Crabtree, Mark J; Ali, Ziad; Hoerr, Robert A; Alp, Nicholas J; Channon, Keith M

    2013-11-01

    Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Endothelial cell repopulation was assessed en face in stented arteries in ApoE(-/-) mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm(2), P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm(2), P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE(-/-) mice had less neointima formation compared with ApoE(-/-) littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm(2), P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm(2), P = 0.043). Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.

  10. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  11. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  12. Randomised Trial of CPAP and Vardenafil on Erectile and Arterial Function in Men with Obstructive Sleep Apnea and Erectile Dysfunction.

    PubMed

    Melehan, Kerri L; Hoyos, Camilla M; Hamilton, Garun S; Wong, Keith K; Yee, Brendon J; McLachlan, Rob I; O'Meagher, Shamus; Celermajer, David; Ng, Martin K; Grunstein, Ronald R; Liu, Peter Y

    2018-02-01

    Erectile function is important for life satisfaction and is often impaired in men with obstructive sleep apnea (OSA). Uncontrolled studies show that treating OSA with continuous positive airway pressure (CPAP) improves erectile function. Phosphodiesterase type 5 inhibitors (e.g. vardenafil) are the first-line therapy for erectile dysfunction (ED), but may worsen OSA. To assess the effects of CPAP and vardenafil on ED. Sixty one men with moderate-to-severe OSA and ED were randomised to 12 weeks of CPAP or sham CPAP, and 10mg daily vardenafil or placebo, in a 2x2 factorial design. International Index of Erectile Function (primary endpoint), treatment and relationship satisfaction, sleep related erections, sexual function, endothelial function, arterial stiffness, quality of life, and sleep-disordered breathing. CPAP increased the frequency of sleep-related-erections, overall sexual satisfaction, and arterial stiffness but did not change erectile function or treatment satisfaction or relationship satisfaction. Vardenafil did not alter erectile function, endothelial function, arterial stiffness or sleep disordered breathing, but did improve overall self-esteem and relationship satisfaction, other aspects of sexual function and treatment satisfaction. Adherent CPAP improved erectile function, sexual desire, overall sexual, self-esteem and relationship, and treatment satisfaction, as well as sleepiness, and quality of life. Adherent vardenafil use did not consistently change nocturnal erection quality. CPAP improves overall sexual satisfaction, sleep related erections, and arterial stiffness. Low dose daily vardenafil improves certain aspects of sexual function, and did not worsen OSA. Adherent CPAP or vardenafil use further improves ED and quality of life. Copyright © 2018 Endocrine Society

  13. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.

    PubMed

    Wagenmakers, Anton J M; Strauss, Juliette A; Shepherd, Sam O; Keske, Michelle A; Cocks, Matthew

    2016-04-15

    This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. Assessment of macrovascular endothelial function using pulse wave analysis and its association with microvascular reactivity in healthy subjects.

    PubMed

    Ibrahim, N N I N; Rasool, A H G

    2017-08-01

    Pulse wave analysis (PWA) and laser Doppler fluximetry (LDF) are non-invasive methods of assessing macrovascular endothelial function and microvascular reactivity respectively. The aim of this study was to assess the correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF. 297 healthy and non-smoking subjects (159 females, mean age (±SD) 23.56 ± 4.54 years) underwent microvascular reactivity assessment using LDF followed by macrovascular endothelial function assessments using PWA. Pearson's correlation showed no correlation between macrovascular endothelial function and microvascular reactivity (r = -0.10, P = 0.12). There was no significant correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF in healthy subjects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The endotoxin/toll-like receptor-4 axis mediates gut microvascular dysfunction associated with post-prandial lipidemia

    PubMed Central

    2013-01-01

    Background Postprandial lipidemia is important in the development of coronary artery disease (CAD). Consumption of a meal high in monounsaturated fat was correlated with acute impairment of endothelial function. However, the mechanisms underlying impaired endothelial function in the postprandial state have not yet been elucidated. The effects of polyunsaturated fat (corn oil) and monounsaturated fat (olive oil) on vascular dysfunction in intestinal postcapillary venules and arterioles were examined in wild-type (WT) mice, mice genetically deficient in TLR4 (TLR4-/-) and mice pre-treated with antibiotics by intravital microscopy which was performed 1.0, 1.5, 2.0, 2.5 hours after oil administration. After intravital microscopy, samples of jejunum were therefore collected to test TLR4, pNF-kB p65 and SIRT1 protein expression by western blotting. Results Our findings showed that feeding mono-unsaturated olive oil or polyunsaturated corn oil promoted leukocyte and platelet trafficking in the gut microvasculature, and impaired endothelium-dependent arteriolar vasodilator responses during postprandial lipidemia. The expression of TLR4, pNF-kB p65 was significantly increased in mice gavaged with olive oil at 2 h and was significantly reduced in mice gavaged for 7 days with antibiotics and in TLR4 knockout (TLR4-/-) mice. At the same time, SIRT1 protein expression is diminished by feeding olive oil for 2 h, a phenomenon that is attenuated in mice pre-treated with antibiotics and in TLR4-/- mice. Corn oil treated mice exhibited a pattern of response similar to olive oil. Conclusions Dietary oils may be negative regulators of SIRT1 which activate the innate immune response through the endotoxin/TLR4 axis. Our findings establish a link between innate immunity (i.e. the endotoxin/TLR4 axis) and epigenetic controls mediated by SIRT1 in the genesis of diet associated vascular stress. PMID:24219792

  16. Promoting brain health through exercise and diet in older adults: a physiological perspective

    PubMed Central

    Pialoux, Vincent; Corbett, Dale; Drogos, Lauren; Erickson, Kirk I.; Eskes, Gail A.

    2016-01-01

    Abstract The rise in incidence of age‐related cognitive impairment is a global health concern. Ageing is associated with a number of changes in the brain that, collectively, contribute to the declines in cognitive function observed in older adults. Structurally, the ageing brain atrophies as white and grey matter volumes decrease. Oxidative stress and inflammation promote endothelial dysfunction thereby hampering cerebral perfusion and thus delivery of energy substrates and nutrients. Further, the development of amyloid plaques and neurofibrillary tangles contributes to neuronal loss. Of interest, there are substantial inter‐individual differences in the degree to which these physical and functional changes impact upon cognitive function as we grow older. This review describes how engaging in physical activity and cognitive activities and adhering to a Mediterranean style diet promote ‘brain health’. From a physiological perspective, we discuss the effects of these modifiable lifestyle behaviours on the brain, and how some recent human trials are beginning to show some promise as to the effectiveness of lifestyle behaviours in combating cognitive impairment. Moreover, we propose that these lifestyle behaviours, through numerous mechanisms, serve to increase brain, cerebrovascular and cognitive reserve, thereby preserving and enhancing cognitive function for longer. PMID:27524792

  17. Impairment of cognitive functioning during Sunitinib or Sorafenib treatment in cancer patients: a cross sectional study

    PubMed Central

    2014-01-01

    Background Impairment of cognitive functioning has been reported in several studies in patients treated with chemotherapy. So far, no studies have been published on the effects of the vascular endothelial growth factor receptor (VEGFR) inhibitors on cognitive functioning. We investigated the objective and subjective cognitive function of patients during treatment with VEGFR tyrosine kinase inhibitors (VEGFR TKI). Methods Three groups of participants, matched on age, sex and education, were enrolled; 1. metastatic renal cell cancer (mRCC) or GIST patients treated with sunitinib or sorafenib (VEGFR TKI patients n = 30); 2. patients with mRCC not receiving systemic treatment (patient controls n = 20); 3. healthy controls (n = 30). Sixteen neuropsychological tests examining the main cognitive domains (intelligence, memory, attention and concentration, executive functions and abstract reasoning) were administered by a neuropsychologist. Four questionnaires were used to assess subjective cognitive complaints, mood, fatigue and psychological wellbeing. Results No significant differences in mean age, sex distribution, education level or IQ were found between the three groups. Both patient groups performed significantly worse on the cognitive domains Learning & Memory and Executive Functions (Response Generation and Problem Solving) compared to healthy controls. However only the VEGFR TKI patients showed impairments on the Executive subdomain Response Generation. Effect sizes of cognitive dysfunction in patients using VEGFR TKI were larger on the domains Learning & Memory and Executive Functions, compared to patient controls. Both patients groups performed on the domain Attention & Concentration the same as the healthy controls. Longer duration of treatment on VEGFR TKI was associated with a worse score on Working Memory tasks. Conclusions Our data suggest that treatment with VEGFR TKI has a negative impact on cognitive functioning, specifically on Learning & Memory, and Executive Functioning. We propose that patients who are treated with VEGFR TKI are monitored and informed for possible signs or symptoms associated with cognitive impairment. Trial registration ClinicalTrials.gov Identifier: NCT01246843. PMID:24661373

  18. Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network.

    PubMed

    Schiekofer, Stephan; Galasso, Gennaro; Sato, Kaori; Kraus, Benjamin J; Walsh, Kenneth

    2005-08-01

    Diabetes is a risk factor for the development of cardiovascular diseases associated with impaired angiogenesis or increased endothelial cell apoptosis. Here it is shown that angiogenic repair of ischemic hindlimbs was impaired in Lepr(db/db) mice, a leptin receptor-deficient model of diabetes, compared with wild-type (WT) C57BL/6 mice, as evaluated by laser Doppler flow and capillary density analyses. To identify molecular targets associated with this disease process, hindlimb cDNA expression profiles were created from adductor muscle of Lepr(db/db) and WT mice before and after hindlimb ischemia using Affymetrix GeneChip Mouse Expression Set microarrays. The expression patterns of numerous angiogenesis-related proteins were altered in Lepr(db/db) versus WT mice after ischemic injury. These transcripts included neuropilin-1, vascular endothelial growth factor-A, placental growth factor, elastin, and matrix metalloproteinases implicated in blood vessel growth and maintenance of vessel wall integrity. These data illustrate that impaired ischemia-induced neovascularization in type 2 diabetes is associated with the dysregulation of a complex angiogenesis-regulatory network.

  19. Myeloid-Derived Suppressor Cells Are Involved in Lysosomal Acid Lipase Deficiency-Induced Endothelial Cell Dysfunctions

    PubMed Central

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2014-01-01

    The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal−/−) mice. We found that Ly6G+ cells transmigrated more efficiently across lal−/− ECs than wild-type (lal+/+) ECs, which was associated with increased level of platelet endothelial cell adhesion molecule-1 (PECAM-1) and monocyte chemoattractant protein-1 (MCP-1) in lal−/− ECs. In addition, lal−/−ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal−/− ECs also suppressed T cell proliferation in vitro. Interestingly, lal−/− Ly6G+ cells promoted in vivo angiogenesis (including a tumor model), EC tube formation and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal−/− ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G+ cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species (ROS). Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL-deficiency related diseases. PMID:25000979

  20. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study

    PubMed Central

    Grassi, Davide; Draijer, Richard; Schalkwijk, Casper; Desideri, Giovambattista; D’Angeli, Anatolia; Francavilla, Sandro; Mulder, Theo; Ferri, Claudio

    2016-01-01

    (1) Background: Endothelial dysfunction predicts cardiovascular events. Circulating angiogenic cells (CACs) maintain and repair the endothelium regulating its function. Tea flavonoids reduce cardiovascular risk. We investigated the effects of black tea on the number of CACs and on flow-mediated dilation (FMD) before and after an oral fat in hypertensives; (2) Methods: In a randomized, double-blind, controlled, cross-over study, 19 patients were assigned to black tea (150 mg polyphenols) or a placebo twice a day for eight days. Measurements were obtained in a fasted state and after consuming whipping cream, and FMD was measured at baseline and after consumption of the products; (3) Results: Compared with the placebo, black tea ingestion increased functionally active CACs (36 ± 22 vs. 56 ± 21 cells per high-power field; p = 0.006) and FMD (5.0% ± 0.3% vs. 6.6% ± 0.3%, p < 0.0001). Tea further increased FMD 1, 2, 3, and 4 h after consumption, with maximal response 2 h after intake (p < 0.0001). Fat challenge decreased FMD, while tea consumption counteracted FMD impairment (p < 0.0001); (4) Conclusions: We demonstrated the vascular protective properties of black tea by increasing the number of CACs and preventing endothelial dysfunction induced by acute oral fat load in hypertensive patients. Considering that tea is the most consumed beverage after water, our findings are of clinical relevance and interest. PMID:27854314

  1. Protective effect and mechanism of glutaredoxin 1 on coronary arteries endothelial cells damage induced by high glucose.

    PubMed

    Li, Shuyan; Sun, Yan; Qi, Xiaodan; Shi, Yan; Gao, Han; Wu, Qi; Liu, Xiucai; Yu, Haitao; Zhang, Chunjing

    2014-01-01

    In recent years, diabetes and its associated complications have become a major public health concern. The cardiovascular risk increases significantly in diabetes patients. It is a complex disease characterized by multiple metabolic derangements and is known to impair cardiac function by disrupting the balance between pro-oxidants and antioxidants at the cellular level. The subsequent generation of reactive oxygen species (ROS) and accompanying oxidative stress are hallmarks of the molecular mechanisms responsible for cardiovascular disease. Protein thiols act as redox-sensitive switches and are believed to be a key element in maintaining the cellular redox balance. The redox state of protein thiols is regulated by oxidative stress and redox signaling and is important to cellular functions. The potential of the thiol-disulfide oxidoreductase enzymes (thioredoxin and glutaredoxin systems) in defense against oxidative stress has been noted previously. Increasing evidence demonstrates that glutaredoxin 1 (Grx1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. This study investigates whether and how Grx1 protects coronary artery vascular endothelial cells against high glucose (HG) induced damage. Results indicate that the activation of eNOS/NO system is regulated by Grx 1 and coupled with inhibition of JNK and NF-κB signaling pathway which could alleviate the oxidative stress and apoptosis damage in coronary arteries endothelial cells induced by HG.

  2. Multifunctional ion transport properties of human SLC4A11: comparison of the SLC4A11-B and SLC4A11-C variants.

    PubMed

    Kao, Liyo; Azimov, Rustam; Shao, Xuesi M; Frausto, Ricardo F; Abuladze, Natalia; Newman, Debra; Aldave, Anthony J; Kurtz, Ira

    2016-11-01

    Congenital hereditary endothelial dystrophy (CHED), Harboyan syndrome (CHED with progressive sensorineural deafness), and potentially a subset of individuals with late-onset Fuchs' endothelial corneal dystrophy are caused by mutations in the SLC4A11 gene that results in corneal endothelial cell abnormalities. Originally classified as a borate transporter, the function of SLC4A11 as a transport protein remains poorly understood. Elucidating the transport function(s) of SLC4A11 is needed to better understand how its loss results in the aforementioned posterior corneal dystrophic disease processes. Quantitative PCR experiments demonstrated that, of the three known human NH 2 -terminal variants, SLC4A11-C is the major transcript expressed in human corneal endothelium. We studied the expression pattern of the three variants in mammalian HEK-293 cells and demonstrated that the SLC4A11-B and SLC4A11-C variants are plasma membrane proteins, whereas SLC4A11-A is localized intracellularly. SLC4A11-B and SLC4A11-C were shown to be multifunctional ion transporters capable of transporting H + equivalents in both a Na + -independent and Na + -coupled mode. In both transport modes, SLC4A11-C H + flux was significantly greater than SLC4A11-B. In the presence of ammonia, SLC4A11-B and SLC4A11-C generated inward currents that were comparable in magnitude. Chimera SLC4A11-C-NH 2 -terminus-SLC4A11-B experiments demonstrated that the SLC4A11-C NH 2 -terminus functions as an autoactivating domain, enhancing Na + -independent and Na + -coupled H + flux without significantly affecting the electrogenic NH 3 -H (n) + cotransport mode. All three modes of transport were significantly impaired in the presence of the CHED causing p.R109H (SLC4A11-C numbering) mutation. These complex ion transport properties need to be addressed in the context of corneal endothelial disease processes caused by mutations in SLC4A11. Copyright © 2016 the American Physiological Society.

  3. Interface Fluid Syndrome After Laser In Situ Keratomileusis (LASIK) Because of Fuchs Endothelial Dystrophy Reversed by Descemet Membrane Endothelial Keratoplasty (DMEK).

    PubMed

    Luceri, Salvatore; Baksoellah, Zainab; Ilyas, Abbas; Baydoun, Lamis; Melles, Gerrit R J

    2016-12-01

    To describe a case that developed "interface fluid syndrome" after previous laser in situ keratomileusis (LASIK) because of Fuchs endothelial dystrophy (FED), which was reversed by Descemet membrane endothelial keratoplasty (DMEK). A 58-year-old male patient presented with bilateral visual impairment owing to FED and visually significant cataract. Cataract surgery was carried out in both eyes followed by DMEK in his left eye. After cataract surgery, visual acuity did not improve sufficiently because corneal thickness increased and a fine cleft with interface fluid developed between the LASIK-flap and the residual stromal bed. After uneventful DMEK in his left eye, the fluid resolved within a week and visual acuity improved rapidly. This case demonstrates that "interface fluid syndrome" after LASIK caused by concomitant endothelial dysfunction may be reversed by DMEK allowing fast visual recovery.

  4. Role of Dietary Antioxidants in the Preservation of Vascular Function and the Modulation of Health and Disease

    PubMed Central

    Varadharaj, Saradhadevi; Kelly, Owen J.; Khayat, Rami N.; Kumar, Purnima S.; Ahmed, Naseer; Zweier, Jay L.

    2017-01-01

    In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED) occurs secondary to altered function of endothelial nitric oxide synthase (eNOS). A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs). Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases. PMID:29164133

  5. Aging-associated sensory neuropathy alters pressure-induced vasodilation in humans.

    PubMed

    Fromy, Bérengère; Sigaudo-Roussel, Dominique; Gaubert-Dahan, Marie-Line; Rousseau, Pascal; Abraham, Pierre; Benzoni, Daniel; Berrut, Gilles; Saumet, Jean Louis

    2010-03-01

    Healthy skin is protected from pressure-induced ischemic damage because of the presence of pressure-induced vasodilation (PIV). PIV relies on small sensory nerve fibers and endothelial function. Since aging alters both nervous and vascular functions, we hypothesized that PIV is altered with aging. We compared PIV in non-neuropathic and neuropathic older subjects (60-75 years) with that of young subjects (20-35 years). Laser Doppler flowmetry was used to evaluate the cutaneous responses to local pressure application, acetylcholine, and local heating. Quantitative sensory tests were used to evaluate sensory-nerve-fiber function. The non-neuropathic older subjects had an impaired PIV (12+/-7% increase in blood flow with pressure) compared with young subjects (62+/-4%, P<0.001). In the presence of peripheral neuropathy, the older subjects were totally deprived of PIV, leading to early pressure-induced cutaneous ischemia (-31+/-10%, P<0.001). This inability of the skin to adapt to localized pressure in older subjects is related to the severity of the sensory-fiber dysfunction rather than to endothelial dysfunction, which was comparable between the non-neuropathic (141+/-19% increased blood flow with acetylcholine, P<0.05) and neuropathic older subjects (145+/-28% increase, P<0.05) compared with young subjects (234+/-25% increase).

  6. Complement Activation: An Emerging Player in the Pathogenesis of Cardiovascular Disease

    PubMed Central

    Carter, Angela M.

    2012-01-01

    A wealth of evidence indicates a fundamental role for inflammation in the pathogenesis of cardiovascular disease (CVD), contributing to the development and progression of atherosclerotic lesion formation, plaque rupture, and thrombosis. An increasing body of evidence supports a functional role for complement activation in the pathogenesis of CVD through pleiotropic effects on endothelial and haematopoietic cell function and haemostasis. Prospective and case control studies have reported strong relationships between several complement components and cardiovascular outcomes, and in vitro studies and animal models support a functional effect. Complement activation, in particular, generation of C5a and C5b-9, influences many processes involved in the development and progression of atherosclerosis, including promotion of endothelial cell activation, leukocyte infiltration into the extracellular matrix, stimulation of cytokine release from vascular smooth muscle cells, and promotion of plaque rupture. Complement activation also influences thrombosis, involving components of the mannose-binding lectin pathway, and C5b-9 in particular, through activation of platelets, promotion of fibrin formation, and impairment of fibrinolysis. The participation of the complement system in inflammation and thrombosis is consistent with the physiological role of the complement system as a rapid effector system conferring protection following vessel injury. However, in the context of CVD, these same processes contribute to development of atherosclerosis, plaque rupture, and thrombosis. PMID:24278688

  7. Coronary microvascular function in patients with isolated systolic and combined systolic/diastolic hypertension.

    PubMed

    Bozbas, Huseyin; Pirat, Bahar; Yildirir, Aylin; Eroglu, Serpil; Simsek, Vahide; Sade, Elif; Atar, Ilyas; Aydinalp, Alp; Ozin, Bulent; Muderrisoglu, Haldun

    2012-12-01

    Isolated systolic hypertension (ISH) is a common condition in the elderly that is associated with endothelial dysfunction. Concerning the effect of type of hypertension on coronary microvascular function, coronary flow reserve (CFR) in patients with ISH was evaluated and the results were compared with patients with combined systolic/diastolic hypertension (SDH). Seventy-six elderly patients (older than 60 years) who were free of coronary artery disease and diabetes mellitus were enrolled in the study (38 with ISH and 38 with combined SDH). Using transthoracic Doppler echocardiography, CFR was calculated as the ratio of hyperemic to baseline diastolic peak flow velocities. A CFR value of >2 was accepted as normal. The mean age was 68.6±6.3 years and the groups had similar features with regard to demographic and clinical characteristics. Patients with ISH had significantly lower CFR values compared with those with combined SDH (2.22±0.51 vs 2.49±0.56, respectively; P=.03). On multivariate regression analysis, ISH (β=-0.40, P=.004) and dyslipidemia (β=-0.29, P=.04) were the independent predictors of CFR. These findings indicate that CFR, an indicator of coronary microvascular/endothelial function, is impaired more profoundly in patients with ISH than in patients with combined SDH. © 2012 Wiley Periodicals, Inc.

  8. Evidence for circulatory benefits of resveratrol in humans.

    PubMed

    Wong, Rachel H X; Coates, Alison M; Buckley, Jonathan D; Howe, Peter R C

    2013-07-01

    Impairments of endothelial function, which can be assessed noninvasively by flow-mediated dilation (FMD) of the brachial artery, contribute to the development of cardiovascular disease. Associations between FMD and cognition suggest a vascular component in the loss of cognitive function. Certain vasoactive nutrients that have been shown to improve FMD may also have the potential to enhance cerebral perfusion and cognition. Preclinical studies show that trans-resveratrol can enhance nitric oxide bioavailability, thereby increasing endothelium-dependent vasodilation. We have now shown that acute administration of resveratrol elicits dose-dependent increases of FMD with greater potency than other vasoactive nutrients and that this benefit is sustained following regular consumption. We describe the potential implications of this vasodilator benefit of resveratrol and its role in enhancing cerebrovascular and cognitive functions. © 2013 New York Academy of Sciences.

  9. Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation

    PubMed Central

    Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.

    1998-01-01

    During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120

  10. Synergistic Impact of Nicotine and Shear Stress Induces Cytoskeleton Collapse and Apoptosis in Endothelial Cells.

    PubMed

    Lee, Yu-Hsiang; Chen, Ruei-Siang; Chang, Nen-Chung; Lee, Kueir-Rarn; Huang, Chien-Tsai; Huang, Yu-Ching; Ho, Feng-Ming

    2015-09-01

    Nicotine is the major component in cigarette smoke and has been recognized as a risk factor for various cardiovascular diseases such as atherosclerosis. However, the definite pathogenesis of nicotine-mediated endothelial dysfunction remains unclear because hemodynamic factor in most of prior in vitro studies was excluded. To understand how nicotine affects endothelium in the dynamic environment, human umbilical vein endothelial cells were treated by different laminar shear stresses (LSS; 0, 6, 8, and 12 dynes cm(-2)) with and without 10(-4) M nicotine for 12 h in a parallel plate flow system, following detections of cellular morphology and apoptotic level. Our results showed that cells sheared by 12 dynes cm(-2) LSS with nicotine excessively elongated and aligned with the flow direction, and exhibited significant apoptosis as compared to the groups with nicotine or LSS alone. We reasoned that the irregular morphological rearrangement and elevated apoptosis were resulted from the interruption of mechanostasis due to cytoskeletal collapse. Furthermore, all the impaired responses can be rescued by treatment with free radical scavenger ascorbic acid (10(-4) M), indicating oxidative stress was likely mediated with the impairments. In summary, our findings demonstrated an essential role of LSS in nicotine-mediated endothelial injury occurring in the physiological environment.

  11. Mesenchymal-endothelial-transition contributes to cardiac neovascularization

    PubMed Central

    Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun

    2014-01-01

    Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562

  12. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    PubMed Central

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  13. Gestational diabetes mellitus alters maternal and neonatal circulating endothelial progenitor cell subsets.

    PubMed

    Acosta, Juan C; Haas, David M; Saha, Chandan K; Dimeglio, Linda A; Ingram, David A; Haneline, Laura S

    2011-03-01

    The purpose of this study was to examine whether women with gestational diabetes mellitus (GDM) and their offspring have reduced endothelial progenitor cell subsets and vascular reactivity. Women with GDM, healthy control subjects, and their infants participated. Maternal blood and cord blood were assessed for colony-forming unit-endothelial cells and endothelial progenitor cell subsets with the use of polychromatic flow cytometry. Cord blood endothelial colony-forming cells were enumerated. Vascular reactivity was tested by laser Doppler imaging. Women with GDM had fewer CD34, CD133, CD45, and CD31 cells (circulating progenitor cells [CPCs]) at 24-32 weeks' gestation and 1-2 days after delivery, compared with control subjects. No differences were detected in colony-forming unit-endothelial cells or colony-forming unit-endothelial cells. In control subjects, CPCs were higher in the third trimester, compared with the postpartum period. Cord blood from GDM pregnancies had reduced CPCs. Vascular reactivity was not different between GDM and control subjects. The normal physiologic increase in CPCs during pregnancy is impaired in women with GDM, which may contribute to endothelial dysfunction and GDM-associated morbidities. Copyright © 2011 Mosby, Inc. All rights reserved.

  14. The effects of hypertension on the cerebral circulation

    PubMed Central

    Pires, Paulo W.; Dams Ramos, Carla M.; Matin, Nusrat

    2013-01-01

    Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease. PMID:23585139

  15. Lymphatic function is regulated by a coordinated expression of lymphangiogenic and anti-lymphangiogenic cytokines

    PubMed Central

    Zampell, Jamie C.; Avraham, Tomer; Yoder, Nicole; Fort, Nicholas; Yan, Alan; Weitman, Evan S.

    2012-01-01

    Lymphangiogenic cytokines such as vascular endothelial growth factor-C (VEGF-C) are critically required for lymphatic regeneration; however, in some circumstances, lymphatic function is impaired despite normal or elevated levels of these cytokines. The recent identification of anti-lymphangiogenic molecules such as interferon-γ (IFN-γ), transforming growth factor-β1, and endostatin has led us to hypothesize that impaired lymphatic function may represent a dysregulated balance in the expression of pro/anti-lymphangiogenic stimuli. We observed that nude mice have significantly improved lymphatic function compared with wild-type mice in a tail model of lymphedema. We show that gradients of lymphatic fluid stasis regulate the expression of lymphangiogenic cytokines (VEGF-A, VEGF-C, and hepatocyte growth factor) and that paradoxically the expression of these molecules is increased in wild-type mice. More importantly, we show that as a consequence of T-cell-mediated inflammation, these same gradients also regulate expression patterns of anti-lymphangiogenic molecules corresponding temporally and spatially with impaired lymphatic function in wild-type mice. We show that neutralization of IFN-γ significantly increases inflammatory lymph node lymphangiogenesis independently of changes in VEGF-A or VEGF-C expression, suggesting that alterations in the balance of pro- and anti-lymphangiogenic cytokine expression can regulate lymphatic vessel formation. In conclusion, we show that gradients of lymphatic fluid stasis regulate not only the expression of pro-lymphangiogenic cytokines but also potent suppressors of lymphangiogenesis as a consequence of T-cell inflammation and that modulation of the balance between these stimuli can regulate lymphatic function. PMID:21940662

  16. The endothelial glycocalyx

    PubMed Central

    Yang, Yimu; Schmidt, Eric P.

    2013-01-01

    Once thought to be a structure of small size and uncertain significance, the endothelial glycocalyx is now known to be an important regulator of endothelial function. Studies of the systemic vasculature have demonstrated that the glycocalyx forms a substantial in vivo endothelial surface layer (ESL) critical to inflammation, barrier function and mechanotransduction. The pulmonary ESL is significantly thicker than the systemic ESL, suggesting unique physiologic function. We have recently demonstrated that the pulmonary ESL regulates exposure of endothelial surface adhesion molecules, thereby serving as a barrier to neutrophil adhesion and extravasation. While the pulmonary ESL is not a critical structural component of the endothelial barrier to fluid and protein, it serves a major role in the mechanotransduction of vascular pressure, with impact on the active regulation of endothelial permeability. It is likely that the ESL serves numerous additional functions in vascular physiology, representing a fertile area for future investigation. PMID:24073386

  17. Endothelial transplantation rejuvenates aged hematopoietic stem cell function

    PubMed Central

    Poulos, Michael G.; Gutkin, Michael C.; Llanos, Pierre; Gilleran, Katherine; Rabbany, Sina Y.; Butler, Jason M.

    2017-01-01

    Age-related changes in the hematopoietic compartment are primarily attributed to cell-intrinsic alterations in hematopoietic stem cells (HSCs); however, the contribution of the aged microenvironment has not been adequately evaluated. Understanding the role of the bone marrow (BM) microenvironment in supporting HSC function may prove to be beneficial in treating age-related functional hematopoietic decline. Here, we determined that aging of endothelial cells (ECs), a critical component of the BM microenvironment, was sufficient to drive hematopoietic aging phenotypes in young HSCs. We used an ex vivo hematopoietic stem and progenitor cell/EC (HSPC/EC) coculture system as well as in vivo EC infusions following myelosuppressive injury in mice to demonstrate that aged ECs impair the repopulating activity of young HSCs and impart a myeloid bias. Conversely, young ECs restored the repopulating capacity of aged HSCs but were unable to reverse the intrinsic myeloid bias. Infusion of young, HSC-supportive BM ECs enhanced hematopoietic recovery following myelosuppressive injury and restored endogenous HSC function in aged mice. Coinfusion of young ECs augmented aged HSC engraftment and enhanced overall survival in lethally irradiated mice by mitigating damage to the BM vascular microenvironment. These data lay the groundwork for the exploration of EC therapies that can serve as adjuvant modalities to enhance HSC engraftment and accelerate hematopoietic recovery in the elderly population following myelosuppressive regimens. PMID:29035282

  18. Role of computer-assisted analysis of the corneal endothelium in vitreoretinal surgery with intraocular silicone oil injection: a technical report.

    PubMed

    Fruschelli, M; Esposti, P; Caporossi, A

    1998-01-01

    The innermost lining of the cornea consists of a single layer of cells called the endothelium. Despite its name, the endothelium of the cornea differs considerably from the vascular endothelium, both functionally and morphologically. The corneal endothelium plays a fundamental role in maintaining the transparency of the corneal membrane, as the result of both its function as a barrier against penetration of the aqueous humor in the parenchyma and its ability to remove water from the stroma (usually referred to as the endothelial "pump" function). Any abnormality in the corneal endothelium causes, first, the impairment of its function as a barrier and pump due to the loss of stromal anti-turgor mechanisms, followed by edema and possible development into keratopathy. The specular microscope is an instrument which makes it possible to see the endothelial "mosaic" in the reflected image of the posterior corneal surface. A large variety of clinical specular microscopes is presently available, both contact and non-contact, which allow, for easy and rapid photography of the corneal endothelium "in vivo". In the present case, we used a non-contact computerized specular microscope to analyze the corneal endothelium in a group of patients affected by retinal detachment who needed to undergo vitreoretinal surgery with immission of silicone oil into the vitreal chamber.

  19. Molecular Hydrogen Alleviates Cellular Senescence in Endothelial Cells.

    PubMed

    Hara, Fumihiko; Tatebe, Junko; Watanabe, Ippei; Yamazaki, Junichi; Ikeda, Takanori; Morita, Toshisuke

    2016-08-25

    Substantial evidence indicates that molecular hydrogen (H2) has beneficial vascular effects because of its antioxidant and/or anti-inflammatory effects. Thus, hydrogen-rich water may prove to be an effective anti-aging drink. This study examined the effects of H2on endothelial senescence and clarified the mechanisms involved. Hydrogen-rich medium was produced by a high-purity hydrogen gas generator. Human umbilical vein endothelial cells (HUVECs) were incubated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for various time periods in normal or hydrogen-rich medium. The baseline H2concentration in hydrogen-rich medium was 0.55±0.07 mmol/L. This concentration gradually decreased, and H2was almost undetectable in medium after 12 h. At 24 h after TCDD exposure, HUVECs treated with TCDD exhibited increased 8OHdG and acetyl-p53 expression, decreased nicotinamide adenine dinucleotide (NAD(+))/NADH ratio, impaired Sirt1 activity, and enhanced senescence-associated β-galactosidase. However, HUVECs incubated in hydrogen-rich medium did not exhibit these TCDD-induced changes accompanying Nrf2 activation, which was observed even after H2was undetectable in the medium. Chrysin, an inhibitor of Nrf2, abolished the protective effects of H2on HUVECs. H2has long-lasting antioxidant and anti-aging effects on vascular endothelial cells through the Nrf2 pathway, even after transient exposure to H2. Hydrogen-rich water may thus be a functional drink that increases longevity. (Circ J 2016; 80: 2037-2046).

  20. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  1. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoping; Mao, Haian; Chen, Jin-yuan

    2013-02-15

    Highlights: ► MicroRNA-221 is upregulated in the endothelial progenitor cells of atherosclerosis patients. ► PAK1 is a direct target of microRNA-221. ► MicroRNA-221 inhibits EPCs proliferation through c-Raf/MEK/ERK pathway. -- Abstract: Coronary artery disease (CAD) is associated with high mortality and occurs via endothelial injury. Endothelial progenitor cells (EPCs) restore the integrity of the endothelium and protect it from atherosclerosis. In this study, we compared the expression of microRNAs (miRNAs) in EPCs in atherosclerosis patients and normal controls. We found that miR-221 expression was significantly up-regulated in patients compared with controls. We predicted and identified p21/Cdc42/Rac1-activated kinase 1 (PAK1) asmore » a novel target of miR-221 in EPCs. We also demonstrated that miR-221 targeted a putative binding site in the 3′UTR of PAK1, and absence of this site was inversely associated with miR-221 expression in EPCs. We confirmed this relationship using a luciferase reporter assay. Furthermore, overexpression of miR-221 in EPCs significantly decreased EPC proliferation, in accordance with the inhibitory effects induced by decreased PAK1. Overall, these findings demonstrate that miR-221 affects the MEK/ERK pathway by targeting PAK1 to inhibit the proliferation of EPCs.« less

  2. Elevated expression of NEU1 sialidase in idiopathic pulmonary fibrosis provokes pulmonary collagen deposition, lymphocytosis, and fibrosis.

    PubMed

    Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P

    2016-05-15

    Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.

  3. [Polycystic ovary syndrome: an example of obesity-related cardiovascular complication affecting young women].

    PubMed

    Orio, Francesco; Cascella, Teresa; Giallauria, Francesco; Palomba, Stefano; De Lorenzo, Anna; Lucci, Rosa; Ambrosino, Elena; Lombardi, Gaetano; Colao, Annamaria; Vigorito, Carlo

    2006-03-01

    Polycystic ovary syndrome (PCOS) is a good example of obesity-related cardiovascular complication affecting young women. PCOS is not only considered a reproductive problem but rather represents a complex endocrine, multifaceted syndrome with important health implications. Several evidences suggest an increased cardiovascular risk of cardiovascular disease associated with this syndrome, characterized by an impairment of heart structure and function, endothelial dysfunction and lipid abnormalities. All these features, probably linked to insulin-resistance, are often present in obese PCOS patients. Cardiovascular abnormalities represent important long-term sequelae of PCOS that need further investigations.

  4. Defenders and Challengers of Endothelial Barrier Function

    PubMed Central

    Rahimi, Nader

    2017-01-01

    Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflammation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein interacting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function is moderated by the function of transmembrane receptors and signaling events that act to defend or destabilize it. Here, I highlight recent advances that have provided new insights into endothelial barrier function and mechanisms involved. Further investigation of these mechanisms could lead to the discovery of novel therapeutic targets for human diseases associated with endothelial dysfunction. PMID:29326721

  5. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists.

    PubMed

    Bani, MariaRosa; Decio, Alessandra; Giavazzi, Raffaella; Ghilardi, Carmen

    2017-05-01

    Tumor endothelial cells (TEC) differ from the normal counterpart, in both gene expression and functionality. TEC may acquire drug resistance, a characteristic that is maintained in vitro. There is evidence that TEC are more resistant to chemotherapeutic drugs, substrates of ATP-binding cassette (ABC) transporters. TEC express p-glycoprotein (encoded by ABCB1), while no difference in other ABC transporters was revealed compared to normal endothelia. A class of tyrosine kinase inhibitors (TKI), used as angiostatic compounds, interferes with the ATPase activity of p-glycoprotein, thus impairing its functionality. The exposure of ovarian adenocarcinoma TEC to the TKIs sunitinib or sorafenib was found to abrogate resistance (proliferation and motility) to doxorubicin and paclitaxel in vitro, increasing intracellular drug accumulation. A similar effect has been reported by the p-glycoprotein inhibitor verapamil. No beneficial effect was observed in combination with cytotoxic drugs that are not p-glycoprotein substrates. The current paper reviews the mechanisms of TEC chemoresistance and shows the role of p-glycoprotein in mediating such resistance. Inhibition of p-glycoprotein by anti-angiogenic TKI might contribute to the beneficial effect of these small molecules, when combined with chemotherapy, in counteracting acquired drug resistance.

  6. An endothelial link between the benefits of physical exercise in dementia.

    PubMed

    Trigiani, Lianne J; Hamel, Edith

    2017-08-01

    The current absence of a disease-modifying treatment for Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID) highlights the necessity for investigating the benefits of non-pharmacological approaches such as physical exercise (PE). Although evidence exists to support an association between regular PE and higher scores on cognitive function tests, and a slower rate of cognitive decline, there is no clear consensus on the underlying molecular mechanisms of the advantages of PE. This review seeks to summarize the positive effects of PE in human and animal studies while highlighting the vascular link between these benefits. Lifestyle factors such as cardiovascular diseases, metabolic syndrome, and sleep apnea will be addressed in relation to the risk they pose in developing AD and VCID, as will molecular factors known to have an impact on either the initiation or the progression of AD and/or VCID. This will include amyloid-beta clearance, oxidative stress, inflammatory responses, neurogenesis, angiogenesis, glucose metabolism, and white matter integrity. Particularly, this review will address how engaging in PE can counter factors that contribute to disease pathogenesis, and how these alterations are linked to endothelial cell function.

  7. Effects of Storage-Aged RBC Transfusions on Endothelial Function in Hospitalized Patients

    PubMed Central

    Neuman, Robert; Hayek, Salim; Rahman, Ayaz; Poole, Joseph C.; Menon, Vivek; Sher, Salman; Newman, James L.; Karatela, Sulaiman; Polhemus, David; Lefer, David J.; De Staercke, Christine; Hooper, Craig; Quyyumi, Arshed A.; Roback, John D.

    2014-01-01

    Background Clinical and animal studies indicate that transfusions of older stored RBCs impair clinical outcomes as compared to fresh RBC transfusions. It has been suggested that this effect is due to inhibition of NO-mediated vasodilation following transfusion of older RBC units. However, to date this effect has not been identified in human transfusion recipients. Study Design and Methods Forty-three hospitalized patients with transfusion orders were randomized to receive either fresh (< 14 days) or older stored (> 21 days) RBC units. Prior to transfusion, and at selected time points after the start of transfusion, endothelial function was assessed using non-invasive flow-mediated dilation assays. Results Following transfusion of older RBC units, there was a significant reduction in NO-mediated vasodilation at 24 hours after transfusion (p=0.045), while fresh RBC transfusions had no effect (p=0.231). Conclusions The present study suggests for the first time a significant inhibitory effect of transfused RBC units stored > 21 days on NO-mediated vasodilation in anemic hospitalized patients. This finding lends further support to the hypothesis that deranged NO signaling mediates adverse clinical effects of older RBC transfusions. Future investigations will be necessary to address possible confounding factors and confirm these results. PMID:25393772

  8. Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing.

    PubMed

    Cianfarani, Francesca; Toietta, Gabriele; Di Rocco, Giuliana; Cesareo, Eleonora; Zambruno, Giovanna; Odorisio, Teresa

    2013-01-01

    Adipose tissue-derived stem cells (ASCs) are gaining increasing consideration in tissue repair therapeutic application. Recent evidence indicates that ASCs enhance skin repair in animal models of impaired wound healing. To assess the therapeutic activity of autologous vs. allogeneic ASCs in the treatment of diabetic ulcers, we functionally characterized diabetic ASCs and investigated their potential to promote wound healing with respect to nondiabetic ones. Adipose tissue-derived cells from streptozotocin-induced type 1 diabetic mice were analyzed either freshly isolated as stromal vascular fraction (SVF), or following a single passage of culture (ASCs). Diabetic ASCs showed decreased proliferative potential and migration. Expression of surface markers was altered in diabetic SVF and cultured ASCs, with a reduction in stem cell marker-positive cells. ASCs from diabetic mice released lower amounts of hepatocyte growth factor, vascular endothelial growth factor (VEGF)-A, and insulin-like growth factor-1, growth factors playing important roles in skin repair. Accordingly, the supernatant of diabetic ASCs manifested reduced capability to promote keratinocyte and fibroblast proliferation and migration. Therapeutic potential of diabetic SVF administered to wounds of diabetic mice was blunted as compared with cells isolated from nondiabetic mice. Our data indicate that diabetes alters ASC intrinsic properties and impairs their function, thus affecting therapeutic potential in the autologous treatment for diabetic ulcers. © 2013 by the Wound Healing Society.

  9. Low dose dietary nitrate improves endothelial dysfunction and plaque stability in the ApoE-/- mouse fed a high fat diet.

    PubMed

    Bakker, J R; Bondonno, N P; Gaspari, T A; Kemp-Harper, B K; McCashney, A J; Hodgson, J M; Croft, K D; Ward, N C

    2016-10-01

    Nitric oxide (NO) is an important vascular signalling molecule. NO is synthesised endogenously by endothelial nitric oxide synthase (eNOS). An alternate pathway is exogenous dietary nitrate, which can be converted to nitrite and then stored or further converted to NO and used immediately. Atherosclerosis is associated with endothelial dysfunction and subsequent lesion formation. This is thought to arise due to a reduction in the bioavailability and/or bioactivity of endogenous NO. To determine if dietary nitrate can protect against endothelial dysfunction and lesion formation in the ApoE -/- mouse fed a high fat diet (HFD). ApoE -/- fed a HFD were randomized to receive (i) high nitrate (10mmol/kg/day, n=12), (ii) moderate nitrate (1mmol/kg/day, n=8), (iii) low nitrate (0.1mmol/kg/day, n=8), or (iv) sodium chloride supplemented drinking water (control, n=10) for 10 weeks. A group of C57BL6 mice (n=6) received regular water and served as a healthy reference group. At 10 weeks, ACh-induced vessel relaxation was significantly impaired in ApoE -/- mice versus C57BL6. Mice supplemented with low or moderate nitrate showed significant improvements in ACh-induced vessel relaxation compared to ApoE -/- mice given the high nitrate or sodium chloride. Plaque collagen expression was increased and lipid deposition reduced following supplementation with low or moderate nitrate compared to sodium chloride, reflecting increased plaque stability with nitrate supplementation. Plasma nitrate and nitrite levels were significantly increased in all three groups fed the nitrate-supplemented water. Low and moderate dose nitrate significantly improved endothelial function and atherosclerotic plaque composition in ApoE -/- mice fed a HFD. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.

  11. PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling

    PubMed Central

    Xu, Suowen; Ha, Chang Hoon; Wang, Weiye; Xu, Xiangbin; Yin, Meimei; Jin, Felix Q.; Mastrangelo, Michael; Koroleva, Marina; Fujiwara, Keigi; Jin, Zheng Gen

    2016-01-01

    Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs. PMID:26706435

  12. Autologous human plasma in stem cell culture and cryopreservation in the creation of a tissue-engineered vascular graft.

    PubMed

    Zhang, Ping; Policha, Aleksandra; Tulenko, Thomas; DiMuzio, Paul

    2016-03-01

    Previous work demonstrated the effectiveness of autologous adipose-derived stem cells (ASCs) as endothelial cell (EC) substitutes in vascular tissue engineering. We further this work toward clinical translation by evaluating ASC function after (1) replacement of fetal bovine serum (FBS) with autologous human plasma (HP) in culture and (2) cryopreservation. Human ASCs and plasma, isolated from periumbilical fat and peripheral blood, respectively, were collected from the same donors. ASCs were differentiated in endothelial growth medium supplemented with FBS (2%) vs HP (2%). Proliferation was measured by growth curves and MTT assay. Endothelial differentiation was measured by quantitative polymerase chain reaction, assessment of acetylated low-density lipoprotein uptake, and cord formation after plating on Matrigel (BD Biosciences, San Jose, Calif). Similar studies were conducted before and after cryopreservation of ASCs and included assessment of cell retention on the luminal surface of a vascular graft. ASCs expanded in HP-supplemented medium showed (1) similar proliferation to FBS-cultured ASCs, (2) consistent differentiation toward an EC lineage (increases in CD31, von Willebrand factor, and CD144 message; acetylated low-density lipoprotein uptake; and cord formation on Matrigel), and (3) retention on the luminal surface after seeding and subsequent flow conditioning. Cryopreservation did not significantly alter ASC viability, proliferation, acquisition of endothelial characteristics, or retention after seeding onto a vascular graft. This study suggests that (1) replacement of FBS with autologous HP--a step necessary for the translation of this technology into human use--does not significantly impair proliferation or endothelial differentiation of ASCs used as EC substitutes and (2) ASCs are tolerant to cryopreservation in terms of maintaining EC characteristics and retention on a vascular graft. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  13. The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks.

    PubMed

    Briand, Nolwenn; Guénantin, Anne-Claire; Jeziorowska, Dorota; Shah, Akshay; Mantecon, Matthieu; Capel, Emilie; Garcia, Marie; Oldenburg, Anja; Paulsen, Jonas; Hulot, Jean-Sebastien; Vigouroux, Corinne; Collas, Philippe

    2018-04-15

    The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.

  14. Role of homocysteinylation of ACE in endothelial dysfunction of arteries

    PubMed Central

    Huang, An; Pinto, John T.; Froogh, Ghezal; Kandhi, Sharath; Qin, Jun; Wolin, Michael S.; Hintze, Thomas H.

    2014-01-01

    The direct impact of de novo synthesis of homocysteine (Hcy) and its reactive metabolites, Hcy-S-S-Hcy and Hcy thiolactone (HCTL), on vascular function has not been fully elucidated. We hypothesized that Hcy synthesized within endothelial cells affects activity of angiotensin-converting enzyme (ACE) by direct homocysteinylation of its amino- and/or sulfhydryl moieties. This covalent modification enhances ACE reactivity toward angiotensin II (ANG II)-NADPH oxidase-superoxide-dependent endothelial dysfunction. Mesenteric and coronary arteries isolated from normal rats were incubated for 3 days with or without exogenous methionine (Met, 0.1–0.3 mM), a precursor to Hcy. Incubation of arteries in Met-free media resulted in time-dependent decreases in vascular Hcy formation. By contrast, vessels incubated with Met produced Hcy in a dose-dependent manner. There was a notably greater de novo synthesis of Hcy from endothelial than from smooth muscle cells. Enhanced levels of Hcy production significantly impaired shear stress-induced dilation and release of nitric oxide, events that are associated with elevated production of vascular superoxide. Each of these processes was attenuated by ANG II type I receptor blocker or ACE and NADPH oxidase inhibitors. In addition, in vitro exposure of purified ACE to Hcy-S-S-Hcy/HCTL resulted in formation of homocysteinylated ACE and an enhanced ACE activity. The enhanced ACE activity was confirmed in isolated coronary and mesenteric arteries that had been exposed directly to Hcy-S-S-Hcy/HCTL or after Met incubation. In conclusion, vasculature-derived Hcy initiates endothelial dysfunction that, in part, may be mediated by ANG II-dependent activation of NADPH oxidase in association with homocysteinylation of ACE. PMID:25416191

  15. Microparticulate Caspase-1 Regulates Gasdermin-D and Pulmonary Vascular Endothelial Cell Injury.

    PubMed

    Mitra, Srabani; Exline, Matthew; Habyarimana, Fabien; Gavrilin, Mikhail; Baker, Paul; Masters, Seth L; Wewers, Mark D; Sarkar, Anasuya

    2018-01-24

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Caspases 1, 4 and 5 are essential for completion of the apoptotic program known as pyroptosis that also involves pro-inflammatory cytokines. Because GSDM-D mediates pyroptotic death and is essential for pore formation, we hypothesized that it may direct caspase-1 encapsulated microparticle (MP) release and mediate endothelial cell death. Our current work provides evidence that GSDM-D is released by LPS stimulated THP1 monocytic cells where it is packaged into microparticles along with active caspase-1. Furthermore, only MP released from stimulated monocytic cells that contain both cleaved GSDM-D and active caspase-1 induce endothelial cell apoptosis. MPs pretreated with caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, do not contain cleaved GSDM-D. MPs from caspase-1KO cells are also deficient in p30 active GSDM-D, further confirming that caspase-1 regulates GSDM-D function. Although control MPs contained cleaved GSDM-D without caspase-1, these fractions were unable to induce cell death, suggesting that encapsulation of both caspase-1 and GSDM-D is essential for cell death induction. Release of microparticulate active caspase-1 was abrogated in GSDM-KO cells, although cytosolic caspase-1 activation was not impaired. Lastly, higher levels of microparticulate GSDM-D was detected in septic ARDS patient plasma when compared to healthy donors. Taken together, these findings suggest that GSDM-D regulates the release of microparticulate active caspase-1 from monocytes essential for induction of cell death and thereby may play a critical role in sepsis-induced endothelial cell injury.

  16. MiR-216a: a link between endothelial dysfunction and autophagy

    PubMed Central

    Menghini, R; Casagrande, V; Marino, A; Marchetti, V; Cardellini, M; Stoehr, R; Rizza, S; Martelli, E; Greco, S; Mauriello, A; Ippoliti, A; Martelli, F; Lauro, R; Federici, M

    2014-01-01

    Endothelial dysfunction and impaired autophagic activity have a crucial role in aging-related diseases such as cardiovascular dysfunction and atherosclerosis. We have identified miR-216a as a microRNA that is induced during endothelial aging and, according to the computational analysis, among its targets includes two autophagy-related genes, Beclin1 (BECN1) and ATG5. Therefore, we have evaluated the role of miR-216a as a molecular component involved in the loss of autophagic function during endothelial aging. The inverse correlation between miR-216a and autophagic genes was conserved during human umbilical vein endothelial cells (HUVECs) aging and in vivo models of human atherosclerosis and heart failure. Luciferase experiments indicated BECN1, but not ATG5 as a direct target of miR-216a. HUVECs were transfected in order to modulate miR-216a expression and stimulated with 100 μg/ml oxidized low-density lipoprotein (ox-LDL) to induce a stress repairing autophagic process. We found that in young HUVECs, miR-216a overexpression repressed BECN1 and ATG5 expression and the ox-LDL induced autophagy, as evaluated by microtubule-associated protein 1 light chain 3 (LC3B) analysis and cytofluorimetric assay. Moreover, miR-216a stimulated ox-LDL accumulation and monocyte adhesion in HUVECs. Conversely, inhibition of miR-216a in old HUVECs rescued the ability to induce a protective autophagy in response to ox-LDL stimulus. In conclusion, mir-216a controls ox-LDL induced autophagy in HUVECs by regulating intracellular levels of BECN1 and may have a relevant role in the pathogenesis of cardiovascular disorders and atherosclerosis. PMID:24481443

  17. Post-challenge hyperglycaemia, nitric oxide production and endothelial dysfunction: the putative role of asymmetric dimethylarginine (ADMA).

    PubMed

    Siervo, M; Corander, M; Stranges, S; Bluck, L

    2011-01-01

    The endothelium is a thin layer of cells at the internal surface of blood vessels in continuous contact with the circulating fluids. The endothelial cells represent the primary barrier for the transport of glucose from the vascular conduits into the interstitial space. Insulin and nitric oxide have an important role in the regulation of glucose transport and metabolism. Hyperglycaemia is the main criteria for the diagnosis of diabetes and is responsible for the micro- and macro-vascular pathology seen in diabetic patients. Recent evidence suggests that post-challenge hyperglycaemia is a better predictor of cardiovascular risk than fasting glucose. Acute glucose elevations have been associated with a reduced endothelial-dependent flow mediated dilation indicating a decrease in nitric oxide production. Post-prandial hyperglycaemic peaks have been directly associated with increased intima media thickness in type 2 diabetic patients indicative of an increased atherosclerotic risk. The increase in intra-cellular glucose concentrations in the endothelial cells induces a hyper-generation of reactive oxygen species via the activation of different pathways (polyol-sorbitol, hexosamine, advanced glycated end products, activation of PKC, asymmetric dimethylarginine (ADMA)). These mechanisms influence the expression of genes and release of signalling and structural molecules involved in several functions (inflammation, angiogenesis, coagulation, vascular tone and permeability, cellular migration, nutrient metabolism). ADMA is considered as a biomarker of endothelial dysfunction and it has been associated with an increased risk of atherosclerosis and cardiovascular diseases. The increased generation of ADMA and reactive oxygen species in subjects with persistent hyperglycaemia could lead to an impairment of nitric oxide synthesis. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Short-term increases in pressure and shear stress attenuate age-related declines in endothelial function in skeletal muscle feed arteries.

    PubMed

    Seawright, John W; Luttrell, Meredith; Trache, Andreea; Woodman, Christopher R

    2016-07-01

    We tested the hypothesis that exposure to a short-term (1 h) increase in intraluminal pressure and shear stress (SS), to mimic two mechanical signals associated with a bout of exercise, improves nitric oxide (NO)-mediated endothelium-dependent dilation in aged soleus muscle feed arteries (SFA). In addition, we hypothesized that pressure and SS would interact to produce greater improvements in endothelial function than pressure alone. SFA from young (4 months) and old (24 months) Fischer 344 rats were cannulated and pressurized at 90 (P90) or 130 (P130) cmH2O and exposed to no SS (0 dyn/cm(2)) or high SS (~65 dyn/cm(2)) for 1 h. At the end of the 1 h treatment period, pressure in all P130 SFA was set to 90 cmH2O and no SS (0 dyn/cm(2)) for examination of endothelium-dependent [flow and acetylcholine (ACh)] and endothelium-independent [sodium nitroprusside (SNP)] dilation. To evaluate the contribution of NO, vasodilator responses were assessed in the presence of N(ω)-nitro- l -arginine (L-NNA). Flow- and ACh-induced dilations were impaired in Old P90 SFA. Treatment with increased pressure + SS for 1 h improved flow- and ACh-induced dilations in old SFA. The beneficial effect of pressure + SS was abolished in the presence of L-NNA and was not greater than treatment with increased pressure alone. These results indicate that short-duration increases in pressure + SS improve NO-mediated endothelium-dependent dilation in aged SFA; however, pressure and SS do not interact to produce greater improvements in endothelial function than pressure alone.

  19. ASSOCIATIONS OF MACRO- AND MICROVASCULAR ENDOTHELIAL DYSFUNCTION WITH SUBCLINICAL VENTRICULAR DYSFUNCTION IN END-STAGE RENAL DISEASE

    PubMed Central

    Dubin, Ruth F; Guajardo, Isabella; Ayer, Amrita; Mills, Claire; Donovan, Catherine; Beussink, Lauren; Scherzer, Rebecca; Ganz, Peter; Shah, Sanjiv J

    2016-01-01

    Patients with end-stage renal disease (ESRD) suffer high rates of heart failure and cardiovascular mortality, and we lack a thorough understanding of what, if any, modifiable factors contribute to cardiac dysfunction in these high-risk patients. In order to evaluate endothelial function as a potentially modifiable cause of cardiac dysfunction in ESRD, we investigated cross-sectional associations of macro- and microvascular dysfunction with left and right ventricular dysfunction in a well-controlled ESRD cohort. We performed comprehensive echocardiography, including tissue Doppler imaging and speckle tracking echocardiography of the left and right ventricle, in 149 ESRD patients enrolled in an ongoing prospective, observational study. Of these participants, 123 also underwent endothelium-dependent flow-mediated dilation (FMD) of the brachial artery (macrovascular function). Microvascular function was measured as the velocity time integral (VTI) of hyperemic blood flow following cuff deflation. Impaired FMD was associated with higher LV mass, independently of age and blood pressure: per two-fold lower FMD, LV mass was 4.1% higher (95%CI [0.49, 7.7], p=0.03). After adjustment for demographics, blood pressure, comorbidities and medications, a two-fold lower VTI was associated with 9.5% higher E/e’ ratio (95% CI [1.0, 16], p=0.03) and 6.7% lower absolute RV longitudinal strain (95% CI [2.0, 12], p=0.003). Endothelial dysfunction is a major correlate of cardiac dysfunction in ESRD, particularly diastolic and right ventricular dysfunction, in patients whose volume status is well-controlled. Future investigations are needed to determine whether therapies targeting the vascular endothelium could improve cardiac outcomes in ESRD. PMID:27550915

  20. Flow-mediated vasodilation is augmented in a corkscrew collateral artery compared with that in a native artery in patients with thromboangiitis obliterans (Buerger disease).

    PubMed

    Fujii, Yuichi; Fujimura, Noritaka; Mikami, Shinsuke; Maruhashi, Tatsuya; Kihara, Yasuki; Chayama, Kazuaki; Noma, Kensuke; Higashi, Yukihito

    2011-12-01

    A healthy endothelium maintains vascular tone and structure. The purpose of this study was to evaluate endothelial function in corkscrew collateral arteries in Buerger disease. We measured flow-mediated vasodilation (FMD) in corkscrew arteries in 26 patients with Buerger disease, in control arteries in 26 healthy subjects, and in native arteries in 16 patients with Buerger disease. Hyperemic flow was lower in corkscrew arteries than in native arteries in patients with Buerger disease and in control arteries in healthy subjects. There was no significant difference between hyperemic flow in patients with Buerger disease in whom measurements were performed in native arteries and that in healthy subjects. FMD was lower in corkscrew arteries and native arteries in patients with Buerger disease than in control arteries in healthy subjects. There was no significant difference between FMD in corkscrew arteries in patients with Buerger disease and in that in native arteries. The ratio of FMD to hyperemic flow was significantly smaller in native arteries in patients with Buerger disease than in corkscrew arteries and in control arteries in healthy subjects (5.5 ± 6.2 vs 8.8 ± 8.9 and 9.6 ± 7.6 mL/min, P < .001, respectively). There was no significant difference in the ratio of FMD to hyperemic flow between corkscrew arteries in Buerger disease and control arteries in healthy subjects. Nitroglycerin-induced vasodilation was similar in all leg arteries. Endothelial function of a corkscrew collateral artery in patients with Buerger disease is maintained, while endothelial function is impaired in a native artery in Buerger disease. Copyright © 2011 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

Top