Science.gov

Sample records for impaired dopaminergic neuron

  1. Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae.

    PubMed

    Godoy, Rafael; Noble, Sandra; Yoon, Kevin; Anisman, Hymie; Ekker, Marc

    2015-10-01

    To determine the impact of a controlled loss of dopaminergic neurons on locomotor function, we generated transgenic zebrafish, Tg(dat:CFP-NTR), expressing a cyan fluorescent protein-nitroreductase fusion protein (CFP-NTR) under the control of dopamine transporter (dat) cis-regulatory elements. Embryonic and larval zebrafish express the transgene in several groups of dopaminergic neurons, notably in the olfactory bulb, telencephalon, diencephalon and caudal hypothalamus. Administration of the pro-drug metronidazole (Mtz) resulted in activation of caspase 3 in CFP-positive neurons and in a reduction in dat-positive cells by 5 days post-fertilization (dpf). Loss of neurons coincided with impairments in global locomotor parameters such as swimming distance, percentage of time spent moving, as well as changes in tail bend parameters such as time to maximal bend and angular velocity. Dopamine levels were transiently decreased following Mtz administration. Recovery of some of the locomotor parameters was observed by 7 dpf. However, the total numbers of dat-expressing neurons were still decreased at 7, 12, or 14 dpf, even though there was evidence for production of new dat-expressing cells. Tg(dat:CFP-NTR) zebrafish provide a model to correlate altered dopaminergic neuron numbers with locomotor function and to investigate factors influencing regeneration of dopaminergic neurons. PMID:26118896

  2. Severe dopaminergic neuron loss in rhesus monkey brain impairs morphine-induced conditioned place preference

    PubMed Central

    Yan, Ting; Rizak, Joshua Dominic; Wang, Jianhong; Yang, Shangchuan; Ma, Yuanye; Hu, Xintian

    2015-01-01

    It is well known that dopamine (DA) is critical for reward, but the precise role of DA in reward remains uncertain. The aim of this study was to determine what percentage of dopaminergic neurons in the primate brain is required for the expression of conditioned reward by measuring the performance of DA-deficient rhesus monkeys in a morphine-induced conditioned place preference (CPP) paradigm. Animals with mild Parkinsonian symptoms successfully developed and retained a morphine preference that was equivalent to control monkeys. However, these monkeys could not maintain the preference as well as controls when they retained severe Parkinsonian symptoms. On the other hand, monkeys initially in a severe Parkinsonian state developed a preference for morphine, but this preference was weaker than that of the controls. Histological results showed that the loss of dopaminergic neurons in monkeys that had severe Parkinsonian symptoms was about 80% in comparison to the control monkeys. All these data suggest that a severely impaired DA system alters rewarding-seeking behavior in non-human primates. PMID:26528155

  3. Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern.

    PubMed

    Decker, Amanda R; McNeill, Matthew S; Lambert, Aaron M; Overton, Jeffrey D; Chen, Yu-Chia; Lorca, Ramón A; Johnson, Nicolas A; Brockerhoff, Susan E; Mohapatra, Durga P; MacArthur, Heather; Panula, Pertti; Masino, Mark A; Runnels, Loren W; Cornell, Robert A

    2014-02-15

    Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation.

  4. Emotional memory impairments induced by AAV-mediated overexpression of human α-synuclein in dopaminergic neurons of the ventral tegmental area.

    PubMed

    Alvarsson, A; Caudal, D; Björklund, A; Svenningsson, P

    2016-01-01

    Parkinson's disease (PD) is associated with extensive degeneration of dopaminergic neurons originating in the substantia nigra pars compacta, but neuronal loss is also found in the ventral tegmental area (VTA). The VTA projects to areas involved in cognitive and emotional processes, including hippocampus, amygdala, nucleus accumbens and prefrontal cortex, and has thus been proposed to play a role in emotional memory impairments in PD. Since the formation of α-synuclein inclusions throughout the central nervous system is a pathological hallmark of PD, we studied the progressive effects of α-synuclein overexpression in the VTA on motor functions, emotional behaviour and emotional memory. Adeno-associated viral (AAV) vectors encoding either human α-synuclein or green fluorescent protein (GFP) were injected stereotactically into the VTA, and behaviour was monitored 3 and 8 weeks following AAV injection. At week 8, there was a 22% reduction of TH+ neurons in the VTA. We demonstrate that α-synuclein overexpression in dopaminergic neurons of the VTA induced mild motor deficits that appeared 3 weeks following AAV-α-synuclein injection and were aggravated at week 8. No depressive- or anxiety-like behaviours were found. To address emotional memory, we used the passive avoidance test, a one-trial associative learning paradigm based on contextual conditioning which requires minimal training. Interestingly, emotional memory impairments were found in α-synuclein overexpressing animals at week 8. These findings indicate that α-synuclein overexpression induces progressive memory impairments likely caused by a loss of function of mesolimbic dopaminergic projections.

  5. Primary Culture of Mouse Dopaminergic Neurons

    PubMed Central

    Gaven, Florence; Marin, Philippe; Claeysen, Sylvie

    2014-01-01

    Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment. PMID:25226064

  6. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression

    PubMed Central

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M.; Miller, Gary W.; Mateo, Yolanda; Lovinger, David M.; Cai, Huaibin

    2015-01-01

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release. PMID:26123485

  7. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression.

    PubMed

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M; Miller, Gary W; Mateo, Yolanda; Lovinger, David M; Cai, Huaibin

    2015-09-15

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.

  8. [Impact of opiates on dopaminergic neurons].

    PubMed

    Kaufling, Jennifer; Freund-Mercier, Marie-José; Barrot, Michel

    2016-01-01

    Since the work of Johnson and North, it is known that opiates increase the activity of dopaminergic neurons by a GABA neuron-mediated desinhibition. This model should however be updated based on recent advances. Thus, the neuroanatomical location of the GABA neurons responsible for this desinhibition has been recently detailed: they belong to a brain structure in continuity with the posterior part of the ventral tegmental area and discovered this past decade. Other data also highlighted the critical role played by glutamatergic transmission in the opioid regulation of dopaminergic neuron activity. During protracted opiate withdrawal, the inhibitory/excitatory balance exerted on dopaminergic neurons is altered. These results are now leading to propose an original hypothesis for explaining the impact of protracted opiate withdrawal on mood. PMID:27406773

  9. NMDA Receptors in Dopaminergic Neurons are Crucial for Habit Learning

    PubMed Central

    Wang, Lei Phillip; Li, Fei; Wang, Dong; Xie, Kun; Wang, Deheng; Shen, Xiaoming; Tsien, Joe Z.

    2011-01-01

    Summary Dopamine is crucial for habit learning. Activities of midbrain dopaminergic neurons are regulated by the cortical and subcortical signals among which glutamatergic afferents provide excitatory inputs. Cognitive implications of glutamatergic afferents in regulating and engaging dopamine signals during habit learning however remain unclear. Here we show that mice with dopaminergic neuron-specific NMDAR1 deletion are impaired in a variety of habit learning tasks while normal in some other dopamine-modulated functions such as locomotor activities, goal directed learning, and spatial reference memories. In vivo neural recording revealed that DA neurons in these mutant mice could still develop the cue-reward association responses, but their conditioned response robustness was drastically blunted. Our results suggest that integration of glutamatergic inputs to DA neurons by NMDA receptors, likely by regulating associative activity patterns, is a crucial part of the cellular mechanism underpinning habit learning. PMID:22196339

  10. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism.

    PubMed

    Dodson, Paul D; Dreyer, Jakob K; Jennings, Katie A; Syed, Emilie C J; Wade-Martins, Richard; Cragg, Stephanie J; Bolam, J Paul; Magill, Peter J

    2016-04-12

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits.

  11. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    PubMed Central

    Dreyer, Jakob K.; Jennings, Katie A.; Syed, Emilie C. J.; Wade-Martins, Richard; Cragg, Stephanie J.; Bolam, J. Paul; Magill, Peter J.

    2016-01-01

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson’s disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson’s disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits. PMID:27001837

  12. How to make a mesodiencephalic dopaminergic neuron.

    PubMed

    Smidt, Marten P; Burbach, J Peter H

    2007-01-01

    Dopaminergic neurons located in the ventral mesodiencephalon are essential for the control of voluntary movement and the regulation of emotion, and are severely affected in neurodegenerative diseases such as Parkinson's disease. Recent advances in molecular biology and mouse genetics have helped to unravel the mechanisms involved in the development of mesodiencephalic dopaminergic (mdDA) neurons, including their specification, migration and differentiation, as well as the processes that govern axonal pathfinding and their specific patterns of connectivity and maintenance. Here, we follow the developmental path of these neurons with the goal of generating a molecular code that could be exploited in cell-replacement strategies to treat diseases such as Parkinson's disease. PMID:17180160

  13. Necrostatin-1 protection of dopaminergic neurons

    PubMed Central

    Wu, Jing-ru; Wang, Jie; Zhou, Sheng-kui; Yang, Long; Yin, Jia-le; Cao, Jun-ping; Cheng, Yan-bo

    2015-01-01

    Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range (5–30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease. PMID:26330837

  14. Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death

    PubMed Central

    Zhang, Wei; Zecca, Luigi; Wilson, Belinda; Ren, RW; Wang, Yong-jun; Wang, Xiao-min; Hong, Jau-Shyong

    2013-01-01

    Substantial evidence indicates that neuroinflammation caused by over-activation of microglial in the substantia nigra is critical in the pathogenesis of dopaminergic neurodegeneration in Parkinson’s disease (PD). Increasing data demonstrates that environmental factors such as rotenone, paraquat play pivotal roles in the death of dopaminergic neurons. Here, potential role and mechanism of neuromelanin (NM), a major endogenous component in dopaminergic neurons of the substantia nigra, on microglial activation and associated dopaminergic neurotoxicity were investigated. Using multiple well-established primary mesencephalic cultures, we tested whether human NM (HNM) could activate microglia, thereby provoking dopaminergic neurodegeneration. The results demonstrated that in primary mesencephalic neuron-glia cultures, HNM caused dopaminergic neuronal damage characterized by the decreased dopamine uptake and reduced numbers and shorted dendrites of dopaminergic neurons. HNM-induced degeneration was relatively selective to dopaminergic neurons since the other types of neurons determined by either gamma-aminobutyric acid uptake and total neuronal numbers after staining showed smaller decrease. We demonstrated that HNM produced modest dopaminergic neurotoxicity in neuron-enriched cultures; in contrast, much greater neurotoxicity was observed in the presence of microglia. HNM-induced microglial activation was shown by morphological changes and production of proinflammatory and neurotoxic factors. These results suggest that HNM, once released from damaged dopaminergic neurons, can be an potent endogenous activator involved in the reactivation of microglia, which may mediate disease progression. Thus, inhibition of reactive microglia can be a useful strategy for PD therapy. PMID:23276965

  15. Dual effects of L-DOPA on nigral dopaminergic neurons.

    PubMed

    Guatteo, Ezia; Yee, Andrew; McKearney, James; Cucchiaroni, Maria L; Armogida, Marta; Berretta, Nicola; Mercuri, Nicola B; Lipski, Janusz

    2013-09-01

    L-DOPA (Levodopa) remains the gold standard for the treatment of motor symptoms of Parkinson's disease (PD), despite indications that the drug may have detrimental effects in cell culture. Classically, l-DOPA increases the production of dopamine (DA) in nigral dopaminergic neurons, while paradoxically inhibiting the firing of these neurons due to activation of D2 autoreceptors by extracellularly released DA. Using a combination of electrophysiology and calcium microfluorometry in brain slices, we have identified a novel effect of L-DOPA on dopaminergic neurons when D2 receptors were blocked. Under these conditions, L-DOPA (0.03-3 mM) evoked an excitatory effect consisting of two components. The 'early' component observed during and immediately after application of the drug, was associated with increased firing, membrane depolarization and inward current. This excitatory response was strongly attenuated by CNQX (10 μM), pointing to the involvement of TOPA quinone, an auto-oxidation product of L-DOPA and a potent activator of AMPA/kainate receptors. The 'late' phase of excitation persisted >30 min after brief L-DOPA application and was not mediated by ionotropic glutamate receptors, nor by D1, α1-adrenergic, mGluR1 or GABAB receptors. It was eliminated by carbidopa, demonstrating its dependence on conversion of L-DOPA to DA. Exogenous DA (50 μM) also evoked a glutamate-receptor independent increase in firing and an inward current when D2 receptors were blocked. In voltage-clamped neurons, both L-DOPA and DA produced a long-lasting increase in [Ca(2+)]i which was unaffected by block of ionotropic glutamate receptors. These results demonstrate that L-DOPA has dual, inhibitory and excitatory, effects on nigral dopaminergic neurons, and suggest that the excitation and calcium rise may have long-lasting consequences for the activity and survival of these neurons when the expression or function of D2 receptors is impaired. PMID:23481547

  16. How to make a midbrain dopaminergic neuron.

    PubMed

    Arenas, Ernest; Denham, Mark; Villaescusa, J Carlos

    2015-06-01

    Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained in vivo. This knowledge might help to instruct efforts to generate mDA neurons in vitro, which holds promise not only for cell replacement therapy, but also for disease modeling and drug discovery. In this Primer, we will focus on recent developments in understanding the molecular mechanisms that regulate the development of mDA neurons in vivo, and how they have been used to generate human mDA neurons in vitro from pluripotent stem cells or from somatic cells via direct reprogramming. Current challenges and future avenues in the development of a regenerative medicine for PD will be identified and discussed.

  17. Do substantia nigra dopaminergic neurons differentiate between reward and punishment?

    PubMed

    Frank, Michael J; Surmeier, D James

    2009-10-01

    The activity of dopaminergic neurons are thought to be increased by stimuli that predict reward and decreased by stimuli that predict aversive outcomes. Recent work by Matsumoto and Hikosaka challenges this model by asserting that stimuli associated with either rewarding or aversive outcomes increase the activity of dopaminergic neurons in the substantia nigra pars compacta.

  18. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    SciTech Connect

    Morel, G.; Pelletier, G.

    1986-11-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system.

  19. Engrailed Homeoprotein Protects Mesencephalic Dopaminergic Neurons from Oxidative Stress

    PubMed Central

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Fuchs, Julia; Massiani-Beaudoin, Olivia; Prochiantz, Alain; Joshi, Rajiv L.

    2016-01-01

    Summary Engrailed homeoproteins are expressed in adult dopaminergic neurons of the substantia nigra. In Engrailed1 heterozygous mice, these neurons start dying at 6 weeks, are more sensitive to oxidative stress, and progressively develop traits similar to those observed following an acute and strong oxidative stress inflected to wild-type neurons. These changes include DNA strand breaks and the modification (intensity and distribution) of several nuclear and nucleolar heterochromatin marks. Engrailed1 and Engrailed2 are biochemically equivalent transducing proteins previously used to antagonize dopaminergic neuron death in Engrailed1 heterozygous mice and in mouse models of Parkinson disease. Accordingly, we show that, following an acute oxidative stress, a single Engrailed2 injection restores all nuclear and nucleolar heterochromatin marks, decreases the number of DNA strand breaks, and protects dopaminergic neurons against apoptosis. PMID:26411690

  20. Fate of midbrain dopaminergic neurons controlled by the engrailed genes.

    PubMed

    Simon, H H; Saueressig, H; Wurst, W; Goulding, M D; O'Leary, D D

    2001-05-01

    Deficiencies in neurotransmitter-specific cell groups in the midbrain result in prominent neural disorders, including Parkinson's disease, which is caused by the loss of dopaminergic neurons of the substantia nigra. We have investigated in mice the role of the engrailed homeodomain transcription factors, En-1 and En-2, in controlling the developmental fate of midbrain dopaminergic neurons. En-1 is highly expressed by essentially all dopaminergic neurons in the substantia nigra and ventral tegmentum, whereas En-2 is highly expressed by a subset of them. These neurons are generated and differentiate their dopaminergic phenotype in En-1/En-2 double null mutants, but disappear soon thereafter. Use of an En-1/tau-LacZ knock-in mouse as an autonomous marker for these neurons indicates that they are lost, rather than that they change their neurotransmitter phenotype. A single allele of En-1 on an En-2 null background is sufficient to produce a wild type-like substantia nigra and ventral tegmentum, whereas in contrast a single allele of En-2 on an En-1 null background results in the survival of only a small proportion of these dopaminergic neurons, a finding that relates to the differential expression of En-1 and En-2. Additional findings indicate that En-1 and En-2 regulate expression of alpha-synuclein, a gene that is genetically linked to Parkinson's disease. These findings show that the engrailed genes are expressed by midbrain dopaminergic neurons from their generation to adulthood but are not required for their specification. However, the engrailed genes control the survival of midbrain dopaminergic neurons in a gene dose-dependent manner. Our findings also suggest a link between engrailed and Parkinson's disease.

  1. Fate of midbrain dopaminergic neurons controlled by the engrailed genes.

    PubMed

    Simon, H H; Saueressig, H; Wurst, W; Goulding, M D; O'Leary, D D

    2001-05-01

    Deficiencies in neurotransmitter-specific cell groups in the midbrain result in prominent neural disorders, including Parkinson's disease, which is caused by the loss of dopaminergic neurons of the substantia nigra. We have investigated in mice the role of the engrailed homeodomain transcription factors, En-1 and En-2, in controlling the developmental fate of midbrain dopaminergic neurons. En-1 is highly expressed by essentially all dopaminergic neurons in the substantia nigra and ventral tegmentum, whereas En-2 is highly expressed by a subset of them. These neurons are generated and differentiate their dopaminergic phenotype in En-1/En-2 double null mutants, but disappear soon thereafter. Use of an En-1/tau-LacZ knock-in mouse as an autonomous marker for these neurons indicates that they are lost, rather than that they change their neurotransmitter phenotype. A single allele of En-1 on an En-2 null background is sufficient to produce a wild type-like substantia nigra and ventral tegmentum, whereas in contrast a single allele of En-2 on an En-1 null background results in the survival of only a small proportion of these dopaminergic neurons, a finding that relates to the differential expression of En-1 and En-2. Additional findings indicate that En-1 and En-2 regulate expression of alpha-synuclein, a gene that is genetically linked to Parkinson's disease. These findings show that the engrailed genes are expressed by midbrain dopaminergic neurons from their generation to adulthood but are not required for their specification. However, the engrailed genes control the survival of midbrain dopaminergic neurons in a gene dose-dependent manner. Our findings also suggest a link between engrailed and Parkinson's disease. PMID:11312297

  2. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina.

    PubMed

    Esteve-Rudd, Julián; Fernández-Sánchez, Laura; Lax, Pedro; De Juan, Emilio; Martín-Nieto, José; Cuenca, Nicolás

    2011-10-01

    Rotenone is a widely used pesticide and a potent inhibitor of mitochondrial complex I (NADH-quinone reductase) that elicits the degeneration of dopaminergic neurons and thereby the appearance of a parkinsonian syndrome. Here we have addressed the alterations induced by rotenone at the functional, morphological and molecular levels in the retina, including those involving both dopaminergic and non-dopaminergic retinal neurons. Rotenone-treated rats showed abnormalities in equilibrium, postural instability and involuntary movements. In their outer retina we observed a loss of photoreceptors, and a reduced synaptic connectivity between those remaining and their postsynaptic neurons. A dramatic loss of mitochondria was observed in the inner segments, as well as in the axon terminals of photoreceptors. In the inner retina we observed a decrease in the expression of dopaminergic cell molecular markers, including loss of tyrosine hydroxylase immunoreactivity, associated with a reduction of the dopaminergic plexus and cell bodies. An increase in immunoreactivity of AII amacrine cells for parvalbumin, a Ca(2+)-scavenging protein, was also detected. These abnormalities were accompanied by a decrease in the amplitude of scotopic and photopic a- and b-waves and an increase in the b-wave implicit time, as well as by a lower amplitude and greater latency in oscillatory potentials. These results indicate that rotenone induces loss of vision by promoting photoreceptor cell death and impairment of the dopaminergic retinal system.

  3. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson's disease.

    PubMed

    Drui, G; Carnicella, S; Carcenac, C; Favier, M; Bertrand, A; Boulet, S; Savasta, M

    2014-03-01

    Parkinson's disease (PD) involves the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) that is thought to cause the classical motor symptoms of this disease. However, motivational and affective impairments are also often observed in PD patients. These are usually attributed to a psychological reaction to the general motor impairment and to a loss of some of the neurons within the ventral tegmental area (VTA). We induced selective lesions of the VTA and SNc DA neurons that did not provoke motor deficits, and showed that bilateral dopamine loss within the SNc, but not within the VTA, induces motivational deficits and affective impairments that mimicked the symptoms of PD patients. Thus, motivational and affective deficits are a core impairment of PD, as they stem from the loss of the major group of neurons that degenerates in this disease (DA SNc neurons) and are independent of motor deficits.

  4. Single dopaminergic neurons that modulate aggression in Drosophila.

    PubMed

    Alekseyenko, Olga V; Chan, Yick-Bun; Li, Ran; Kravitz, Edward A

    2013-04-01

    Monoamines, including dopamine (DA), have been linked to aggression in various species. However, the precise role or roles served by the amine in aggression have been difficult to define because dopaminergic systems influence many behaviors, and all can be altered by changing the function of dopaminergic neurons. In the fruit fly, with the powerful genetic tools available, small subsets of brain cells can be reliably manipulated, offering enormous advantages for exploration of how and where amine neurons fit into the circuits involved with aggression. By combining the GAL4/upstream activating sequence (UAS) binary system with the Flippase (FLP) recombination technique, we were able to restrict the numbers of targeted DA neurons down to a single-cell level. To explore the function of these individual dopaminergic neurons, we inactivated them with the tetanus toxin light chain, a genetically encoded inhibitor of neurotransmitter release, or activated them with dTrpA1, a temperature-sensitive cation channel. We found two sets of dopaminergic neurons that modulate aggression, one from the T1 cluster and another from the PPM3 cluster. Both activation and inactivation of these neurons resulted in an increase in aggression. We demonstrate that the presynaptic terminals of the identified T1 and PPM3 dopaminergic neurons project to different parts of the central complex, overlapping with the receptor fields of DD2R and DopR DA receptor subtypes, respectively. These data suggest that the two types of dopaminergic neurons may influence aggression through interactions in the central complex region of the brain involving two different DA receptor subtypes. PMID:23530210

  5. Compromised NMDA/Glutamate Receptor Expression in Dopaminergic Neurons Impairs Instrumental Learning, But Not Pavlovian Goal Tracking or Sign Tracking1,2,3

    PubMed Central

    James, Alex S.; Pennington, Zachary T.; Tran, Phu

    2015-01-01

    Abstract Two theories regarding the role for dopamine neurons in learning include the concepts that their activity serves as a (1) mechanism that confers incentive salience onto rewards and associated cues and/or (2) contingency teaching signal reflecting reward prediction error. While both theories are provocative, the causal role for dopamine cell activity in either mechanism remains controversial. In this study mice that either fully or partially lacked NMDARs in dopamine neurons exclusively, as well as appropriate controls, were evaluated for reward-related learning; this experimental design allowed for a test of the premise that NMDA/glutamate receptor (NMDAR)-mediated mechanisms in dopamine neurons, including NMDA-dependent regulation of phasic discharge activity of these cells, modulate either the instrumental learning processes or the likelihood of pavlovian cues to become highly motivating incentive stimuli that directly attract behavior. Loss of NMDARs in dopamine neurons did not significantly affect baseline dopamine utilization in the striatum, novelty evoked locomotor behavior, or consumption of a freely available, palatable food solution. On the other hand, animals lacking NMDARs in dopamine cells exhibited a selective reduction in reinforced lever responses that emerged over the course of instrumental learning. Loss of receptor expression did not, however, influence the likelihood of an animal acquiring a pavlovian conditional response associated with attribution of incentive salience to reward-paired cues (sign tracking). These data support the view that reductions in NMDAR signaling in dopamine neurons affect instrumental reward-related learning but do not lend support to hypotheses that suggest that the behavioral significance of this signaling includes incentive salience attribution. PMID:26464985

  6. Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration.

    PubMed

    Meka, Durga Praveen; Müller-Rischart, Anne Kathrin; Nidadavolu, Prakash; Mohammadi, Behnam; Motori, Elisa; Ponna, Srinivas Kumar; Aboutalebi, Helia; Bassal, Mahmoud; Annamneedi, Anil; Finckh, Barbara; Miesbauer, Margit; Rotermund, Natalie; Lohr, Christian; Tatzelt, Jörg; Winklhofer, Konstanze F; Kramer, Edgar R

    2015-05-01

    Parkin and the glial cell line-derived neurotrophic factor (GDNF) receptor RET have both been independently linked to the dopaminergic neuron degeneration that underlies Parkinson's disease (PD). In the present study, we demonstrate that there is genetic crosstalk between parkin and the receptor tyrosine kinase RET in two different mouse models of PD. Mice lacking both parkin and RET exhibited accelerated dopaminergic cell and axonal loss compared with parkin-deficient animals, which showed none, and RET-deficient mice, in which we found moderate degeneration. Transgenic expression of parkin protected the dopaminergic systems of aged RET-deficient mice. Downregulation of either parkin or RET in neuronal cells impaired mitochondrial function and morphology. Parkin expression restored mitochondrial function in GDNF/RET-deficient cells, while GDNF stimulation rescued mitochondrial defects in parkin-deficient cells. In both cases, improved mitochondrial function was the result of activation of the prosurvival NF-κB pathway, which was mediated by RET through the phosphoinositide-3-kinase (PI3K) pathway. Taken together, these observations indicate that parkin and the RET signaling cascade converge to control mitochondrial integrity and thereby properly maintain substantia nigra pars compacta dopaminergic neurons and their innervation in the striatum. The demonstration of crosstalk between parkin and RET highlights the interplay in the protein network that is altered in PD and suggests potential therapeutic targets and strategies to treat PD. PMID:25822020

  7. Transcriptional comparison of human induced and primary midbrain dopaminergic neurons

    PubMed Central

    Xia, Ninuo; Zhang, Pengbo; Fang, Fang; Wang, Zhengyuan; Rothstein, Megan; Angulo, Benjamin; Chiang, Rosaria; Taylor, James; Reijo Pera, Renee A.

    2016-01-01

    Generation of induced dopaminergic (iDA) neurons may provide a significant step forward towards cell replacement therapy for Parkinson’s disease (PD). To study and compare transcriptional programs of induced cells versus primary DA neurons is a preliminary step towards characterizing human iDA neurons. We have optimized a protocol to efficiently generate iDA neurons from human pluripotent stem cells (hPSCs). We then sequenced the transcriptomes of iDA neurons derived from 6 different hPSC lines and compared them to that of primary midbrain (mDA) neurons. We identified a small subset of genes with altered expression in derived iDA neurons from patients with Parkinson’s Disease (PD). We also observed that iDA neurons differ significantly from primary mDA neurons in global gene expression, especially in genes related to neuron maturation level. Results suggest iDA neurons from patient iPSCs could be useful for basic and translational studies, including in vitro modeling of PD. However, further refinement of methods of induction and maturation of neurons may better recapitulate full development of mDA neurons from hPSCs. PMID:26842779

  8. Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice

    PubMed Central

    2012-01-01

    Background The striato-nigral projecting pathway contains the highest concentrations of dynorphin in the brain. The functional role of this opioid peptide in the regulation of mesencephalic dopaminergic (DAergic) neurons is not clear. We reported previously that exogenous dynorphin exerts potent neuroprotective effects against inflammation-induced dopaminergic neurodegeneration in vitro. The present study was performed to investigate whether endogenous dynorphin has neuroprotective roles in vivo. Methods 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (MA), two commonly used neurotoxins in rodent models of Parkinson’s disease, were administered to wild-type (Dyn+/+) and prodynorphin-deficient mice (Dyn−/−). We examined dopaminergic neurotoxicity by using an automated video tracking system, HPLC, immunocytochemistry, and reverse transcription and polymerase chain reaction (RT-PCR). Results Treatment with MPTP resulted in behavioral impairments in both strains. However, these impairments were more pronounced in Dyn-l- than in Dyn+/+. Dyn−/− showed more severe MPTP-induced dopaminergic neuronal loss in the substantia nigra and striatum than Dyn+/+. Similarly, the levels of dopamine and its metabolites in the striatum were depleted to a greater extent in Dyn−/− than in Dyn+/+. Additional mechanistic studies revealed that MPTP treatment caused a higher degree of microglial activation and M1 phenotype differentiation in Dyn−/− than in Dyn+/+. Consistent with these observations, prodynorphin deficiency also exacerbated neurotoxic effects induced by MA, although this effect was less pronounced than that of MPTP. Conclusions The in vivo results presented here extend our previous in vitro findings and further indicate that endogenous dynorphin plays a critical role in protecting dopaminergic neurons through its anti-inflammatory effects. PMID:22695044

  9. Remote control of induced dopaminergic neurons in parkinsonian rats.

    PubMed

    Dell'Anno, Maria Teresa; Caiazzo, Massimiliano; Leo, Damiana; Dvoretskova, Elena; Medrihan, Lucian; Colasante, Gaia; Giannelli, Serena; Theka, Ilda; Russo, Giovanni; Mus, Liudmila; Pezzoli, Gianni; Gainetdinov, Raul R; Benfenati, Fabio; Taverna, Stefano; Dityatev, Alexander; Broccoli, Vania

    2014-07-01

    Direct lineage reprogramming through genetic-based strategies enables the conversion of differentiated somatic cells into functional neurons and distinct neuronal subtypes. Induced dopaminergic (iDA) neurons can be generated by direct conversion of skin fibroblasts; however, their in vivo phenotypic and functional properties remain incompletely understood, leaving their impact on Parkinson's disease (PD) cell therapy and modeling uncertain. Here, we determined that iDA neurons retain a transgene-independent stable phenotype in culture and in animal models. Furthermore, transplanted iDA neurons functionally integrated into host neuronal tissue, exhibiting electrically excitable membranes, synaptic currents, dopamine release, and substantial reduction of motor symptoms in a PD animal model. Neuronal cell replacement approaches will benefit from a system that allows the activity of transplanted neurons to be controlled remotely and enables modulation depending on the physiological needs of the recipient; therefore, we adapted a DREADD (designer receptor exclusively activated by designer drug) technology for remote and real-time control of grafted iDA neuronal activity in living animals. Remote DREADD-dependent iDA neuron activation markedly enhanced the beneficial effects in transplanted PD animals. These data suggest that iDA neurons have therapeutic potential as a cell replacement approach for PD and highlight the applicability of pharmacogenetics for enhancing cellular signaling in reprogrammed cell-based approaches. PMID:24937431

  10. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    PubMed Central

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  11. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model.

    PubMed

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE's ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  12. Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation.

    PubMed

    Gerlai, R; McNamara, A; Choi-Lundberg, D L; Armanini, M; Ross, J; Powell-Braxton, L; Phillips, H S

    2001-10-01

    Exogenous glial cell line-derived neurotrophic factor (GDNF) exhibits potent survival-promoting effects on dopaminergic neurons of the nigrostriatal pathway that is implicated in Parkinson's disease and also protects neurons in forebrain ischemia of animal models. However, a role for endogenous GDNF in brain function has not been established. Although mice homozygous for a targeted deletion of the GDNF gene have been generated, these mice die within hours of birth because of deficits in kidney morphogenesis, and, thus, the effect of the absence of GDNF on brain function could not be studied. Herein, we sought to determine whether adult mice, heterozygous for a GDNF mutation on two different genetic backgrounds, demonstrate alterations in the nigrostriatal dopaminergic system or in cognitive function. While both neurochemical and behavioural measures suggested that reduction of GDNF gene expression in the mutant mice does not alter the nigrostriatal dopaminergic system, it led to a significant and selective impairment of performance in the spatial version of the Morris water maze. A standard panel of blood chemistry tests and basic pathological analyses did not reveal alterations in the mutants that could account for the observed performance deficit. These results suggest that endogenous GDNF may not be critical for the development and functioning of the nigrostriatal dopaminergic system but it plays an important role in cognitive abilities. PMID:11683907

  13. Tuberoinfundibular dopaminergic neurons of the hypothalamus are progestin target cells

    SciTech Connect

    Sar, M.

    1986-03-01

    To find out a direct relationship between progestin target neurons and tuberoinfundibular dopaminergic neurons colocalization of /sup 3/H ORG 2058 (a synthetic progestin) and tyrosine hydroxylase, TH, antibodies were studied by combined autoradiography and immunohistochemistry. Eight 23 day-old ovariectomized and adrenalectomized rats were injected s.c. 17-beta estradiol, daily for 4 days. On the 5th day each animal was injected i.v. 1.0 ug per 100g b.w. of /sup 3/H ORG 2058. Two animals each received 1mg of unlabeled ORG 2058 15 min prior to the injection of /sup 3/H ORG 2058 to show the specificity of localization. Animals were sacrificed after 15 or 30 min, brains were dissected, frozen and processed for autoradiography. The autoradiograms were stained immunohistochemically with antibodies to TH. TH-containing cells in the arcuate nucleus and in the hypothalamic periventricular nucleus (Group A12) showed concentration of radioactivity in their nuclei, while TH cells in Group A11, A13, A14, and in the substantia nigra (Group A9), and ventral tegmental area (Group A10) did not show nuclear concentration of /sup 3/H ORG 2058. Competition studies with unlabeled ORG 2058 abolished the nuclear uptake of radioactivity in TH containing neurons. The results suggest a direct affect of progestin on tuberoinfundibular dopaminergic neurons.

  14. Immunocytochemical identification of proteins involved in dopamine release from the somatodendritic compartment of nigral dopaminergic neurons

    PubMed Central

    Witkovsky, Paul; Patel, Jyoti C.; Lee, Christian R.; Rice, Margaret E.

    2010-01-01

    We examined the somatodendritic compartment of nigral dopaminergic neurons by immunocytochemistry and confocal microscopy, with the aim of identifying proteins that participate in dopamine packaging and release. Nigral dopaminergic neurons were identified by location, cellular features and tyrosine hydroxylase immunoreactivity. Immunoreactive puncta of vesicular monoamine transporter type 2 and proton ATPase, both involved in the packaging of dopamine for release, were located primarily in dopaminergic cell bodies, but were absent in distal dopaminergic dendrites. Many presynaptic proteins associated with transmitter release at fast synapses were absent in nigral dopaminergic neurons, including synaptotagmin 1, syntaxin1, synaptic vesicle proteins 2a and 2b, synaptophysin and synaptobrevin 1 (VAMP 1). On the other hand, syntaxin 3, synaptobrevin 2 (VAMP 2) and SNAP-25-immunoreactivities were found in dopaminergic somata and dendrites Our data imply that the storage and exocytosis of dopamine from the somatodendritic compartment of nigral dopaminergic neurons is mechanistically distinct from transmitter release at axon terminals utilizing amino acid neurotransmitters. PMID:19682556

  15. Generation and survival of midbrain dopaminergic neurons in weaver mice.

    PubMed

    Martí, Joaquín; Santa-Cruz, M C; Bayer, Shirley A; Ghetti, Bernardino; Hervás, José P

    2007-08-01

    Generation and survival of midbrain dopaminergic (DA) neurons were investigated using tyrosine hydroxylase (TH) immunocytochemistry combined with tritiated thymidine autoradiography at appropriate anatomical levels throughout the anteroposterior (A/P) axes of the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA). The wild-type (+/+) and homozygous weaver (wv/wv) mice used here were the offspring of pregnant dams injected with the radioactive precursor when the mesencephalic neurons were being produced (gestational days 11-15). Data reveal that, at postnatal day 90, depletion of TH-stained cells in the wv/wv presented an A/P pattern of increasing severity and, therefore, the DA cells located in posterior parts of the SNc or the VTA appear to be more vulnerable than the settled anterior neurons. When the time of neuron origin is inferred for each level of these cell groups, it is found that the neurogenesis span is similar for both experimental groups, although significant deficits in the frequency of wv/wv late-generated neurons were observed in any level considered. On the other hand, it has been found that TH-positive neurons were settled along the extent of the SNc and the VTA following precise and differential neurogenetic gradients. Thus, the acute rostrocaudal increase in the proportion of late-generated neurons detected in both+/+DA-cell groups is disturbed in the weaver homozygotes due to the indicated A/P depletion.

  16. Functional properties of dopaminergic neurones in the mouse olfactory bulb

    PubMed Central

    Pignatelli, Angela; Kobayashi, Kazuto; Okano, Hideyuki; Belluzzi, Ottorino

    2005-01-01

    The olfactory bulb of mammals contains a large population of dopaminergic interneurones within the glomerular layer. Dopamine has been shown both in vivo and in vitro to modulate several aspects of olfactory information processing, but the functional properties of dopaminergic neurones have never been described due to the inability to recognize these cells in living preparations. To overcome this difficulty, we used a transgenic mouse strain harbouring an eGFP (enhanced green fluorescent protein) reporter construct under the promoter of tyrosine hydroxylase, the rate-limiting enzyme for cathecolamine synthesis. As a result, we were able to identify dopaminergic neurones (TH-GFP cells) in living preparations and, for the first time, we could study the functional properties of such neurones in the olfactory bulb, in both slices and dissociated cells. The most prominent feature of these cells was the autorhythmicity. In these cells we identified five main voltage-dependent conductances: the two having largest amplitude were a fast transient Na+ current and a delayed rectifier K+ current. In addition, we observed three smaller inward currents, sustained by Na+ ions (persistent type) and by Ca2+ ions (LVA and HVA). Using pharmacological tools and ion substitution methods we showed that the pacemaking process is supported by the interplay of the persistent Na+ current and of a T-type Ca2+ current. We carried out a complete kinetical analysis of the five conductances present in these cells, and developed a Hodgkin-Huxley model of TH-GFP cells, capable of reproducing accurately the properties of living cells, including autorhytmicity, and allowing a precise understanding of the process. PMID:15731185

  17. Thymoquinone protects dopaminergic neurons against MPP+ and rotenone.

    PubMed

    Radad, Khaled; Moldzio, Rudolf; Taha, Mokhtar; Rausch, Wolf-Dieter

    2009-05-01

    Thymoquinone is the main active constituent of Nigella sativa seeds with antioxidant and antiinflammatory properties. In the present study, primary dopaminergic cultures from mouse mesencephala were used to investigate the neuroprotective effects of thymoquinone against MPP(+) and rotenone toxicities. MPP(+) (10 microm on day 10 in vitro (i.v.) for 48 h) significantly decreased the number of THir by 40% compared with untreated control cultures. Rotenone at both short (20 nm on day 10 i.v. for 48 h) and long-term (1 nm on day 6 i.v. for 6 consecutive days) toxicities reduced the number of THir neurons by 33% and 24%, respectively. Treatment of cultures with thymoquinone (0.01, 0.1, 1, 10 microm on day 8 i.v. for 4 days) rescued about 25% of THir neurons at concentrations of 0.1 microm and 1 microm against MPP(+)-induced cell death. Against rotenone, thymoquinone afforded significant protection in both short- and long-term models. In short-term rotenone toxicity, thymoquinone (from days 8-12 i.v.) saved about 65%, 74% and 79% of THir neurons at concentrations of 0.01, 0.1 and 1 microm, respectively, compared with cell loss induced by rotenone. In long-term rotenone toxicity, concomitant treatment of cultures with thymoquinone significantly rescued about 83-100% of THir neurons compared with rotenone-treated cultures. In conclusion, the current study presents for the first time the potential of thymoquinone to protect primary dopaminergic neurons against MPP(+) and rotenone relevant to Parkinson's disease.

  18. Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration

    PubMed Central

    Gordon, Richard; Neal, Matthew L.; Luo, Jie; Langley, Monica R.; Harischandra, Dilshan S.; Panicker, Nikhil; Charli, Adhithiya; Jin, Huajun; Anantharam, Vellareddy; Woodruff, Trent M.; Zhou, Qun-Yong; Kanthasamy, Anumantha G.; Kanthasamy, Arthi

    2016-01-01

    Prokineticin-2 (PK2), a recently discovered secreted protein, regulates important physiological functions including olfactory biogenesis and circadian rhythms in the CNS. Interestingly, although PK2 expression is low in the nigral system, its receptors are constitutively expressed on nigrostriatal neurons. Herein, we demonstrate that PK2 expression is highly induced in nigral dopaminergic neurons during early stages of degeneration in multiple models of Parkinson's disease (PD), including PK2 reporter mice and MitoPark mice. Functional studies demonstrate that PK2 promotes mitochondrial biogenesis and activates ERK and Akt survival signalling pathways, thereby driving neuroprotection. Importantly, PK2 overexpression is protective whereas PK2 receptor antagonism exacerbates dopaminergic degeneration in experimental PD. Furthermore, PK2 expression increased in surviving nigral dopaminergic neurons from PD brains, indicating that PK2 upregulation is clinically relevant to human PD. Collectively, our results identify a paradigm for compensatory neuroprotective PK2 signalling in nigral dopaminergic neurons that could have important therapeutic implications for PD. PMID:27703142

  19. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    PubMed Central

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-01-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification. PMID:27193056

  20. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-05-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification.

  1. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    NASA Astrophysics Data System (ADS)

    Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-10-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.

  2. Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons

    PubMed Central

    Hirasawa, Hajime; Contini, Massimo; Raviola, Elio

    2015-01-01

    In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways. PMID:26009765

  3. Dicer expression is essential for adult midbrain dopaminergic neuron maintenance and survival.

    PubMed

    Pang, Xueyan; Hogan, Eric M; Casserly, Alison; Gao, Guangping; Gardner, Paul D; Tapper, Andrew R

    2014-01-01

    The type III RNAse, Dicer, is responsible for the processing of microRNA (miRNA) precursors into functional miRNA molecules, non-coding RNAs that bind to and target messenger RNAs for repression. Dicer expression is essential for mouse midbrain development and dopaminergic (DAergic) neuron maintenance and survival during the early post-natal period. However, the role of Dicer in adult mouse DAergic neuron maintenance and survival is unknown. To bridge this gap in knowledge, we selectively knocked-down Dicer expression in individual DAergic midbrain areas, including the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) via viral-mediated expression of Cre in adult floxed Dicer knock-in mice (Dicer(flox/flox)). Bilateral Dicer loss in the VTA resulted in progressive hyperactivity that was significantly reduced by the dopamine agonist, amphetamine. In contrast, decreased Dicer expression in the SNpc did not affect locomotor activity but did induce motor-learning impairment on an accelerating rotarod. Knock-down of Dicer in both midbrain regions of adult Dicer(flox/flox) mice resulted in preferential, progressive loss of DAergic neurons likely explaining motor behavior phenotypes. In addition, knock-down of Dicer in midbrain areas triggered neuronal death via apoptosis. Together, these data indicate that Dicer expression and, as a consequence, miRNA function, are essential for DAergic neuronal maintenance and survival in adult midbrain DAergic neuron brain areas.

  4. A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress

    PubMed Central

    Bou Dib, Peter; Gnägi, Bettina; Daly, Fiona; Sabado, Virginie; Tas, Damla; Glauser, Dominique A.; Meister, Peter; Nagoshi, Emi

    2014-01-01

    Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. PMID:25340742

  5. GLUTAMATERGIC SIGNALING BY MIDBRAIN DOPAMINERGIC NEURONS: RECENT INSIGHTS FROM OPTOGENETIC, MOLECULAR AND BEHAVIORAL STUDIES

    PubMed Central

    Koos, Tibor; Tecuapetla, Fatuel; Tepper, James M.

    2011-01-01

    Although the notion that dopaminergic neurons utilize glutamate as a co-transmitter has long been supported by tantalizing molecular, immunocytochemical and electrophysiological evidence it has only been with the recent addition of optogenetic and other approaches that the existence and functional relevance of this mechanism could be unambiguously demonstrated. Here we discuss the possible mechanisms of action of glutamate released from mesoaccumbens dopaminergic neurons based on recently accumulated evidence. Surprisingly, rather then to confirm a role in conventional fast excitatory transmission, the latest evidence suggests that glutamate released from dopaminergic neurons may primarily act through different unconventional pre- and postsynaptic mechanisms. PMID:21632236

  6. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons.

    PubMed

    Doucet-Beaupré, Hélène; Gilbert, Catherine; Profes, Marcos Schaan; Chabrat, Audrey; Pacelli, Consiglia; Giguère, Nicolas; Rioux, Véronique; Charest, Julien; Deng, Qiaolin; Laguna, Ariadna; Ericson, Johan; Perlmann, Thomas; Ang, Siew-Lan; Cicchetti, Francesca; Parent, Martin; Trudeau, Louis-Eric; Lévesque, Martin

    2016-07-26

    The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson's disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein(+) inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons. PMID:27407143

  7. alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief

    PubMed Central

    McGranahan, Tresa M.; Patzlaff, Natalie E.; Grady, Sharon R.; Heinemann, Stephen F.; Booker, T.K.

    2012-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addition, mental illness and movement control in humans. We developed a unique model system to examine the role of alpha4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the alpha4 subunit from dopaminergic neurons in mice. The loss alpha4 mRNA and alpha4beta2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of alpha4beta2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. Alpha4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. Alpha4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze and elimination of alpha4-beta2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of alpha4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression, however nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine behaviors. PMID:21795541

  8. Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice.

    PubMed Central

    Bayer, S A; Wills, K V; Triarhou, L C; Verina, T; Thomas, J D; Ghetti, B

    1995-01-01

    In homozygous weaver (wv/wv) mutant mice, nearly 50% of the dopaminergic substantia nigra neurons degenerate by postnatal day 20. We have now determined that the total number of dopaminergic neurons in the ventral midbrains of a litter of obligatory homozygous weaver pups and a litter of normal wild-type control pups indicates that no significant differences are present between groups at birth. To test the hypothesis that the subsequent degeneration of these neurons is linked to their time of origin, [3H]thymidine autoradiography was combined with tyrosine hydroxylase immunocytochemistry to construct neurogenetic timetables on postnatal day 20 in wild-type mice and weaver homozygotes. Both groups have the same span of neurogenesis but have statistically different proportions of neurons generated on specific days. In wild-type mice, more than half of the dopaminergic neurons originate on or after embryonic day 12. In contrast, over two-thirds of the surviving dopaminergic neurons in homozygous weaver mice originate on or before embryonic day 11. Our data suggest that the weaver gene does not interfere with the generation of dopaminergic neurons, but it preferentially kills late-generated dopaminergic neurons between birth and postnatal day 20. Images Fig. 2 PMID:7568088

  9. The Transcription Factor Orthodenticle Homeobox 2 Influences Axonal Projections and Vulnerability of Midbrain Dopaminergic Neurons

    ERIC Educational Resources Information Center

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery; Isacson, Ole

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease.…

  10. Neuroprotective effects of tadalafil on gerbil dopaminergic neurons following cerebral ischemia.

    PubMed

    Kim, Kwang Taek; Chung, Kyung Jin; Lee, Han Sae; Ko, Il Gyu; Kim, Chang Ju; Na, Yong Gil; Kim, Khae Hawn

    2013-03-15

    Impairment of dopamine function, which is known to have major effects on behaviors and cognition, is one of the main problems associated with cerebral ischemia. Tadalafil, a long-acting phosphodiesterase type-5 inhibitor, is known to ameliorate neurologic impairment induced by brain injury, but not in dopaminergic regions. We investigated the neuroprotective effects of treatment with tadalafil on cyclic guanosine monophosphate level and dopamine function following cerebral ischemia. Forty adult Mongolian gerbils were randomly and evenly divided into five groups (n = 8 in each group): Sham-operation group, cerebral ischemia-induced and 0, 0.1, 1, and 10 mg/kg tadalafil-treated groups, respectively. Tadalafil dissolved in distilled water was administered orally for 7 consecutive days, starting 1 day after surgery. Cyclic guanosine monophosphate assay and immunohistochemistry were performed for thyrosine hydroxylase expression and western blot analysis for dopamine D2 receptor expression. A decrease in cyclic guanosine monophosphate level following cerebral ischemia was found with an increase in thyrosine hydroxylase activity and a decrease in dopamine D2 receptor expression in the striatum and substantia nigra region. However, treatment with tadalafil increased cyclic guanosine monophosphate expression, suppressed thyrosine hydroxylase expression and increased dopamine D2 receptor expression in the striatum and substantia nigra region in a dose-dependent manner. Tadalafil might ameliorate cerebral ischemia-induced dopaminergic neuron injury. Therefore, tadalafil has the potential as a new neuroprotective treatment strategy for cerebral ischemic injury. PMID:25206715

  11. Atrazine Causes Autophagy- and Apoptosis-Related Neurodegenerative Effects in Dopaminergic Neurons in the Rat Nigrostriatal Dopaminergic System.

    PubMed

    Song, Xiao-Yao; Li, Jia-Nan; Wu, Yan-Ping; Zhang, Bo; Li, Bai-Xiang

    2015-06-12

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is widely used as a broad-spectrum herbicide. Animal studies have demonstrated that ATR exposure can cause cell death in dopaminergic neurons. The molecular mechanisms underlying ATR-induced neuronal cell death, however, are unknown. In this study, we investigated the autophagy and apoptosis induced by ATR in dopaminergic neurons in vivo. Wistar rats were administered with ATR at doses of 10, 50 and 100 mg/kg body weight by oral gavage for three months. In terms of histopathology, the expression of autophagy- and apoptosis-related genes as well as proteins related to the Beclin-1/B-cell lymphoma 2 (Bcl-2) autophagy and apoptosis pathways were examined in the rat nigrostriatal dopaminergic system. We observed degenerative micromorphology indicative of neuronal apoptosis and mitochondrial autophagy by electron microscopy in ATR-exposed rat striatum. The rat ventral mesencephalon in the ATR-exposed groups also showed increased expression of Beclin-1, LC3-II, Bax and Caspase-9, and decreased expression of tyrosine hydroxylase (TH), Bcl-xl and Bcl-2. These findings indicate that ATR may induce autophagy- and apoptosis-related changes in doparminergic neurons. Furthermore, this induction may be regulated by the Beclin-1 and Bcl-2 autophagy and apoptosis pathways, and this may help to better understand the mechanism underlying the neurotoxicity of ATR.

  12. Atrazine Causes Autophagy- and Apoptosis-Related Neurodegenerative Effects in Dopaminergic Neurons in the Rat Nigrostriatal Dopaminergic System

    PubMed Central

    Song, Xiao-Yao; Li, Jia-Nan; Wu, Yan-Ping; Zhang, Bo; Li, Bai-Xiang

    2015-01-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is widely used as a broad-spectrum herbicide. Animal studies have demonstrated that ATR exposure can cause cell death in dopaminergic neurons. The molecular mechanisms underlying ATR-induced neuronal cell death, however, are unknown. In this study, we investigated the autophagy and apoptosis induced by ATR in dopaminergic neurons in vivo. Wistar rats were administered with ATR at doses of 10, 50 and 100 mg/kg body weight by oral gavage for three months. In terms of histopathology, the expression of autophagy- and apoptosis-related genes as well as proteins related to the Beclin-1/B-cell lymphoma 2 (Bcl-2) autophagy and apoptosis pathways were examined in the rat nigrostriatal dopaminergic system. We observed degenerative micromorphology indicative of neuronal apoptosis and mitochondrial autophagy by electron microscopy in ATR-exposed rat striatum. The rat ventral mesencephalon in the ATR-exposed groups also showed increased expression of Beclin-1, LC3-II, Bax and Caspase-9, and decreased expression of tyrosine hydroxylase (TH), Bcl-xl and Bcl-2. These findings indicate that ATR may induce autophagy- and apoptosis-related changes in doparminergic neurons. Furthermore, this induction may be regulated by the Beclin-1 and Bcl-2 autophagy and apoptosis pathways, and this may help to better understand the mechanism underlying the neurotoxicity of ATR. PMID:26075868

  13. Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb.

    PubMed

    Lazarini, Françoise; Gabellec, Marie-Madeleine; Moigneu, Carine; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lledo, Pierre-Marie

    2014-10-22

    Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH(+) interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH(+) cell death and not to microglial activation. TH(+) interneuron number was restored 1 month later. This rescue resulted at least in part from enhanced recruitment of immature neurons targeting the lesioned GL area. Seven days after 6-OHDA lesion in the OB, we found that the integration of lentivirus-labeled adult-born neurons was biased: newly formed neurons were preferentially incorporated into glomerular circuits of the lesioned area. Behavioral rehabilitation occurs 2 months after lesion. This study establishes a new model into which loss of DAergic cells could be compensated by recruiting newly formed neurons. We propose that adult neurogenesis not only replenishes the population of DAergic bulbar neurons but that it also restores olfactory sensory processing. PMID:25339754

  14. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons.

    PubMed

    Caudal, D; Alvarsson, A; Björklund, A; Svenningsson, P

    2015-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigral dopaminergic neurons and by the presence of aggregates containing α-synuclein called Lewy bodies. Viral vector-induced overexpression of α-synuclein in dopaminergic neurons represents a model of PD which recapitulates disease progression better than commonly used neurotoxin models. Previous studies using this model have reported motor and cognitive impairments, whereas depression, mood and anxiety phenotypes are less described. To investigate these psychiatric phenotypes, Sprague-Dawley rats received bilateral injections of a recombinant adeno-associated virus (AAV) vector expressing human α-synuclein or GFP into the substantia nigra pars compacta. Behavior was assessed at two timepoints: 3 and 8 weeks post-injection. We report that nigral α-synuclein overexpression led to a pronounced nigral dopaminergic cell loss accompanied by a smaller cell loss in the ventral tegmental area, and to a decreased striatal density of dopaminergic fibers. The AAV-α-synuclein group exhibited modest, but significant motor impairments 8 weeks after vector administration. The AAV-α-synuclein group displayed depressive-like behavior in the forced swim test after 3 weeks, and reduced sucrose preference at week 8. At both timepoints, overexpression of α-synuclein was linked to a hyperactive hypothalamic-pituitary-adrenal (HPA) axis regulation of corticosterone. The depressive-like phenotype was also correlated with decreased nigral brain-derived neurotrophic factor and spinophilin levels, and with decreased striatal levels of the activity-regulated cytoskeleton-associated protein. This study demonstrates that AAV-mediated α-synuclein overexpression in dopamine neurons is not only useful to model motor impairments of PD, but also depression. This study also provides evidence that depression in experimental Parkinsonism is correlated to dysregulation of the HPA axis and to

  15. Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila

    PubMed Central

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-01-01

    Summary Dopaminergic neurons provide reward learning signals in mammals and insects [1–4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β′2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. PMID:25728694

  16. Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila.

    PubMed

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-03-16

    Dopaminergic neurons provide reward learning signals in mammals and insects [1-4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β'2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population.

  17. The effect of different durations of morphine exposure on mesencephalic dopaminergic neurons in morphine dependent rats.

    PubMed

    Shi, Weibo; Ma, Chunling; Qi, Qian; Liu, Lizhe; Bi, Haitao; Cong, Bin; Li, Yingmin

    2015-12-01

    Mesencephalic dopaminergic neurons are heavily involved in the development of drug dependence. Thyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, plays an important role in the survival of dopaminergic neurons. Therefore, this study investigated TH changes in dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN), as well as the morphine effects on dopaminergic neurons induced by different durations of morphine dependence. Models of morphine dependence were established in rats, and paraffin-embedded sections, immunohistochemistry and western blotting were used to observe the changes in the expression of TH protein. Fluoro-Jade B staining was used to detect degeneration and necrosis, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) detected the apoptosis of mesencephalic dopaminergic nerve cells. Immunohistochemistry and western blotting showed that the number of TH positive cells and the protein levels in the VTA and SN were significantly decreased in the rats with a long period of morphine dependency. With prolonged morphine exposure, the dopaminergic nerve cells in the VTA and SN showed degeneration and necrosis, while apoptotic cells were not observed. The number of VTA and SN dopaminergic nerve cells decreased with increasing periods of morphine dependence, which was most likely attributable to the degeneration and necrosis of nerve cells induced by morphine toxicity.

  18. Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life.

    PubMed

    Fan, Lir-Wan; Tien, Lu-Tai; Lin, Rick C S; Simpson, Kimberly L; Rhodes, Philip G; Cai, Zhengwei

    2011-12-01

    Brain inflammation in early life has been proposed to play important roles in the development of neurodegenerative disorders in adult life. To test this hypothesis, we used a neonatal rat model of lipopolysaccharide (LPS) exposure (1000 EU/g body weight, intracerebral injection on P5) to produce brain inflammation. By P70, when LPS-induced behavioral deficits were spontaneously recovered, animals were challenged with rotenone, a commonly used pesticide, through subcutaneous mini-pump infusion at a dose of 1.25 mg/kg per day for 14 days. This rotenone treatment regimen ordinarily does not produce toxic effects on behaviors in normal adult rats. Our results show that neonatal LPS exposure enhanced the vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life. Rotenone treatment resulted in motor neurobehavioral impairments in rats with the neonatal LPS exposure, but not in those without the neonatal LPS exposure. Rotenone induced losses of tyrosine hydroxylase immunoreactive neurons in the substantia nigra and decreased mitochondrial complex I activity in the striatum of rats with neonatal LPS exposure, but not in those without this exposure. Neonatal LPS exposure with later exposure to rotenone decreased retrogradely labeled nigrostriatal dopaminergic projecting neurons. The current study suggests that perinatal brain inflammation may enhance adult susceptibility to the development of neurodegenerative disorders triggered later on by environmental toxins at an ordinarily non-toxic or sub-toxic dose. Our model may be useful for studying mechanisms involved in the pathogenesis of nonfamilial Parkinson's disease and the development of potential therapeutic treatments.

  19. Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson's Disease

    PubMed Central

    Boukhzar, Loubna; Hamieh, Abdallah; Cartier, Dorthe; Tanguy, Yannick; Alsharif, Ifat; Castex, Matthieu; Arabo, Arnaud; Hajji, Sana El; Bonnet, Jean-Jacques; Errami, Mohammed; Falluel-Morel, Anthony; Chagraoui, Abdeslam; Lihrmann, Isabelle

    2016-01-01

    Abstract Aims: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. Results: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. Innovation: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. Conclusions: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD. Antioxid. Redox Signal. 24, 557–574. PMID:26866473

  20. Otx2 Requires Lmx1b to Control the Development of Mesodiencephalic Dopaminergic Neurons

    PubMed Central

    Sherf, Orna; Nashelsky Zolotov, Limor; Liser, Keren; Tilleman, Hadas; Jovanovic, Vukasin M.; Zega, Ksenija; Jukic, Marin M.; Brodski, Claude

    2015-01-01

    Studying the development of mesodiencephalic dopaminergic (mdDA) neurons provides an important basis for better understanding dopamine-associated brain functions and disorders and is critical for establishing cell replacement therapy for Parkinson’s disease. The transcription factors Otx2 and Lmx1b play a key role in the development of mdDA neurons. However, little is known about the genes downstream of Otx2 and Lmx1b in the pathways controlling the formation of mdDA neurons in vivo. Here we report on our investigation of Lmx1b as downstream target of Otx2 in the formation of mdDA neurons. Mouse mutants expressing Otx2 under the control of the En1 promoter (En1+/Otx2) showed increased Otx2 expression in the mid-hindbrain region, resulting in upregulation of Lmx1b and expansion of mdDA neurons there. In contrast, Lmx1b-/- mice showed decreased expression of Otx2 and impairments in several aspects of mdDA neuronal formation. To study the functional interaction between Otx2 and Lmx1b, we generated compound mutants in which Otx2 expression was restored in mice lacking Lmx1b (En1+/Otx2;Lmx1b-/-). In these animals Otx2 was not sufficient to rescue any of the aberrations in the formation of mdDA neurons caused by the loss of Lmx1b, but rescued the loss of ocular motor neurons. Gene expression studies in Lmx1b-/- embryos indicated that in these mutants Wnt1, En1 and Fgf8 expression are induced but subsequently lost in the mdDA precursor domain and the mid-hindbrain organizer in a specific, spatio-temporal manner. In summary, we demonstrate that Otx2 critically depends on Lmx1b for the formation of mdDA neurons, but not for the generation of ocular motor neurons. Moreover, our data suggest that Lmx1b precisely maintains the expression pattern of Wnt1, Fgf8 and En1, which are essential for mid-hindbrain organizer function and the formation of mdDA neurons. PMID:26444681

  1. Effect of total flavonoids from Scutellaria baicalensis on dopaminergic neurons in the substantia nigra

    PubMed Central

    Li, Xue-Li; Xu, Xiao-Fan; Bu, Qing-Xia; Jin, Wei-Rong; Sun, Qian-Ru; Feng, De-Peng; Zhang, Qing-Jv; Wang, Le-Xin

    2016-01-01

    The aim of the present study was to investigate the effect of Scutellaria baicalensis stem-leaf total flavonoid (SSTF) on the dopaminergic neurons in the substantia nigra in a mouse model of Parkinson's disease (PD). The mouse model was established by intravenous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). SSTF (5 mg/kg) was administered to the mice before or after MPTP injection, and the effects of SSTF on the behavior of the mice and the dopaminergic neurons in the substantia nigra were assessed. In addition, the level of serum malondialdehyde (MDA) was measured. Following injection of MPTP, the number of dopaminergic neurons in the substantia nigra was decreased and the neurons appeared atrophic. In addition, the level of serum MDA in the MPTP mice increased. The mean behavioral scores and the number of dopaminergic neurons in the SSTF treatment groups were significantly higher than in the MPTP group (P<0.05), and the mean serum MDA levels were significantly lower (P<0.05). Thus, SSTF improves the behaviors and the numbers of dopaminergic neurons in the substantia nigra in MPTP-induced PD in mice. These beneficial effects appear to be associated with the reduction in serum MDA. PMID:27446544

  2. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1

    PubMed Central

    Valdés, Pamela; Mercado, Gabriela; Vidal, Rene L.; Molina, Claudia; Parsons, Geoffrey; Court, Felipe A.; Martinez, Alexis; Galleguillos, Danny; Armentano, Donna; Schneider, Bernard L.; Hetz, Claudio

    2014-01-01

    Parkinson disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Although growing evidence indicates that endoplasmic reticulum (ER) stress is a hallmark of PD, its exact contribution to the disease process is not well understood. Here we report that developmental ablation of X-Box binding protein 1 (XBP1) in the nervous system, a key regulator of the unfolded protein response (UPR), protects dopaminergic neurons against a PD-inducing neurotoxin. This survival effect was associated with a preconditioning condition that resulted from induction of an adaptive ER stress response in dopaminergic neurons of the SNpc, but not in other brain regions. In contrast, silencing XBP1 in adult animals triggered chronic ER stress and dopaminergic neuron degeneration. Supporting this finding, gene therapy to deliver an active form of XBP1 provided neuroprotection and reduced striatal denervation in animals injected with 6-hydroxydopamine. Our results reveal a physiological role of the UPR in the maintenance of protein homeostasis in dopaminergic neurons that may help explain the differential neuronal vulnerability observed in PD. PMID:24753614

  3. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy.

    PubMed

    Theodorou, Marina; Rauser, Benedict; Zhang, Jingzhong; Prakash, Nilima; Wurst, Wolfgang; Schick, Joel A

    2015-08-01

    Parkinson's disease is one of the most common neurodegenerative disorders characterized by cell death of dopaminergic neurons in the substantia nigra. Recent research has focused on cellular replacement through lineage reprogramming as a potential therapeutic strategy. This study sought to use genetics to define somatic cell types in vivo amenable to reprogramming. To stimulate in vivo reprogramming to dopaminergic neurons, we generated a Rosa26 knock-in mouse line conditionally overexpressing Mash1, Lmx1a, and Nurr1. These proteins are characterized by their role in neuronal commitment and development of midbrain dopaminergic neurons and have previously been shown to convert fibroblasts to dopaminergic neurons in vitro. We show that a tricistronic construct containing these transcription factors can reprogram astrocytes and fibroblasts in vitro. However, cassette overexpression triggered cell death in vivo, in part through endoplasmic reticulum stress, while we also detected "uncleaved" forms of the polyprotein, suggesting poor "cleavage" efficiency of the 2A peptides. Based on our results, the cassette overexpression induced apoptosis and precluded reprogramming in our mouse model. Therefore, we suggest that alternatives must be explored to balance construct design with efficacious reprogramming. It is evident that there are still biological obstacles to overcome for in vivo reprogramming to dopaminergic neurons.

  4. Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons.

    PubMed

    Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W

    2014-10-01

    The adult midbrain contains 75% of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson's disease. Despite 50 years of investigation, treatment for Parkinson's disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson's disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.

  5. The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed

    PubMed Central

    2014-01-01

    Specific vulnerability and degeneration of the dopaminergic neurons in the substantia nigra pars compacta of the midbrain is the pathological hallmark of Parkinson’s disease. A number of transcription factors regulate the birth and development of this set of neurons and some remain constitutively expressed throughout life. These maintenance transcription factors are closely associated with essential neurophysiological functions and are required ultimately for the long-term survival of the midbrain dopaminergic neurons. The current review describes the role of two such factors, Nurr1 and engrailed, in differentiation, maturation, and in normal physiological functions including acquisition of neurotransmitter identity. The review will also elucidate the relationship of these factors with life, vulnerability, degeneration and death of mesencephalic dopaminergic neurons in the context of Parkinson’s disease. PMID:24685177

  6. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats

    PubMed Central

    2011-01-01

    Background Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. Results The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. Conclusions These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration. PMID:21649894

  7. The cellular and Genomic response of rat dopaminergic neurons (N27) to coated nanosilver

    EPA Science Inventory

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5ppm) to a set of nanoAg of different sizes (10nm, 75nm) and coatings (PVP, citrate) and thei...

  8. The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons

    PubMed Central

    Lawal, Hakeem O.; Chang, Hui-Yun; Terrell, Ashley N.; Brooks, Elizabeth S.; Pulido, Dianne; Simon, Anne F.; Krantz, David E.

    2010-01-01

    Dopamine is cytotoxic and may play a role in the development of Parkinson’s disease. However, its interaction with environmental risk factors such as pesticides remains poorly understood. The vesicular monoamine transporter (VMAT) regulates intracellular dopamine content, and we have tested the neuroprotective effects of VMAT in vivo using the model organism Drosophila melanogaster. We find that Drosophila VMAT (dVMAT) mutants contain fewer dopaminergic neurons than wild type, consistent with a developmental effect, and that dopaminergic cell loss in the mutant is exacerbated by the pesticides rotenone and paraquat. Over-expression of DVMAT protein does not increase the survival of animals exposed to rotenone, but blocks the loss of dopaminergic neurons caused by this pesticide. These results are the first to demonstrate an interaction between a VMAT and pesticides in vivo, and provide an important model to investigate the mechanisms by which pesticides and cellular DA may interact to kill dopaminergic cells. PMID:20472063

  9. [The influence of L-glutamate and carbachol on burst firing of dopaminergic neurons in ventral tegmental area].

    PubMed

    Wang, Shan-shan; Wei, Chun-ling; Liu, Zhi-qiang; Ren, Wei

    2011-02-25

    Burst firing of dopaminergic neurons in ventral tegmental area (VTA) induces a large transient increase in synaptic dopamine (DA) release and thus is considered the reward-related signal. But the mechanisms of burst generation of dopaminergic neuron still remain unclear. This experiment investigated the burst firing of VTA dopaminergic neurons in rat midbrain slices perfused with carbachol and L-glutamate individually or simultaneously to understand the neurotransmitter mechanism underlying burst generation. The results showed that bath application of carbachol (10 μmol/L) and pulse application of L-glutamate (3 mmol/L) both induced burst firing in dopaminergic neuron. Co-application of carbachol and L-glutamate induced burst firing in VTA dopaminergic cells which couldn't be induced to burst by the two chemicals separately. The result indicates that carbachol and L-glutamate co-regulate burst firing of dopaminergic neuron.

  10. Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei.

    PubMed

    Lahti, Laura; Haugas, Maarja; Tikker, Laura; Airavaara, Mikko; Voutilainen, Merja H; Anttila, Jenni; Kumar, Suman; Inkinen, Caisa; Salminen, Marjo; Partanen, Juha

    2016-02-01

    Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared with the monoaminergic neurons, the development, heterogeneity, and molecular characteristics of these regulatory neurons are poorly understood. We show here that different GABAergic and glutamatergic subgroups associated with the monoaminergic nuclei express specific transcription factors. These neurons share common origins in the ventrolateral rhombomere 1, where the postmitotic selector genes Tal1, Gata2 and Gata3 control the balance between the generation of inhibitory and excitatory neurons. In the absence of Tal1, or both Gata2 and Gata3, the GABAergic precursors adopt glutamatergic fates and populate the glutamatergic nuclei in excessive numbers. Together, our results uncover developmental regulatory mechanisms, molecular characteristics, and heterogeneity of central regulators of monoaminergic circuits.

  11. Dopaminergic Neurons Exhibit an Age-Dependent Decline in Electrophysiological Parameters in the MitoPark Mouse Model of Parkinson's Disease

    PubMed Central

    Branch, Sarah Y.; Chen, Cang; Sharma, Ramaswamy; Lechleiter, James D.

    2016-01-01

    Dopaminergic neurons of the substantia nigra (SN) play a vital role in everyday tasks, such as reward-related behavior and voluntary movement, and excessive loss of these neurons is a primary hallmark of Parkinson's disease (PD). Mitochondrial dysfunction has long been implicated in PD and many animal models induce parkinsonian features by disrupting mitochondrial function. MitoPark mice are a recently developed genetic model of PD that lacks the gene for mitochondrial transcription factor A specifically in dopaminergic neurons. This model mimics many distinct characteristics of PD including progressive and selective loss of SN dopamine neurons, motor deficits that are improved by l-DOPA, and development of inclusion bodies. Here, we used brain slice electrophysiology to construct a timeline of functional decline in SN dopaminergic neurons from MitoPark mice. Dopaminergic neurons from MitoPark mice exhibited decreased cell capacitance and increased input resistance that became more severe with age. Pacemaker firing regularity was disrupted in MitoPark mice and ion channel conductances associated with firing were decreased. Additionally, dopaminergic neurons from MitoPark mice showed a progressive decrease of endogenous dopamine levels, decreased dopamine release, and smaller D2 dopamine receptor-mediated outward currents. Interestingly, expression of ion channel subunits associated with impulse activity (Cav1.2, Cav1.3, HCN1, Nav1.2, and NavB3) was upregulated in older MitoPark mice. The results describe alterations in intrinsic and synaptic properties of dopaminergic neurons in MitoPark mice occurring at ages both before and concurrent with motor impairment. These findings may help inform future investigations into treatment targets for prodromal PD. SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the second most diagnosed neurodegenerative disorder, and the classic motor symptoms of the disease are attributed to selective loss of dopaminergic neurons of the

  12. Metformin Prevents Dopaminergic Neuron Death in MPTP/P-Induced Mouse Model of Parkinson’s Disease via Autophagy and Mitochondrial ROS Clearance

    PubMed Central

    Lu, Ming; Su, Cunjin; Qiao, Chen; Bian, Yaqi; Ding, Jianhua

    2016-01-01

    Background: Our previous study demonstrated that metabolic inflammation exacerbates dopaminergic neuronal degeneration in type 2 diabetes mice. Metformin, a typical oral hypoglycemic agent for diabetes, has been regarded as an activator of AMP-activated protein kinase and a regulator of systemic energy metabolism. Although metformin plays potential protective effects in many disorders, it is unclear whether metformin has a therapeutic role in dopaminergic neuron degeneration in Parkinson’s disease. Methods: In the present study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid-induced mouse model of Parkinson’s disease was established to explore the neuroprotective effect of metformin on dopaminergic neurons in substania nigra compacta. We next cultured SH-SY5Y cells to investigate the mechanisms for the neuroprotective effect of metformin. Results: We showed that treatment with metformin (5mg/mL in drinking water) for 5 weeks significantly ameliorated the degeneration of substania nigra compacta dopaminergic neurons, increased striatal dopaminergic levels, and improved motor impairment induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid. We further found that metformin inhibited microglia overactivation-induced neuroinflammation in substania nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid Parkinson’s disease mice, which might contribute to the protective effect of metformin on neurodegeneration. Furthermore, metformin (2mM) activated AMP-activated protein kinase in SH-SY5Y cells, in turn inducing microtubule-associated protein 1 light chain 3-II-mediated autophagy and eliminating mitochondrial reactive oxygen species. Consequently, metformin alleviated MPP+-induced cytotoxicity and attenuated neuronal apoptosis. Conclusions: Our findings demonstrate that metformin may be a pluripotent and promising drug for dopaminergic neuron degeneration, which will give us insight into the potential of

  13. Neonatal systemic exposure to lipopolysaccharide enhances susceptibility of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life

    PubMed Central

    Cai, Zhengwei; Fan, Lir-Wan; Kaizaki, Asuka; Tien, Lu-Tai; Ma, Tangeng; Pang, Yi; Lin, Shuying; Lin, Rick C. S.; Simpson, Kimberly L.

    2013-01-01

    Brain inflammation via intracerebral injection with lipopolysaccharide (LPS) in early life has been shown to increase risks for the development of neurodegenerative disorders in adult rats. To determine if neonatal systemic LPS exposure has the same effects on enhancement of adult dopaminergic neuron susceptibility to rotenone neurotoxicity as centrally-injected LPS does, LPS (2 μg/g body weight) was administered intraperitoneally into post-natal day 5 (P5) rats and when grown to P70, rats were challenged with rotenone, a commonly used pesticide, through subcutaneous mini-pump infusion at a dose of 1.25 mg/kg per day for 14 days. Systemically administered LPS can penetrate into the neonatal rat brain and cause acute and chronic brain inflammation, as evidenced by persistent increases in IL-1β levels, cyclooxygenase-2 expression and microglial activation in the substantia nigra (SN) of P70 rats. Neonatal LPS exposure resulted in suppression of tyrosine hydroxylase (TH) expression, but not actual death of dopaminergic neurons in the SN, as indicated by the reduced number of TH+ cells and unchanged total number of neurons (NeuN+) in the SN. Neonatal LPS exposure also caused motor function deficits, which were spontaneously recoverable by P70. A small dose of rotenone at P70 induced loss of dopaminergic neurons, as indicated by reduced numbers of both TH+ and NeuN+ cells in the SN, and Parkinson’s disease (PD)-like motor impairment in P98 rats that had experienced neonatal LPS exposure, but not in those without the LPS exposure. These results indicate that although neonatal systemic LPS exposure may not necessarily lead to death of dopaminergic neurons in the SN, such an exposure could cause persistent functional alterations in the dopaminergic system and indirectly predispose the nigrostriatal system in the adult brain more vulnerable to be damaged by environmental toxins at an ordinarily non-toxic or sub-toxic dose to develop PD-like pathological features and

  14. Non-motor function of the midbrain dopaminergic neurons.

    PubMed

    Da Cunha, Claudio; Wietzikoski, Evellyn Claudia; Bortolanza, Mariza; Dombrowski, Patricia Andréia; dos Santos, Lucélia Mendes; Boschen, Suelen Lúcio; Miyoshi, Edmar; Vital, Maria Aparecida Barbato Frazão; Boerngen-Lacerda, Roseli; Andreatini, Roberto

    2009-01-01

    The roles of the nigrostriatal pathway are far beyond the simple control of motor functions. The tonic release of dopamine in the dorsal and ventral striatum controls the choice of proper actions toward a given environmental situation. In the striatum, a specific action is triggered by a specific stimulus associated with it. When the subject faces a novel and salient stimulus, the phasic release of dopamine allows synaptic plasticity in the cortico-striatal synapses. Neurons of different regions of cortical areas make synapses that converge to the same medium spine neurons of the striatum. The convergent associations form functional units encoding body parts, objects, locations, and symbolic representations of the subject's world. Such units emerge in the striatum in a repetitive manner, like a mosaic of broken mirrors. The phasic release of dopamine allows the association of units to encode an action of the subject directed to an object or location with the outcome of this action. Reinforced stimulus-action-outcome associations will affect future decision making when the same stimulus (object, location, idea) is presented to the subject in the future. In the absence of a minimal amount of striatal dopamine, no action is initiated as seen in Parkinson's disease subjects. The abnormal and improper association of these units leads to the initiation of unpurposeful and sometimes repetitive actions, as those observed in dyskinetic patients. The association of an excessive reinforcement of some actions, like drug consumption, leads to drug addiction. Improper associations of ideas and unpleasant outcomes may be related to traumatic and depressive symptoms common in many diseases, including Parkinson's disease. The same can be said about the learning and memory impairments observed in demented and nondemented Parkinson's disease patients.

  15. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    SciTech Connect

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-11-15

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles ({approx} 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25-400 {mu}g/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase C{delta} (PKC{delta}), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: Black-Right-Pointing-Pointer Mn nanoparticles

  16. Brief dopaminergic stimulations produce transient physiological changes in prefrontal pyramidal neurons.

    PubMed

    Moore, Anna R; Zhou, Wen-Liang; Potapenko, Evgeniy S; Kim, Eun-Ji; Antic, Srdjan D

    2011-01-25

    In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2s) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5 min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an "inverted U curve" (Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376-384), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5s of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40s.

  17. Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson’s Disease

    PubMed Central

    Song, Juhyun; Kim, Jongpil

    2016-01-01

    The rates of metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, and cardiovascular disease (CVD), markedly increase with age. In recent years, studies have reported an association between metabolic changes and various pathophysiological mechanisms in the central nervous system (CNS) in patients with metabolic diseases. Oxidative stress and hyperglycemia in metabolic diseases lead to adverse neurophysiological phenomena, including neuronal loss, synaptic dysfunction, and improper insulin signaling, resulting in Parkinson’s disease (PD). In addition, several lines of evidence suggest that alterations of CNS environments by metabolic changes influence the dopamine neuronal loss, eventually affecting the pathogenesis of PD. Thus, we reviewed recent findings relating to degeneration of dopaminergic neurons during metabolic diseases. We highlight the fact that using a metabolic approach to manipulate degeneration of dopaminergic neurons can serve as a therapeutic strategy to attenuate pathology of PD. PMID:27065205

  18. Id2 IS REQUIRED FOR SPECIFICATION OF DOPAMINERGIC NEURONS DURING ADULT OLFACTORY NEUROGENESIS

    PubMed Central

    Havrda, Matthew C.; Harris, Brent T.; Mantani, Akio; Ward, Nora M.; Paolella, Brenton R.; Cuzon, Verginia C.; Yeh, Hermes H.; Israel, Mark A.

    2009-01-01

    Understanding the biology of adult neural stem cells has important implications for nervous system development and may contribute to our understanding of neurodegenerative disorders and their treatment. We have characterized the process of olfactory neurogenesis in adult mice lacking Inhibitor of DNA Binding 2 (Id2). We found a diminished olfactory bulb containing reduced numbers of granular and periglomerular neurons with a distinct paucity of dopaminergic periglomerular neurons. While no deficiency of the stem cell compartment was detectable, migrating neuroblasts in Id2−/− mutant mice prematurely undergo astroglial differentiation within a disorganized rostral migratory stream. Further, when evaluated in vitro loss of Id2 results in decreased proliferation of neural progenitors and decreased expression of the Hes1 and Mash1 transcription factors, known mediators of neuronal differentiation. These data support a novel role for sustained Id2 expression in migrating neural progenitors mediating olfactory dopaminergic neuronal differentiation in adult animals. PMID:19109490

  19. Autologous mesenchymal stem cell–derived dopaminergic neurons function in parkinsonian macaques

    PubMed Central

    Hayashi, Takuya; Wakao, Shohei; Kitada, Masaaki; Ose, Takayuki; Watabe, Hiroshi; Kuroda, Yasumasa; Mitsunaga, Kanae; Matsuse, Dai; Shigemoto, Taeko; Ito, Akihito; Ikeda, Hironobu; Fukuyama, Hidenao; Onoe, Hirotaka; Tabata, Yasuhiko; Dezawa, Mari

    2012-01-01

    A cell-based therapy for the replacement of dopaminergic neurons has been a long-term goal in Parkinson’s disease research. Here, we show that autologous engraftment of A9 dopaminergic neuron-like cells induced from mesenchymal stem cells (MSCs) leads to long-term survival of the cells and restoration of motor function in hemiparkinsonian macaques. Differentiated MSCs expressed markers of A9 dopaminergic neurons and released dopamine after depolarization in vitro. The differentiated autologous cells were engrafted in the affected portion of the striatum. Animals that received transplants showed modest and gradual improvements in motor behaviors. Positron emission tomography (PET) using [11C]-CFT, a ligand for the dopamine transporter (DAT), revealed a dramatic increase in DAT expression, with a subsequent exponential decline over a period of 7 months. Kinetic analysis of the PET findings revealed that DAT expression remained above baseline levels for over 7 months. Immunohistochemical evaluations at 9 months consistently demonstrated the existence of cells positive for DAT and other A9 dopaminergic neuron markers in the engrafted striatum. These data suggest that transplantation of differentiated autologous MSCs may represent a safe and effective cell therapy for Parkinson’s disease. PMID:23202734

  20. Phosphodiesterase 7 Inhibition Preserves Dopaminergic Neurons in Cellular and Rodent Models of Parkinson Disease

    PubMed Central

    Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2011-01-01

    Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306

  1. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  2. Ceftriaxone Ameliorates Motor Deficits and Protects Dopaminergic Neurons in 6-Hydroxydopamine-Lesioned Rats

    PubMed Central

    2011-01-01

    Parkinson’s disease is caused by the degeneration of dopaminergic neurons in substantia nigra. There is no current promising treatment for neuroprotection of dopaminergic neurons. Ceftriaxone is a beta-lactam antibiotic and has been reported to offer neuroprotective effects (Rothstein, J.-D., Patel, S., Regan, M.-R., Haenggeli, C., Huang, Y.-H., Bergles, D.-E., Jin, L., Dykes, H.-M., Vidensky, S., Chung, D.-S., Toan, S.-V., Bruijn, L.-I., Su, Z.-Z., Gupta, P., and Fisher, P.-B. (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression Nature433, 73–77). In the present study, efficacy of ceftriaxone in neuroprotection of dopaminergic neurons and amelioration of motor deficits in a rat model of Parkinson’s disease were investigated. Ceftriaxone was administrated in 6-hydroxydopamine-lesioned rats. Using behavioral tests, grip strength and numbers of apomorphine-induced contralateral rotation were declined in the ceftriaxone-treated group. More importantly, cell death of dopaminergic neurons was found to decrease. In addition, both the protein expression and immunoreactivity for GLT-1 were up-regulated. The present results strongly indicate that ceftriaxone is a potential agent in the treatment of Parkinson’s disease. PMID:22860178

  3. Brief Dopaminergic Stimulations Produce Transient Physiological Changes in Prefrontal Pyramidal Neurons

    PubMed Central

    Moore, Anna R.; Zhou, Wen-Liang; Potapenko, Evgeniy S.; Kim, Eun-Ji; Antic, Srdjan D.

    2010-01-01

    In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2 sec) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an “inverted U curve” (Vijayraghavan et al., 2007), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5 sec of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40 seconds. PMID:21059342

  4. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  5. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression.

    PubMed

    Kiyofuji, Kana; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Mishima, Satoshi; Katsuki, Hiroshi

    2015-08-01

    Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner. PMID:25917324

  6. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression.

    PubMed

    Kiyofuji, Kana; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Mishima, Satoshi; Katsuki, Hiroshi

    2015-08-01

    Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner.

  7. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    SciTech Connect

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  8. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells.

    PubMed

    Liu, Xinjian; Li, Fang; Stubblefield, Elizabeth A; Blanchard, Barbara; Richards, Toni L; Larson, Gaynor A; He, Yujun; Huang, Qian; Tan, Aik-Choon; Zhang, Dabing; Benke, Timothy A; Sladek, John R; Zahniser, Nancy R; Li, Chuan-Yuan

    2012-02-01

    Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD. PMID:22105488

  9. In vitro differentiation of human amniotic fluid-derived cells: augmentation towards a neuronal dopaminergic phenotype.

    PubMed

    Pfeiffer, Shona; McLaughlin, David

    2010-09-01

    Amniotic fluid is known to yield a number of cell types which are multipotent, ethically derived, genetically stable, easily grown, expanded and possess favourable immunogenicity, which has resulted in an increasing interest for use in various neuronal disorders such as Parkinson's disease. The neuronal potential of cells derived from the adherent fraction of amniotic fluid, routinely taken by amniocentesis, are least explored. The aim of the present study was to investigate the capacity of these cells for neuronal and dopaminergic differentiation using in vitro differentiation protocols with canonical inductive factors not previously tested. To do this, samples derived from multiple donors were grown under four conditions: standard serum-containing media, NB (neurobasal) media designed specifically for propagation and maintenance of neuronal cells, NB media with addition of retinoic acid and BDNF (brain-derived neurotrophic factor) for NI (neuronal induction), and NB media with addition of FGF8 (fibroblast growth factor-8) and Shh (sonic hedgehog) after NI. Our results showed the presence of multiple neuronal markers after growth in serum-containing medium [TUJ1, MAP2, NF-M, TH (tyrosine hydroxylase)], which was significantly up-regulated after serum withdrawal in NB medium alone with induction of NeuN (neuronal nuclei) and NSE (neuron-specific enolase). NI and DA.I (dopaminergic induction) was accompanied by further increases in expression and a distinct transition to a sustained neuronal morphology. Western blot analysis confirmed increasing TH expression and NURR1, expressed in base serum-containing media, found to be down-regulated after induction. In conclusion, these cells possess a highly favourable base neuronal and dopaminergic prepotential, which may easily be accentuated by standard induction protocols. PMID:20388119

  10. Transgenic Zebrafish Expressing mCherry in the Mitochondria of Dopaminergic Neurons.

    PubMed

    Noble, Sandra; Godoy, Rafael; Affaticati, Pierre; Ekker, Marc

    2015-10-01

    Genetic mutations and environmental toxins are known to affect mitochondrial health and have been implicated in the progressive degeneration of dopaminergic neurons in Parkinson's disease. To visualize mitochondria in dopaminergic neurons of live zebrafish, we used the regulatory elements of the dopamine transporter (dat) gene to target a reporter, mCherry, after fusion with the mitochondrial localizing signal (MLS) of Tom20. Immunoblot analysis of mitochondrial and cytosolic fractions from Tg(dat:tom20 MLS-mCherry) larvae shows that mCherry is efficiently targeted to the mitochondria. Confocal imaging of live fish was carried out from 1 day postfertilization (dpf) to 9 dpf. We also colocalized dat mRNA expression with the mCherry protein in the olfactory bulb (OB), subpallium (SP), pretectum (Pr), diencephalic clusters 2 and 3 (DC2/3), caudal hypothalamus (Hc), locus coeruleus (LC), anterior preoptic area (POa), retinal amacrine cells (RAC), caudal hypothalamus (Hc), and preoptic area (PO). Treating Tg(dat:tom20 MLS-mCherry) larvae with the dopaminergic neurotoxin MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) at 2 or 3 dpf resulted in a decrease in mCherry fluorescence in the pretectum, olfactory bulb, subpallium, diencephalic clusters 2 and 3, and the caudal hypothalamus. Labeling of mitochondria in nigrostriatal dopaminergic neurons of zebrafish could allow their visualization in vivo following genetic or pharmacological manipulations.

  11. Gypenosides protects dopaminergic neurons in primary culture against MPP(+)-induced oxidative injury.

    PubMed

    Wang, Peng; Niu, Le; Guo, Xiao-Dong; Gao, Li; Li, Wei-Xin; Jia, Dong; Wang, Xue-Lian; Ma, Lian-Ting; Gao, Guo-Dong

    2010-10-30

    Oxidative injury has been implicated in the etiology of Parkinson's disease (PD). Gypenosides (GPs), the saponins extract derived from the Gynostemma pentaphyllum, has various bioactivities. In this study, GPs was investigated for its neuroprotective effects on the 1-methyl-4-phenylpyridinium ion (MPP(+))-induced oxidative injury of dopaminergic neurons in primary nigral culture. It was found that GPs pretreatment, cotreatment or posttreatment significantly and dose-dependently attenuated MPP(+)-induced oxidative damage, reduction of dopamine uptake, loss of tyrosine hydrolase (TH)-immunopositive neurons and degeneration of TH-immunopositive neurites. However, the preventive effect of GPs was more potential than its therapeutical effect. Most importantly, the neuroprotective effect of GPs may be attributed to GPs-induced strengthened antioxidation as manifested by significantly increased glutathione content and enhanced activity of glutathione peroxidase, catalyze and superoxide dismutase in nigral culture. The neuroprotective effects of GPs are specific for dopaminergic neurons and it may have therapeutic potential in the treatment of PD.

  12. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron.

    PubMed

    Wang, Jing; Liu, Huaide; Jin, Weihua; Zhang, Hong; Zhang, Quanbin

    2016-01-01

    Parkinson's disease (PD) is associated with progressive loss of dopaminergic neurons and more-widespread neuronal changes that cause complex symptoms. The aim of this study was to investigate the structure-activity relationship of sulfated hetero-polysaccharides (DF1) and sulfated galactofucan polysaccharides (DF2) on dopaminergic neuron in vivo and in vitro. Treatment with samples significantly ameliorated the depletion of both DA and TH-, Bcl-2- and Bax-positive neurons in MPTP-induced PD mice, DF1 showed the highest activity. The in vitro results found that DF1 and DF2 could reverse the decreased mitochondrial activity and the increased LDL release induced by MPP(+) (P<0.01 or P<0.001) which provides further evidence that DF1 and DF2 also exerts a direct protection against the neuronal injury caused by MPP(+). Furthermore, the administration of samples effectively decreased lipid peroxidation and increased the level/activities of GSH, GSH-PX, MDA and CAT in MPTP mice. Thus, the neuron protective effect may be mediated, in part, through antioxidant activity and the prevention of cell apoptosis. The chemical composition of DF1, DF2 and DF differed markedly, the DF1 fraction had the most complex chemical composition and showed the highest neuron protective activity. These results suggest that diverse monosaccharides and uronic acid might contribute to neuron protective activity.

  13. Allopregnanolone enhances the neurogenesis of midbrain dopaminergic neurons in APPswe/PSEN1 mice.

    PubMed

    Zhang, P; Xie, M Q; Ding, Y-Q; Liao, M; Qi, S S; Chen, S X; Gu, Q Q; Zhou, P; Sun, C Y

    2015-04-01

    An earlier study has demonstrated that exogenous allopregnanolone (APα) can reverse the reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) of 3-month-old male triple transgenic Alzheimer's disease mouse (3xTgAD). This paper is focused on further clarifying the origin of these new-born TH-positive neurons induced by exogenous APα treatment. We performed a deeper research in another AD mouse model, 4-month-old male APPswe/PSEN1 double transgenic AD mouse (2xTgAD) by measuring APα concentration and counting immunopositive neurons using enzyme-linked immunosorbent assay (ELISA) and unbiased stereology. It was found that endogenous APα level and the number of TH-positive neurons were reduced in the 2xTgAD mice, and these reductions were present prior to the appearance of β-amyloid (Aβ)-positive plaques. Furthermore, a single 20mg/kg of exogenous APα treatment prevented the decline of total neurons, TH-positive neurons and TH/bromodeoxyuridine (BrdU) double-positive neurons in the SNpc of 2xTgAD mice although the decreased intensity of TH-positive fibers was not rescued in the striatum. It was also noted that exogenous APα administration had an apparent increase in the doublecortin (DCX)-positive neurons and DCX/BrdU double-positive neurons of subventricular zone (SVZ), as well as in the percentage of neuronal nuclear antigen (NeuN)/BrdU double-positive neurons of the SNpc in the 2xTgAD mice. These findings indicate that a lower level of endogenous APα is implicated in the loss of midbrain dopaminergic neurons in the 2xTgAD mice, and exogenous APα-induced a significant increase in the new-born dopaminergic neurons might be derived from the proliferating and differentiation of neural stem niche of SVZ.

  14. Pitx3 is required for development of substantia nigra dopaminergic neurons

    PubMed Central

    Nunes, Irene; Tovmasian, Lucy T.; Silva, Robert M.; Burke, Robert E.; Goff, Stephen P.

    2003-01-01

    Dopaminergic (DA) neurons of substantia nigra in the midbrain control voluntary movement, and their degeneration is the cause of Parkinson's disease. The complete set of genes required to specifically determine the development of midbrain DA subgroups is not known yet. We report here that mice lacking the bicoid-related homeoprotein Pitx3 fail to develop DA neurons of the substantia nigra. Other mesencephalic DA neurons of the ventral tegmental area and retrorubral field are unaltered in their dopamine expression and histological organization. These data suggest that Pitx3-dependent gene expression is specifically required for the differentiation of DA progenitors within the mesencephalic DA system. PMID:12655058

  15. Zhichan decoction induces differentiation of dopaminergic neurons in Parkinson's disease rats after neural stem cell transplantation

    PubMed Central

    Shi, Huifen; Song, Jie; Yang, Xuming

    2014-01-01

    The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson's disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite (dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson's disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson's disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons. PMID:25206914

  16. The Neuroprotective Mechanism of Low-Frequency rTMS on Nigral Dopaminergic Neurons of Parkinson's Disease Model Mice.

    PubMed

    Dong, Qiaoyun; Wang, Yanyong; Gu, Ping; Shao, Rusheng; Zhao, Li; Liu, Xiqi; Wang, Zhanqiang; Wang, Mingwei

    2015-01-01

    Background. Parkinson's disease is a neurodegenerative disease in elder people, pathophysiologic basis of which is the severe deficiency of dopamine in the striatum. The purpose of the present study was to evaluate the neuroprotective effect of low-frequency rTMS on Parkinson's disease in model mice. Methods. The effects of low-frequency rTMS on the motor function, cortex excitability, neurochemistry, and neurohistopathology of MPTP-induced Parkinson's disease mice were investigated through behavioral detection, electrophysiologic technique, high performance liquid chromatography-electrochemical detection, immunohistochemical staining, and western blot. Results. Low-frequency rTMS could improve the motor coordination impairment of Parkinson's disease mice: the resting motor threshold significantly decreased in the Parkinson's disease mice; the degeneration of nigral dopaminergic neuron and the expression of tyrosine hydroxylase were significantly improved by low-frequency rTMS; moreover, the expressions of brain derived neurotrophic factor and glial cell line derived neurotrophic factor were also improved by low-frequency rTMS. Conclusions. Low-frequency rTMS had a neuroprotective effect on the nigral dopaminergic neuron which might be due to the improved expressions of brain derived neurotrophic factor and glial cell line-derived neurotrophic factor. The present study provided a theoretical basis for the application of low-frequency rTMS in the clinical treatment and recovery of Parkinson's disease.

  17. Toxic effects of potential environmental neurotoxins related to 1-methyl-4-phenylpyridinium on cultured rat dopaminergic neurons

    SciTech Connect

    Michel, P.P.; Dandapani, B.K.; Sanchez-Ramos, J.; Efange, S.; Pressman, B.C.; Hefti, F.

    1989-02-01

    Dopaminergic rat mesencephalic neurons in culture were exposed to a group of potential environmental neurotoxins. These cultures, which contained 0.5 to 1% dopaminergic neurons, were a suitable tool for determining nonselective and selective dopaminergic cytotoxicity. Selective toxicity was quantitated as the concentration which destroyed half of the population of dopaminergic neurons as visualized by tyrosine hydroxylase immunocytochemistry. Nonselective toxicity was defined as the concentration of test drug which destroyed half of the entire population of cultured cells as visualized by phase contrast microscopy. The compounds tested were selected to fulfill two molecular criteria underlying the toxic activity of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toward dopaminergic cells: 1) to be a substrate for the selective uptake system of the dopaminergic neurons and 2) to possess a delocalized positive charge related to their ability to inhibit mitochondrial electron transport. Of a total number of 29 compounds tested, MPP+ and its close derivatives, 2'-methyl-MPP+ and p-amino-MPP+, exhibited highly selective dopaminergic toxicity, hence the requirements for a selective dopaminergic neurotoxin are rather strict.

  18. Strategies to unravel molecular codes essential for the development of meso-diencephalic dopaminergic neurons

    PubMed Central

    Jacobs, F M J; Smits, S M; Hornman, K J M; Burbach, J P H; Smidt, M P

    2006-01-01

    Understanding the development of neuronal systems has become an important asset in the attempt to solve complex questions about neuropathology as found in Parkinson's disease, schizophrenia and other complex neuronal diseases. The development of anatomical and functional divergent structures in the brain is achieved by a combination of early anatomical patterning and highly coordinated neuronal migration and differentiation events. Fundamental to the existence of divergent structures in the brain is the early region-specific molecular programming. Neuronal progenitors located along the neural tube can still adapt many different identities. Their exact position in the developing brain, however, determines early molecular specification by region-specific signalling molecules. These signals determine time and region-specific expression of early regulatory genes, leading to neuronal differentiation. Here, we focus on a well-described neuronal group, the meso-diencephalic dopaminergic neurons, of which heterogeneity based on anatomical position could account for the difference in vulnerability of specific subgroups as observed in Parkinson's disease. The knowledge of their molecular coding helps us to understand how the meso-diencephalic dopaminergic system is built and could provide clues that unravel mechanisms associated with the neuropathology in complex diseases such as Parkinson's disease. PMID:16809365

  19. Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons

    PubMed Central

    2010-01-01

    Background Parkinson's disease is the second most common neurodegenerative disorder. The pathological hallmark of the disease is degeneration of midbrain dopaminergic neurons. Genetic association studies have linked 13 human chromosomal loci to Parkinson's disease. Identification of gene(s), as part of the etiology of Parkinson's disease, within the large number of genes residing in these loci can be achieved through several approaches, including screening methods, and considering appropriate criteria. Since several of the indentified Parkinson's disease genes are expressed in substantia nigra pars compact of the midbrain, expression within the neurons of this area could be a suitable criterion to limit the number of candidates and identify PD genes. Methods In this work we have used the combination of findings from six rodent transcriptome analysis studies on the gene expression profile of midbrain dopaminergic neurons and the PARK loci in OMIM (Online Mendelian Inheritance in Man) database, to identify new candidate genes for Parkinson's disease. Results Merging the two datasets, we identified 20 genes within PARK loci, 7 of which are located in an orphan Parkinson's disease locus and one, which had been identified as a disease gene. In addition to identifying a set of candidates for further genetic association studies, these results show that the criteria of expression in midbrain dopaminergic neurons may be used to narrow down the number of genes in PARK loci for such studies. PMID:20716345

  20. Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons.

    PubMed

    Sun, Dong; Yue, Qingwei; Guo, Weihua; Li, Tao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2015-01-01

    Resveratrol is originally extracted from huzhang, a Chinese herbal medicine. Recently, resveratrol has attracted a great of attention due to its antioxidant and antiapoptotic properties. Although the neuroprotection of resveratrol on neural damages in various models has been well characterized, little is known about the role of resveratrol in methamphetamine (MA) induced neurotoxicity in mesencephalic dopaminergic neurons. Dopaminergic neurons were isolated from midbrain of mouse embryos at embryonic day 15 and cultured in the presence of MA and resveratrol. Cell viability was examined by MTT assay and the apoptosis was assessed using Hoechst33342/PI double staining. To evaluate the Oxidative damage, ROS assay was performed. Moreover, the changes of time course of intracellular free calcium concentration ([Ca(2+) ]i) were analyzed with Fluo-3/AM tracing. The data showed that MA induced the neurotoxicity of cultured cells in a dose-dependent manner. Resveratrol significantly increased cellular viability and retarded cell apoptosis. Furthermore, resveratrol also attenuated MA induced ROS production and intracellular free calcium overload. Our results suggest that resveratrol protects dopaminergic neurons from MA-induced neuronal cytotoxicity, which, at least partly, is mediated by inhibition of [Ca(2+) ]i and oxidative stress. © 2015 BioFactors 41(4):252-260, 2015.

  1. Quantification of dopaminergic neuron differentiation and neurotoxicity via a genetic reporter

    PubMed Central

    Cui, Jun; Rothstein, Megan; Bennett, Theo; Zhang, Pengbo; Xia, Ninuo; Reijo Pera, Renee A.

    2016-01-01

    Human pluripotent stem cells provide a powerful human-genome based system for modeling human diseases in vitro and for potentially identifying novel treatments. Directed differentiation of pluripotent stem cells produces many specific cell types including dopaminergic neurons. Here, we generated a genetic reporter assay in pluripotent stem cells using newly-developed genome editing technologies in order to monitor differentiation efficiency and compare dopaminergic neuron survival under different conditions. We show that insertion of a luciferase reporter gene into the endogenous tyrosine hydroxylase (TH) locus enables rapid and easy quantification of dopaminergic neurons in cell culture throughout the entire differentiation process. Moreover, we demonstrate that the cellular assay is effective in assessing neuron response to different cytotoxic chemicals and is able to be scaled for high throughput applications. These results suggest that stem cell-derived terminal cell types can provide an alternative to traditional immortal cell lines or primary cells as a quantitative cellular model for toxin evaluation and drug discovery. PMID:27121904

  2. Microarray expression profiling in 6-hydroxydopamine-induced dopaminergic neuronal cell death.

    PubMed

    Park, Bokyung; Oh, Chang-Ki; Choi, Won-Seok; Chung, In Kwon; Youdim, Moussa B H; Oh, Young J

    2011-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. To discover potential key molecules in this process, we utilized cDNA microarray technology to obtain an expression profile of transcripts in MN9D dopaminergic neuronal cells treated with 6-hydroxydopamine. Using a self-organizing map algorithm, data mining and clustering were combined to identify distinct functional subgroups of genes. We identified alterations in the expression of 81 genes in eight clusters. Among these genes, we verified protein expression patterns of MAP kinase phosphatase 1 and sequestosome 1 using both cell culture and rat brain models of PD. Immunological analyses revealed increased expression levels as well as aggregated distribution patterns of these gene products in 6-hydroxydopamine-treated dopaminergic neurons. In addition to the identification of other proteins that are known to be associated with protein aggregation, our results raise the possibility that a more widespread set of proteins may be associated with the generation of protein aggregates in dying neurons. Further research to determine the functional roles of other altered gene products within the same cluster as well as the seven remaining clusters may provide new insights into the neurodegeneration that underlies PD pathogenesis.

  3. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale.

    PubMed

    Cho, Myung-Soo; Hwang, Dong-Youn; Kim, Dong-Wook

    2008-01-01

    Cell-replacement therapy using human embryonic stem cells (hESCs) holds great promise in treating Parkinson's disease. We have recently reported a highly efficient method to generate functional dopaminergic (DA) neurons from hESCs. Our method includes a unique step, the formation of spherical neural masses (SNMs), and offers the highest yield of DA neurons ever achieved so far. In this report, we describe our method step by step, covering not only how to differentiate hESCs into DA neurons at a high yield, but also how to amplify, freeze and thaw the SNMs, which are the key structures that make our protocol unique and advantageous. Although the whole process of generation of DA neurons from hESCs takes about 2 months, only 14 d are needed to derive DA neurons from the SNMs.

  4. Progressive loss of dopaminergic neurons induced by unilateral rotenone infusion into the medial forebrain bundle.

    PubMed

    Norazit, Anwar; Meedeniya, Adrian C B; Nguyen, Maria Nga; Mackay-Sim, Alan

    2010-11-11

    Rotenone, a mitochondrial complex 1 inhibitor, causes oxidative damage via production of reactive oxygen species. We examined the pathophysiology of neuronal and glial cells of the nigrostriatal pathway following unilateral infusion of varying doses of rotenone into the substantia nigra or medial forebrain bundle of adult male Sprague-Dawley rats, sacrificed 14 and 60 days after infusion. Immunofluorescence techniques were used to qualitatively and quantitatively assay dopaminergic neurons, their projections, glial cells, synapses, and oxidative stress. Rotenone infusion into the substantia nigra at all concentrations caused extensive damage and tissue necrosis, therefore of limited relevance for producing a Parkinson disease model. Infusion of 0.5μg of rotenone targeting the medial forebrain bundle induced oxidative stress in dopaminergic neurons causing ongoing cell stress as defined by an elevation of stress granule and oxidative stress markers. This treatment resulted in the loss of tyrosine hydroxylase immunoreactive cells in the substantia nigra (p≤0.01) and loss of tyrosine hydroxylase immunoreactive nerve fibres and synaptic specialisations in the striatum (p≤0.01). The infusion of 0.5μg of rotenone also caused an increase in astrocytes and microglial cells in the substantia nigra in comparison to control (p≤0.01). We examined the time-dependent reduction of tyrosine hydroxylase-positive nerve fibres and cell bodies in the striatum and substantia nigra respectively, with a progressive reduction evident 60days after infusion (p≤0.01, p≤0.05). Dopaminergic axons exposed to low-dose rotenone undergo oxidative stress, with a resultant ongoing loss of dopaminergic neurons, providing an animal model relevant to Parkinson disease.

  5. Lithium fails to protect dopaminergic neurons in the 6-OHDA model of Parkinson's disease.

    PubMed

    Yong, Yue; Ding, Hanqing; Fan, Zhiqin; Luo, Jia; Ke, Zun-Ji

    2011-03-01

    Lithium has been used for the treatment of bipolar mood disorder and is shown to have neuroprotective properties. Since lithium inhibits the activity of glycogen synthase kinase 3 (GSK3) which is implicated in various human diseases, particularly neurodegenerative diseases, the therapeutic potential of lithium receives great attention. Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by the pathological loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Intranigral injection of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) causes selective and progressive degeneration of dopaminergic neurons in SNpc, and is a commonly used animal model of PD. The current study was designated to determine whether lithium is effective in alleviating 6-OHDA-induced neurodegeneration in the SNpc of rats. We demonstrated that chronic subcutaneous administration of lithium inhibited GSK3 activity in the SNpc, which was evident by an increase in phosphorylation of GSK3β at serine 9, cyclin D1 expression, and a decrease in tau phosphorylation. 6-OHDA did not affect GSK3 activity in the SNpc. Moreover, lithium was unable to alleviate 6-OHDA-induced degeneration of SNpc dopaminergic neurons. The results suggest that GSK3 is minimally involved in the neurodegeneration in the rat 6-OHDA model of PD.

  6. Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling.

    PubMed

    Goertz, Richard Brandon; Wanat, Matthew J; Gomez, Jorge A; Brown, Zeliene J; Phillips, Paul E M; Paladini, Carlos A

    2015-03-13

    Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine.

  7. Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys

    PubMed Central

    He, Jingjing; Xiang, Zheng; Zhu, Xiaoqing; Ai, Zongyong; Shen, Jingsong; Huang, Tianzhuang; Liu, Liegang; Ji, Weizhi; Li, Tianqing

    2016-01-01

    Parkinson’s disease (PD) is one common neurodegenerative disease caused by a significant loss of midbrain dopaminergic neurons. Previous reports showed that 7, 8- dihydroxyflavone (7, 8-DHF) as a potent TrkB agonist can mimic BDNF and play neuroprotective roles for mouse dopaminergic neurons. Nonetheless, the safety and neuroprotective effects are unclear in monkey models of PD. Here, we find that 7, 8-DHF could be absorbed and metabolized into 7-hydroxy-8-methoxyflavone through oral administration in monkeys. The half-life time of 7, 8-DHF in monkey plasma is about 4–8 hrs. Furthermore, these monkeys maintain health state throughout the course of seven-month treatments of 7, 8-DHF (30 mg/kg/day). Importantly, 7, 8-DHF treatments can prevent the progressive degeneration of midbrain dopaminergic neurons by attenuating neurotoxic effects of MPP+ and display strong neuroprotective effects in monkeys. Our study demonstrates that this promising small molecule may be transited into a clinical useful pharmacological agent. PMID:27731318

  8. Pramipexole protects dopaminergic neurons through paraplegin against 6-hydroxydopamine.

    PubMed

    Kim, Mun Ki; Park, Hyeon Soo; Cho, Jea Hyeon; Kim, Gon Sup; Won, Chungkil

    2015-01-21

    The neurotransmitter dopamine (DA) regulates various physiological and psychological functions, such as movement, motivation, behavior, and learning. DA exerts its function through DA receptors and a series of studies have reported the role of DAergic receptors in preventing DAergic neuronal degeneration. Here, we studied the DA receptor-mediated neuroprotective effect of the D2-like receptor agonists against 6-hydroxydopamine (6-OHDA)-induced DAergic neurodegeneration. D2-like receptor agonists were administered in the substantia nigra in vivo and to primary cultured neurons. Treatment of 6-OHDA decreased tyrosine hydroxylase (TH) and paraplegin (mitochondrial regulation protein) immunoreactivity, whereas pretreatment with quinpirole (a full D2-like receptor agonist) preserved TH and paraplegin reactivity. This led us to test which DA receptors were necessary for the neuroprotective effect and whether paraplegin can be regulated by D2 or D3 receptor agonists. Pretreatment with the D2 receptor selective agonist, sumanirole, did not preserve TH and paraplegin reactivity from 6-OHDA. However, the D3 receptor agonist, pramipexole, protected TH reactivity and restored paraplegin expression to the control level in the presence of 6-OHDA. Interestingly, pretreatment with the D3 receptor antagonist GR103691 reduced TH and paraplegin expression levels. These results suggest that the D3 receptor agonist may protect DA neurons from the effect of 6-OHDA through the modulation of the mitochondrial regulation protein paraplegin. PMID:25514384

  9. Non-dopaminergic neurons expressing dopamine synthesis enzymes: differentiation and functional significance.

    PubMed

    Ugryumov, M V; Mel'nikova, V I; Ershov, P V; Balan, I S; Kalas, A

    2002-01-01

    The development and functional significance of neurons in the arcuate nucleus expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase were studied in rat fetuses, neonates, and adults using immunocytochemical (single and double immunolabeling of tyrosine hydroxylase and aromatic L-amino acid decarboxylase) methods with a confocal microscope and computerized image analysis, HPLC with electrochemical detection, and radioimmunological analysis. Single-enzyme neurons containing tyrosine hydroxylase were first seen on day 18 of embryonic development in the ventrolateral part of the arcuate nucleus. Neurons expressing only aromatic L-amino acid decarboxylase or both enzymes of the dopamine synthesis pathway were first seen on day 20 of embryonic development, in the dorsomedial part of the nucleus. On days 20-21 of embryonic development, dopaminergic (containing both enzymes) neurons amounted to less than 1% of all neurons expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase. Nonetheless, in the ex vivo arcuate nucleus and in primary neuron cultures from this structure, there were relatively high leveLs of dopamine and L-dihydroxyphenylalanine (L-DOPA), and these substances were secreted spontaneously and in response to stimulation. In addition. dopamine levels in the arcuate nucleus in fetuses were sufficient to support the inhibitory regulation of prolactin secretion by the hypophysis, which is typical of adult animals. During development, the proportion of dopaminergic neurons increased, reaching 38% in adult rats. Specialized contacts between single-enzyme tyrosine hydroxylase-containing and aromatic L-amino acid decarboxylase-containing neurons were present by day 21 of embryonic development; these were probably involved in transporting L-DOPA from the former neurons to the latter. It was also demonstrated that the axons of single-enzyme decarboxylase-containing neurons projected into the median eminence, supporting the

  10. The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry

    PubMed Central

    Rose, Jed E; Dehkordi, Ozra; Manaye, Kebreten F; Millis, Richard M; Cianaki, Salman Ameri; Jayam-Trouth, Annapurni

    2016-01-01

    The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by nicotine (NIC, 40 μg/kg, IP) and by a peripherally-acting analog of nicotine, nicotine pyrrolidine methiodide (NIC-PM, 30 μg/kg, IP). Sequential double-labelling was then performed to determine whether noradrenergic and dopaminergic neurons of the nicotine reward-addiction circuitry were primary targets of NIC and NIC-PM. Double-labelling of NIC and/or NIC-PM activated c-Fos immunoreactive cells with tyrosine hydroxylase (TH) showed no apparent c-Fos expression by the dopaminergic cells of the ventral tegmental area (VTA). With the exception of sparse numbers of TH immunoreactive D11 cells, dopamine-containing neurons in other areas of the reward-addiction circuitry, namely periaqueductal gray, and dorsal raphe, were also devoid of c-Fos immunoreactivity. Noradrenergic neurons of locus coeruleus (LC), known to innervate VTA, were activated by both NIC and NIC-PM. These results demonstrate that noradrenergic neurons of LC are among the first structures that are stimulated by single acute IP injection of NIC and NIC-PM. Dopaminergic neurons of VTA and other CNS sites, did not respond to acute IP administration of NIC or NIC-PM by induction of c-Fos. PMID:27347434

  11. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb

    PubMed Central

    Grier, Bryce D.; Belluscio, Leonardo; Cheetham, Claire E. J.

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  12. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    PubMed

    Grier, Bryce D; Belluscio, Leonardo; Cheetham, Claire E J

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  13. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia.

    PubMed

    Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B

    2013-01-08

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.

  14. Cognitive executive impairment and dopaminergic deficits in de novo Parkinson's disease.

    PubMed

    Siepel, Françoise J; Brønnick, Kolbjørn S; Booij, Jan; Ravina, Bernard M; Lebedev, Alexander V; Pereira, Joana B; Grüner, Renate; Aarsland, Dag

    2014-12-01

    Cognitive impairment in Parkinson's disease (PD) is common and does directly impact patients' everyday functioning. However, the underlying mechanisms of early cognitive decline are not known. This study explored the association between striatal dopaminergic deficits and cognitive impairment within a large cohort of early, drug-naïve PD patients and tested the hypothesis that executive dysfunction in PD is associated with striatal dopaminergic depletion. A cross-sectional multicenter cohort of 339 PD patients and 158 healthy controls from the Parkinson's Progression Markers Initiative study was analyzed. Each individual underwent cerebral single-photon emission CT (SPECT) and a standardized neuropsychological assessment with tests of memory as well as visuospatial and executive function. SPECT imaging was performed with [(123) I]FP-CIT, and specific binding ratios in left and right putamen and caudate nucleus were calculated. The association between specific binding ratios, cognitive domain scores, and age was analyzed using Pearson's correlations, partial correlation, and conditional process analysis. A small, but significant, positive association between total striatal dopamine transporter binding and the attention/executive domain was found (r = 0.141; P = 0.009) in PD, but this was not significant after adjusting for age. However, in a moderated mediation model, we found that cognitive executive differences between controls and patients with PD were mediated by an age-moderated striatal dopaminergic deficit. Our findings support the hypothesis that nigrostriatal dopaminergic deficit is associated with executive impairment, but not to memory or visuospatial impairment, in early PD. PMID:25284687

  15. Analysis of dopaminergic neuronal dysfunction in genetic and toxin-induced models of Parkinson's disease in Drosophila.

    PubMed

    Navarro, Juan A; Heßner, Sabina; Yenisetti, Sarat C; Bayersdorfer, Florian; Zhang, Li; Voigt, Aaron; Schneuwly, Stephan; Botella, Jose A

    2014-11-01

    Drosophila melanogaster has contributed significantly to the understanding of disease mechanisms in Parkinson's disease (PD) as it is one of the very few PD model organisms that allow the study of age-dependent behavioral defects, physiology and histology, and genetic interactions among different PD-related genes. However, there have been contradictory results from a number of recent reports regarding the loss of dopaminergic neurons in different PD fly models. In an attempt to re-evaluate and clarify this issue, we have examined three different genetic (α-synuclein, Pink1, parkin) and two toxin-based (rotenone and paraquat) models of the disease for neuronal cell loss. Our results showed no dopaminergic neuronal loss in all models tested. Despite this surprising result, we found additional phenotypes showing the dysfunctional status of the dopaminergic neurons in most of the models analyzed. A common feature found in most models is a quantifiable decrease in the fluorescence of a green-fluorescent protein reporter gene in dopaminergic neurons that correlates well with other phenotypes found for these models and can be reliably used as a hallmark of the neurodegenerative process when modeling diseases affecting the dopaminergic system in Drosophila. Analyzing three genetic and two toxin-based Drosophila models of Parkinson's disease (PD) through green fluorescent protein reporter and α-tyrosine hydroxylase staining, we have found the number of dopaminergic neurons to remain unchanged. Despite the lack of neuronal loss, we have detected a remarkable decrease in a reporter green-fluorescent protein (GFP) signal in dopaminergic neurons, suggesting an abnormal neuronal status that correlates with the phenotypes associated with those PD fly models.

  16. Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons.

    PubMed

    Jiang, Houbo; Xu, Zhimin; Zhong, Ping; Ren, Yong; Liang, Gaoyang; Schilling, Haley A; Hu, Zihua; Zhang, Yi; Wang, Xiaomin; Chen, Shengdi; Yan, Zhen; Feng, Jian

    2015-01-01

    The direct conversion of fibroblasts to induced dopaminergic (iDA) neurons and other cell types demonstrates the plasticity of cell fate. The low efficiency of these relatively fast conversions suggests that kinetic barriers exist to safeguard cell-type identity. Here we show that suppression of p53, in conjunction with cell cycle arrest at G1 and appropriate extracellular environment, markedly increase the efficiency in the transdifferentiation of human fibroblasts to iDA neurons by Ascl1, Nurr1, Lmx1a and miR124. The conversion is dependent on Tet1, as G1 arrest, p53 knockdown or expression of the reprogramming factors induces Tet1 synergistically. Tet1 knockdown abolishes the transdifferentiation while its overexpression enhances the conversion. The iDA neurons express markers for midbrain DA neurons and have active dopaminergic transmission. Our results suggest that overcoming these kinetic barriers may enable highly efficient epigenetic reprogramming in general and will generate patient-specific midbrain DA neurons for Parkinson's disease research and therapy. PMID:26639555

  17. Do Dopaminergic Impairments Underlie Physical Inactivity in People with Obesity?

    PubMed Central

    Kravitz, Alexxai V.; O'Neal, Timothy J.; Friend, Danielle M.

    2016-01-01

    Obesity is associated with physical inactivity, which exacerbates the negative health consequences of obesity. Despite a wide consensus that people with obesity should exercise more, there are few effective methods for increasing physical activity in people with obesity. This lack is reflected in our limited understanding of the cellular and molecular causes of physical inactivity in obesity. We hypothesize that impairments in dopamine signaling contribute to physical inactivity in people with obesity, as in classic movement disorders such as Parkinson's disease. Here, we review two lines of evidence supporting this hypothesis: (1) chronic exposure to obesogenic diets has been linked to impairments in dopamine synthesis, release, and receptor function, particularly in the striatum, and (2) striatal dopamine is necessary for the proper control of movement. Identifying the biological determinants of physical inactivity may lead to more effective strategies for increasing physical activity in people with obesity, as well as improve our understanding of why it is difficult for people with obesity to alter their levels of physical activity. PMID:27790107

  18. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake

    PubMed Central

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  19. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake.

    PubMed

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  20. NEUROFUNCTIONAL DOPAMINERGIC IMPAIRMENT IN ELDERLY AFTER LIFETIME EXPOSURE TO MANGANESE

    PubMed Central

    Lucchini, Roberto G; Guazzetti, Stefano; Zoni, Silvia; Benedetti, Chiara; Fedrighi, Chiara; Peli, Marco; Donna, Filippo; Bontempi, Elza; Borgese, Laura; Micheletti, Serena; Ferri, Roberta; Marchetti, Serena; Smith, Donald R

    2014-01-01

    yielded a lower level confidence interval of 22.7 ng/m3 (median 26.4). For the odor identification score of the Sniffin Stick test, an association was observed with soil Mn (p=0.0006) and with a significant interaction with blood Pb (p=0.0856). Significant dose-responses resulted also for the Raven’s Colored Progressive Matrices with the distance from exposure point source (p=0.0025) and Mn in soil (p=0.09), and for the Trail Making test, with urinary Mn (p=0.0074). Serum prolactin (PRL) levels were associated with air (p=0.061) and urinary (p=0.003) Mn, and with blood Pb (p=0.0303). In most of these associations age played a significant role as an effect modifier. Conclusion Lifelong exposure to Mn was significantly associated with changes in odor discrimination, motor coordination, cognitive abilities and serum PRL levels. These effects are consistent with the hypothesis of a specific mechanism of toxicity of Mn on the dopaminergic system. Lead co-exposure, even at very low levels, can further enhance Mn toxicity. PMID:24881811

  1. Detailed Analysis of the Genetic and Epigenetic Signatures of iPSC-Derived Mesodiencephalic Dopaminergic Neurons

    PubMed Central

    Roessler, Reinhard; Smallwood, Sebastien A.; Veenvliet, Jesse V.; Pechlivanoglou, Petros; Peng, Su-Ping; Chakrabarty, Koushik; Groot-Koerkamp, Marian J.A.; Pasterkamp, R. Jeroen; Wesseling, Evelyn; Kelsey, Gavin; Boddeke, Erik; Smidt, Marten P.; Copray, Sjef

    2014-01-01

    Summary Induced pluripotent stem cells (iPSCs) hold great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic dopaminergic (mdDA) neurons involved in Parkinson’s disease. Although iPSC-derived midbrain DA neurons have been generated, detailed genetic and epigenetic characterizations of such neurons are lacking. The goal of this study was to examine the authenticity of iPSC-derived DA neurons obtained by established protocols. We FACS purified mdDA (Pitx3Gfp/+) neurons derived from mouse iPSCs and primary mdDA (Pitx3Gfp/+) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derived DA neurons largely adopted characteristics of their in vivo counterparts, relevant deviations in global gene expression and DNA methylation were found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced expression levels. Such abnormalities should be addressed because they might affect unambiguous long-term functionality and hamper the potential of iPSC-derived DA neurons for in vitro disease modeling or cell-based therapy. PMID:24749075

  2. Enhancing the efficiency of direct reprogramming of human primary fibroblasts into dopaminergic neuron-like cells through p53 suppression.

    PubMed

    Liu, XinJian; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2014-09-01

    Dopaminergic (DA) neuron-like cells obtained through direct reprogramming of primary human fibroblasts offer exciting opportunities for treatment of Parkinson's disease. A significant obstacle is the low efficiency of conversion during the reprogramming process. Here, we demonstrate that the suppression of p53 significantly enhances the efficiency of transcription factor-mediated conversion of human fibroblasts into functional dopaminergic neurons. In particular, blocking p53 activity using a dominant-negative p53 (p53-DN) in IMR90 cells increases the conversion efficiency by 5-20 fold. The induced DA neuron-like cells exhibit dopamine neuron-specific gene expression, significant dopamine uptake and production capacities, and enables symptomatic relief in a rat Parkinson's disease model. Taken together, our findings suggest that p53 is a critical barrier in direct reprogramming of fibroblast into dopaminergic neurons. PMID:25129808

  3. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture.

    PubMed

    Schulz, Thomas C; Noggle, Scott A; Palmarini, Gail M; Weiler, Deb A; Lyons, Ian G; Pensa, Kate A; Meedeniya, Adrian C B; Davidson, Bruce P; Lambert, Nevin A; Condie, Brian G

    2004-01-01

    The use of human embryonic stem cells (hESCs) as a source of dopaminergic neurons for Parkinson's disease cell therapy will require the development of simple and reliable cell differentiation protocols. The use of cell cocultures, added extracellular signaling factors, or transgenic approaches to drive hESC differentiation could lead to additional regulatory as well as cell production delays for these therapies. Because the neuronal cell lineage seems to require limited or no signaling for its formation, we tested the ability of hESCs to differentiate to form dopamine-producing neurons in a simple serum-free suspension culture system. BG01 and BG03 hESCs were differentiated as suspension aggregates, and neural progenitors and neurons were detectable after 2-4 weeks. Plated neurons responded appropriately to electrophysiological cues. This differentiation was inhibited by early exposure to bone morphogenic protein (BMP)-4, but a pulse of BMP-4 from days 5 to 9 caused induction of peripheral neuronal differentiation. Real-time polymerase chain reaction and whole-mount immunocytochemistry demonstrated the expression of multiple markers of the midbrain dopaminergic phenotype in serum-free differentiations. Neurons expressing tyrosine hydroxylase (TH) were killed by 6-hydroxydopamine (6-OHDA), a neurotoxic catecholamine. Upon plating, these cells released dopamine and other catecholamines in response to K+ depolarization. Surviving TH+ neurons, derived from the cells differentiated in serum-free suspension cultures, were detected 8 weeks after transplantation into 6-OHDA-lesioned rat brains. This work suggests that hESCs can differentiate in simple serum-free suspension cultures to produce the large number of cells required for transplantation studies. PMID:15579641

  4. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  5. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation.

    PubMed

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-10-26

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson's disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.

  6. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson's disease

    PubMed Central

    Zhang, Wei; Phillips, Kester; Wielgus, Albert R.; Liu, Jie; Albertini, Alberto; Zucca, Fabio A.; Faust, Rudolph; Qian, Steven Y.; Miller, David S.; Chignell, Colin F.; Wilson, Belinda; Jackson-Lewis, Vernice; Przedborski, Serge; Joset, Danielle; Loike, John; Hong, Jau-Shyong; Sulzer, David; Zecca, Luigi

    2013-01-01

    In Parkinson's disease (PD), there is a progressive loss of neuromelanin (NM)-containing dopamine (DA) neurons in substantia nigra (SN) which is associated with microgliosis and presence of extracellular NM. Herein, we have investigated the interplay between microglia and human NM on the degeneration of SN dopaminergic neurons. Although NM particles are phagocytised and degraded by microglia within minutes in vitro, extracellular NM particles induce microglial activation and ensuing production of superoxide, nitric oxide (NO), hydrogen peroxide (H2O2), and pro-inflammatory factors. Furthermore, NM produces, in a microglia-depended manner, neurodegeneration in primary ventral midbrain cultures. Neurodegeneration was effectively attenuated with microglia derived from mice deficient in macrophage antigen complex-1 (Mac-1), a microglial integrin receptor involved in the initiation of phagocytosis. Neuronal loss was also attenuated with microglia derived from mice deficient in phagocytic oxidase (PHOX), a subunit of NADPH oxidase, that is responsible for superoxide and H2O2 production, or apocyanin, a NADPH oxidase inhibitor. In vivo, NM injected into rat SN produces microgliosis and a loss of tyrosine hydroxylase (TH) neurons. Thus, these results show that extracellular NM can activate microglia, which in turn, may induce dopaminergic neurodegeneration in PD. Our study may have far-reaching implications, both pathogenic and therapeutic. PMID:19957214

  7. Progressive loss of nigrostriatal dopaminergic neurons induced by inflammatory responses to fipronil.

    PubMed

    Park, Jae Hyeon; Park, Youn Sun; Koh, Hyun Chul

    2016-09-01

    Inflammatory responses are involved in mechanisms of neuronal cell damage in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). We investigated the mechanisms whereby inflammatory responses contribute to loss of dopaminergic neurons in fipronil (FPN)-treated rats. After stereotaxic injection of FPN in the substantia nigra (SN), the number of tyrosine hydroxylase (TH)-positive neurons and the levels of TH expression in the SN decreased at 7days, and a significant decrease was observed at 14days with a subsequent reduction in striatal TH expression. Decreases in dopamine (DA) levels, however, began at 3days post-injection, preceding the changes in TH expression. In contrast, glial fibrillary acidic protein (GFAP) expression was significantly increased at 3days and persisted for up to 14days post-lesion; these changes in GFAP expression appeared to be inversely correlated with TH expression. Furthermore, we found that FPN administration induced an inflammatory response characterized by increased levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α), which was mediated by activated microglia following infusion of FPN unilaterally into the SN. Intranigral injection of FPN underwent an inflammatory response with a resultant ongoing loss of dopaminergic neurons, indicating that pesticides may have important implication for the study of PD.

  8. M-type channels selectively control bursting in rat dopaminergic neurons

    PubMed Central

    Drion, Guillaume; Bonjean, Maxime; Waroux, Olivier; Scuvée-Moreau, Jacqueline; Liégeois, Jean-François; Sejnowski, Terrence J; Sepulchre, Rodolphe; Seutin, Vincent

    2010-01-01

    Midbrain dopaminergic neurons in the substantia nigra, pars compacta and ventral tegmental area are critically important in many physiological functions. These neurons exhibit firing patterns that include tonic slow pacemaking, irregular firing and bursting, and the amount of dopamine that is present in the synaptic cleft is much increased during bursting. The mechanisms responsible for the switch between these spiking patterns remain unclear. Using both in-vivo recordings combined with microiontophoretic or intraperitoneal drug applications and in-vitro experiments, we have found that M-type channels, which are present in midbrain dopaminergic cells, modulate the firing during bursting without affecting the background low-frequency pacemaker firing. Thus, a selective blocker of these channels, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride, specifically potentiated burst firing. Computer modeling of the dopamine neuron confirmed the possibility of a differential influence of M-type channels on excitability during various firing patterns. Therefore, these channels may provide a novel target for the treatment of dopamine-related diseases, including Parkinson’s disease and drug addiction. Moreover, our results demonstrate that the influence of M-type channels on the excitability of these slow pacemaker neurons is conditional upon their firing pattern. PMID:20180842

  9. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly.

    PubMed

    Luo, Sarah X; Huang, Eric J

    2016-03-01

    Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog-Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases. PMID:26724386

  10. Molecular Marker Differences Relate to Developmental Position and Subsets of Mesodiencephalic Dopaminergic Neurons

    PubMed Central

    Smits, Simone M.; von Oerthel, Lars; Hoekstra, Elisa J.; Burbach, J. Peter H; Smidt, Marten P.

    2013-01-01

    The development of mesodiencephalic dopaminergic (mdDA) neurons located in the substantia nigra compacta (SNc) and ventral tegmental area (VTA) follow a number of stages marked by distinct events. After preparation of the region by signals that provide induction and patterning, several transcription factors have been identified, which are involved in specifying the neuronal fate of these cells. The specific vulnerability of SNc neurons is thought to root in these specific developmental programs. The present study examines the positions of young postmitotic mdDA neurons to relate developmental position to mdDA subset specific markers. MdDA neurons were mapped relative to the neuromeric domains (prosomeres 1-3 (P1-3), midbrain, and hindbrain) as well as the longitudinal subdivisions (floor plate, basal plate, alar plate), as proposed by the prosomeric model. We found that postmitotic mdDA neurons are located mainly in the floorplate domain and very few in slightly more lateral domains. Moreover, mdDA neurons are present along a large proportion of the anterior/posterior axis extending from the midbrain to P3 in the diencephalon. The specific positions relate to some extent to the presence of specific subset markers as Ahd2. In the adult stage more of such subsets specific expressed genes are present and may represent a molecular map defining molecularly distinct groups of mdDA neurons. PMID:24116087

  11. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly.

    PubMed

    Luo, Sarah X; Huang, Eric J

    2016-03-01

    Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog-Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases.

  12. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea.

    PubMed

    Huot, Philippe; Lévesque, Martin; Parent, André

    2007-01-01

    The striatum harbours a population of dopaminergic neurons that is thought to act as a local source of dopamine (DA). This neuronal population increases in size in animal models of Parkinson's disease, where striatal DA levels are low, but its fate in idiopathic Parkinson's disease and Huntington's chorea is poorly known. In this study, we used antibodies raised against the enzyme tyrosine hydroxylase (TH), a faithful marker of dopaminergic neurons, to compare, by means of stereological counting methods, the number of striatal TH+ neurons on post-mortem brain sections from Parkinson's disease patients, Huntington's disease patients and age-matched controls. Propidium iodide nuclear staining was also performed to avoid counting short TH+ axonal segments that bear a large swollen varicosity and resemble small bipolar neurons. In normal subjects, TH+ neurons were scattered throughout the striatum, but they abounded preferentially in the ventral portion of the structure and were more numerous in the putamen than in the caudate nucleus. They displayed a multipolar cell body of medium size (10-20 mum in diameter) that emitted 3-5 smooth dendrites, a typical characteristic of striatal interneurons. These TH+ cells were rarely found in the small TH-poor striosomes, most of them being embedded in the large TH-rich extrastriosomal matrix. The number of striatal TH+ neurons was also found to vary according to an inverse relation with the age of the subjects. In pathological brains, the morphological characteristics of the striatal TH+ neurons were relatively unaltered, but the number of such neurons was markedly reduced compared with controls. The striatum of Parkinson's disease patients was found to contain six times less TH+ neurons than that of controls, whereas the striatum of Huntington's disease patients was largely devoid of such neurons. These findings are at odds with the results obtained in rodent and monkey models of Parkinson's disease, in which the number of

  13. Functional Interplay between Dopaminergic and Serotonergic Neuronal Systems during Development and Adulthood

    PubMed Central

    Dymecki, Susan M.

    2016-01-01

    The complex integration of neurotransmitter signals in the nervous system contributes to the shaping of behavioral and emotional constitutions throughout development. Imbalance among these signals may result in pathological behaviors and psychiatric illnesses. Therefore, a better understanding of the interplay between neurotransmitter systems holds potential to facilitate therapeutic development. Of particular clinical interest are the dopaminergic and serotonergic systems, as both modulate a broad array of behaviors and emotions and have been implicated in a wide range of affective disorders. Here we review evidence speaking to an interaction between the dopaminergic and serotonergic neuronal systems across development. We highlight data stemming from developmental, functional, and clinical studies, reflecting the importance of this transmonoaminergic interplay. PMID:25747116

  14. Functional Interplay between Dopaminergic and Serotonergic Neuronal Systems during Development and Adulthood.

    PubMed

    Niederkofler, Vera; Asher, Tedi E; Dymecki, Susan M

    2015-07-15

    The complex integration of neurotransmitter signals in the nervous system contributes to the shaping of behavioral and emotional constitutions throughout development. Imbalance among these signals may result in pathological behaviors and psychiatric illnesses. Therefore, a better understanding of the interplay between neurotransmitter systems holds potential to facilitate therapeutic development. Of particular clinical interest are the dopaminergic and serotonergic systems, as both modulate a broad array of behaviors and emotions and have been implicated in a wide range of affective disorders. Here we review evidence speaking to an interaction between the dopaminergic and serotonergic neuronal systems across development. We highlight data stemming from developmental, functional, and clinical studies, reflecting the importance of this transmonoaminergic interplay.

  15. Basal and stress-induced corticosterone secretion is decreased by lesion of mesencephalic dopaminergic neurons.

    PubMed

    Casolini, P; Kabbaj, M; Leprat, F; Piazza, P V; Rougé-Pont, F; Angelucci, L; Simon, H; Le Moal, M; Maccari, S

    1993-09-17

    There is evidence that certain psychopathological conditions are accompanied by a dysfunction in both the hypothalamo-pituitary-adrenal axis and dopaminergic systems, although the relationship between these two systems is as yet unclear. In the present study we investigated the effect of a specific lesion of dopamine mesencephalic neurons (Ventral Tegmental Area) on basal and stress-induced corticosterone secretion. Three weeks after injection of 6-OHDA, there was a depletion in dopamine in the frontal cortex and in the ventral and dorsal striatum, whereas norepinephrine and serotonin levels were unchanged. The dopamine-lesioned rats exhibited a lower basal and stress-induced corticosterone secretion than the sham-lesioned animals. The results indicate that the dopaminergic system may have a stimulatory influence on the hypothalamo-pituitary-adrenal axis. PMID:8242373

  16. Effect of Cell Adhesion Molecules on the Neurite Outgrowth of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons.

    PubMed

    Peng, Su-Ping; Schachner, Melitta; Boddeke, Erik; Copray, Sjef

    2016-04-01

    Intrastriatal transplantation of dopaminergic neurons has been shown to be a potentially very effective therapeutic approach for the treatment of Parkinson's disease (PD). With the detection of induced pluripotent stem cells (iPSCs), an unlimited source of autologous dopaminergic (DA) neurons became available. Although the iPSC-derived dopaminergic neurons exhibited most of the fundamental dopaminergic characteristics, detailed analysis and comparison with primary DA neurons have shown some aberrations in the expression of genes involved in neuronal development and neurite outgrowth. The limited outgrowth of the iPSC-derived DA neurons may hamper their potential application in cell transplantation therapy for PD. In the present study, we examined whether the forced expression of L1 cell adhesion molecule (L1CAM) and polysialylated neuronal cell adhesion molecule (PSA-NCAM), via gene transduction, can promote the neurite formation and outgrowth of iPSC-derived DA neurons. In cultures on astrocyte layers, both adhesion factors significantly increased neurite formation of the adhesion factor overexpressing iPSC-derived DA neurons in comparison to control iPSC-derived DA neurons. The same tendency was observed when the DA neurons were plated on postnatal organotypic striatal slices; however, this effect did not reach statistical significance. Next, we examined the neurite outgrowth of the L1CAM- or PSA-NCAM-overexpressing iPSC-derived DA neurons after implantation in the striatum of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats, the animal model for PD. Like the outgrowth on the organotypic striatal slices, no significant L1CAM- and PSA-NCAM-enforced neurite outgrowth of the implanted DA neurons was observed. Apparently, induced expression of L1CAM or PSA-NCAM in the iPSC-derived DA neurons cannot completely restore the neurite outgrowth potential that was reduced in these DA neurons as a consequence of epigenetic aberrations resulting from the i

  17. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.

    PubMed

    Pan, Tianhong; Zhu, Julie; Hwu, Wen-Jen; Jankovic, Joseph

    2012-01-01

    The relatively high co-occurrence of Parkinson's disease (PD) and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR)-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM), the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn) that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR) and inhibit tyrosine hydroxylase (TH), both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA), led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB) light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in melanoma

  18. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures.

    PubMed

    Testa, Claudia M; Sherer, Todd B; Greenamyre, J Timothy

    2005-03-24

    Rotenone, a pesticide and complex I inhibitor, causes nigrostriatal degeneration similar to Parkinson disease pathology in a chronic, systemic, in vivo rodent model [M. Alam, W.J. Schmidt, Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats, Behav. Brain Res. 136 (2002) 317-324; R. Betarbet, T.B. Sherer, G. MacKenzie, M. Garcia-Osuna, A.V. Panov, J.T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci. 3 (2000) 1301-1306; S.M. Fleming, C. Zhu, P.O. Fernagut, A. Mehta, C.D. DiCarlo, R.L. Seaman, M.F. Chesselet, Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone, Exp. Neurol. 187 (2004) 418-429; T.B. Sherer, J.H. Kim, R. Betarbet, J.T. Greenamyre, Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation, Exp. Neurol. 179 (2003) 9-16.]. To better investigate the role of mitochondria and complex I inhibition in chronic, progressive neurodegenerative disease, we developed methods for long-term culture of rodent postnatal midbrain organotypic slices. Chronic complex I inhibition over weeks by low dose (10-50 nM) rotenone in this system lead to dose- and time-dependent destruction of substantia nigra pars compacta neuron processes, morphologic changes, some neuronal loss, and decreased tyrosine hydroxylase (TH) protein levels. Chronic complex I inhibition also caused oxidative damage to proteins, measured by protein carbonyl levels. This oxidative damage was blocked by the antioxidant alpha-tocopherol (vitamin E). At the same time, alpha-tocopherol also blocked rotenone-induced reductions in TH protein and TH immunohistochemical changes. Thus, oxidative damage is a primary mechanism of mitochondrial toxicity in intact dopaminergic neurons. The organotypic culture system allows close study of this and other interacting mechanisms over a prolonged time period in

  19. Differential Neuronal Plasticity of Dental Pulp Stem Cells From Exfoliated Deciduous and Permanent Teeth Towards Dopaminergic Neurons.

    PubMed

    Majumdar, Debanjana; Kanafi, Mohammad; Bhonde, Ramesh; Gupta, Pawan; Datta, Indrani

    2016-09-01

    Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels]. Human SHED and DPSCs were exposed to midbrain-cues [SHH, fibroblast growth-factor8, and basic fibroblast growth-factor], and their molecular, immunophenotypical, and functional characterization was performed at different time-points of induction. Though SHED and DPSCs spontaneously expressed early-neuronal and neural-crest marker in their naïve state, only SHED expressed a high basal-expression of TH. The upregulation of dopaminergic transcription-factors Nurr1, Engrailed1, and Pitx3 was more pronounced in DPSCs. The yield of TH-expressing cells decreased from 49.8% to 32.16% in SHED while it increased from 8.09% to 77.47% in DPSCs. Dopamine release and intracellular-Ca(2+) influx upon stimulation (KCl and ATP) was higher in induced DPSCs. Significantly lower-expression of SHH-receptors was noted in naïve SHED than DPSCs, which may explain the differential neuronal plasticity. In addition, unlike DPSCs, SHED showed a down-regulation of cyclic adenosine-monophosphate (cAMP) upon exposure to SHH; possibly another contributor to the lesser differentiation-potential. Our data clearly demonstrates for the first time that DPSCs possess superior neuronal plasticity toward dopaminergic-neurons than SHED; influenced by higher SHH-receptor and lower basal TH expression. J. Cell. Physiol. 231: 2048-2063, 2016. © 2016

  20. Differential Neuronal Plasticity of Dental Pulp Stem Cells From Exfoliated Deciduous and Permanent Teeth Towards Dopaminergic Neurons.

    PubMed

    Majumdar, Debanjana; Kanafi, Mohammad; Bhonde, Ramesh; Gupta, Pawan; Datta, Indrani

    2016-09-01

    Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels]. Human SHED and DPSCs were exposed to midbrain-cues [SHH, fibroblast growth-factor8, and basic fibroblast growth-factor], and their molecular, immunophenotypical, and functional characterization was performed at different time-points of induction. Though SHED and DPSCs spontaneously expressed early-neuronal and neural-crest marker in their naïve state, only SHED expressed a high basal-expression of TH. The upregulation of dopaminergic transcription-factors Nurr1, Engrailed1, and Pitx3 was more pronounced in DPSCs. The yield of TH-expressing cells decreased from 49.8% to 32.16% in SHED while it increased from 8.09% to 77.47% in DPSCs. Dopamine release and intracellular-Ca(2+) influx upon stimulation (KCl and ATP) was higher in induced DPSCs. Significantly lower-expression of SHH-receptors was noted in naïve SHED than DPSCs, which may explain the differential neuronal plasticity. In addition, unlike DPSCs, SHED showed a down-regulation of cyclic adenosine-monophosphate (cAMP) upon exposure to SHH; possibly another contributor to the lesser differentiation-potential. Our data clearly demonstrates for the first time that DPSCs possess superior neuronal plasticity toward dopaminergic-neurons than SHED; influenced by higher SHH-receptor and lower basal TH expression. J. Cell. Physiol. 231: 2048-2063, 2016. © 2016

  1. DJ-1 Null Dopaminergic Neuronal Cells Exhibit Defects in Mitochondrial Function and Structure: Involvement of Mitochondrial Complex I Assembly

    PubMed Central

    Heo, Jun Young; Park, Ji Hoon; Kim, Soung Jung; Seo, Kang Sik; Han, Jeong Su; Lee, Sang Hee; Kim, Jin Man; Park, Jong Il; Park, Seung Kiel; Lim, Kyu; Hwang, Byung Doo; Shong, Minho; Kweon, Gi Ryang

    2012-01-01

    DJ-1 is a Parkinson's disease-associated gene whose protein product has a protective role in cellular homeostasis by removing cytosolic reactive oxygen species and maintaining mitochondrial function. However, it is not clear how DJ-1 regulates mitochondrial function and why mitochondrial dysfunction is induced by DJ-1 deficiency. In a previous study we showed that DJ-1 null dopaminergic neuronal cells exhibit defective mitochondrial respiratory chain complex I activity. In the present article we investigated the role of DJ-1 in complex I formation by using blue native-polyacrylamide gel electrophoresis and 2-dimensional gel analysis to assess native complex status. On the basis of these experiments, we concluded that DJ-1 null cells have a defect in the assembly of complex I. Concomitant with abnormal complex I formation, DJ-1 null cells show defective supercomplex formation. It is known that aberrant formation of the supercomplex impairs the flow of electrons through the channels between respiratory chain complexes, resulting in mitochondrial dysfunction. We took two approaches to study these mitochondrial defects. The first approach assessed the structural defect by using both confocal microscopy with MitoTracker staining and electron microscopy. The second approach assessed the functional defect by measuring ATP production, O2 consumption, and mitochondrial membrane potential. Finally, we showed that the assembly defect as well as the structural and functional abnormalities in DJ-1 null cells could be reversed by adenovirus-mediated overexpression of DJ-1, demonstrating the specificity of DJ-1 on these mitochondrial properties. These mitochondrial defects induced by DJ-1mutation may be a pathological mechanism for the degeneration of dopaminergic neurons in Parkinson's disease. PMID:22403686

  2. n-Butylidenephthalide Protects against Dopaminergic Neuron Degeneration and α-Synuclein Accumulation in Caenorhabditis elegans Models of Parkinson's Disease

    PubMed Central

    Fu, Ru-Huei; Harn, Horng-Jyh; Liu, Shih-Ping; Chen, Chang-Shi; Chang, Wen-Lin; Chen, Yue-Mi; Huang, Jing-En; Li, Rong-Jhu; Tsai, Sung-Yu; Hung, Huey-Shan; Shyu, Woei-Cherng; Lin, Shinn-Zong; Wang, Yu-Chi

    2014-01-01

    Background Parkinson's disease (PD) is the second most common degenerative disorder of the central nervous system that impairs motor skills and cognitive function. To date, the disease has no effective therapies. The identification of new drugs that provide benefit in arresting the decline seen in PD patients is the focus of much recent study. However, the lengthy time frame for the progression of neurodegeneration in PD increases both the time and cost of examining potential therapeutic compounds in mammalian models. An alternative is to first evaluate the efficacy of compounds in Caenorhabditis elegans models, which reduces examination time from months to days. n-Butylidenephthalide is the naturally-occurring component derived from the chloroform extract of Angelica sinensis. It has been shown to have anti-tumor and anti-inflammatory properties, but no reports have yet described the effects of n-butylidenephthalide on PD. The aim of this study was to assess the potential for n-butylidenephthalide to improve PD in C. elegans models. Methodology/Principal Findings In the current study, we employed a pharmacological strain that expresses green fluorescent protein specifically in dopaminergic neurons (BZ555) and a transgenic strain that expresses human α-synuclein in muscle cells (OW13) to investigate the antiparkinsonian activities of n-butylidenephthalide. Our results demonstrate that in PD animal models, n-butylidenephthalide significantly attenuates dopaminergic neuron degeneration induced by 6-hydroxydopamine; reduces α-synuclein accumulation; recovers lipid content, food-sensing behavior, and dopamine levels; and prolongs life-span of 6-hydroxydopamine treatment, thus revealing its potential as a possible antiparkinsonian drug. n-Butylidenephthalide may exert its effects by blocking egl-1 expression to inhibit apoptosis pathways and by raising rpn-6 expression to enhance the activity of proteasomes. Conclusions/Significance n-Butylidenephthalide may be one of

  3. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease.

    PubMed

    Herrera, Andrea; Muñoz, Patricia; Paris, Irmgard; Díaz-Veliz, Gabriela; Mora, Sergio; Inzunza, Jose; Hultenby, Kjell; Cardenas, Cesar; Jaña, Fabián; Raisman-Vozari, Rita; Gysling, Katia; Abarca, Jorge; Steinbusch, Harry W M; Segura-Aguilar, Juan

    2016-09-01

    L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease. PMID:27001668

  4. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease.

    PubMed

    Herrera, Andrea; Muñoz, Patricia; Paris, Irmgard; Díaz-Veliz, Gabriela; Mora, Sergio; Inzunza, Jose; Hultenby, Kjell; Cardenas, Cesar; Jaña, Fabián; Raisman-Vozari, Rita; Gysling, Katia; Abarca, Jorge; Steinbusch, Harry W M; Segura-Aguilar, Juan

    2016-09-01

    L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease.

  5. Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation

    PubMed Central

    2014-01-01

    Background Parkinson’s disease is an irreversible neurodegenerative disease linked to progressive movement disorders and is accompanied by an inflammatory reaction that is believed to contribute to its pathogenesis. Since sensitivity to inflammation is not the same in all brain structures, the aim of this work was to test whether physiological conditions as stress could enhance susceptibility to inflammation in the substantia nigra, where death of dopaminergic neurons takes place in Parkinson’s disease. Methods To achieve our aim, we induced an inflammatory process in nonstressed and stressed rats (subject to a chronic variate stress) by a single intranigral injection of lipopolysaccharide, a potent proinflammogen. The effect of this treatment was evaluated on inflammatory markers as well as on neuronal and glial populations. Results Data showed a synergistic effect between inflammation and stress, thus resulting in higher microglial activation and expression of proinflammatory markers. More important, the higher inflammatory response seen in stressed animals was associated with a higher rate of death of dopaminergic neurons in the substantia nigra, the most characteristic feature seen in Parkinson’s disease. This effect was dependent on glucocorticoids. Conclusions Our data demonstrate that stress sensitises midbrain microglia to further inflammatory stimulus. This suggests that stress may be an important risk factor in the degenerative processes and symptoms of Parkinson’s disease. PMID:24565378

  6. Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model.

    PubMed

    Charli, Adhithiya; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2016-03-01

    Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3h induced dose-dependent cell death with an EC50 of 3.98μM and 3.77μM, respectively. Also, tebufenpyrad and pyridaben (3μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an

  7. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    PubMed

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  8. γ neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila

    PubMed Central

    Qin, H.; Cressy, M.; Li, W.; Coravos, J.; Izzi, S.; Dubnau, J.

    2012-01-01

    SUMMARY Mushroom body (MB) dependent olfactory learning in Drosophila provides a powerful model to investigate memory mechanisms. MBs integrate olfactory conditioned stimuli (CS) inputs with neuromodulatory reinforcement (unconditioned stimuli, US) [1, 2], which for aversive learning is thought to rely on dopaminergic (DA) signaling [3–6] to DopR, a D1-like dopamine receptor expressed in MB [7, 8]. A wealth of evidence suggests the conclusion that parallel and independent signaling occurs downstream of DopR within two MB neuron cell types, with each supporting half of memory performance. For instance, expression of the rutabaga adenylyl cyclase (rut) in γ neurons is sufficient to restore normal learning to rut mutants [9] whereas expression of Neurofibromatosis I (NFI) in α/β neurons is sufficient to rescue NF1 mutants [10, 11]. DopR mutations are the only case where memory performance is fully eliminated [7], consistent with the hypothesis that DopR receives the US inputs for both γ and α/β lobe traces. We demonstrate, however, that DopR expression in γ neurons is sufficient to fully support short (STM) and long-term memory (LTM). We argue that DA-mediated CS-US association is formed in γ neurons followed by communication between γ and α/β neurons to drive consolidation. PMID:22425153

  9. Dissecting the role of Engrailed in adult dopaminergic neurons--Insights into Parkinson disease pathogenesis.

    PubMed

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L

    2015-12-21

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms.

  10. Dissecting the role of Engrailed in adult dopaminergic neurons: Insights into Parkinson disease pathogenesis

    PubMed Central

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L.

    2016-01-01

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms. PMID:26459030

  11. Progranulin Gene Delivery Protects Dopaminergic Neurons in a Mouse Model of Parkinson’s Disease

    PubMed Central

    Van Kampen, Jackalina M.; Baranowski, David; Kay, Denis G.

    2014-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN) is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SNC, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD. PMID:24804730

  12. Wnt/β-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis.

    PubMed

    Joksimovic, Milan; Awatramani, Rajeshwar

    2014-02-01

    Loss of midbrain dopaminergic (mDA) neurons underlies the motor symptoms of Parkinson's disease. Towards cell replacement, studies have focused on mechanisms underlying embryonic mDA production, as a rational basis for deriving mDA neurons from stem cells. We will review studies of β-catenin, an obligate component of the Wnt cascade that is critical to mDA specification and neurogenesis. mDA neurons have a unique origin--the midbrain floor plate (FP). Unlike the hindbrain and spinal cord FP, the midbrain FP is highly neurogenic and Wnt/β-catenin signaling is critical to this difference in neurogenic potential. In β-catenin loss-of-function experiments, the midbrain FP resembles the hindbrain FP, and key mDA progenitor genes such as Otx2, Lmx1a, Msx1, and Ngn2 are downregulated whereas Shh is maintained. Accordingly, the neurogenic capacity of the midbrain FP is diminished, resulting in fewer mDA neurons. Conversely, in β-catenin gain-of-function experiments, the hindbrain FP expresses key mDA progenitor genes, and is highly neurogenic. Interestingly, when excessive β-catenin is supplied to the midbrain FP, less mDA neurons are produced suggesting that the dosage of Wnt/β-catenin signaling is critical. These studies of β-catenin have facilitated new protocols to derive mDA neurons from stem cells.

  13. Enhanced differentiation of neural progenitor cells into neurons of the mesencephalic dopaminergic subtype on topographical patterns.

    PubMed

    Tan, Kenneth K B; Tann, Jason Y; Sathe, Sharvari R; Goh, Seok Hong; Ma, Dongliang; Goh, Eyleen L K; Yim, Evelyn K F

    2015-03-01

    Parkinson's disease (PD) is a neurodegenerative disease attributed to the loss of midbrain dopaminergic (DA) neurons. The current lack of predictive models for this disease has been hampered by the acquirement of robust cells, posing a major barrier to drug development. Differentiation of stem cells into subtype specific cells may be guided by appropriate topographical cues but the role of topography has hitherto not been well understood. We used a Multi-Architecture (MARC) chip with various topographical structures and identified three topographies, which generate DA neurons from murine hippocampal neural progenitor cells with the highest percentage of neuronal (β-III-tubulin positive) and dopaminergic (tyrosine hydroxylase positive) populations. Analysis on single pattern structures showed that 2 μm gratings with 2 μm spacing and 2 μm height (2 μm gratings) and 2 μm gratings with hierarchical structure produced cells with the highest gene expression of TH and PITX3, with the longest neurite and highest percentage of alignment. Quantitative image analysis showed the 2 μm gratings produced cells with the highest expression of pituitary homeobox 3 (PITX3), LIM homeobox transcription factor 1 alpha (LMX1a), aldehyde dehydrogenase 1 family member A1 (ALDH1a1) and microtubule associated protein 2 (MAP2), as compared to nano-gratings and unpatterned controls. These patterns also enhance DA neuron differentiation on different substrate rigidities, as seen on both poly-dimethylsiloxane (PDMS) and tissue culture polystyrene (TCPS) substrates. These results show the use of topographical influence for neuronal subtype specification, which could be translated into a wide range of clinical applications for PD. PMID:25591959

  14. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  15. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  16. Death receptors and caspases but not mitochondria are activated in the GDNF- or BDNF-deprived dopaminergic neurons.

    PubMed

    Yu, Li-ying; Saarma, Mart; Arumäe, Urmas

    2008-07-23

    Neurotrophic factors, including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), promote survival of midbrain dopaminergic neurons, but the death pathways activated in the dopaminergic neurons by deprivation of these factors are poorly studied. We show here that deprivation of GDNF or BDNF triggers a novel mitochondria-independent death pathway in the cultured embryonic dopaminergic neurons: cytochrome c was not released from the mitochondria to cytosol, proapoptotic protein Bax was not activated, and overexpressed Bcl-xL did not block the death. Caspases were critically required, because the death was completely blocked by caspase inhibitor BAF [boc-aspartyl(OMe)-fluoromethylketone] and overexpression of dominant-negative mutants of caspase-9, -3, and -7 significantly blocked the death. Also, the death receptor pathway was involved, because blockage of caspase-8 or FADD (Fas-associated protein with death domain), an adapter required for caspase-8 activation, inhibited death induced by GDNF or BDNF deprivation. Ligation of Fas by agonistic anti-Fas antibody induced apoptosis in the GDNF- or BDNF-maintained neurons, and inhibition of Fas by Fas-Fc chimera blocked the death of GDNF- or BDNF-deprived neurons, whereas FAIM(L) (long isoform of Fas apoptosis inhibitory molecule) could control the activity of Fas in the dopaminergic neurons.

  17. Emerging restorative treatments for Parkinson's disease: manipulation and inducement of dopaminergic neurons from adult stem cells.

    PubMed

    Zhao, Junpeng; Xu, Qunyuan

    2011-06-01

    Parkinson's disease (PD) is a common neurodegenerative disease, characterized by a selective loss of midbrain Dopaminergic (DA) neurons. To address this problem, various types of stem cells that have potential to differentiate into DA neurons are being investigated as cellular therapies for PD, including cells derived from embryonic or adult donor tissue, and embryonic stem cells. These cell sources, however, have raised certain questions with regard to ethical and rejection issues. Recent progress in adult stems has further proved that the cells derived from adult tissue could be expanded and differentiated into DA precursor cells in vitro, and cell therapy with adult stem cells could produce a clear improvement for PD models. Using adult stem cells for clinic application may not only overcome the ethical problem inherent in using human fetal tissue or embryonic stem cells, but also open the possibility for autologous transplantation. The patient-specific adult stem cell is therefore a potential and prospective candidate for PD treatment.

  18. Opposing Dopaminergic and GABAergic Neurons Control the Duration and Persistence of Copulation in Drosophila

    PubMed Central

    Crickmore, Michael A.; Vosshall, Leslie B.

    2014-01-01

    SUMMARY Behavioral persistence is a major factor in determiningwhen and under which circumstances animals will terminate their current activity and transition into more profitable, appropriate, or urgent behavior. We show that, for the first 5 min of copulation in Drosophila, stressful stimuli do not interrupt mating, whereas 10 min later, even minor perturbations are sufficient to terminate copulation. This decline in persistence occurs as the probability of successful mating increases and is promoted by approximately eight sexually dimorphic, GABAergic interneurons of the male abdominal ganglion. When these interneurons were silenced, persistence increased and males copulated far longer than required for successful mating. When these interneurons were stimulated, persistence decreased and copulations were shortened. In contrast, dopaminergic neurons of the ventral nerve cord promote copulation persistence and extend copulation duration. Thus, copulation duration in Drosophila is a product of gradually declining persistence controlled by opposing neuronal populations using conserved neurotransmission systems. PMID:24209625

  19. Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice

    PubMed Central

    Sgadò, Paola; Albéri, Lavinia; Gherbassi, Daniel; Galasso, Sherri L.; Ramakers, Geert M. J.; Alavian, Kambiz N.; Smidt, Marten P.; Dyck, Richard H.; Simon, Horst H.

    2006-01-01

    The homeobox transcription factors Engrailed-1 and Engrailed-2 are required for the survival of mesencephalic dopaminergic neurons in a cell-autonomous and gene-dose-dependent manner. Because of this requirement, the cells die by apoptosis when all four alleles of the Engrailed genes are genetically ablated (En1−/−;En2−/−). In the present study, we show that viable and fertile mice, heterozygous null for Engrailed-1 and homozygous null for Engrailed-2 (En1+/−;En2−/−), have an adult phenotype that resembles key pathological features of Parkinson's disease. Specifically, postnatal mutant mice exhibit a progressive degeneration of dopaminergic neurons in the substantia nigra during the first 3 mo of their lives, leading to diminished storage and release of dopamine in the caudate putamen, motor deficits similar to akinesia and bradykinesia, and a lower body weight. This genetic model may provide access to the molecular etiology for Parkinson's disease and could assist in the development of novel treatments for this neurodegenerative disorder. PMID:17015829

  20. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons.

    PubMed

    Prakash, Jay; Chouhan, Shikha; Yadav, Satyndra Kumar; Westfall, Susan; Rai, Sachchida Nand; Singh, Surya Pratap

    2014-12-01

    Maneb (MB) and paraquat (PQ) are environmental toxins that have been experimentally used to induce selective damage of dopaminergic neurons leading to the development of Parkinson's disease (PD). Although the mechanism of this selective neuronal toxicity in not fully understood, oxidative stress has been linked to the pathogenesis of PD. The present study investigates the mechanisms of neuroprotection elicited by Withania somnifera (Ws), a herb traditionally recognized by the Indian system of medicine, Ayurveda. An ethanolic root extract of Ws was co-treated with the MB-PQ induced mouse model of PD and was shown to significantly rescue canonical indicators of PD including compromised locomotor activity, reduced dopamine in the substantia nigra and various aspects of oxidative damage. In particular, Ws reduced the expression of iNOS, a measure of oxidative stress. Ws also significantly improved the MB + PQ mediated induction of a pro-apoptotic state by reducing Bax and inducing Bcl-2 protein expression, respectively. Finally, Ws reduced expression of the pro-inflammatory marker of astrocyte activation, GFAP. Altogether, the present study suggests that Ws treatment provides nigrostriatal dopaminergic neuroprotection against MB-PQ induced Parkinsonism by the modulation of oxidative stress and apoptotic machinery possibly accounting for the behavioural effects.

  1. A critical period of vulnerability to adolescent stress: epigenetic mediators in mesocortical dopaminergic neurons.

    PubMed

    Niwa, Minae; Lee, Richard S; Tanaka, Teppei; Okada, Kinya; Kano, Shin-Ichi; Sawa, Akira

    2016-04-01

    The molecular basis of vulnerability to stress during the adolescent period is largely unknown. To identify potential molecular mediators that may play a role in stress-induced behavioral deficits, we imposed social isolation on a genetically vulnerable mouse model. We report that 3-week (5-8 weeks of age) adolescent stress in combination with disrupted-in-schizophrenia 1 (Disc1) genetic risk elicits alterations in DNA methylation of a specific set of genes, tyrosine hydroxylase, brain-derived neurotrophic factor and FK506 binding protein 5. The epigenetic changes in the mesocortical dopaminergic neurons were prevented when animals were treated with a glucocorticoid receptor (GR) antagonist RU486 during social isolation, which implicates the role for glucocorticoid signaling in this pathological event. We define the critical period of GR intervention as the first 1-week period during the stress regimen, suggesting that this particular week in adolescence may be a specific period of maturation and function of mesocortical dopaminergic neurons and their sensitivity to glucocorticoids. Our study may also imply the clinical significance of early detection and prophylactic intervention against conditions associated with adolescent social stress in individuals with genetic risk. PMID:26908623

  2. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons

    PubMed Central

    Srinivasan, Rahul; Henley, Beverley M.; Henderson, Brandon J.; Indersmitten, Tim; Cohen, Bruce N.; Kim, Charlene H.; McKinney, Sheri; Deshpande, Purnima; Xiao, Cheng

    2016-01-01

    Retrospective epidemiological studies show an inverse correlation between susceptibility to Parkinson's disease and a person's history of tobacco use. Animal model studies suggest nicotine as a neuroprotective agent and nicotinic acetylcholine (ACh) receptors (nAChRs) as targets for neuroprotection, but the underlying neuroprotective mechanism(s) are unknown. We cultured mouse ventral midbrain neurons for 3 weeks. Ten to 20% of neurons were dopaminergic (DA), revealed by tyrosine hydroxylase (TH) immunoreactivity. We evoked mild endoplasmic reticulum (ER) stress with tunicamycin (Tu), producing modest increases in the level of nuclear ATF6, phosphorylated eukaryotic initiation factor 2α, nuclear XBP1, and the downstream proapoptotic effector nuclear C/EBP homologous protein. We incubated cultures for 2 weeks with 200 nm nicotine, the approximate steady-state concentration between cigarette smoking or vaping, or during nicotine patch use. Nicotine incubation suppressed Tu-induced ER stress and the unfolded protein response (UPR). Study of mice with fluorescent nAChR subunits showed that the cultured TH+ neurons displayed α4, α6, and β3 nAChR subunit expression and ACh-evoked currents. Gene expression profile in cultures from TH-eGFP mice showed that the TH+ neurons also express several other genes associated with DA release. Nicotine also upregulated ACh-induced currents in DA neurons by ∼2.5-fold. Thus, nicotine, at a concentration too low to activate an appreciable fraction of plasma membrane nAChRs, induces two sequelae of pharmacological chaperoning in the ER: UPR suppression and nAChR upregulation. Therefore, one mechanism of neuroprotection by nicotine is pharmacological chaperoning, leading to UPR suppression. Measuring this pathway may help in assessing neuroprotection. SIGNIFICANCE STATEMENT Parkinson's disease (PD) cannot yet be cured or prevented. However, many retrospective epidemiological studies reveal that PD is diagnosed less frequently in

  3. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase

    PubMed Central

    Doan, Khanh V.; Kinyua, Ann W.; Yang, Dong Joo; Ko, Chang Mann; Moh, Sang Hyun; Shong, Ko Eun; Kim, Hail; Park, Sang-Kyu; Kim, Dong-Hoon; Kim, Inki; Paik, Ji-Hye; DePinho, Ronald A.; Yoon, Seul Gi; Kim, Il Yong; Seong, Je Kyung; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. PMID:27681312

  4. Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons

    PubMed Central

    Dufour, Martial A; Woodhouse, Adele; Amendola, Julien; Goaillard, Jean-Marc

    2014-01-01

    Neurons have complex electrophysiological properties, however, it is often difficult to determine which properties are the most relevant to neuronal function. By combining current-clamp measurements of electrophysiological properties with multi-variate analysis (hierarchical clustering, principal component analysis), we were able to characterize the postnatal development of substantia nigra dopaminergic neurons' electrical phenotype in an unbiased manner, such that subtle changes in phenotype could be analyzed. We show that the intrinsic electrical phenotype of these neurons follows a non-linear trajectory reaching maturity by postnatal day 14, with two developmental transitions occurring between postnatal days 3–5 and 9–11. This approach also predicted which parameters play a critical role in phenotypic variation, enabling us to determine (using pharmacology, dynamic-clamp) that changes in the leak, sodium and calcium-activated potassium currents are central to these two developmental transitions. This analysis enables an unbiased definition of neuronal type/phenotype that is applicable to a range of research questions. DOI: http://dx.doi.org/10.7554/eLife.04059.001 PMID:25329344

  5. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model.

    PubMed

    Takagi, Yasushi; Takahashi, Jun; Saiki, Hidemoto; Morizane, Asuka; Hayashi, Takuya; Kishi, Yo; Fukuda, Hitoshi; Okamoto, Yo; Koyanagi, Masaomi; Ideguchi, Makoto; Hayashi, Hideki; Imazato, Takayuki; Kawasaki, Hiroshi; Suemori, Hirofumi; Omachi, Shigeki; Iida, Hidehiko; Itoh, Nobuyuki; Nakatsuji, Norio; Sasai, Yoshiki; Hashimoto, Nobuo

    2005-01-01

    Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell-derived inducing activity (SDIA). In this study, we generated neurospheres composed of neural progenitors from monkey ES cells, which are capable of producing large numbers of DA neurons. We demonstrated that FGF20, preferentially expressed in the substantia nigra, acts synergistically with FGF2 to increase the number of DA neurons in ES cell-derived neurospheres. We also analyzed the effect of transplantation of DA neurons generated from monkey ES cells into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated (MPTP-treated) monkeys, a primate model for PD. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons and attenuated MPTP-induced neurological symptoms.

  6. Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat.

    PubMed

    Léger, Lucienne; Sapin, Emilie; Goutagny, Romain; Peyron, Christelle; Salvert, Denise; Fort, Patrice; Luppi, Pierre-Hervé

    2010-07-01

    Formerly believed to contribute to behavioural waking (W) alone, dopaminergic (DA) neurons are now also known to participate in the regulation of paradoxical sleep (PS or REM) in mammals. Indeed, stimulation of postsynaptic DA1 receptors with agonists induces a reduction in the daily amount of PS. DA neurons in the ventral tegmental area were recently shown to fire in bursts during PS, but nothing is known about the activity of the other DA cell groups in relation to waking or PS. To fulfil this gap, we used a protocol in which rats were maintained in continuous W for 3h in a novel environment, or specifically deprived of PS for 3 days with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. DA neurons in the substantia nigra (A9) and ventral tegmental area (A10), and its dorsocaudal extension in the periaqueductal gray (A10dc), almost never showed a Fos-immunoreactive nucleus, regardless of the experimental condition. The caudal hypothalamic (A11) group showed a moderate activation after PS deprivation and novel environment. During PS-recovery, the zona incerta (A13) group contained a significant number and percentage of double-labeled neurons. These results suggest that some DA neurons (A11) could participate in waking and/or the inhibition of PS during PS deprivation whereas others (A13) would be involved in the control of PS.

  7. Caspase-11 plays an essential role in methamphetamine-induced dopaminergic neuron apoptosis.

    PubMed

    Huang, Weiye; Xie, Wei-Bing; Qiao, Dongfang; Qiu, Pingming; Huang, Enping; Li, Bing; Chen, Chuanxiang; Liu, Chao; Wang, Qi; Lin, Zhoumeng; Wang, Huijun

    2015-05-01

    Methamphetamine (METH) is an extremely addictive stimulant drug that is widely used with high potential of abuse. Previous studies have shown that METH exposure damages the nervous system, especially dopaminergic neurons. However, the exact molecular mechanisms of METH-induced neurotoxicity remain unclear. We hypothesized that caspase-11 is involved in METH-induced neuronal apoptosis. We tested our hypothesis by examining the change of caspase-11 protein expression in dopaminergic neurons (PC12 and SH-SY5Y) and in the midbrain of rats exposed to METH with Western blotting. We also determined the effects of blocking caspase-11 expression with wedelolactone (a specific inhibitor of caspase-11) or siRNA on METH-induced apoptosis in PC12 cells and SH-SY5Y cells using Annexin V and TUNEL staining. Furthermore, we observed the protein expression changes of the apoptotic markers, cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1 (PARP), after silencing the caspase-11 expression in rat midbrain by injecting LV-shcasp11 lentivirus using a stereotaxic positioning system. Results showed that METH exposure increased caspase-11 expression both in vitro and in vivo, with the effects in vitro being dose- and time-dependent. Inhibition of caspase-11 expression with either wedelolactone or siRNAs reduced the number of METH-induced apoptotic cells. In addition, blocking caspase-11 expression inhibited METH-induced activation of caspase-3 and PARP in vitro and in vivo, suggesting that caspase-11/caspase-3 signal pathway is involved in METH-induced neurotoxicity. These results indicate that caspase-11 plays an essential role in METH-induced neuronal apoptosis and may be a potential gene target for therapeutics in METH-caused neurotoxicity.

  8. Orexinergic Input to Dopaminergic Neurons of the Human Ventral Tegmental Area

    PubMed Central

    Hrabovszky, Erik; Molnár, Csilla S.; Borsay, Beáta Á.; Gergely, Péter; Herczeg, László; Liposits, Zsolt

    2013-01-01

    The mesolimbic reward pathway arising from dopaminergic (DA) neurons of the ventral tegmental area (VTA) has been strongly implicated in reward processing and drug abuse. In rodents, behaviors associated with this projection are profoundly influenced by an orexinergic input from the lateral hypothalamus to the VTA. Because the existence and significance of an analogous orexigenic regulatory mechanism acting in the human VTA have been elusive, here we addressed the possibility that orexinergic neurons provide direct input to DA neurons of the human VTA. Dual-label immunohistochemistry was used and orexinergic projections to the VTA and to DA neurons of the neighboring substantia nigra (SN) were analyzed comparatively in adult male humans and rats. Orexin B-immunoreactive (IR) axons apposed to tyrosine hydroxylase (TH)-IR DA and to non-DA neurons were scarce in the VTA and SN of both species. In the VTA, 15.0±2.8% of TH-IR perikarya in humans and 3.2±0.3% in rats received orexin B-IR afferent contacts. On average, 0.24±0.05 and 0.05±0.005 orexinergic appositions per TH-IR perikaryon were detected in humans and rats, respectively. The majority (86–88%) of randomly encountered orexinergic contacts targeted the dendritic compartment of DA neurons. Finally, DA neurons of the SN also received orexinergic innervation in both species. Based on the observation of five times heavier orexinergic input to TH-IR neurons of the human, compared with the rat, VTA, we propose that orexinergic mechanism acting in the VTA may play just as important roles in reward processing and drug abuse in humans, as already established well in rodents. PMID:24376626

  9. Epigenetic regulation contributes to urocortin-enhanced midbrain dopaminergic neuron differentiation.

    PubMed

    Huang, Hsin-Yi; Chiu, Tsung-Lang; Chang, Hui-Fen; Hsu, Hui-Ru; Pang, Cheng-Yoong; Liew, Hock-Kean; Wang, Mei-Jen

    2015-05-01

    The production of midbrain dopaminergic (mDA) neurons requires precise extrinsic inductive signals and intrinsic transcriptional cascade at a specific time point in development. Urocortin (UCN) is a peptide of the corticotropin-releasing hormone family that mediates various responses to stress. UCN was first cloned from adult rat midbrain. However, the contribution of UCN to the development of mDA neurons is poorly understood. Here, we show that UCN is endogenously expressed in the developing ventral midbrain (VM) and its receptors are exhibited in Nurr1(+) postmitotic mDA precursors and TH(+) neurons, suggesting possible roles in regulating their terminal differentiation. UCN treatment increased DA cell numbers in rat VM precursor cultures by promoting the conversion of Nurr1(+) precursors into DA neurons. Furthermore, neutralization of secreted UCN with anti-UCN antibody resulted in a reduction in the number of DA neurons. UCN induced an abundance of acetylated histone H3 and enhanced late DA regulator Nurr1, Foxa2, and Pitx3 expressions. Using pharmacological and RNA interference approaches, we further demonstrated that histone deacetylase (HDAC) inhibition and late transcriptional factors upregulation contribute to UCN-mediated DA neuron differentiation. Chromatin immunoprecipitation analyses revealed that UCN promoted histone acetylation of chromatin surrounding the TH promoter by directly inhibiting HDAC and releasing of methyl CpG binding protein 2-CoREST-HDAC1 repressor complex from the promoter, ultimately leading to an increase in Nurr1/coactivators-mediated transcription of TH gene. Moreover, UCN treatment in vivo also resulted in increased DA neuron differentiation. These findings suggest that UCN might contribute to regulate late mDA neuron differentiation during VM development.

  10. EFFECTS OF CHRONIC ANTIDEPRESSANT DRUG ADMINISTRATION AND ELECTROCONVULSIVE SHOCK ON ACTIVITY OF DOPAMINERGIC NEURONS IN THE VENTRAL TEGMENTUM

    PubMed Central

    West, Charles Hutchison Keesor; Weiss, Jay Michael

    2010-01-01

    Increasing attention is now focused on reduced dopaminergic neurotransmission in the forebrain as participating in depression. The present paper assessed whether effective antidepressant (AD) treatments might counteract, or compensate for, such a change by altering the neuronal activity of dopaminergic neurons in the ventral tegmental area (VTA-DA neurons), the cell bodies of the mesocorticolimbic dopaminergic system. Eight AD drugs or vehicle were administered to rats for 14 days via subcutaneously-implanted minipumps, at which time single-unit electrophysiological activity of VTA-DA neurons was recorded under anesthesia. Also, animals received a series of five electroconvulsive shocks (ECS) or control procedures, after which VTA-DA activity was measured either three or five days after the last ECS. Results showed that the chronic administration of all AD drugs tested except for the monoamine oxidase inhibitor increased the spontaneous firing rate of VTA-DA neurons, while effects on “burst” firing activity were found to be considerably less notable or consistent. ECS increased both spontaneous firing rate and burst firing of VTA-DA neurons. It is suggested that the effects observed are consistent with reports of increased dopamine release in regions to which VTA neurons project after effective AD treatment. However, it is further suggested that changes in VTA-DA neuronal activity in response to AD treatment should be most appropriately assessed under conditions associated with depression, such as stressful conditions. PMID:20482941

  11. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  12. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  13. Neuron-derived IgG protects dopaminergic neurons from insult by 6-OHDA and activates microglia through the FcγR I and TLR4 pathways.

    PubMed

    Zhang, Jie; Niu, Na; Wang, Mingyu; McNutt, Michael A; Zhang, Donghong; Zhang, Baogang; Lu, Shijun; Liu, Yuqing; Liu, Zhihui

    2013-08-01

    Oxidative and immune attacks from the environment or microglia have been implicated in the loss of dopaminergic neurons of Parkinson's disease. The role of IgG which is an important immunologic molecule in the process of Parkinson's disease has been unclear. Evidence suggests that IgG can be produced by neurons in addition to its traditionally recognized source B lymphocytes, but its function in neurons is poorly understood. In this study, extensive expression of neuron-derived IgG was demonstrated in dopaminergic neurons of human and rat mesencephalon. With an in vitro Parkinson's disease model, we found that neuron-derived IgG can improve the survival and reduce apoptosis of dopaminergic neurons induced by 6-hydroxydopamine toxicity, and also depress the release of NO from microglia triggered by 6-hydroxydopamine. Expression of TNF-α and IL-10 in microglia was elevated to protective levels by neuron-derived IgG at a physiologic level via the FcγR I and TLR4 pathways and microglial activation could be attenuated by IgG blocking. All these data suggested that neuron-derived IgG may exert a self-protective function by activating microglia properly, and IgG may be involved in maintaining immunity homeostasis in the central nervous system and serve as an active factor under pathological conditions such as Parkinson's disease.

  14. Electrical and Ca2+ signaling in dendritic spines of substantia nigra dopaminergic neurons

    PubMed Central

    Hage, Travis A; Sun, Yujie; Khaliq, Zayd M

    2016-01-01

    Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca2+ imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca2+ signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca2+ signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca2+ midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca2+ signaling during pacemaking. DOI: http://dx.doi.org/10.7554/eLife.13905.001 PMID:27163179

  15. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study.

    PubMed

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  16. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study

    PubMed Central

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  17. The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons.

    PubMed

    Kwon, Yu-Rim; Jeong, Myong-Ho; Leem, Young-Eun; Lee, Sang-Jin; Kim, Hyun-Jin; Bae, Gyu-Un; Kang, Jong-Sun

    2014-09-01

    Sonic hedgehog (Shh) signaling is required for numerous developmental processes including specification of ventral cell types in the central nervous system such as midbrain dopaminergic (DA) neurons. The multifunctional coreceptor Cdo increases the signaling activity of Shh which is crucial for development of forebrain and neural tube. In this study, we investigated the role of Cdo in midbrain DA neurogenesis. Cdo and Shh signaling components are induced during neurogenesis of embryonic stem (ES) cells. Cdo(-/-) ES cells show reduced neuronal differentiation accompanied by increased cell death upon neuronal induction. In addition, Cdo(-/-) ES cells form fewer tyrosine hydroxylase (TH) and microtubule associated protein 2 (MAP2)-positive DA neurons correlating with the decreased expression of key regulators of DA neurogenesis, such as Shh, Neurogenin2, Mash1, Foxa2, Lmx1a, Nurr1 and Pitx3, relative to the Cdo(+/+) ES cells. Consistently, the Cdo(-/-) embryonic midbrain displays a reduction in expression of TH and Nurr1. Furthermore, activation of Shh signaling by treatment with Purmorphamine (Pur) restores the DA neurogenesis of Cdo(-/-) ES cells, suggesting that Cdo is required for the full Shh signaling activation to induce efficient DA neurogenesis.

  18. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation.

    PubMed

    Wei, Zong-Bo; Yuan, Ye-Feng; Jaouen, Florence; Ma, Mei-Sheng; Hao, Chan-Juan; Zhang, Zhe; Chen, Quan; Yuan, Zengqiang; Yu, Li; Beurrier, Corinne; Li, Wei

    2016-07-01

    Searching for new regulators of autophagy involved in selective dopaminergic (DA) neuron loss is a hallmark in the pathogenesis of Parkinson disease (PD). We here report that an endoplasmic reticulum (ER)-associated transmembrane protein SLC35D3 is selectively expressed in subsets of midbrain DA neurons in about 10% TH (tyrosine hydroxylase)-positive neurons in the substantia nigra pars compacta (SNc) and in about 22% TH-positive neurons in the ventral tegmental area (VTA). Loss of SLC35D3 in ros (roswell mutant) mice showed a reduction of 11.9% DA neurons in the SNc and 15.5% DA neuron loss in the VTA with impaired autophagy. We determined that SLC35D3 enhanced the formation of the BECN1-ATG14-PIK3C3 complex to induce autophagy. These results suggest that SLC35D3 is a new regulator of tissue-specific autophagy and plays an important role in the increased autophagic activity required for the survival of subsets of DA neurons. PMID:27171858

  19. Effects of pre- and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons.

    PubMed

    Rodríguez de Fonseca, F; Cebeira, M; Fernández-Ruiz, J J; Navarro, M; Ramos, J A

    1991-01-01

    , paired to a rise in L-3,4-dihydroxyphenylacetic acid/dopamine ratio and anterior pituitary content of dopamine and to a decrease in the prolactin release. Perinatal exposure to cannabinoids altered the normal development of nigrostriatal, mesolimbic and tuberoinfundibular dopaminergic neurons, as reflected by changes in several indices of their activity. These changes were different regarding the sex and brain areas. Cannabinoid effects were more marked and constant in the striatum of males, while alterations in limbic neurons were mostly transient and those in hypothalamic neurons occurred after drug withdrawal. A long-term impact of these early changes on the neurological processes of adulthood is plausible.

  20. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain

    PubMed Central

    Ho, Tracy; Jobling, Andrew I.; Greferath, Ursula; Chuang, Trinette; Ramesh, Archana; Fletcher, Erica L.; Vessey, Kirstan A.

    2015-01-01

    Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons. PMID:26500494

  1. Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease

    PubMed Central

    Okuyama, Satoshi; Semba, Tomoki; Toyoda, Nobuki; Epifano, Francesco; Genovese, Salvatore; Fiorito, Serena; Taddeo, Vito Alessandro; Sawamoto, Atsushi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2016-01-01

    In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD. PMID:27763495

  2. Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons.

    PubMed

    Narytnyk, Alla; Verdon, Bernard; Loughney, Andrew; Sweeney, Michele; Clewes, Oliver; Taggart, Michael J; Sieber-Blum, Maya

    2014-04-01

    Here we provide a protocol for the directed differentiation of hEPI-NCSC into midbrain dopaminergic neurons, which degenerate in Parkinson's disease. hEPI-NCSC are neural crest-derived multipotent stem cells that persist into adulthood in the bulge of hair follicles. The experimental design is distinctly different from conventional protocols for embryonic stem cells and induced pluripotent stem (iPS) cells. It includes pre-differentiation of the multipotent hEPI-NCSC into neural stem cell-like cells, followed by ventralizing, patterning, continued exposure to the TGFβ receptor inhibitor, SB431542, and at later stages of differentiation the presence of the WNT inhibitor, IWP-4. All cells expressed A9 midbrain dopaminergic neuron progenitor markers with gene expression levels comparable to those in normal human substantia nigra. The current study shows for the first time that virtually homogeneous populations of dopaminergic neurons can be derived ex vivo from somatic stem cells without the need for purification, with useful timeliness and high efficacy. This novel development is an important first step towards the establishment of fully functional dopaminergic neurons from an ontologically relevant stem cell type, hEPI-NCSC. PMID:24399192

  3. The role of growth/differentiation factor 5 (GDF5) in the induction and survival of midbrain dopaminergic neurones: relevance to Parkinson's disease treatment

    PubMed Central

    Sullivan, Aideen M; O'Keeffe, Gerard W

    2005-01-01

    Growth/differentiation factor-5 (GDF5) is a member of the transforming growth factor-β superfamily which has potent effects on dopaminergic neurones in vitro and in vivo. GDF5 is under investigation as a potential therapeutic agent for Parkinson's disease (PD), which is caused by the progressive degeneration of dopaminergic neurones projecting from the substantia nigra (SN) to the striatum. In the rat ventral mesencephalon (VM; the developing SN), GDF5 expression peaks at embryonic day 14, the time at which dopaminergic neurones undergo terminal differentiation. Addition of GDF5 protein to cultures of embryonic rat VM increases the survival and improves the morphology of dopaminergic neurones in these cultures. GDF5 treatment also increases the number of cells which adopt a dopaminergic phenotype in cultures of VM progenitor cells. Intracerebral administration of GDF5 has potent neuroprotective and restorative effects on the nigrostriatal pathway in animal models of PD. Furthermore, addition of GDF5 protein to embryonic rat dopaminergic neuronal transplants improves their survival and function in a rat model of PD. Thus, GDF5 has potential applications to PD therapy as a dopaminergic neuroprotective agent and as a factor that may induce a dopaminergic neuronal fate in unrestricted progenitor cells. PMID:16185246

  4. Dopaminergic neurons write and update memories with cell-type-specific rules.

    PubMed

    Aso, Yoshinori; Rubin, Gerald M

    2016-01-01

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. PMID:27441388

  5. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons.

    PubMed

    Schmidt, Fanny; Le Douaron, Gael; Champy, Pierre; Amar, Majid; Séon-Méniel, Blandine; Raisman-Vozari, Rita; Figadère, Bruno

    2010-07-15

    N-fatty acyl tryptamines constitute a scarce group of natural compounds mainly encountered in Annonaceous plants. No biological activity was reported so far for these rare molecules. This study investigated the neurotrophic properties of these natural tryptaminic derivatives on dopaminergic (DA) neurons in primary mesencephalic cultures. A structure-activity relationships study led us to precise the role of a nitrogen atom into the aliphatic chain conferring to the compounds a combined neuroprotective and neuritogenic activity in the nanomolar range. The potent antioxidant activity of these natural products seems to be involved in part of their mechanism of action. This study provides the first description of natural neurotrophin mimetics present in Annonaceae extracts, and led to the biological characterization of compounds, which present a potential interest in neurodegenerative diseases such as Parkinson's disease.

  6. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron

    NASA Astrophysics Data System (ADS)

    Krupa, Martin; Popović, Nikola; Kopell, Nancy; Rotstein, Horacio G.

    2008-03-01

    Mixed-mode dynamics is a complex type of dynamical behavior that has been observed both numerically and experimentally in numerous prototypical systems in the natural sciences. The compartmental Wilson-Callaway model for the dopaminergic neuron is an example of a system that exhibits a wide variety of mixed-mode patterns upon variation of a control parameter. One characteristic feature of this system is the presence of multiple time scales. In this article, we study the Wilson-Callaway model from a geometric point of view. We show that the observed mixed-mode dynamics is caused by a slowly varying canard structure. By appropriately transforming the model equations, we reduce them to an underlying three-dimensional canonical form that can be analyzed via a slight adaptation of the approach developed by M. Krupa, N. Popović, and N. Kopell (unpublished).

  7. Glucose Levels in Culture Medium Determine Cell Death Mode in MPP+-treated Dopaminergic Neuronal Cells

    PubMed Central

    Yoon, So-Young

    2015-01-01

    We previously demonstrated that 1-methyl-4-phenylpyridinium (MPP+) causes caspase-independent, non-apoptotic death of dopaminergic (DA) neuronal cells. Here, we specifically examined whether change of glucose concentration in culture medium may play a role for determining cell death modes of DA neurons following MPP+ treatment. By incubating MN9D cells in medium containing varying concentrations of glucose (5~35 mM), we found that cells underwent a distinct cell death as determined by morphological and biochemical criteria. At 5~10 mM glucose concentration (low glucose levels), MPP+ induced typical of the apoptotic dell death accompanied with caspase activation and DNA fragmentation as well as cell shrinkage. In contrast, MN9D cells cultivated in medium containing more than 17.5 mM (high glucose levels) did not demonstrate any of these changes. Subsequently, we observed that MPP+ at low glucose levels but not high glucose levels led to ROS generation and subsequent JNK activation. Therefore, MPP+-induced cell death only at low glucose levels was significantly ameliorated following co-treatment with ROS scavenger, caspase inhibitor or JNK inhibitor. We basically confirmed the quite similar pattern of cell death in primary cultures of DA neurons. Taken together, our results suggest that a biochemically distinct cell death mode is recruited by MPP+ depending on extracellular glucose levels. PMID:26412968

  8. Multitarget intervention of Fasudil in the neuroprotection of dopaminergic neurons in MPTP-mouse model of Parkinson's disease.

    PubMed

    Zhao, Yong-fei; Zhang, Qiong; Xi, Jian-ying; Li, Yan-hua; Ma, Cun-gen; Xiao, Bao-guo

    2015-01-01

    Recent studies have demonstrated that activation of the Rho-associated kinase (ROCK) pathway participates in the dopaminergic neuron degeneration and possibly in Parkinson's disease (PD). In the current study, we tried to observe the therapeutic potential of ROCK inhibitor Fasudil against dopaminergic neuron injury in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mouse model of PD, and explore possible molecular mechanisms by enzyme-linked immunosorbent assay (ELISA), western blot and immunofluorescent assays. The results showed that MPTP-PD mice presented motor deficits, dopaminergic neuron loss, activation of inflammatory response and oxidative stress as well as ROCK and glycogen synthase kinase 3β (GSK-3β) signaling pathways. The administration of Fasudil exhibited neuroprotective effects against the dopaminergic neurons and improved the motor function recovery in the MPTP-PD mice, accompanied by the suppression of inflammatory responses (IL-1β, TNF-α, NF-κB-p65 and TLR-2), and oxidative stress (iNOS and gp91Phox), which might be associated with the inhibition of ROCK and GSK-3β activity. Simultaneously, the administration of Fasudil resulted in the shift from inflammatory M1 to anti-inflammatory/neurorepair M2 microglia. Additionally, Fasudil intervention enhanced the expression of anti-oxidative factors such as NF-E2-related factor 2 (Nrf2), Hmox as well as neurotrophic factor including GDNF. Our observations defined the neuroprotective effects of Fasudil in MPTP-PD mice, and we found a series of novel effector molecules and pathways for explaining the neuroprotective effects against dopaminergic neurons. However, a lot of investigations are warranted to further elucidate the crosstalk among Fasudil, oxidative stress, inflammatory response, GDNF and ROCK/NF-kB/Nrf2 pathways in the therapeutic potential of PD. PMID:25908255

  9. Protein Kinase D1 (PKD1) Phosphorylation Promotes Dopaminergic Neuronal Survival during 6-OHDA-Induced Oxidative Stress

    PubMed Central

    Asaithambi, Arunkumar; Ay, Muhammet; Jin, Huajun; Gosh, Anamitra; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2014-01-01

    Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD. PMID:24806360

  10. Interaction of NMDA receptor and pacemaking mechanisms in the midbrain dopaminergic neuron.

    PubMed

    Ha, Joon; Kuznetsov, Alexey

    2013-01-01

    Dopamine neurotransmission has been found to play a role in addictive behavior and is altered in psychiatric disorders. Dopaminergic (DA) neurons display two functionally distinct modes of electrophysiological activity: low- and high-frequency firing. A puzzling feature of the DA neuron is the following combination of its responses: N-methyl-D-aspartate receptor (NMDAR) activation evokes high-frequency firing, whereas other tonic excitatory stimuli (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR) activation or applied depolarization) block firing instead. We suggest a new computational model that reproduces this combination of responses and explains recent experimental data. Namely, somatic NMDAR stimulation evokes high-frequency firing and is more effective than distal dendritic stimulation. We further reduce the model to a single compartment and analyze the mechanism of the distinct high-frequency response to NMDAR activation vs. other stimuli. Standard nullcline analysis shows that the mechanism is based on a decrease in the amplitude of calcium oscillations. The analysis confirms that the nonlinear voltage dependence provided by the magnesium block of the NMDAR determine its capacity to elevate the firing frequency. We further predict that the moderate slope of the voltage dependence plays the central role in the frequency elevation. Additionally, we suggest a repolarizing current that sustains calcium-independent firing or firing in the absence of calcium-dependent repolarizing currents. We predict that the ether-a-go-go current (ERG), which has been observed in the DA neuron, is the best fit for this critical role. We show that a calcium-dependent and a calcium-independent oscillatory mechanisms form a structure of interlocked negative feedback loops in the DA neuron. The structure connects research of DA neuron firing with circadian biology and determines common minimal models for investigation of robustness of oscillations, which is

  11. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation

    PubMed Central

    Liu, Guoxiang; Yu, Jia; Ding, Jinhui; Xie, Chengsong; Sun, Lixin; Rudenko, Iakov; Zheng, Wang; Sastry, Namratha; Luo, Jing; Rudow, Gay; Troncoso, Juan C.; Cai, Huaibin

    2014-01-01

    Subpopulations of dopaminergic (DA) neurons within the substantia nigra pars compacta (SNpc) display a differential vulnerability to loss in Parkinson’s disease (PD); however, it is not clear why these subsets are preferentially selected in PD-associated neurodegeneration. In rodent SNpc, DA neurons can be divided into two subpopulations based on the expression of aldehyde dehydrogenase 1 (ALDH1A1). Here, we have shown that, in α-synuclein transgenic mice, a murine model of PD-related disease, DA neurodegeneration occurs mainly in a dorsomedial ALDH1A1-negative subpopulation that is also prone to cytotoxic aggregation of α-synuclein. Notably, the topographic ALDH1A1 pattern observed in α-synuclein transgenic mice was conserved in human SNpc. Postmortem evaluation of brains of patients with PD revealed a severe reduction of ALDH1A1 expression and neurodegeneration in the ventral ALDH1A1-positive DA subpopulations. ALDH1A1 expression was also suppressed in α-synuclein transgenic mice. Deletion of Aldh1a1 exacerbated α-synuclein–mediated DA neurodegeneration and α-synuclein aggregation, whereas Aldh1a1-null and control DA neurons were comparably susceptible to 1-methyl-4-phenylpyridinium–, glutamate-, or camptothecin-induced cell death. ALDH1A1 overexpression appeared to preferentially protect against α-synuclein–mediated DA neurodegeneration but did not rescue α-synuclein–induced loss of cortical neurons. Together, our findings suggest that ALDH1A1 protects subpopulations of SNpc DA neurons by preventing the accumulation of dopamine aldehyde intermediates and formation of cytotoxic α-synuclein oligomers. PMID:24865427

  12. Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide.

    PubMed

    Singh, Sarika; Kumar, Sachin; Dikshit, Madhu

    2010-01-01

    The primary pathology in Parkinson's disease patients is significant loss of dopaminergic neurons in the substantia nigra through multiple mechanisms. We previously have demonstrated the involvement of nitric oxide (NO) in the dopaminergic neurodegeneration induced by 6-hydroxydopamine (6-OHDA) and lipopolysaccharide (LPS) in rats. The present study was undertaken to investigate further the role of NO in the mitochondria-mediated apoptosis of dopaminergic neurons during the early time period after administration of 6-OHDA and LPS. Measurement of dopamine and its metabolites, TH immunolabeling, cytochrome-c release, mitochondrial complex-I and caspase-3 activity assessment was performed in both the 6-OHDA- and LPS-induced experimental models of Parkinson's disease. Significant decreases in dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), tyrosine hydroxylase (TH) immunolabeling and mitochondrial complex-I activity were observed, with increase in cytochrome-c release and caspase-3 activation. Dopmaine and its metabolite levels, mitochondrial complex-I activity and caspase-3 activity were significantly reversed with treatment of the NOS inhibitor, L-NAME. The reduction in the extent of cytochrome-c release responded variably to NOS inhibition in both the models. The results obtained suggest that NO contributes to mitochondria-mediated neuronal apoptosis in the dopaminergic neurodegeneration induced by 6-OHDA and LPS in rats. PMID:20594414

  13. Kappa opioid receptors on dopaminergic neurons are necessary for kappa-mediated place aversion.

    PubMed

    Chefer, Vladimir I; Bäckman, Cristina M; Gigante, Eduardo D; Shippenberg, Toni S

    2013-12-01

    Kappa-opioid receptor (KOR) agonists have dysphoric properties in humans and are aversive in rodents. This has been attributed to the activation of KORs within the mesolimbic dopamine (DA) system. However, the role of DA in KOR-mediated aversion and stress remains divisive as recent studies have suggested that activation of KORs on serotonergic neurons may be sufficient to mediate aversive behaviors. To address this question, we used conditional knock-out (KO) mice with KORs deleted on DA neurons (DAT(Cre/wt)/KOR(loxp/loxp), or DATCre-KOR KO). In agreement with previous findings, control mice (DAT(Cre/wt)/KOR(wt/wt) or WT) showed conditioned place aversion (CPA) to the systemically administered KOR agonist U69,593. In contrast, DATCre-KOR KO mice did not exhibit CPA with this same agonist. In addition, in vivo microdialysis showed that systemic U69,593 decreased overflow of DA in the nucleus accumbens (NAc) in WT mice, but had no effect in DATCre-KOR KO mice. Intra- ventral tegmental area (VTA) delivery of KORs using an adeno-associated viral gene construct, resulted in phenotypic rescue of the KOR-mediated NAc DA response and aversive behavior in DATCre-KOR KO animals. These results provide evidence that KORs on VTA DA neurons are necessary to mediate KOR-mediated aversive behavior. Therefore, our data, along with recent findings, suggest that the neuronal mechanisms of KOR-mediated aversive behavior may include both dopaminergic and serotonergic components. PMID:23921954

  14. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats.

    PubMed

    Barros Silva, R; Santos, N A G; Martins, N M; Ferreira, D A S; Barbosa, F; Oliveira Souza, V C; Kinoshita, A; Baffa, O; Del-Bel, E; Santos, A C

    2013-03-13

    Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.

  15. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis

    PubMed Central

    Gillies, G.E.; Virdee, K.; McArthur, S.; Dalley, J.W.

    2014-01-01

    The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood (‘activational’ effects) and development (perinatal and/or pubertal ‘organizational’ effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and

  16. The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver.

    PubMed

    Chorley, Brian; Ward, William; Simmons, Steven O; Vallanat, Beena; Veronesi, Bellina

    2014-12-01

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5 ppm) to a set of nanoAg of different sizes (10nm, 75 nm) and coatings (PVP, citrate) and their physicochemical, cellular and genomic response measured. Both coatings retained their manufactured sizes in culture media, however, the zeta potentials of both sizes of PVP-coated nanoAg were significantly less electronegative than those of their citrate-coated counterparts. Markers of oxidative stress, measured at 0.5-5 ppm exposure concentrations, indicated that caspase 3/7 activity and glutathione levels were significantly increased by both sizes of PVP-coated nanoAg and by the 75 nm citrate-coated nanoAg. Both sizes of PVP-coated nanoAg also increased intra-neuronal nitrite levels and activated ARE/NRF2, a reporter gene for the oxidative stress-protection pathway. Global gene expression on N27 neurons, exposed to 0.5 ppm for 8h, indicated a dominant effect by PVP-coated nanoAg over citrate. The 75 nm PVP-coated material altered 196 genes that were loosely associated with mitochondrial dysfunction. In contrast, the 10nm PVP-coated nanoAg altered 82 genes that were strongly associated with NRF2 oxidative stress pathways. Less that 20% of the affected genes were shared by both sizes of PVP-coated nanoAg. These cellular and genomic findings suggest that PVP-coated nanoAg is more bioactive than citrate-coated nanoAg. Although both sizes of PVP-coated nanoAg altered the genomic expression of N27 neurons along oxidative stress pathways, exposure to the 75 nm nanoAg favored pathways associated with mitochondrial dysfunction, whereas the 10nm PVP-coated nanoAg affected NRF2 neuronal protective pathways.

  17. Desipramine Protects Neuronal Cell Death and Induces Heme Oxygenase-1 Expression in Mes23.5 Dopaminergic Neurons

    PubMed Central

    Lin, Hsiao-Yun; Yeh, Wei-Lan; Huang, Bor-Ren; Lin, Chingju; Lai, Chih-Ho; Lin, Ho; Lu, Dah-Yuu

    2012-01-01

    Background Desipramine is known principally as a tricyclic antidepressant drug used to promote recovery of depressed patients. It has also been used in a number of other psychiatric and medical conditions. The present study is the first to investigate the neuroprotective effect of desipramine. Methodology/Principal Findings Mes23.5 dopaminergic cells were used to examine neuroprotective effect of desipramine. Western blot, reverse transcription-PCR, MTT assay, siRNA transfection and electrophoretic mobility shift assay (EMSA) were carried out to assess the effects of desipramine. Desipramine induces endogenous anti-oxidative enzyme, heme oxygenase-1 (HO-1) protein and mRNA expression in concentration- and time-dependent manners. A different type of antidepressant SSRI (selective serotonin reuptake inhibitor), fluoxetine also shows similar effects of desipramine on HO-1 expression. Moreover, desipramine induces HO-1 expression through activation of ERK and JNK signaling pathways. Desipramine also increases NF-E2-related factor-2 (Nrf2) accumulation in the nucleus and enhances Nrf2-DNA binding activity. Moreover, desipramine-mediated increase of HO-1 expression is reduced by transfection with siRNA against Nrf2. On the other hand, pretreatment of desipramine protects neuronal cells against rotenone- and 6-hydroxydopamine (6-OHDA)-induced neuronal death. Furthermore, inhibition of HO-1 activity by a HO-1 pharmacological inhibitor, ZnPP IX, attenuates the neuroprotective effect of desipramine. Otherwise, activation of HO-1 activity by HO-1 activator and inducer protect 6-OHDA-induced neuronal death. Conclusions/Significance These findings suggest that desipramine-increased HO-1 expression is mediated by Nrf2 activation through the ERK and JNK signaling pathways. Our results also suggest that desipramine provides a novel effect of neuroprotection, and neurodegenerative process might play an important role in depression disorder. PMID:23209658

  18. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice

    PubMed Central

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R.; Threlfell, Sarah; Dodson, Paul D.; Magill, Peter J.; Fernandes, Cathy; Cragg, Stephanie J.; Ang, Siew-Lan

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by l-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  19. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons.

    PubMed

    Tung, Li-Wei; Lu, Guan-Ling; Lee, Yen-Hsien; Yu, Lung; Lee, Hsin-Jung; Leishman, Emma; Bradshaw, Heather; Hwang, Ling-Ling; Hung, Ming-Shiu; Mackie, Ken; Zimmer, Andreas; Chiou, Lih-Chu

    2016-01-01

    Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA. In dopaminergic neurons of VTA slices, orexin A presynaptically inhibits GABAergic transmission. This effect is prevented by internal GDP-β-S or inhibiting OX1Rs, CB1Rs, phospholipase C or DAGL, and potentiated by inhibiting 2-AG degradation. These results suggest that restraint stress activates LH orexin neurons, releasing orexins into the VTA to activate postsynaptic OX1Rs of dopaminergic neurons and generate 2-AG through a Gq-protein-phospholipase C-DAGL cascade. 2-AG retrogradely inhibits GABA release through presynaptic CB1Rs, leading to VTA dopaminergic disinhibition and reinstatement of cocaine CPP. PMID:27448020

  20. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons

    PubMed Central

    Tung, Li-Wei; Lu, Guan-Ling; Lee, Yen-Hsien; Yu, Lung; Lee, Hsin-Jung; Leishman, Emma; Bradshaw, Heather; Hwang, Ling-Ling; Hung, Ming-Shiu; Mackie, Ken; Zimmer, Andreas; Chiou, Lih-Chu

    2016-01-01

    Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA. In dopaminergic neurons of VTA slices, orexin A presynaptically inhibits GABAergic transmission. This effect is prevented by internal GDP-β-S or inhibiting OX1Rs, CB1Rs, phospholipase C or DAGL, and potentiated by inhibiting 2-AG degradation. These results suggest that restraint stress activates LH orexin neurons, releasing orexins into the VTA to activate postsynaptic OX1Rs of dopaminergic neurons and generate 2-AG through a Gq-protein-phospholipase C-DAGL cascade. 2-AG retrogradely inhibits GABA release through presynaptic CB1Rs, leading to VTA dopaminergic disinhibition and reinstatement of cocaine CPP. PMID:27448020

  1. Subcellular Distribution of M2-muscarinic Receptors in Relation to Dopaminergic Neurons of the Rat Ventral Tegmental Area

    PubMed Central

    Garzón, Miguel; Pickel, Virginia M.

    2008-01-01

    Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Of the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation, and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain. The M2R was localized to endomembranes in DAT-containing somatodendritic profiles, but showed a more prominent, size-dependent plasmalemmal location in non-dopaminergic dendrites. M2R also was located on the plasma membrane of morphologically heterogenous axon terminals contacting unlabeled as well as M2R or DAT-labeled dendrites. Some of these terminals formed asymmetric synapses resembling those of cholinergic terminals in the VTA. The majority, however, formed symmetric, inhibitory-type synapses, or were apposed without recognized junctions. Our results provide the first ultrastructural evidence that the M2R is expressed, but largely not available for local activation, on the plasma membrane of VTA dopaminergic neurons. Instead, the M2R in this region has a distribution suggesting more indirect regulation of mesocorticolimbic transmission through autoregulation of acetylcholine release and changes in the physiological activity or release of other, largely inhibitory transmitters. These findings could have implications for understanding the muscarinic control of cognitive and goal-directed behaviors within the VTA. PMID:16927256

  2. Hypothalamic dopaminergic neurons in an animal model of seasonal affective disorder.

    PubMed

    Deats, Sean P; Adidharma, Widya; Yan, Lily

    2015-08-18

    Light has profound effects on mood regulation as exemplified in seasonal affective disorder (SAD) and the therapeutic benefits of light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD. Following housing conditions of either 12:12 h dim light:dark (DLD) or 8:16 h short photoperiod (SP), which mimic the lower light intensity or short day-length of winter, respectively, grass rats exhibit an increase in depression-like behavior compared to those housed in a 12:12 h bright light:dark (BLD) condition. Furthermore, we have shown that the orexinergic system is involved in mediating the effects of light on mood and anxiety. To explore other potential neural substrates involved in the depressive phenotype, the present study examined hypothalamic dopaminergic (DA) and somatostatin (SST) neurons in the brains of grass rats housed in DLD, SP and BLD. Using immunostaining for tyrosine hydroxylase (TH) and SST, we found that the number of TH- and SST-ir cells in the hypothalamus was significantly lower in the DLD and SP groups compared to the BLD group. We also found that treating BLD animals with a selective orexin receptor 1 (OX1R) antagonist SB-334867 significantly reduced the number of hypothalamic TH-ir cells. The present study suggests that the hypothalamic DA neurons are sensitive to daytime light deficiency and are regulated by an orexinergic pathway. The results support the hypothesis that the orexinergic pathways mediate the effects of light on other neuronal systems that collectively contribute to light-dependent changes in the affective state.

  3. Hypothalamic Dopaminergic Neurons in an Animal Model of Seasonal Affective Disorder

    PubMed Central

    Deats, Sean P.; Adidharma, Widya; Yan, Lily

    2015-01-01

    Light has profound effects on mood regulation as exemplified in Seasonal Affective Disorder (SAD) and the therapeutic benefits of light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD. Following housing conditions of either 12:12hr Dim Light:Dark (DLD) or 8:16hr Short Photoperiod (SP), which mimic the lower light intensity or short day-length of winter, respectively, grass rats exhibit an increase in depression-like behavior compared to those housed in a 12:12hr Bright Light:Dark (BLD) condition. Furthermore, we revealed that the orexinergic system is involved in mediating the effects of light on mood and anxiety. To explore other potential neural substrates involved in the depressive phenotype, the present study examined hypothalamic dopaminergic (DA) and somatostatin (SST) neurons in the brains of grass rats housed in DLD, SP and BLD. Using immunostaining for tyrosine hydroxylase (TH) and SST, we found that the number of TH- and SST-ir cells in the hypothalamus was significantly lower in the DLD and SP groups compared to the BLD group. We also found that treating BLD animals with a selective orexin receptor 1 (OX1R) antagonist SB-334867 significantly reduced the number of hypothalamic TH-ir cells. The present study suggests that the hypothalamic DA neurons are sensitive to daytime light deficiency and are regulated by an orexinergic pathway. The results support the hypothesis that the orexinergic pathways mediate the effects of light on other neuronal systems that collectively contribute to light-dependent changes in the affective state. PMID:26116821

  4. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model.

    PubMed

    Qi, Xin; Davis, Brandon; Chiang, Yung-Hsiao; Filichia, Emily; Barnett, Austin; Greig, Nigel H; Hoffer, Barry; Luo, Yu

    2016-09-01

    p53, a stress response gene, is involved in diverse cell death pathways and its activation has been implicated in the pathogenesis of Parkinson's disease (PD). However, whether the neuronal p53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 knock-out (KO) mice, we examined the effect of DA specific p53 gene deletion in DAT-p53KO mice. These DAT-p53KO mice did not exhibit apparent changes in the general structure and neuronal density of DA neurons during late development and in aging. However, in DA-p53KO mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that the induction of Bax and p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein levels by MPTP were diminished in both striatum and substantia nigra of these mice. Notably, deletion of the p53 gene in DA neurons significantly reduced dopaminergic neuronal loss in substantia nigra, dopaminergic neuronal terminal loss at striatum and, additionally, decreased motor deficits in mice challenged with MPTP. In contrast, there was no difference in astrogliosis between WT and DAT-p53KO mice in response to MPTP treatment. These findings demonstrate a specific contribution of p53 activation in DA neuronal cell death by MPTP challenge. Our results further support the role of programmed cell death mediated by p53 in this animal model of PD and identify Bax, BAD and PUMA genes as downstream targets of p53 in modulating DA neuronal death in the in vivo MPTP-induced PD model. We deleted p53 gene in dopaminergic neurons in late developmental stages and found that DA specific p53 deletion is protective in acute MPTP animal model possibly through blocking MPTP-induced BAX and PUMA up-regulation. Astrocyte activation measured by GFAP positive cells and GFAP gene up-regulation in the striatum shows no difference

  5. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model.

    PubMed

    Qi, Xin; Davis, Brandon; Chiang, Yung-Hsiao; Filichia, Emily; Barnett, Austin; Greig, Nigel H; Hoffer, Barry; Luo, Yu

    2016-09-01

    p53, a stress response gene, is involved in diverse cell death pathways and its activation has been implicated in the pathogenesis of Parkinson's disease (PD). However, whether the neuronal p53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 knock-out (KO) mice, we examined the effect of DA specific p53 gene deletion in DAT-p53KO mice. These DAT-p53KO mice did not exhibit apparent changes in the general structure and neuronal density of DA neurons during late development and in aging. However, in DA-p53KO mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that the induction of Bax and p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein levels by MPTP were diminished in both striatum and substantia nigra of these mice. Notably, deletion of the p53 gene in DA neurons significantly reduced dopaminergic neuronal loss in substantia nigra, dopaminergic neuronal terminal loss at striatum and, additionally, decreased motor deficits in mice challenged with MPTP. In contrast, there was no difference in astrogliosis between WT and DAT-p53KO mice in response to MPTP treatment. These findings demonstrate a specific contribution of p53 activation in DA neuronal cell death by MPTP challenge. Our results further support the role of programmed cell death mediated by p53 in this animal model of PD and identify Bax, BAD and PUMA genes as downstream targets of p53 in modulating DA neuronal death in the in vivo MPTP-induced PD model. We deleted p53 gene in dopaminergic neurons in late developmental stages and found that DA specific p53 deletion is protective in acute MPTP animal model possibly through blocking MPTP-induced BAX and PUMA up-regulation. Astrocyte activation measured by GFAP positive cells and GFAP gene up-regulation in the striatum shows no difference

  6. Differential Effects of Toluene and Ethanol on Dopaminergic Neurons of the Ventral Tegmental Area

    PubMed Central

    Nimitvilai, Sudarat; You, Chang; Arora, Devinder S.; McElvain, Maureen A.; Vandegrift, Bertha J.; Brodie, Mark S.; Woodward, John J.

    2016-01-01

    Drugs of abuse increase the activity of dopaminergic neurons of the ventral tegmental area (VTA), and output from the VTA is critical for both natural and drug-induced reward and reinforcement. Ethanol and the abused inhalant toluene both enhance VTA neuronal firing, but the mechanisms of this effect is not fully known. In this study, we used extracellular recordings to compare the actions of toluene and ethanol on DA VTA neurons. Both ethanol and toluene increased the firing rate of DA neurons, although toluene was ~100 times more potent than ethanol. The mixed ion channel blocker quinine (100 μM) blocked the increases in firing produced by ethanol and toluene, indicating some similarity in mechanisms of excitation. A mixture of antagonists of GABA and cholinergic receptors did not prevent toluene-induced or ethanol-induced excitation, and toluene-induced excitation was not altered by co-administration of ethanol, suggesting independent mechanisms of excitation for ethanol and toluene. Concurrent blockade of NMDA, AMPA, and metabotropic glutamate receptors enhanced the excitatory effect of toluene while having no significant effect on ethanol excitation. Nicotine increased firing of DA VTA neurons, and this was blocked by the nicotinic antagonist mecamylamine (1 μM). Mecamylamine did not alter ethanol or toluene excitation of firing but the muscarinic antagonist atropine (5 μM) or a combination of GABA antagonists (bicuculline and CGP35348, 10 μM each) reduced toluene-induced excitation without affecting ethanol excitation. The Ih current blocker ZD7288 abolished the excitatory effect of toluene but unlike the block of ethanol excitation, the effect of ZD7288 was not reversed by the GIRK channel blocker barium, but was reversed by GABA antagonists. These results demonstrate that the excitatory effects of ethanol and toluene have some similarity, such as block by quinine and ZD7288, but also indicate that there are important differences between these two drugs

  7. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects.

    PubMed

    Borgs, Laurence; Peyre, Elise; Alix, Philippe; Hanon, Kevin; Grobarczyk, Benjamin; Godin, Juliette D; Purnelle, Audrey; Krusy, Nathalie; Maquet, Pierre; Lefebvre, Philippe; Seutin, Vincent; Malgrange, Brigitte; Nguyen, Laurent

    2016-01-01

    Some mutations of the LRRK2 gene underlie autosomal dominant form of Parkinson's disease (PD). The G2019S is a common mutation that accounts for about 2% of PD cases. To understand the pathophysiology of this mutation and its possible developmental implications, we developed an in vitro assay to model PD with human induced pluripotent stem cells (hiPSCs) reprogrammed from skin fibroblasts of PD patients suffering from the LRKK2 G2019S mutation. We differentiated the hiPSCs into neural stem cells (NSCs) and further into dopaminergic neurons. Here we show that NSCs bearing the mutation tend to differentiate less efficiently into dopaminergic neurons and that the latter exhibit significant branching defects as compared to their controls. PMID:27640816

  8. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects

    PubMed Central

    Borgs, Laurence; Peyre, Elise; Alix, Philippe; Hanon, Kevin; Grobarczyk, Benjamin; Godin, Juliette D.; Purnelle, Audrey; Krusy, Nathalie; Maquet, Pierre; Lefebvre, Philippe; Seutin, Vincent; Malgrange, Brigitte; Nguyen, Laurent

    2016-01-01

    Some mutations of the LRRK2 gene underlie autosomal dominant form of Parkinson’s disease (PD). The G2019S is a common mutation that accounts for about 2% of PD cases. To understand the pathophysiology of this mutation and its possible developmental implications, we developed an in vitro assay to model PD with human induced pluripotent stem cells (hiPSCs) reprogrammed from skin fibroblasts of PD patients suffering from the LRKK2 G2019S mutation. We differentiated the hiPSCs into neural stem cells (NSCs) and further into dopaminergic neurons. Here we show that NSCs bearing the mutation tend to differentiate less efficiently into dopaminergic neurons and that the latter exhibit significant branching defects as compared to their controls. PMID:27640816

  9. Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons.

    PubMed

    Piazza, P V; Le Moal, M L

    1996-01-01

    Research on drug abuse has recently focused on understanding the vulnerability to develop addiction that is present in certain individuals. These investigations suggest that addiction results from an interaction between drugs and specific individual substrates. Differences in the propensity to develop drug intake can be demonstrated in animals with equal access to drugs under stable laboratory conditions and can be predicted by drug-independent behaviors. Stress, corticosterone, and mesencephalic dopaminergic neurons seem to be organized in a pathophysiological chain determining such a vulnerability. An increased corticosterone secretion, or a higher sensitivity to the effects of this hormone, either naturally present in certain individuals or induced by stress in others, increases the vulnerability to develop drug intake, via an enhancement of the activity of mesencephalic dopaminergic neurons. These findings suggest that addiction therapies should counteract the biological peculiarity that leads some individuals to respond in a pathophysiological way to drugs. PMID:8725394

  10. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    SciTech Connect

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  11. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity.

    PubMed Central

    Krieglstein, K; Suter-Crazzolara, C; Fischer, W H; Unsicker, K

    1995-01-01

    The superfamily of transforming growth factors-beta (TGF-beta) comprises an expanding list of multifunctional proteins serving as regulators of cell proliferation and differentiation. Prominent members of this family include the TGF-beta s 1-5, activins, bone morphogenetic proteins and a recently discovered glial cell line-derived neurotrophic factor (GDNF). In the present study we demonstrate and compare the survival promoting and neuroprotective effects of TGF-beta 1, -2 and -3, activin A and GDNF for midbrain dopaminergic neurons in vitro. All proteins increase the survival of tyrosine hydroxylase-immunoreactive dopaminergic neurons isolated from the embryonic day (E) 14 rat mesencephalon floor to varying extents (TGF-beta s 2.5-fold, activin A and GDNF 1.6-fold). TGF-beta s, activin A and GDNF did not augment numbers of very rarely observed astroglial cells visualized by using antibodies to glial fibrillary acidic protein and had no effect on cell proliferation monitored by incorporation of BrdU. TGF-beta 1 and activin A protected dopaminergic neurons against N-methyl-4-phenylpiridinium ion toxicity. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that TGF-beta 2 mRNA, but not GDNF mRNA, is expressed in the E14 rat midbrain floor and in mesencephalic cultures. We conclude that TGF-beta s 1-3, activin A and GDNF share a neurotrophic capacity for developing dopaminergic neurons, which is not mediated by astroglial cells and not accompanied by an increase in cell proliferation. Images PMID:7882977

  12. Dopaminergic neurons write and update memories with cell-type-specific rules

    PubMed Central

    Aso, Yoshinori; Rubin, Gerald M

    2016-01-01

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. DOI: http://dx.doi.org/10.7554/eLife.16135.001 PMID:27441388

  13. An Efficient and Versatile System for Visualization and Genetic Modification of Dopaminergic Neurons in Transgenic Mice

    PubMed Central

    Kramer, Edgar R.

    2015-01-01

    Background & Aims The brain dopaminergic (DA) system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson’s disease (PD) and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification. Methods & Results Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA) or the reverse tetracycline-regulated transactivator (rtTA) under control of the tyrosine hydroxylase (TH) promoter, TH-tTA (tet-OFF) and TH-rtTA (tet-ON) mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time. Conclusion These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases. PMID:26291828

  14. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior.

    PubMed

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H; Chen, Wenbiao; Wang, Han

    2015-02-11

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder.

  15. Circadian Modulation of Dopamine Levels and Dopaminergic Neuron Development Contributes to Attention Deficiency and Hyperactive Behavior

    PubMed Central

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H.; Chen, Wenbiao

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder. PMID:25673850

  16. Increased gabaergic input to ventral tegmental area dopaminergic neurons associated with decreased cocaine reinforcement in mu-opioid receptor knockout mice.

    PubMed

    Mathon, D S; Lesscher, H M B; Gerrits, M A F M; Kamal, A; Pintar, J E; Schuller, A G P; Spruijt, B M; Burbach, J P H; Smidt, M P; van Ree, J M; Ramakers, G M J

    2005-01-01

    There is general agreement that dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens and prefrontal cortex play a key role in drug reinforcement. The activity of these neurons is strongly modulated by the inhibitory and excitatory input they receive. Activation of mu-opioid receptors, located on GABAergic neurons in the VTA, causes hyperpolarization of these GABAergic neurons, thereby causing a disinhibition of VTA dopaminergic neurons. This effect of mu-opioid receptors upon GABA neurotransmission is a likely mechanism for mu-opioid receptor modulation of drug reinforcement. We studied mu-opioid receptor signaling in relation to cocaine reinforcement in wild-type and mu-opioid receptor knockout mice using a cocaine self-administration paradigm and in vitro electrophysiology. Cocaine self-administration was reduced in mu-opioid receptor knockout mice, suggesting a critical role of mu-opioid receptors in cocaine reinforcement. The frequency of spontaneous inhibitory post-synaptic currents onto dopaminergic neurons in the ventral tegmental area was increased in mu-opioid receptor knockout mice compared with wild-type controls, while the frequency of spontaneous excitatory post-synaptic currents was unaltered. The reduced cocaine self-administration and increased GABAergic input to VTA dopaminergic neurons in mu-opioid receptor knockout mice supports the notion that suppression of GABAergic input onto dopaminergic neurons in the VTA contributes to mu-opioid receptor modulation of cocaine reinforcement. PMID:15664692

  17. Inflammatory Animal Model for Parkinson's Disease: The Intranigral Injection of LPS Induced the Inflammatory Process along with the Selective Degeneration of Nigrostriatal Dopaminergic Neurons

    PubMed Central

    Machado, A.; Herrera, A. J.; Venero, J. L.; Santiago, M.; de Pablos, R. M.; Villarán, R. F.; Espinosa-Oliva, A. M.; Argüelles, S.; Sarmiento, M.; Delgado-Cortés, M. J.; Mauriño, R.; Cano, J.

    2011-01-01

    We have developed an animal model of degeneration of the nigrostriatal dopaminergic neurons, the neuronal system involved in Parkinson's disease (PD). The implication of neuroinflammation on this disease was originally established in 1988, when the presence of activated microglia in the substantia nigra (SN) of parkinsonians was reported by McGeer et al. Neuroinflammation could be involved in the progression of the disease or even has more direct implications. We injected 2 μg of the potent proinflammatory compound lipopolysaccharide (LPS) in different areas of the CNS, finding that SN displayed the highest inflammatory response and that dopaminergic (body) neurons showed a special and specific sensitivity to this process with the induction of selective dopaminergic degeneration. Neurodegeneration is induced by inflammation since it is prevented by anti-inflammatory compounds. The special sensitivity of dopaminergic neurons seems to be related to the endogenous dopaminergic content, since it is overcome by dopamine depletion. Compounds that activate microglia or induce inflammation have similar effects to LPS. This model suggest that inflammation is an important component of the degeneration of the nigrostriatal dopaminergic system, probably also in PD. Anti-inflammatory treatments could be useful to prevent or slow down the rate of dopaminergic degeneration in this disease. PMID:22389821

  18. Endogenous brain-derived neurotrophic factor protects dopaminergic nigral neurons against transneuronal degeneration induced by striatal excitotoxic injury.

    PubMed

    Canudas, Anna M; Pezzi, Susana; Canals, Josep M; Pallàs, Mercè; Alberch, Jordi

    2005-03-24

    Injury to the central nervous system causes atrophy or death of connecting neurons and can modify the expression of neurotrophic factors. We observed transneuronal upregulation of brain-derived neurotrophic factor (BDNF) expression in the rat ipsilateral substantia nigra pars compacta after a striatal lesion induced by kainate. This effect is developmentally regulated because the enhancement of nigral BDNF expression was only observed when striatal lesion was performed on postnatal day (P) 15 and in adulthood, but not at P7. Interestingly, the lack of regulation of BDNF was coincident with the transynaptic degeneration of nigral neurons after striatal excitotoxic injury. Hence, the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta decreased when the lesion was performed at P7, but not at P15 or at P30. The analysis of the functional significance of this BDNF upregulation was done using trkB-IgG fusion proteins. After striatal injury, blockade of endogenous BDNF by trkB fusion proteins induced an atrophy of the dopaminergic neurons of the pars compacta. The injection of trkB-IgG fusion proteins did not modify the effects of kainate in the substantia nigra pars reticulata. Thus, our results show that BDNF exerts an autocrine/paracrine protective effect selectively on dopaminergic neurons against the loss of trophic support from the target striatum.

  19. The medial prefrontal cortex plays an important role in the excitation of A10 dopaminergic neurons following intravenous muscimol administration.

    PubMed

    Lokwan, S J; Overton, P G; Berry, M S; Clark, D

    2000-01-01

    Intravenous muscimol administration increases the activity of dopaminergic neurons of the A10 cell group, located in the ventral tegmental area. Evidence suggests that this increase in activity is produced by disinhibition following the inhibition of GABAergic ("non-dopaminergic") cells in the ventral tegmental area. We hypothesized that the activation of A10 cells by muscimol is likely to be at least partly caused by the action of excitatory afferents. To verify this, A10 cells were isolated from ipsilateral afferent sources which utilise excitatory amino acids (which play an important role in the activity of these neurons), using hemisections at the level of the subthalamic nucleus (or just anterior to the subthalamic nucleus), electrolytic lesions of the pedunculopontine tegmental nucleus, or a combination of both. Following hemisections, and hemisections combined with lesions of the pedunculopontine tegmental nucleus, muscimol inhibited rather than excited A10 dopaminergic neurons. The pedunculopontine tegmental nucleus itself appeared to make little intrinsic contribution to muscimol-induced excitation, although the results suggested that part of the excitation which originates in the forebrain may be conducted to A10 cells via the pedunculopontine tegmental nucleus. The source of the effective forebrain excitation was investigated using electrolytic lesions of documented sources of excitatory amino acidergic afferents to the ventral tegmental area: the medial prefrontal cortex, certain nuclei of the amygdalar complex and the lateral habenular nucleus. In the medial prefrontal cortex-lesioned group, muscimol again produced inhibition, an effect qualitatively and quantitatively similar to that in the hemisected groups. Habenular lesions blocked muscimol-induced excitation without producing inhibition, whilst amygdalar lesions produced no significant change in the effects of muscimol. The results suggest that under normal circumstances, an active excitation

  20. Progressive Axonal Degeneration of Nigrostriatal Dopaminergic Neurons in Calcium-Independent Phospholipase A2β Knockout Mice

    PubMed Central

    Beck, Goichi; Shinzawa, Koei; Hayakawa, Hideki; Baba, Kousuke; Sumi-Akamaru, Hisae; Tsujimoto, Yoshihide; Mochizuki, Hideki

    2016-01-01

    Calcium-independent phospholipase A2β (iPLA2β, PLA2G6) is essential for the remodeling of membrane glycerophospholipids. Mutations in this gene are responsible for autosomal recessive, young onset, L-dopa-responsive parkinsonism (PARK14), suggesting a neurodegenerative condition in the nigrostriatal dopaminergic system in patients with PLA2G6 mutations. We previously observed slowly progressive motor deficits in iPLA2β-knockout (KO) mice. To clarify whether a deficiency of iPLA2β leads to the degeneration of nigrostriatal dopaminergic neurons, we analyzed the striatum of iPLA2β-KO mice. At all clinical stages, nerve terminals in the striatum were immunopositive for tyrosine hydroxylase (TH) and dopamine transporter (DAT) in wild-type (WT) control mice. In iPLA2β-KO mice, focal loss of nerve terminals positive for TH and DAT was found from 56 weeks (early clinical stage), although iPLA2β-KO mice at 56 weeks showed no significant decrease in the number of dopaminergic neurons in the substantia nigra compared with age-matched WT mice, as reported previously. At 100 weeks (late clinical stage), greater decreases in DAT immunoreactivity were observed in the striatum of iPLA2β-KO mice. Moreover, strongly TH-positive structures, presumed to be deformed axons, were observed in the neuropils of the striatum of iPLA2β-KO mice starting at 15 weeks (preclinical stage) and increased with age. These results suggest that the degeneration of dopaminergic neurons occurs mainly in the distal region of axons in iPLA2β-KO mice. PMID:27078024

  1. Progressive Axonal Degeneration of Nigrostriatal Dopaminergic Neurons in Calcium-Independent Phospholipase A2β Knockout Mice.

    PubMed

    Beck, Goichi; Shinzawa, Koei; Hayakawa, Hideki; Baba, Kousuke; Sumi-Akamaru, Hisae; Tsujimoto, Yoshihide; Mochizuki, Hideki

    2016-01-01

    Calcium-independent phospholipase A2β (iPLA2β, PLA2G6) is essential for the remodeling of membrane glycerophospholipids. Mutations in this gene are responsible for autosomal recessive, young onset, L-dopa-responsive parkinsonism (PARK14), suggesting a neurodegenerative condition in the nigrostriatal dopaminergic system in patients with PLA2G6 mutations. We previously observed slowly progressive motor deficits in iPLA2β-knockout (KO) mice. To clarify whether a deficiency of iPLA2β leads to the degeneration of nigrostriatal dopaminergic neurons, we analyzed the striatum of iPLA2β-KO mice. At all clinical stages, nerve terminals in the striatum were immunopositive for tyrosine hydroxylase (TH) and dopamine transporter (DAT) in wild-type (WT) control mice. In iPLA2β-KO mice, focal loss of nerve terminals positive for TH and DAT was found from 56 weeks (early clinical stage), although iPLA2β-KO mice at 56 weeks showed no significant decrease in the number of dopaminergic neurons in the substantia nigra compared with age-matched WT mice, as reported previously. At 100 weeks (late clinical stage), greater decreases in DAT immunoreactivity were observed in the striatum of iPLA2β-KO mice. Moreover, strongly TH-positive structures, presumed to be deformed axons, were observed in the neuropils of the striatum of iPLA2β-KO mice starting at 15 weeks (preclinical stage) and increased with age. These results suggest that the degeneration of dopaminergic neurons occurs mainly in the distal region of axons in iPLA2β-KO mice. PMID:27078024

  2. Conditional Expression of Parkinson's Disease-Related R1441C LRRK2 in Midbrain Dopaminergic Neurons of Mice Causes Nuclear Abnormalities without Neurodegeneration

    PubMed Central

    Tsika, Elpida; Kannan, Meghna; Foo, Caroline Shi-Yan; Dikeman, Dustin; Glauser, Liliane; Gellhaar, Sandra; Galter, Dagmar; Knott, Graham W.; Dawson, Ted M.; Dawson, Valina L.; Moore, Darren J.

    2015-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). The clinical and neurochemical features of LRRK2-linked PD are similar to idiopathic disease although neuropathology is somewhat heterogeneous. Dominant mutations in LRRK2 precipitate neurodegeneration through a toxic gain-of-function mechanism which can be modeled in transgenic mice overexpressing human LRRK2 variants. A number of LRRK2 transgenic mouse models have been developed that display abnormalities in dopaminergic neurotransmission and alterations in tau metabolism yet without consistently inducing dopaminergic neurodegeneration. To directly explore the impact of mutant LRRK2 on the nigrostriatal dopaminergic pathway, we developed conditional transgenic mice that selectively express human R1441C LRRK2 in dopaminergic neurons from the endogenous murine ROSA26 promoter. The expression of R1441C LRRK2 does not induce the degeneration of substantia nigra dopaminergic neurons or striatal dopamine deficits in mice up to 2 years of age, and fails to precipitate abnormal protein inclusions containing alpha-synuclein, tau, ubiquitin or autophagy markers (LC3 and p62). Furthermore, mice expressing R1441C LRRK2 exhibit normal motor activity and olfactory function with increasing age. Intriguingly, the expression of R1441C LRRK2 induces age-dependent abnormalities of the nuclear envelope in nigral dopaminergic neurons including reduced nuclear circularity and increased invaginations of the nuclear envelope. In addition, R1441C LRRK2 mice display increased neurite complexity of cultured midbrain dopaminergic neurons. Collectively, these novel R1441C LRRK2 conditional transgenic mice reveal altered dopaminergic neuronal morphology with advancing age, and provide a useful tool for exploring the pathogenic mechanisms underlying the R1441C LRRK2 mutation in PD. PMID:25174890

  3. Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1: a new genetic model for Parkinson's disease?

    PubMed

    Le Pen, Gwenaëlle; Sonnier, Laure; Hartmann, Andreas; Bizot, Jean-Charles; Trovero, Fabrice; Krebs, Marie-Odile; Prochiantz, Alain

    2008-01-01

    Engrailed1 is a developmental gene of the homeogene family that controls the survival of midbrain dopaminergic neurons throughout life. Since these neurons have been crucially implicated in Parkinson's disease (PD), transgenic mice lacking one En1 allele could be of particular interest for the development of an animal model for PD. We showed in En1+/- mice, some traits reminiscent of PD such as (1) a progressive loss of mesencephalic dopaminergic (DA) neurons, and (2) motor deficits, anhedonia, decreased social interactions and depression-like behaviours. Further validation is needed, but these first results suggest that En1+/- mice could provide a promising model for the study of PD.

  4. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP(+) and Rotenone Toxicity.

    PubMed

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P H

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP(+))-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson's disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  5. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP+ and Rotenone Toxicity

    PubMed Central

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P. H.

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP+)-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson’s disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  6. Olfactory impairment in the rotenone model of Parkinson’s disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation

    PubMed Central

    Rodrigues, Lais S.; Targa, Adriano D. S.; Noseda, Ana Carolina D.; Aurich, Mariana F.; Da Cunha, Cláudio; Lima, Marcelo M. S.

    2014-01-01

    Olfactory and rapid eye movement (REM) sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson’s disease (PD). Additionally, different studies report declines in olfactory performance during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood, and impairment of dopamine (DA) neurotransmission in the olfactory bulb and the nigrostriatal pathway may have important roles in olfaction and REM sleep disturbances. Therefore, we hypothesized that modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and REM sleep deprivation (REMSD). We decided to investigate the olfactory, neurochemical, and histological alterations generated through the administration of piribedil (a selective D2 agonist) or raclopride (a selective D2 antagonist) within the glomerular layer of the olfactory bulb, in rats subjected to intranigral rotenone and REMSD. Our findings provide evidence of the occurrence of a negative correlation (r = −0.52, P = 0.04) between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham, groups. A significant positive correlation (r = 0.34, P = 0.03) was observed between nigrostriatal DA levels and olfactory discrimination index (DI) for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc) are associated with enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA were induced by piribedil in the rotenone control and rotenone REMSD groups, consistent with reductions in the DI. The present evidence reinforce the idea that DA produced by periglomerular neurons, particularly the bulbar dopaminergic D2 receptors, is an essential participant in olfactory discrimination processes, as the SNpc, and the striatum. PMID:25520618

  7. Activation of dopaminergic D2/D3 receptors modulates dorsoventral connectivity in the hippocampus and reverses the impairment of working memory after nerve injury.

    PubMed

    Cardoso-Cruz, Helder; Dourado, Margarida; Monteiro, Clara; Matos, Mariana R; Galhardo, Vasco

    2014-04-23

    Dopamine plays an important role in several forms of synaptic plasticity in the hippocampus, a crucial brain structure for working memory (WM) functioning. In this study, we evaluated whether the working-memory impairment characteristic of animal models of chronic pain is dependent on hippocampal dopaminergic signaling. To address this issue, we implanted multichannel arrays of electrodes in the dorsal and ventral hippocampal CA1 region of rats and recorded the neuronal activity during a food-reinforced spatial WM task of trajectory alternation. Within-subject behavioral performance and patterns of dorsoventral neuronal activity were assessed before and after the onset of persistent neuropathic pain using the Spared Nerve Injury (SNI) model of neuropathic pain. Our results show that the peripheral nerve lesion caused a disruption in WM and in hippocampus spike activity and that this disruption was reversed by the systemic administration of the dopamine D2/D3 receptor agonist quinpirole (0.05 mg/kg). In SNI animals, the administration of quinpirole restored both the performance-related and the task-related spike activity to the normal range characteristic of naive animals, whereas quinpirole in sham animals caused the opposite effect. Quinpirole also reversed the abnormally low levels of hippocampus dorsoventral connectivity and phase coherence. Together with our finding of changes in gene expression of dopamine receptors and modulators after the onset of the nerve injury model, these results suggest that disruption of the dopaminergic balance in the hippocampus may be crucial for the clinical neurological and cognitive deficits observed in patients with painful syndromes.

  8. Olfactory impairment in the rotenone model of Parkinson's disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation.

    PubMed

    Rodrigues, Lais S; Targa, Adriano D S; Noseda, Ana Carolina D; Aurich, Mariana F; Da Cunha, Cláudio; Lima, Marcelo M S

    2014-01-01

    Olfactory and rapid eye movement (REM) sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson's disease (PD). Additionally, different studies report declines in olfactory performance during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood, and impairment of dopamine (DA) neurotransmission in the olfactory bulb and the nigrostriatal pathway may have important roles in olfaction and REM sleep disturbances. Therefore, we hypothesized that modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and REM sleep deprivation (REMSD). We decided to investigate the olfactory, neurochemical, and histological alterations generated through the administration of piribedil (a selective D2 agonist) or raclopride (a selective D2 antagonist) within the glomerular layer of the olfactory bulb, in rats subjected to intranigral rotenone and REMSD. Our findings provide evidence of the occurrence of a negative correlation (r = -0.52, P = 0.04) between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham, groups. A significant positive correlation (r = 0.34, P = 0.03) was observed between nigrostriatal DA levels and olfactory discrimination index (DI) for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc) are associated with enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA were induced by piribedil in the rotenone control and rotenone REMSD groups, consistent with reductions in the DI. The present evidence reinforce the idea that DA produced by periglomerular neurons, particularly the bulbar dopaminergic D2 receptors, is an essential participant in olfactory discrimination processes, as the SNpc, and the striatum.

  9. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model.

    PubMed

    Kim, Mi Jin; Park, Meeyoung; Kim, Dae Won; Shin, Min Jea; Son, Ora; Jo, Hyo Sang; Yeo, Hyeon Ji; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Kim, Duk-Soo; Kwon, Oh-Shin; Kim, Joon; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-09-01

    Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases.

  10. Neuroprotective effects of tetramethylpyrazine against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP.

    PubMed

    Lu, Chen; Zhang, Jin; Shi, Xiaopeng; Miao, Shan; Bi, Linlin; Zhang, Song; Yang, Qian; Zhou, Xuanxuan; Zhang, Meng; Xie, Yanhua; Miao, Qing; Wang, Siwang

    2014-01-01

    Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disease. Although several hypotheses have been proposed to explain the pathogenesis of PD, apoptotic cell death and oxidative stress are the most prevalent mechanisms. Tetramethylpyrazine (TMP) is a biological component that has been extracted from Ligusticum wallichii Franchat (ChuanXiong), which exhibits anti-apoptotic and antioxidant roles. In the current study, we aimed to investigate the possible protective effect of TMP against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP and to elucidate probable molecular mechanisms. The results showed that TMP could notably prevent MPTP-induced dopaminergic neurons damage, reflected by improvement of motor deficits, enhancement of TH expression and the content of dopamine and its metabolite, DOPAC. We observed MPTP-induced activation of mitochondrial apoptotic death pathway, evidenced by up-regulation of Bax, down-regulation of Bcl-2, release of cytochrome c and cleavage of caspase 3, which was significantly inhibited by TMP. Moreover, TMP could prevent MPTP-increased TBARS level and MPTP-decreased GSH level, indicating the antioxidant role of TMP in PD model. And the antioxidant role of TMP attributes to the prevention of MPTP-induced reduction of Nrf2 and GCLc expression. In conclusion, in MPTP-induced PD model, TMP prevents the down-regulation of Nrf2 and GCLc, maintaining redox balance and inhibiting apoptosis, leading to the attenuation of dopaminergic neuron damage. The effectiveness of TMP in treating PD potentially leads to interesting therapeutic perspectives. PMID:24719552

  11. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1.

    PubMed

    Nishimura, Kaneyasu; Doi, Daisuke; Samata, Bumpei; Murayama, Shigeo; Tahara, Tsuyoshi; Onoe, Hirotaka; Takahashi, Jun

    2016-04-12

    For cell transplantation therapy for Parkinson's disease (PD) to be realized, the grafted neurons should be integrated into the host neuronal circuit to restore the lost neuronal function. Here, using wheat-germ agglutinin-based transsynaptic tracing, we show that integrin α5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons. In addition, we found that integrin α5β1 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin α5β1. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administered rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD. PMID:26997644

  12. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1

    PubMed Central

    Nishimura, Kaneyasu; Doi, Daisuke; Samata, Bumpei; Murayama, Shigeo; Tahara, Tsuyoshi; Onoe, Hirotaka; Takahashi, Jun

    2016-01-01

    Summary For cell transplantation therapy for Parkinson's disease (PD) to be realized, the grafted neurons should be integrated into the host neuronal circuit to restore the lost neuronal function. Here, using wheat-germ agglutinin-based transsynaptic tracing, we show that integrin α5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons. In addition, we found that integrin α5β1 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin α5β1. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administered rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD. PMID:26997644

  13. Orthodenticle is necessary for survival of a cluster of clonally related dopaminergic neurons in the Drosophila larval and adult brain

    PubMed Central

    2011-01-01

    Background The dopaminergic (DA) neurons present in the central brain of the Drosophila larva are spatially arranged in stereotyped groups that define clusters of bilaterally symmetrical neurons. These clusters have been classified according to anatomical criteria (position of the cell bodies within the cortex and/or projection pattern of the axonal tracts). However, information pertaining to the developmental biology, such as lineage relationship of clustered DA neurons and differential cell subtype-specific molecular markers and mechanisms of differentiation and/or survival, is currently not available. Results Using MARCM and twin-spot MARCM techniques together with anti-tyrosine hydroxylase immunoreactivity, we have analyzed the larval central brain DA neurons from a developmental point of view and determined their time of birth, their maturation into a DA neurotransmitter phenotype as well as their lineage relationships. In addition, we have found that the homeodomain containing transcription factor Orthodenticle (Otd) is present in a cluster of clonally related DA neurons in both the larval and adult brain. Taking advantage of the otd hypomorphic mutation ocelliless (oc) and the oc2-Gal4 reporter line, we have studied the involvement of orthodenticle (otd) in the survival and/or cell fate specification of these post-mitotic neurons. Conclusions Our findings provide evidence of the presence of seven neuroblast lineages responsible for the generation of the larval central brain DA neurons during embryogenesis. otd is expressed in a defined group of clonally related DA neurons from first instar larvae to adulthood, making it possible to establish an identity relationship between the larval DL2a and the adult PPL2 DA clusters. This poses otd as a lineage-specific and differential marker of a subset of clonally related DA neurons. Finally, we show that otd is required in those DA neurons for their survival. PMID:21999236

  14. Odour enrichment increases adult-born dopaminergic neurons in the mouse olfactory bulb.

    PubMed

    Bonzano, Sara; Bovetti, Serena; Fasolo, Aldo; Peretto, Paolo; De Marchis, Silvia

    2014-11-01

    The olfactory bulb (OB) is the first brain region involved in the processing of olfactory information. In adult mice, the OB is highly plastic, undergoing cellular/molecular dynamic changes that are modulated by sensory experience. Odour deprivation induces down-regulation of tyrosine hydroxylase (TH) expression in OB dopaminergic interneurons located in the glomerular layer (GL), resulting in decreased dopamine in the OB. Although the effect of sensory deprivation is well established, little is known about the influence of odour enrichment on dopaminergic cells. Here we report that prolonged odour enrichment on C57BL/6J strain mice selectively increases TH-immunopositive cells in the GL by nearly 20%. Following odour enrichment on TH-green fluorescent protein (GFP) transgenic mice, in which GFP identified both mature TH-positive cells and putative immature dopaminergic cells expressing TH mRNA but not TH protein, we found a similar 20% increase in GFP-expressing cells, with no changes in the ratio between TH-positive and TH-negative cells. These data suggest that enriched conditions induce an expansion in the whole dopaminergic lineage. Accordingly, by using 5-bromo-2-deoxyuridine injections to label adult-generated cells in the GL of TH-GFP mice, we found an increase in the percentage of 5-bromo-2-deoxyuridine-positive dopaminergic cells in enriched compared with control conditions, whereas no differences were found for calretinin- and calbindin-positive subtypes. Strikingly, the fraction of newborn cells among the dopaminergic population doubled in enriched conditions. On the whole, our results demonstrate that odour enrichment drives increased integration of adult-generated dopaminergic cells that could be critical to adapt the OB circuits to the environmental incoming information.

  15. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression

    PubMed Central

    Gao, J; Kang, X-y; Sun, S; Li, L; Zhang, B-l; Li, Y-q; Gao, D-s

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  16. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression.

    PubMed

    Gao, J; Kang, X-Y; Sun, S; Li, L; Zhang, B-L; Li, Y-Q; Gao, D-S

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  17. Paliperidone increases spontaneous and evoked firing of mesocortical dopaminergic neurons by activating a hyperpolarization-activated inward current.

    PubMed

    Dong, Haiman; Wang, Qian; Zhu, Dexiao; Gao, Fei; Wang, Hui; Bao, Lihua; Zhang, Jing; Hu, Yanlai; Ding, Zhaoxi; Sun, Jinhao

    2016-10-01

    Mesocortical dopaminergic (DA) subtype neurons specifically project to the prefrontal cortex, which is closely related with schizophrenia. Mesocortical DA neurons have unique physiological characteristics that are different from those of mesostriatal and mesolimbic DA neurons. Paliperidone, an atypical antipsychotic, is currently used to treat schizophrenia and has better therapeutic effects than typical antipsychotics. However, the underlying physiological mechanism remains unclear. To explore the effects of paliperidone on mesocortical DA neuron activity, here, we retrogradely labeled these cells with fluorescent microsphere retrobeads, and the electrophysiological changes were recorded in whole-cell recordings in rat midbrain slices with or without paliperidone. The data showed that paliperidone (20μmol/L) increased the spontaneous firing rates of labeled mesocortical neurons (P<0.05). Moreover, paliperidone also increased the frequency of evoked action potentials by current injection stimulation (P<0.05), whereas the accompanying amplitude decreased. Furthermore, to explore the mechanisms of paliperidone's effect, Ih currents were detected, and the results showed that hyperpolarizing voltage pulses evoked instantaneous Ih inward currents and paliperidone increased the maximum Ih current. In addition, paliperidone decreased the spontaneous inhibitory postsynaptic currents. Thus, paliperidone increased the spontaneous and evoked firing of mesocortical neurons, possibly by activating the Ih inward current and reducing the inhibitory synaptic transmission, which provides an underlying mechanism of paliperidone's application in schizophrenia. PMID:27435059

  18. Elevated P75NTR expression causes death of engrailed-deficient midbrain dopaminergic neurons by Erk1/2 suppression

    PubMed Central

    Alavian, Kambiz N; Sgadò, Paola; Alberi, Lavinia; Subramaniam, Srinivasa; Simon, Horst H

    2009-01-01

    Background The homeodomain transcription factors Engrailed-1 and Engrailed-2 are required for the survival of mesencephalic dopaminergic (mesDA) neurons in a cell-autonomous and gene-dose-dependent manner. Homozygote mutant mice, deficient of both genes (En1-/-;En2-/-), die at birth and exhibit a loss of all mesDA neurons by mid-gestation. In heterozygote animals (En1+/-;En2-/-), which are viable and fertile, postnatal maintenance of the nigrostriatal dopaminergic system is afflicted, leading to a progressive degeneration specific to this subpopulation and Parkinson's disease-like molecular and behavioral deficits. Results In this work, we show that the dose of Engrailed is inversely correlated to the expression level of the pan-neurotrophin receptor gene P75NTR (Ngfr). Loss of mesDA neurons in the Engrailed-null mutant embryos is caused by elevated expression of this neurotrophin receptor: Unusually, in this case, the cell death signal of P75NTR is mediated by suppression of Erk1/2 (extracellular-signal-regulated kinase 1/2) activity. The reduction in expression of Engrailed, possibly related to the higher levels of P75NTR, also decreases mitochondrial stability. In particular, the dose of Engrailed determines the sensitivity to cell death induced by the classic Parkinson-model toxin MPTP and to inhibition of the anti-apoptotic members of the Bcl-2 family of proteins. Conclusion Our study links the survival function of the Engrailed genes in developing mesDA neurons to the regulation of P75NTR and the sensitivity of these neurons to mitochondrial insult. The similarities to the disease etiology in combination with the nigral phenotype of En1+/-;En2-/- mice suggests that haplotype variations in the Engrailed genes and/or P75NTR that alter their expression levels could, in part, determine susceptibility to Parkinson's disease. PMID:19291307

  19. Impairment in consolidation of learned place preference following dopaminergic neurotoxicity in mice is ameliorated by N-acetylcysteine but not D1 and D2 dopamine receptor agonists.

    PubMed

    Achat-Mendes, Cindy; Anderson, Karen L; Itzhak, Yossef

    2007-03-01

    Some of the major concerns related to methamphetamine (METH) abuse are the neuronal damage inflicted at dopamine (DA) nerve terminals and the cognitive deficits observed in human METH abusers. We have shown that a high dose of METH selectively depleted dopaminergic markers in striatum, frontal cortex and amygdala of Swiss Webster mice, and impaired learned place preference. In this study, we investigated whether deficits in consolidation of place learning, as a consequence of METH neurotoxicity, underlie the underperformance of cocaine conditioned place preference (CPP). Administration of METH (5 mg/kg x 3) to Swiss Webster mice decreased striatal tyrosine hydroxylase (TH) immunoreactive neurons and significantly increased glial fibrillary acidic protein (GFAP) expression, confirming the neurotoxic potential of METH in mice. This treatment significantly attenuated the establishment of cocaine (15 mg/kg) CPP compared to control. To investigate whether manipulation of the consolidation phase improves learned place preference, mice were trained by cocaine and received daily post-training injections of DA receptor agonists or N-acetylcysteine (NAC). As memory consolidation occurs shortly after training, drugs were administered either immediately or 2 h post-training. Immediate post-training administration of the D1 DA receptor agonist SKF38393 (5, 10, and 20 mg/kg) or the D2 DA receptor agonist quinpirole (0.25, 0.5, and 1.0 mg/kg) did not improve the establishment of CPP following METH neurotoxicity. However, immediate but not delayed NAC administration (50 and 100 mg/kg) enhanced cocaine CPP following METH neurotoxicity and had no effect on control CPP. The levels of the reduced form of glutathione (GSH) in striatum, amygdala, hippocampus and frontal cortex were significantly lower in METH-treated mice compared to control during the period of CPP training. Acute and repeated administration of NAC to METH-treated mice restored the decreased brain GSH but had no effect

  20. Inhibitory effect of A10 dopaminergic neurons of the ventral tegmental area on the orienting response evoked by acoustic stimulation in the cat.

    PubMed

    Crescimanno, G; Sorbera, F; Emmi, A; Amato, G

    1998-01-01

    The effect of bilateral electric stimulation of A10 dopaminergic neurons of the ventral tegmental area (80-300 microA, 20-50 Hz, 0.1-0.5 ms, 2 s duration) on latency and duration of the orienting response, evoked by acoustic stimuli (4500-8000 Hz, 2 s), was studied in the cat. A10 neuron stimulation, simultaneous with the acoustic one, was performed with threshold parameters inducing minimal behavioral signs (head searching movement, sniffing, increase in alertness). By means of a videoanalysis system, a statistically significant increase, both of latency and duration of the response, was observed. The possible role of dopamine was studied administrating sulpiride (20 mg/kg i.p.), a dopaminergic antagonist prevalently acting on the mesolimbic-mesocortical system. In this condition, the disappearance of A10 neuron effect occurred. Sulpiride injection did not affect the parameters of the orienting response to acoustic stimulus alone, suggesting a direct effect on A10 dopaminergic neurons. Moreover, when saline administration was carried out, no significant modification of the effects, obtained following A10 neuron activation, was observed. The data suggest that A10 dopaminergic neurons, origin of the mesolimbic-mesocortical system, may be involved in the control of the response to sensory stimuli, likely by influencing sensorimotor integration processes. An involvement in the inhibitory regulation of the switching of attention is also discussed. PMID:9434203

  1. Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of Parkinson's disease.

    PubMed

    Jeong, Kyoung Hoon; Jeon, Min-Tae; Kim, Heung Deok; Jung, Un Ju; Jang, Min Cheol; Chu, Jin Woo; Yang, Seung Jun; Choi, Il Yoon; Choi, Myung-Sook; Kim, Sang Ryong

    2015-04-01

    This study investigated the effect of nobiletin, a flavonoid found in citrus fruits, on the degeneration of dopaminergic (DA) neurons in a neurotoxin model of Parkinson's disease (PD). 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the median forebrain bundle of rat brains (to generate a neurotoxin model of PD) with or without daily intraperitoneal injection of nobiletin. Our results showed that nobiletin treatment at 10 mg/kg bw, but not at 1 or 20 mg/kg bw, significantly protected DA neurons in the substantia nigra (SN) of MPP(+)-treated rats. In parallel to the neuroprotection, nobiletin treatment at 10 mg/kg inhibited microglial activation and preserved the expression of the glial cell line-derived neurotrophic factor, which is a therapeutic agent against PD, in the SN. These results suggest that the proper supplementation with nobiletin may protect against the neurodegeneration involved in PD.

  2. Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of Parkinson's disease.

    PubMed

    Jeong, Kyoung Hoon; Jeon, Min-Tae; Kim, Heung Deok; Jung, Un Ju; Jang, Min Cheol; Chu, Jin Woo; Yang, Seung Jun; Choi, Il Yoon; Choi, Myung-Sook; Kim, Sang Ryong

    2015-04-01

    This study investigated the effect of nobiletin, a flavonoid found in citrus fruits, on the degeneration of dopaminergic (DA) neurons in a neurotoxin model of Parkinson's disease (PD). 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the median forebrain bundle of rat brains (to generate a neurotoxin model of PD) with or without daily intraperitoneal injection of nobiletin. Our results showed that nobiletin treatment at 10 mg/kg bw, but not at 1 or 20 mg/kg bw, significantly protected DA neurons in the substantia nigra (SN) of MPP(+)-treated rats. In parallel to the neuroprotection, nobiletin treatment at 10 mg/kg inhibited microglial activation and preserved the expression of the glial cell line-derived neurotrophic factor, which is a therapeutic agent against PD, in the SN. These results suggest that the proper supplementation with nobiletin may protect against the neurodegeneration involved in PD. PMID:25325362

  3. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is selectively toxic to primary dopaminergic neurons in vitro.

    PubMed

    Griggs, Amy M; Agim, Zeynep S; Mishra, Vartika R; Tambe, Mitali A; Director-Myska, Alison E; Turteltaub, Kenneth W; McCabe, George P; Rochet, Jean-Christophe; Cannon, Jason R

    2014-07-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4'-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4'-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. PMID:24718704

  4. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) Is Selectively Toxic to Primary Dopaminergic Neurons In Vitro

    PubMed Central

    Griggs, Amy M.; Agim, Zeynep S.; Mishra, Vartika R.; Tambe, Mitali A.; Director-Myska, Alison E.; Turteltaub, Kenneth W.; McCabe, George P.; Rochet, Jean-Christophe; Cannon, Jason R.

    2014-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4′-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4′-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. PMID:24718704

  5. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate

    PubMed Central

    Harrison, Ian F.; Anis, Hiba K.; Dexter, David T.

    2016-01-01

    Parkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. PMID:26742637

  6. Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation.

    PubMed

    Robison, Gregory; Sullivan, Brendan; Cannon, Jason R; Pushkar, Yulia

    2015-05-01

    Manganese serves as a cofactor to a variety of proteins necessary for proper bodily development and function. However, an overabundance of Mn in the brain can result in manganism, a neurological condition resembling Parkinson's disease (PD). Bulk sample measurement techniques have identified the globus pallidus and thalamus as targets of Mn accumulation in the brain, however smaller structures/cells cannot be measured. Here, X-ray fluorescence microscopy determined the metal content and distribution in the substantia nigra (SN) of the rodent brain. In vivo retrograde labeling of dopaminergic cells (via FluoroGold™) of the SN pars compacta (SNc) subsequently allowed for XRF imaging of dopaminergic cells in situ at subcellular resolution. Chronic Mn exposure resulted in a significant Mn increase in both the SN pars reticulata (>163%) and the SNc (>170%) as compared to control; no other metal concentrations were significantly changed. Subcellular imaging of dopaminergic cells demonstrated that Mn is located adjacent to the nucleus. Measured intracellular manganese concentrations range between 40-200 μM; concentrations as low as 100 μM have been observed to cause cell death in cell cultures. Direct observation of Mn accumulation in the SNc could establish a biological basis for movement disorders associated with manganism, specifically Mn caused insult to the SNc. Accumulation of Mn in dopaminergic cells of the SNc may help clarify the relationship between Mn and the loss of motor skills associated with manganism. PMID:25695229

  7. Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation

    PubMed Central

    Robison, Gregory; Sullivan, Brendan; Cannon, Jason R.; Pushkar, Yulia

    2015-01-01

    Manganese serves as a cofactor to a variety of proteins necessary for proper bodily development and function. However, an overabundance of Mn in the brain can result in manganism, a neurological condition resembling Parkinson’s disease (PD). Bulk sample measurement techniques have identified the globus pallidus and thalamus as targets of Mn accumulation in the brain, however smaller structures/cells cannot be measured. Here, X-ray fluorescence microscopy determined the metal content and distribution in the substantia nigra (SN) of the rodent brain. In vivo retrograde labeling of dopaminergic cells (via FluoroGold™) of the SN pars compacta (SNc) subsequently allowed for XRF imaging of dopaminergic cells in situ at subcellular resolution. Chronic Mn exposure resulted in a significant Mn increase in both the SN pars reticulata (>163%) and the SNc (>170%) as compared to control; no other metal concentrations were significantly changed. Subcellular imaging of dopaminergic cells demonstrated that Mn is located adjacent to the nucleus. Measured intracellular manganese concentrations range between 40–200 μM; concentrations as low as 100 μM have been observed to cause cell death in cell cultures. Direct observation of Mn accumulation in the SNc could establish a biological basis for movement disorders associated with manganism, specifically Mn caused insult to the SNc. Accumulation of Mn in dopaminergic cells of the SNc may help clarify the relationship between Mn and the loss of motor skills associated with manganism. PMID:25695229

  8. Dopaminergic dysfunction in schizophrenia: salience attribution revisited.

    PubMed

    Heinz, Andreas; Schlagenhauf, Florian

    2010-05-01

    A dysregulation of the mesolimbic dopamine system in schizophrenia patients may lead to aberrant attribution of incentive salience and contribute to the emergence of psychopathological symptoms like delusions. The dopaminergic signal has been conceptualized to represent a prediction error that indicates the difference between received and predicted reward. The incentive salience hypothesis states that dopamine mediates the attribution of "incentive salience" to conditioned cues that predict reward. This hypothesis was initially applied in the context of drug addiction and then transferred to schizophrenic psychosis. It was hypothesized that increased firing (chaotic or stress associated) of dopaminergic neurons in the striatum of schizophrenia patients attributes incentive salience to otherwise irrelevant stimuli. Here, we review recent neuroimaging studies directly addressing this hypothesis. They suggest that neuronal functions associated with dopaminergic signaling, such as the attribution of salience to reward-predicting stimuli and the computation of prediction errors, are indeed altered in schizophrenia patients and that this impairment appears to contribute to delusion formation.

  9. Nifedipine and nimodipine protect dopaminergic substantia nigra neurons against axotomy-induced cell death in rat vibrosections via modulating inflammatory responses.

    PubMed

    Daschil, Nina; Humpel, Christian

    2014-09-18

    Neurodegeneration of cholinergic and dopaminergic neurons is a major hallmark in Alzheimer's or Parkinson's disease, respectively. A dysregulation in calcium homeostasis may be part of this process and counteracting calcium influx may have neuroprotective properties in both diseases. Therefore, we investigated the putative neuroprotective or neurotoxic activity of L-type calcium channel (LTCC) inhibitors on cholinergic and dopaminergic neurons in a rat organotypic vibrosection model. Sagittal or coronal vibrosections (200 μm thick) of postnatal day 10 rats were cultured on 0.4 μm semipermeable membranes for 2 weeks with 10 ng/ml nerve growth factor (NGF) and/or glial-cell line derived neurotrophic factor (GDNF) to maintain survival of cholinergic or dopaminergic neurons, respectively. Thereafter, sections were incubated with 0.1, 1 or 10 μM isradipine, nicardipine or verapamil for 2 weeks to explore cytotoxicity. Alternatively, in order to explore neuroprotective activity, vibrosections were incubated without growth factors but with isradipine or verapamil or with nicardipine, nimodipine or nifedipine from the beginning for 4 weeks. Our data show that all LTCC inhibitors exhibited no neurotoxic effect on cholinergic and dopaminergic neurons. Further, LTCC inhibitors did not have any neuroprotective activity on cholinergic neurons. However, nimodipine and nifedipine significantly enhanced the survival of dopaminergic substantia nigra (SN) but not ventral tegmental area (VTA) neurons, while nicardipine, isradipine and verapamil had no effect. Nifedipine (and more potently GDNF) reduced inflammatory cytokines (macrophage inflammatory protein-2, tumor necrosis factor-α), but did not influence oxidative stress or caspase-3 activity and did not interfere with iron-mediated overload. Our data show that nifedipine and nimodipine are very potent to enhance the survival of axotomized SN neurons, possibly influencing inflammatory processes.

  10. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells

    PubMed Central

    Hansen, Christian; Angot, Elodie; Bergström, Ann-Louise; Steiner, Jennifer A.; Pieri, Laura; Paul, Gesine; Outeiro, Tiago F.; Melki, Ronald; Kallunki, Pekka; Fog, Karina; Li, Jia-Yi; Brundin, Patrik

    2011-01-01

    Post-mortem analyses of brains from patients with Parkinson disease who received fetal mesencephalic transplants show that α-synuclein–containing (α-syn–containing) Lewy bodies gradually appear in grafted neurons. Here, we explored whether intercellular transfer of α-syn from host to graft, followed by seeding of α-syn aggregation in recipient neurons, can contribute to this phenomenon. We assessed α-syn cell-to-cell transfer using microscopy, flow cytometry, and high-content screening in several coculture model systems. Coculturing cells engineered to express either GFP– or DsRed-tagged α-syn resulted in a gradual increase in double-labeled cells. Importantly, α-syn–GFP derived from 1 neuroblastoma cell line localized to red fluorescent aggregates in other cells expressing DsRed–α-syn, suggesting a seeding effect of transmitted α-syn. Extracellular α-syn was taken up by cells through endocytosis and interacted with intracellular α-syn. Next, following intracortical injection of recombinant α-syn in rats, we found neuronal uptake was attenuated by coinjection of an endocytosis inhibitor. Finally, we demonstrated in vivo transfer of α-syn between host cells and grafted dopaminergic neurons in mice overexpressing human α-syn. In summary, intercellularly transferred α-syn interacts with cytoplasmic α-syn and can propagate α-syn pathology. These results suggest that α-syn propagation is a key element in the progression of Parkinson disease pathology. PMID:21245577

  11. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

    PubMed

    Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui

    2016-08-01

    Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. PMID:27476966

  12. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents.

    PubMed

    Nie, Shuke; Xu, Yan; Chen, Guiqin; Ma, Kai; Han, Chao; Guo, Zhenli; Zhang, Zhentao; Ye, Keqiang; Cao, Xuebing

    2015-12-01

    Dopaminergic neurons loss in the substantia nigra (SN) and dopamine (DA) content loss in the striatum correlate well with disease severity in Parkinson's disease (PD). Brain-derived neurotrophic factor (BDNF) is a member of neurotrophin family and is necessary for the survival and development of DA neurons in the SN. Deficits in BDNF/TrkB receptors signaling contribute to the dysfunction of PD. Deoxygedunin, a derivative of gedunin produced from Indian neem tree, binds TrkB receptor and activates TrkB and its downstream signaling cascades in a BDNF-independent manner, and possesses neuroprotective effects in vitro and in vivo. In this study, we tested the neuroprotective effects of deoxygedunin in 6-hydroxydopamine (6-OHDA)-lesioned rat model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson's disease. Rats were treated with deoxygedunin 5 mg/kg (i.p.) for one month started two weeks before 6-OHDA lesion (pre-treatment), or for two weeks right after lesion (post-treatment), with isovolumetric vehicle as control and normal. Mice were given deoxygedunin 5 mg/kg (i.p.) for 2 weeks and administrated with MPTP twice at the dose of 20 mg/kg (i.p.) on day 7. The results revealed that pretreatment with deoxygedunin improved PD models' behavioral performance and reduced dopaminergic neurons loss in SN, associated with the activation of TrkB receptors and its two major signaling cascades involving mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K). Thus, our current study indicates that deoxygedunin, as a small molecule TrkB agonist, displays prominent neuroprotective properties, providing a novel therapeutic strategy for treating Parkinson's disease. PMID:26282118

  13. Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal neurons.

    PubMed

    Otani, Satoru; Daniel, Hérve; Roisin, Marie-Paule; Crepel, Francis

    2003-11-01

    In rat prefrontal cortex (the prelimbic area of medial frontal cortex), the induction of long-term depression (LTD) and long-term potentiation (LTP) of glutamatergic synapses is powerfully modulated by dopamine. The presence of dopamine in the bathing medium facilitates LTD in slice preparations, whereas in the anesthetized intact brain, dopamine released from dopaminergic axon terminals in the prefrontal cortex facilitates LTP. Dopaminergic facilitation of LTD is at least partly achieved by postsynaptic biochemical mechanisms in which enzymatic processes triggered by dopamine receptor activation cooperate with those triggered by glutamate metabotropic receptor activation. Evidence suggests that dopamine facilitates LTP also in the slice condition. In this case, dopamine receptors must be pre-stimulated ('primed') before the application of high-frequency stimuli in the presence of dopamine. This procedure may mimic baseline stimulation of dopamine receptors that occurs under physiological conditions.

  14. Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons.

    PubMed

    Hwang, Cheol Kyu; Chun, Hong Sung

    2012-01-01

    Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 µM) significantly attenuated 6-OHDA (50 µM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.

  15. Protective effects of quercetin on dieldrin-induced endoplasmic reticulum stress and apoptosis in dopaminergic neuronal cells.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2016-10-19

    Dieldrin, an organochlorine pesticide still used in several developing countries, has been proposed as a risk factor for Parkinson's disease. Quercetin is one of the potent bioactive flavonoids present in numerous plants. In this study, we investigated the protective effects of quercetin on neurotoxicity induced by dieldrin in cultured dopaminergic SN4741 cells. Our initial experiments showed that quercetin (10-40 μM) dose dependently prevented dieldrin (20 μM)-induced cytotoxicity in SN4741 cells. Pretreatment for 1 h with quercetin before dieldrin application could significantly suppress dieldrin-induced apoptotic characteristics, including nuclear condensation, DNA fragmentation, and caspase-3/7 activation. Results showed that dieldrin-induced markers of endoplasmic reticulum (ER) stress response such as chaperone GRP78, heme oxygenase-1, and phosphorylation of the α subunit of eukaryotic initiation factor 2. In addition, dieldrin reduced antiapoptotic Bcl-2 expression, but significantly elevated a proapoptotic transcription factor CHOP. Furthermore, RNA interference to CHOP almost completely repressed dieldrin-induced apoptotic cell death. Interestingly, quercetin prevented the changes in dieldrin-induced ER stress markers. These results suggest that quercetin may suppress the ER stress-CHOP pathway and dieldrin-induced apoptosis in dopaminergic neurons.

  16. Protective effects of quercetin on dieldrin-induced endoplasmic reticulum stress and apoptosis in dopaminergic neuronal cells.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2016-10-19

    Dieldrin, an organochlorine pesticide still used in several developing countries, has been proposed as a risk factor for Parkinson's disease. Quercetin is one of the potent bioactive flavonoids present in numerous plants. In this study, we investigated the protective effects of quercetin on neurotoxicity induced by dieldrin in cultured dopaminergic SN4741 cells. Our initial experiments showed that quercetin (10-40 μM) dose dependently prevented dieldrin (20 μM)-induced cytotoxicity in SN4741 cells. Pretreatment for 1 h with quercetin before dieldrin application could significantly suppress dieldrin-induced apoptotic characteristics, including nuclear condensation, DNA fragmentation, and caspase-3/7 activation. Results showed that dieldrin-induced markers of endoplasmic reticulum (ER) stress response such as chaperone GRP78, heme oxygenase-1, and phosphorylation of the α subunit of eukaryotic initiation factor 2. In addition, dieldrin reduced antiapoptotic Bcl-2 expression, but significantly elevated a proapoptotic transcription factor CHOP. Furthermore, RNA interference to CHOP almost completely repressed dieldrin-induced apoptotic cell death. Interestingly, quercetin prevented the changes in dieldrin-induced ER stress markers. These results suggest that quercetin may suppress the ER stress-CHOP pathway and dieldrin-induced apoptosis in dopaminergic neurons. PMID:27513201

  17. Long-term health of dopaminergic neuron transplants in Parkinson's disease patients.

    PubMed

    Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole

    2014-06-26

    To determine the long-term health and function of transplanted dopamine neurons in Parkinson's disease (PD) patients, the expression of dopamine transporters (DATs) and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients' own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15-18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD.

  18. Molecular heterogeneity of midbrain dopaminergic neurons--Moving toward single cell resolution.

    PubMed

    Anderegg, Angela; Poulin, Jean-Francois; Awatramani, Rajeshwar

    2015-12-21

    Since their discovery, midbrain dopamine (DA) neurons have been researched extensively, in part because of their diverse functions and involvement in various neuropsychiatric disorders. Over the last few decades, reports have emerged that midbrain DA neurons were not a homogeneous group, but that DA neurons located in distinct anatomical locations within the midbrain had distinctive properties in terms of physiology, function, and vulnerability. Accordingly, several studies focused on identifying heterogeneous gene expression across DA neuron clusters. Here we review the importance of understanding DA neuron heterogeneity at the molecular level, previous studies detailing heterogeneous gene expression in DA neurons, and finally recent work which brings together previous heterogeneous gene expression profiles in a coordinated manner, at single cell resolution.

  19. Estrogen-related receptor gamma regulates dopaminergic neuronal phenotype by activating GSK3β/NFAT signaling in SH-SY5Y cells.

    PubMed

    Lim, Juhee; Choi, Hueng-Sik; Choi, Hyun Jin

    2015-05-01

    The orphan nuclear receptor estrogen-related receptor gamma (ERRγ) is highly expressed in the nervous system during embryogenesis and in adult brains, but its physiological role in neuronal development remains unknown. In this study, we evaluated the relevance of ERRγ in regulating dopaminergic (DAergic) phenotype and the corresponding signaling pathway. We used retinoic acid (RA) to differentiate human neuroblastoma SH-SY5Y cells. RA induced neurite outgrowth of SH-SY5Y cells with an increase in DAergic neuron-like properties, including up-regulation of tyrosine hydroxylase, dopamine transporter, and vesicular monoamine transporter 2. ERRγ, but not ERRα, was up-regulated by RA, and participated in RA effect on SH-SY5Y cells. ERRγ over-expression enhanced mature DAergic neuronal phenotype with neurite outgrowth as with RA treatment; and RA-induced increase in DAergic phenotype was attenuated by silencing ERRγ expression. ERRγ appears to have a crucial role in morphological and functional regulation of cells that is selective for DAergic neurons. Polo-like kinase 2 was up-regulated in ERRγ-over-expressing SH-SY5Y cells, which was involved in phosphorylation of glycogen synthase kinase 3β and resulting downstream activation of nuclear factor of activated T cells. The likely involvement of ERRγ in regulating the DAergic neuronal phenotype makes this orphan nuclear receptor a novel target for understanding DAergic neuronal differentiation. We propose the relevance of estrogen-related receptor gamma (ERRγ) in regulating dopaminergic neuronal phenotype: ERRγ is up-regulated by retinoic acid in SH-SY5Y cells, and enhances dopaminergic phenotypes and induces neurite outgrowth; Polo-like kinase 2 (PLK2) and glycogen synthase kinase 3 beta/nuclear factor of activated T cells (GSK3β/NFAT) signaling are responsible for the ERRγ effect. Our findings provide the first insights into the role of ERRγ in the brain, as a novel approach toward understanding

  20. DYRK1A promotes dopaminergic neuron survival in the developing brain and in a mouse model of Parkinson's disease.

    PubMed

    Barallobre, M J; Perier, C; Bové, J; Laguna, A; Delabar, J M; Vila, M; Arbonés, M L

    2014-01-01

    In the brain, programmed cell death (PCD) serves to adjust the numbers of the different types of neurons during development, and its pathological reactivation in the adult leads to neurodegeneration. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in neural proliferation and cell death, and its role during brain growth is evolutionarily conserved. Human DYRK1A lies in the Down syndrome critical region on chromosome 21, and heterozygous mutations in the gene cause microcephaly and neurological dysfunction. The mouse model for DYRK1A haploinsufficiency (the Dyrk1a(+/-) mouse) presents neuronal deficits in specific regions of the adult brain, including the substantia nigra (SN), although the mechanisms underlying these pathogenic effects remain unclear. Here we study the effect of DYRK1A copy number variation on dopaminergic cell homeostasis. We show that mesencephalic DA (mDA) neurons are generated in the embryo at normal rates in the Dyrk1a haploinsufficient model and in a model (the mBACtgDyrk1a mouse) that carries three copies of Dyrk1a. We also show that the number of mDA cells diminishes in postnatal Dyrk1a(+/-) mice and increases in mBACtgDyrk1a mice due to an abnormal activity of the mitochondrial caspase9 (Casp9)-dependent apoptotic pathway during the main wave of PCD that affects these neurons. In addition, we show that the cell death induced by 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), a toxin that activates Casp9-dependent apoptosis in mDA neurons, is attenuated in adult mBACtgDyrk1a mice, leading to an increased survival of SN DA neurons 21 days after MPTP intoxication. Finally, we present data indicating that Dyrk1a phosphorylation of Casp9 at the Thr125 residue is the mechanism by which this kinase hinders both physiological and pathological PCD in mDA neurons. These data provide new insight into the mechanisms that control cell death in brain DA neurons and they show that

  1. Acute restraint stress decreases dopamine synthesis and turnover in the median eminence: a model for the study of the inhibitory neuronal influences on tuberoinfundibular dopaminergic neurons.

    PubMed

    Demarest, K T; Moore, K E; Riegle, G D

    1985-11-01

    The effects of acute stress on serum prolactin concentrations and tuberoinfundibular dopaminergic (TIDA) neuronal activity were studied in female rats. TIDA neuronal activity was estimated by measuring the rate of dihydroxyphenylalanine (DOPA) accumulation after the administration of a decarboxylase inhibitor (NSD 1015) and the rate of decline of dopamine (DA) after the administration of a tyrosine hydroxylase inhibitor (alpha-methyltyrosine) in the median eminence. Serum prolactin concentrations were increased following 30 min of supine immobilization (restraint stress), but returned to control levels by 2, 8, and 16 h after the onset of this stress. The rate of DOPA accumulation was decreased during the 30 min of restraint; it was still further reduced 2 h later but had returned to control levels 8 and 16 h later. No change in the rate of DOPA accumulation was observed in the striatum or neurointermediate lobe of the pituitary at any time after the start of restraint. Restraint stress also decreased the rate of DA turnover in the median eminence, but was without effect on the rates of DA turnover in the striatum or neurointermediate lobe. These results suggest that restraint stress activates an inhibitory neuronal pathway which decreases the activity of TIDA neurons and may be responsible, at least in part, for the increase in serum prolactin concentrations. The responsiveness of TIDA neurons to the stress-induced decrease in activity was not influenced by the time of day or the stage of the estrous cycle. Not all stressful manipulations decreased TIDA neuronal activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2.

    PubMed

    Mao, Susu; Sun, Qi; Xiao, Hui; Zhang, Chenyu; Li, Liang

    2015-07-01

    MicroRNAs (miRNAs) are a class of noncoding RNAs that regulates target gene expression at posttranscriptional level, leading to further biological functions. We have demonstrated that microvesicles (MVs) can deliver miRNAs into target cells as a novel way of intercellular communication. It is reported that in central nervous system, glial cells release MVs, which modulate neuronal function in normal condition. To elucidate the potential role of glial MVs in disease, we evaluated the effects of secreted astrocytic MVs on stress condition. Our results demonstrated that after Lipopolysaccharide (LPS) stimulation, astrocytes released shedding vesicles (SVs) that enhanced vulnerability of dopaminergic neurons to neurotoxin. Further investigation showed that increased astrocytic miR-34a in SVs was involved in this progress via targeting anti-apoptotic protein Bcl-2 in dopaminergic neurons. We also found that inhibition of astrocytic miR-34a after LPS stimulation can postpone dopaminergic neuron loss under neurotoxin stress. These data revealed a novel mechanism underlying astrocyte-neuron interaction in disease.

  3. The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease.

    PubMed

    Ghosh, Anamitra; Saminathan, Hariharan; Kanthasamy, Arthi; Anantharam, Vellareddy; Jin, Huajun; Sondarva, Gautam; Harischandra, Dilshan S; Qian, Ziqing; Rana, Ajay; Kanthasamy, Anumantha G

    2013-07-26

    Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117-4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP(+)) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP(+)-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP(+)-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD.

  4. Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease.

    PubMed

    Le Douaron, Gael; Schmidt, Fanny; Amar, Majid; Kadar, Hanane; Debortoli, Lucila; Latini, Alexandra; Séon-Méniel, Blandine; Ferrié, Laurent; Michel, Patrick Pierre; Touboul, David; Brunelle, Alain; Raisman-Vozari, Rita; Figadère, Bruno

    2015-01-01

    Parkinson disease is a neurodegenerative disorder of aging, characterized by disabling motor symptoms resulting from the loss of midbrain dopaminergic neurons and the decrease of dopamine in the striatum. Current therapies are directed at treating the symptoms but there is presently no cure for the disease. In order to discover neuroprotective compounds with a therapeutical potential, our research team has established original and highly regioselective methods for the synthesis of 2,3-disubstituted 6-aminoquinoxalines. To evaluate the neuroprotective activity of these molecules, we used midbrain cultures and various experimental conditions that promote dopaminergic cell loss. Among a series of 11 molecules, only compound MPAQ (2-methyl-3-phenyl-6-aminoquinoxaline) afforded substantial protection in a paradigm where dopaminergic neurons die spontaneously and progressively as they mature. Prediction of blood-brain barrier permeation by Quantitative Structure-Activity Relationship studies (QSARs) suggested that MPAQ was able to reach the brain parenchyma with sufficient efficacy. HPLC-MS/MS quantification in brain homogenates and MALDI-TOF mass spectrometry imaging on brain tissue sections performed in MPAQ-treated mice allowed us to confirm this prediction and to demonstrate, by MALDI-TOF mass spectrometry imaging, that MPAQ was localized in areas containing vulnerable neurons and/or their terminals. Of interest, MPAQ also rescued dopaminergic neurons, which (i) acquired dependency on the trophic peptide GDNF for their survival or (ii) underwent oxidative stress-mediated insults mediated by catalytically active iron. In summary, MPAQ possesses an interesting pharmacological profile as it penetrates the brain parenchyma and counteracts mechanisms possibly contributive to dopaminergic cell death in Parkinson disease.

  5. The glutaminergic, GABAergic, dopaminergic but not cholinergic neurons are susceptible to anaesthesia-induced cell death in the rat developing brain.

    PubMed

    Zhou, Z-W; Shu, Y; Li, M; Guo, X; Pac-Soo, C; Maze, M; Ma, D

    2011-02-01

    Neuronal cell death induced by anaesthetics in the developing brain was evident in previous pre-clinical studies. However, the neuronal cell types involved in anaesthesia-induced neuronal cell death remains elusive. The aim of this study was to investigate glutamatergic, GABAergic, cholinergic and dopaminergic neuronal cell apoptosis induced by anaesthetic exposure in specific brain regions in rats. Separate cohorts of 7-day-old Sprague Dawley (SD) rat pups were randomly assigned to two groups: Naive and anaesthetics alone (70% nitrous oxide and 0.75% isoflurane exposure for 6 h). The brains were sectioned and the slices that contained the basal forebrain, substantia nigra, cornu ammonis area 1 (CA1) subarea of hippocampus or cingulate cortex were selected and subsequently subjected to double-labelled fluorescent immunohistochemistry for choline acetyltransferase, dopamine, vesicular glutamate transporter 1 (vGLUT1) or glutamic acid decarboxylase 67 (GAD67) together with caspase 3, respectively. Compared to the naive control, anaesthetic exposure significantly increased the number of caspase-3 positive cells in the CA1 subarea of hippocampus, cingulate cortex, and substantia nigra, but not in the basal forebrain. 54% and 14% of apoptotic cells in the CA1 subarea of hippocampus were GABAergic and glutamatergic neurons respectively. In the cingulate cortex, 30% and 37% of apoptotic cells were GABAergic and glutamatergic neurons respectively. In the substantia nigra, 22% of apoptotic cells were dopaminergic neurons. Our data suggests, anaesthetic exposure significantly increases neuroapoptosis of glutamatergic, GABAergic and dopaminergic neurons in the developing brain but not that of the cholinergic neurons in the basal forebrain. PMID:21056635

  6. Efficient Conversion of Spermatogonial Stem Cells to Phenotypic and Functional Dopaminergic Neurons via the PI3K/Akt and P21/Smurf2/Nolz1 Pathway.

    PubMed

    Yang, Hao; Liu, Yang; Hai, Yanan; Guo, Ying; Yang, Shi; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2015-12-01

    Parkinson's disease (PD) is a common neurodegenerative syndrome characterized by loss of midbrain dopaminergic (DA) neurons. Generation of functional dopaminergic (DA) neurons is of unusual significance for treating Parkinson's disease (PD). However, direct conversion of spermatogonial stem cells (SSCs) to functional DA neurons without being reprogrammed to a pluripotent status has not been achieved. Here, we report an efficient approach to obtain morphological, phenotypic, and functional DA neurons from SSCs using a specific combination of olfactory ensheathing cell-conditioned medium (OECCM) and several defined growth factors (DGF). By following the current protocol, direct conversion of SSCs (both SSC line and primary SSCs) to neural cells and DA neurons was demonstrated by expression of numerous phenotypic genes and proteins for neural cells, as well as cell morphological features. More significantly, SSCs-derived DA neurons acquired neuronal functional properties such as synapse formation, electrophysiology activity, and dopamine secretion. Furthermore, PI3K/Akt pathway and p21/Nolz1 cascades were activated whereas Smurf2 was inactivated, leading to cell cycle exit during the conversion of SSCs into DA neurons. Collectively, this study could provide sufficient neural cells from SSCs for applications in the treatment of PD and offers novel insights into mechanisms underlying neural system development from the line of germ cells.

  7. Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation.

    PubMed

    Proença, Mariana B; Dombrowski, Patrícia A; Da Cunha, Claudio; Fischer, Luana; Ferraz, Anete C; Lima, Marcelo M S

    2014-01-01

    Currently, several studies addresses the novel link between sleep and dopaminergic neurotransmission, focusing most closely on the mechanisms by which Parkinson's disease (PD) and sleep may be intertwined. Therefore, variations in the activity of afferents during the sleep cycles, either at the level of DA cell bodies in the ventral tegmental area (VTA) and/or substantia nigra pars compacta (SNpc) or at the level of dopamine (DA) terminals in limbic areas may impact functions such as memory. Accordingly, we performed striatal and hippocampal neurochemical quantifications of DA, serotonin (5-HT) and metabolites of rats intraperitoneally treated with haloperidol (1.5 mg/kg) or piribedil (8 mg/kg) and submitted to REM sleep deprivation (REMSD) and sleep rebound (REB). Also, we evaluated the effects of REMSD on motor and cognitive parameters and SNpc c-Fos neuronal immunoreactivity. The results indicated that DA release was strongly enhanced by piribedil in the REMSD group. In opposite, haloperidol prevented that alteration. A c-Fos activation characteristic of REMSD was affected in a synergic manner by piribedil, indicating a strong positive correlation between striatal DA levels and nigral c-Fos activation. Hence, we suggest that memory process is severely impacted by both D2 blockade and REMSD and was even more by its combination. Conversely, the activation of D2 receptor counteracted such memory impairment. Therefore, the present evidence reinforce that the D2 receptor is a key player in the SNpc neuronal activation mediated by REMSD, as a consequence these changes may have direct impact for cognitive and sleep abnormalities found in patients with PD. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.

  8. Pleiotrophin mediates the neurotrophic effect of cyclic AMP on dopaminergic neurons: analysis of suppression-subtracted cDNA libraries and confirmation in vitro.

    PubMed

    Mourlevat, Sophie; Debeir, Thomas; Ferrario, Juan E; Delbe, Jean; Caruelle, Daniele; Lejeune, Olivier; Depienne, Christel; Courty, José; Raisman-Vozari, Rita; Ruberg, Merle

    2005-07-01

    To better understand the particular vulnerability of mesencephalic dopaminergic neurons to toxins or gene mutations causing parkinsonism, we have taken advantage of a primary cell culture system in which these neurons die selectively. Antimitotic agents, such as cytosine arabinoside or cAMP, prevent the death of the neurons by arresting astrocyte proliferation. To identify factors implicated in either the death of the dopaminergic neurons or in the neuroprotective effect of cAMP, we constructed cDNA libraries enriched by subtractive hybridization and suppressive PCR in transcripts that are preferentially expressed in either control or cAMP-treated cultures. Differentially expressed transcripts were identified by hybridization of the enriched cDNAs with a commercially available cDNA expression array. The proteoglycan receptors syndecan-3 and the receptor protein tyrosine phosphatase zeta/beta were found among the transcripts preferentially expressed under control conditions, and their ligand, the cytokine pleiotrophin, was highly represented in the cDNA libraries for both conditions. Since pleiotrophin is expressed during embryonic and perinatal neural development and following lesions in the adult brain, we investigated its role in our cell culture model. Pleiotrophin was not responsible for the death of dopaminergic neurons under control conditions, or for their survival in cAMP-treated cultures. It was, however, implicated in the initial and cAMP-dependent enhancement of the differentiation of the dopaminergic neurons in our cultures. In addition, our experiments have provided evidence for a cAMP-dependent regulatory pathway leading to protease activation, and the identification of pleiotrophin as a target of this pathway.

  9. Perturbed Energy Metabolism and Neuronal Circuit Dysfunction in Cognitive Impairment

    PubMed Central

    Kapogiannis, Dimitrios; Mattson, Mark P.

    2010-01-01

    Summary Epidemiological, neuropathological and functional neuroimaging evidence implicates global and regional derangements in brain metabolism and energetics in the pathogenesis of cognitive impairment. Nerve cell microcircuits are modified adaptively by excitatory and inhibitory synaptic activity and neurotrophic factors. Aging and Alzheimer’s disease (AD) cause perturbations in cellular energy metabolism, level of excitation/inhibition and neurotrophic factor release that overwhelm compensatory mechanisms and result in neuronal microcircuit and brain network dysfunction. A prolonged positive energy balance impairs the ability of neurons to respond adaptively to oxidative and metabolic stress. Experimental studies in animals demonstrate how derangements related to chronic positive energy balance, such as diabetes, set the stage for accelerated cognitive aging and AD. Therapeutic interventions to allay cognitive dysfunction that target energy metabolism and adaptive stress responses (such as neurotrophin signaling) have shown efficacy in animal models and preliminary studies in humans. PMID:21147038

  10. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease.

    PubMed

    Kramer, Edgar R; Liss, Birgit

    2015-12-21

    Glial cell line-derived neurotrophic factor (GDNF) and its canonical receptor Ret can signal together or independently to fulfill many important functions in the midbrain dopaminergic (DA) system. While Ret signaling clearly impacts on the development, maintenance and regeneration of the mesostriatal DA system, the physiological functions of GDNF for the DA system are still unclear. Nevertheless, GDNF is still considered to be an excellent candidate to protect and/or regenerate the mesostriatal DA system in Parkinson disease (PD). Clinical trials with GDNF on PD patients are, however, so far inconclusive. Here, we review the current knowledge of GDNF and Ret signaling and function in the midbrain DA system, and their crosstalk with proteins and signaling pathways associated with PD.

  11. Activity in descending dopaminergic neurons represents but is not required for leg movements in the fruit fly Drosophila.

    PubMed

    Tschida, Katherine; Bhandawat, Vikas

    2015-03-01

    Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output.

  12. Activity in descending dopaminergic neurons represents but is not required for leg movements in the fruit fly Drosophila

    PubMed Central

    Tschida, Katherine; Bhandawat, Vikas

    2015-01-01

    Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output. PMID:25742959

  13. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons.

    PubMed

    Carballo-Molina, Oscar A; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica; Velasco, Iván

    2016-06-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503

  14. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons

    PubMed Central

    Carballo-Molina, Oscar A.; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica

    2016-01-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503

  15. Klotho Protects Dopaminergic Neuron Oxidant-Induced Degeneration by Modulating ASK1 and p38 MAPK Signaling Pathways

    PubMed Central

    Brobey, Reynolds K.; German, Dwight; Sonsalla, Patricia K.; Gurnani, Prem; Pastor, Johanne; Hsieh, C-C; Papaconstantinou, John; Foster, Philip P.; Kuro-o, Makoto; Rosenblatt, Kevin P.

    2015-01-01

    Klotho transgenic mice exhibit resistance to oxidative stress as measured by their urinal levels of 8-hydroxy-2-deoxyguanosine, albeit this anti-oxidant defense mechanism has not been locally investigated in the brain. Here, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1)/p38 MAPK pathway regulates stress levels in the brain of these mice and showed that: 1) the ratio of free ASK1 to thioredoxin (Trx)-bound ASK1 is relatively lower in the transgenic brain whereas the reverse is true for the Klotho knockout mice; 2) the reduced p38 activation level in the transgene corresponds to higher level of ASK1-bound Trx, while the KO mice showed elevated p38 activation and lower level of–bound Trx; and 3) that 14-3-3ζ is hyper phosphorylated (Ser-58) in the transgene which correlated with increased monomer forms. In addition, we evaluated the in vivo robustness of the protection by challenging the brains of Klotho transgenic mice with a neurotoxin, MPTP and analyzed for residual neuron numbers and integrity in the substantia nigra pars compacta. Our results show that Klotho overexpression significantly protects dopaminergic neurons against oxidative damage, partly by modulating p38 MAPK activation level. Our data highlight the importance of ASK1/p38 MAPK pathway in the brain and identify Klotho as a possible anti-oxidant effector. PMID:26452228

  16. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    PubMed

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

  17. Control of proliferation rate of N27 dopaminergic neurons using Transcranial Magnetic Stimulation orientation

    NASA Astrophysics Data System (ADS)

    Meng, Yiwen; Hadimani, Ravi; Anantharam, Vellareddy; Kanthasamy, Anumantha; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) has been used to investigate possible treatments for a variety of neurological disorders. However, the effect that magnetic fields have on neurons has not been well documented in the literature. We have investigated the effect of different orientation of magnetic field generated by TMS coils with a monophasic stimulator on the proliferation rate of N27 neuronal cells cultured in flasks and multi-well plates. The proliferation rate of neurons would increase by exposed horizontally adherent N27 cells to a magnetic field pointing upward through the neuronal proliferation layer compared with the control group. On the other hand, proliferation rate would decrease in cells exposed to a magnetic field pointing downward through the neuronal growth layer compared with the control group. We confirmed results obtained from the Trypan-blue and automatic cell counting methods with those from the CyQuant and MTS cell viability assays. Our findings could have important implications for the preclinical development of TMS treatments of neurological disorders and represents a new method to control the proliferation rate of neuronal cells.

  18. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression.

    PubMed

    Orme, Rowan P; Bhangal, Manminder S; Fricker, Rosemary A

    2013-01-01

    During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF). Blocking GDNF signaling could prevent calcitriol's ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies.

  19. Calcitriol Imparts Neuroprotection In Vitro to Midbrain Dopaminergic Neurons by Upregulating GDNF Expression

    PubMed Central

    Orme, Rowan P.; Bhangal, Manminder S.; Fricker, Rosemary A.

    2013-01-01

    During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF). Blocking GDNF signaling could prevent calcitriol’s ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies. PMID:23626767

  20. Disruption in dopaminergic innervation during photoreceptor degeneration.

    PubMed

    Ivanova, Elena; Yee, Christopher W; Sagdullaev, Botir T

    2016-04-15

    Dopaminergic amacrine cells (DACs) release dopamine in response to light-driven synaptic inputs, and are critical to retinal light adaptation. Retinal degeneration (RD) compromises the light responsiveness of the retina and, subsequently, dopamine metabolism is impaired. As RD progresses, retinal neurons exhibit aberrant activity, driven by AII amacrine cells, a primary target of the retinal dopaminergic network. Surprisingly, DACs are an exception to this physiological change; DACs exhibit rhythmic activity in healthy retina, but do not burst in RD. The underlying mechanism of this divergent behavior is not known. It is also unclear whether RD leads to structural changes in DACs, impairing functional regulation of AII amacrine cells. Here we examine the anatomical details of DACs in three mouse models of human RD to determine how changes to the dopaminergic network may underlie physiological changes in RD. By using rd10, rd1, and rd1/C57 mice we were able to dissect the impacts of genetic background and the degenerative process on DAC structure in RD retina. We found that DACs density, soma size, and primary dendrite length are all significantly reduced. Using a novel adeno-associated virus-mediated technique to label AII amacrine cells in mouse retina, we observed diminished dopaminergic contacts to AII amacrine cells in RD mice. This was accompanied by changes to the components responsible for dopamine synthesis and release. Together, these data suggest that structural alterations of the retinal dopaminergic network underlie physiological changes during RD.

  1. Dopaminergic Modulation of the Voltage-Gated Sodium Current in the Cochlear Afferent Neurons of the Rat

    PubMed Central

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway. PMID:25768433

  2. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    PubMed

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway. PMID:25768433

  3. Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism

    PubMed Central

    Efremova, Liudmila; Schildknecht, Stefan; Adam, Martina; Pape, Regina; Gutbier, Simon; Hanf, Benjamin; Bürkle, Alexander; Leist, Marcel

    2015-01-01

    Background and Purpose Few neuropharmacological model systems use human neurons. Moreover, available test systems rarely reflect functional roles of co-cultured glial cells. There is no human in vitro counterpart of the widely used 1-methyl-4-phenyl-tetrahydropyridine (MPTP) mouse model of Parkinson's disease Experimental Approach We generated such a model by growing an intricate network of human dopaminergic neurons on a dense layer of astrocytes. In these co-cultures, MPTP was metabolized to 1-methyl-4-phenyl-pyridinium (MPP+) by the glial cells, and the toxic metabolite was taken up through the dopamine transporter into neurons. Cell viability was measured biochemically and by quantitative neurite imaging, siRNA techniques were also used. Key Results We initially characterized the activation of PARP. As in mouse models, MPTP exposure induced (poly-ADP-ribose) synthesis and neurodegeneration was blocked by PARP inhibitors. Several different putative neuroprotectants were then compared in mono-cultures and co-cultures. Rho kinase inhibitors worked in both models; CEP1347, ascorbic acid or a caspase inhibitor protected mono-cultures from MPP+ toxicity, but did not protect co-cultures, when used alone or in combination. Application of GSSG prevented degeneration in co-cultures, but not in mono-cultures. The surprisingly different pharmacological profiles of the models suggest that the presence of glial cells, and the in situ generation of the toxic metabolite MPP+ within the layered cultures played an important role in neuroprotection. Conclusions and Implications Our new model system is a closer model of human brain tissue than conventional cultures. Its use for screening of candidate neuroprotectants may increase the predictiveness of a test battery. PMID:25989025

  4. 1-Methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons

    SciTech Connect

    Drechsel, Derek A.; Liang, L.-P.; Patel, Manisha . E-mail: manisha.patel@uchsc.edu

    2007-05-01

    Decreased glutathione levels associated with increased oxidative stress are a hallmark of numerous neurodegenerative diseases, including Parkinson's disease. GSH is an important molecule that serves as an anti-oxidant and is also a major determinant of cellular redox environment. Previous studies have demonstrated that neurotoxins can cause changes in reduced and oxidized GSH levels; however, information regarding steady state levels remains unexplored. The goal of this study was to characterize changes in cellular GSH levels and its regulatory enzymes in a dopaminergic cell line (N27) following treatment with the Parkinsonian toxin, 1-methyl-4-phenylpyridinium (MPP{sup +}). Cellular GSH levels were initially significantly decreased 12 h after treatment, but subsequently recovered to values greater than controls by 24 h. However, oxidized glutathione (GSSG) levels were increased 24 h following treatment, concomitant with a decrease in GSH/GSSG ratio prior to cell death. In accordance with these changes, ROS levels were also increased, confirming the presence of oxidative stress. Decreased enzymatic activities of glutathione reductase and glutamate-cysteine ligase by 20-25% were observed at early time points and partly account for changes in GSH levels after MPP{sup +} exposure. Additionally, glutathione peroxidase activity was increased 24 h following treatment. MPP{sup +} treatment was not associated with increased efflux of glutathione to the medium. These data further elucidate the mechanisms underlying GSH depletion in response to the Parkinsonian toxin, MPP{sup +}.

  5. Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina

    PubMed Central

    Dénes, Viktória; Witkovsky, Paul; Koch, Manuel; Hunter, Dale D.; Pinzón-Duarte, Germán; Brunken, William J.

    2010-01-01

    Genetically modified mice lacking the β2 laminin chain (β2null), the γ3 laminin chain (γ3 null), or both β2/γ3 chains (compound null) were produced. The development of tyrosine hydroxylase (TH) immunoreactive neurons in these mouse lines was studied between birth and postnatal day (P) 20. Compared to wild type mice, no alterations were seen in γ3 null mice. In β2 null mice, however, the large, type I TH neurons appeared later in development, were at a lower density and had reduced TH immunoreactivity, although TH process number and size were not altered. In the compound null mouse, the same changes were observed together with reduced TH process outgrowth. Surprisingly, in the smaller, type II TH neurons, TH immunoreactivity was increased in laminin-deficient compared to wild type mice. Other retinal defects we observed were a patchy disruption of the inner limiting retinal basement membrane and a disoriented growth of Müller glial cells. Starburst and AII type amacrine cells were not apparently altered in laminin-deficient relative to wild type mice. We postulate that laminin-dependent developmental signals are conveyed to TH amacrine neurons through intermediate cell types, perhaps the Müller glial cell and/or the retinal ganglion cell. PMID:17711601

  6. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects

    PubMed Central

    Borgs, Laurence; Peyre, Elise; Alix, Philippe; Hanon, Kevin; Grobarczyk, Benjamin; Godin, Juliette D.; Purnelle, Audrey; Krusy, Nathalie; Maquet, Pierre; Lefebvre, Philippe; Seutin, Vincent; Malgrange, Brigitte; Nguyen, Laurent

    2016-01-01

    Some mutations of the LRRK2 gene underlie autosomal dominant form of Parkinson’s disease (PD). The G2019S is a common mutation that accounts for about 2% of PD cases. To understand the pathophysiology of this mutation and its possible developmental implications, we developed an in vitro assay to model PD with human induced pluripotent stem cells (hiPSCs) reprogrammed from skin fibroblasts of PD patients suffering from the LRKK2 G2019S mutation. We differentiated the hiPSCs into neural stem cells (NSCs) and further into dopaminergic neurons. Here we show that NSCs bearing the mutation tend to differentiate less efficiently into dopaminergic neurons and that the latter exhibit significant branching defects as compared to their controls. PMID:27640816

  7. Properties of dopaminergic neurons in organotypic mesencephalic-striatal co-cultures--evidence for a facilitatory effect of dopamine on the glutamatergic input mediated by α-1 adrenergic receptors.

    PubMed

    Cucchiaroni, Maria L; Freestone, Peter S; Berretta, Nicola; Viscomi, Maria T; Bisicchia, Elisa; Okano, Hideyuki; Molinari, Marco; Bernardi, Giorgio; Lipski, Janusz; Mercuri, Nicola B; Guatteo, Ezia

    2011-05-01

    Organotypic cultures (OCs) have been widely used to investigate the midbrain dopaminergic system, but only a few studies focused on the functional properties of dopaminergic neurons and their synaptic inputs from dopaminergic and non-dopaminergic neurons also contained in such cultures. In addition, it is not clear whether the culturing process affects the intrinsic neuronal properties and the expression of specific receptors and transporters. We performed patch-clamp recordings from dopaminergic neurons in mesencephalic-striatal co-cultures obtained from transgenic mice expressing green fluorescent protein (GFP) under the tyrosine hydroxylase promoter. Some (10/44) GFP+ neurons displayed a bursting activity that renders the firing of these cells similar to that of the dopaminergic neurons in vivo. The culturing process reduced the hyperpolarization-activated current (I(h) ) and the expression of D₂ receptors. Downregulation of D₂ receptor mRNA and protein was confirmed with reverse transcriptase polymerase chain reaction and Western blotting. Immunocytochemistry revealed that many synaptic terminals, most likely originating from dopaminergic neurons, co-expressed the dopamine (DA) transporter and the vesicular glutamate transporter-2, suggesting a co-release of DA and glutamate. Interestingly, exogenous DA decreased glutamate release in young cultures [days in vitro (DIV)<20] by acting on pre-synaptic D₂ receptors, while in older cultures (DIV>26) DA increased glutamate release by acting on α-1 adrenoreceptors. The facilitatory effect of DA on glutamatergic transmission to midbrain dopaminergic neurons may be important in conditions when the expression of D₂ receptors is compromised, such as long-term treatment with antipsychotic drugs. Our data show that midbrain OCs at DIV>26 may provide a suitable model of such conditions.

  8. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection.

    PubMed

    Jia, Zhenquan; Zhu, Hong; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2008-11-01

    Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection. PMID:18368484

  9. Potential environmental neurotoxins related to 1-methyl-4-phenylpyridinium: Selective toxicity of 1-methyl-4-(4'-acetamidophenyl)-pyridinium and 1-methyl-4-cyclohexylpyridinium for dopaminergic neurons in culture

    SciTech Connect

    Michel, P.P.; Dandapani, B.K.; Efange, S.M.; Hefti, F. )

    1990-05-01

    Mesencephalic cells in culture were exposed to various compounds which we hypothesized to be selective toxins for dopaminergic neurons. The culture system was previously shown suitable for assessing selective dopaminergic neurotoxicity, since 1-methyl-4-phenyl-pyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium, destroyed dopaminergic neurons without affecting other cells. Some compounds tested were selected to fulfill two criteria believed to underly the selective dopaminergic neurotoxicity of MPP+, i.e., to be a potential substrate for the uptake carrier for dopamine and to possess a strong delocalized positive charge to inhibit the mitochondrial respiratory system. Other compounds were chosen on the basis of clinical or anecdotal evidence linking them to Parkinson's disease. Among the tested compounds two pyridinium analogs, 1-methyl-4-(4'-acetamidophenyl)pyridinium (MACPP+) and 1-methyl-4-cyclohexylpyridinium (MCP+) were found to be selectively toxic toward dopaminergic neurons. Incubation of cultures with both MACPP+ and MCP+ produced a dramatic reduction in the number of tyrosine hydroxylase-positive cells and the uptake of (3H)dopamine without reducing the number of cells visualized by phase-contrast microscopy or the uptake of (3H)aminobutyric acid. Besides MACPP+ and MCP+ none of the tested compounds exhibited any selective dopaminergic neurotoxicity. Together with earlier findings, these data suggest that the structural requirements are rather strict for a chemical to be a selective dopaminergic neurotoxin and make it unlikely that there is a wide spectrum of environmental dopaminergic toxins.

  10. Disruption of Lateral Olivocochlear Neurons With a Dopaminergic Neurotoxin Depresses Spontaneous Auditory Nerve Activity

    PubMed Central

    Le Prell, Colleen G.; Dolan, David F.; Hughes, Larry F.; Altschuler, Richard A.; Shore, Susan E.; Bledsoe, Sanford C.

    2015-01-01

    Neurons of the lateral olivocochlear (LOC) system project from the auditory brainstem to the cochlea, where they synapse on radial dendrites of auditory nerve fibers. Selective LOC disruption depresses sound-evoked auditory nerve activity in the guinea pig, but enhances it in the mouse. Here, LOC disruption depressed spontaneous auditory nerve activity in the guinea pig. Recordings from single auditory nerve fibers revealed a significantly reduced proportion of fibers with the highest spontaneous firing rates (SRs) and an increased proportion of neurons with lower SRs. Ensemble activity, estimated using round window noise, also decreased after LOC disruption. Decreased spontaneous activity after LOC disruption may be a consequence of reduced tonic release of excitatory transmitters from the LOC terminals in guinea pigs. PMID:25175420

  11. Disruption of lateral olivocochlear neurons with a dopaminergic neurotoxin depresses spontaneous auditory nerve activity.

    PubMed

    Le Prell, Colleen G; Dolan, David F; Hughes, Larry F; Altschuler, Richard A; Shore, Susan E; Bledsoe, Sanford C

    2014-10-17

    Neurons of the lateral olivocochlear (LOC) system project from the auditory brainstem to the cochlea, where they synapse on radial dendrites of auditory nerve fibers. Selective LOC disruption depresses sound-evoked auditory nerve activity in the guinea pig, but enhances it in the mouse. Here, LOC disruption depressed spontaneous auditory nerve activity in the guinea pig. Recordings from single auditory nerve fibers revealed a significantly reduced proportion of fibers with the highest spontaneous firing rates (SRs) and an increased proportion of neurons with lower SRs. Ensemble activity, estimated using round window noise, also decreased after LOC disruption. Decreased spontaneous activity after LOC disruption may be a consequence of reduced tonic release of excitatory transmitters from the LOC terminals in guinea pigs. PMID:25175420

  12. Synaptic Input of ON-Bipolar Cells onto the Dopaminergic Neurons of the Mouse Retina

    PubMed Central

    Contini, Massimo; Lin, Bin; Kobayashi, Kazuto; Okano, Hideyuki; Masland, Richard H.; Raviola, Elio

    2010-01-01

    In the retina, dopamine fulfills a crucial role in neural adaptation to photopic illumination, but the pathway that carries cone signals to the dopaminergic amacrine (DA) cells was not known. We identified the site of ON-cone bipolar input onto DA cells in transgenic mice in which both types of catecholaminergic amacrine (CA) cells were labeled with green fluorescent protein or human placental alkaline phosphatase (PLAP). In confocal Z series of retinal whole mounts stained with antibodies to tyrosine hydroxylase (TH), DA cells gave rise to varicose processes that descended obliquely through the scleral half of the inner plexiform layer (IPL) and formed a loose, tangential plexus in the middle of this layer. Comparison with the distribution of the dendrites of type 2 CA cells and examination of neurobiotin-injected DA cells proved that their vitreal processes were situated in stratum S3 of the IPL. Electron microscope demonstration of PLAP activity showed that bipolar cell endings in S3 established ribbon synapses onto a postsynaptic dyad in which one or both processes were labeled by a precipitate of lead phosphate and therefore belonged to DA cells. In places, the postsynaptic DA cell processes returned a reciprocal synapse onto the bipolar endings. Confocal images of sections stained with antibodies to TH, kinesin Kif3a, which labels synaptic ribbons, and glutamate or GABAA receptors, confirmed that ribbon-containing endings made glutamatergic synapses onto DA cells processes in S3 and received from them GABAergic synapses. The presynaptic ON-bipolar cells most likely belonged to the CB3 (type 5) variety. PMID:20394057

  13. Automated screening for mutants affecting dopaminergic-neuron specification in C. elegans.

    PubMed

    Doitsidou, Maria; Flames, Nuria; Lee, Albert C; Boyanov, Alexander; Hobert, Oliver

    2008-10-01

    We describe an automated method to isolate mutant Caenorhabditis elegans that do not appropriately execute cellular differentiation programs. We used a fluorescence-activated sorting mechanism implemented in the COPAS Biosort machine to isolate mutants with subtle alterations in the cellular specificity of GFP expression. This methodology is considerably more efficient than comparable manual screens and enabled us to isolate mutants in which dopamine neurons do not differentiate appropriately. PMID:18758453

  14. Effects of Two Commonly Found Strains of Influenza A Virus on Developing Dopaminergic Neurons, in Relation to the Pathophysiology of Schizophrenia

    PubMed Central

    Landreau, Fernando; Galeano, Pablo; Caltana, Laura R.; Masciotra, Luis; Chertcoff, Agustín; Pontoriero, A.; Baumeister, Elsa; Amoroso, Marcela; Brusco, Herminia A.; Tous, Mónica I.; Savy, Vilma L.; Lores Arnaiz, María del Rosario; de Erausquin, Gabriel A.

    2012-01-01

    Influenza virus (InfV) infection during pregnancy is a known risk factor for neurodevelopment abnormalities in the offspring, including the risk of schizophrenia, and has been shown to result in an abnormal behavioral phenotype in mice. However, previous reports have concentrated on neuroadapted influenza strains, whereas increased schizophrenia risk is associated with common respiratory InfV. In addition, no specific mechanism has been proposed for the actions of maternal infection on the developing brain that could account for schizophrenia risk. We identified two common isolates from the community with antigenic configurations H3N2 and H1N1 and compared their effects on developing brain with a mouse modified-strain A/WSN/33 specifically on the developing of dopaminergic neurons. We found that H1N1 InfV have high affinity for dopaminergic neurons in vitro, leading to nuclear factor kappa B activation and apoptosis. Furthermore, prenatal infection of mothers with the same strains results in loss of dopaminergic neurons in the offspring, and in an abnormal behavioral phenotype. We propose that the well-known contribution of InfV to risk of schizophrenia during development may involve a similar specific mechanism and discuss evidence from the literature in relation to this hypothesis. PMID:23251423

  15. Effects of two commonly found strains of influenza A virus on developing dopaminergic neurons, in relation to the pathophysiology of schizophrenia.

    PubMed

    Landreau, Fernando; Galeano, Pablo; Caltana, Laura R; Masciotra, Luis; Chertcoff, Agustín; Pontoriero, A; Baumeister, Elsa; Amoroso, Marcela; Brusco, Herminia A; Tous, Mónica I; Savy, Vilma L; Lores Arnaiz, María del Rosario; de Erausquin, Gabriel A

    2012-01-01

    Influenza virus (InfV) infection during pregnancy is a known risk factor for neurodevelopment abnormalities in the offspring, including the risk of schizophrenia, and has been shown to result in an abnormal behavioral phenotype in mice. However, previous reports have concentrated on neuroadapted influenza strains, whereas increased schizophrenia risk is associated with common respiratory InfV. In addition, no specific mechanism has been proposed for the actions of maternal infection on the developing brain that could account for schizophrenia risk. We identified two common isolates from the community with antigenic configurations H3N2 and H1N1 and compared their effects on developing brain with a mouse modified-strain A/WSN/33 specifically on the developing of dopaminergic neurons. We found that H1N1 InfV have high affinity for dopaminergic neurons in vitro, leading to nuclear factor kappa B activation and apoptosis. Furthermore, prenatal infection of mothers with the same strains results in loss of dopaminergic neurons in the offspring, and in an abnormal behavioral phenotype. We propose that the well-known contribution of InfV to risk of schizophrenia during development may involve a similar specific mechanism and discuss evidence from the literature in relation to this hypothesis.

  16. Cucurbitacin E Has Neuroprotective Properties and Autophagic Modulating Activities on Dopaminergic Neurons

    PubMed Central

    Longpré, Fanny; Bournival, Julie; Tremblay, Cindy; Haskova, Pavlina; Attard, Everaldo; Martinoli, Maria-Grazia

    2014-01-01

    Natural molecules are under intensive study for their potential as preventive and/or adjuvant therapies for neurodegenerative disorders such as Parkinson's disease (PD). We evaluated the neuroprotective potential of cucurbitacin E (CuE), a tetracyclic triterpenoid phytosterol extracted from the Ecballium elaterium (Cucurbitaceae), using a known cellular model of PD, NGF-differentiated PC12. In our postmitotic experimental paradigm, neuronal cells were treated with the parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+) to provoke significant cellular damage and apoptosis or with the potent N,N-diethyldithiocarbamate (DDC) to induce superoxide (O2•−) production, and CuE was administered prior to and during the neurotoxic treatment. We measured cellular death and reactive oxygen species to evaluate the antioxidant and antiapoptotic properties of CuE. In addition, we analyzed cellular macroautophagy, a bulk degradation process involving the lysosomal pathway. CuE showed neuroprotective effects on MPP+-induced cell death. However, CuE failed to rescue neuronal cells from oxidative stress induced by MPP+ or DDC. Microscopy and western blot data show an intriguing involvement of CuE in maintaining lysosomal distribution and decreasing autophagy flux. Altogether, these data indicate that CuE decreases neuronal death and autophagic flux in a postmitotic cellular model of PD. PMID:25574337

  17. Genetic deletion of PDE10A selectively impairs incentive salience attribution and decreases medium spiny neuron excitability.

    PubMed

    Piccart, Elisabeth; De Backer, Jean-François; Gall, David; Lambot, Laurie; Raes, Adam; Vanhoof, Greet; Schiffmann, Serge; D'Hooge, Rudi

    2014-07-15

    The striatum is the main input structure to the basal ganglia and consists mainly out of medium spiny neurons. The numerous spines on their dendrites render them capable of integrating cortical glutamatergic inputs with a motivational dopaminergic signal that originates in the midbrain. This integrative function is thought to underly attribution of incentive salience, a process that is severely disrupted in schizophrenic patients. Phosphodiesterase 10A (PDE10A) is located mainly to the striatal medium spiny neurons and hydrolyses cAMP and cGMP, key determinants of MSN signaling. We show here that genetic depletion of PDE10A critically mediates attribution of salience to reward-predicting cues, evident in impaired performance in PDE10A knockout mice in an instrumentally conditioned reinforcement task. We furthermore report modest impairment of latent inhibition in PDE10A knockout mice, and unaltered prepulse inhibition. We suggest that the lack of effect on PPI is due to the pre-attentional nature of this task. Finally, we performed whole-cell patch clamp recordings and confirm suggested changes in intrinsic membrane excitability. A decrease in spontaneous firing in striatal medium spiny neurons was found. These data show that PDE10A plays a pivotal role in striatal signaling and striatum-mediated salience attribution.

  18. Decreased function of survival motor neuron protein impairs endocytic pathways.

    PubMed

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  19. Neutralization of RANTES and Eotaxin Prevents the Loss of Dopaminergic Neurons in a Mouse Model of Parkinson Disease.

    PubMed

    Chandra, Goutam; Rangasamy, Suresh B; Roy, Avik; Kordower, Jeffrey H; Pahan, Kalipada

    2016-07-15

    Parkinson disease (PD) is second only to Alzheimer disease as the most common human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. Recent studies indicate that both innate and adaptive immune processes are active in PD. Accordingly, we found a rapid increase in RANTES (regulated on activation normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra pars compacta and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. RANTES and eotaxin were also up-regulated in the substantia nigra pars compacta of post-mortem PD brains as compared with age-matched controls. Therefore, we investigated whether neutralization of RANTES and eotaxin could protect against nigrostriatal degeneration in MPTP-intoxicated mice. Interestingly, after peripheral administration, functional blocking antibodies against RANTES and eotaxin reduced the infiltration of CD4(+) and CD8(+) T cells into the nigra, attenuated nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Therefore, we conclude that attenuation of the chemokine-dependent adaptive immune response may be of therapeutic benefit for PD patients. PMID:27226559

  20. Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells

    SciTech Connect

    Schildknecht, Stefan; Poeltl, Dominik; Nagel, Daniel M.; Matt, Florian; Scholz, Diana; Lotharius, Julie; Schmieg, Nathalie; Salvo-Vargas, Alberto; Leist, Marcel

    2009-11-15

    LUHMES cells are conditionally-immortalized non-transformed human fetal cells that can be differentiated to acquire a dopaminergic neuron-like phenotype under appropriate growth conditions. After differentiation by GDNF and cyclic adenosine monophosphate, LUHMES were sensitive to 1-methyl-4-phenylpyridinium (MPP{sup +}) toxicity at <= 5 muM, but resistant to the parental compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The high homogeneity and purity of the cultures allowed the detection of metabolic changes during the degeneration. Cellular ATP dropped in two phases after 24 and 48 h; cellular glutathione (GSH) decreased continuously, paralleled by an increase in lipid peroxidation. These events were accompanied by a time-dependent degeneration of neurites. Block of the dopamine transporter by GBR 12909 or mazindol completely abrogated MPP{sup +} toxicity. Inhibition of de novo dopamine synthesis by alpha-methyl-L-tyrosine or 3-iodo-L-tyrosine attenuated toxicity, but did not reduce the initial drop in ATP. Inhibition of mixed lineage kinases by CEP1347 completely prevented the MPP{sup +}-induced loss of viability and intracellular GSH, but failed to attenuate the initial drop of ATP. For the quantitative assessment of neurite degeneration, an automated imaging-based high content screening approach was applied and confirmed the findings made by pharmacological interventions in this study. Our data indicate that inhibition of mitochondrial ATP synthesis is not sufficient to trigger cell death in MPP{sup +}-treated LUHMES.

  1. The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations

    PubMed Central

    Scardochio, Tina; Trujillo-Pisanty, Ivan; Conover, Kent; Shizgal, Peter; Clarke, Paul B. S.

    2015-01-01

    Rationale: Adult rats emit ultrasonic vocalizations (USVs) at around 50-kHz; these commonly occur in contexts that putatively engender positive affect. While several reports indicate that dopaminergic (DAergic) transmission plays a role in the emission of 50-kHz calls, the pharmacological evidence is mixed. Different modes of dopamine (DA) release (i.e., tonic and phasic) could potentially explain this discrepancy. Objective: To investigate the potential role of phasic DA release in 50-kHz call emission. Methods: In Experiment 1, USVs were recorded in adult male rats following unexpected electrical stimulation of the medial forebrain bundle (MFB). In parallel, phasic DA release in the nucleus accumbens (NAcc) was recorded using fast-scan cyclic voltammetry. In Experiment 2, USVs were recorded following response-contingent or non-contingent optogenetic stimulation of midbrain DAergic neurons. Four 20-s schedules of optogenetic stimulation were used: fixed-interval, fixed-time, variable-interval, and variable-time. Results: Brief electrical stimulation of the MFB increased both 50-kHz call rate and phasic DA release in the NAcc. During optogenetic stimulation sessions, rats initially called at a high rate comparable to that observed following reinforcers such as psychostimulants. Although optogenetic stimulation maintained reinforced responding throughout the 2-h session, the call rate declined to near zero within the first 30 min. The trill call subtype predominated following both electrical and optical stimulation. Conclusion: The occurrence of electrically-evoked 50-kHz calls, time-locked to phasic DA (Experiment 1), provides correlational evidence supporting a role for phasic DA in USV production. However, in Experiment 2, the temporal dissociation between calling and optogenetic stimulation of midbrain DAergic neurons suggests that phasic mesolimbic DA release is not sufficient to produce 50-kHz calls. The emission of the trill subtype of 50-kHz calls

  2. Dopaminergic Receptors on CD4+ T Naive and Memory Lymphocytes Correlate with Motor Impairment in Patients with Parkinson’s Disease

    PubMed Central

    Kustrimovic, Natasa; Rasini, Emanuela; Legnaro, Massimiliano; Bombelli, Raffaella; Aleksic, Iva; Blandini, Fabio; Comi, Cristoforo; Mauri, Marco; Minafra, Brigida; Riboldazzi, Giulio; Sanchez-Guajardo, Vanesa; Marino, Franca; Cosentino, Marco

    2016-01-01

    Parkinson’s disease (PD) is characterized by loss of dopaminergic neurons in substantia nigra pars compacta, α-synuclein (α-syn)-rich intraneuronal inclusions (Lewy bodies), and microglial activation. Emerging evidence suggests that CD4+ T lymphocytes contribute to neuroinflammation in PD. Since the mainstay of PD treatment is dopaminergic substitution therapy and dopamine is an established transmitter connecting nervous and immune systems, we examined CD4+ T naive and memory lymphocytes in PD patients and in healthy subjects (HS), with specific regard to dopaminergic receptor (DR) expression. In addition, the in vitro effects of α-syn were assessed on CD4+ T naive and memory cells. Results showed extensive association between DR expression in T lymphocytes and motor dysfunction, as assessed by UPDRS Part III score. In total and CD4+ T naive cells expression of D1-like DR decrease, while in T memory cells D2-like DR increase with increasing score. In vitro, α-syn increased CD4+ T memory cells, possibly to a different extent in PD patients and in HS, and affected DR expression with cell subset-specific patterns. The present results support the involvement of peripheral adaptive immunity in PD, and may contribute to develop novel immunotherapies for PD, as well as to better use of current dopaminergic antiparkinson drugs. PMID:27652978

  3. Abnormal Development of Glutamatergic Synapses Afferent to Dopaminergic Neurons of the Pink1−/− Mouse Model of Parkinson’s Disease

    PubMed Central

    Pearlstein, Edouard; Michel, François J.; Save, Laurène; Ferrari, Diana C.; Hammond, Constance

    2016-01-01

    In a preceding study, we showed that in adult pink1−/− mice, a monogenic animal model of Parkinson’s disease (PD), striatal neurons display aberrant electrical activities that precede the onset of overt clinical manifestations. Here, we tested the hypothesis that the maturation of dopaminergic (DA) neurons of the pink1−/− substantia nigra compacta (SNc) follows, from early stages on, a different developmental trajectory from age-matched wild type (wt) SNc DA neurons. We used immature (postnatal days P2–P10) and young adult (P30–P90) midbrain slices of pink1−/− mice expressing the green fluorescent protein in tyrosine hydroxylase (TH)-positive neurons. We report that the developmental sequence of N-Methyl-D-aspartic acid (NMDA) spontaneous excitatory postsynaptic currents (sEPSCs) is altered in pink1−/− SNc DA neurons, starting from shortly after birth. They lack the transient episode of high NMDA receptor-mediated neuronal activity characteristic of the immature stage of wt SNc DA neurons. The maturation of the membrane resistance of pink1−/− SNc DA neurons is also altered. Collectively, these observations suggest that electrical manifestations occurring shortly after birth in SNc DA neurons might lead to dysfunction in dopamine release and constitute an early pathogenic mechanism of PD. PMID:27445695

  4. Microglia-Derived Cytokines/Chemokines Are Involved in the Enhancement of LPS-Induced Loss of Nigrostriatal Dopaminergic Neurons in DJ-1 Knockout Mice

    PubMed Central

    Chien, Chia-Hung; Lee, Ming-Jen; Liou, Houng-Chi; Liou, Horng-Huei; Fu, Wen-Mei

    2016-01-01

    Mutation of DJ-1 (PARK7) has been linked to the development of early-onset Parkinson’s disease (PD). However, the underlying molecular mechanism is still unclear. This study is aimed to compare the sensitivity of nigrostriatal dopaminergic neurons to lipopolysaccharide (LPS) challenge between DJ-1 knockout (KO) and wild-type (WT) mice, and explore the underlying cellular and molecular mechanisms. Our results found that the basal levels of interferon (IFN)-γ (the hub cytokine) and interferon-inducible T-cell alpha chemoattractant (I-TAC) (a downstream mediator) were elevated in the substantia nigra of DJ-1 KO mice and in microglia cells with DJ-1 deficiency, and the release of cytokine/chemokine was greatly enhanced following LPS administration in the DJ-1 deficient conditions. In addition, direct intranigral LPS challenge caused a greater loss of nigrostriatal dopaminergic neurons and striatal dopamine content in DJ-1 KO mice than in WT mice. Furthermore, the sensitization of microglia cells to LPS challenge to release IFN-γ and I-TAC was via the enhancement of NF-κB signaling, which was antagonized by NF-κB inhibitors. LPS-induced increase in neuronal death in the neuron-glia co-culture was enhanced by DJ-1 deficiency in microglia, which was antagonized by the neutralizing antibodies against IFN-γ or I-TAC. These results indicate that DJ-1 deficiency sensitizes microglia cells to release IFN-γ and I-TAC and causes inflammatory damage to dopaminergic neurons. The interaction between the genetic defect (i.e. DJ-1) and inflammatory factors (e.g. LPS) may contribute to the development of PD. PMID:26982707

  5. Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset In Vivo and from Pluripotent Stem Cells In Vitro in the Mouse.

    PubMed

    Fukusumi, Yoshiyasu; Meier, Florian; Götz, Sebastian; Matheus, Friederike; Irmler, Martin; Beckervordersandforth, Ruth; Faus-Kessler, Theresa; Minina, Eleonora; Rauser, Benedict; Zhang, Jingzhong; Arenas, Ernest; Andersson, Elisabet; Niehrs, Christof; Beckers, Johannes; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima

    2015-09-30

    Wingless-related MMTV integration site 1 (WNT1)/β-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/β-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/β-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a

  6. Rewarding brain stimulation induces only sparse Fos-like immunoreactivity in dopaminergic neurons.

    PubMed

    Hunt, G E; McGregor, I S

    1998-03-01

    In this study, c-fos immunohistochemistry was used to identify the brain regions activated by rewarding brain stimulation in rats. Rats had monopolar electrodes implanted in the medial forebrain bundle and were allocated to either a self-stimulation (n = 4), yoked stimulation (n = 4) or no stimulation (n = 6) group. In a single 1 h test session, each rat in the self-stimulation group made 1000 nose poke responses with each response followed by a 0.5 s train of brain stimulation. Rats in the yoked-stimulation group were paired with a partner in the self-stimulation group and received brain stimulation whenever their partner did. However, their nose poke responses did not trigger stimulation. This yoked procedure was thus used to identify any Fos-like immunoreactivity due to operant responding. Rats in the no stimulation group were placed in the same apparatus as the other rats but received no brain stimulation and were thus used to assess baseline Fos-like immunoreactivity. Results showed that stimulation increased Fos-like immunoreactivity in many areas of the brain in both the self-stimulation and yoked groups. The areas with the highest Fos-like immunoreactivity were ipsilateral to the electrode site and included the medial prefrontal cortex, lateral septum, nucleus accumbens (shell), the medial and lateral preoptic areas, bed nucleus of the stria terminalis, central amygdala, lateral habenula, dorsomedial hypothalamus, lateral hypothalamus and the anterior ventral tegmental area. Bilateral Fos-like immunoreactivity was evident in the nucleus accumbens core, paraventricular nucleus of the hypothalamus, the retrorubral fields and the locus coeruleus. A double-labelling procedure identifying both Fos and tyrosine hydroxylase was used to show that very few (< 5%) of the A10 dopamine cell bodies in the ventral tegmental area expressed Fos following brain stimulation. In contrast, most of the noradrenergic neurons of the locus coeruleus (A6), rubrospinal tract (A5

  7. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons

    PubMed Central

    Richter, Franziska; Gao, Fuying; Medvedeva, Vera; Lee, Patrick; Bove, Nicholas; Fleming, Sheila M.; Michaud, Magali; Lemesre, Vincent; Patassini, Stefano; De La Rosa, Krystal; Mulligan, Caitlin K.; Sioshansi, Pedrom; Zhu, Chunni; Coppola, Giovanni; Bordet, Thierry; Pruss, Rebecca; Chesselet, Marie-Françoise

    2014-01-01

    Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson’s disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4 months of age, approximately 10 months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased

  8. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease.

    PubMed

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G

    2014-12-12

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease.

  9. LPA signaling is required for dopaminergic neuron development and is reduced through low expression of the LPA1 receptor in a 6-OHDA lesion model of Parkinson's disease.

    PubMed

    Yang, Xiao-Yun; Zhao, Ethan Y; Zhuang, Wen-Xin; Sun, Feng-Xiang; Han, Hai-Lin; Han, Hui-Rong; Lin, Zhi-Juan; Pan, Zhi-Fang; Qu, Mei-Hua; Zeng, Xian-Wei; Ding, Yuchuan

    2015-11-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that activates at least five known G-protein-coupled receptors (GPCRs): LPA1-LPA5. The nervous system is a major locus for LPA1 expression. LPA has been shown to regulate neuronal proliferation, migration, and differentiation during central nervous system development as well as neuronal survival. Furthermore, deficient LPA signaling has been implicated in several neurological disorders including neuropathic pain and schizophrenia. Parkinson's disease (PD) is a neurodegenerative movement disorder that results from the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The specific molecular pathways that lead to DA neuron degeneration, however, are poorly understood. The influence of LPA in the differentiation of mesenchymal stem cells (MSCs) into DA neurons in vitro and LPA1 expression in a 6-hydroxydopamine (6-OHDA) lesion model of PD in vivo were examined in the present study. LPA induced neuronal differentiation in 80.2 % of the MSC population. These MSCs developed characteristic neuronal morphology and expressed the neuronal marker, neuron-specific enolase (NSE), while expression of the glial marker, glial fibrillary acidic protein (GFAP), was absent. Moreover, 27.6 % of differentiated MSCs were positive for tyrosine hydroxylase (TH), a marker for DA neurons. In the 6-OHDA PD rat model, LPA1 expression in the substantia nigra was significantly reduced compared to control. These results suggest LPA signaling via activation of LPA1 may be necessary for DA neuron development and survival. Furthermore, reduced LPA/LPA1 signaling may be involved in DA neuron degeneration thus contributing to the pathogenesis of PD. PMID:26169757

  10. Selective dopaminergic lesions of the ventral tegmental area impair preference for sucrose but not for male sexual pheromones in female mice.

    PubMed

    Martínez-Hernández, José; Lanuza, Enrique; Martínez-García, Fernando

    2006-08-01

    The role of the meso-accumbens dopaminergic pathway in reward-related behaviours is the subject of intense investigation. In this regard, here we analyse the effects of specific lesions of dopaminergic cells of the ventral tegmental area (VTA) of female mice on two goal-directed behaviours, namely sucrose preference (intake of sucrose solution vs. water) and preference for male sexual pheromones (exploration of male-soiled vs. clean bedding). The results indicate that partial lesions of the VTA that impair neither locomotion nor general exploratory behaviour reduce the preference for sucrose (over a 48-h period) but do not alter the innate attraction that females display for male sexual pheromones (in 5-min tests). This differential effect of the lesions can be interpreted as demonstrating the existence of separate neural mechanisms and circuits for signalling the reward of different natural reinforcers (e.g. sweet taste of sucrose and sexual pheromones). Alternatively, VTA lesions may result in an impaired attribution of incentive salience (which depends on the dopaminergic tegmento-striatal system) of sucrose-predicting cues, thus leading to a long-term decrease in sucrose consumption. By contrast, the same lesions do not affect the unconditioned attraction to male-derived pheromones, which may depend on amygdalo-striatal pathways. PMID:16930416

  11. Anterior ventral tegmental area dopaminergic neurons are not involved in the motivational effects of bromocriptine, pramipexole and cocaine in drug-free rats.

    PubMed

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2014-04-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. Dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease, by acting on the neuronal reward circuitry. We previously demonstrated that the posterior (p) VTA, which projects to the nucleus accumbens (NAc), is implicated in the motivational effect of dopamine receptor agonists in 6-OHDA bilateral pVTA-lesioned drug-free animals. In the present study we investigated the implication of the anterior (a) VTA in the potential reinforcement effect of dopamine receptor agonists. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists (bromocriptine and pramipexole), and cocaine in rats with a 6-OHDA bilateral lesion of the aVTA. Bromocriptine and pramipexole did not induce a significant CPP at 1mg/kg in both sham and bilateral 6-OHDA-lesioned rats. However bromocriptine induced CPP only at a dose of 3mg/kg in both animal groups. Moreover cocaine, which is known to increase dopamine release, induced reinforcing effects in both 6-OHDA-lesioned and sham rats. Our data show a lack of involvement of aVTA dopamine neurons in the motivational effects of bromocriptine, pramipexole and cocaine.

  12. Dopaminergic Neuronal Differentiation from the Forebrain-Derived Human Neural Stem Cells Induced in Cultures by Using a Combination of BMP-7 and Pramipexole with Growth Factors

    PubMed Central

    Yang, HongNa; Wang, Jing; Wang, Feng; Liu, XiaoDun; Chen, Heng; Duan, WeiMing; Qu, TingYu

    2016-01-01

    Transplantation of dopaminergic (DA) neurons is considered to be the most promising therapeutic strategy for replacing degenerated dopamine cells in the midbrain of Parkinson's disease (PD), thereby restoring normal neural circuit function and slow clinical progression of the disease. Human neural stem cells (hNSCs) derived from fetal forebrain are thought to be the important cell sources for producing DA neurons because of their multipotency for differentiation and long-term expansion property in cultures. However, low DA differentiation of the forebrain-derived hNSCs limited their therapeutic potential in PD. In the current study, we explored a combined application of Pramipexole (PRX), bone morphogenetic proteins 7 (BMP-7), and growth factors, including acidic fibroblast factor (aFGF), forskolin, and phorbol-12-myristae-13-acetate (TPA), to induce differentiation of forebrain-derived hNSCs toward DA neurons in cultures. We found that DA neuron-associated genes, including Nurr1, Neurogenin2 (Ngn2), and tyrosine hydroxylase (TH) were significantly increased after 24 h of differentiation by RT-PCR analysis (p < 0.01). Fluorescent examination showed that about 25% of cells became TH-positive neurons at 24 h, about 5% of cells became VMAT2 (vascular monoamine transporter 2)-positive neurons, and less than 5% of cells became DAT (dopamine transporter)-positive neurons at 72 h following differentiation in cultures. Importantly, these TH-, VMAT2-, and DAT-expressing neurons were able to release dopamine into cultures under both of the basal and evoked conditions. Dopamine levels released by DA neurons produced using our protocol were significantly higher compared to the control groups (P < 0.01), as examined by ELISA. Our results demonstrated that the combination of PRX, BMP-7, and growth factors was able to greatly promote differentiation of the forebrain-derived hNSCs into DA-releasing neurons. PMID:27147976

  13. Effect of dopaminergic D1 receptors on plasticity is dependent of serotoninergic 5-HT1A receptors in L5-pyramidal neurons of the prefrontal cortex.

    PubMed

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective. PMID:25775449

  14. Effect of Dopaminergic D1 Receptors on Plasticity Is Dependent of Serotoninergic 5-HT1A Receptors in L5-Pyramidal Neurons of the Prefrontal Cortex

    PubMed Central

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective. PMID:25775449

  15. Loss of dopaminergic neurons occurs in the ventral tegmental area and hypothalamus of rats following chronic stress: Possible pathogenetic loci for depression involved in Parkinson's disease.

    PubMed

    Sugama, Shuei; Kakinuma, Yoshihiko

    2016-10-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic (DA) neurons in the nigrostriatal and mesolimbic pathways including ventral tegmental area (VTA). Although several factors for the neuronal loss have been suggested, most of the PD cases are sporadic and idiopathic. In our previous study, we demonstrated the first evidence that solely chronic restraint stress (RS) induced the DA neuronal loss in the substantia nigra (SN). In this study, we further investigated whether chronic stress could affect other major DA systems, VTA and tuberoinfundibular system (TIDA), by using immunohistochemical and in situ hybridization techniques. The present study showed that, in the VTA, tyrosine hydroxylase (TH) immunoreactive neurons decreased by 9.8% at 2nd week, 19.2% at 4th week, 39.5% at 8th week, and 40.6% at 16th week during chronic RS as compared to control. Similarly, in the TIDA, the TH neurons decreased by 10.9% at 2nd week, 38.2% at 4th week, 56.3% at 8th week, and 57.1% at 16th week. The in situ hybridization results consistently demonstrated decreases in Th mRNA expressing cells in the VTA and TIDA in a comparable time dependent manner. Thus, exposure to chronic stress may simultaneously induce multiple neuronal loss of DA systems.

  16. Pleiotrophin is involved in the amniotic epithelial cell-induced differentiation of human umbilical cord blood-derived mesenchymal stem cells into dopaminergic neuron-like cells.

    PubMed

    Yang, Shu; Xue, Dan-Dan; Wu, Bo; Sun, Hai-Mei; Li, Xiao-Shuang; Dong, Fang; Li, Wen-Shuai; Ji, Feng-Qing; Zhou, De-Shan

    2013-02-28

    We have reported that human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are capable of differentiating into dopaminergic (DA) neuron-like cells upon being induced by amniotic epithelial cells (AECs). However, what factor(s) is involved in the differentiation process has not been explored out thoroughly. Because pleiotrophin (PTN) is known to exert important trophic effects on DA neurons, in the present study, we investigated whether PTN is released by AECs and whether it is involved in the differentiation of hUCB-MSCs into DA neuron-like cells. The expression and secretion of PTN by AECs were detected by immunofluorescence, RT-PCR and ELISA. The hUCB-MSCs were isolated and treated with AEC-conditioned medium (ACM) or recombinant human PTN. Compared to the controls, a higher proportion of treated cells differentiated into DA neuron-like cells, indicated by the increased expression of TH and DAT and the increased dopamine content. These results indicate that PTN released by AECs acts as a synergetic factor with other neurotrophic factors and is involved in the differentiation of hUCB-MSCs into DA neuron-like cells. We suggest that ACM, which contains PTN and other neurotrophic factors, could potentially be used as an agent to promote the differentiation of DA neuron-like cells from hUCB-MSCs for cell therapy of Parkinson's disease without creating legal or ethical issues.

  17. L-DOPA modulates cell viability through the ERK-c-Jun system in PC12 and dopaminergic neuronal cells.

    PubMed

    Park, Keun Hong; Shin, Keon Sung; Zhao, Ting Ting; Park, Hyun Jin; Lee, Kyung Eun; Lee, Myung Koo

    2016-02-01

    dopaminergic neuronal cells.

  18. Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson's disease.

    PubMed

    Deng, Xingli; Liang, Yuanxin; Lu, Hua; Yang, Zhiyong; Liu, Ru'en; Wang, Jinkun; Song, Xiaobin; Long, Jiang; Li, Yu; Lei, Deqiang; Feng, Zhongtang

    2013-01-01

    Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson's disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo.

  19. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats

    PubMed Central

    Espinosa, Pedro; Silva, Roxana A.; Sanguinetti, Nicole K.; Venegas, Francisca C.; Riquelme, Raul; González, Luis F.; Cruz, Gonzalo; Renard, Georgina M.; Moya, Pablo R.; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area. PMID:26904299

  20. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats.

    PubMed

    Espinosa, Pedro; Silva, Roxana A; Sanguinetti, Nicole K; Venegas, Francisca C; Riquelme, Raul; González, Luis F; Cruz, Gonzalo; Renard, Georgina M; Moya, Pablo R; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area.

  1. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice.

    PubMed

    Zhang, Fang; Lu, Jian; Zhang, Ji-Guo; Xie, Jun-Xia

    2015-02-01

    The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect. PMID:25883632

  2. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice

    PubMed Central

    Zhang, Fang; Lu, Jian; Zhang, Ji-guo; Xie, Jun-xia

    2015-01-01

    The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect. PMID:25883632

  3. Neurotoxicity of cerebro-spinal fluid from patients with Parkinson's disease on mesencephalic primary cultures as an in vitro model of dopaminergic neurons.

    PubMed

    Kong, Ping; Zhang, Ben-Shu; Lei, Ping; Kong, Xiao-Dong; Zhang, Shi-Shuang; Li, Dai; Zhang, Yun

    2015-08-01

    Parkinson's disease is a degenerative disorder of the central nervous system. In spite of extensive research, neither the cause nor the mechanisms have been firmly established thus far. One assumption is that certain toxic substances may exist in the cerebro-spinal fluid (CSF) of Parkinson's disease patients. To confirm the neurotoxicity of CSF and study the potential correlation between neurotoxicity and the severity of Parkinson's disease, CSF was added to cultured cells. By observation of cell morphology, changes in the levels of lactate dehydrogenase, the ratio of tyrosine hydroxylase-positive cells, and the expression of tyrosine hydroxylase mRNA and protein, the differences between the two groups were shown. The created in vitro model of dopaminergic neurons using primary culture of mouse embryonic mesencephalic tissue is suitable for the study of neurotoxicity. The observations of the present study indicated that CSF from Parkinson's disease patients contains factors that can cause specific injury to cultured dopaminergic neurons. However, no obvious correlation was found between the neurotoxicity of CSF and the severity of Parkinson's disease.

  4. Morphological Properties in Dopaminergic Neurons of the Rat Midbrain during Early Developmental Stages and One Numerical Approach to Passive-Membrane Modeling

    NASA Astrophysics Data System (ADS)

    Tateno, Takashi

    In this study, I aim to understand morphological changes in dopaminergic neurons of the rat midbrain during early developmental stages and their computational properties in the dendrites. To this end, firstly, I measured morphological details of dopaminergic neurons using an immunochemical double-staining technique. In the viewpoint of the Rall's equivalent-cylinder model, secondly, I tested if the data satisfied one of conditions (3/2 power law) of the Rall's model. On the basis of the experimental data, I next investigated if some branches in the individual dendrites had special selectivity in efficient passive propagation of membrane potentials between the branches of individual cells and different cells. The results show that the Rall's 3/2 power law was not satisfied in many branch points and that among branches of each dendrite, specific selectivity in efficient propagation was not found. In addition, I note an implementation method in which the finite element method is applied to one-dimensional cable model of dendrites and give some numerical examples.

  5. Conditioned medium from human amniotic epithelial cells may induce the differentiation of human umbilical cord blood mesenchymal stem cells into dopaminergic neuron-like cells.

    PubMed

    Yang, Shu; Sun, Hai-Mei; Yan, Ji-Hong; Xue, Hong; Wu, Bo; Dong, Fang; Li, Wen-Shuai; Ji, Feng-Qing; Zhou, De-Shan

    2013-07-01

    Dopaminergic (DA) neuron therapy has been established as a new clinical tool for treating Parkinson's disease (PD). Prior to cell transplantation, there are two primary issues that must be resolved: one is the appropriate seed cell origin, and the other is the efficient inducing technique. In the present study, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) were used as the available seed cells, and conditioned medium from human amniotic epithelial cells (ACM) was used as the inducing reagent. Results showed that the proportion of DA neuron-like cells from hUCB-MSCs was significantly increased after cultured in ACM, suggested by the upregulation of DAT, TH, Nurr1, and Pitx3. To identify the process by which ACM induces DA neuron differentiation, we pretreated hUCB-MSCs with k252a, the Trk receptor inhibitor of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and found that the proportion of DA neuron-like cells was significantly decreased compared with ACM-treated hUCB-MSCs, suggesting that NGF and BDNF in ACM were involved in the differentiation process. However, we could not rule out the involvement of other unidentified factors in the ACM, because ACM + k252a treatment does not fully block DA neuron-like cell differentiation compared with control. The transplantation of ACM-induced hUCB-MSCs could ameliorate behavioral deficits in PD rats, which may be associated with the survival of engrafted DA neuron-like cells. In conclusion, we propose that hUCB-MSCs are a good source of DA neuron-like cells and that ACM is a potential inducer to obtain DA neuron-like cells from hUCB-MSCs in vitro for an ethical and legal cell therapy for PD.

  6. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta.

    PubMed

    Smeyne, M; Sladen, P; Jiao, Y; Dragatsis, I; Smeyne, R J

    2015-06-01

    Exercise reduces the risk of developing a number of neurological disorders and increases the efficiency of cellular energy production. However, overly strenuous exercise produces oxidative stress. Proper oxygenation is crucial for the health of all tissues, and tight regulation of cellular oxygen is critical to balance O2 levels and redox homeostasis in the brain. Hypoxia Inducible Factor (HIF)1α and HIF2α are transcription factors regulated by cellular oxygen concentration that initiate gene regulation of vascular development, redox homeostasis, and cell cycle control. HIF1α and HIF2α contribute to important adaptive mechanisms that occur when oxygen and ROS homeostasis become unbalanced. It has been shown that preconditioning by exposure to a stressor prior to a hypoxic event reduces damage that would otherwise occur. Previously we reported that 3 months of exercise protects SNpc dopaminergic (DA) neurons from toxicity caused by Complex I inhibition. Here, we identify the cells in the SNpc that express HIF1α and HIF2α and show that running exercise produces hypoxia in SNpc DA neurons, and alters the expression of HIF1α and HIF2α. In mice carrying a conditional knockout of Hif1α in postnatal neurons we observe that exercise alone produces SNpc TH+ DA neuron loss. Loss of HIF1α also abolishes exercise-induced neuroprotection. In mice lacking Hif2α in postnatal neurons, the number of TH+ DA neurons in the adult SNpc is diminished, but 3months of exercise rescues this loss. We conclude that HIF1α is necessary for exercise-induced neuroprotection and both HIF1α and HIF2α are necessary for the survival and function of adult SNpc DA neurons. PMID:25796140

  7. BMP2 promotes the differentiation of neural stem cells into dopaminergic neurons in vitro via miR-145-mediated upregulation of Nurr1 expression

    PubMed Central

    Yan, Wang; Chen, Zhao-Ying; Chen, Jia-Qi; Chen, Hui-Min

    2016-01-01

    Background: Neural stem cells (NSCs) are pluripotent and self-renewing cells which could differentiate into diverse types of neural cells, such as dopaminergic (DA) neurons, the loss of which is the typical characteristic of Parkinson’s disease (PD). This study aimed to examine the molecular mechanisms of BMP2-mediating NSCs differentiation into DA neurons. Methods: Different concentrations of BMP2 were used to induce the differentiation of NSCs into DA neurons, which were characterized by the number and the neurite lengths of tyrosine hydroxylase (TH)+ and dopamine transporter (DAT)+ neurons by immunocytochemistry. qRT-PCR and Western blot were performed to explore the expression of miR-145 and Nurr1. The methylation level of miR-145 promoter was examined by DNA methylation analyses. The regulation of miR-145 on Nurr1 was detected by Dual-Luciferase reporter assay. Results: The number of TH+ and DAT+ neurons were significantly increased in NSCs treated with 20 and 100 ng/ml of BMP2, as well as the neurite lengths of TH+ and DAT+ neurons. The reduced level of miR-145 and up-regulated Nurr1 were observed in NSCs induced by BMP2. The hypermethylation level of miR-145 promoter down-regulated the expression of miR-145 in NSCs pretreated with BMP2, which was regulated by DNMT3b. Luciferase reporter assay showed that Nurr1 was a direct target of miR-145. miR-145 overexpression restrained the differentiating effect of BMP2. Moreover, overexpression of Nurr1 abrogated this effect of miR-145 overexpression. Conclusion: Our results showed that BMP2 promoted the differentiation of NSCs into DA neurons in vitro and miR-145 and Nurr1 were involved in the neurotrophic effects of BMP2. PMID:27725851

  8. Brain-derived neurotrophic factor modulates dopaminergic deficits in a transgenic mouse model of Huntington's disease.

    PubMed

    Pineda, José R; Canals, Josep M; Bosch, Miquel; Adell, Albert; Mengod, Guadalupe; Artigas, Francesc; Ernfors, Patrik; Alberch, Jordi

    2005-06-01

    Dysfunction of dopaminergic neurons may contribute to motor impairment in Huntington's disease. Here, we study the role of brain-derived neurotrophic factor (BDNF) in alterations of the nigrostriatal system associated with transgenics carrying mutant huntingtin. Using huntingtin-BDNF+/- double-mutant mice, we analyzed the effects of reducing the levels of BDNF expression in a model of Huntington's disease (R6/1). When compared with R6/1 mice, these mice exhibit an increased number of aggregates in the substantia nigra pars compacta. In addition, reduction of BDNF expression exacerbates the dopaminergic neuronal dysfunction seen in mutant huntingtin mice, such as the decrease in retrograde labelling of dopaminergic neurons and striatal dopamine content. However, mutant huntingtin mice with normal or lowered BDNF expression show the same decrease in the anterograde transport, number of dopaminergic neurons and nigral volume. In addition, reduced BDNF expression causes decreased dopamine receptor expression in mutant huntingtin mice. Examination of changes in locomotor activity induced by dopamine receptor agonists revealed that, in comparison with R6/1 mice, the double mutant mice exhibit lower activity in response to amphetamine, but not to apomorphine. In conclusion, these findings demonstrate that the decreased BDNF expression observed in Huntington's disease exacerbates dopaminergic neuronal dysfunction, which may participate in the motor disturbances associated with this neurodegenerative disorder.

  9. Contaminant-specific targeting of olfactory sensory neuron classes: connecting neuron class impairment with behavioural deficits.

    PubMed

    Dew, William A; Azizishirazi, Ali; Pyle, Greg G

    2014-10-01

    The olfactory system of fish comprises several classes of olfactory sensory neurons (OSNs). The odourants L-alanine and taurocholic acid (TCA) specifically activate microvillous or ciliated OSNs, respectively, in fish. We recorded electro-olfactograms (EOG) in fathead minnows (Pimephales promelas; a laboratory-reared model species) and wild yellow perch (Perca flavescens) whose olfactory chambers were perfused with either L-alanine or TCA to determine if OSN classes were differentially vulnerable to contaminants, in this case copper or nickel. Results were consistent in both species and demonstrated that nickel targeted and impaired microvillous OSN function, while copper targeted and impaired ciliated OSN function. This result suggests that contaminant-specific effects observed in model laboratory species extrapolate to wild fish populations. Moreover, fathead minnows exposed to copper failed to perceive a conspecific alarm cue in a choice maze, whereas those exposed to nickel could respond to the same conspecific cue. These results demonstrate that fathead minnows perceive conspecific, damage-released alarm cue by ciliated, but not microvillous, OSNs. Fish living in copper-contaminated environments may be more vulnerable to predation than those in clean lakes owing to targeted effects on ciliated OSNs. PMID:24630454

  10. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    SciTech Connect

    Sun, Lei; Carr, Aprell L.; Li, Ping; Lee, Jessica; McGregor, Mary; Li, Lei

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  11. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    PubMed

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD. PMID:27103531

  12. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    PubMed

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD.

  13. Brain human monoclonal autoantibody from sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: implications in human disease.

    PubMed

    Cox, Carol J; Sharma, Meenakshi; Leckman, James F; Zuccolo, Jonathan; Zuccolo, Amir; Kovoor, Abraham; Swedo, Susan E; Cunningham, Madeleine W

    2013-12-01

    How autoantibodies target the brain and lead to disease in disorders such as Sydenham chorea (SC) is not known. SC is characterized by autoantibodies against the brain and is the main neurologic manifestation of streptococcal-induced rheumatic fever. Previously, our novel SC-derived mAb 24.3.1 was found to recognize streptococcal and brain Ags. To investigate in vivo targets of human mAb 24.3.1, VH/VL genes were expressed in B cells of transgenic (Tg) mice as functional chimeric human VH 24.3.1-mouse C-region IgG1(a) autoantibody. Chimeric human-mouse IgG1(a) autoantibody colocalized with tyrosine hydroxylase in the basal ganglia within dopaminergic neurons in vivo in VH 24.3.1 Tg mice. Both human mAb 24.3.1 and IgG1(a) in Tg sera were found to react with human dopamine D2 receptor (D2R). Reactivity of chorea-derived mAb 24.3.1 or SC IgG with D2R was confirmed by dose-dependent inhibitory signaling of D2R as a potential consequence of targeting dopaminergic neurons, reaction with surface-exposed FLAG epitope-tagged D2R, and blocking of Ab reactivity by an extracellular D2R peptide. IgG from SC and a related subset of streptococcal-associated behavioral disorders called "pediatric autoimmune neuropsychiatric disorder associated with streptococci" (PANDAS) with small choreiform movements reacted in ELISA with D2R. Reaction with FLAG-tagged D2R distinguished SC from PANDAS, whereas sera from both SC and PANDAS induced inhibitory signaling of D2R on transfected cells comparably to dopamine. In this study, we define a mechanism by which the brain may be altered by Ab in movement and behavioral disorders. PMID:24184556

  14. miR-124 regulates cell apoptosis and autophagy in dopaminergic neurons and protects them by regulating AMPK/mTOR pathway in Parkinson’s disease

    PubMed Central

    Gong, Xin; Wang, Huiqing; Ye, Yongyi; Shu, Yugao; Deng, Yongwen; He, Xiaozheng; Lu, Guohui; Zhang, Shizhong

    2016-01-01

    The important roles of miR-124 in the development and progression of various diseases are being increasing recognized. This study was aimed to investigate the potential roles of miR-124 in dopaminergic (DA) neuronal apoptosis and autophagy in Parkinson’s disease (PD) and to explore their mechanisms. Human SH-SY5Y cells that are treated with MPTP were transfected with mature miR-124 vector and control empty vector. The effect of MPTP on miR-124 mRNA level was analyzed using RT-PCR analysis. Furthermore, the effects of miR-124 expression on neuronal apoptosis and autophagy, as well as the expression of proteins in the AMPK/mTOR pathway, were analyzed using RT-PCR and western blotting. This study found that miR-124 was down-regulated in the MPTP-treated (100 μM) neurons, and miR-124 suppression significantly increased cell apoptosis and induced autophagy-associated protein expression, including that of Beclin 1 and increased the ratio of LC3 II/LC3 I compared with that in controls. In addition, in vitro rescue of miR-124 significantly decreased the percentage of apoptotic cells and the ratio of LC3 II/LC3 I, findings that were approximately equal to the controls. Moreover, miR-124 suppression increased p-AMPK but decreased p-mTOR levels in neurons. Our study suggested that miR-124 functions as a protector of DA neurons during PD through the involvement of cell apoptosis and autophagy by regulating the AMPK/mTOR pathway. PMID:27347320

  15. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons

    PubMed Central

    Kimm, Tilia; Khaliq, Zayd M.

    2015-01-01

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency–current (f–I) relationship, whereas BK channel inhibition had little effect on the f–I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f–I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra

  16. Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson's disease.

    PubMed

    Reglodi, Dóra; Lubics, Andrea; Tamás, Andrea; Szalontay, Luca; Lengvári, István

    2004-05-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide, exerting different actions in the central and peripheral nervous systems. Among others, it has neurotrophic and neuroprotective effects. In the present study, we investigated the effects of PACAP in a rat model of Parkinson's disease. Rats were given unilateral injections of 6-hydroxydopamine (6-OHDA) into the substantia nigra. PACAP-treated animals received 0.1 microg PACAP as a pretreatment. Control animals without PACAP treatment displayed severe hypokinesia at 1 and 10 days postlesion when compared to animals receiving saline only. In only 1 day postlesion, by contrast, PACAP-treated rats showed no hypokinesia. Asymmetrical signs, such as turning, rearing and biased thigmotaxic scanning were observed in all lesioned animals 1 day postlesion. PACAP-treated animals, however, showed better recovery as they ceased to display asymmetrical signs 10 days later and showed markedly less apomorphine-induced rotations. Tyrosine-hydroxylase immunohistochemistry revealed that control animals had more than 95% loss of the dopaminergic cells in the ipsilateral substantia nigra, while PACAP-treated animals had only approximately 50% loss of dopaminergic cells. In summary, the present results show the neuroprotective effect of PACAP in 6-OHDA-induced lesion of substantia nigra, with less severe acute neurological symptoms and a more rapid amelioration of behavioral deficits.

  17. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model.

    PubMed

    Tønnesen, Jan; Parish, Clare L; Sørensen, Andreas T; Andersson, Angelica; Lundberg, Cecilia; Deisseroth, Karl; Arenas, Ernest; Lindvall, Olle; Kokaia, Merab

    2011-03-04

    Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D₂ autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.

  18. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells

    PubMed Central

    Oliveira, L M A; Falomir-Lockhart, L J; Botelho, M G; Lin, K-H; Wales, P; Koch, J C; Gerhardt, E; Taschenberger, H; Outeiro, T F; Lingor, P; Schüle, B; Arndt-Jovin, D J; Jovin, T M

    2015-01-01

    We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction. PMID:26610207

  19. 7α-Hydroxypregnenolone, a key neuronal modulator of locomotion, stimulates upstream migration by means of the dopaminergic system in salmon

    PubMed Central

    Haraguchi, Shogo; Yamamoto, Yuzo; Suzuki, Yuko; Hyung Chang, Joon; Koyama, Teppei; Sato, Miku; Mita, Masatoshi; Ueda, Hiroshi; Tsutsui, Kazuyoshi

    2015-01-01

    Salmon migrate upstream against an opposing current in their natal river. However, the molecular mechanisms that stimulate upstream migratory behavior are poorly understood. Here, we show that 7α-hydroxypregnenolone (7α-OH PREG), a newly identified neuronal modulator of locomotion, acts as a key factor for upstream migration in salmon. We first identified 7α-OH PREG and cytochrome P450 7α-hydroxylase (P4507α), a steroidogenic enzyme producing 7α-OH PREG, in the salmon brain and then found that 7α-OH PREG synthesis in the brain increases during upstream migration. Subsequently, we demonstrated that 7α-OH PREG increases upstream migratory behavior of salmon. We further found that 7α-OH PREG acts on dopamine neurons in the magnocellular preoptic nucleus during upstream migration. Thus, 7α-OH PREG stimulates upstream migratory behavior through the dopaminergic system in salmon. These findings provide new insights into the molecular mechanisms of fish upstream migration. PMID:26220247

  20. Selective Deletion of the Leptin Receptor in Dopamine Neurons Produces Anxiogenic-like Behavior and Increases Dopaminergic Activity in Amygdala

    PubMed Central

    Liu, Jing; Perez, Stephanie M.; Zhang, Wei; Lodge, Daniel J.; Lu, Xin-Yun

    2012-01-01

    Leptin receptors (Lepr) are expressed on midbrain dopamine neurons. However, the specific role of Lepr signaling in dopamine neurons remains to be clarified. In the present study, we generated a line of conditional knockout mice lacking functional leptin receptors selectively on dopamine neurons (LeprDAT-Cre). These mice exhibit normal body weight and feeding. Behaviorally, LeprDAT-Cre mice display an anxiogenic-like phenotype in the elevated plus-maze, light-dark box, social interaction and novelty-suppressed feeding tests. Depression-related behaviors in the chronic stress-induced anhedonia, forced swim and tail-suspension tests were not affected by deletion of Lepr in dopamine neurons. In vivo electrophysiological recordings of dopamine neurons in the ventral tegmental area (VTA) revealed an increase in burst firing in LeprDAT-Cre mice. Moreover, blockade of D1-dependent dopamine transmission in the central amygdala by local microinjection of the D1 antagonist SCH23390 attenuated the anxiogenic phenotype of LeprDAT-Cre mice. These findings suggest that leptin receptor signaling in midbrain dopamine neurons has a crucial role for the expression of anxiety and for the dopamine modulation of amygdala function. PMID:21483433

  1. Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: a model for early Parkinson's disease.

    PubMed

    Eagle, Andrew L; Olumolade, Oluyemi O; Otani, Hajime

    2015-03-01

    Parkinson's disease (PD) produces progressive nigrostriatal dopamine (DA) denervation resulting in cognitive and motor impairment. However, it is unknown whether cognitive impairments, such as instrumental learning deficits, are associated with the early stage PD-induced mild DA denervation. The current study sought to model early PD-induced instrumental learning impairments by assessing the effects of low dose (5.5μg), bilateral 6OHDA-induced striatal DA denervation on acquisition of instrumental stimulus discrimination in rats. 6OHDA (n=20) or sham (n=10) lesioned rats were tested for stimulus discrimination acquisition either 1 or 2 weeks post surgical lesion. Stimulus discrimination acquisition across 10 daily sessions was used to assess discriminative accuracy, or a probability measure of the shift toward reinforced responding under one stimulus condition (Sd) away from extinction, when reinforcement was withheld, under another (S(d) phase). Striatal DA denervation was assayed by tyrosine hydroxylase (TH) staining intensity. Results indicated that 6OHDA lesions produced significant loss of dorsal striatal TH staining intensity and marked impairment in discrimination acquisition, without inducing akinetic motor deficits. Rather 6OHDA-induced impairment was associated with perseveration during extinction (S(Δ) phase). These findings suggest that partial, bilateral striatal DA denervation produces instrumental learning deficits, prior to the onset of gross motor impairment, and suggest that the current model is useful for investigating mild nigrostriatal DA denervation associated with early stage clinical PD.

  2. METHYLMERCURY IMPAIRS NEURONAL DIFFERENTIATION BY ALTERING NEUROTROPHIN SIGNALING.

    EPA Science Inventory

    In previous in vivo studies, we observed that developmental exposure to CH3Hg can alter neocortical morphology and neurotrophin signaling. Using primed PC12 cells as a model system for neuronal differentiation, we examined the hypothesis that the developmental effects of CH3Hg ma...

  3. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons

    PubMed Central

    Aguirre, Pabla; Mena, Natalia P.; Carrasco, Carlos M.; Muñoz, Yorka; Pérez-Henríquez, Patricio; Morales, Rodrigo A.; Cassels, Bruce K.; Méndez-Gálvez, Carolina; García-Beltrán, Olimpo; González-Billault, Christian; Núñez, Marco T.

    2015-01-01

    Neuronal death in Parkinson’s disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2’-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death. PMID:26658949

  4. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons.

    PubMed

    Aguirre, Pabla; Mena, Natalia P; Carrasco, Carlos M; Muñoz, Yorka; Pérez-Henríquez, Patricio; Morales, Rodrigo A; Cassels, Bruce K; Méndez-Gálvez, Carolina; García-Beltrán, Olimpo; González-Billault, Christian; Núñez, Marco T

    2015-01-01

    Neuronal death in Parkinson's disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death. PMID:26658949

  5. Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells.

    PubMed

    Pyszko, Joanna; Strosznajder, Joanna B

    2014-08-01

    Sphingosine kinases (Sphk1/2) are crucial enzymes in regulation of the biostat between sphingosine-1-phosphate (S1P) and ceramide and play an important role in the pathogenesis/pathomechanism of Alzheimer's disease (AD). These enzymes synthesise S1P, which regulates neurotransmission, synaptic function and neuron cell proliferation, by activating five G protein-coupled receptors (S1P1-5). However, S1P synthesised by Sphk2 could be involved in amyloid β (Aβ) release by stimulation of Aβ precursor protein degradation. The significance of this bioactive sphingolipid in the pathogenesis of Parkinson's disease (PD) is unknown. The aim of our study was to investigate the expression level of Sphk1 and its role in human dopaminergic neuronal cell (SH-SY5Y) viability under oxidative stress, evoked by 1-methyl-4-phenylpyridinium (MPP+). Moreover, the mechanism of S1P action on the death signalling pathway in these experimental conditions was evaluated. Our study indicated marked downregulation of Sphk1 expression in this cellular PD model. Inhibition of Sphk1 decreased SH-SY5Y cell viability and concomitantly enhanced the reactive oxygen species (ROS) level. It was found that exogenous S1P (1 μM) exerted the neuroprotective effect by activation of Sphk1 and S1P1 receptor gene expression. Moreover, S1P downregulated Bax and harakiri, death protein 5 (Hrk/DP5) expression and enhanced cell viability in MPP+-treated cells. The neuroprotective mechanism of S1P is mainly dependent on S1P1 receptor signalling, which was indicated by using specific agonists and antagonists of S1P1 receptor. The results show that S1P and S1P1 receptor agonists protected a significant population of neuronal cells against death. PMID:24399507

  6. Dietary Plant Lectins Appear to Be Transported from the Gut to Gain Access to and Alter Dopaminergic Neurons of Caenorhabditis elegans, a Potential Etiology of Parkinson's Disease.

    PubMed

    Zheng, Jolene; Wang, Mingming; Wei, Wenqian; Keller, Jeffrey N; Adhikari, Binita; King, Jason F; King, Michael L; Peng, Nan; Laine, Roger A

    2016-01-01

    Lectins from dietary plants have been shown to enhance drug absorption in the gastrointestinal tract of rats, be transported trans-synaptically as shown by tracing of axonal and dendritic paths, and enhance gene delivery. Other carbohydrate-binding protein toxins are known to traverse the gut intact in dogs. Post-feeding rhodamine- or TRITC-tagged dietary lectins, the lectins were tracked from gut to dopaminergic neurons (DAergic-N) in transgenic Caenorhabditis elegans (C. elegans) [egIs1(Pdat-1:GFP)] where the mutant has the green fluorescent protein (GFP) gene fused to a dopamine transport protein gene labeling DAergic-N. The lectins were supplemented along with the food organism Escherichia coli (OP50). Among nine tested rhodamine/TRITC-tagged lectins, four, including Phaseolus vulgaris erythroagglutinin (PHA-E), Bandeiraea simplicifolia (BS-I), Dolichos biflorus agglutinin (DBA), and Arachis hypogaea agglutinin (PNA), appeared to be transported from gut to the GFP-DAergic-N. Griffonia Simplicifolia and PHA-E, reduced the number of GFP-DAergic-N, suggesting a toxic activity. PHA-E, BS-I, Pisum sativum (PSA), and Triticum vulgaris agglutinin (Succinylated) reduced fluorescent intensity of GFP-DAergic-N. PHA-E, PSA, Concanavalin A, and Triticum vulgaris agglutinin decreased the size of GFP-DAergic-N, while BS-I increased neuron size. These observations suggest that dietary plant lectins are transported to and affect DAergic-N in C. elegans, which support Braak and Hawkes' hypothesis, suggesting one alternate potential dietary etiology of Parkinson's disease (PD). A recent Danish study showed that vagotomy resulted in 40% lower incidence of PD over 20 years. Differences in inherited sugar structures of gut and neuronal cell surfaces may make some individuals more susceptible in this conceptual disease etiology model. PMID:27014695

  7. Perinatal Exposure to Neuregulin-1 Results in Disinhibition of Adult Midbrain Dopaminergic Neurons: Implication in Schizophrenia Modeling

    PubMed Central

    Namba, Hisaaki; Okubo, Takeshi; Nawa, Hiroyuki

    2016-01-01

    Aberrant neuregulin-1 (NRG1) signals are suggested to associate with the neuropathophysiology of schizophrenia. Employing a mouse schizophrenia model established by neonatal neuregulin-1 challenge, we analysed postpubertal consequence of the NRG1 pretreatment for the electrophysiological property of nigral dopamine neurons. In vivo single unit recordings from anaesthetized NRG1-pretreated mice revealed increased spike bursting of nigral dopamine neurons. In slice preparations from NRG1-pretreated mice, spontaneous firing was elevated relative to controls. The relative increase in firing rates was abolished by a GABAA receptor antagonist. Whole-cell recording showed that perinatal NRG1 pretreatment diminished inhibitory miniature synaptic currents as well as GABAA receptor sensitivity. These results collectively suggest that perinatal exposure to neuregulin-1 results in the disinhibition of nigral dopamine neurons to influence their firing properties at the adult stage when the behavioral deficits are evident. PMID:26935991

  8. Principal Component Analysis of Multimodal Neuromelanin MRI and Dopamine Transporter PET Data Provides a Specific Metric for the Nigral Dopaminergic Neuronal Density.

    PubMed

    Kawaguchi, Hiroshi; Shimada, Hitoshi; Kodaka, Fumitoshi; Suzuki, Masayuki; Shinotoh, Hitoshi; Hirano, Shigeki; Kershaw, Jeff; Inoue, Yuichi; Nakamura, Masaki; Sasai, Taeko; Kobayashi, Mina; Suhara, Tetsuya; Ito, Hiroshi

    2016-01-01

    The loss of dopaminergic (DA) neurons in the substantia nigra (SN) is a major pathophysiological feature of patients with Parkinson's disease (PD). As nigral DA neurons contain both neuromelanin (NM) and dopamine transporter (DAT), decreased intensities in both NM-sensitive MRI and DAT PET reflect decreased DA neuronal density. This study demonstrates that a more specific metric for the nigral DA neuronal density can be derived with multimodal MRI and PET. Participants were 11 clinically diagnosed PD patients and 10 age and gender matched healthy controls (HCs). Two quantities, the NM-related index (RNM) and the binding potential of the radiotracer [18F]FE-PE2I to DAT (BPND) in SN, were measured for each subject using MRI and PET, respectively. Principal component analysis (PCA) was applied to the multimodal data set to estimate principal components. One of the components, PCP, corresponds to a basis vector oriented in a direction where both BPND and RNM increase. The ability of BPND, RNM and PCP to discriminate between HC and PD groups was compared. Correlation analyses between the motor score of the unified Parkinson's disease rating scale and each metric were also performed. PCP, BPND and RNM for PD patients were significantly lower than those for HCs (F = 16.26, P<0.001; F = 6.05, P = 0.008; F = 7.31, P = 0.034, respectively). The differential diagnostic performance between the HC and PD groups as assessed by the area under the receiver-operating characteristic curve was best for PCP (0.94, 95% CI: 0.66-1.00). A significant negative correlation was found between the motor severity score and PCp (R = -0.70, P<0.001) and RNM (R = -0.52, P = 0.015), but not for BPND (R = -0.36, P = 0.110). PCA of multimodal NM-sensitive MRI and DAT PET data provides a metric for nigral DA neuronal density that will help illuminate the pathophysiology of PD in SN. Further studies are required to explore whether PCA is useful for other parkinsonian syndromes. PMID:26954690

  9. Principal Component Analysis of Multimodal Neuromelanin MRI and Dopamine Transporter PET Data Provides a Specific Metric for the Nigral Dopaminergic Neuronal Density

    PubMed Central

    Kawaguchi, Hiroshi; Shimada, Hitoshi; Kodaka, Fumitoshi; Suzuki, Masayuki; Shinotoh, Hitoshi; Hirano, Shigeki; Kershaw, Jeff; Inoue, Yuichi; Nakamura, Masaki; Sasai, Taeko; Kobayashi, Mina; Suhara, Tetsuya; Ito, Hiroshi

    2016-01-01

    The loss of dopaminergic (DA) neurons in the substantia nigra (SN) is a major pathophysiological feature of patients with Parkinson's disease (PD). As nigral DA neurons contain both neuromelanin (NM) and dopamine transporter (DAT), decreased intensities in both NM-sensitive MRI and DAT PET reflect decreased DA neuronal density. This study demonstrates that a more specific metric for the nigral DA neuronal density can be derived with multimodal MRI and PET. Participants were 11 clinically diagnosed PD patients and 10 age and gender matched healthy controls (HCs). Two quantities, the NM-related index (RNM) and the binding potential of the radiotracer [18F]FE-PE2I to DAT (BPND) in SN, were measured for each subject using MRI and PET, respectively. Principal component analysis (PCA) was applied to the multimodal data set to estimate principal components. One of the components, PCP, corresponds to a basis vector oriented in a direction where both BPND and RNM increase. The ability of BPND, RNM and PCP to discriminate between HC and PD groups was compared. Correlation analyses between the motor score of the unified Parkinson's disease rating scale and each metric were also performed. PCP, BPND and RNM for PD patients were significantly lower than those for HCs (F = 16.26, P<0.001; F = 6.05, P = 0.008; F = 7.31, P = 0.034, respectively). The differential diagnostic performance between the HC and PD groups as assessed by the area under the receiver-operating characteristic curve was best for PCP (0.94, 95% CI: 0.66–1.00). A significant negative correlation was found between the motor severity score and PCp (R = -0.70, P<0.001) and RNM (R = -0.52, P = 0.015), but not for BPND (R = -0.36, P = 0.110). PCA of multimodal NM-sensitive MRI and DAT PET data provides a metric for nigral DA neuronal density that will help illuminate the pathophysiology of PD in SN. Further studies are required to explore whether PCA is useful for other parkinsonian syndromes. PMID:26954690

  10. NANOMETER SIZE DIESEL EXHAUST PARTICLES ARE SELECTIVELY TOXIC TO DOPAMINERGIC NEURONS: THE ROLE OF MICROGLIA, PHAGOCYTOSIS, AND NADPH OXIDASE.

    EPA Science Inventory

    This manuscript describes the neurotoxic response of cultured brain cells to diesel exhaust particles (DEP). DEP produces an early production of free radicals (i.e., oxidative stress) in one CNS cell type (the microglial) and the subsequent degeneration of specific neuronal...

  11. The {beta}-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons

    SciTech Connect

    Edman, Linda C.; Mira, Helena; Arenas, Ernest

    2008-06-10

    {beta}-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of {beta}-chemokines in midbrain development. Here we report that two {beta}-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of {beta}-chemokines in the developing brain and identify {beta}-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that {beta}-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD)

  12. Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex.

    PubMed

    Aoyama, Yuki; Toriumi, Kazuya; Mouri, Akihiro; Hattori, Tomoya; Ueda, Eriko; Shimato, Akane; Sakakibara, Nami; Soh, Yuka; Mamiya, Takayoshi; Nagai, Taku; Kim, Hyoung-Chun; Hiramatsu, Masayuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2016-01-01

    Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2'-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring. PMID:26105135

  13. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    PubMed Central

    2011-01-01

    Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN

  14. Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease

    PubMed Central

    2010-01-01

    )-positive microglial cells within the striatum and ventral midbrain, decreased expression of iNOS, Mac-1 and NADPH oxidase (PHOX), and downregulation of 3-Nitrotyrosine, a peroxynitrite finger print, in SNpc DAergic neurons. Conclusions Oral treatment with HCT1026 has a safe profile and a significant efficacy in counteracting MPTP-induced dopaminergic (DAergic) neurotoxicity, motor impairment and microglia activation in ageing mice. HCT1026 provides a novel promising approach towards the development of effective pharmacological neuroprotective strategies against PD. PMID:21092260

  15. Apocyanin, a Microglial NADPH Oxidase Inhibitor Prevents Dopaminergic Neuronal Degeneration in Lipopolysaccharide-Induced Parkinson's Disease Model.

    PubMed

    Sharma, Neha; Nehru, Bimla

    2016-07-01

    Microglia-associated inflammatory processes have been strongly implicated in the development and progression of Parkinson's disease (PD). Specifically, microglia are activated in response to lipopolysaccharide (LPS) and become chronic source of cytokines and reactive oxygen species (ROS) production. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex is responsible for extracellular as well as intracellular production of ROS by microglia and its expression is upregulated in PD. Therefore, targeting NADPH oxidase complex activation using an NADPH oxidase inhibitor, i.e., apocyanin seems to be an effective approach. The aim of present study was to investigate the neuroprotective effects of apocyanin in a LPS-induced PD model. LPS (5 μg) was injected intranigral and apocyanin was administered daily at a dose of 10 mg/kg b.wt (i.p.) during the experiment. LPS when injected into the substantia nigra (SN) reproduced the characteristic hallmark features of PD in rats. It elicited an inflammatory response characterized by glial cell activation (Iba-1, GFAP). Furthermore, LPS upregulated the gene expression of nuclear factor-κB (NFκB), iNOS, and gp91PHOX and resulted in an elevated total ROS production as well as NADPH oxidase activity. Subsequently, this resulted in dopaminergic loss as depicted by decreased tyrosine hydroxylase (TH) expression with substantial loss in neurotransmitter dopamine and its metabolites, whereas treatment with apocyanin significantly reduced the number of glial fibrillary acidic protein (GFAP) and Iba-1-positive cells in LPS-treated animals. It also mitigated microglial activation-induced inflammatory response and elevation in NADPH oxidase activity, thus reducing the extracellular as well as intracellular ROS production. The present study indicated that targeting NADPH oxidase can inhibit microglial activation and reduce a broad spectrum of toxic factors generation (i.e., cytokines, ROS, and reactive nitrogen species [RNS

  16. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats.

    PubMed

    Cai, Jingli; Yang, Ming; Poremsky, Elizabeth; Kidd, Sarah; Schneider, Jay S; Iacovitti, Lorraine

    2010-07-01

    Cell replacement therapy could be an important treatment strategy for Parkinson's disease (PD), which is caused by the degeneration of dopamine neurons in the midbrain (mDA). The success of this approach greatly relies on the discovery of an abundant source of cells capable of mDAergic function in the brain. With the paucity of available human fetal tissue, efforts have increasingly focused on renewable stem cells. Human induced pluripotent stem (hiPS) cells offer great promise in this regard. If hiPS cells can be differentiated into authentic mDA neuron, hiPS could provide a potential autologous source of transplant tissue when generated from PD patients, a clear advantage over human embryonic stem (hES) cells. Here, we report that mDA neurons can be derived from a commercially available hiPS cell line, IMR90 clone 4, using a modified hES differentiation protocol established in our lab. These cells express all the markers (Lmx1a, Aldh1a1, TH, TrkB), follow the same mDA lineage pathway as H9 hES cells, and have similar expression levels of DA and DOPAC. Moreover, when hiPS mDA progenitor cells are transplanted into 6-OHDA-lesioned PD rats, they survive long term and many develop into bona fide mDA neurons. Despite their differentiation and integration into the brain, many Nestin+ tumor-like cells remain at the site of the graft. Our data suggest that as with hES cells, selecting the appropriate population of mDA lineage cells and eliminating actively dividing hiPS cells before transplantation will be critical for the future success of hiPS cell replacement therapy in PD patients.

  17. Bee Venom Phospholipase A2, a Novel Foxp3+ Regulatory T Cell Inducer, Protects Dopaminergic Neurons by Modulating Neuroinflammatory Responses in a Mouse Model of Parkinson's Disease.

    PubMed

    Chung, Eun Sook; Lee, Gihyun; Lee, Chanju; Ye, Minsook; Chung, Hwan-suck; Kim, Hyunseong; Bae, Sung-joo S; Hwang, Deok-Sang; Bae, Hyunsu

    2015-11-15

    Foxp3-expressing CD4(+) regulatory T cells (Tregs) are vital for maintaining immune tolerance in animal models of various immune diseases. In the present study, we demonstrated that bee venom phospholipase A2 (bvPLA2) is the major BV compound capable of inducing Treg expansion and promotes the survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. We associated this neuroprotective effect of bvPLA2 with microglial deactivation and reduction of CD4(+) T cell infiltration. Interestingly, bvPLA2 had no effect on mice depleted of Tregs by injecting anti-CD25 Ab. This finding indicated that Treg-mediated modulation of peripheral immune tolerance is strongly involved in the neuroprotective effects of bvPLA2. Furthermore, our results showed that bvPLA2 directly bound to CD206 on dendritic cells and consequently promoted the secretion of PGE2, which resulted in Treg differentiation via PGE2 (EP2) receptor signaling in Foxp3(-)CD4(+) T cells. These observations suggest that bvPLA2-CD206-PGE2-EP2 signaling promotes immune tolerance through Treg differentiation and contributes to the prevention of various neurodegenerative diseases, including Parkinson's disease. PMID:26453752

  18. Folic acid supplementation rescues anomalies associated with knockdown of parkin in dopaminergic and serotonergic neurons in Drosophila model of Parkinson's disease.

    PubMed

    Srivastav, Saurabh; Singh, Sandeep Kumar; Yadav, Amarish Kumar; Srikrishna, Saripella

    2015-05-01

    parkin loss associated early-onset of Parkinson's disease, involves mitochondrial dysfunction and oxidative stress as the plausible decisive molecular mechanisms in disease pathogenesis. Mitochondrial dysfunction involves several up/down regulation of gene products, one of which being p53 is found to be elevated. Elevated p53 is involved in mitochondrial mediated apoptosis of neuronal cells in Parkinson's patients who are folate deficient as well. The present study therefore attempts to examine the effect of Folic acid (FA) supplementation in alleviation of anomalies associated with parkin knockdown using RNAi approach, specific to Dopaminergic (DA) neurons in Drosophila model system. Here we show that FA supplementation provide protection against parkin RNAi associated discrepancies, thereby improves locomotor ability, reduces mortality and oxidative stress, and partially improves Zn levels. Further, metabolic active cell status and ATP levels were also found to be improved thereby indicating improved mitochondrial function. To corroborate FA supplementation in mitochondrial functioning further, status of p53 and spargel was checked by qRT-PCR. Here we show that folic acid supplementation enrich mitochondrial functioning as depicted from improved spargel level and lowered p53 level, which was originally vice versa in parkin knockdown flies cultured in standard media. Our data thus support the potential of folic acid in alleviating the behavioural defects, oxidative stress, augmentation of zinc and ATP levels in parkin knock down flies. Further, folic acid role in repressing mitochondrial dysfunction is encouraging to further explore its possible mechanistic role to be utilized as potential therapeutics for Parkinson's disease. PMID:25824034

  19. Neurophysiological evidence of impaired self-monitoring in schizotypal personality disorder and its reversal by dopaminergic antagonism.

    PubMed

    Rabella, Mireia; Grasa, Eva; Corripio, Iluminada; Romero, Sergio; Mañanas, Miquel Àngel; Antonijoan, Rosa M; Münte, Thomas F; Pérez, Víctor; Riba, Jordi

    2016-01-01

    •We assessed self-monitoring in schizotypal personality disorder (SPD) using ERPs.•SPD patients showed reduced amplitude of the error-related negativity (ERN).•Dopamine antagonism improved behavior and enhanced the ERN in patients only.•An inhibited ERN is a potential endophenotype of schizophrenia-spectrum disorders.•Results show impaired self-monitoring in SPD associated with dopamine disbalance.

  20. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2014-01-01

    The dopaminergic neurons of the substantia nigra (SN), which constitute the origin of the nigrostriatal system, are vulnerable to age-related degenerative processes. For example, in humans there is a relatively small age-related loss of neurons but a marked decline of the dopaminergic phenotype associated with impaired voluntary motor control. However, the mechanisms responsible for the dysfunction and degeneration of SN dopamine neurons remain poorly understood. One potential contributor is mitochondrial dysfunction, resulting from an increased abundance of mitochondrial DNA (mtDNA) mutations such as deletions. Human studies have identified relatively high levels of mtDNA deletions in these cells in both aging and Parkinson's disease (>35%), with a higher abundance of deletions (>60%) in individual neurons with mitochondrial dysfunction. However, it is unknown whether similar mtDNA mutations occur in other species such as the rat. In the present study, we quantified mtDNA deletion abundance in laser microdissected SN dopaminergic neurons from young and old F344 rats. Our results indicate that mtDNA deletions accumulated with age, with approximately 20% more mtDNA deletions in SN dopaminergic neurons from old compared to young animals. Thus, while rat SN dopaminergic neurons do accumulate mtDNA deletions with aging, this does not reflect the deletion burden in humans, and other mechanisms may be operating to compensate for age-related mtDNA damage in the rat SN dopaminergic neurons. PMID:25612740

  1. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice

    PubMed Central

    Vingtdeux, Valérie; Chang, Eric H.; Frattini, Stephen A.; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J.; Gibson, Elizabeth L.; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T.; Marambaud, Philippe

    2016-01-01

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1−/−) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1−/− brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1−/− mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain. PMID:27066908

  2. Influence of caffeine on 3,4-methylenedioxymethamphetamine-induced dopaminergic neuron degeneration and neuroinflammation is age-dependent.

    PubMed

    Frau, Lucia; Costa, Giulia; Porceddu, Pier Francesca; Khairnar, Amit; Castelli, Maria Paola; Ennas, Maria Grazia; Madeddu, Camilla; Wardas, Jadwiga; Morelli, Micaela

    2016-01-01

    Previous studies have demonstrated that caffeine administration to adult mice potentiates glial activation induced by 3,4-methylenedioxymethamphetamine (MDMA). As neuroinflammatory response seems to correlate with neurodegeneration, and the young brain is particularly vulnerable to neurotoxicity, we evaluated dopamine neuron degeneration and glial activation in the caudate-putamen (CPu) and substantia nigra pars compacta (SNc) of adolescent and adult mice. Mice were treated with MDMA (4 × 20 mg/kg), alone or with caffeine (10 mg/kg). Interleukin (IL)-1β, tumor necrosis factor (TNF)-α, neuronal nitric oxide synthase (nNOS) were evaluated in CPu, whereas tyrosine hydroxylase (TH), glial fibrillary acidic protein, and CD11b were evaluated in CPu and SNc by immunohistochemistry. MDMA decreased TH in SNc of both adolescent and adult mice, whereas TH-positive fibers in CPu were only decreased in adults. In CPu of adolescent mice, caffeine potentiated MDMA-induced glial fibrillary acidic protein without altering CD11b, whereas in SNc caffeine did not influence MDMA-induced glial activation. nNOS, IL-1β, and TNF-α were increased by MDMA in CPu of adults, whereas in adolescents, levels were only elevated after combined MDMA plus caffeine. Caffeine alone modified only nNOS. Results suggest that the use of MDMA in association with caffeine during adolescence may exacerbate the neurotoxicity and neuroinflammation elicited by MDMA. Previous studies have demonstrated that caffeine potentiated glial activation induced by 3,4-methylenedioxymethamphetamine (MDMA) in adult mice. In this study, caffeine was shown to potentiate MDMA-induced dopamine neuron degeneration in substantia nigra pars compacta, astrogliosis, and TNF-α levels in caudate-putamen of adolescent mice. Results suggest that combined use of MDMA plus caffeine during adolescence may worsen the neurotoxicity and neuroinflammation elicited by MDMA. PMID:26442661

  3. Influence of caffeine on 3,4-methylenedioxymethamphetamine-induced dopaminergic neuron degeneration and neuroinflammation is age-dependent.

    PubMed

    Frau, Lucia; Costa, Giulia; Porceddu, Pier Francesca; Khairnar, Amit; Castelli, Maria Paola; Ennas, Maria Grazia; Madeddu, Camilla; Wardas, Jadwiga; Morelli, Micaela

    2016-01-01

    Previous studies have demonstrated that caffeine administration to adult mice potentiates glial activation induced by 3,4-methylenedioxymethamphetamine (MDMA). As neuroinflammatory response seems to correlate with neurodegeneration, and the young brain is particularly vulnerable to neurotoxicity, we evaluated dopamine neuron degeneration and glial activation in the caudate-putamen (CPu) and substantia nigra pars compacta (SNc) of adolescent and adult mice. Mice were treated with MDMA (4 × 20 mg/kg), alone or with caffeine (10 mg/kg). Interleukin (IL)-1β, tumor necrosis factor (TNF)-α, neuronal nitric oxide synthase (nNOS) were evaluated in CPu, whereas tyrosine hydroxylase (TH), glial fibrillary acidic protein, and CD11b were evaluated in CPu and SNc by immunohistochemistry. MDMA decreased TH in SNc of both adolescent and adult mice, whereas TH-positive fibers in CPu were only decreased in adults. In CPu of adolescent mice, caffeine potentiated MDMA-induced glial fibrillary acidic protein without altering CD11b, whereas in SNc caffeine did not influence MDMA-induced glial activation. nNOS, IL-1β, and TNF-α were increased by MDMA in CPu of adults, whereas in adolescents, levels were only elevated after combined MDMA plus caffeine. Caffeine alone modified only nNOS. Results suggest that the use of MDMA in association with caffeine during adolescence may exacerbate the neurotoxicity and neuroinflammation elicited by MDMA. Previous studies have demonstrated that caffeine potentiated glial activation induced by 3,4-methylenedioxymethamphetamine (MDMA) in adult mice. In this study, caffeine was shown to potentiate MDMA-induced dopamine neuron degeneration in substantia nigra pars compacta, astrogliosis, and TNF-α levels in caudate-putamen of adolescent mice. Results suggest that combined use of MDMA plus caffeine during adolescence may worsen the neurotoxicity and neuroinflammation elicited by MDMA.

  4. Characterization of the molecular events following impairment of NF-kappaB-driven transcription in neurons.

    PubMed

    Chiarugi, Alberto

    2002-12-30

    Nuclear factor-kappaB (NF-kappaB) is a transcription factor with a pivotal role in neuronal homeostasis. Indeed, NF-kappaB trans-activates several antiapoptotic genes in neurons and inhibition of NF-kappaB transcriptional activity triggers neuronal apoptosis. However, the exact mechanisms by which neurons undergo apoptosis in conditions of NF-kappaB inhibition are poorly understood. To further clarify how NF-kappaB operates in neurons, and to gather information on the molecular events occurring during NF-kappaB inhibition-dependent neuronal apoptosis, this study evaluated the effects of recently identified NF-kappaB inhibitors such as parthenolide, SN50, BAY 11-7082 and helenalin on primary cultures of rat cortical neurons. Data show that NF-kappaB was constitutively activated in neurons, and demonstrate for the first time that drug-dependent NF-kappaB inhibition induced rapid mitochondrial release of cytochrome c, caspase-9 and -3 activation, poly(ADP-ribose) polymerase-1 cleavage, membrane blebbing and nuclear fragmentation, without evidence of procaspase-8 and Bid processing. Interestingly, a burst of Akt activation occurred in neurons exposed to NF-kappaB inhibitors. These events were preceded by selective reduction of mRNAs of NF-kappaB-dependent, antiapoptotic Bcl-2 family members such as Bcl-x(L), Bcl-2 and, in particular, A1/Bfl-1. The present study reports a novel, detailed temporal analysis of the molecular events following impairment of NF-kappaB-driven transcription in neurons and demonstrates that inhibition of constitutive neuronal NF-kappaB activity triggers selective activation of the intrinsic apoptotic program.

  5. New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models.

    PubMed

    Le Douaron, Gael; Ferrié, Laurent; Sepulveda-Diaz, Julia E; Amar, Majid; Harfouche, Abha; Séon-Méniel, Blandine; Raisman-Vozari, Rita; Michel, Patrick P; Figadère, Bruno

    2016-07-14

    Parkinson's disease (PD) is a neurodegenerative disorder of aging characterized by motor symptoms that result from the loss of midbrain dopamine neurons and the disruption of dopamine-mediated neurotransmission. There is currently no curative treatment for this disorder. To discover druggable neuroprotective compounds for dopamine neurons, we have designed and synthesized a second-generation of quinoxaline-derived molecules based on structure-activity relationship studies, which led previously to the discovery of our first neuroprotective brain penetrant hit compound MPAQ (5c). Neuroprotection assessment in PD cellular models of our newly synthesized quinoxaline-derived compounds has led to the selection of a better hit compound, PAQ (4c). Extensive in vitro characterization of 4c showed that its neuroprotective action is partially attributable to the activation of reticulum endoplasmic ryanodine receptor channels. Most interestingly, 4c was able to attenuate neurodegeneration in a mouse model of PD, making this compound an interesting drug candidate for the treatment of this disorder.

  6. (28)silicon radiation impairs neuronal output in CA1 neurons of mouse ventral hippocampus without altering dendritic excitability.

    PubMed

    Rudobeck, Emil; Nelson, Gregory A; Sokolova, Irina V; Vlkolinský, Roman

    2014-04-01

    An unavoidable complication of space travel is exposure to radiation consisting of high-energy charged particles (HZE), such as Fe and Si nuclei. HZE radiation can affect neuronal functions at the level of the synapse or neuronal soma without inducing significant neuronal death. Different radiation species impart distinct patterns of radiation damage depending on their track structure, dose rate and fluence. Moreover, structural differences exist along the dorsoventral axis of the hippocampus that may underlie different radiosensitivities within the same neuronal field (e.g., the CA1 pyramidal cell population of the hippocampus). In this study we tested the functional effects of low doses of (28)Si radiation on excitability and synaptic plasticity in hippocampal slices prepared strictly from the ventral hippocampus. We used extracellular electrophysiological techniques to record field excitatory postsynaptic potentials (EPSPs) and population spikes in hippocampal CA1 neurons from C57BL/6J male mice 3 months after exposure to (28)Si radiation (600 MeV/n; 0.25 and 1 Gy, whole body). In irradiated mice we found prominent decrements in population spike amplitudes and reduced maximal neuronal output without changes in dendritic field EPSP. Reduced field EPSP vs. population spike ratios indicate radiation-induced impairment of the EPSP-spike (E-S) coupling. This effect was not associated with significant changes in the magnitude of short- and long-term synaptic plasticity [long-term potentiation (LTP)]. These data confirm that irradiation with (28)Si particles at relatively low doses alters the properties of the hippocampal network, which can limit its connectivity with other brain centers.

  7. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment.

    PubMed

    Shi, Ming; Du, Fang; Liu, Yang; Li, Li; Cai, Jing; Zhang, Guo-Feng; Xu, Xiao-Fei; Lin, Tian; Cheng, Hao-Ran; Liu, Xue-Dong; Xiong, Li-Ze; Zhao, Gang

    2013-11-01

    Vibroacoustic disease, a progressive and systemic disease, mainly involving the central nervous system, is caused by excessive exposure to low-frequency but high-intensity noise generated by various heavy transportations and machineries. Infrasound is a type of low-frequency noise. Our previous studies demonstrated that infrasound at a certain intensity caused neuronal injury in rats but the underlying mechanism(s) is still largely unknown. Here, we showed that glial cell-expressed TRPV4, a Ca(2+)-permeable mechanosensitive channel, mediated infrasound-induced neuronal injury. Among different frequencies and intensities, infrasound at 16 Hz and 130 dB impaired rat learning and memory abilities most severely after 7-14 days exposure, a time during which a prominent loss of hippocampal CA1 neurons was evident. Infrasound also induced significant astrocytic and microglial activation in hippocampal regions following 1- to 7-day exposure, prior to neuronal apoptosis. Moreover, pharmacological inhibition of glial activation in vivo protected against neuronal apoptosis. In vitro, activated glial cell-released proinflammatory cytokines IL-1β and TNF-α were found to be key factors for this neuronal apoptosis. Importantly, infrasound induced an increase in the expression level of TRPV4 both in vivo and in vitro. Knockdown of TRPV4 expression by siRNA or pharmacological inhibition of TRPV4 in cultured glial cells decreased the levels of IL-1β and TNF-α, attenuated neuronal apoptosis, and reduced TRPV4-mediated Ca(2+) influx and NF-κB nuclear translocation. Finally, using various antagonists we revealed that calmodulin and protein kinase C signaling pathways were involved in TRPV4-triggered NF-κB activation. Thus, our results provide the first evidence that glial cell-expressed TRPV4 is a potential key factor responsible for infrasound-induced neuronal impairment. PMID:24002225

  8. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury

    PubMed Central

    Sarkar, Chinmoy; Zhao, Zaorui; Aungst, Stephanie; Sabirzhanov, Boris; Faden, Alan I; Lipinski, Marta M

    2015-01-01

    Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death. PMID:25484084

  9. Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum.

    PubMed

    Pfeiffer, Verena; Götz, Rudolf; Xiang, Chaomei; Camarero, Guadelupe; Braun, Attila; Zhang, Yina; Blum, Robert; Heinsen, Helmut; Nieswandt, Bernhard; Rapp, Ulf R

    2013-01-01

    This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures. PMID:23505473

  10. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice

    PubMed Central

    Matak, Pavle; Matak, Andrija; Moustafa, Sarah; Aryal, Dipendra K.; Benner, Eric J.; Wetsel, William; Andrews, Nancy C.

    2016-01-01

    Disrupted brain iron homeostasis is a common feature of neurodegenerative disease. To begin to understand how neuronal iron handling might be involved, we focused on dopaminergic neurons and asked how inactivation of transport proteins affected iron homeostasis in vivo in mice. Loss of the cellular iron exporter, ferroportin, had no apparent consequences. However, loss of transferrin receptor 1, involved in iron uptake, caused neuronal iron deficiency, age-progressive degeneration of a subset of dopaminergic neurons, and motor deficits. There was gradual depletion of dopaminergic projections in the striatum followed by death of dopaminergic neurons in the substantia nigra. Damaged mitochondria accumulated, and gene expression signatures indicated attempted axonal regeneration, a metabolic switch to glycolysis, oxidative stress, and the unfolded protein response. We demonstrate that loss of transferrin receptor 1, but not loss of ferroportin, can cause neurodegeneration in a subset of dopaminergic neurons in mice. PMID:26929359

  11. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice.

    PubMed

    Matak, Pavle; Matak, Andrija; Moustafa, Sarah; Aryal, Dipendra K; Benner, Eric J; Wetsel, William; Andrews, Nancy C

    2016-03-29

    Disrupted brain iron homeostasis is a common feature of neurodegenerative disease. To begin to understand how neuronal iron handling might be involved, we focused on dopaminergic neurons and asked how inactivation of transport proteins affected iron homeostasis in vivo in mice. Loss of the cellular iron exporter, ferroportin, had no apparent consequences. However, loss of transferrin receptor 1, involved in iron uptake, caused neuronal iron deficiency, age-progressive degeneration of a subset of dopaminergic neurons, and motor deficits. There was gradual depletion of dopaminergic projections in the striatum followed by death of dopaminergic neurons in the substantia nigra. Damaged mitochondria accumulated, and gene expression signatures indicated attempted axonal regeneration, a metabolic switch to glycolysis, oxidative stress, and the unfolded protein response. We demonstrate that loss of transferrin receptor 1, but not loss of ferroportin, can cause neurodegeneration in a subset of dopaminergic neurons in mice.

  12. 7alpha-Hydroxypregnenolone acts as a neuronal activator to stimulate locomotor activity of breeding newts by means of the dopaminergic system.

    PubMed

    Matsunaga, Masahiro; Ukena, Kazuyoshi; Baulieu, Etienne-Emile; Tsutsui, Kazuyoshi

    2004-12-01

    It is becoming clear that steroids can be synthesized de novo by the brain and other nervous systems. Such steroids are called neurosteroids, and de novo neurosteroidogenesis from cholesterol is a conserved property of vertebrate brains. In this study, we show that the newt brain actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid that stimulates locomotor activity. 7alpha-hydroxypregnenolone was identified as a most abundant amphibian neurosteroid in the newt brain by using biochemical techniques combined with HPLC, TLC, and GC-MS analyses. The production of 7alpha-hydroxypregnenolone in the diencephalon and rhombencephalon was higher than that in the telencephalon and peripheral steroidogenic glands. In addition, 7alpha-hydroxypregnenolone synthesis in the brain showed marked changes during the annual breeding cycle, with a maximal level in the spring breeding period when locomotor activity of the newt increases. Behavioral analysis of newts in the nonbreeding period demonstrated that administration of this previously undescribed amphibian neurosteroid acutely increased locomotor activity. In vitro analysis further revealed that 7alpha-hydroxypregnenolone treatment resulted in a dose-dependent increase in the release of dopamine from cultured brain tissue of nonbreeding newts. The effect of this neurosteroid on locomotion also was abolished by dopamine D(2)-like receptor antagonists. These results indicate that 7alpha-hydroxypregnenolone acts as a neuronal activator to stimulate locomotor activity of breeding newts through the dopaminergic system. This study demonstrates a physiological function of 7alpha-hydroxypregnenolone that has not been described previously in any vertebrate class. This study also provides findings on the regulatory mechanism of locomotor activity from a unique standpoint.

  13. Protection of dopaminergic neurons in a mouse model of Parkinson's disease by a physically-modified saline containing charge-stabilized nanobubbles.

    PubMed

    Khasnavis, Saurabh; Roy, Avik; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-03-01

    Neuroinflammation underlies the pathogenesis of various neurodegenerative disorders including Parkinson's disease (PD). Despite intense investigations, no effective therapy is available to stop its onset or halt its progression. RNS60 is a novel therapeutic containing charge-stabilized nanobubbles in saline, generated by subjecting normal saline to Taylor-Couette-Poiseuille flow under elevated oxygen pressure. Recently, we have delineated that RNS60 inhibits the expression of proinflammatory molecules in glial cells via type 1A phosphatidylinositol-3 kinase (PI3K)-mediated upregulation of IκBα. In this study, we demonstrate that RNS60 inhibited the expression of proinflammatory molecules in cultured microglial cells stimulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridium ion (MPP(+)) and in vivo in the nigra of MPTP-intoxicated mice. While investigating the underlying mechanisms, we found that MPTP intoxication rapidly stimulated the activation of type IB PI3K p110γ in the nigra, while suppressing the activation of type IA PI3K p110α/β. Interestingly, RNS60 treatment suppressed the activation of p110γ PI3K, while inducing the activation of p110α/β PI3K in the nigra of MPTP-intoxicated mice. Accordingly, RNS60 treatment increased the level of IκBα and inhibited the activation of NF-κB in the SNpc of MPTP-intoxicated mice. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. These results strongly suggest a promising therapeutic role of this simple modified saline in PD and other neuroinflammatory disorders.

  14. Dopaminergic Presynaptic Modulation of Nigral Afferents: Its Role in the Generation of Recurrent Bursting in Substantia Nigra Pars Reticulata Neurons

    PubMed Central

    de Jesús Aceves, José; Rueda-Orozco, Pavel E.; Hernández, Ricardo; Plata, Víctor; Ibañez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, José

    2011-01-01

    Previous work has shown the functions associated with activation of dopamine presynaptic receptors in some substantia nigra pars reticulata (SNr) afferents: (i) striatonigral terminals (direct pathway) posses presynaptic dopamine D1-class receptors whose action is to enhance inhibitory postsynaptic currents (IPSCs) and GABA transmission. (ii) Subthalamonigral terminals posses D1- and D2-class receptors where D1-class receptor activation enhances and D2-class receptor activation decreases excitatory postsynaptic currents. Here we report that pallidonigral afferents posses D2-class receptors (D3 and D4 types) that decrease inhibitory synaptic transmission via presynaptic modulation. No action of D1-class agonists was found on pallidonigral synapses. In contrast, administration of D1-receptor antagonists greatly decreased striatonigral IPSCs in the same preparation, suggesting that tonic dopamine levels help in maintaining the function of the striatonigral (direct) pathway. When both D3 and D4 type receptors were blocked, pallidonigral IPSCs increased in amplitude while striatonigral connections had no significant change, suggesting that tonic dopamine levels are repressing a powerful inhibition conveyed by pallidonigral synapses (a branch of the indirect pathway). We then blocked both D1- and D2-class receptors to acutely decrease direct pathway (striatonigral) and enhance indirect pathways (subthalamonigral and pallidonigral) synaptic force. The result was that most SNr projection neurons entered a recurrent bursting firing mode similar to that observed during Parkinsonism in both patients and animal models. These results raise the question as to whether the lack of dopamine in basal ganglia output nuclei is enough to generate some pathological signs of Parkinsonism. PMID:21347219

  15. Impaired Autophagy and Defective Mitochondrial Function: Converging Paths on the Road to Motor Neuron Degeneration

    PubMed Central

    Edens, Brittany M.; Miller, Nimrod; Ma, Yong-Chao

    2016-01-01

    Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS). Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS) accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been identified, but the underlying causes of SALS remain largely unknown. Despite the heterogeneous and incompletely understood etiology, different types of ALS exhibit overlapping pathology and common phenotypes, including protein aggregation and mitochondrial deficiencies. Here, we review the current understanding of mechanisms leading to motor neuron degeneration in ALS as they pertain to disrupted cellular clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics. Through focusing on impaired autophagic and mitochondrial functions, we highlight how the convergence of diverse cellular processes and pathways contributes to common pathology in motor neuron degeneration. PMID:26973461

  16. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice

    PubMed Central

    Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing; Yang, Chaojuan; Yu, Hui; Wang, Qin; Chen, Zheyu; Zhang, Chen; Christian, Kimberly M.; Song, Hongjun; Ming, Guo-li; Xu, Zhiheng

    2016-01-01

    Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice. PMID:27249678

  17. Neuronal activity topography parameters as a marker for differentiating vascular cognitive impairment in carotid stenosis.

    PubMed

    Shibata, Takashi; Musha, Toshimitu; Kubo, Michiya; Horie, Yukio; Asahi, Takashi; Kuwayama, Naoya; Kuroda, Satoshi; Hayashi, Karin; Kobayashi, Yohei; Tanaka, Mieko; Matsuzaki, Haruyasu; Asada, Takashi

    2014-10-01

    Previously, we reported on the differentiation between patients with Alzheimer disease and normal controls using a quantitative electroencephalographic technique called neuronal activity topography (NAT). In this technique, cerebral neuronal activities are characterized by the signal intensity and coherence (sNAT and vNAT, respectively). In the present study, we examined 47 patients with vascular cognitive impairment in carotid stenosis and 52 normal controls. All subjects underwent electroencephalography in a resting state with closed eyes for 5 minutes. Electroencephalographic markers of the differential likelihood, that is, the sensitivity-versus-specificity characteristics, sL(x:VCI-NLc) and vL(x:VCI-NLc), were assessed with neuronal activity topography and were compared between the 2 groups. sL(x:VCI-NLc) and vL(x:VCI-NLc) crossed each other at a cutoff value of the differential likelihood. Separation of the patients and controls was made with a sensitivity of 92% and 88%, as well as a false-positive rate of 8% and 12% for sL(x:VCI-NLc) and vL(x:VCI-NLc), respectively. Using sNAT, we accurately differentiated 92% patients with vascular cognitive impairment. We recommend that sNAT, rather than vNAT, should be used in detecting vascular cognitive impaired patients. PMID:25174560

  18. Caffeine has greater potency and efficacy than theophylline to reverse the motor impairment caused by chronic but not acute interruption of striatal dopaminergic transmission in rats.

    PubMed

    Acuña-Lizama, Miguel M; Bata-García, José L; Alvarez-Cervera, Fernando J; Góngora-Alfaro, José L

    2013-07-01

    motor impairment caused by chronic, but not acute, interruption of striatal dopaminergic transmission in rats, it is suggested that caffeine would provide more benefits than theophylline to improve the motor function in patients with Parkinson's disease.

  19. Selective neuronal degeneration in the retrosplenial cortex impairs the recall of contextual fear memory.

    PubMed

    Sigwald, Eric L; Genoud, Manuel E; Giachero, Marcelo; de Olmos, Soledad; Molina, Víctor A; Lorenzo, Alfredo

    2016-05-01

    The retrosplenial cortex (RSC) is one of the largest cortical areas in rodents, and is subdivided in two main regions, A29 and A30, according to their cytoarchitectural organization and connectivities. However, very little is known about the functional activity of each RSC subdivision during the execution of complex cognitive tasks. Here, we used a well-established fear learning protocol that induced long-lasting contextual fear memory and showed that during evocation of the fear memory, the expression of early growth response gene 1 was up-regulated in A30, and in other brain areas implicated in fear and spatial memory, however, was down-regulated in A29, including layers IV and V. To search for the participation of A29 on fear memory, we triggered selective degeneration of neurons within cortical layers IV and V of A29 by using a non-invasive protocol that takes advantage of the vulnerability that these neurons have MK801-toxicity and the modulation of this neurodegeneration by testosterone. Application of 5 mg/kg MK801 in intact males induced negligible neuronal degeneration of A29 neurons and had no impact on fear memory retrieval. However, in orchiectomized rats, 5 mg/kg MK801 induced overt degeneration of layers IV-V neurons of A29, significantly impairing fear memory recall. Degeneration of A29 neurons did not affect exploratory or anxiety-related behavior nor altered unconditioned freezing. Importantly, protecting A29 neurons from MK801-toxicity by testosterone preserved fear memory recall in orchiectomized rats. Thus, neurons within cortical layers IV-V of A29 are critically required for efficient retrieval of contextual fear memory.

  20. Partial loss of presenilin impairs age-dependent neuronal survival in the cerebral cortex.

    PubMed

    Watanabe, Hirotaka; Iqbal, Minah; Zheng, Jin; Wines-Samuelson, Mary; Shen, Jie

    2014-11-26

    Mutations in the presenilin (PSEN1 and PSEN2) genes are linked to familial Alzheimer's disease (AD) and cause loss of its essential function. Complete inactivation of presenilins in excitatory neurons of the adult mouse cerebral cortex results in progressive memory impairment and age-dependent neurodegeneration, recapitulating key features of AD. In this study, we examine the effects of varying presenilin dosage on cortical neuron survival by generating presenilin-1 conditional knock-out (PS1 cKO) mice carrying two, one, or zero copies of the PS2 gene. We found that PS1 cKO;PS2(+/-) mice at 16 months exhibit marked neurodegeneration in the cerebral cortex with ∼17% reduction of cortical volume and neuron number, as well as astrogliosis and microgliosis compared with ∼50% reduction of cortical volume and neuron number in PS1 cKO;PS2(-/-) mice. Moreover, there are more apoptotic neurons labeled by activated caspase-3 immunoreactivity and TUNEL assay in PS1 cKO;PS2(+/-) mice at 16 months, whereas apoptotic neurons are increased in the PS1 cKO;PS2(-/-) cerebral cortex at 4 months. The accumulation of the C-terminal fragments of the amyloid precursor protein is inversely correlated with PS dosage. Interestingly, levels of PS2 are higher in the cerebral cortex of PS1 cKO mice, suggesting a compensatory upregulation that may provide protection against neurodegeneration in these mice. Together, our findings show that partial to complete loss of presenilin activity causes progressively more severe neurodegeneration in the mouse cerebral cortex during aging, suggesting that impaired presenilin function by PSEN mutations may lead to neurodegeneration and dementia in AD. PMID:25429133

  1. Chronic cerebral hypoperfusion induces vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment

    PubMed Central

    Jing, Zhen; Shi, Changzheng; Zhu, Lihui; Xiang, Yonghui; Chen, Peihao; Xiong, Zhilin; Li, Wenxian; Ruan, Yiwen; Huang, Li'an

    2015-01-01

    Chronic cerebral hypoperfusion (CCH) induces cognitive impairment, but the compensative mechanism of cerebral blood flow (CBF) is not fully understood. The present study mainly investigated dynamic changes in CBF, angiogenesis, and cellular pathology in the cortex, the striatum, and the cerebellum, and also studied cognitive impairment of rats induced by bilateral common carotid artery occlusion (BCCAO). Magnetic resonance imaging (MRI) techniques, immunochemistry, and Morris water maze were employed to the study. The CBF of the cortex, striatum, and cerebellum dramatically decreased after right common carotid artery occlusion (RCCAO), and remained lower level at 2 weeks after BCCAO. It returned to the sham level from 3 to 6 weeks companied by the dilation of vertebral arteries after BCCAO. The number of microvessels declined at 2, 3, and 4 weeks but increased at 6 weeks after BCCAO. Neuronal degeneration occurred in the cortex and striatum from 2 to 6 weeks, but the number of glial cells dramatically increased at 4 weeks after BCCAO. Cognitive impairment of ischemic rats was directly related to ischemic duration. Our results suggest that CCH induces a compensative mechanism attempting to maintain optimal CBF to the brain. However, this limited compensation cannot prevent neuronal loss and cognitive impairment after permanent ischemia. PMID:25853908

  2. Impaired thyroid function provoked by neonatal treatment with drugs affecting the maturation of monoaminergic and opioidergic neurons.

    PubMed

    Mess, B; Rúzsás, C; Hayashi, S

    1989-09-01

    The aim of the present work was to study the basal secretion rate and the reactivity of the TSH-thyroid axis in adult rats neonatally exposed to drugs influencing monoaminergic and opioidergic neurons. The early postnatal administration of drugs antagonistic with the dopaminergic or serotoninergic neurons resulted in a persistent higher rate of basal secretion of TSH, while the administration of drugs synergistic with the monoaminergic neuron systems was weakly influential in this respect. The exposure to opioids in the perinatal period resulted in a permanent reduction of serum TSH levels which was even more pronounced when the exposure to morphine was advanced to the fetal period of life. These data raise the possibility that the permanent TSH depressing effect of perinatal administration of opioids is due to their effect exerted on the maturation of the monoaminergic neurons. From the other hand, our results lead to assume that there is a perinatal critical period in the maturation of monoaminergic neurons regulating TSH secretion in the adult age. In accordance with this assumption, the data obtained in rats bearing perinatal neurotoxic destruction of catecholaminergic neurons contribute to the concept that the disturbed maturation of monoaminergic neurons in the supposed critical period of development might lead to permanent deficiency also in the reactivity of the TSH-thyroid axis.

  3. Augmentation of normal and glutamate-impaired neuronal respiratory capacity by exogenous alternative biofuels.

    PubMed

    Laird, Melissa D; Clerc, Pascaline; Polster, Brian M; Fiskum, Gary

    2013-12-01

    Mitochondrial respiratory capacity is critical for responding to changes in neuronal energy demand. One approach toward neuroprotection is the administration of alternative energy substrates ("biofuels") to overcome brain injury-induced inhibition of glucose-based aerobic energy metabolism. This study tested the hypothesis that exogenous pyruvate, lactate, β-hydroxybutyrate, and acetyl-L-carnitine each increase neuronal respiratory capacity in vitro either in the absence of or following transient excitotoxic glutamate receptor stimulation. Compared to the presence of 5 mM glucose alone, the addition of pyruvate, lactate, or β-hydroxybutyrate (1.0-10.0 mM) to either day in vitro (DIV) 14 or 7 rat cortical neurons resulted in significant, dose-dependent stimulation of respiratory capacity, measured by cell respirometry as the maximal O2 consumption rate in the presence of the respiratory uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. A 30-min exposure to 100 μM glutamate impaired respiratory capacity for DIV 14, but not DIV 7, neurons. Glutamate reduced the respiratory capacity for DIV 14 neurons with glucose alone by 25 % and also reduced respiratory capacity with glucose plus pyruvate, lactate, or β-hydroxybutyrate. However, respiratory capacity in glutamate-exposed neurons following pyruvate or β-hydroxybutyrate addition was still, at least, as high as that obtained with glucose alone in the absence of glutamate exposure. These results support the interpretation that previously observed neuroprotection by exogenous pyruvate, lactate, or β-hydroxybutyrate is at least partially mediated by their preservation of neuronal respiratory capacity. PMID:24323418

  4. Augmentation of Normal and Glutamate-Impaired Neuronal Respiratory Capacity by Exogenous Alternative Biofuels

    PubMed Central

    Laird, Melissa D.; Clerc, Pascaline; Polster, Brian M.; Fiskum, Gary

    2013-01-01

    Mitochondrial respiratory capacity is critical for responding to changes in neuronal energy demand. One approach toward neuroprotection is administration of alternative energy substrates (“biofuels”) to overcome brain injury-induced inhibition of glucose-based aerobic energy metabolism. This study tested the hypothesis that exogenous pyruvate, lactate, β-hydroxybutyrate, and acetyl-L-carnitine each increase neuronal respiratory capacity in vitro either in the absence of, or following transient excitotoxic glutamate receptor stimulation. Compared to the presence of 5 mM glucose alone, the addition of pyruvate, lactate, or β-hydroxybutyrate (1.0 – 10.0 mM) to either day in vitro (DIV) 14 or 7 rat cortical neurons resulted in significant, dose-dependent stimulation of respiratory capacity, measured by cell respirometry as the maximal O2 consumption rate in the presence of the respiratory uncoupler FCCP. A thirty minute exposure to 100 μM glutamate impaired respiratory capacity for DIV 14 but not DIV 7 neurons. Glutamate reduced the respiratory capacity for DIV 14 neurons with glucose alone by 25% and also reduced respiratory capacity with glucose plus pyruvate, lactate or β-hydroxybutyrate. However, respiratory capacity in glutamate-exposed neurons following pyruvate or β-hydroxybutyrate addition was still at least as high as that obtained with glucose alone in the absence of glutamate exposure. These results support the interpretation that previously observed neuroprotection by exogenous pyruvate, lactate, or β-hydroxybutyrate is at least partially mediated by their preservation of neuronal respiratory capacity. PMID:24323418

  5. Involvement of cannabinoid receptors in infrasonic noise-induced neuronal impairment.

    PubMed

    Ma, Lei; He, Hua; Liu, Xuedong; Zhang, Guangyun; Li, Li; Yan, Song; Li, Kangchu; Shi, Ming

    2015-08-01

    Excessive exposure to infrasound, a kind of low-frequency but high-intensity sound noise generated by heavy transportations and machineries, can cause vibroacoustic disease which is a progressive and systemic disease, and finally results in the dysfunction of central nervous system. Our previous studies have demonstrated that glial cell-mediated inflammation may contribute to infrasound-induced neuronal impairment, but the underlying mechanisms are not fully understood. Here, we show that cannabinoid (CB) receptors may be involved in infrasound-induced neuronal injury. After exposure to infrasound at 16 Hz and 130 dB for 1-14 days, the expression of CB receptors in rat hippocampi was gradually but significantly decreased. Their expression levels reached the minimum after 7- to 14-day exposure during which the maximum number of apoptotic cells was observed in the CA1. 2-Arachidonoylglycerol (2-AG), an endogenous agonist for CB receptors, reduced the number of infrasound-triggered apoptotic cells, which, however, could be further increased by CB receptor antagonist AM251. In animal behavior performance test, 2-AG ameliorated the infrasound-impaired learning and memory abilities of rats, whereas AM251 aggravated the infrasound-impaired learning and memory abilities of rats. Furthermore, the levels of proinflammatory cytokines tumor necrosis factor alpha and interleukin-1β in the CA1 were upregulated after infrasound exposure, which were attenuated by 2-AG but further increased by AM251. Thus, our results provide the first evidence that CB receptors may be involved in infrasound-induced neuronal impairment possibly by affecting the release of proinflammatory cytokines. PMID:26058582

  6. Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line

    SciTech Connect

    Zhang Danhui; Kanthasamy, Arthi; Anantharam, Vellareddy; Kanthasamy, Anumantha

    2011-07-15

    Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn impairs the dopaminergic neurotransmitter system remains unclear. We previously demonstrated that caspase-3-dependent proteolytic activation of protein kinase C delta (PKC{delta}) plays a key role in Mn-induced apoptotic cell death in dopaminergic neurons. Recently, we showed that PKC{delta} negatively regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, by enhancing protein phosphatase-2A activity in dopaminergic neurons. Here, we report that Mn exposure can affect the enzymatic activity of TH, the rate-limiting enzyme in dopamine synthesis, by activating PKC{delta}-PP2A signaling pathway in a dopaminergic cell model. Low dose Mn (3-10 {mu}M) exposure to differentiated mesencephalic dopaminergic neuronal cells for 3 h induced a significant increase in TH activity and phosphorylation of TH-Ser40. The PKC{delta} specific inhibitor rottlerin did not prevent Mn-induced TH activity or TH-Ser40 phosphorylation. On the contrary, chronic exposure to 0.1-1 {mu}M Mn for 24 h induced a dose-dependent decrease in TH activity. Interestingly, chronic Mn treatment significantly increased PKC{delta} kinase activity and protein phosphatase 2A (PP2A) enzyme activity. Treatment with the PKC{delta} inhibitor rottlerin almost completely prevented chronic Mn-induced reduction in TH activity, as well as increased PP2A activity. Neither acute nor chronic Mn exposures induced any cytotoxic cell death or altered TH protein levels. Collectively, these results demonstrate that low dose Mn exposure impairs TH activity in dopaminergic cells through activation of PKC{delta} and PP2A activity.

  7. Neuronal damage and cognitive impairment associated with hypoglycemia: An integrated view.

    PubMed

    Languren, Gabriela; Montiel, Teresa; Julio-Amilpas, Alberto; Massieu, Lourdes

    2013-10-01

    The aim of the present review is to offer a current perspective about the consequences of hypoglycemia and its impact on the diabetic disorder due to the increasing incidence of diabetes around the world. The main consequence of insulin treatment in type 1 diabetic patients is the occurrence of repetitive periods of hypoglycemia and even episodes of severe hypoglycemia leading to coma. In the latter, selective neuronal death is observed in brain vulnerable regions both in humans and animal models, such as the cortex and the hippocampus. Cognitive damage subsequent to hypoglycemic coma has been associated with neuronal death in the hippocampus. The mechanisms implicated in selective damage are not completely understood but many factors have been identified including excitotoxicity, oxidative stress, zinc release, PARP-1 activation and mitochondrial dysfunction. Importantly, the diabetic condition aggravates neuronal damage and cognitive failure induced by hypoglycemia. In the absence of coma prolonged and severe hypoglycemia leads to increased oxidative stress and discrete neuronal death mainly in the cerebral cortex. The mechanisms responsible for cell damage in this condition are still unknown. Recurrent moderate hypoglycemia is far more common in diabetic patients than severe hypoglycemia and currently important efforts are being done in order to elucidate the relationship between cognitive deficits and recurrent hypoglycemia in diabetics. Human studies suggest impaired performance mainly in memory and attention tasks in healthy and diabetic individuals under the hypoglycemic condition. Only scarce neuronal death has been observed under moderate repetitive hypoglycemia but studies suggest that impaired hippocampal synaptic function might be one of the causes of cognitive failure. Recent studies have also implicated altered mitochondrial function and mitochondrial oxidative stress.

  8. Ethanol impaired neuronal migration is associated with reduced aspartyl-asparaginyl-beta-hydroxylase expression.

    PubMed

    Carter, Jade J; Tong, Ming; Silbermann, Elizabeth; Lahousse, Stephanie A; Ding, Fei Fei; Longato, Lisa; Roper, Nitin; Wands, Jack R; de la Monte, Suzanne M

    2008-09-01

    Cerebellar hypoplasia in fetal alcohol spectrum disorders (FASD) is associated with inhibition of insulin and insulin-like growth factor (IGF) signaling in the brain. Aspartyl (asparaginyl)-beta-hydroxylase (AAH) is a mediator of neuronal motility, and stimulated by insulin and IGF activation of PI3 kinase-Akt, or inhibition of GSK-3beta. Since ethanol inhibits PI3 Kinase-Akt and increases GSK-3beta activity in brain, we examined the effects of ethanol and GSK-3beta on AAH expression and directional motility in neuronal cells. Control and ethanol-exposed (100 mM x 48 h) human PNET2 cerebellar neuronal cells were stimulated with IGF-1 and used to measure AAH expression and directional motility. Molecular and biochemical approaches were used to characterize GSK-3beta regulation of AAH and neuronal motility. Ethanol reduced IGF-1 stimulated AAH protein expression and directional motility without inhibiting AAH's mRNA. Further analysis revealed that: (1) AAH protein could be phosphorylated by GSK-3beta; (2) high levels of GSK-3beta activity decreased AAH protein; (3) inhibition of GSK-3beta and/or global Caspases increased AAH protein; (4) AAH protein was relatively more phosphorylated in ethanol-treated compared with control cells; and (5) chemical inhibition of GSK-3beta and/or global Caspases partially rescued ethanol-impaired AAH protein expression and motility. Ethanol-impaired neuronal migration is associated with reduced IGF-I stimulated AAH protein expression. This effect may be mediated by increased GSK-3beta phosphorylation and Caspase degradation of AAH. Therapeutic strategies to rectify CNS developmental abnormalities in FASD should target factors underlying the ethanol-associated increases in GSK-3beta and Caspase activation, e.g. IGF resistance and increased oxidative stress. PMID:18478238

  9. MPTP Impairs Dopamine D1 Receptor-Mediated Survival of Newborn Neurons in Ventral Hippocampus to Cause Depressive-Like Behaviors in Adult Mice

    PubMed Central

    Zhang, Tingting; Hong, Juan; Di, Tingting; Chen, Ling

    2016-01-01

    Parkinson’s disease (PD) is characterized by motor symptoms with depression. We evaluated the influence of dopaminergic depletion on hippocampal neurogenesis process to explore mechanisms of depression production. Five consecutive days of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection in mice (MPTP-mice) reduced dopaminergic fibers in hippocampal dentate gyrus (DG). MPTP-mice exhibited depressive-like behaviors later for 2–3 weeks. BrdU was injected 4 h after last-injection of MPTP. BrdU-positive (BrdU+) cells in dorsal (d-DG) and ventral (v-DG) DG were examined on day 1 (D1), 7 (D7), 14 (D14) and 21 (D21) after BrdU injection. Fewer D7-, D14- and D21-BrdU+ cells or BrdU+/NeuN+ cells, but not D1-BrdU+ cells, were found in v-DG of MPTP-mice than in controls. However, the number of BrdU+ cells in d-DG did not differ between the both. Loss of doublecortin-positive (DCX+) cells was observed in v-DG of MPTP-mice. Protein kinase A (PKA) and Ca2+/cAMP-response element binding protein (CREB) phosphorylation were reduced in v-DG of MPTP-mice, which were reversed by D1-like receptor (D1R) agonist SKF38393, but not D2R agonist quinpirole. The treatment of MPTP-mice with SKF38393 on days 2–7 after BrdU-injection reduced the loss of D7- and D21-BrdU+ cells in v-DG and improved the depressive-like behaviors; these changes were sensitive to PKA inhibitor H89. Moreover, the v-DG injection of SKF38393 in MPTP-mice could reduce the loss of D21-BrdU+ cells and relieve the depressive-like behaviors. In control mice, the blockade of D1R by SCH23390 caused the reduction of D21-BrdU+ cells in v-DG and the depressive-like behaviors. Our results indicate that MPTP-reduced dopaminergic depletion impairs the D1R-mediated early survival of newborn neurons in v-DG, producing depressive-like behaviors. PMID:27790091

  10. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    SciTech Connect

    Pizzurro, Daniella M.; Dao, Khoi; Costa, Lucio G.

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  11. Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide

    PubMed Central

    2013-01-01

    Background Cyclooxygenase-2 (COX-2) is induced in inflammatory cells in response to cytokines and pro-inflammatory molecules, suggesting that COX-2 has a role in the inflammatory process. The objective of the current study was to examine whether celecoxib, a selective COX-2 inhibitor, could ameliorate lipopolysaccharide (LPS)-induced brain inflammation, dopaminergic neuronal dysfunction and sensorimotor behavioral impairments. Methods Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in rat pups on postnatal Day 5 (P5), and celecoxib (20 mg/kg) or vehicle was administered (i.p.) five minutes after LPS injection. Sensorimotor behavioral tests were carried out 24 h after LPS exposure, and brain injury was examined on P6. Results Our results showed that LPS exposure resulted in impairment in sensorimotor behavioral performance and injury to brain dopaminergic neurons, as indicated by loss of tyrosine hydroxylase (TH) immunoreactivity, as well as decreases in mitochondria activity in the rat brain. LPS exposure also led to increases in the expression of α-synuclein and dopamine transporter proteins and enhanced [3H]dopamine uptake. Treatment with celecoxib significantly reduced LPS-induced sensorimotor behavioral disturbances and dopaminergic neuronal dysfunction. Celecoxib administration significantly attenuated LPS-induced increases in the numbers of activated microglia and astrocytes and in the concentration of IL-1β in the neonatal rat brain. The protective effect of celecoxib was also associated with an attenuation of LPS-induced COX-2+ cells, which were double labeled with TH + (dopaminergic neuron) or glial fibrillary acidic protein (GFAP) + (astrocyte) cells. Conclusion Systemic LPS administration induced brain inflammatory responses in neonatal rats; these inflammatory responses included induction of COX-2 expression in TH neurons and astrocytes. Application of the COX-2 inhibitor celecoxib after LPS treatment attenuated the inflammatory

  12. Maternal exercise during pregnancy ameliorates the postnatal neuronal impairments induced by prenatal restraint stress in mice.

    PubMed

    Bustamante, Carlos; Henríquez, Ricardo; Medina, Felipe; Reinoso, Carmen; Vargas, Ronald; Pascual, Rodrigo

    2013-06-01

    Clinical and preclinical studies have demonstrated that prenatal stress (PS) induces neuronal and behavioral disturbances in the offspring. In the present study, we determined whether maternal voluntary wheel running (VWR) during pregnancy could reverse the putative deleterious effects of PS on the neurodevelopment and behavior of the offspring. Pregnant CF-1 mice were randomly assigned to control, restraint stressed or restraint stressed+VWR groups. Dams of the stressed group were subjected to restraint stress between gestational days 14 and delivery, while control pregnant dams remained undisturbed in their home cages. Dams of the restraint stressed+VWR group were subjected to exercise between gestational days 1 and 17. On postnatal day 23 (P23), male pups were assigned to one of the following experimental groups: mice born from control dams, stressed dams or stressed+VWR dams. Locomotor behavior and pyramidal neuronal morphology were evaluated at P23. Animals were then sacrificed, and Golgi-impregnated pyramidal neurons of the parietal cortex were morphometrically analyzed. Here, we present two major findings: first, PS produced significantly diminished dendritic growth of parietal neurons without altered locomotor behavior of the offspring; and second, maternal VWR significantly offset morphological impairments.

  13. Assessment of the Protection of Dopaminergic Neurons by an α7 Nicotinic Receptor Agonist, PHA 543613 Using [18F]LBT-999 in a Parkinson’s Disease Rat Model

    PubMed Central

    Sérrière, Sophie; Doméné, Aurélie; Vercouillie, Johnny; Mothes, Céline; Bodard, Sylvie; Rodrigues, Nuno; Guilloteau, Denis; Routier, Sylvain; Page, Guylène; Chalon, Sylvie

    2015-01-01

    The inverse association between nicotine intake and Parkinson’s disease (PD) is well established and suggests that this molecule could be neuroprotective through anti-inflammatory action mediated by nicotinic receptors, including the α7-subtype (α7R). The objective of this study was to evaluate the effects of an agonist of α7R, PHA 543613, on striatal dopaminergic neurodegeneration and neuroinflammation in a rat model of PD induced by 6-hydroxydopamine (6-OHDA) lesion. Adult male Wistar rats were lesioned in the right striatum and assigned to either the PHA group (n = 7) or the Sham group (n = 5). PHA 543613 hydrochloride at the concentration of 6 mg/kg (PHA group) or vehicle (Sham group) was intra-peritoneally injected 2 h before 6-OHDA lesioning and then at days 2, 4, and 6 post-lesion. Positron emission tomography (PET) imaging was performed at 7 days post-lesion using [18F]LBT-999 to quantify the striatal dopamine transporter (DAT). After PET imaging, neuroinflammation was evaluated in same animals in vitro through the measurement of the microglial activation marker 18 kDa translocator protein (TSPO) by quantitative autoradiography with [3H]PK-11195. The DAT density reflecting the integrity of dopaminergic neurons was significantly decreased while the intensity of neuroinflammation measured by TSPO density was significantly increased in the lesioned compared to intact striatum in both groups. However, these both modifications were partially reversed in the PHA group compared to Sham. In addition, a significant positive correlation between the degree of lesion and the intensity of neuroinflammation was evidenced. These findings indicate that PHA 543613 exerts neuroprotective effects on the striatal dopaminergic neurons associated with a reduction in microglial activation in this model of PD. This reinforces the hypothesis that an α7R agonist could provide beneficial effects for the treatment of PD. PMID:26389120

  14. Inhibition of phosphodiesterase 2 reverses impaired cognition and neuronal remodeling caused by chronic stress.

    PubMed

    Xu, Ying; Pan, Jianchun; Sun, Jiao; Ding, Lianshu; Ruan, Lina; Reed, Miranda; Yu, Xuefeng; Klabnik, Jonathan; Lin, Dan; Li, Jianxin; Chen, Ling; Zhang, Chong; Zhang, Hanting; O'Donnell, James M

    2015-02-01

    Chronic stress and neuronal vulnerability have recently been recognized as factors contributing to cognitive disorders. One way to modify neuronal vulnerability is through mediation of phosphodiesterase 2 (PDE2), an enzyme that exerts its action on cognitive processes via the control of intracellular second messengers, cGMP and, to a lesser extent, cAMP. This study explored the effects of a PDE2 inhibitor, Bay 60-7550, on stress-induced learning and memory dysfunction in terms of its ramification on behavioral, morphologic, and molecular changes. Bay 60-7550 reversed stress-induced cognitive impairment in the Morris water maze, novel object recognition, and location tasks (object recognition test and/or object location test), effects prevented by treatment with 7-NI, a selective inhibitor of neuronal nitric oxide synthase; MK801, a glutamate receptor (NMDAR) inhibitor; myr-AIP, a CaMKII inhibitor; and KT5823, a protein kinase G inhibitor. Bay 60-7550 also ameliorated stress-induced structural remodeling in the CA1 of the hippocampus, leading to increases in dendritic branching, length, and spine density. However, the neuroplasticity initiated by Bay 60-7550 was not seen in the presence of 7-NI, MK801, myr-AIP, or KT5823. PDE2 inhibition reduced stress-induced extracellular-regulated protein kinase activation and attenuated stress-induced decreases in transcription factors (e.g., Elk-1, TORC1, and CREB phosphorylation) and plasticity-related proteins (e.g., Egr-1 and brain-derived neurotrophic factor). Pretreatment with inhibitors of NMDA, CaMKII, neuronal nitric oxide synthase, and protein kinase G (or protein kinase A) blocked the effects of Bay 60-7550 on cGMP or cAMP signaling. These findings indicate that the effect of PDE2 inhibition on stress-induced memory impairment is potentially mediated via modulation of neuroplasticity-related NMDAR-CaMKII-cGMP/cAMP signaling. PMID:25442113

  15. Inhibition of phosphodiesterase 2 reverses impaired cognition and neuronal remodeling caused by chronic stress.

    PubMed

    Xu, Ying; Pan, Jianchun; Sun, Jiao; Ding, Lianshu; Ruan, Lina; Reed, Miranda; Yu, Xuefeng; Klabnik, Jonathan; Lin, Dan; Li, Jianxin; Chen, Ling; Zhang, Chong; Zhang, Hanting; O'Donnell, James M

    2015-02-01

    Chronic stress and neuronal vulnerability have recently been recognized as factors contributing to cognitive disorders. One way to modify neuronal vulnerability is through mediation of phosphodiesterase 2 (PDE2), an enzyme that exerts its action on cognitive processes via the control of intracellular second messengers, cGMP and, to a lesser extent, cAMP. This study explored the effects of a PDE2 inhibitor, Bay 60-7550, on stress-induced learning and memory dysfunction in terms of its ramification on behavioral, morphologic, and molecular changes. Bay 60-7550 reversed stress-induced cognitive impairment in the Morris water maze, novel object recognition, and location tasks (object recognition test and/or object location test), effects prevented by treatment with 7-NI, a selective inhibitor of neuronal nitric oxide synthase; MK801, a glutamate receptor (NMDAR) inhibitor; myr-AIP, a CaMKII inhibitor; and KT5823, a protein kinase G inhibitor. Bay 60-7550 also ameliorated stress-induced structural remodeling in the CA1 of the hippocampus, leading to increases in dendritic branching, length, and spine density. However, the neuroplasticity initiated by Bay 60-7550 was not seen in the presence of 7-NI, MK801, myr-AIP, or KT5823. PDE2 inhibition reduced stress-induced extracellular-regulated protein kinase activation and attenuated stress-induced decreases in transcription factors (e.g., Elk-1, TORC1, and CREB phosphorylation) and plasticity-related proteins (e.g., Egr-1 and brain-derived neurotrophic factor). Pretreatment with inhibitors of NMDA, CaMKII, neuronal nitric oxide synthase, and protein kinase G (or protein kinase A) blocked the effects of Bay 60-7550 on cGMP or cAMP signaling. These findings indicate that the effect of PDE2 inhibition on stress-induced memory impairment is potentially mediated via modulation of neuroplasticity-related NMDAR-CaMKII-cGMP/cAMP signaling.

  16. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation.

    PubMed

    Mark, R J; Pang, Z; Geddes, J W; Uchida, K; Mattson, M P

    1997-02-01

    A deficit in glucose uptake and a deposition of amyloid beta-peptide (A beta) each occur in vulnerable brain regions in Alzheimer's disease (AD). It is not known whether mechanistic links exist between A beta deposition and impaired glucose transport. We now report that A beta impairs glucose transport in cultured rat hippocampal and cortical neurons by a mechanism involving membrane lipid peroxidation. A beta impaired 3H-deoxy-glucose transport in a concentration-dependent manner and with a time course preceding neurodegeneration. The decrease in glucose transport was followed by a decrease in cellular ATP levels. Impairment of glucose transport, ATP depletion, and cell death were each prevented in cultures pretreated with antioxidants. Exposure to FeSO4, an established inducer of lipid peroxidation, also impaired glucose transport. Immunoprecipitation and Western blot analyses showed that exposure of cultures to A beta induced conjugation of 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, to the neuronal glucose transport protein GLUT3. HNE induced a concentration-dependent impairment of glucose transport and subsequent ATP depletion. Impaired glucose transport was not caused by a decreased energy demand in the neurons, because ouabain, which inhibits Na+/K(+)-ATPase activity and thereby reduces neuronal ATP hydrolysis rate, had little or no effect on glucose transport. Collectively, the data demonstrate that lipid peroxidation mediates A beta-induced impairment of glucose transport in neurons and suggest that this action of A beta may contribute to decreased glucose uptake and neuronal degeneration in AD. PMID:8994059

  17. Cystamine/cysteamine rescues the dopaminergic system and shows neurorestorative properties in an animal model of Parkinson's disease.

    PubMed

    Cisbani, G; Drouin-Ouellet, J; Gibrat, C; Saint-Pierre, M; Lagacé, M; Badrinarayanan, S; Lavallée-Bourget, M H; Charest, J; Chabrat, A; Boivin, L; Lebel, M; Bousquet, M; Lévesque, M; Cicchetti, F

    2015-10-01

    The neuroprotective properties of cystamine identified in pre-clinical studies have fast-tracked this compound to clinical trials in Huntington's disease, showing tolerability and benefits on motor symptoms. We tested whether cystamine could have such properties in a Parkinson's disease murine model and now provide evidence that it can not only prevent the neurodegenerative process but also can reverse motor impairments created by a 6-hydroxydopamine lesion 3 weeks post-surgery. Importantly, we report that cystamine has neurorestorative properties 5 weeks post-lesion as seen on the number of nigral dopaminergic neurons which is comparable with treatments of cysteamine, the reduced form of cystamine used in the clinic, as well as rasagiline, increasingly prescribed in early parkinsonism. All three compounds induced neurite arborization of the remaining dopaminergic cells which was further confirmed in ex vivo dopaminergic explants derived from Pitx3-GFP mice. The disease-modifying effects displayed by cystamine/cysteamine would encourage clinical testing.

  18. An imperfect dopaminergic error signal can drive temporal-difference learning.

    PubMed

    Potjans, Wiebke; Diesmann, Markus; Morrison, Abigail

    2011-05-01

    An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards. PMID:21589888

  19. An Imperfect Dopaminergic Error Signal Can Drive Temporal-Difference Learning

    PubMed Central

    Potjans, Wiebke; Diesmann, Markus; Morrison, Abigail

    2011-01-01

    An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards. PMID:21589888

  20. Minocycline Rescues from Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration: Biochemical and Molecular Interventions.

    PubMed

    Kumar, Vinod; Singh, Brajesh Kumar; Chauhan, Amit Kumar; Singh, Deepali; Patel, Devendra Kumar; Singh, Chetna

    2016-07-01

    Accumulation of zinc (Zn) in dopaminergic neurons is implicated in Parkinson's disease (PD), and microglial activation plays a critical role in toxin-induced Parkinsonism. Oxidative stress is accused in Zn-induced dopaminergic neurodegeneration; however, its connection with microglial activation is still not known. This study was undertaken to elucidate the role and underlying mechanism of microglial activation in Zn-induced nigrostriatal dopaminergic neurodegeneration. Male Wistar rats were treated intraperitoneally with/without zinc sulphate (20 mg/kg) in the presence/absence of minocycline (30 mg/kg), a microglial activation inhibitor, for 2-12 weeks. While neurobehavioral and biochemical indexes of PD and number of dopaminergic neurons were reduced, the number of microglial cells was increased in the substantia nigra of the Zn-exposed animals. Similarly, Zn elevated lipid peroxidation (LPO) and activities of superoxide dismutase (SOD) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; however, catalase activity was reduced. Besides, Zn increased an association of NADPH oxidase subunit p67(phox) with membrane, cytochrome c release from the mitochondria and cleavage of pro-caspase 3. Zn attenuated the expression of tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT-2) while augmented the expression of dopamine transporter (DAT) and heme oxygenase-1 (HO-1). Minocycline alleviated Zn-induced behavioural impairments, loss of TH-positive neurons, activated microglial cells and biochemical indexes and modulated the expression of studied genes/proteins towards normalcy. The results demonstrate that minocycline reduces the number of activated microglial cells and oxidative stress, which rescue from Zn-induced changes in the expression of monoamine transporter and nigrostriatal dopaminergic neurodegeneration.

  1. Electroacupuncture pretreatment ameliorates hypergravity-induced impairment of learning and memory and apoptosis of hippocampal neurons in rats.

    PubMed

    Feng, Shufang; Wang, Qiang; Wang, Huaning; Peng, Ye; Wang, Lei; Lu, Yan; Shi, Tianyao; Xiong, Lize

    2010-07-12

    High-sustained positive acceleration (+Gz) exposures might lead to impairment in cognitive function. Our previous studies have shown that electroacupuncture (EA) pretreatment can attenuate transient focal cerebral ischemic injury in the rats. In this study we aimed to investigate whether EA pretreatment could ameliorate the impairment of learning and memory induced by a sustained +Gz exposure. Using the centrifuge model, rats of experimental groups were exposed to +10 Gz for 5 min. Morris water maze was used for assessing the cognitive ability, and the apoptotic hippocampal CA1 pyramidal neuronal cells were evaluated by caspase-3 activity and TUNEL staining. Our results showed that +Gz exposure significantly caused pyramidal neuronal damage, increased neuronal apoptosis and caspase-3 activity in hippocampal CA1 region, as well as resulted in an impairment of spatial learning and memory, as compared to the sham group animals. Furthermore, the EA pretreatment significantly attenuated the neuronal apoptosis, preserved neuronal morphology and inhibited the caspase-3 activity in hippocampal CA1 region resulted from +Gz exposure. The EA pretreatment also ameliorated the learning and memory function in rats exposed to +Gz. These findings indicate that EA pretreatment provides a novel method to prevent the cognitive damage caused by +Gz, which could significantly protect neuronal damage and impairment of learning and memory.

  2. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid

    PubMed Central

    Findlay, John A.; Hamilton, David L.; Ashford, Michael L. J.

    2015-01-01

    Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD. PMID:26483636

  3. Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration.

    PubMed

    Schulz, Alexander; Büttner, Robert; Toledo, Andrea; Baader, Stephan L; von Maltzahn, Julia; Irintchev, Andrey; Bauer, Reinhard; Morrison, Helen

    2016-01-01

    In contrast to axons of the central nervous system (CNS), axons of the peripheral nervous system (PNS) show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2), has recently been shown to have RhoA regulatory functions in PNS neurons-in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery. PMID:27467574

  4. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells.

    PubMed

    Shim, Su Yeon; Karri, Srinivasarao; Law, Sampson; Schatzl, Hermann M; Gilch, Sabine

    2016-01-01

    Prions are proteinaceous infectious particles which cause fatal neurodegenerative disorders in humans and animals. They consist of a mostly β-sheeted aggregated isoform (PrP(Sc)) of the cellular prion protein (PrP(c)). Prions replicate autocatalytically in neurons and other cell types by inducing conformational conversion of PrP(c) into PrP(Sc). Within neurons, PrP(Sc) accumulates at the plasma membrane and in vesicles of the endocytic pathway. To better understand the mechanisms underlying neuronal dysfunction and death it is critical to know the impact of PrP(Sc) accumulation on cellular pathways. We have investigated the effects of prion infection on endo-lysosomal transport. Our study demonstrates that prion infection interferes with rab7 membrane association. Consequently, lysosomal maturation and degradation are impaired. Our findings indicate a mechanism induced by prion infection that supports stable prion replication. We suggest modulation of endo-lysosomal vesicle trafficking and enhancement of lysosomal maturation as novel targets for the treatment of prion diseases. PMID:26865414

  5. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells

    PubMed Central

    Shim, Su Yeon; Karri, Srinivasarao; Law, Sampson; Schatzl, Hermann M.; Gilch, Sabine

    2016-01-01

    Prions are proteinaceous infectious particles which cause fatal neurodegenerative disorders in humans and animals. They consist of a mostly β-sheeted aggregated isoform (PrPSc) of the cellular prion protein (PrPc). Prions replicate autocatalytically in neurons and other cell types by inducing conformational conversion of PrPc into PrPSc. Within neurons, PrPSc accumulates at the plasma membrane and in vesicles of the endocytic pathway. To better understand the mechanisms underlying neuronal dysfunction and death it is critical to know the impact of PrPSc accumulation on cellular pathways. We have investigated the effects of prion infection on endo-lysosomal transport. Our study demonstrates that prion infection interferes with rab7 membrane association. Consequently, lysosomal maturation and degradation are impaired. Our findings indicate a mechanism induced by prion infection that supports stable prion replication. We suggest modulation of endo-lysosomal vesicle trafficking and enhancement of lysosomal maturation as novel targets for the treatment of prion diseases. PMID:26865414

  6. Impaired neuronal nitric oxide synthase-mediated vasodilator responses to mental stress in essential hypertension.

    PubMed

    Khan, Sitara G; Geer, Amber; Fok, Henry W; Shabeeh, Husain; Brett, Sally E; Shah, Ajay M; Chowienczyk, Philip J

    2015-04-01

    Neuronal NO synthase (nNOS) regulates blood flow in resistance vasculature at rest and during mental stress. To investigate whether nNOS signaling is dysfunctional in essential hypertension, forearm blood flow responses to mental stress were examined in 88 subjects: 48 with essential hypertension (42±14 years; blood pressure, 141±17/85±15 mm Hg; mean±SD) and 40 normotensive controls (38±14 years; 117±13/74±9 mm Hg). A subsample of 34 subjects (17 hypertensive) participated in a single blind 2-phase crossover study, in which placebo or sildenafil 50 mg PO was administered before an intrabrachial artery infusion of the selective nNOS inhibitor S-methyl-l-thiocitrulline (SMTC, 0.05, 0.1, and 0.2 μmol/min) at rest and during mental stress. In a further subsample (n=21) with an impaired blood flow response to mental stress, responses were measured in the presence and absence of the α-adrenergic antagonist phentolamine. The blood flow response to mental stress was impaired in hypertensive compared with normotensive subjects (37±7% versus 70±8% increase over baseline; P<0.001). SMTC blunted responses to mental stress in normotensive but not in hypertensive subjects (reduction of 40±11% versus 3.0±14%, respectively, P=0.01, between groups). Sildenafil reduced the blood flow response to stress in normotensive subjects from 89±14% to 43±14% (P<0.03) but had no significant effect in hypertensive subjects. Phentolamine augmented impaired blood flow responses to mental stress from 39±8% to 67±13% (P<0.02). Essential hypertension is associated with impaired mental stress-induced nNOS-mediated vasodilator responses; this may relate to increased sympathetic outflow in hypertension. nNOS dysfunction may impair vascular homeostasis in essential hypertension and contribute to stress-induced cardiovascular events.

  7. Inhibition of phosphodiesterase 2 reverses impaired cognition and neuronal remodeling caused by chronic stress

    PubMed Central

    Xu, Ying; Pan, Jianchun; Sun, Jiao; Ding, Lianshu; Ruan, Lina; Reed, Miranda; Yu, Xuefeng; Klabni, Jonathan; Lin, Dan; Li, Jianxin; Chen, Ling; Zhang, Chong; Zhang, Hanting; O’Donnell, James M.

    2014-01-01

    Chronic stress and neuronal vulnerability have recently been recognized as factors contributing to cognitive disorders. One way to modify neuronal vulnerability is through mediation of phosphodiesterase 2 (PDE2), an enzyme that exerts its action on cognitive processes via the control of intracellular second messengers, cGMP and, to a lesser extent, cAMP. This study explored the effects of a PDE2 inhibitor, Bay 60-7550, on stress-induced learning and memory dysfunction in terms of its ramification on behavioral, morphological and molecular changes. Bay 60-7550 reversed stress-induced cognitive impairment in the Morris water maze (MWM), novel object recognition and location tasks (ORT/OLT), effects prevented by treatment with 7-NI, a selective inhibitor of neuronal nitric oxide synthase (nNOS); MK801, a glutamate receptor (NMDAR) inhibitor; myr-AIP, a CaMKII inhibitor; and KT5823, a PKG inhibitor. Bay 60-7550 also ameliorated stress-induced structural remodeling in the CA1 of the hippocampus, leading to increases in dendritic branching, length, and spine density. However, the neuroplasticity initiated by Bay 60-7550 was not seen in the presence of 7-NI, MK801, myr-AIP or KT5823. PDE2 inhibition reduced stress-induced ERK activation and attenuated stress-induced decreases in transcription factors (e.g., Elk-1, TORC1, and pCREB) and plasticity-related proteins (e.g, Egr-1 and BDNF). Pre-treatment with inhibitors of NMDA, CaMKII, nNOS, PKG (or PKA), blocked the effects of Bay 60-7550 on cGMP or cAMP signaling. These findings indicate that the effect of PDE2 inhibition on stress-induced memory impairment is potentially mediated via modulation of neuroplasticity-related, NMDAR-CaMKII-cGMP/cAMP signaling. PMID:25442113

  8. Recruitment of medial prefrontal cortex neurons during alcohol withdrawal predicts cognitive impairment and excessive alcohol drinking.

    PubMed

    George, Olivier; Sanders, Chelsea; Freiling, John; Grigoryan, Edward; Vu, Shayla; Allen, Camryn D; Crawford, Elena; Mandyam, Chitra D; Koob, George F

    2012-10-30

    Chronic intermittent access to alcohol leads to the escalation of alcohol intake, similar to binge drinking in humans. Converging lines of evidence suggest that impairment of medial prefrontal cortex (mPFC) cognitive function and overactivation of the central nucleus of the amygdala (CeA) are key factors that lead to excessive drinking in dependence. However, the role of the mPFC and CeA in the escalation of alcohol intake in rats with a history of binge drinking without dependence is currently unknown. To address this issue, we examined FBJ murine osteosarcoma viral oncogene homolog (Fos) expression in the mPFC, CeA, hippocampus, and nucleus accumbens and evaluated working memory and anxiety-like behavior in rats given continuous (24 h/d for 7 d/wk) or intermittent (3 d/wk) access to alcohol (20% vol/vol) using a two-bottle choice paradigm. The results showed that abstinence from alcohol in rats with a history of escalation of alcohol intake specifically recruited GABA and corticotropin-releasing factor (CRF) neurons in the mPFC and produced working memory impairments associated with excessive alcohol drinking during acute (24-72 h) but not protracted (16 -68 d) abstinence. Moreover, abstinence from alcohol was associated with a functional disconnection of the mPFC and CeA but not mPFC and nucleus accumbens. These results show that recruitment of a subset of GABA and CRF neurons in the mPFC during withdrawal and disconnection of the PFC-CeA pathway may be critical for impaired executive control over motivated behavior, suggesting that dysregulation of mPFC interneurons may be an early index of neuroadaptation in alcohol dependence.

  9. Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements.

    PubMed

    Kirchner, Liselotte; Weitzdoerfer, Rachel; Hoeger, Harald; Url, Angelika; Schmidt, Peter; Engelmann, Mario; Villar, Santiago Rosell; Fountoulakis, Michael; Lubec, Gert; Lubec, Barbara

    2004-12-01

    Nitric oxide is implicated in modulation of memory and pharmacological as well as genetic inhibition of neuronal nitric oxide synthase (nNOS) leads to impaired cognitive function. We therefore decided to study learning and memory functions and cognitive flexibility in the Morris water maze (MWM) in 1-month-old male mice lacking nNOS (nNOS KO). Hippocampal protein profiling was carried out to possibly link protein derangement to impaired cognitive function. Two-dimensional gel electrophoresis with in-gel digestion of spots and subsequent MALDI-TOF identification of proteins and quantification of proteins using specific software was applied. In the memory as well as in the relearning task of the MWM, most of the nNOS KO failed to find the submerged platform within a given time. Proteomic evaluation of hippocampus, the main anatomical structure computing cognitive functions, revealed aberrant expression of a synaptosomal associated protein of the exocytotic machinery (NSF), glycolytic enzymes, chaperones 78 kDa glucose-regulated protein, T-complex protein 1; the signaling structure guanine nucleotide-binding protein G(I)/G(S)/G(T) and heterogeneous nuclear ribonucleoprotein H of the splicing machinery. We conclude that nNOS knockout mice show impaired spatial performance in the MWM, a finding that may be either linked to direct effects of nNOS/NO and/or to specific hippocampal protein derangements.

  10. Discovery of nigral dopaminergic neurogenesis in adult mice

    PubMed Central

    Morrison, Brad E.

    2016-01-01

    Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra. As a result, intensive efforts have focused upon mechanisms that facilitate the death of mature dopaminergic neurons. Unfortunately, these efforts have been unsuccessful in providing an effective treatment to address neurodegeneration in this disease. Therefore, alternative theories of pathogenesis are being explored. Adult neurogenesis of dopaminergic neurons is an attractive concept that would provide a possible mechanism of neurodegeneration as well as offer an endogenous means to replenish affected neurons. To determine whether dopaminergic neurons experience neurogenesis in adult mice we developed a novel cell lineage tracing model that permitted detection of neurogenesis without many of the issues associated with popular techniques. Remarkably, we discovered that dopaminergic neurons are replenished in adult mice by Nestin+/Sox2- progenitor cells. What's more, the rate of neurogenesis is similar to the rate of dopaminergic neuron loss reported using a chronic, systemic inflammatory response mouse model. This observation may indicate that neuron loss in Parkinson's disease results from inhibition of neurogenesis. PMID:27482200

  11. Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation.

    PubMed

    Cai, Jing; Jing, Da; Shi, Ming; Liu, Yang; Lin, Tian; Xie, Zhen; Zhu, Yi; Zhao, Haibo; Shi, Xiaodan; Du, Fang; Zhao, Gang

    2014-07-01

    Infrasound, a kind of common environmental noise and a major contributor of vibroacoustic disease, can induce the central nervous system (CNS) damage. However, no relevant anti-infrasound drugs have been reported yet. Our recent studies have shown that infrasound resulted in excessive microglial activation rapidly and sequential inflammation, revealing a potential role of microglia in infrasound-induced CNS damage. Epigallocatechin gallate (EGCG), a major bioactive component in green tea, has the capacity of protecting against various neurodegenerative diseases via an anti-inflammatory mechanism. However, it is still unknown to date whether EGCG acts on infrasound-induced microglial activation and neuronal damage. We showed that, after 1-, 2- or 5-day exposure of rats to 16 Hz, 130 dB infrasound (2 h/day), EGCG significantly inhibited infrasound-induced microglial activation in rat hippocampal region, evidenced by reduced expressions of Iba-1 (a marker for microglia) and proinflammatory cytokines (IL-1β, IL-6, IL-18 and TNF-α). Moreover, infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by EGCG. EGCG also inhibited infrasound-induced activation of primary microglia in vitro and decreased the levels of proinflammatory cytokines in the supernatants of microglial culture, which were toxic to cultured neurons. Furthermore, EGCG attenuated infrasound-induced increases in nuclear NF-κB p65 and phosphorylated IκBα, and ameliorated infrasound-induced decrease in IκB in microglia. Therefore, our study provides the first evidence that EGCG acts against infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation through a potential NF-κB pathway-related mechanism, suggesting that EGCG can be used as a promising drug for the treatment of infrasound-induced CNS damage. PMID:24746834

  12. Dopaminergic drugs modulate learning rates and perseveration in Parkinson's patients in a dynamic foraging task.

    PubMed

    Rutledge, Robb B; Lazzaro, Stephanie C; Lau, Brian; Myers, Catherine E; Gluck, Mark A; Glimcher, Paul W

    2009-12-01

    Making appropriate choices often requires the ability to learn the value of available options from experience. Parkinson's disease is characterized by a loss of dopamine neurons in the substantia nigra, neurons hypothesized to play a role in reinforcement learning. Although previous studies have shown that Parkinson's patients are impaired in tasks involving learning from feedback, they have not directly tested the widely held hypothesis that dopamine neuron activity specifically encodes the reward prediction error signal used in reinforcement learning models. To test a key prediction of this hypothesis, we fit choice behavior from a dynamic foraging task with reinforcement learning models and show that treatment with dopaminergic drugs alters choice behavior in a manner consistent with the theory. More specifically, we found that dopaminergic drugs selectively modulate learning from positive outcomes. We observed no effect of dopaminergic drugs on learning from negative outcomes. We also found a novel dopamine-dependent effect on decision making that is not accounted for by reinforcement learning models: perseveration in choice, independent of reward history, increases with Parkinson's disease and decreases with dopamine therapy.

  13. Dopaminergic drugs modulate learning rates and perseveration in Parkinson's patients in a dynamic foraging task.

    PubMed

    Rutledge, Robb B; Lazzaro, Stephanie C; Lau, Brian; Myers, Catherine E; Gluck, Mark A; Glimcher, Paul W

    2009-12-01

    Making appropriate choices often requires the ability to learn the value of available options from experience. Parkinson's disease is characterized by a loss of dopamine neurons in the substantia nigra, neurons hypothesized to play a role in reinforcement learning. Although previous studies have shown that Parkinson's patients are impaired in tasks involving learning from feedback, they have not directly tested the widely held hypothesis that dopamine neuron activity specifically encodes the reward prediction error signal used in reinforcement learning models. To test a key prediction of this hypothesis, we fit choice behavior from a dynamic foraging task with reinforcement learning models and show that treatment with dopaminergic drugs alters choice behavior in a manner consistent with the theory. More specifically, we found that dopaminergic drugs selectively modulate learning from positive outcomes. We observed no effect of dopaminergic drugs on learning from negative outcomes. We also found a novel dopamine-dependent effect on decision making that is not accounted for by reinforcement learning models: perseveration in choice, independent of reward history, increases with Parkinson's disease and decreases with dopamine therapy. PMID:19955362

  14. Taurine Protected Against the Impairments of Neural Stem Cell Differentiated Neurons Induced by Oxygen-Glucose Deprivation.

    PubMed

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Liu, Sining; Ji, Cheng

    2015-11-01

    Cell transplantation of neural stem cells (NSCs) is a promising approach for neurological recovery both structurally and functionally. However, one big obstacle is to promote differentiation of NSCs into neurons and the followed maturation. In the present study, we aimed to investigate the protective effect of taurine on the differentiation of NSCs and subsequent maturation of their neuronal lineage, when exposed to oxygen-glucose deprivation (OGD). The results suggested that taurine (5-20 mM) promoted the viability and proliferation of NSCs, and it protected against 8 h of OGD induced impairments. Furthermore, 20 mM taurine promoted NSCs to differentiate into neurons after 7 days of culture, and it also protected against the suppressive impairments of 8 h of OGD. Consistently, taurine (20 mM) promoted the neurite sprouting and outgrowth of the NSC differentiated neurons after 14 days of differentiation, which were significantly inhibited by OGD (8 h). At D21, the mushroom spines and spine density were promoted or restored by 20 mM taurine. Taken together, the enhanced viability and proliferation of NSCs, more differentiated neurons and the promoted maturation of neurons by 20 mM taurine support its therapeutic application during stem cell therapy to enhance neurological recovery. Moreover, it protected against the impairments induced by OGD, which may highlight its role for a more direct therapeutic application especially in an ischemic stroke environment. PMID:26415593

  15. Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration

    PubMed Central

    Schulz, Alexander; Büttner, Robert; Toledo, Andrea; Baader, Stephan L.; von Maltzahn, Julia; Irintchev, Andrey; Bauer, Reinhard; Morrison, Helen

    2016-01-01

    In contrast to axons of the central nervous system (CNS), axons of the peripheral nervous system (PNS) show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2), has recently been shown to have RhoA regulatory functions in PNS neurons—in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery. PMID:27467574

  16. Herpes Simplex Virus-Type1 (HSV-1) Impairs DNA Repair in Cortical Neurons

    PubMed Central

    De Chiara, Giovanna; Racaniello, Mauro; Mollinari, Cristiana; Marcocci, Maria Elena; Aversa, Giorgia; Cardinale, Alessio; Giovanetti, Anna; Garaci, Enrico; Palamara, Anna Teresa; Merlo, Daniela

    2016-01-01

    Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer’s disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions. PMID:27803664

  17. Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane

    2016-07-01

    Glutamatergic excitotoxicity is crucial in the pathogenesis of numerous brain disorders. Luteolin, a flavonoid compound, inhibits glutamate release, however, its ability to affect glutamate-induced brain injury is unknown. Therefore, this study evaluated the protective effect of luteolin against brain damage induced by kainic acid (KA), a glutamate analog. Rats were treated with luteolin (10 or 50mg/kg, intraperitoneally) 30min before an intraperitoneal injection of KA (15mg/kg). Luteolin treatment reduced the KA-induced seizure score and elevations of glutamate levels in the hippocampus. A histopathological analysis showed that luteolin attenuated KA-induced neuronal death and microglial activation in the hippocampus. An immunoblotting analysis showed that luteolin restored the KA-induced reduction in Akt phosphorylation in the hippocampus. Furthermore, a Morris water maze test revealed that luteolin effectively prevented KA-induced learning and memory impairments. The results suggest that luteolin protected rat brains from KA-induced excitotoxic damage by reducing glutamate levels, mitigating inflammation, and enhancing Akt activation in the hippocampus. Therefore, luteolin may be beneficial for preventing or treating brain disorders associated with excitotoxic neuronal damage. PMID:27185356

  18. Acupuncture Stimulation Alleviates Corticosterone-Induced Impairments of Spatial Memory and Cholinergic Neurons in Rats

    PubMed Central

    Lee, Bombi; Sur, Bong-Jun; Kwon, Sunoh; Jung, Euntaek; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2012-01-01

    The purpose of this study was to examine whether acupuncture improves spatial cognitive impairment induced by repeated corticosterone (CORT) administration in rats. The effect of acupuncture on the acetylcholinergic system was also investigated in the hippocampus. Male rats were subcutaneously injected with CORT (5 mg/kg) once daily for 21 days. Acupuncture stimulation was performed at the HT7 (Sinmun) acupoint for 5 min before CORT injection. HT7 acupoint is located at the end of transverse crease of ulnar wrist of forepaw. In CORT-treated rats, reduced spatial cognitive function was associated with significant increases in plasma CORT level (+36%) and hippocampal CORT level (+204%) compared with saline-treated rats. Acupuncture stimulation improved the escape latency for finding the platform in the Morris water maze. Consistently, the acupuncture significantly alleviated memory-associated decreases in cholinergic immunoreactivity and mRNA expression of BDNF and CREB in the hippocampus. These findings demonstrate that stimulation of HT7 acupoint produced significant neuroprotective activity against the neuronal impairment and memory dysfunction. PMID:22216057

  19. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation.

    PubMed

    Patzke, Christopher; Acuna, Claudio; Giam, Louise R; Wernig, Marius; Südhof, Thomas C

    2016-04-01

    Hundreds of L1CAM gene mutations have been shown to be associated with congenital hydrocephalus, severe intellectual disability, aphasia, and motor symptoms. How such mutations impair neuronal function, however, remains unclear. Here, we generated human embryonic stem (ES) cells carrying a conditional L1CAM loss-of-function mutation and produced precisely matching control and L1CAM-deficient neurons from these ES cells. In analyzing two independent conditionally mutant ES cell clones, we found that deletion of L1CAM dramatically impaired axonal elongation and, to a lesser extent, dendritic arborization. Unexpectedly, we also detected an ∼20-50% and ∼20-30% decrease, respectively, in the levels of ankyrinG and ankyrinB protein, and observed that the size and intensity of ankyrinG staining in the axon initial segment was significantly reduced. Overexpression of wild-type L1CAM, but not of the L1CAM point mutants R1166X and S1224L, rescued the decrease in ankyrin levels. Importantly, we found that the L1CAM mutation selectively decreased activity-dependent Na(+)-currents, altered neuronal excitability, and caused impairments in action potential (AP) generation. Thus, our results suggest that the clinical presentations of L1CAM mutations in human patients could be accounted for, at least in part, by cell-autonomous changes in the functional development of neurons, such that neurons are unable to develop normal axons and dendrites and to generate normal APs. PMID:27001749

  20. Effects of melatonin on cognitive impairment and hippocampal neuronal damage in a rat model of chronic cerebral hypoperfusion

    PubMed Central

    LEE, CHOONG HYUN; PARK, JOON HA; AHN, JI HYEON; WON, MOO-HO

    2016-01-01

    Chronic cerebral hypoperfusion (CCH), which induces oxidative stress and inflammation in the brain, has previously been associated with cognitive impairment and neuronal cell damage. Melatonin is a well-known free radical scavenger and antioxidant; therefore, the present study investigated the protective effects of melatonin against CCH-induced cognitive impairment and neuronal cell death in a CCH rat model, which was generated via permanent bilateral common carotid artery occlusion (2VO). The rats in the 2VO group exhibited markedly increased escape latencies in a Morris water maze test, as compared with the rats in the sham group. In addition, increased neuronal cell damage was detected in the hippocampal CA1 region of the 2VO rats, as compared with the rats in the sham group. Treatment of the 2VO rats with melatonin significantly reduced the escape latency and neuronal cell damage, and was associated with reduced levels of malondialdehyde, microglial activation, and tumor necrosis factor-α and interleukin-1β in the ischemic hippocampus. The results of the present study suggest that melatonin may attenuate CCH-induced cognitive impairment and hippocampal neuronal cell damage by decreasing oxidative stress, microglial activation and the production of pro-inflammatory cytokines in the ischemic hippocampus. PMID:27284307

  1. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation

    PubMed Central

    Acuna, Claudio; Giam, Louise R.; Wernig, Marius; Südhof, Thomas C.

    2016-01-01

    Hundreds of L1CAM gene mutations have been shown to be associated with congenital hydrocephalus, severe intellectual disability, aphasia, and motor symptoms. How such mutations impair neuronal function, however, remains unclear. Here, we generated human embryonic stem (ES) cells carrying a conditional L1CAM loss-of-function mutation and produced precisely matching control and L1CAM-deficient neurons from these ES cells. In analyzing two independent conditionally mutant ES cell clones, we found that deletion of L1CAM dramatically impaired axonal elongation and, to a lesser extent, dendritic arborization. Unexpectedly, we also detected an ∼20–50% and ∼20–30% decrease, respectively, in the levels of ankyrinG and ankyrinB protein, and observed that the size and intensity of ankyrinG staining in the axon initial segment was significantly reduced. Overexpression of wild-type L1CAM, but not of the L1CAM point mutants R1166X and S1224L, rescued the decrease in ankyrin levels. Importantly, we found that the L1CAM mutation selectively decreased activity-dependent Na+-currents, altered neuronal excitability, and caused impairments in action potential (AP) generation. Thus, our results suggest that the clinical presentations of L1CAM mutations in human patients could be accounted for, at least in part, by cell-autonomous changes in the functional development of neurons, such that neurons are unable to develop normal axons and dendrites and to generate normal APs. PMID:27001749

  2. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients.

    PubMed

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John Lr; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. PMID:27458797

  3. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients

    PubMed Central

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John LR; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI: http://dx.doi.org/10.7554/eLife.13073.001 PMID:27458797

  4. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients

    PubMed Central

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John LR; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI: http://dx.doi.org/10.7554/eLife.13073.001 PMID:27458797

  5. Prenatal Exposure to Benzo(a)pyrene Impairs Later-Life Cortical Neuronal Function

    PubMed Central

    McCallister, Monique M.; Maguire, Mark; Ramesh, Aramandla; Aimin, Qiao; Liu, Sheng; Khoshbouei, Habibeh; Aschner, Michael; Ebner, Ford F.; Hood, Darryl B.

    2009-01-01

    Prenatal exposure to environmental contaminants, such as Benzo(a)pyrene [B(a)P] has been shown to impair brain development. The overarching hypothesis of our work is that glutamate receptor subunit expression is crucial for cortical evoked responses and that prenatal B(a)P exposure modulates the temporal developmental expression of glutamatergic receptor subunits in the somatosensory cortex. To characterize prenatal B(a)P exposure on the development of cortical function, pregnant Long Evans rats were exposed to low-level B(a)P (300μg/kg BW) by oral gavage on gestational days 14 to 17. At this exposure dose, there was no significant effect of B(a)P on 1) the number of pups born per litter, 2) the pre-weaning growth curves and 3) initial and final brain to body weight ratios. Control and B(a)P-exposed offspring were profiled for B(a)P metabolites in plasma and whole brain during the pre-weaning period. No detectable levels of metabolites were found in the control offspring. However, a time-dependent decrease in total metabolite concentration was observed in B(a)P-exposed offspring. On PND100-120, cerebrocortical mRNA expression was determined for the glutamatergic NMDA receptor subunit (NR2B) in control and B(a)P-exposed offspring. Neural activity was also recorded from neurons in primary somatic sensory (barrel) cortex. Semiquantitative PCR from B(a)P-exposed offspring revealed a significant 50% reduction in NR2B mRNA expression in B(a)P-exposed offspring relative to controls. Recordings from B(a)P-exposed offspring revealed that N-methyl-D-aspartate (NMDA) receptor -dependent neuronal activity in barrel cortex evoked by whisker stimulation was also significantly reduced (70%) as compared to controls. Analysis showed that the greatest deficit in cortical neuronal responses occurred in the shorter latency epochs from 5-20ms post-stimulus. The results suggest that in utero exposure to benzo(a)pyrene results in diminished mRNA expression of the NMDA NR2B receptor

  6. Prostaglandin E2-Mediated Attenuation of Mesocortical Dopaminergic Pathway Is Critical for Susceptibility to Repeated Social Defeat Stress in Mice

    PubMed Central

    Tanaka, Kohei; Furuyashiki, Tomoyuki; Kitaoka, Shiho; Senzai, Yuta; Imoto, Yuki; Segi-Nishida, Eri; Deguchi, Yuichi; Breyer, Richard M.; Breyer, Matthew D.; Narumiya, Shuh

    2013-01-01

    Various kinds of stress are thought to precipitate psychiatric disorders, such as major depression. Whereas studies in rodents have suggested a critical role of medial prefrontal cortex (mPFC) in stress susceptibility, the mechanism of how stress susceptibility is determined through mPFC remains unknown. Here we show a critical role of prostaglandin E2 (PGE2), a bioactive lipid derived from arachidonic acid, in repeated social defeat stress in mice. Repeated social defeat increased the PGE2 level in the subcortical region of the brain, and mice lacking either