Sample records for impaired drug-binding capacity

  1. Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro

    PubMed Central

    Olsen, Harald; Andersen, Anders; Nordbø, Arve; Kongsgaard, Ulf E; Børmer, Ole P

    2004-01-01

    Background Albumin is the most abundant protein in blood plasma, and due to its ligand binding properties, serves as a circulating depot for endogenous and exogenous (e.g. drugs) compounds. Hence, the unbound drug is the pharmacologically active drug. Commercial human albumin preparations are frequently used during surgery and in critically ill patients. Recent studies have indicated that the use of pharmaceutical-grade albumin is controversial in critically ill patients. In this in vitro study we investigated the drug binding properties of pharmaceutical-grade albumins (Baxter/Immuno, Octapharma, and Pharmacia & Upjohn), native human serum, and commercially available human serum albumin from Sigma Chemical Company. Methods The binding properties of the various albumin solutions were tested in vitro by means of ultrafiltration. Naproxen, warfarin, and digitoxin were used as ligands. HPLC was used to quantitate the total and free drug concentrations. The data were fitted to a model of two classes of binding sites for naproxen and warfarin and one class for digitoxin, using Microsoft Excel and Graphpad Prism. Results The drugs were highly bound to albumin (95–99.5%). The highest affinity (lowest K1) was found with naproxen. Pharmaceutical-grade albumin solutions displayed significantly lower drug-binding capacity compared to native human serum and Sigma albumin. Thus, the free fraction was considerably higher, approximately 40 times for naproxen and 5 and 2 times for warfarin and digitoxin, respectively. The stabilisers caprylic acid and N-acetyl-DL-tryptophan used in the manufacturing procedure seem to be of importance. Adding the stabilisers to human serum and Sigma albumin reduced the binding affinity whereas charcoal treatment of the pharmaceutical-grade albumin from Octapharma almost restored the specific binding capacity. Conclusion This in vitro study demonstrates that the specific binding for warfarin and digitoxin is significantly reduced and for naproxen

  2. Iron-binding antioxidant capacity is impaired in diabetes mellitus.

    PubMed

    Van Campenhout, Ann; Van Campenhout, Christel; Lagrou, Albert R; Moorkens, Greta; De Block, Christophe; Manuel-y-Keenoy, Begoña

    2006-05-15

    Increased lipid peroxidation contributes to diabetic complications and redox-active iron is known to play an important role in catalyzing peroxidation reactions. We aimed to investigate if diabetes affects the capacity of plasma to protect against iron-driven lipid peroxidation and to identify underlying factors. Glycemic control, serum iron, proteins involved in iron homeostasis, plasma iron-binding antioxidant capacity in a liposomal model, and non-transferrin-bound iron were measured in 40 type 1 and 67 type 2 diabetic patients compared to 100 nondiabetic healthy control subjects. Iron-binding antioxidant capacity was significantly lower in the plasma of diabetic subjects (83 +/- 6 and 84 +/- 5% in type 1 and type 2 diabetes versus 88 +/- 6% in control subjects, p < 0.0005). The contribution of transferrin, ceruloplasmin, and albumin concentrations to the iron-binding antioxidant capacity was lost in diabetes (explaining only 4.2 and 6.3% of the variance in type 1 and type 2 diabetes versus 13.9% in control subjects). This observation could not be explained by differences in Tf glycation, lipid, or inflammatory status and was not associated with higher non-transferrin-bound iron levels. Iron-binding antioxidant capacity is decreased in diabetes mellitus.

  3. Cognitive impairment and PD patients' capacity to consent to research

    PubMed Central

    Cary, Mark; Moelter, Stephen T.; Siderowf, Andrew; Sullo, Elizabeth; Xie, Sharon; Weintraub, Daniel

    2013-01-01

    Objective: To examine how cognitive impairment affects Parkinson disease (PD) patients' research consent capacity. Methods: A cross-sectional study of 90 patients with PD, divided using Mattis Dementia Rating Scale–2 scores into 3 groups of 30 (normal, borderline, and impaired), and 30 neurologically normal older adults completed 2 capacity interviews (an early-phase randomized and controlled drug trial and a sham-controlled surgical implantation of genetic tissue) using the MacArthur Competence Assessment Tool for Clinical Research. Expert clinicians used the interviews to classify the patients as either capable or not capable of providing their own informed consent. These judgments were compared with performance on the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE). Results: Cognitively normal PD patients typically scored well on the capacity measures. In contrast, patients with impaired cognition were not capable of providing their own informed consent: 17% (5/30) on the drug trial and 3% (1/30) on the surgery trial were judged capable. Patients with borderline impairment showed adequate performance on measures of appreciation and reasoning, but impaired performance on understanding the drug trial compared with normal controls and normal PD patients, and on understanding the surgery trial compared with normal controls. Sixty-seven percent (20/30) on the drug trial and 57% (17/30) on the surgery trial were judged capable of consent. Receiver operating characteristic analyses showed that the MMSE and MoCA could detect the likelihood of impaired capacity, with the MoCA demonstrating greater sensitivity. Conclusions: PD patients with borderline cognitive impairment have impairments in their decisional capacity. The MoCA may be useful to identify the patients at risk of impaired capacity. PMID:23892706

  4. 21 CFR 862.1415 - Iron-binding capacity test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Iron-binding capacity test system. 862.1415 Section 862.1415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  5. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  6. Determination of drug and fatty acid binding capacity to pluronic f127 in microemulsions.

    PubMed

    James-Smith, Monica A; Shekhawat, Dushyant; Moudgil, Brij M; Shah, Dinesh O

    2007-02-13

    We propose that one can deduce very insightful information regarding the drug and fatty acid binding capacity of microemulsions through simple turbidity experiments. Pluronic F127-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated amitriptyline, an antidepressant drug. We observed that, above certain Pluronic F127 concentrations, turbidity was never observed, irrespective of how much amitriptyline was added to the microemulsion. We also observed that whenever sodium caprylate fatty acid was not included in the microemulsion formulation, turbidity never occurred. On the basis of these findings, we were able to determine the point at which all sodium caprylate present in the microemulsion formulation was bound to the F127 in the microemulsion (i.e., no fatty acid was free in the bulk in monomer form). By the same logic we were also able to determine how much amitriptyline was binding to the microemulsions. We also measured the dynamic surface tension, foamability, and fabric wetting time of the microemulsion formulations to further prove the hypothesis that all fatty acid is bound to the F127 in the microemulsion above a critical Pluronic F127 concentration. On the basis of this research, we have concluded that there are approximately 11 molecules of sodium caprylate fatty acid bound per molecule of Pluronic F127 and approximately 12 molecules of amitriptyline bound per molecule of Pluronic F127 in the optimal microemulsion formulation. These findings give us valuable information about the charge density at the oil/water interface and about the mechanism of binding of the drug to the microemulsion.

  7. Improvement of impaired albumin binding capacity in acute-on-chronic liver failure by albumin dialysis.

    PubMed

    Klammt, Sebastian; Mitzner, Steffen R; Stange, Jan; Loock, Jan; Heemann, Uwe; Emmrich, Jörg; Reisinger, Emil C; Schmidt, Reinhard

    2008-09-01

    Extracorporeal albumin dialysis (ECAD) enables the elimination of albumin bound substances and is used as artificial liver support system. Albumin binding function for the benzodiazepine binding site specific marker Dansylsarcosine was estimated in plasma samples of 22 patients with cirrhosis and hyperbilirubinaemia (ECAD: n = 12; control: n = 10) during a period of 30 days in a randomized controlled clinical ECAD trial. Albumin Binding Capacity (ABiC) at baseline was reduced to 31.8% (median; range 24%-74%) and correlated to the severity of liver disease. Within two weeks a significant improvement of ABiC and a reduction of the albumin bound markers bilirubin and bile acids were observed in the ECAD group. During single treatments a significant decrease of albumin bound substances (bilirubin and bile acids) as well as an increase in ABiC was observed. In the control group, baseline ABiC was significantly lower in patients who died during study period (34.2% vs. 41.7%; P < 0.028), whereas no significant differences were observed for CHILD, coagulation factors, albumin, bile acids nor bilirubin. At baseline 13 patients had a severely impaired ABiC (<40%), improvement of ABiC was more frequent in the ECAD group (5/6) than in the SMT group (2/7). Reduced albumin binding function is present in decompensated liver failure and is related to severity and 30 day survival. ABiC can be improved by ECAD. The beneficial effect of this treatment may be related to the improvement of albumin binding function more than to the elimination of specific substances. Characterization of albumin function by the ABiC test may help to evaluate different liver support systems and other therapeutic measures.

  8. Histamine-binding capacities of different natural zeolites: a comparative study.

    PubMed

    Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried

    2018-06-07

    Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.

  9. The productive cellulase binding capacity of cellulosic substrates.

    PubMed

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Protein Binding Capacity of Different Forages Tannin

    NASA Astrophysics Data System (ADS)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  11. Low capacity of erythrocytes to bind with immune complexes via C3b receptor in patients with systemic lupus erythematosus: correlation with pathological proteinuria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojima, Y.; Terai, C.; Minota, S.

    1985-01-01

    Erythrocytes from 51 patients with systemic lupus erythematosus and 75 controls were tested for the capacity to bind aggregated human gamma-globulin labeled with radioiodine in the presence of complement. Both in patients and controls, a trimodal distribution of binding capacity was observed. Low (less than 9% of the added radioactivity), intermediate (9-17%), and high binding (more than 17%) were observed in 13, 58, and 29% in controls and in 49, 43 and 8% in lupus patients. The low binding capacity of erythrocytes persisted even after patients entered remission following steroid therapy. A genetic control of binding capacity was supported bymore » familial surveys. Prevalence of pathological proteinuria was significantly higher in patients with low binding capacity than those with intermediate or high binding capacity (16/25 vs 7/26, P less than 0.01). These results indicate that an impaired physiological disposal of immune complexes via the erythrocyte C3b receptor in lupus patients may contribute to the development of renal involvement.« less

  12. Medical decision-making capacity in cognitively impaired Parkinson's disease patients without dementia.

    PubMed

    Martin, Roy C; Okonkwo, Ozioma C; Hill, Joni; Griffith, H Randall; Triebel, Kristen; Bartolucci, Alfred; Nicholas, Anthony P; Watts, Ray L; Stover, Natividad; Harrell, Lindy E; Clark, David; Marson, Daniel C

    2008-10-15

    Little is currently known about the higher order functional skills of patients with Parkinson disease and cognitive impairment. Medical decision-making capacity (MDC) was assessed in patients with Parkinson's disease (PD) with cognitive impairment and dementia. Participants were 16 patients with PD and cognitive impairment without dementia (PD-CIND), 16 patients with PD dementia (PDD), and 22 healthy older adults. All participants were administered the Capacity to Consent to Treatment Instrument (CCTI), a standardized capacity instrument assessing MDC under five different consent standards. Parametric and nonparametric statistical analyses were utilized to examine capacity performance on the consent standards. In addition, capacity outcomes (capable, marginally capable, or incapable outcomes) on the standards were identified for the two patient groups. Relative to controls, PD-CIND patients demonstrated significant impairment on the understanding treatment consent standard, clinically the most stringent CCTI standard. Relative to controls and PD-CIND patients, PDD patients were impaired on the three clinical standards of understanding, reasoning, and appreciation. The findings suggest that impairment in decisional capacity is already present in cognitively impaired patients with PD without dementia and increases as these patients develop dementia. Clinicians and researchers should carefully assess decisional capacity in all patients with PD with cognitive impairment. (c) 2008 Movement Disorder Society.

  13. Intravenous iron-dextran: studies on unsaturated iron-binding capacity

    PubMed Central

    Cox, J. S. G.; Moss, G. F.; Bremner, I.; Reason, Janet

    1968-01-01

    A method is described for measuring the plasma unsaturated iron-binding capacity in the presence of very high concentrations of iron as iron-dextran. The procedure utilizes 59Fe to label the apotransferrin with subsequent separation of ionic iron from transferrin-bound iron on an ion exchange or Sephadex G.25 column. The unsaturated iron-binding capacity has been measured in rabbits and dogs after intravenous injection of iron-dextran and in human subjects after total dose infusion of iron-dextran. No evidence of saturation of the unsaturated iron-binding capacity was found even when the plasma iron values were greater than 40,000 μg Fe/100 ml. PMID:5697365

  14. Higher Self-Control Capacity Predicts Lower Anxiety-Impaired Cognition during Math Examinations.

    PubMed

    Bertrams, Alex; Baumeister, Roy F; Englert, Chris

    2016-01-01

    We assumed that self-control capacity, self-efficacy, and self-esteem would enable students to keep attentional control during tests. Therefore, we hypothesized that the three personality traits would be negatively related to anxiety-impaired cognition during math examinations. Secondary school students (N = 158) completed measures of self-control capacity, self-efficacy, and self-esteem at the beginning of the school year. Five months later, anxiety-impaired cognition during math examinations was assessed. Higher self-control capacity, but neither self-efficacy nor self-esteem, predicted lower anxiety-impaired cognition 5 months later, over and above baseline anxiety-impaired cognition. Moreover, self-control capacity was indirectly related to math grades via anxiety-impaired cognition. The findings suggest that improving self-control capacity may enable students to deal with anxiety-related problems during school tests.

  15. Higher Self-Control Capacity Predicts Lower Anxiety-Impaired Cognition during Math Examinations

    PubMed Central

    Bertrams, Alex; Baumeister, Roy F.; Englert, Chris

    2016-01-01

    We assumed that self-control capacity, self-efficacy, and self-esteem would enable students to keep attentional control during tests. Therefore, we hypothesized that the three personality traits would be negatively related to anxiety-impaired cognition during math examinations. Secondary school students (N = 158) completed measures of self-control capacity, self-efficacy, and self-esteem at the beginning of the school year. Five months later, anxiety-impaired cognition during math examinations was assessed. Higher self-control capacity, but neither self-efficacy nor self-esteem, predicted lower anxiety-impaired cognition 5 months later, over and above baseline anxiety-impaired cognition. Moreover, self-control capacity was indirectly related to math grades via anxiety-impaired cognition. The findings suggest that improving self-control capacity may enable students to deal with anxiety-related problems during school tests. PMID:27065013

  16. Biological variability of transferrin saturation and unsaturated iron binding capacity

    PubMed Central

    Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH

    2007-01-01

    Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429

  17. Implementation plan for combating the drug-impaired driver.

    DOT National Transportation Integrated Search

    1988-01-01

    Beginning on April 1, 1988, the Commonwealth of Virginia's revised drug-impaired driving statute went into effect. It defines the drug-impaired driver as one who is under the influence to a degree that impairs his or her ability to drive safely. The ...

  18. Elimination of Endogenous Toxin, Creatinine from Blood Plasma Depends on Albumin Conformation: Site Specific Uremic Toxicity & Impaired Drug Binding

    PubMed Central

    Varshney, Ankita; Rehan, Mohd; Subbarao, Naidu; Rabbani, Gulam; Khan, Rizwan Hasan

    2011-01-01

    Uremic syndrome results from malfunctioning of various organ systems due to the retention of uremic toxins which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. The aim of this study was to elucidate the mechanisms underlying the renal elimination of uremic toxin creatinine that accumulate in chronic renal failure. Quantitative investigation of the plausible correlations was performed by spectroscopy, calorimetry, molecular docking and accessibility of surface area. Alkalinization of normal plasma from pH 7.0 to 9.0 modifies the distribution of toxin in the body and therefore may affect both the accumulation and the rate of toxin elimination. The ligand loading of HSA with uremic toxin predicts several key side chain interactions of site I that presumably have the potential to impact the specificity and impaired drug binding. These findings provide useful information for elucidating the complicated mechanism of toxin disposition in renal disease state. PMID:21386972

  19. Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: site specific uremic toxicity & impaired drug binding.

    PubMed

    Varshney, Ankita; Rehan, Mohd; Subbarao, Naidu; Rabbani, Gulam; Khan, Rizwan Hasan

    2011-02-28

    Uremic syndrome results from malfunctioning of various organ systems due to the retention of uremic toxins which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. The aim of this study was to elucidate the mechanisms underlying the renal elimination of uremic toxin creatinine that accumulate in chronic renal failure. Quantitative investigation of the plausible correlations was performed by spectroscopy, calorimetry, molecular docking and accessibility of surface area. Alkalinization of normal plasma from pH 7.0 to 9.0 modifies the distribution of toxin in the body and therefore may affect both the accumulation and the rate of toxin elimination. The ligand loading of HSA with uremic toxin predicts several key side chain interactions of site I that presumably have the potential to impact the specificity and impaired drug binding. These findings provide useful information for elucidating the complicated mechanism of toxin disposition in renal disease state.

  20. A protocol to evaluate drug-related workplace impairment.

    PubMed

    Reisfield, Gary M; Shults, Theodore; Demery, Jason; Dupont, Robert

    2013-03-01

    The dramatic increase in the use and abuse of prescription controlled substances, cannabis, and a rapidly evolving array of legal and illegal psychotropic drugs has led to a growing concern by employers about workplace impairment, incidents, and accidents. The Federal Workplace Drug Testing Programs, which serve as a template for most private sector programs, focus on a small group of illicit drugs, but disregard the wider spectrum of legal and illegal psychotropic drugs and prescription controlled substances. We propose a protocol for the evaluation of workplace impairment, based on comprehensive drug and alcohol testing at the time of suspected impairment, followed expeditiously by a comprehensive physician evaluation, including a focused medical history with an emphasis on controlled substance use, physical and mental status examinations, evaluation of employee adherence to prescription medication instructions, additional drug testing if indicated, use of collateral sources of information, and querying of state prescription monitoring databases. Finally, we propose suggestions for optimizing the evaluation of drug-related workplace impairment.

  1. High-throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin.

    PubMed

    Bergander, Tryggve; Nilsson-Välimaa, Kristina; Oberg, Katarina; Lacki, Karol M

    2008-01-01

    Steadily increasing demand for more efficient and more affordable biomolecule-based therapies put a significant burden on biopharma companies to reduce the cost of R&D activities associated with introduction of a new drug to the market. Reducing the time required to develop a purification process would be one option to address the high cost issue. The reduction in time can be accomplished if more efficient methods/tools are available for process development work, including high-throughput techniques. This paper addresses the transitions from traditional column-based process development to a modern high-throughput approach utilizing microtiter filter plates filled with a well-defined volume of chromatography resin. The approach is based on implementing the well-known batch uptake principle into microtiter plate geometry. Two variants of the proposed approach, allowing for either qualitative or quantitative estimation of dynamic binding capacity as a function of residence time, are described. Examples of quantitative estimation of dynamic binding capacities of human polyclonal IgG on MabSelect SuRe and of qualitative estimation of dynamic binding capacity of amyloglucosidase on a prototype of Capto DEAE weak ion exchanger are given. The proposed high-throughput method for determination of dynamic binding capacity significantly reduces time and sample consumption as compared to a traditional method utilizing packed chromatography columns without sacrificing the accuracy of data obtained.

  2. Carrageenans as a new source of drugs with metal binding properties.

    PubMed

    Khotimchenko, Yuri S; Khozhaenko, Elena V; Khotimchenko, Maxim Y; Kolenchenko, Elena A; Kovalev, Valeri V

    2010-04-01

    Carrageenans are abundant and safe non-starch polysaccharides exerting their biological effects in living organisms. Apart from their known pro-inflammation properties and some pharmacological activity, carrageenans can also strongly bind and hold metal ions. This property can be used for creation of the new drugs for elimination of metals from the body or targeted delivery of these metal ions for healing purposes. Metal binding activity of different carrageenans in aqueous solutions containing Y(3+) or Pb(2+) ions was studied in a batch sorption system. The metal uptake by carrageenans is not affected by the change of the pH within the range from 2.0 to 6.0. The rates and binding capacities of carrageenans regarding metal ions were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants, and the sorption isothermal data could be explained well by the Langmuir equation. The results obtained through the study suggest that kappa-, iota-, and lambda-carrageenans are favorable sorbents. The largest amount of Y(3+) and Pb(2+) ions are bound by iota-carrageenan. Therefore, it can be concluded that this type of polysaccharide is the more appropriate substance for elaboration of the drugs with high selective metal binding properties.

  3. Impact of germline and somatic missense variations on drug binding sites.

    PubMed

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  4. Comparative studies on drug binding to the purified and pharmaceutical-grade human serum albumins: Bridging between basic research and clinical applications of albumin.

    PubMed

    Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza

    2015-09-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  5. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    PubMed

    Haupt, V Joachim; Daminelli, Simone; Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor

  6. In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate

    PubMed Central

    Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver

    2011-01-01

    Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043

  7. A look at ligand binding thermodynamics in drug discovery.

    PubMed

    Claveria-Gimeno, Rafael; Vega, Sonia; Abian, Olga; Velazquez-Campoy, Adrian

    2017-04-01

    Drug discovery is a challenging endeavor requiring the interplay of many different research areas. Gathering information on ligand binding thermodynamics may help considerably in reducing the risk within a high uncertainty scenario, allowing early rejection of flawed compounds and pushing forward optimal candidates. In particular, the free energy, the enthalpy, and the entropy of binding provide fundamental information on the intermolecular forces driving such interaction. Areas covered: The authors review the current status and recent developments in the application of ligand binding thermodynamics in drug discovery. The thermodynamic binding profile (Gibbs energy, enthalpy, and entropy of binding) can be used for lead selection and optimization (binding enthalpy, selectivity, and adaptability). Expert opinion: Binding thermodynamics provides fundamental information on the forces driving the formation of the drug-target complex. It has been widely accepted that binding thermodynamics may be used as a decision criterion along the ligand optimization process in drug discovery and development. In particular, the binding enthalpy may be used as a guide when selecting and optimizing compounds over a set of potential candidates. However, this has been recently called into question by arguing certain difficulties and in the light of certain experimental examples.

  8. Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli

    PubMed Central

    Soparkar, Ketaki; Kinana, Alfred D.; Weeks, Jon W.; Morrison, Keith D.; Nikaido, Hiroshi

    2015-01-01

    ABSTRACT The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions—Y49S, V127A, V127G, D153E, and G288C—mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions—F453C and L486W—were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain. IMPORTANCE The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure

  9. Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein.

    PubMed

    Wallis, Christopher P; Richman, Tara R; Filipovska, Aleksandra; Rackham, Oliver

    2018-06-15

    It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding.

  10. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2017-10-01

    The paper extended the TMDD model to drugs with two identical binding sites (2-1 TMDD). The quasi-steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irreversible binding (2-1 IB), and Michaelis-Menten (2-1 MM) approximations of the model were derived. Using simulations, the 2-1 QSS approximation was compared with the full 2-1 TMDD model. As expected and similarly to the standard TMDD for monoclonal antibodies (mAb), 2-1 QSS predictions were nearly identical to 2-1 TMDD predictions, except for times of fast changes following initiation of dosing, when equilibrium has not yet been reached. To illustrate properties of new equations and approximations, several variations of population PK data for mAbs with soluble (slow elimination of the complex) or membrane-bound (fast elimination of the complex) targets were simulated from a full 2-1 TMDD model and fitted to 2-1 TMDD models, to its approximations, and to the standard (1-1) QSS model. For a mAb with a soluble target, it was demonstrated that the 2-1 QSS model provided nearly identical description of the observed (simulated) free drug and total target concentrations, although there was some minor bias in predictions of unobserved free target concentrations. The standard QSS approximation also provided a good description of the observed data, but was not able to distinguish between free drug concentrations (with no target attached and both binding site free) and partially bound drug concentrations (with one of the binding sites occupied by the target). For a mAb with a membrane-bound target, the 2-1 MM approximation adequately described the data. The 2-1 QSS approximation converged 10 times faster than the full 2-1 TMDD, and its run time was comparable with the standard QSS model.

  11. Undetected cognitive impairment and decision-making capacity in patients receiving hospice care.

    PubMed

    Burton, Cynthia Z; Twamley, Elizabeth W; Lee, Lana C; Palmer, Barton W; Jeste, Dilip V; Dunn, Laura B; Irwin, Scott A

    2012-04-01

    : Cognitive dysfunction is common in patients with advanced, life-threatening illness and can be attributed to a variety of factors (e.g., advanced age, opiate medication). Such dysfunction likely affects decisional capacity, which is a crucial consideration as the end-of-life approaches and patients face multiple choices regarding treatment, family, and estate planning. This study examined the prevalence of cognitive impairment and its impact on decision-making abilities among hospice patients with neither a chart diagnosis of a cognitive disorder nor clinically apparent cognitive impairment (e.g., delirium, unresponsiveness). : A total of 110 participants receiving hospice services completed a 1-hour neuropsychological battery, a measure of decisional capacity, and accompanying interviews. : In general, participants were mildly impaired on measures of verbal learning, verbal memory, and verbal fluency; 54% of the sample was classified as having significant, previously undetected cognitive impairment. These individuals performed significantly worse than the other participants on all neuropsychological and decisional capacity measures, with effect sizes ranging from medium to very large (0.43-2.70). A number of verbal abilities as well as global cognitive functioning significantly predicted decision-making capacity. : Despite an absence of documented or clinically obvious impairment, more than half of the sample had significant cognitive impairments. Assessment of cognition in hospice patients is warranted, including assessment of verbal abilities that may interfere with understanding or reasoning related to treatment decisions. Identification of patients at risk for impaired cognition and decision making may lead to effective interventions to improve decision making and honor the wishes of patients and families.

  12. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    PubMed

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  13. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    PubMed

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  14. Systematic review: Helicobacter pylori infection and impaired drug absorption.

    PubMed

    Lahner, E; Annibale, B; Delle Fave, G

    2009-02-15

    Impaired acid secretion may affect drug absorption and may be consequent to corporal Helicobacter pylori-gastritis, which may affect the absorption of orally administered drugs. To focus on the evidence of impaired drug absorption associated with H. pylori infection. Data sources were the systematic search of MEDLINE/EMBASE/SCOPUS databases (1980-April 2008) for English articles using the keywords: drug malabsorption/absorption, stomach, Helicobacter pylori, gastritis, gastric acid, gastric pH, hypochlorhydria, gastric hypoacidity. Study selection was made from 2099 retrieved articles, five studies were identified. Data were extracted from selected papers, investigated drugs, study type, main features of subjects, study design, intervention type and results were extracted. In all, five studies investigated impaired absorption of l-dopa, thyroxine and delavirdine in H. pylori infection. Eradication treatment led to 21-54% increase in l-dopa in Parkinson's disease. Thyroxine requirement was higher in hypochlorhydric goitre with H. pylori-gastritis and thyrotropin levels decreased by 94% after treatment. In H. pylori- and HIV-positive hypochlorhydric subjects, delavirdine absorption increased by 57% with orange juice administration and by 150% after eradication. A plausible mechanism of impaired drug absorption is decreased acid secretion in H. pylori-gastritis patients. Helicobacter pylori infection and hypochlorhydria should be considered in prescribing drugs the absorption of which is potentially affected by intragastric pH.

  15. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and

  16. Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan

    2012-02-15

    The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, suchmore » as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.« less

  17. Bio-nanocapsule-based scaffold improves the sensitivity and ligand-binding capacity of mammalian receptors on the sensor chip.

    PubMed

    Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Maturana, Andrés D; Kuroda, Shun'ichi

    2016-06-01

    Mammalian receptors are recognized as target molecules for drug discovery, and chemical libraries have been screened for both potential antagonists and agonists mainly by ligand-binding assays using immobilized receptors. A bio-nanocapsule (BNC) of approximately 30 nm that displays a tandem form of the protein A-derived immunoglobulin G (IgG) Fc-binding Z domains (denoted as ZZ-BNC) has been developed for both clustering and oriented immobilization of IgGs on the solid phase of immunosensors. In this study, human IgG1 Fc-fused vascular endothelial growth factor (VEGF) receptor was immobilized through ZZ-BNC on the sensor chip of quartz crystal microbalance (ZZ-BNC-coating). When compared with direct adsorption and protein A-coating, the sensor chip showed higher sensitivity (∽46- and ∽165-fold, respectively) and larger ligand-binding capacity (∽4- and ∽18-fold, respectively). Furthermore, the number of VEGF molecules bound to its receptor increased from 0.20 (direct adsorption) to 2.06 by ZZ-BNC-coating, strongly suggesting that ZZ-BNC reduced the steric hindrance near ligand recognition sites through oriented immobilization. Similarly, the sensitivity and ligand-binding capacity of leptin and prolactin receptors were both enhanced at a level comparable to that observed for the VEGF receptor. Thus, the combination of ZZ-BNC and Fc-fused receptors could significantly improve the function of ligand-binding assays. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Other drug use does not impact cognitive impairments in chronic ketamine users.

    PubMed

    Zhang, Chenxi; Tang, Wai Kwong; Liang, Hua Jun; Ungvari, Gabor Sandor; Lin, Shih-Ku

    2018-05-01

    Ketamine abuse causes cognitive impairments, which negatively impact on users' abstinence, prognosis, and quality of life. of cognitive impairments in chronic ketamine users have been inconsistent across studies, possibly due to the small sample sizes and the confounding effects of concomitant use of other illicit drugs. This study investigated the cognitive impairment and its related factors in chronic ketamine users with a large sample size and explored the impact of another drug use on cognitive functions. Cognitive functions, including working, verbal and visual memory and executive functions were assessed in ketamine users: 286 non-heavy other drug users and 279 heavy other drug users, and 261 healthy controls. Correlations between cognitive impairment and patterns of ketamine use were analysed. Verbal and visual memory were impaired, but working memory and executive functions were intact for all ketamine users. No significant cognitive differences were found between the two ketamine groups. Greater number of days of ketamine use in the past month was associated with worse visual memory performance in non-heavy other drug users. Higher dose of ketamine use was associated with worse short-term verbal memory in heavy other drug users. Verbal and visual memory are impaired in chronic ketamine users. Other drug use appears to have no impact on ketamine users' cognitive performance. Copyright © 2018. Published by Elsevier B.V.

  19. Chemotherapeutic Drug-Conjugated Microbeads Demonstrate Preferential Binding to Methylated Plasmid DNA.

    PubMed

    Lin, Kevin N; Grandhi, Taraka Sai Pavan; Goklany, Sheba; Rege, Kaushal

    2018-04-10

    Plasmid DNA (pDNA) is an attractive therapeutic biomolecule in several diseases including cancer, AIDS, cystic fibrosis, Parkinson's disease, and Alzheimer's disease. Increasing demand for plasmid DNA as a therapeutic biomolecule for transgene expression or vaccine applications necessitate novel approaches to bioprocessing. The synthesis, characterization and evaluation of aminoglycoside-derived hydrogel microbeads (Amikabeads) for pDNA binding is described previously. Here, the generation and evaluation of novel chemotherapeutic drug-conjugated microbeads for application in pDNA binding and recovery is described. Chemotherapeutic drug-conjugated Amikabeads demonstrate higher binding of methylated pDNA compared to unmethylated pDNA in presence of high salt concentrations. Desorption of plasmids from drug-conjugated microbeads is facilitated by the use of organic modifiers. The observed differences in binding methylated versus unmethylated DNA can make drug-conjugated microbeads useful in diagnostic as well as therapeutic applications. These results demonstrate that anti-cancer drugs represent a diverse set of ligands that may be exploited for molecular engineering of novel DNA binding materials for applications in delivery, diagnostics, and biomanufacturing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Association Between Exercise Capacity and Late Onset of Dementia, Alzheimer Disease, and Cognitive Impairment.

    PubMed

    Müller, Jan; Chan, Khin; Myers, Jonathan N

    2017-02-01

    To address the association between exercise capacity and the onset of dementia, Alzheimer disease, and cognitive impairment. For 6104 consecutive veteran patients (mean ± SD age: 59.2±11.4 years) referred for treadmill exercise testing, the combined end point of dementia, Alzheimer disease, and cognitive impairment was abstracted from the Veterans Affairs computerized patient record system. After mean ± SD follow-up of 10.3±5.5 years, 353 patients (5.8%) developed the composite end point at a mean ± SD age of 76.7±10.3 years. After correction for confounders in multivariate Cox proportional hazards regression, higher age at exercise testing (hazard ratio [HR]=1.08; 95% CI, 1.07-1.09; P<.001), current smoking (HR=1.44; 95% CI, 1.08-1.93; P=.01), and exercise capacity (HR=0.92; 95% CI, 0.89-0.96; P<.001) emerged as predictors of cognitive impairment. Each 1-metabolic equivalent increase in exercise capacity conferred a nearly 8% reduction in the incidence of cognitive impairment. Meeting the recommendations for daily activity was not associated with a delay in onset of cognitive impairment (HR=1.07; 95% CI, 0.86-1.32; P=.55). Exercise capacity is strongly associated with cognitive function; the inverse association between fitness and cognitive impairment provides an additional impetus for health care providers to promote physical activity. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  1. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  2. Lead-binding capacity of calcium pectates with different molecular weight.

    PubMed

    Khotimchenko, Maksim; Makarova, Ksenia; Khozhaenko, Elena; Kovalev, Valeri

    2017-04-01

    Nowadays, heavy metal contamination of environment is considered as a serious threat to public health because of toxicity of these pollutants and the lack of effective materials with metal-binding properties. Some biopolymers such as pectins were proposed for removal of metal ions from industrial water disposals. Chemical structure of pectins is quite variable and substantially affects their metal binding properties. In this work, relationship between molecular weight and Pb(II)-binding capacity of calcium pectates was investigated in a batch sorption system. The results showed that all pectate samples are able to form complexes with Pb(II) ions. The effects of contact time, pH of the media and equilibrium metal concentration on metal-binding process were tested in experiments. The equilibrium time min required for uptake of Pb(II) by pectate compounds was found to be 60min. Langmuir and Freundlich models were applied for description of interactions between pectates and metal ions. Binding capacity of low molecular pectate was highest among all the samples tested. Langmuir model was figured out to be the best fit within the whole range of pH values. These results demonstrate that calcium pectate with low molecular weight is more promising agent for elimination of Pb(II) ions from contaminated wastewaters. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Impaired Contingent Attentional Capture Predicts Reduced Working Memory Capacity in Schizophrenia

    PubMed Central

    Mayer, Jutta S.; Fukuda, Keisuke; Vogel, Edward K.; Park, Sohee

    2012-01-01

    Although impairments in working memory (WM) are well documented in schizophrenia, the specific factors that cause these deficits are poorly understood. In this study, we hypothesized that a heightened susceptibility to attentional capture at an early stage of visual processing would result in working memory encoding problems. 30 patients with schizophrenia and 28 demographically matched healthy participants were presented with a search array and asked to report the orientation of the target stimulus. In some of the trials, a flanker stimulus preceded the search array that either matched the color of the target (relevant-flanker capture) or appeared in a different color (irrelevant-flanker capture). Working memory capacity was determined in each individual using the visual change detection paradigm. Patients needed considerably more time to find the target in the no-flanker condition. After adjusting the individual exposure time, both groups showed equivalent capture costs in the irrelevant-flanker condition. However, in the relevant-flanker condition, capture costs were increased in patients compared to controls when the stimulus onset asynchrony between the flanker and the search array was high. Moreover, the increase in relevant capture costs correlated negatively with working memory capacity. This study demonstrates preserved stimulus-driven attentional capture but impaired contingent attentional capture associated with low working memory capacity in schizophrenia. These findings suggest a selective impairment of top-down attentional control in schizophrenia, which may impair working memory encoding. PMID:23152783

  4. Impaired contingent attentional capture predicts reduced working memory capacity in schizophrenia.

    PubMed

    Mayer, Jutta S; Fukuda, Keisuke; Vogel, Edward K; Park, Sohee

    2012-01-01

    Although impairments in working memory (WM) are well documented in schizophrenia, the specific factors that cause these deficits are poorly understood. In this study, we hypothesized that a heightened susceptibility to attentional capture at an early stage of visual processing would result in working memory encoding problems. 30 patients with schizophrenia and 28 demographically matched healthy participants were presented with a search array and asked to report the orientation of the target stimulus. In some of the trials, a flanker stimulus preceded the search array that either matched the color of the target (relevant-flanker capture) or appeared in a different color (irrelevant-flanker capture). Working memory capacity was determined in each individual using the visual change detection paradigm. Patients needed considerably more time to find the target in the no-flanker condition. After adjusting the individual exposure time, both groups showed equivalent capture costs in the irrelevant-flanker condition. However, in the relevant-flanker condition, capture costs were increased in patients compared to controls when the stimulus onset asynchrony between the flanker and the search array was high. Moreover, the increase in relevant capture costs correlated negatively with working memory capacity. This study demonstrates preserved stimulus-driven attentional capture but impaired contingent attentional capture associated with low working memory capacity in schizophrenia. These findings suggest a selective impairment of top-down attentional control in schizophrenia, which may impair working memory encoding.

  5. Memory Binding Test Predicts Incident Amnestic Mild Cognitive Impairment.

    PubMed

    Mowrey, Wenzhu B; Lipton, Richard B; Katz, Mindy J; Ramratan, Wendy S; Loewenstein, David A; Zimmerman, Molly E; Buschke, Herman

    2016-07-14

    The Memory Binding Test (MBT), previously known as Memory Capacity Test, has demonstrated discriminative validity for distinguishing persons with amnestic mild cognitive impairment (aMCI) and dementia from cognitively normal elderly. We aimed to assess the predictive validity of the MBT for incident aMCI. In a longitudinal, community-based study of adults aged 70+, we administered the MBT to 246 cognitively normal elderly adults at baseline and followed them annually. Based on previous work, a subtle reduction in memory binding at baseline was defined by a Total Items in the Paired (TIP) condition score of ≤22 on the MBT. Cox proportional hazards models were used to assess the predictive validity of the MBT for incident aMCI accounting for the effects of covariates. The hazard ratio of incident aMCI was also assessed for different prediction time windows ranging from 4 to 7 years of follow-up, separately. Among 246 controls who were cognitively normal at baseline, 48 developed incident aMCI during follow-up. A baseline MBT reduction was associated with an increased risk for developing incident aMCI (hazard ratio (HR) = 2.44, 95% confidence interval: 1.30-4.56, p = 0.005). When varying the prediction window from 4-7 years, the MBT reduction remained significant for predicting incident aMCI (HR range: 2.33-3.12, p: 0.0007-0.04). Persons with poor performance on the MBT are at significantly greater risk for developing incident aMCI. High hazard ratios up to seven years of follow-up suggest that the MBT is sensitive to early disease.

  6. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.

    PubMed

    Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges

    2009-08-01

    Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.

  7. Drug and alcohol-impaired driving among electronic music dance event attendees.

    PubMed

    Furr-Holden, Debra; Voas, Robert B; Kelley-Baker, Tara; Miller, Brenda

    2006-10-15

    Drug-impaired driving has received increased attention resulting from development of rapid drug-screening procedures used by police and state laws establishing per se limits for drug levels in drivers. Venues that host electronic music dance events (EMDEs) provide a unique opportunity to assess drug-impaired driving among a high proportion of young adult drug users. EMDEs are late-night dance parties marked by a substantial number of young adult attendees and elevated drug involvement. No studies to date have examined drug-impaired driving in a natural environment with active drug and alcohol users. Six EMDEs were sampled in San Diego, California, and Baltimore, Maryland. A random sample of approximately 40 attendees per event were administered surveys about alcohol and other drug (AOD) use and driving status, given breath tests for alcohol, and asked to provide oral fluid samples to test for illicit drug use upon entering and exiting the events. Driving status reduced the level of alcohol use (including abstaining) but the impact on drug-taking was not significant. However, 62% of individuals who reported their intention to drive away from the events were positive for drugs or alcohol upon leaving. This suggests that these events and settings are appropriate ones for developing interventions for reducing risks for young adults.

  8. Clinical Interview Assessment of Financial Capacity in Older Adults with Mild Cognitive Impairment and Alzheimer’s Disease

    PubMed Central

    Marson, Daniel C.; Martin, Roy C.; Wadley, Virginia; Griffith, H. Randall; Snyder, Scott; Goode, Patricia S.; Kinney, F. Cleveland; Nicholas, Anthony P.; Steele, Terri; Anderson, Britt; Zamrini, Edward; Raman, Rema; Bartolucci, Alfred; Harrell, Lindy E.

    2009-01-01

    Objectives To investigate financial capacity in patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD) using a clinician interview approach. Design Cross-sectional. Setting Tertiary care medical center. Participants Healthy older adults (N=75), patients with amnestic MCI (N=58), mild AD (N=97), and moderate AD (N=31). Measurements The investigators and five study physicians developed a conceptually based, semi-structured clinical interview for evaluating seven core financial domains and overall financial capacity (Semi-Structured Clinical Interview for Financial Capacity; SCIFC). For each participant, a physician made capacity judgments (capable, marginally capable, or incapable) for each financial domain and for overall capacity. Results Study physicians made a total of over 11,000 capacity judgments across the study sample (N=261). Very good inter-rater agreement was obtained for the SCIFC judgments. Increasing proportions of marginal and incapable judgment ratings were associated with increasing disease severity across the four study groups. For overall financial capacity, 95 percent of physician judgments for older controls were rated as capable, as compared to only 82% for patients with MCI, 26% for patients with mild AD, and 4% for patients with moderate AD. Conclusion Financial capacity in cognitively impaired older adults can be reliably evaluated by physicians using a relatively brief, semi-structured clinical interview. Financial capacity shows mild impairment in MCI, emerging global impairment in mild AD, and advanced global impairment in moderate AD. MCI patients and their families should proactively engage in financial and legal planning given these patients’ risk of developing AD and accelerated loss of financial abilities. PMID:19453308

  9. Drug and alcohol-impaired driving among electronic music dance event attendees

    PubMed Central

    Furr-Holden, Debra; Voas, Robert B.; Kelley-Baker, Tara; Miller, Brenda

    2011-01-01

    Background Drug-impaired driving has received increased attention resulting from development of rapid drug-screening procedures used by police and state laws establishing per se limits for drug levels in drivers. Venues that host electronic music dance events (EMDEs) provide a unique opportunity to assess drug-impaired driving among a high proportion of young adult drug users. EMDEs are late-night dance parties marked by a substantial number of young adult attendees and elevated drug involvement. No studies to date have examined drug-impaired driving in a natural environment with active drug and alcohol users. Methods Six EMDEs were sampled in San Diego, California, and Baltimore, Maryland. A random sample of approximately 40 attendees per event were administered surveys about alcohol and other drug (AOD) use and driving status, given breath tests for alcohol, and asked to provide oral fluid samples to test for illicit drug use upon entering and exiting the events. Results Driving status reduced the level of alcohol use (including abstaining) but the impact on drug-taking was not significant. However, 62% of individuals who reported their intention to drive away from the events were positive for drugs or alcohol upon leaving. This suggests that these events and settings are appropriate ones for developing interventions for reducing risks for young adults. PMID:16675160

  10. Canada's new drug-impaired driving law: the need to consider other approaches.

    PubMed

    Solomon, Robert; Chamberlain, Erika

    2014-01-01

    The objects of this study were: To review the state of drug-impaired driving in Canada, particularly in light of the 2008 amendments to the Criminal Code, which authorized police to demand standardized field sobriety testing and drug recognition evaluations, and to consider whether alternative enforcement models would be more effective in terms of detecting and prosecuting drug-impaired drivers and thereby achieve greater deterrence. This article provides a review of survey data, roadside screening studies, and postmortem reports that indicate the prevalence of driving after drug use in Canada. It evaluates the Criminal Code's 2008 amendments and their impact on charges and convictions for drug-impaired driving. It then reviews some alternative enforcement models for drug-impaired driving that have been adopted in other jurisdictions, particularly toxicological testing, and evaluates them against Canada's social, political, and constitutional framework. Survey data, roadside screening studies, and postmortem reports indicate that driving after drug use is commonplace and is now more prevalent among young people than driving after drinking. Unfortunately, the 2008 Criminal Code amendments have not had their desired effects. The measures have proven to be costly, time-consuming, and cumbersome, and are readily susceptible to challenge in the courts. Accordingly, the charge rates for drug-impaired driving remain extremely low, and the law has had minimal deterrent effects. The review of alternative enforcement models suggests that a system of random roadside saliva screening, somewhat similar to the model used in Victoria, Australia, will be the most effective in terms of detecting and prosecuting drug-impaired drivers and most consistent with Canada's legal and constitutional system. Canada should establish per se limits for the most commonly used drugs, enforceable through a system of screening and evidentiary tests. This will be more efficient and cost

  11. Quantitative Estimation of Plasma Free Drug Fraction in Patients With Varying Degrees of Hepatic Impairment: A Methodological Evaluation.

    PubMed

    Li, Guo-Fu; Yu, Guo; Li, Yanfei; Zheng, Yi; Zheng, Qing-Shan; Derendorf, Hartmut

    2018-07-01

    Quantitative prediction of unbound drug fraction (f u ) is essential for scaling pharmacokinetics through physiologically based approaches. However, few attempts have been made to evaluate the projection of f u values under pathological conditions. The primary objective of this study was to predict f u values (n = 105) of 56 compounds with or without the information of predominant binding protein in patients with varying degrees of hepatic insufficiency by accounting for quantitative changes in molar concentrations of either the major binding protein or albumin plus alpha 1-acid glycoprotein associated with differing levels of hepatic dysfunction. For the purpose of scaling, data pertaining to albumin and α1-acid glycoprotein levels in response to differing degrees of hepatic impairment were systematically collected from 919 adult donors. The results of the present study demonstrate for the first time the feasibility of physiologically based scaling f u in hepatic dysfunction after verifying with experimentally measured data of a wide variety of compounds from individuals with varying degrees of hepatic insufficiency. Furthermore, the high level of predictive accuracy indicates that the inter-relation between the severity of hepatic impairment and these plasma protein levels are physiologically accurate. The present study enhances the confidence in predicting f u in hepatic insufficiency, particularly for albumin-bound drugs. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Hupresin Retains Binding Capacity for Butyrylcholinesterase and Acetylcholinesterase after Sanitation with Sodium Hydroxide.

    PubMed

    Onder, Seda; David, Emilie; Tacal, Ozden; Schopfer, Lawrence M; Lockridge, Oksana

    2017-01-01

    Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE) in human plasma and acetylcholinesterase (AChE) solubilized from red blood cells (RBC). Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA) with full activity and 10-15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.

  13. Impaired working memory capacity is not caused by failures of selective attention in schizophrenia.

    PubMed

    Erickson, Molly A; Hahn, Britta; Leonard, Carly J; Robinson, Benjamin; Gray, Brad; Luck, Steven J; Gold, James

    2015-03-01

    The cognitive impairments associated with schizophrenia have long been known to involve deficits in working memory (WM) capacity. To date, however, the causes of WM capacity deficits remain unknown. The present study examined selective attention impairments as a putative contributor to observed capacity deficits in this population. To test this hypothesis, we used an experimental paradigm that assesses the role of selective attention in WM encoding and has been shown to involve the prefrontal cortex and the basal ganglia. In experiment 1, participants were required to remember the locations of 3 or 5 target items (red circles). In another condition, 3-target items were accompanied by 2 distractor items (yellow circles), which participants were instructed to ignore. People with schizophrenia (PSZ) exhibited significant impairment in memory for the locations of target items, consistent with reduced WM capacity, but PSZ and healthy control subjects did not differ in their ability to filter the distractors. This pattern was replicated in experiment 2 for distractors that were more salient. Taken together, these results demonstrate that reduced WM capacity in PSZ is not attributable to a failure of filtering irrelevant distractors. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Fatty Acid Binding Proteins Expressed at the Human Blood-Brain Barrier Bind Drugs in an Isoform-Specific Manner.

    PubMed

    Lee, Gordon S; Kappler, Katharina; Porter, Christopher J H; Scanlon, Martin J; Nicolazzo, Joseph A

    2015-10-01

    To examine the expression of fatty acid binding proteins (FABPs) at the human blood-brain barrier (BBB) and to assess their ability to bind lipophilic drugs. mRNA and protein expression of FABP subtypes in immortalized human brain endothelial (hCMEC/D3) cells were examined by RT-qPCR and Western blot, respectively. FABPs that were found in hCMEC/D3 cells (hFABPs) were recombinantly expressed and purified from Escherichia coli C41(DE3) cells. Drug binding to these hFABPs was assessed using a fluorescence assay, which measured the ability of a panel of lipophilic drugs to displace the fluorescent probe compound 1-anilinonaphthalene-8-sulfonic acid (ANS). hFABP3, 4 and 5 were expressed in hCMEC/D3 cells at the mRNA and protein level. The competitive ANS displacement assay demonstrated that, in general, glitazones preferentially bound to hFABP5 (Ki: 1.0-28 μM) and fibrates and fenamates preferentially bound to hFABP4 (Ki: 0.100-17 μM). In general, lipophilic drugs appeared to show weaker affinities for hFABP3 relative to hFABP4 and hFABP5. No clear correlation was observed between the molecular structure or physicochemical properties of the drugs and their ability to displace ANS from hFABP3, 4 and 5. hFABP3, 4 and 5 are expressed at the human BBB and bind differentially to a diverse range of lipophilic drugs. The unique expression and binding patterns of hFABPs at the BBB may therefore influence drug disposition into the brain.

  15. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography.

    PubMed

    Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen

    2015-05-29

    Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity

    PubMed Central

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous

  17. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous

  18. Disciplinary careers of drug-impaired physicians.

    PubMed

    Holtman, Matthew C

    2007-02-01

    Alcohol and drug abuse are among the leading reasons for disciplinary action against physicians by state licensing authorities in the United States. I use event history models to describe the longitudinal patterns in disciplinary actions taken against physicians' licenses by state medical boards in the United States, 1990-2000. Adverse licensure action episodes that included discipline for drug or alcohol abuse were more likely to be followed by license restoration than episodes that did not. However, those restorations were also more likely to be followed by subsequent disciplinary action than episodes that did not include discipline for drug abuse. Furthermore, disciplinary licensure actions for drug abuse were the category most likely to be followed by a subsequent action for the same reason over the longer term (4-11 years). The increased risk of repeat disciplinary action associated with drug abuse may result in part from intensive surveillance of physicians who complete impaired physician programs, through mechanisms that include urine screening. However, it is also likely that the chronic nature of addiction leads to continued risk of relapse even among physicians receiving appropriate treatment.

  19. Recommendations for toxicological investigation of drug-impaired driving and motor vehicle fatalities.

    PubMed

    Logan, Barry K; Lowrie, Kayla J; Turri, Jennifer L; Yeakel, Jillian K; Limoges, Jennifer F; Miles, Amy K; Scarneo, Colleen E; Kerrigan, Sarah; Farrell, Laurel J

    2013-10-01

    This report describes the review and update of a set of minimum recommendations for the toxicological investigation of suspected alcohol and drug-impaired driving cases and motor vehicle fatalities involving drugs or alcohol. The recommendations have the goal of ensuring that a consistent set of data regarding the most frequently encountered drugs linked to driving impairment is collected for practical application in the investigation of these cases and to allow epidemiological monitoring and the development of evidence-based public policy on this important public safety issue. The recommendations are based on a survey of practices in US laboratories performing this kind of analysis, consideration of existing epidemiological crash and arrest data and practical considerations of widely available technology platforms in laboratories performing this work. The final recommendations were derived from a consensus meeting of experts recruited from survey respondents and the membership of the National Safety Council's Alcohol, Drug and Impairment Division (formerly known as the Committee on Alcohol and Other Drugs, CAOD).

  20. Assessing capacity to consent for research in cognitively impaired older patients

    PubMed Central

    Gilbert, Thomas; Bosquet, Antoine; Thomas-Antérion, Catherine; Bonnefoy, Marc; Le Saux, Olivia

    2017-01-01

    Background The number of clinical trials including older patients, and particularly patients with cognitive impairment, is increasing. While statutory provisions exist to make sure that the capacity to consent is assessed systematically for each patient, many gray areas remain with regard to how this assessment is made or should be made in the routine practice of clinical research. Objectives The aim of this review was to draw up an inventory of assessment tools evaluating older patients’ capacity to consent specifically applicable to clinical research, which could be used in routine practice. Methods Two authors independently searched PubMed, Cochrane, and Google Scholar data-bases between November 2015 and January 2016. The search was actualized in April 2017. We used keywords (MeSH terms and text words) referring to informed consent, capacity to consent, consent for research, research ethics, cognitive impairment, vulnerable older patients, and assessment tools. Existing reviews were also considered. Results Among the numerous existing tools for assessing capacity to consent, 14 seemed potentially suited for clinical research and six were evaluated in older patients. The MacArthur Competence Assessment Tool for Clinical Research (MacCAT-CR) was the most frequently cited. Conclusion The MacCAT-CR is currently the most used and the best validated questionnaire. However, it appears difficult to use and time-consuming. A more recent tool, the University of California Brief Assessment of Capacity to Consent (UBACC), seems interesting for routine practice because of its simplicity, relevance, and applicability in older patients. PMID:29026293

  1. Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design

    PubMed Central

    2012-01-01

    The aim of fragment-based drug design (FBDD) is to identify molecular fragments that bind to alternate subsites within a given binding pocket leading to cooperative binding when linked. In this study, the binding of fragments to human phenylethanolamine N-methyltransferase is used to illustrate how (a) current protocols may fail to detect fragments that bind cooperatively, (b) theoretical approaches can be used to validate potential hits, and (c) apparent false positives obtained when screening against cocktails of fragments may in fact indicate promising leads. PMID:24900472

  2. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.

    PubMed

    Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam

    2017-01-02

    The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10 4 L mol -1 and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol -1 . This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.

  3. Number of thoracotomies predicts impairment in lung function and exercise capacity in patients with congenital heart disease.

    PubMed

    Müller, Jan; Ewert, Peter; Hager, Alfred

    2018-01-01

    Many patients with congenital heart disease (CHD) require surgery to ensure survival into adulthood. But history of previous thoracotomies is associated with respiratory muscle weakness, impairments in chest wall compliance, and moderately to severely impaired lung function. This study evaluated the impact of thoracotomies on functional outcome in patients with CHD. In total 1372 adolescents and adults with CHD (32.4±11.5 years, 624 female), who underwent spirometry and cardiopulmonary exercise testing in our institution from January 2010 to August 2015, were analyzed. After adjusting for confounding variables, with every thoracotomy the prevalence for a restrictive ventilatory pattern increased by 1.8-fold (CI: 1.606-2.050; p<0.001). The number of thoracotomies had no direct influence on an impaired exercise capacity in a multivariate model, but with every percentage point increase in forced vital capacity probability of impaired exercise capacity diminished (OR: 0.944, CI: 0.933-0.955, p<0.001). There was a moderate correlation of forced vital capacity and peak oxygen uptake (r=0.464, p<0.001). After a follow-up of 2.1±1.6 years 21 patients had died. Survival was only related to age (p<0.001) and peak oxygen uptake (p<0.001) after considering together with thoracotomies, oxygen saturation at rest and forced vital capacity in a multivariate model. Independent of CHD complexity and other risk factors, multiple thoracotomies lead to restrictive lung pattern. It could be suggested that those limitations in forced vital capacity contribute to impairments in exercise capacity, which turned out to be the strongest predictor for survival. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  4. Atomistic models for free energy evaluation of drug binding to membrane proteins.

    PubMed

    Durdagi, S; Zhao, C; Cuervo, J E; Noskov, S Y

    2011-01-01

    The binding of various molecules to integral membrane proteins with optimal affinity and specificity is central to normal function of cell. While membrane proteins represent about one third of the whole cell proteome, they are a majority of common drug targets. The quest for the development of computational models capable of accurate evaluation of binding affinities, decomposition of the binding into its principal components and thus mapping molecular mechanisms of binding remains one of the main goals of modern computational biophysics and related drug development. The primary scope of this review will be on the recent extension of computational methods for the study of drug binding to membrane proteins. Several examples of such applications will be provided ranging from secondary transporters to voltage gated channels. In this mini-review, we will provide a short summary on the breadth of different methods for binding affinity evaluation. These methods include molecular docking with docking scoring functions, molecular dynamics (MD) simulations combined with post-processing analysis using Molecular Mechanics/Poisson Boltzmann (Generalized Born) Surface Area (MM/PB(GB)SA), as well as direct evaluation of free energies from Free Energy Perturbation (FEP) with constraining schemes, and Potential of Mean Force (PMF) computations. We will compare advantages and shortcomings of popular techniques and provide discussion on the integrative strategies for drug development aimed at targeting membrane proteins.

  5. Drug Recognition Expert (DRE) examination characteristics of cannabis impairment.

    PubMed

    Hartman, Rebecca L; Richman, Jack E; Hayes, Charles E; Huestis, Marilyn A

    2016-07-01

    The Drug Evaluation and Classification Program (DECP) is commonly utilized in driving under the influence (DUI) cases to help determine category(ies) of impairing drug(s) present in drivers. Cannabis, one of the categories, is associated with approximately doubled crash risk. Our objective was to determine the most reliable DECP metrics for identifying cannabis-driving impairment. We evaluated 302 toxicologically-confirmed (blood Δ(9)-tetrahydrocannabinol [THC] ≥1μg/L) cannabis-only DECP cases, wherein examiners successfully identified cannabis, compared to normative data (302 non-impaired individuals). Physiological measures, pupil size/light reaction, and performance on psychophysical tests (one leg stand [OLS], walk and turn [WAT], finger to nose [FTN], Modified Romberg Balance [MRB]) were included. Cases significantly differed from controls (p<0.05) in pulse (increased), systolic blood pressure (elevated), and pupil size (dilated). Blood collection time after arrest significantly decreased THC concentrations; no significant differences were detected between cases with blood THC <5μg/L versus ≥5μg/L. The FTN best predicted cannabis impairment (sensitivity, specificity, positive/negative predictive value, and efficiency ≥87.1%) utilizing ≥3 misses as the deciding criterion; MRB eyelid tremors produced ≥86.1% for all diagnostic characteristics. Other strong indicators included OLS sway, ≥2 WAT clues, and pupil rebound dilation. Requiring ≥2/4 of: ≥3 FTN misses, MRB eyelid tremors, ≥2 OLS clues, and/or ≥2 WAT clues produced the best results (all characteristics ≥96.7%). Blood specimens should be collected as early as possible. The frequently-debated 5μg/L blood THC per se cutoff showed limited relevance. Combined observations on psychophysical and eye exams produced the best cannabis-impairment indicators. Published by Elsevier Ltd.

  6. Impaired metacognitive capacities in individuals with problem gambling.

    PubMed

    Brevers, Damien; Cleeremans, Axel; Bechara, Antoine; Greisen, Max; Kornreich, Charles; Verbanck, Paul; Noël, Xavier

    2014-03-01

    Impaired insight into behavior may be one of the clinical characteristics of pathological gambling. In the present study, we tested whether the capacity to evaluate accurately the quality of one's own decisions during a non-gambling task was impaired in problem gamblers. Twenty-five problem gamblers and 25 matched healthy participants performed an artificial grammar-learning paradigm, in which the quality of choice remains uncertain throughout the task. After each trial of this task, participants had to indicate how confident they were in the grammaticality judgements using a scale ranging from 1 (low confidence) to 7 (high confidence). Results showed that (i), problem gamblers' performance on the grammaticality test was lower than controls'; (ii) there was a significant correlation between grammaticality judgments and confidence for control participants, which indicates metacognitive insight and the presence of conscious knowledge; (iii) this correlation was not significant in problem gamblers, which suggests a disconnection between performance and confidence in this group. These findings suggest that problem gamblers are impaired in their metacognitive abilities on a non-gambling task, which suggests that compulsive gambling is associated with poor insight as a general factor. Clinical interventions tailored to improve metacognition in gambling could be a fruitful avenue of research in order to prevent pathological gambling.

  7. Neuroimaging Impaired Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review.

    PubMed

    Zilverstand, Anna; Huang, Anna S; Alia-Klein, Nelly; Goldstein, Rita Z

    2018-06-06

    The impaired response inhibition and salience attribution (iRISA) model proposes that impaired response inhibition and salience attribution underlie drug seeking and taking. To update this model, we systematically reviewed 105 task-related neuroimaging studies (n > 15/group) published since 2010. Results demonstrate specific impairments within six large-scale brain networks (reward, habit, salience, executive, memory, and self-directed networks) during drug cue exposure, decision making, inhibitory control, and social-emotional processing. Addicted individuals demonstrated increased recruitment of these networks during drug-related processing but a blunted response during non-drug-related processing, with the same networks also being implicated during resting state. Associations with real-life drug use, relapse, therapeutic interventions, and the relevance to initiation of drug use during adolescence support the clinical relevance of the results. Whereas the salience and executive networks showed impairments throughout the addiction cycle, the reward network was dysregulated at later stages of abuse. Effects were similar in alcohol, cannabis, and stimulant addiction. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Binding characteristics and protective capacity of cyanidin-3-glucoside and its aglycon to calf thymus DNA.

    PubMed

    Zhang, Chao; Guo, Xiaofei; Cai, Wenqian; Ma, Yue; Zhao, Xiaoyan

    2015-04-01

    The binding characteristics and protective capacity of cyanidin (Cy) and cyanidin-3-glucoside (C3G) to calf thymus DNA were explored for the first time. The Cy and C3G gave a bathochromic shift to the ultraviolet-visible spectra of the DNA, indicating the formation of the DNA-Cy and DNA-C3G complexes. The complexes were formed by an intercalative binding mode based on the results of the fluorescence spectra and competitive binding analysis. Meanwhile, the Cy and C3G protected the DNA from the damage induced by the hydroxyl radical. The binding capacity and protective capacity of the C3G were stronger than that of the Cy. Furthermore, the formation of the DNA-anthocyanin complexes was spontaneous when the hydrogen bond and hydrophobic force played a key role. Hence, the Cy and C3G could protect the DNA automatically from the damage induced by the hydroxyl radical. © 2015 Institute of Food Technologists®

  9. Comparative modelling of human β tubulin isotypes and implications for drug binding

    NASA Astrophysics Data System (ADS)

    Torin Huzil, J.; Ludueña, Richard F.; Tuszynski, Jack

    2006-02-01

    The protein tubulin is a target for several anti-mitotic drugs, which affect microtubule dynamics, ultimately leading to cell cycle arrest and apoptosis. Many of these drugs, including the taxanes and Vinca alkaloids, are currently used clinically in the treatment of several types of cancer. Another tubulin binding drug, colchicine, although too toxic to be used as a chemotherapeutic agent, is commonly used for the treatment of gout. The main disadvantage that all of these drugs share is that they bind tubulin indiscriminately, leading to the death of both cancerous and healthy cells. However, the broad cellular distribution of several tubulin isotypes provides a platform upon which to construct novel chemotherapeutic drugs that could differentiate between different cell types, reducing the undesirable side effects associated with current chemotherapeutic treatments. Here, we report an analysis of ten human β tubulin isotypes and discuss differences within each of the previously characterized paclitaxel, colchicine and vinblastine binding sites.

  10. Demonstration of 2-hydroxybenzoylglycine as a drug binding inhibitor in newborn infants.

    PubMed Central

    Suh, B; Wadsworth, S J; Lichtenwalner, D M

    1987-01-01

    Newborn infants have drug binding defects that share similarities to those of uremic subjects. Since 2-hydroxybenzoylglycine has been chemically defined to be a major drug binding inhibitor in uremia, a search for the presence of a similar compound in the sera of newborn infants was made. An organic substance that has the characteristics of 2-hydroxybenzoylglycine as supported by the retardation factor values on thin-layer chromatograms, retention times of high performance liquid chromatograms, fluorescence emission spectra, and mass spectrum has been demonstrated to be present in the majority of the neonatal sera studied. A strong positive correlation between the levels of the binding inhibitor and the extent of binding defects for nafcillin has been observed. The substance could effectively reduce the total bilirubin concentration when added to the cord sera specimens. It is concluded that 2-hydroxybenzoylglycine plays an important role in drug binding defects observed in the newborn, and the inhibitor may also play a part in the precipitation of bilirubin-induced neurotoxicity in neonates when the substance is abnormally elevated. Images PMID:3654972

  11. Newborn Jaundice Technologies: Unbound Bilirubin and Bilirubin Binding Capacity In Neonates

    PubMed Central

    Amin, Sanjiv B.; Lamola, Angelo A.

    2011-01-01

    Neonatal jaundice (hyperbilirubinemia), extremely common in neonates, can be associated with neurotoxicity. A safe level of bilirubin has not been defined in either premature or term infants. Emerging evidence suggest that the level of unbound (or “free”) bilirubin has a better sensitivity and specificity than total serum bilirubin for bilirubin-induced neurotoxicity. Although recent studies suggest the usefulness of free bilirubin measurements in managing high-risk neonates including premature infants, there currently exists no widely available method to assay the serum free bilirubin concentration. To keep pace with the growing demand, in addition to reevaluation of old methods, several promising new methods are being developed for sensitive, accurate, and rapid measurement of free bilirubin and bilirubin binding capacity. These innovative methods need to be validated before adopting for clinical use. We provide an overview of some promising methods for free bilirubin and binding capacity measurements with the goal to enhance research in this area of active interest and apparent need. PMID:21641486

  12. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thongekkaew, Jantaporn, E-mail: jantaporn_25@yahoo.com; Ikeda, Hiroko; Iefuji, Haruyuki

    Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1)more » promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.« less

  13. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Cognitive impairments in poly-drug ketamine users.

    PubMed

    Liang, H J; Lau, C G; Tang, A; Chan, F; Ungvari, G S; Tang, W K

    2013-11-01

    Cognitive impairment has been found to be reversible in people with substance abuse, particularly those using ketamine. Ketamine users are often poly-substance users. This study compared the cognitive functions of current and former ketamine users who were also abusing other psychoactive substances with those of non-users of illicit drugs as controls. One hundred ketamine poly-drug users and 100 controls were recruited. Drug users were divided into current (n = 32) and ex-users (n = 64) according to the duration of abstinence from ketamine (>30 days). The Beck Depression Inventory (BDI), the Hospital Anxiety Depression Scale (HADSA) and the Severity of Dependence Scale (SDS) were used to evaluate depression and anxiety symptoms and the severity of drug use, respectively. The cognitive test battery comprised verbal memory (Wechsler Memory Scale III: Logic Memory and Word List), visual memory (Rey-Osterrieth Complex Figure, ROCF), executive function (Stroop, Wisconsin Card Sorting Test, and Modified Verbal Fluency Test), working memory (Digit Span Backward), and general intelligence (Information, Arithmetic and Digit-Symbol Coding) tests. Current users had higher BDI and HADSA scores than ex-users (p < 0.001 for BDI and p = 0.022 for HADSA) and controls (p < 0.001 for BDI and p = 0.002 for HADSA). Ex-users had higher BDI (p = 0.006) but equal HADSA scores (p = 1.000) compared to controls. Both current and ex-users had lower scores on Logical Memory delayed recall (p = 0.038 for current users and p = 0.032 for ex-users) and ROCF delayed recall (p = 0.033 for current users and p = 0.014 for ex-users) than controls. Current users also performed worse on ROCF recognition than controls (p = 0.002). No difference was found between the cognitive functions of current and ex-users. Ketamine poly-drug users displayed predominantly verbal and visual memory impairments, which persisted in ex-users. The interactive effect of ketamine and poly-drug use on memory needs further

  15. The ethics of sham surgery on research subjects with cognitive impairments that affect decision-making capacity.

    PubMed

    Resnik, David B; Miller, Frank

    2010-09-01

    Populations recruited to participate in sham surgery clinical trials sometimes include patients with cognitive impairments that affect decision-making capacity. In this commentary we examine arguments for and against including these patients in sham surgery clinical trials. We argue that patients with cognitive impairments that affect decision-making capacity should not be excluded from a sham surgery clinical trial if there are scientific reasons for including them in the study and basic ethical requirements for clinical research are met. Published by Elsevier Inc.

  16. Characterization of the interaction forces in a drug carrier complex of doxorubicin with a drug-binding peptide.

    PubMed

    Gocheva, Gergana; Ilieva, Nina; Peneva, Kalina; Ivanova, Anela

    2018-04-01

    Polypeptide-based materials are used as building blocks for drug delivery systems aimed at toxicity decrease in chemotherapeutics. A molecular-level approach is adopted for investigating the non-covalent interactions between doxorubicin and a recently synthesized drug-binging peptide as a key part of a system for delivery to neoplastic cells. Molecular dynamics simulations in aqueous solution at room and body temperature are applied to investigate the structure and the binding modes within the drug-peptide complex. The tryptophans are outlined as the main chemotherapeutic adsorption sites, and the importance of their placement in the peptide sequence is highlighted. The drug-peptide binging energy is evaluated by density functional theory calculations. Principal component analysis reveals comparable importance of several types of interaction for the binding strength. π-Stacking is dominant, but other factors are also significant: intercalation, peptide backbone stacking, electrostatics, dispersion, and solvation. Intra- and intermolecular H-bonding also stabilizes the complexes. The influence of solvent molecules on the binding energy is mild. The obtained data characterize the drug-to-peptide attachment as a mainly attractive collective process with interactions spanning a broad range of values. These results explain with atomistic detail the experimentally registered doxorubicin-binging ability of the peptide and outline the complex as a prospective carrying unit that can be employed in design of drug delivery systems. © 2017 John Wiley & Sons A/S.

  17. Homology modeling and docking analyses of M. leprae Mur ligases reveals the common binding residues for structure based drug designing to eradicate leprosy.

    PubMed

    Shanmugam, Anusuya; Natarajan, Jeyakumar

    2012-06-01

    Multi drug resistance capacity for Mycobacterium leprae (MDR-Mle) demands the profound need for developing new anti-leprosy drugs. Since most of the drugs target a single enzyme, mutation in the active site renders the antibiotic ineffective. However, structural and mechanistic information on essential bacterial enzymes in a pathway could lead to the development of antibiotics that targets multiple enzymes. Peptidoglycan is an important component of the cell wall of M. leprae. The biosynthesis of bacterial peptidoglycan represents important targets for the development of new antibacterial drugs. Biosynthesis of peptidoglycan is a multi-step process that involves four key Mur ligase enzymes: MurC (EC:6.3.2.8), MurD (EC:6.3.2.9), MurE (EC:6.3.2.13) and MurF (EC:6.3.2.10). Hence in our work, we modeled the three-dimensional structure of the above Mur ligases using homology modeling method and analyzed its common binding features. The residues playing an important role in the catalytic activity of each of the Mur enzymes were predicted by docking these Mur ligases with their substrates and ATP. The conserved sequence motifs significant for ATP binding were predicted as the probable residues for structure based drug designing. Overall, the study was successful in listing significant and common binding residues of Mur enzymes in peptidoglycan pathway for multi targeted therapy.

  18. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei.

    PubMed

    Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki

    2012-03-30

    To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    PubMed

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2017-04-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Norepinephrine transporter function and desipramine: residual drug effects versus short-term regulation.

    PubMed

    Ordway, Gregory A; Jia, Weihong; Li, Jing; Zhu, Meng-Yang; Mandela, Prashant; Pan, Jun

    2005-04-30

    Previous research has shown that exposure of norepinephrine transporter (NET)-expressing cells to desipramine (DMI) downregulates the norepinephrine transporter, although changes in the several transporter parameters do not demonstrate the same time course. Exposures to desipramine for <1 day reduces only radioligand binding and uptake capacity while transporter-immunoreactivity is unaffected. Recent demonstration of persistent drug retention in cells following desipramine exposures raises the possibility that previous reported changes in the norepinephrine transporter may be partly accountable by residual drug. In this study, potential effects of residual desipramine on norepinephrine transporter binding and uptake were re-evaluated following exposures of PC12 cells to desipramine using different methods to remove residual drug. Using a method that minimizes residual drug, exposure of intact PC12 cells to desipramine for 4h had no effect on uptake capacity or [(3)H]nisoxetine binding to the norepinephrine transporter, while exposures for > or =16 h reduced uptake capacity. Desipramine-induced reductions in binding to the transporter required >24 h or greater periods of desipramine exposure. This study confirms that uptake capacity of the norepinephrine transporter is reduced earlier than changes in radioligand binding, but with a different time course than originally shown. Special pre-incubation procedures are required to abolish effects of residual transporter inhibitor when studying inhibitor-induced transporter regulation.

  1. Oligomycin frames a common drug-binding site in the ATP synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symersky, Jindrich; Osowski, Daniel; Walters, D. Eric

    We report the high-resolution (1.9 {angstrom}) crystal structure of oligomycin bound to the subunit c10 ring of the yeast mitochondrial ATP synthase. Oligomycin binds to the surface of the c10 ring making contact with two neighboring molecules at a position that explains the inhibitory effect on ATP synthesis. The carboxyl side chain of Glu59, which is essential for proton translocation, forms an H-bond with oligomycin via a bridging water molecule but is otherwise shielded from the aqueous environment. The remaining contacts between oligomycin and subunit c are primarily hydrophobic. The amino acid residues that form the oligomycin-binding site are 100%more » conserved between human and yeast but are widely different from those in bacterial homologs, thus explaining the differential sensitivity to oligomycin. Prior genetics studies suggest that the oligomycin-binding site overlaps with the binding site of other antibiotics, including those effective against Mycobacterium tuberculosis, and thereby frames a common 'drug-binding site.' We anticipate that this drug-binding site will serve as an effective target for new antibiotics developed by rational design.« less

  2. Tailorable drug capacity of dexamethasone-loaded conducting polymer matrix

    NASA Astrophysics Data System (ADS)

    Krukiewicz, K.

    2018-05-01

    The unique properties of conducting polymers, which are in the same time biocompatible and electrically responsive materials, make them perfect candidates for controlled drug release systems. In this study, the electrically-triggered controlled release system based on dexamethasone-loaded poly (3, 4-ethylenedioxypyrrole) (PEDOP) matrix is described. It is shown that the electropolymerization conditions can facilitate or suppress the formation of PEDOP/Dex matrix, as well as they can have the effect on its electrochemical performance. The release experiments performed in three different modes show that the drug capacity of PEDOP matrix increases with the increase in Dex concentration in the step of matrix synthesis, and higher Dex concentrations make it easier to control the amount of Dex released in an electrically-triggered mode. These results confirm the importance of the careful optimization of immobilization conditions to maximize drug capacity of matrix and maintain its electrochemical properties.

  3. Prevalence of Drug-Induced Xerostomia in Older Adults with Cognitive Impairment or Dementia: An Observational Study.

    PubMed

    Gil-Montoya, José Antonio; Barrios, Rocío; Sánchez-Lara, Inés; Carnero-Pardo, Cristobal; Fornieles-Rubio, Francisco; Montes, Juan; Gonzalez-Moles, Miguel Angel; Bravo, Manuel

    2016-08-01

    Older adults, especially those with cognitive impairment or dementia, frequently consume drugs with potential xerostomic effects that impair their quality of life and oral health. The objective of this study was to determine the prevalence and analyze the possible pharmacological etiology of xerostomia in older people with or without cognitive impairment. Individuals with cognitive impairment were recruited from patients diagnosed using standardized criteria in two neurology departments in Southern Spain. A comparison group was recruited from healthcare centers in the same city after ruling out cognitive impairment. Data on oral health, xerostomia, and drug consumption were recorded in both groups. Dry mouth was evaluated using a 1-item questionnaire and recording clinical signs of oral dryness. All drugs consumed by the participants were recorded, including memantine, anticholinesterases, antipsychotics, antidepressants, and anxiolytics. The final sample comprised 200 individuals with mild cognitive impairment or dementia and 156 without. Xerostomia was present in 70.5 % of participants with cognitive impairment versus 36.5 % of those without, regardless of the drug consumed. Memantine consumption was the only variable significantly related to xerostomia in the multivariate model (OR 3.1; 95 % CI 1.1-8.7), and this relationship persisted after adjusting for possible confounders and forcing the inclusion of drugs with xerostomic potential. More than 70 % of participants diagnosed with cognitive impairment or dementia had xerostomia. Anticholinesterases and memantine were both associated with the presence of xerostomia. In the case of memantine, this association was independent of the consumption of the other drugs considered.

  4. Schizophrenia: An Impairment in the Capacity to Perceive Affordances

    PubMed Central

    Kim, Nam-Gyoon; Kim, Hakboon

    2017-01-01

    Phenomenological psychopathologists conceptualize schizophrenia as a self-disorder involving profound distortions of selfhood. For James Gibson, “to perceive the world is to coperceive oneself.” If the sense of self is disturbed in individuals with schizophrenia, this could also lead to disturbances in these individuals’ ability to perceive affordances, environmental properties taken with reference to the perceiver’s action capabilities (e.g., a rigid surface affording ‘walk-on-able,’ chairs ‘sit-on-able,’ and so on). To test this hypothesis, three experiments investigated schizophrenia patients’ affordance perception. Participants were presented with a photo of a common object on the computer and then asked to judge its secondary affordance (a non-designed function) in a two-choice reaction time task in Experiment 1 and in a yes/no task in Experiment 2. Schizophrenia participants performed less accurately and more slowly than controls. To rule out visual impairment as a contributing factor, in Experiment 3, participants identified physical properties (color, shape, material composition) of the objects. Schizophrenia participants were as accurate as controls and responded faster than in the previous experiments. Results suggest that the capacity to perceive affordances is likely impaired in people with schizophrenia, although the capacity to detect the object’s physical properties is kept intact. Inability to perceive affordances, those functionally significant properties of the surrounding environment, may help explain why schizophrenia patients may appear as somewhat detached from the world. PMID:28701973

  5. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome

    PubMed Central

    Melnikov, Sergey V.; Söll, Dieter; Steitz, Thomas A.

    2016-01-01

    Abstract Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin–RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome—the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity. PMID:27079977

  6. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects.

    PubMed

    Smith, Kyle P; Gifford, Kathleen M; Waitzman, Joshua S; Rice, Sarah E

    2015-01-01

    While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins. © 2014 Wiley Periodicals, Inc.

  7. Interaction of zanamivir with DNA and RNA: Models for drug DNA and drug RNA bindings

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Kahangi, Fatemeh Ghoreyshi; Azizi, Ebrahim; Zebarjad, Nader; Tajmir-Riahi, Heidar-Ali

    2007-03-01

    Zanamivir (ZAN) is the first of a new generation of influenza virus-specific drugs known as neuraminidase inhibitors, which acts by interfering with life cycles of influenza viruses A and B. It prevents the virus spreading infection to other cells by blocking the neuraminidase enzyme present on the surface of the virus. The aim of this study was to examine the stability and structural features of calf thymus DNA and yeast RNA complexes with zanamivir in aqueous solution, using constant DNA or RNA concentration (12.5 mM) and various zanamivir/polynucleotide ( P) ratios of 1/20, 1/10, 1/4, and 1/2. FTIR and UV-visible spectroscopy are used to determine the drug external binding modes, the binding constant and the stability of zanamivir-DNA and RNA complexes in aqueous solution. Structural analysis showed major interaction of zanamivir with G-C (major groove) and A-T (minor groove) base pairs and minor perturbations of the backbone PO 2 group with overall binding constants of Kzanamivir-DNA = 1.30 × 10 4 M -1 and Kzanamivir-RNA = 1.38 × 10 4 M -1. The drug interaction induces a partial B to A-DNA transition, while RNA remains in A-conformation.

  8. Distribution of primaquine in human blood: Drug-binding to alpha 1-glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, E.; Frischer, H.

    1990-12-01

    To clarify the distribution of the antimalarial primaquine in human blood, we measured the drug separately in the liquid, cellular, and ultrafiltrate phases. Washed red cells resuspended at a hematocrit of 0.4 were exposed to a submaximal therapeutic level of 250 ng/ml of carbon 14-labeled primaquine. The tracer was recovered quantitatively in separated plasma and red cells. Over 75% of the total labeled drug was found in red cells suspended in saline solution, but only 10% to 30% in red cells suspended in plasma. The plasma effect was not mediated by albumin. Studies with alpha 1-acid glycoprotein (AGP), tris(2-butoxyethyl)phosphate, anmore » agent that displaces AGP-bound drugs, and cord blood known to have decreased AGP established that primaquine binds to physiologic amounts of the glycoprotein in plasma. Red cell primaquine concentration increased linearly as AGP level fell and as the free drug fraction rose. We suggest that clinical blood levels of primaquine include the red cell fraction or whole blood level because (1) erythrocytic primaquine is a sizable and highly variable component of the total drug in blood; (2) this component reflects directly the free drug in plasma, and inversely the extent of binding to AGP; (3) the amount of free primaquine may influence drug transport into specific tissues in vivo; and (4) fluctuations of AGP, an acute-phase reactant that increases greatly in patients with malaria and other infections, markedly affect the partition of primaquine in blood. Because AGP binds many basic drugs, unrecognized primaquine-drug interactions may exist.« less

  9. [Integration of pharmacokinetics and pharmacodynamics based on the in vivo analysis of drug-receptor binding].

    PubMed

    Yamada, Shizuo

    2015-01-01

      As I was deeply interested in the effects of drugs on the human body, I chose pharmacology as the subject of special study when I became a 4th year student at Shizuoka College of Pharmacy. I studied abroad as a postdoctoral fellow for two years, from 1978, under the tutelage of Professor Henry I. Yamamura (pharmacology) in the College of Medicine at the University of Arizona, USA. He taught me a variety of valuable skills such as the radioreceptor binding assay, which represented the most advanced technology developed in the US at that time. After returning home, I engaged in clarifying receptor abnormalities in pathological conditions, as well as in drug action mechanisms, by making the best use of this radioreceptor binding assay. In 1989, following the founding of the University of Shizuoka, I was invited by Professor Ryohei Kimura to join the Department of Pharmacokinetics. This switch in discipline provided a good opportunity for me to broaden my perspectives in pharmaceutical sciences. I worked on evaluating drug-receptor binding in vivo as a combined index for pharmacokinetics and pharmacological effect manifestation, with the aim of bridging pharmacology and pharmacokinetics. In fact, by focusing on data from in vivo receptor binding, it became possible to clearly rationalize the important consideration of drug dose-concentration-action relationships, and to study quantitative and kinetic analyses of relationships among pharmacokinetics, receptor binding and pharmacological effects. Based on this concept, I was able to demonstrate the utility of dynamic analyses of drug-receptor binding in drug discovery, drug fostering, and the proper use of pharmacokinetics with regard to many drugs.

  10. Alcohol, Drugs and Driving: Implications for Evaluating Driver Impairment

    PubMed Central

    Brown, Timothy; Milavetz, Gary; Murry, Daryl J.

    2013-01-01

    Impaired driving is a significant traffic safety problem, and alcohol and drugs taken before driving contribute substantially to this problem. With the increase in use of prescription medication and the decriminalization of some drugs, it has become increasingly important to understand the manifestation of driver impairment. Building upon previous alcohol research conducted at the National Advanced Driving Simulator (NADS), this study enrolled commercial bus drivers to evaluate the effect of triazolam on driving performance to assess difference between placebo, 0.125, and 0.25 mg doses in a randomized and double-blind design. On each of three randomized visits, subjects drove a simulator scenario that had previously been used to demonstrate effects of alcohol on driving performance. Plasma triazolam levels were obtained before the simulator drive. The protocol included participants receiving study medication and placebo over a 3-week period of time one to two weeks apart. The simulator drives used for this analysis occurred approximately 140 minutes after dosing—after the subjects had completed four bus simulator drives and neuropsychological tests over a 2-hour period of time surrounding dosing. The driving scenario contained representative situations on three types of roadways (urban, freeway, and rural) under nighttime driving conditions. Lane keeping performance (ability to drive straight in the lane) under the three doses of triazolam demonstrates that at the 0.25 mg dose, statistically significant effects on performance are observed, but no effects are found at the 0.125 mg level when testing at this time period after dosing. This differs from the effects of alcohol, which shows impairing effects at a 0.05% blood alcohol concentration (BAC) and a greater effect at 0.10% BAC. These results demonstrate the importance of understanding how different types of drugs affect driving performance in realistic driving environments. Although some compounds may have an

  11. Cyclophilin B mediates cyclosporin A incorporation in human blood T-lymphocytes through the specific binding of complexed drug to the cell surface.

    PubMed

    Allain, F; Denys, A; Spik, G

    1996-07-15

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein located within intracellular vesicles and released in biological fluids. We recently reported the specific binding of this protein to T-cell surface receptor which is internalized even in the presence of CsA. These results suggest that CyPB might target the drug to lymphocytes and consequently modify its activity. To verify this hypothesis, we have first investigated the binding capacity and internalization of the CsA-CyPB complex in human peripheral blood T-lymphocytes and secondly compared the inhibitory effect of both free and CyPB-complexed CsA on the CD3-induced activation and proliferation of T-cells. Here, we present evidence that both the CsA-CyPB complex and free CyPB bind to the T-lymphocyte surface, with similar values of Kd and number of sites. At 37 degrees C, the complex is internalized but, in contrast to the protein, the drug is accumulated within the cell. Moreover, CyPB receptors are internalized together with the ligand and rapidly recycled to the cell surface. Finally, we demonstrate that CyPB-complexed CsA remains as efficient as uncomplexed CsA and that CyPB enhances the immunosuppressive activity of the drug. Taken together, our results support the hypothesis that surface CyPB receptors may be related to the selective and variable action of CsA, through specific binding and targeting of the CyPB-CsA complex to peripheral blood T-lymphocytes.

  12. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens.

    PubMed

    Naz, Sadia; Ngo, Tony; Farooq, Umar; Abagyan, Ruben

    2017-01-01

    The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis . The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli , two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis . Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket

  13. Biocompatible medical implant materials with binding sites for a biodegradable drug-delivery system

    PubMed Central

    Al-Dubai, Haifa; Pittner, Gisela; Pittner, Fritz; Gabor, Franz

    2011-01-01

    Feasibility studies have been carried out for development of a biocompatible coating of medical implant materials allowing the binding of biodegradable drug-delivery systems in a way that their reloading might be possible. These novel coatings, able to bind biodegradable nanoparticles, may serve in the long run as drug carriers to mediate local pharmacological activity. After biodegradation of the nanoparticles, the binding sites could be reloaded with fresh drug-delivering particles. As a suitable receptor system for the nanoparticles, antibodies are anchored. The design of the receptor is of great importance as any bio- or chemorecognitive interaction with other components circulating in the blood has to be avoided. Furthermore, the binding between receptor and the particles has to be strong enough to keep them tightly bound during their lifetime, but on the other hand allow reloading after final degradation of the particles. The nanoparticles suggested as a drug-delivery system for medical implants can be loaded with different pharmaceuticals such as antibiotics, growth factors, or immunosuppressives. This concept may enable the changing of medication, even after implantation of the medical device, if afforded by patients’ needs. PMID:24198488

  14. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  15. Medical decision-making capacity in mild cognitive impairment: a 3-year longitudinal study.

    PubMed

    Okonkwo, O C; Griffith, H R; Copeland, J N; Belue, K; Lanza, S; Zamrini, E Y; Harrell, L E; Brockington, J C; Clark, D; Raman, R; Marson, D C

    2008-11-04

    To investigate longitudinal change in the medical decision-making capacity (MDC) of patients with amnestic mild cognitive impairment (MCI) under different consent standards. Eighty-eight healthy older controls and 116 patients with MCI were administered the Capacity to Consent to Treatment Instrument at baseline and at 1 to 3 (mean = 1.7) annual follow-up visits thereafter. Covariate-adjusted random coefficient regressions were used to examine differences in MDC trajectories across MCI and control participants, as well as to investigate the impact of conversion to Alzheimer disease on MCI patients' MDC trajectories. At baseline, MCI patients performed significantly below controls only on the three clinically relevant standards of appreciation, reasoning, and understanding. Compared with controls, MCI patients experienced significant declines over time on understanding but not on any other consent standard. Conversion affected both the elevation (a decrease in performance) and slope (acceleration in subsequent rate of decline) of MCI patients' MDC trajectories on understanding. A trend emerged for conversion to be associated with a performance decrease on reasoning in the MCI group. Medical decision-making capacity (MDC) decline in mild cognitive impairment (MCI) is a relatively slow but detectable process. Over a 3-year period, patients with amnestic MCI show progressive decline in the ability to understand consent information. This decline accelerates after conversion to Alzheimer disease (AD), reflecting increasing vulnerability to decisional impairment. Clinicians and researchers working with MCI patients should give particular attention to the informed consent process when conversion to AD is suspected or confirmed.

  16. Impact of Neurodegenerative Diseases on Drug Binding to Brain Tissues: From Animal Models to Human Samples.

    PubMed

    Ugarte, Ana; Corbacho, David; Aymerich, María S; García-Osta, Ana; Cuadrado-Tejedor, Mar; Oyarzabal, Julen

    2018-04-19

    Drug efficacy in the central nervous system (CNS) requires an additional step after crossing the blood-brain barrier. Therapeutic agents must reach their targets in the brain to modulate them; thus, the free drug concentration hypothesis is a key parameter for in vivo pharmacology. Here, we report the impact of neurodegeneration (Alzheimer's disease (AD) and Parkinson's disease (PD) compared with healthy controls) on the binding of 10 known drugs to postmortem brain tissues from animal models and humans. Unbound drug fractions, for some drugs, are significantly different between healthy and injured brain tissues (AD or PD). In addition, drugs binding to brain tissues from AD and PD animal models do not always recapitulate their binding to the corresponding human injured brain tissues. These results reveal potentially relevant implications for CNS drug discovery.

  17. Feasibility assessment of chemical testing for drug impairment : final report

    DOT National Transportation Integrated Search

    1985-09-27

    An evaluation was made of existing data on concentrations of marijuana, secobarbital, diazepam, diphenhydramine, and methaqualone in blood, saliva and urine to assess the feasibility of establishing chemical teats for detecting drug-impaired driving....

  18. Hidden wholesale: The drug diffusing capacity of online drug cryptomarkets.

    PubMed

    Aldridge, Judith; Décary-Hétu, David

    2016-09-01

    In spite of globalizing processes 'offline' retail drug markets remain localized and - in recent decades - typically 'closed', in which dealers sell primarily to known customers. We characterize drug cryptomarkets as 'anonymous open' marketplaces that allow the diffusion of drugs across locales. Where cryptomarket customers make stock-sourcing purchases for offline distribution, the cryptomarket may indirectly serve drug users who are not themselves cryptomarket customers, thereby increasing the drug diffusing capacity of these marketplaces. Our research aimed to identify wholesale activity on the first major cryptomarket, Silk Road 1. Data were collected 13-15 September 2013. A bespoke web crawler downloaded content from the first major drug cryptomarket, Silk Road 1. This generated data on 1031 vendors and 10,927 drug listings. We estimated monthly revenues to ascertain the relative importance of wholesale priced listings. Wholesale-level revenue generation (sales for listings priced over USD $1000.00) accounted for about a quarter of the revenue generation on SR1 overall. Ecstasy-type drugs dominated wholesale activity on this marketplace, but we also identified substantial wholesale transactions for benzodiazepines and prescription stimulants. Less important, but still generating wholesale revenue, were cocaine, methamphetamine and heroin. Although vendors on the marketplace were located in 41 countries, wholesale activity was confined to only a quarter of these, with China, the Netherlands, Canada and Belgium prominent. The cryptomarket may function in part as a virtual broker, linking wholesalers with offline retail-level distributors. For drugs like ecstasy, these marketplaces may link vendors in producer countries directly with retail level suppliers. Wholesale activity on cryptomarkets may serve to increase the diffusion of new drugs - and wider range of drugs - in offline drug markets, thereby indirectly serving drug users who are not cryptomarket

  19. Cooperative binding of drugs on human serum albumin

    NASA Astrophysics Data System (ADS)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  20. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.

    PubMed

    Pérot, Stéphanie; Sperandio, Olivier; Miteva, Maria A; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-08-01

    Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein-ligand complexes and discuss methods that assist binding site identification, prediction of druggability and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that better understanding of the pocket space will have far-reaching implications in the field of drug discovery, such as the design of pocket-specific compound libraries and scoring functions.

  1. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens

    PubMed Central

    Naz, Sadia; Ngo, Tony; Farooq, Umar

    2017-01-01

    Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The

  2. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin

    PubMed Central

    Hong, Lian; Simon, John D.

    2008-01-01

    Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field. PMID:17580858

  3. Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding

    PubMed Central

    2015-01-01

    Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form. PMID:26617961

  4. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Mihailovic, Jelena; Minic, Simeon; Trifunovic, Sara; Prodic, Ivana; Cirkovic Velickovic, Tanja

    2017-10-01

    Major green tea catechin, epigallocatechin-3-gallate (EGCG), binds non-covalently to numerous dietary proteins, including beta-lactoglobulin of cow's milk. The effects of glycation of proteins via Maillard reaction on the binding capacity for polyphenols and the antiradical properties of the formed complexes have not been studied previously. Binding constant of BLG glycated by milk sugar lactose to EGCG was measured by the method of fluorophore quenching. Binding of EGCG was confirmed by CD and FTIR. The antioxidative properties of the complexes were examined by measuring ABTS radical scavenging capacity, superoxide anion scavenging capacity and total reducing power assay. Glycation of BLG does not significantly influence the binding constant of EGCG for the protein. Conformational changes were observed for both native and glycated BLG upon complexation with EGCG. Masking effect of polyphenol complexation on the antioxidative potential of the protein was of the similar degree for both glycated BLG and native BLG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Capacity building in anthelmintic drug discovery.

    PubMed

    Kron, Michael; Yousif, Fouad; Ramirez, Bernadette

    2007-10-01

    International collaboration in anthelmintic drug discovery holds special challenges compared with local or national discovery projects, and at the same time presents the opportunity to build capacity, forge long lasting inter-institutional relationships and strengthen infrastructure in multinational priority areas. This chapter discusses important issues that should be considered in the context of anthelmintic screening centre development and will give examples (Philippines and Egypt) of the productivity of developing country based screening centres. The positive outcomes of infrastructure building is realised in greater capacities for anthelmintic screening at institutions in the countries where the parasitic diseases are endemic and allows for optimum use of specialised resources for public health priority diseases that may be different from those in Western countries. Support for developing country based screening centres also can help countries optimise product development procedures and policies and can facilitate diffusion of desirable technology in corresponding global regions around the world.

  6. Alignment-independent comparison of binding sites based on DrugScore potential fields encoded by 3D Zernike descriptors.

    PubMed

    Nisius, Britta; Gohlke, Holger

    2012-09-24

    Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.

  7. Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability.

    PubMed

    Shaw, Daniel J; Robb, Kirsty; Vetter, Beatrice V; Tong, Madeline; Molle, Virginie; Hunt, Neil T; Hoskisson, Paul A

    2017-07-05

    Tuberculosis (TB) is a global health problem that affects over 10 million people. There is an urgent need to develop novel antimicrobial therapies to combat TB. To achieve this, a thorough understanding of key validated drug targets is required. The enoyl reductase InhA, responsible for synthesis of essential mycolic acids in the mycobacterial cell wall, is the target for the frontline anti-TB drug isoniazid. To better understand the activity of this protein a series of mutants, targeted to the NADH co-factor binding pocket were created. Residues P193 and W222 comprise a series of hydrophobic residues surrounding the cofactor binding site and mutation of both residues negatively affect InhA function. Construction of an M155A mutant of InhA results in increased affinity for NADH and DD-CoA turnover but with a reduction in V max for DD-CoA, impairing overall activity. This suggests that NADH-binding geometry of InhA likely permits long-range interactions between residues in the NADH-binding pocket to facilitate substrate turnover in the DD-CoA binding region of the protein. Understanding the precise details of substrate binding and turnover in InhA and how this may affect protein-protein interactions may facilitate the development of improved inhibitors enabling the development of novel anti-TB drugs.

  8. Allosteric binding sites in Rab11 for potential drug candidates

    PubMed Central

    2018-01-01

    Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286

  9. The issue of consent in research that administers drugs of addiction to addicted persons.

    PubMed

    Carter, Adrian; Hall, Wayne

    2008-01-01

    In addiction, impaired control over drug use raises questions about the capacity of addicted persons to consent to participate in research studies in which they are given their drug of addiction. We review the case for doing such research, and the arguments that addiction does, and does not, prevent addicted persons from consenting to such research. We argue for a more nuanced view that acknowledges that while in some situations addiction impairs decision-making capacity, it does not eliminate such capacity. We conclude with some suggestions for recruiting addicted subjects and designing experiments in ways to obtain free and informed consent.

  10. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy.

    PubMed

    Siligardi, Giuliano; Hussain, Rohanah; Patching, Simon G; Phillips-Jones, Mary K

    2014-01-01

    A great number of membrane proteins have proven difficult to crystallise for use in X-ray crystallographic structural determination or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour. In this review examples of the applications of CD and synchrotron radiation CD (SRCD) to membrane protein ligand binding interaction studies are discussed. The availability of SRCD has been an important advancement in recent progress, most particularly because it can be used to extend the spectral region in the far-UV region (important for increasing the accuracy of secondary structure estimations) and for working with membrane proteins available in only small quantities for which SRCD has facilitated molecular recognition studies. Such studies have been accomplished by probing in the near-UV region the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells of small volume capacity. In particular, this review describes the most recent use of the technique in the following areas: to obtain quantitative data on ligand binding (exemplified by the FsrC membrane sensor kinase receptor); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by secretory phospholipase A2); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by the antiseptic transporter SugE). Finally, the importance of characterising in solution the conformational behaviour and ligand binding properties of proteins in both far- and near-UV regions is discussed. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. © 2013.

  11. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.

    PubMed

    Cournia, Zoe; Allen, Bryce; Sherman, Woody

    2017-12-26

    Accurate in silico prediction of protein-ligand binding affinities has been a primary objective of structure-based drug design for decades due to the putative value it would bring to the drug discovery process. However, computational methods have historically failed to deliver value in real-world drug discovery applications due to a variety of scientific, technical, and practical challenges. Recently, a family of approaches commonly referred to as relative binding free energy (RBFE) calculations, which rely on physics-based molecular simulations and statistical mechanics, have shown promise in reliably generating accurate predictions in the context of drug discovery projects. This advance arises from accumulating developments in the underlying scientific methods (decades of research on force fields and sampling algorithms) coupled with vast increases in computational resources (graphics processing units and cloud infrastructures). Mounting evidence from retrospective validation studies, blind challenge predictions, and prospective applications suggests that RBFE simulations can now predict the affinity differences for congeneric ligands with sufficient accuracy and throughput to deliver considerable value in hit-to-lead and lead optimization efforts. Here, we present an overview of current RBFE implementations, highlighting recent advances and remaining challenges, along with examples that emphasize practical considerations for obtaining reliable RBFE results. We focus specifically on relative binding free energies because the calculations are less computationally intensive than absolute binding free energy (ABFE) calculations and map directly onto the hit-to-lead and lead optimization processes, where the prediction of relative binding energies between a reference molecule and new ideas (virtual molecules) can be used to prioritize molecules for synthesis. We describe the critical aspects of running RBFE calculations, from both theoretical and applied perspectives

  12. From receptor binding kinetics to signal transduction; a missing link in predicting in vivo drug-action.

    PubMed

    Nederpelt, Indira; Kuzikov, Maria; de Witte, Wilbert E A; Schnider, Patrick; Tuijt, Bruno; Gul, Sheraz; IJzerman, Adriaan P; de Lange, Elizabeth C M; Heitman, Laura H

    2017-10-26

    An important question in drug discovery is how to overcome the significant challenge of high drug attrition rates due to lack of efficacy and safety. A missing link in the understanding of determinants for drug efficacy is the relation between drug-target binding kinetics and signal transduction, particularly in the physiological context of (multiple) endogenous ligands. We hypothesized that the kinetic binding parameters of both drug and endogenous ligand play a crucial role in determining cellular responses, using the NK1 receptor as a model system. We demonstrated that the binding kinetics of both antagonists (DFA and aprepitant) and endogenous agonists (NKA and SP) have significantly different effects on signal transduction profiles, i.e. potency values, in vitro efficacy values and onset rate of signal transduction. The antagonistic effects were most efficacious with slowly dissociating aprepitant and slowly associating NKA while the combination of rapidly dissociating DFA and rapidly associating SP had less significant effects on the signal transduction profiles. These results were consistent throughout different kinetic assays and cellular backgrounds. We conclude that knowledge of the relationship between in vitro drug-target binding kinetics and cellular responses is important to ultimately improve the understanding of drug efficacy in vivo.

  13. Specific serum antibody binding to phosphorylated and non-phosphorylated tau in non-cognitively impaired, mildly cognitively impaired, and Alzheimer's disease subjects: an exploratory study.

    PubMed

    Klaver, Andrea C; Coffey, Mary P; Bennett, David A; Loeffler, David A

    2017-01-01

    Tau vaccination and administration of anti-tau antibodies can prevent pathology and cognitive impairment in transgenic mouse models of tauopathy, suggesting that therapies which increase anti-tau antibodies might slow the development and/or progression of Alzheimer's disease (AD). The extent to which individuals with no cognitive impairment (NCI) possess serum anti-tau antibodies, and whether their concentrations of these antibodies differ from anti-tau antibody levels in persons with mild cognitive impairment (MCI) or AD, are unclear. Previous studies measuring these antibodies did not account for antibody polyvalent binding, which can be extensive, nor that antibody binding to phosphorylated tau peptides could be due to binding to non-phosphorylated epitopes on those peptides. An ELISA controlling for these factors was used to measure the specific binding of serum IgG and IgM to phosphorylated ("pTau;" phosphorylated at Serine-199 and Serine-202) and non-phosphorylated ("non-pTau") tau 196-207 in subjects with NCI, MCI, or AD ( n  = 10/group). Between-group differences in these antibody levels were evaluated for statistical significance, and correlations were examined in pooled data from all subjects between these antibody levels and subject age, global cognitive functioning, and NFT counts. Specific IgG binding to pTau and non-pTau was detected in all subjects except for one NCI control. Specific IgM binding was detected to pTau in all subjects except for two AD patients, and to non-pTau in all subjects. Mean pTau IgG was increased in MCI subjects by 53% and 70% vs. AD and NCI subjects respectively (both p  < 0.05), while no significant differences were found between groups for non-pTau IgG ( p  = 0.052), pTau IgM, or non-pTau IgM. Non-pTau IgG was negatively associated with global cognition (Spearman rho = -0.50). Specific binding of serum IgG and IgM to phosphorylated and non-phosphorylated tau may be present in older persons regardless of their

  14. Blood alcohol analysis alone versus comprehensive toxicological analysis - Systematic investigation of missed co-ingested other drugs in suspected alcohol-impaired drivers.

    PubMed

    Steuer, Andrea E; Eisenbeiss, Lisa; Kraemer, Thomas

    2016-10-01

    Driving under the influence of alcohol and/or drugs (DUID) is a safety issue of increasing public concern. When a police officer has reasonable grounds to classify a driver as impaired, he may arrange for a blood sample to be taken. In many countries, alcohol analysis only is ordered if impairment is suspected to be exclusively due to alcohol while comprehensive toxicological screening will be performed if additional suspicion for other illegal drugs of abuse (DoA) or medicinal drugs is on hand. The aim of the present study was firstly to evaluate whether signs of impairment can be differentiated to be caused by alcohol alone or a combination of alcohol and other driving-impairing drugs and secondly to which extent additional drugs are missed in suspected alcohol-impaired drivers. A total of 293 DUID cases (negative n=41; alcohol positive only, n=131; alcohol+active drug positive, n=121) analyzed in 2015 in the Canton of Zurich were evaluated for their documented impairment symptoms by translating these into a severity score and comparing them applying principle component analysis (PCA). Additional 500 cases suspected for alcohol-impaired driving only were reanalyzed using comprehensive LC-MS/MS screening methods covering about 1500 compounds. Drugs detected were classified for severity of driving impairment using the classification system established in the DRUID study of the European Commission. As partly expected from the pharmacological and toxicological point of view, PCA analysis revealed no differences between signs of impairment caused by alcohol alone and those caused by alcohol plus at least one active drug. Breaking it down to different blood alcohol concentration ranges, only between 0.3 and 0.5g/kg trends could be observed in terms of more severe impairment for combined alcohol and drug intake. In the 500 blood samples retrospectively analyzed in this study, a total of 330 additional drugs could be detected; in some cases up to 9 co-ingested ones. In

  15. Reading skills in young adolescents with a history of Specific Language Impairment: The role of early semantic capacity.

    PubMed

    Buil-Legaz, Lucía; Aguilar-Mediavilla, Eva; Rodríguez-Ferreiro, Javier

    2015-01-01

    This study assessed the reading skills of 19 Spanish-Catalan children with Specific Language Impairment (SLI) and 16 age-matched control children. Children with SLI have difficulties with oral language comprehension, which may affect later reading acquisition. We conducted a longitudinal study examining reading acquisition in these children between 8 and 12 years old and we relate this data with early oral language acquisition at 6 years old. Compared to the control group, the SLI group presented impaired decoding and comprehension skills at age 8, as evidenced by poor scores in all the assessed tasks. Nevertheless, only text comprehension abilities appeared to be impaired at age 12. Individual analyses confirmed the presence of comprehension deficits in most of the SLI children. Furthermore, early semantic verbal fluency at age 6 appeared to significantly predict the reading comprehension capacity of SLI participants at age 12. Our results emphasize the importance of semantic capacity at early stages of oral language development over the consolidation of reading acquisition at later stages. Readers will recognize the relevance of prior oral language impairment, especially semantic capacity, in children with a history of SLI as a risk factor for the development of later reading difficulties. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. In vitro DNA binding studies of therapeutic and prophylactic drug citral.

    PubMed

    Alam, Md Fazle; Varshney, Supriya; Khan, Masood Alam; Laskar, Amaj Ahmed; Younus, Hina

    2018-07-01

    The study of drug-DNA interactions is of great importance, as it paves the way towards the design of better therapeutic agents. Here, the interaction of DNA with a therapeutic and prophylactic drug citral has been studied. We have attempted to ascertain the mode of binding of citral with calf thymus DNA (Ct-DNA) through various biophysical techniques. Analysis of the UV-visible absorbance spectra and fluorescence spectra indicated the formation of a complex between citral and Ct-DNA. Competitive binding assays with ethidium bromide (EB), acridine orange (AO) and Hoechst 33258 reflected that citral possibly intercalates within the Ct-DNA. These observations were further confirmed by circular dichroism (CD) spectral analysis, viscosity measurements, DNA melting and molecular docking studies. This study is expected to contribute to a better understanding of molecular mechanisms of citral, and design of new drugs in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Drug Design Relating Amebicides to Inhibition of Protein Synthesis.

    DTIC Science & Technology

    1977-09-01

    A study of the effect of emetine on protein synthesis in E. histolytica was made on log phase amebas as compared to stationary phase amebas ...Sensitivity to emetine was maintained independently of the rate of protein synthesis. Furthermore, both stages of amebas had the same capacity to bind emetine...elongation site. Finally, evidence was obtained that the capacity to bind emetine provides a basis for conferring drug resistance in amebas . A direct

  18. Drug-binding energetics of human α-1-acid glycoprotein assessed by isothermal titration calorimetry and molecular docking simulations

    PubMed Central

    Huang, Johnny X.; Cooper, Matthew A.; Baker, Mark A.; Azad, Mohammad A.K.; Nation, Roger L.; Li, Jian; Velkov, Tony

    2012-01-01

    This study utilizes sensitive, modern isothermal titration calorimetric (ITC) methods to characterize the microscopic thermodynamic parameters that drive the binding of basic drugs to α-1-acid glycoprotein (AGP) and thereby rationalize the thermodynamic data in relation to docking models and crystallographic structures of the drug-AGP complexes. The binding of basic compounds from the tricyclic antidepressant series, together with miaserine, chlorpromazine, disopyramide and cimetidine all displayed an exothermically driven binding interaction with AGP. The impact of protonation/deprotonation events, ionic strength, temperature and the individual selectivity of the A and F1*S AGP variants on drug-binding thermodynamics were characterized. A correlation plot of the thermodynamic parameters for all of the test compounds revealed enthalpy-entropy compensation is in effect. The exothermic binding energetics of the test compounds were driven by a combination of favorable (negative) enthalpic (ΔH°) and favorable (positive) entropic (ΔS°) contributions to the Gibbs free energy (ΔG°). Collectively, the data imply that the free energies that drive drug binding to AGP and its relationship to drug-serum residency evolve from the complex interplay of enthalpic and entropic forces from interactions with explicit combinations of hydrophobic and polar side-chain sub-domains within the multi-lobed AGP ligand binding cavity. PMID:23192962

  19. The Effect of Hydraulic Loading Rate and Influent Source on the Binding Capacity of Phosphorus Filters

    PubMed Central

    Herrmann, Inga; Jourak, Amir; Hedström, Annelie; Lundström, T. Staffan; Viklander, Maria

    2013-01-01

    Sorption by active filter media can be a convenient option for phosphorus (P) removal and recovery from wastewater for on-site treatment systems. There is a need for a robust laboratory method for the investigation of filter materials to enable a reliable estimation of their longevity. The objectives of this study were to (1) investigate and (2) quantify the effect of hydraulic loading rate and influent source (secondary wastewater and synthetic phosphate solution) on P binding capacity determined in laboratory column tests and (3) to study how much time is needed for the P to react with the filter material (reaction time). To study the effects of these factors, a 22 factorial experiment with 11 filter columns was performed. The reaction time was studied in a batch experiment. Both factors significantly (α = 0.05) affected the P binding capacity negatively, but the interaction of the two factors was not significant. Increasing the loading rate from 100 to 1200 L m−2 d−1 decreased P binding capacity from 1.152 to 0.070 g kg−1 for wastewater filters and from 1.382 to 0.300 g kg−1 for phosphate solution filters. At a loading rate of 100 L m−2 d−1, the average P binding capacity of wastewater filters was 1.152 g kg−1 as opposed to 1.382 g kg−1 for phosphate solution filters. Therefore, influent source or hydraulic loading rate should be carefully controlled in the laboratory. When phosphate solution and wastewater were used, the reaction times for the filters to remove P were determined to be 5 and 15 minutes, respectively, suggesting that a short residence time is required. However, breakthrough in this study occurred unexpectedly quickly, implying that more time is needed for the P that has reacted to be physically retained in the filter. PMID:23936313

  20. Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan in vivo.

    PubMed

    Murray, Jayne; Valli, Emanuele; Yu, Denise M T; Truong, Alan M; Gifford, Andrew J; Eden, Georgina L; Gamble, Laura D; Hanssen, Kimberley M; Flemming, Claudia L; Tan, Alvin; Tivnan, Amanda; Allan, Sophie; Saletta, Federica; Cheung, Leanna; Ruhle, Michelle; Schuetz, John D; Henderson, Michelle J; Byrne, Jennifer A; Norris, Murray D; Haber, Michelle; Fletcher, Jamie I

    2017-09-01

    The ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival. Inducible knockdown of ABCC4 strongly inhibited the growth of human neuroblastoma cells in vitro and impaired the growth of neuroblastoma xenografts. Loss of Abcc4 in the Th-MYCN transgenic neuroblastoma mouse model did not impact tumour formation; however, Abcc4-null neuroblastomas were strongly sensitised to the ABCC4 substrate drug irinotecan. Our findings demonstrate a role for ABCC4 in neuroblastoma cell proliferation and chemoresistance and provide rationale for a strategy where inhibition of ABCC4 should both attenuate the growth of neuroblastoma and sensitise tumours to ABCC4 chemotherapeutic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Alteration of the Copper-Binding Capacity of Iron-Rich Humic Colloids during Transport from Peatland to Marine Waters.

    PubMed

    Muller, François L L; Cuscov, Marco

    2017-03-21

    Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L 2 ]/[C org ], where L 2 was the second strongest copper-binding ligand, was 0.75 × 10 -4 when the reservoir residence time was 5 h but 0.34 × 10 -4 when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[C org ] = (0.80 ± 0.20) × 10 -2 . Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.

  2. Impaired Semantic Knowledge Underlies the Reduced Verbal Short-Term Storage Capacity in Alzheimer's Disease

    ERIC Educational Resources Information Center

    Peters, Frederic; Majerus, Steve; De Baerdemaeker, Julie; Salmon, Eric; Collette, Fabienne

    2009-01-01

    A decrease in verbal short-term memory (STM) capacity is consistently observed in patients with Alzheimer's disease (AD). Although this impairment has been mainly attributed to attentional deficits during encoding and maintenance, the progressive deterioration of semantic knowledge in early stages of AD may also be an important determinant of poor…

  3. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates.

    PubMed

    Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi

    2017-09-01

    This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Neurocircuitry of Impaired Insight in Drug Addiction

    PubMed Central

    Goldstein, Rita Z.; Craig, A. D. (Bud); Bechara, Antoine; Garavan, Hugh; Childress, Anna Rose; Paulus, Martin P.; Volkow, Nora D.

    2010-01-01

    More than 80% of addicted individuals fail to seek treatment, which might reflect impairments in recognition of severity of disorder. Considered by some as intentional deception, such `denial' might instead reflect dysfunction of brain networks subserving insight and selfawareness. Here we review the scant literature on insight in addiction and integrate this perspective with the role of: (i) the insula in interoception, self-awareness and drug craving; (ii) the anterior cingulate in behavioral monitoring and response selection (relevant to disadvantageous choices in addiction); (iii) the dorsal striatum in automatic habit formation; and (iv) drug related stimuli that predict emotional behavior in addicted individuals, even without conscious awareness. We discuss implications for clinical treatment including the design of interventions to improve insight into illness severity in addiction. PMID:19716751

  5. Dextromethorphan Analogs: Receptor Binding and Pharmacological Profile of Novel Anticonvulsant/Neuroprotectant Drugs

    DTIC Science & Technology

    1993-05-13

    AD-POO8 801 Dextromethorphan Analogs: Receptor Binding and Pharmacological Profile of Novel Anticonvulsant/Neuroprotective Drugs F.C. Tortella, L...Baltimore, MD 21224 CD ABSTRACT A series of 3-substituted 17-methylmorphinan analogs of dextromethorphan (DM) have open developed which are...nTTrTTn) INTRODUCTION The antitussives dextromethorphan (DM), caramiphen and carbetapentane have distinguished themselves as anticonvulsant drugs (1

  6. Decisional Capacity for Research Participation in Individuals with Mild Cognitive Impairment

    PubMed Central

    Jefferson, Angela L.; Lambe, Susan; Moser, David J.; Byerly, Laura K.; Ozonoff, Al; Karlawish, Jason H.

    2009-01-01

    OBJECTIVES To assess decisional capacity performance and the neuropsychological correlates of such performance to better understand higher-level instrumental activities of daily living in individuals with mild cognitive impairment (MCI). DESIGN Cross-sectional. SETTING Research center, medical center, or patient’s home. PARTICIPANTS Forty participants with MCI and 40 cognitively normal older controls (NCs) aged 60 to 90 (mean age ± standard deviation 73.3 ± 6.6; 54% female). MEASUREMENTS Capacity to provide informed consent for a hypothetical, but ecologically valid, clinical trial was assessed using the MacArthur Competence Assessment Tool for Clinical Research. Neuropsychological functioning was assessed using a comprehensive protocol. RESULTS Adjusted between-group comparisons yielded significant differences for most decisional capacity indices examined, including Understanding (P = .001; NC>MCI) and Reasoning (P = .002; NC>MCI). Post hoc analyses revealed that participants with MCI who were categorized as capable of providing informed consent according to expert raters had higher levels of education than those who were categorized as incapable. CONCLUSION The findings suggest that many individuals with MCI perform differently on a measure of decisional capacity than their NC peers and that participants with MCI who are incapable of providing informed consent on a hypothetical and complex clinical trial are less educated. These findings are consistent with prior studies documenting functional and financial skill difficulties in individuals with MCI. PMID:18482298

  7. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets,more » that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.« less

  8. Impaired processing speed and attention in first-episode drug naive schizophrenia with deficit syndrome.

    PubMed

    Chen, Ce; Jiang, Wenhui; Zhong, Na; Wu, Jin; Jiang, Haifeng; Du, Jiang; Li, Ye; Ma, Xiancang; Zhao, Min; Hashimoto, Kenji; Gao, Chengge

    2014-11-01

    Although first-episode drug naive patients with schizophrenia are known to show cognitive impairment, the cognitive performances of these patients, who suffer deficit syndrome, compared with those who suffer non-deficit syndrome is undetermined. The aim of this study was to compare cognitive performances in first-episode drug-naive schizophrenia with deficit syndrome or non-deficit syndrome. First-episode drug naive patients (n=49) and medicated patients (n=108) with schizophrenia, and age, sex, and education matched healthy controls (n=57 for the first-episode group, and n=128 for the medicated group) were enrolled. Patients were divided into deficit or non-deficit syndrome groups, using the Schedule for Deficit Syndrome. Cognitive performance was assessed using the CogState computerized cognitive battery. All cognitive domains in first-episode drug naive and medicated patients showed significant impairment compared with their respective control groups. Furthermore, cognitive performance in first-episode drug naive patients was significantly worse than in medicated patients. Interestingly, the cognitive performance markers of processing speed and attention, in first-episode drug naive patients with deficit syndrome, were both significantly worse than in equivalent patients without deficit syndrome. In contrast, no differences in cognitive performance were found between the two groups of medicated patients. In conclusion, this study found that first-episode drug naive schizophrenia with deficit syndrome showed significantly impaired processing speed and attention, compared with patients with non-deficit syndrome. These findings highlight processing speed and attention as potential targets for pharmacological and psychosocial interventions in first-episode schizophrenia with deficit syndrome, since these domains are associated with social outcomes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Pioglitazone ameliorates the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.

    PubMed

    Takada, Shingo; Hirabayashi, Kagami; Kinugawa, Shintaro; Yokota, Takashi; Matsushima, Shouji; Suga, Tadashi; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Mizushima, Wataru; Masaki, Yoshihiro; Furihata, Takaaki; Katsuyama, Ryoichi; Okita, Koichi; Tsutsui, Hiroyuki

    2014-10-05

    We have reported that exercise capacity is reduced in high fat diet (HFD)-induced diabetic mice, and that this reduction is associated with impaired mitochondrial function in skeletal muscle (SKM). However, it remains to be clarified whether the treatment of diabetes ameliorates the reduced exercise capacity. Therefore, we examined whether an insulin-sensitizing drug, pioglitazone, could improve exercise capacity in HFD mice. C57BL/6J mice were fed a normal diet (ND) or HFD, then treated with or without pioglitazone (3 mg/kg/day) to yield the following 4 groups: ND+vehicle, ND+pioglitazone, HFD+vehicle, and HFD+pioglitazone (n=10 each). After 8 weeks, body weight, plasma glucose, and insulin in the HFD+vehicle were significantly increased compared to the ND+vehicle group. Pioglitazone normalized the insulin levels in HFD-fed mice, but did not affect the body weight or plasma glucose. Exercise capacity determined by treadmill tests was significantly reduced in the HFD+vehicle, and this reduction was almost completely ameliorated in HFD+pioglitazone mice. ADP-dependent mitochondrial respiration, complex I and III activities, and citrate synthase activity were significantly decreased in the SKM of the HFD+vehicle animals, and these decreases were also attenuated by pioglitazone. NAD(P)H oxidase activity was significantly increased in the HFD+vehicle compared with the ND+vehicle, and this increase was ameliorated in HFD+pioglitazone mice. Pioglitazone improved the exercise capacity in diabetic mice, which was due to the improvement in mitochondrial function and attenuation of oxidative stress in the SKM. Our data suggest that pioglitazone may be useful as an agent for the treatment of diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Computational Assay of H7N9 Influenza Neuraminidase Reveals R292K Mutation Reduces Drug Binding Affinity

    NASA Astrophysics Data System (ADS)

    Woods, Christopher J.; Malaisree, Maturos; Long, Ben; McIntosh-Smith, Simon; Mulholland, Adrian J.

    2013-12-01

    The emergence of a novel H7N9 avian influenza that infects humans is a serious cause for concern. Of the genome sequences of H7N9 neuraminidase available, one contains a substitution of arginine to lysine at position 292, suggesting a potential for reduced drug binding efficacy. We have performed molecular dynamics simulations of oseltamivir, zanamivir and peramivir bound to H7N9, H7N9-R292K, and a structurally related H11N9 neuraminidase. They show that H7N9 neuraminidase is structurally homologous to H11N9, binding the drugs in identical modes. The simulations reveal that the R292K mutation disrupts drug binding in H7N9 in a comparable manner to that observed experimentally for H11N9-R292K. Absolute binding free energy calculations with the WaterSwap method confirm a reduction in binding affinity. This indicates that the efficacy of antiviral drugs against H7N9-R292K will be reduced. Simulations can assist in predicting disruption of binding caused by mutations in neuraminidase, thereby providing a computational `assay.'

  11. Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, Marvin J.; Pelc, Matthew; Kamtekar, Satwik

    2010-08-11

    The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.

  12. Structured assessment of mental capacity to make financial decisions in Chinese older persons with mild cognitive impairment and mild Alzheimer disease.

    PubMed

    Lui, Victor W C; Lam, Linda C W; Chau, Rachel C M; Fung, Ada W T; Wong, Billy M L; Leung, Grace T Y; Leung, K F; Chiu, Helen F K; Karlawish, Jason H T; Appelbaum, Paul S

    2013-06-01

    Previous studies suggested that patients with mild cognitive impairment (MCI) or dementia can have impaired and declining financial skills and abilities. The purpose of this study is to test a clinically applicable method, based on the contemporary legal standard, to examine directly the mental capacity to make financial decisions and its component decision-making abilities among patients with MCI and early dementia. A total of 90 patients with mild Alzheimer disease (AD), 92 participants with MCI, and 93 cognitively normal control participants were recruited for this study. Their mental capacity to make everyday financial decisions was assessed by clinician ratings and the Chinese version of the Assessment of Capacity for Everyday Decision-Making (ACED). Based on the clinician ratings, only 53.5% were found to be mentally competent in the AD group, compared with 94.6% in the MCI group. However, participants with MCI had mild but significant impairment in understanding, appreciating, and reasoning abilities as measured by the ACED. The ACED provided a reliable and clinically applicable structured framework for assessment of mental capacity to make financial decisions.

  13. Understanding the physical and chemical nature of the warfarin drug binding site in human serum albumin: experimental and theoretical studies.

    PubMed

    Abou-Zied, Osama K

    2015-01-01

    Human serum albumin (HSA) is one of the major carrier proteins in the body and constitutes approximately half of the protein found in blood plasma. It plays an important role in lipid metabolism, and its ability to reversibly bind a large variety of pharmaceutical compounds makes it a crucial determinant of drug pharmacokinetics and pharmacodynamics. This review deals with one of the protein's major binding sites "Sudlow I" which includes a binding pocket for the drug warfarin (WAR). The binding nature of this important site can be characterized by measuring the spectroscopic changes when a ligand is bound. Using several drugs, including WAR, and other drug-like molecules as ligands, the results emphasize the nature of Sudlow I as a flexible binding site, capable of binding a variety of ligands by adapting its binding pockets. The high affinity of the WAR pocket for binding versatile molecular structures stems from the flexibility of the amino acids forming the pocket. The binding site is shown to have an ionization ability which is important to consider when using drugs that are known to bind in Sudlow I. Several studies point to the important role of water molecules trapped inside the binding site in molecular recognition and ligand binding. Water inside the protein's cavity is crucial in maintaining the balance between the hydrophobic and hydrophilic nature of the binding site. Upon the unfolding and refolding of HSA, more water molecules are trapped inside the binding site which cause some swelling that prevents a full recovery from the denatured state. Better understanding of the mechanism of binding in macromolecules such as HSA and other proteins can be achieved by combining experimental and theoretical studies which produce significant synergies in studying complex biochemical phenomena.

  14. Working memory subsystems are impaired in chronic drug dependents.

    PubMed

    Soliman, Abdrabo Moghazy; Gadelrab, Hesham Fathy; Elfar, Rania Mohamed

    2013-06-01

    A large body of research that has investigated substance dependence and working memory (WM) resources, yet no prior study has used a comprehensive test battery to examine the impact of chronic drug dependence on WM as a multi-component system. This study examined the efficiency of several WM components in participants who were chronic drug dependents. In addition, the functioning of the four WM components was compared among dependents of various types of drugs. In total, 128 chronic drug dependents participated in this study. Their average age was 38.48 years, and they were classified into four drug-dependence groups. Chronic drug dependents were compared with a 36-participant control group that had a mean age of 37.6 years. A WM test battery that comprised eight tests and that assessed each of four WM components was administered to each participant. Compared with the control group, all four groups of drug dependents had significantly poorer test performance on all of the WM tasks. Among the four groups of drug users, the polydrug group had the poorest performance scores on each of the eight tasks, and the performance scores of the marijuana group were the least affected. Finally, the forward digit span task and the logical memory tasks were less sensitive than other tasks when differentiating between marijuana users and the normal participants. The four components of WM are impaired among chronic drug dependents. These results have implications for the development of tools, classification methods and therapeutic strategies for drug dependents.

  15. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

    PubMed

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-05-02

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

  16. Visual Impairment does not Limit Training Effects in Development of Aerobic and Anaerobic Capacity in Tandem Cyclists

    PubMed Central

    Malwina, Kamelska Anna; Krzysztof, Mazurek; Piotr, Zmijewski

    2015-01-01

    The study aimed to investigate the differences in the effects of 7-month training on aerobic and anaerobic capacity in tandem cycling athletes with and without visual impairment. In this study, Polish elite (n=13) and sub-elite (n=13) visually impaired (VI) (n=13; 40.8 ±12.8 years) and properly sighted (PS) (n=13; 36.7 ±12.2 years) tandem-cycling athletes participated voluntarily in 7-month routine training. The following pre-/post-training measurements were conducted on separate days: maximal oxygen uptake (VO2max) was estimated with age correction using the Physical Working Capacity test on a bicycle ergometer according to the Astrand-Ryhming method. Maximal power output (Pmax) was evaluated using the Quebec test on a bicycle ergometer. At baseline, VO2max (47.8 ±14.1 vs 42.0 ±8.3 ml/kg/min, respectively) and Pmax (11.5 ±1.5 vs 11.5 ±1.0 W/kg) did not differ significantly between PS and VI cyclists. However, differences in aerobic capacity were considered as clinically significant. Two-way ANOVA revealed that after 7 month training, there were statistically significant increases in VO2max (p=0.003) and Pmax (p=0.009) among VI (VO2max, +9.1%; Pmax, +6.3%) and PS (VO2max, +9.1%; Pmax, +11.7%) cyclists, however, no time × visual impairment interaction effect was found (VO2max, p=0.467; Pmax, p=0.364). After training, VO2max (p=0.03), but not Pmax (p=0.13), was significantly greater in elite compared to sub-elite tandem cyclists. VI and PS tandem cyclists showed similar rates of improvement in VO2max and Pmax after 7-month training. VO2max was a significant determinant of success in tandem cycling. This is one of the first studies providing reference values for aerobic and anaerobic capacity in visually impaired cyclists. PMID:26834877

  17. Discovery of new sites for drug binding to the hypertension-related renin-angiotensinogen complex.

    PubMed

    Brás, Natércia F; Fernandes, Pedro A; Ramos, Maria J

    2014-04-01

    Renin (REN) is a key drug target to stop the hypertension cascade, but thus far only one direct inhibitor has been made commercially available. In this study, we assess an innovative REN inhibition strategy, by targeting the interface of the renin:angiotensinogen (REN:ANG) complex. We characterized the energetic role of interfacial residues of REN:ANG and identified the ones responsible for protein:protein binding, which can serve as drug targets for disruption of the REN:ANG association. For this purpose, we applied a computational alanine scanning mutagenesis protocol, which measures the contribution of each side chain for the protein:protein binding free energy with an accuracy of ≈ 1 kcal/mol. As a result, in REN and ANG, six and eight residues were found to be critical for binding, respectively. The leading force behind REN:ANG complexation was found to be the hydrophobic effect. The binding free energy per residue was found to be proportional to the buried area. Residues responsible for binding were occluded from water at the complex, which promotes an efficient pairing between the two proteins. Two druggable pockets involving critical residues for binding were found on the surface of REN, where small druglike molecules can bind and disrupt the ANG:REN association that may provide an efficient way to achieve REN inhibition and control hypertension.

  18. Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines▿

    PubMed Central

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-01-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of ∼20,000 compared to the free drug. PMID:17404004

  19. Impaired semantic knowledge underlies the reduced verbal short-term storage capacity in Alzheimer's disease.

    PubMed

    Peters, Frédéric; Majerus, Steve; De Baerdemaeker, Julie; Salmon, Eric; Collette, Fabienne

    2009-12-01

    A decrease in verbal short-term memory (STM) capacity is consistently observed in patients with Alzheimer's disease (AD). Although this impairment has been mainly attributed to attentional deficits during encoding and maintenance, the progressive deterioration of semantic knowledge in early stages of AD may also be an important determinant of poor STM performance. The aim of this study was to examine the influence of semantic knowledge on verbal short-term memory storage capacity in normal aging and in AD by exploring the impact of word imageability on STM performance. Sixteen patients suffering from mild AD, 16 healthy elderly subjects and 16 young subjects performed an immediate serial recall task using word lists containing high or low imageability words. All participant groups recalled more high imageability words than low imageability words, but the effect of word imageability on verbal STM was greater in AD patients than in both the young and the elderly control groups. More precisely, AD patients showed a marked decrease in STM performance when presented with lists of low imageability words, whereas recall of high imageability words was relatively well preserved. Furthermore, AD patients displayed an abnormal proportion of phonological errors in the low imageability condition. Overall, these results indicate that the support of semantic knowledge on STM performance was impaired for lists of low imageability words in AD patients. More generally, these findings suggest that the deterioration of semantic knowledge is partly responsible for the poor verbal short-term storage capacity observed in AD.

  20. Adolescent inhalant abuse leads to other drug use and impaired growth; implications for diagnosis.

    PubMed

    Crossin, Rose; Cairney, Sheree; Lawrence, Andrew J; Duncan, Jhodie R

    2017-02-01

    Abuse of inhalants containing the volatile solvent toluene is a significant public health issue, especially for adolescent and Indigenous communities. Adolescent inhalant abuse can lead to chronic health issues and may initiate a trajectory towards further drug use. Identification of at-risk individuals is difficult and diagnostic tools are limited primarily to measurement of serum toluene. Our objective was to identify the effects of adolescent inhalant abuse on subsequent drug use and growth parameters, and to test the predictive power of growth parameters as a diagnostic measure for inhalant abuse. We retrospectively analysed drug use and growth data from 118 Indigenous males; 86 chronically sniffed petrol as adolescents. Petrol sniffing was the earliest drug used (mean 13 years) and increased the likelihood and earlier use of other drugs. Petrol sniffing significantly impaired height and weight and was associated with meeting 'failure to thrive' criteria; growth diagnostically out-performed serum toluene. Adolescent inhalant abuse increases the risk for subsequent and earlier drug use. It also impairs growth such that individuals meet 'failure to thrive' criteria, representing an improved diagnostic model for inhalant abuse. Implications for Public Health: Improved diagnosis of adolescent inhalant abuse may lead to earlier detection and enhanced health outcomes. © 2016 The Authors.

  1. Haematological values in pregnant women in Port Harcourt, Nigeria II: Serum iron and transferrin, total and unsaturated iron binding capacity and some red cell and platelet indices.

    PubMed

    Amah-Tariah, F S; Ojeka, S O; Dapper, D V

    2011-12-20

    Previous studies on the normal values of serum iron, unsaturated iron binding capacity, total iron binding capacity, serum transferrin, percent transferrin saturation, red cell distribution width, and various platelet indices: Platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio in pregnant subjects in Nigeria are relatively scanty. Present study aims to determine the values of these parameters in apparently healthy pregnant subjects residing in Port Harcourt south eastern Nigeria; and help establish normal reference ranges of these parameters for the population under reference. Cross sectional prospective study involving 220 female subjects attending for the first time, the ante-natal clinics of a tertiary health care facility in Port Harcourt. Subjects were divided into 73, 75 and 72 subjects in the first, second and third trimester of pregnancy respectively. Serum iron and unsaturated iron binding capacity, red cell distribution width, platelet count and platelet distribution width were determined by automated methods; total iron binding capacity, serum transferrin concentrations, percent transferrin saturation, mean platelet volume and plateletcrit were calculated using appropriate formulas. The values of serum iron, unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant variations between the various trimesters of pregnancy. However, while serum iron showed significant decreases during pregnancy; unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant increases during pregnancy amongst our subjects (p<0.05). By contrast the values of red cell distribution width, platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio did not show any significant differences at the different trimesters of pregnancy in

  2. Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity

    NASA Astrophysics Data System (ADS)

    Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora

    2017-09-01

    The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti

  3. Insulin binding and glycolytic activity in erythrocytes from dialyzed and nondialyzed uremic patients.

    PubMed

    Weisinger, J R; Contreras, N E; Cajias, J; Bellorin-Font, E; Amair, P; Guitierrez, L; Sylva, V; Paz-Martínez, V

    1988-01-01

    Insulin resistance in uremia has been attributed to impaired hormone-receptor binding or to postbinding defects. Oral glucose tolerance tests, insulin binding, and in vitro glycolytic activity were studied in purified red blood cells from normal control subjects (C) and from uremic patients belonging to three groups: nondialyzed (U), on chronic hemodialysis (HD), and on continuous ambulatory peritoneal dialysis (CAPD). Glucose intolerance and hyperinsulinemia were demonstrated in all groups of patients. Maximal specific binding of 125I-insulin to erythrocytes, kinetically derived receptor numbers per cell, and affinity constants for insulin binding did not differ between control and patient groups. No correlation was found between the degree of glucose intolerance and insulin binding parameters. Basal lactate production by erythrocytes incubated in vitro was significantly higher in U and HD patients than in C, whereas CAPD patients did not differ from C in this respect. Addition of 1 mM dibutyryl-cAMP and 0.5 mM isobutyl-methyl-xanthine during incubation of erythrocytes caused an increase in the rate of lactate production that was similar in magnitude in the U, HD and C groups, whereas cells from CAPD subjects showed a significantly larger absolute response to these compounds after 1 h of incubation. There was no evidence of impairment of glycolytic capacity in red blood cells from uremic patients. In addition, no correlation was found between the degree of glucose intolerance and basal or stimulated lactate production by erythrocytes. Our results obtained in human erythrocytes suggest that the insulin resistance observed in uremia does not involve a defect in hormone binding or in the intracellular capacity to utilize glucose through glycolysis.

  4. Glucocorticoid receptor ligand binding in monocytic cells using a microplate assay.

    PubMed

    Jansen, J; Uitdehaag, B; Koper, J W; van Den Berg, T K

    1999-01-01

    Glucocorticoids have profound effects on macrophage function and are widely used as anti-inflammatory drugs. Glucocorticoids receptor (GR) ligand binding capacity is a major determinant of cellular glucocorticoid sensitivity. The number and affinity of GR can be measured in a whole cell binding assay using (3)H-dexamethasone. Here, we describe a rapid and simple microplate assay for GR measurement using the human promonocytic cell line THP-1. Copyright 2000 S. Karger AG, Basel.

  5. DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315

    PubMed Central

    Polevoda, Bogdan; Joseph, Rebecca; Friedman, Alan E.; Bennett, Ryan P.; Greiner, Rebecca; De Zoysa, Thareendra; Stewart, Ryan A.; Smith, Harold C.

    2017-01-01

    APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. Bulk RNA and substrate ssDNA bind to the same three A3G tryptic peptides (amino acids 181–194, 314–320, and 345–374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C terminus of A3G to its N terminus. We show here that the A3G tyrosines 181 and 315 directly cross-linked ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an Escherichia coli DNA mutator reporter, whereas Y181A and Y182A mutants retained ∼50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Tyr-315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Tyr-315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity. PMID:28381554

  6. Processing Binding Relations in Specific Language Impairment

    PubMed Central

    Hestvik, Arild; Seiger-Gardner, Liat; Almodovar, Diana

    2016-01-01

    Purpose This sentence processing experiment examined the abilities of children with specific language impairment (SLI) and children with typical language development (TD) to establish relations between pronouns or reflexives and their antecedents in real time. Method Twenty-two children with SLI and 24 age-matched children with TD (7;3–10;11 [years;months]) participated in a cross-modal picture priming experiment to determine whether they selectively activated the correct referent at the pronoun or reflexive in sentences. Triplets of auditory sentences, identical except for the presence of a pronoun, a reflexive, or a noun phrase along with a picture probe were used. Results The children with TD were slightly more accurate in their animacy judgments of pictures, but the groups exhibited the same reaction time (RT) pattern. Both groups were slower for sentences with pronouns than with reflexives or noun phrases. The children with SLI had longer RTs than their peers with TD. Conclusions Children with SLI activated only the appropriate antecedent at the pronoun or reflexive, reflecting intact core knowledge of binding as was true for their TD peers. The overall slower RT for children with SLI suggests that any deficit may be the result of processing deficits, perhaps attributable to interference effects. PMID:27788275

  7. A Study of Impairing Injuries in Real World Crashes Using the Injury Impairment Scale (IIS) and the Predicted Functional Capacity Index (PFCI-AIS)

    PubMed Central

    Barnes, Jo; Morris, Andrew

    2009-01-01

    The ability to predict impairment outcomes in large databases using a simplified technique allows researchers to focus attention on preventing costly impairing injuries. The dilemma that exists for researchers is to determine which method is the most reliable and valid. This study examines available methods to predict impairment and explores the differences between the IIS and pFCI applied to real world crash injury data. Occupant injury data from the UK Co-operative Crash Injury Study (CCIS) database have been coded using AIS 1990 and AIS 2005. The data have subsequently been recoded using the associated impairment scales namely the Injury Impairment Scale (IIS) and the predicted Functional Capacity Index (pFCI) to determine the predicted impairment levels of injuries at one year post crash. Comparisons between the levels of impairment were made and any differences further explored. Injury data for the period February 2006 to September 2008 from the CCIS database were used in the analysis which involved a dataset of 2,437 occcupants who sustained over 8000 injuries. This study found some differences between the impairment scales for injuries coded to the AIS 1990 and AIS 2005 coding dictionaries. The pFCI predicts 31.5% of injuries to be impairing in AIS 2005, less than the IIS (38.5%) using AIS 1990. Using CCIS data the pFCI predicted that only 6% of the occupants with a coded injury would have an impairing injury compared to 24% of occupants using the IIS. The main body regions identified as having the major differences between the two impairment scales for car occupants were the head and spine. Follow up data were then used for a small number of cases (n=31, lower extremity and whiplash injuries) to examine any differences in predicted impairment versus perceived impairment. These data were selected from a previous study conducted between 2003 and 2006 and identified the discrepancy between predicted impairment and actual perceived impairment as defined by the

  8. A study of impairing injuries in real world crashes using the Injury Impairment Scale (IIS) and the predicted Functional Capacity Index (PFCI-AIS).

    PubMed

    Barnes, Jo; Morris, Andrew

    2009-10-01

    The ability to predict impairment outcomes in large databases using a simplified technique allows researchers to focus attention on preventing costly impairing injuries. The dilemma that exists for researchers is to determine which method is the most reliable and valid. This study examines available methods to predict impairment and explores the differences between the IIS and pFCI applied to real world crash injury data. Occupant injury data from the UK Co-operative Crash Injury Study (CCIS) database have been coded using AIS 1990 and AIS 2005. The data have subsequently been recoded using the associated impairment scales namely the Injury Impairment Scale (IIS) and the predicted Functional Capacity Index (pFCI) to determine the predicted impairment levels of injuries at one year post crash. Comparisons between the levels of impairment were made and any differences further explored. Injury data for the period February 2006 to September 2008 from the CCIS database were used in the analysis which involved a dataset of 2,437 occcupants who sustained over 8000 injuries. This study found some differences between the impairment scales for injuries coded to the AIS 1990 and AIS 2005 coding dictionaries. The pFCI predicts 31.5% of injuries to be impairing in AIS 2005, less than the IIS (38.5%) using AIS 1990. Using CCIS data the pFCI predicted that only 6% of the occupants with a coded injury would have an impairing injury compared to 24% of occupants using the IIS. The main body regions identified as having the major differences between the two impairment scales for car occupants were the head and spine. Follow up data were then used for a small number of cases (n=31, lower extremity and whiplash injuries) to examine any differences in predicted impairment versus perceived impairment. These data were selected from a previous study conducted between 2003 and 2006 and identified the discrepancy between predicted impairment and actual perceived impairment as defined by the

  9. Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands.

    PubMed

    Shen, Zhanhang; Mulholland, Kelly A; Zheng, Yujun; Wu, Chun

    2017-09-01

    DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations.

  10. Binding kinetics of five drugs to beta2-adrenoceptor using peak profiling method and nonlinear chromatography.

    PubMed

    Liang, Yuan; Wang, Jing; Fei, Fuhuan; Sun, Huanmei; Liu, Ting; Li, Qian; Zhao, Xinfeng; Zheng, Xiaohui

    2018-02-23

    Investigations of drug-protein interactions have advanced our knowledge of ways to design more rational drugs. In addition to extensive thermodynamic studies, ongoing works are needed to enhance the exploration of drug-protein binding kinetics. In this work, the beta2-adrenoceptor (β 2 -AR) was immobilized on N, N'-carbonyldiimidazole activated amino polystyrene microspheres to prepare an affinity column (4.6 mm × 5.0 cm, 8 μm). The β 2 -AR column was utilized to determine the binding kinetics of five drugs to the receptor. Introducing peak profiling method into this receptor chromatographic analysis, we determined the dissociation rate constants (k d ) of salbutamol, terbutaline, methoxyphenamine, isoprenaline hydrochloride and ephedrine hydrochloride to β 2 -AR to be 15 (±1), 22 (±1), 3.3 (±0.2), 2.3 (±0.2) and 2.1 (±0.1) s -1 , respectively. The employment of nonlinear chromatography (NLC) in this case exhibited the same rank order of k d values for the five drugs bound to β 2 -AR. We confirmed that both the peak profiling method and NLC were capable of routine measurement of receptor-drug binding kinetics. Compared with the peak profiling method, NLC was advantageous in the simultaneous assessment of the kinetic and apparent thermodynamic parameters. It will become a powerful method for high throughput drug-receptor interaction analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Impairment related to blood amphetamine and/or methamphetamine concentrations in suspected drugged drivers.

    PubMed

    Gustavsen, Ingebjørg; Mørland, Jørg; Bramness, Jørgen G

    2006-05-01

    Experimental studies have investigated effects of low oral doses of amphetamine and methamphetamine on psychomotor functions, while less work has been done on effects of high doses taken by abusers in real-life settings. There are indications that intake of high doses may impair traffic related skills, and that abuse of amphetamines may cause hypersomnolence at the end-of-binge. The present study aimed at investigating the concentration-effect relationship between blood amphetamines concentrations and impairment in a population of real-life users. Eight hundred and seventy-eight cases with amphetamine or methamphetamine as the only drugs present in the blood samples were selected from the impaired driver registry at The Norwegian Institute of Public Health. In each case the police physician had concluded on whether the driver was impaired or not. 27% of the drivers were judged as not impaired, while 73% were judged as impaired. There was a positive relationship between blood amphetamines concentrations and impairment. The relationship reached a ceiling at blood amphetamines concentrations of 0.27-0.53 mg/l. Younger drivers were more often judged impaired than older drivers at similar concentrations. Despite the performance enhancing qualities of amphetamines demonstrated in some low dose laboratory experiments; this study revealed a positive relationship between blood amphetamines concentration and traffic related impairment.

  12. Effect of chain length on binding of fatty acids to Pluronics in microemulsions.

    PubMed

    James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O

    2008-03-15

    We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.

  13. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies.

    PubMed

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S

    2016-05-15

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (±0.5)×10(5)M(-1), which agreed with a previously reported value of 1.0 (±0.1)×10(5)M(-1). Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Entrapment of Alpha1-Acid Glycoprotein in High-Performance Affinity Columns for Drug-Protein Binding Studies

    PubMed Central

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S.

    2015-01-01

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (± 0.5) × 105 M−1, which agreed with a previously reported value of 1.0 (± 0.1) × 105 M−1. Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. PMID:26627938

  15. Declining financial capacity in mild cognitive impairment: A 1-year longitudinal study.

    PubMed

    Triebel, K L; Martin, R; Griffith, H R; Marceaux, J; Okonkwo, O C; Harrell, L; Clark, D; Brockington, J; Bartolucci, A; Marson, Daniel C

    2009-09-22

    To investigate 1-year change in financial capacity in relation to conversion from amnestic mild cognitive impairment (MCI) to dementia. Seventy-six cognitively healthy older controls, 25 patients with amnestic MCI who converted to Alzheimer-type dementia during the study period (MCI converters), and 62 patients with MCI who did not convert to dementia (MCI nonconverters) were administered the Financial Capacity Instrument (FCI) at baseline and 1-year follow-up. Performance on the FCI domain and global scores was compared within and between groups using multivariate repeated-measures analyses. At baseline, controls performed better than MCI converters and nonconverters on almost all FCI domains and on both FCI total scores. MCI converters performed below nonconverters on domains of financial concepts, cash transactions, bank statement management, and bill payment and on both FCI total scores. At 1-year follow-up, MCI converters showed significantly greater decline than controls and MCI nonconverters for the domain of checkbook management and for both FCI total scores. The domain of bank statement management showed a strong trend. For both the checkbook and bank statement domains, MCI converters showed declines in procedural skills, such as calculating the correct balance in a checkbook register, but not in conceptual understanding of a checkbook or a bank statement. Declining financial skills are detectable in patients with mild cognitive impairment (MCI) in the year before their conversion to Alzheimer disease. Clinicians should proactively monitor patients with MCI for declining financial skills and advise patients and families about appropriate interventions.

  16. Monitoring binding affinity between drug and α1-acid glycoprotein in real time by Venturi easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Liu, Ning; Lu, Xin; Yang, YuHan; Yao, Chen Xi; Ning, BaoMing; He, Dacheng; He, Lan; Ouyang, Jin

    2015-10-01

    A new approach for monitoring the binding affinity between drugs and alpha 1-acid glycoprotein in real time was developed based on a combination of drug-protein reaction followed by Venturi easy ambient sonic-spray ionization mass spectrometry determination of the free drug concentrations. A known basic drug, propranolol was used to validate the new built method. Binding constant values calculated by venturi easy ambient sonic-spray ionization mass spectrometry was in good accordance with a traditional ultrafiltration combined with high performance liquid chromatography method. Then six types of basic drugs were used as the samples to conduct the real time analysis. Upon injection of alpha 1-acid glycoprotein to the drug mixture, the ion chromatograms were extracted to show the changes in the free drug concentrations in real time. By observing the drop-out of six types of drugs during the whole binding reaction, the binding affinities of different drugs were distinguished. A volume shift validating experiment and an injection delay correcting experiment were also performed to eliminate extraneous factors and verify the reliability of our experiment. Therefore, the features of Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS) and the experimental results indicate that our technique is likely to become a powerful tool for monitoring drug-AGP binding affinity in real time. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hypercholesterolemia Impairs Exercise Capacity in Mice

    PubMed Central

    Maxwell, Andrew J.; Niebauer, Josef; Lin, Patrick S.; Tsao, Philip S.; Bernstein, Daniel; Cooke, John P.

    2011-01-01

    Objective We previously reported an attenuation of both exercise hyperemia and measures of aerobic capacity in hypercholesterolemic mice. In this study we expanded upon the previous findings by examining the temporal and quantitative relationship of hypercholesterolemia to aerobic and anaerobic capacity and by exploring several potential mechanisms of dysfunction. Methods Eight-week old wild type (n=123) and apoE knockout (n=79) C57BL/6J mice were divided into groups with distinct cholesterol levels by feeding regular or high fat diets. At various ages the mice underwent treadmill ergospirometry. To explore mechanisms, aortic ring vasodilator function and nitrate (NOx) activity, urinary excretion of NOx, running muscle microvascular density and citrate synthase activity, as well as myocardial mass and histologic evidence of ischemia were measured. Results At 8 weeks of age, all mice had similar measures of exercise capacity. All indices of aerobic exercise capacity progressively declined at 12 and 20 weeks of age in the hypercholesterolemic mice as cholesterol levels increased while indices of anaerobic capacity remained unaffected. Across the 4 cholesterol groups, the degree of aerobic dysfunction was related to serum cholesterol levels; a relationship that was maintained after correcting for confounding factors. Associated with the deterioration in exercise capacity was a decline in measures of nitric oxide-mediated vascular function while there was no evidence of aberrations in functional or oxidative capacities or in other components of transport capacity. Conclusion Aerobic exercise dysfunction is observed in murine models of genetic and diet-induced hypercholesterolemia and is associated with a reduction in vascular nitric oxide production. PMID:19651675

  18. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  19. Cognitive impairment in patients clinically recovered from central nervous system depressant drug overdose.

    PubMed

    Dassanayake, Tharaka L; Michie, Patricia T; Jones, Alison; Carter, Gregory; Mallard, Trevor; Whyte, Ian

    2012-08-01

    Central nervous system depressant drugs (CNS-Ds) are known to impair cognitive functions. Overdose of these drugs is common, and most of the hospital-treated patients are discharged within 24 to 48 hours. No previous studies have examined whether they have residual impairment at the time of discharge. Our aim was to evaluate whether patients with CNS-D overdose are impaired in cognitive domains important in daily activities at that time. We compared visuomotor skills (Trail-Making Test A and Choice Reaction Time), executive functions (viz attentional set-shifting: Trail-Making Test B; and planning: Stockings of Cambridge Task from the Cambridge Neuropsychological Test Automated Battery), working memory (Letter-Number Sequencing), and impulsivity and decision making (Cambridge Neuropsychological Test Automated Battery Information Sampling) in 107 patients with CNS-D overdose (benzodiazepines, opioids, or antipsychotics) with a control group of 68 with non-CNS-D overdose (acetaminophen, selective serotonin reuptake inhibitors, and serotonin noradrenaline reuptake inhibitors) on discharge from hospital. Outcome measures were adjusted for demographic and clinical covariates in multivariate regression models. Compared with the controls, patients in the CNS-D group were significantly impaired in all domains: they had prolonged Trail-Making completion times and reaction times, poorer working memory and planning and were more impulsive in decision making. Their Stockings of Cambridge Task performance was comparable to that of the control group for simple problems but worsened with increasing task complexity. The results show that patients with CNS-D overdose could be impaired in multiple cognitive domains underlying everyday functioning even at the time they are deemed medically fit to be discharged. Such impairments could adversely affect social and professional lives of this relatively young population during the immediate postdischarge period.

  20. Physiological responses to heat of resting man with impaired sweating capacity

    NASA Technical Reports Server (NTRS)

    Totel, G. L.

    1974-01-01

    The effects of total-body heat exposure were studied in three groups of subjects with varied degrees of impaired sweating capacity. The responses of two ectodermal dysplasic men, six quadriplegic men, and a man with widespread burned scar tissue were compared with the responses of three able-bodied men resting in the heat. It was found that the able-bodied and burned subjects competed successfully with a controlled environment of 38 C and 20% relative humidity for up to 150 min, whereas the quadriplegic and ectodermal dysplasic men developed hyperthermia, hyperventilation, and distress after only 120 and 75 min of heat exposure, respectively. The intolerance to heat is thus ascribed directly to the inability to produce and evaporate sweat.

  1. Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency.

    PubMed

    Fernández-Cancio, Mónica; Camats, Núria; Flück, Christa E; Zalewski, Adam; Dick, Bernhard; Frey, Brigitte M; Monné, Raquel; Torán, Núria; Audí, Laura; Pandey, Amit V

    2018-04-29

    The CYP17A1 gene regulates sex steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of anti-prostate cancer drug abiraterone. In a 46, XY patient with female external genitalia, together with a loss of function mutation S441P, we identified a novel missense mutation V366M at the catalytic center of CYP17A1 which preferentially impaired 17,20 lyase activity. Kinetic experiments with bacterially expressed proteins revealed that V366M mutant enzyme can bind and metabolize pregnenolone to 17OH-pregnenolone, but 17OH-pregnenolone binding and conversion to dehydroepiandrosterone (DHEA) was impaired, explaining the patient’s steroid profile. Abiraterone could not bind and inhibit the 17α-hydroxylase activity of the CYP17A1-V366M mutant. Molecular dynamics (MD) simulations showed that V366M creates a “one-way valve” and suggests a mechanism for dual activities of human CYP17A1 where, after the conversion of pregnenolone to 17OH-pregnenolone, the product exits the active site and re-enters for conversion to dehydroepiandrosterone. The V366M mutant also explained the effectiveness of the anti-prostate cancer drug abiraterone as a potent inhibitor of CYP17A1 by binding tightly at the active site in the WT enzyme. The V366M is the first human mutation to be described at the active site of CYP17A1 that causes isolated 17,20 lyase deficiency. Knowledge about the specificity of CYP17A1 activities is of importance for the development of treatments for polycystic ovary syndrome and inhibitors for prostate cancer therapy.

  2. Binding preference of p62 towards LC3-ll during dopaminergic neurotoxin-induced impairment of autophagic flux.

    PubMed

    Lim, Junghyun; Kim, Hyun-Wook; Youdim, Moussa B H; Rhyu, Im Joo; Choe, Kwang-Min; Oh, Young J

    2011-01-01

    Accumulating evidence has revealed that autophagy may be beneficial for treatment of neurodegenerative diseases through removal of abnormal protein aggregates. However, the critical autophagic events during neurodegeneration remain to be elucidated. Here, we investigated whether prototypic autophagic events occur in the MN9D dopaminergic neuronal cell line upon exposure to N-methyl-4-phenylpyridinium (MPP (+) ), a well-known dopaminergic neurotoxin. MPP (+) treatment induced both morphological and biochemical characteristics of autophagy, such as accumulation of autophagic vacuoles and LC3-II form and decreased p62 levels. Further investigation revealed that these phenomena were largely the consequences of blocked autophagic flux. Following MPP (+) treatment, levels of LC3-II formed and p62 dramatically increased in the Triton X-100-insoluble fraction. Levels of ubiquitinated proteins also increased in this fraction. Further colocalization analyses revealed that the punctated spots positive for both p62 and LC3 were more intense following MPP (+) treatment, suggesting drug-induced enrichment of these two proteins in the insoluble fraction. Intriguingly, reciprocal immunoprecipitation analysis revealed that p62 mainly precipitated with LC3-II form following MPP (+) treatment. Transient transfection of the mutant form of Atg4B, Atg4B (C74A) , which inhibits LC3 processing, dramatically decreased binding between p62 and LC3-II form. Taken together, our results indicate that p62 can be efficiently localized to autophagic compartments via preferential binding with LC3-II form. This colocalization may assist in removal of detergent-insoluble forms of damaged cellular proteins during dopaminergic neurotoxin-induced impairment of autophagic flux.

  3. Modelling Drug Abuse Epidemics in the Presence of Limited Rehabilitation Capacity.

    PubMed

    Mushanyu, J; Nyabadza, F; Muchatibaya, G; Stewart, A G R

    2016-12-01

    The abuse of drugs is now an epidemic globally whose control has been mainly through rehabilitation. The demand for drug abuse rehabilitation has not been matched with the available capacity resulting in limited placement of addicts into rehabilitation. In this paper, we model limited rehabilitation through the Hill function incorporated into a system of nonlinear ordinary differential equations. Not every member of the community is equally likely to embark on drug use, risk structure is included to help differentiate those more likely (high risk) to abuse drugs and those less likely (low risk) to abuse drugs. It is shown that the model has multiple equilibria, and using the centre manifold theory, the model exhibits the phenomenon of backward bifurcation whose implications to rehabilitation are discussed. Sensitivity analysis and numerical simulations are performed. The results show that saturation in rehabilitation will in the long run lead to the escalation of drug abuse. This means that limited access to rehabilitation has negative implications in the fight against drug abuse where rehabilitation is the main form of control. This suggests that increased access to rehabilitation is likely to lower the drug abuse epidemic.

  4. Nanoparticles engineered to bind cellular motors for efficient delivery.

    PubMed

    Dalmau-Mena, Inmaculada; Del Pino, Pablo; Pelaz, Beatriz; Cuesta-Geijo, Miguel Ángel; Galindo, Inmaculada; Moros, María; de la Fuente, Jesús M; Alonso, Covadonga

    2018-03-30

    Dynein is a cytoskeletal molecular motor protein that transports cellular cargoes along microtubules. Biomimetic synthetic peptides designed to bind dynein have been shown to acquire dynamic properties such as cell accumulation and active intra- and inter-cellular motion through cell-to-cell contacts and projections to distant cells. On the basis of these properties dynein-binding peptides could be used to functionalize nanoparticles for drug delivery applications. Here, we show that gold nanoparticles modified with dynein-binding delivery sequences become mobile, powered by molecular motor proteins. Modified nanoparticles showed dynamic properties, such as travelling the cytosol, crossing intracellular barriers and shuttling the nuclear membrane. Furthermore, nanoparticles were transported from one cell to another through cell-to-cell contacts and quickly spread to distant cells through cell projections. The capacity of these motor-bound nanoparticles to spread to many cells and increasing cellular retention, thus avoiding losses and allowing lower dosage, could make them candidate carriers for drug delivery.

  5. Dietary fibers from mushroom Sclerotia: 2. In vitro mineral binding capacity under sequential simulated physiological conditions of the human gastrointestinal tract.

    PubMed

    Wong, Ka-Hing; Cheung, Peter C K

    2005-11-30

    The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.

  6. The immunosuppressive drug mycophenolate mofetil impairs the adhesion capacity of gastrointestinal tumour cells

    PubMed Central

    LECKEL, K; BEECKEN, W-D; JONAS, D; OPPERMANN, E; COMAN, M C; BECK, K-F; CINATL, J; HAILER, N P; AUTH, M K H; BECHSTEIN, W O; SHIPKOVA, M; BLAHETA, R A

    2003-01-01

    Immunosuppression correlates with the development and recurrence of cancer. Mycophenolate mofetil (MMF) has been shown to reduce adhesion molecule expression and leucocyte recruitment into the donor organ. We have hypothesized that MMF might also prevent receptor-dependent tumour dissemination. Therefore, we have investigated the effects of MMF on tumour cell adhesion to human umbilical vein endothelial cells (HUVEC) and compared them with the effects on T cell–endothelial cell interactions. Influence of MMF on cellular adhesion to HUVEC was analysed using isolated CD4+ and CD8+ T cells, or WiDr colon adenocarcinoma cells as the model tumour. HUVEC receptors ICAM-1, VCAM-1, E-selectin and P-selectin were detected by flow cytometry, Western blot or Northern blot analysis. Binding activity of T cells or WiDr cells in the presence of MMF were measured using immobilized receptor globulin chimeras. MMF potently blocked both T cell and WiDr cell binding to endothelium by 80%. Surface expression of the endothelial cell receptors was reduced by MMF in a dose-dependent manner. E-selectin mRNA was concurrently reduced with a maximum effect at 1 µm. Interestingly, MMF acted differently on T cells and WiDr cells. Maximum efficacy of MMF was reached at 10 and 1 µm, respectively. Furthermore, MMF specifically suppressed T cell attachment to ICAM-1, VCAM-1 and P-selectin. In contrast, MMF prevented WiDr cell attachment to E-selectin. In conclusion, our data reveal distinct effects of MMF on both T cell adhesion and tumour cell adhesion to endothelial cells. This suggests that MMF not only interferes with the invasion of alloactivated T cells, but might also be of value in managing post-transplantation malignancy. PMID:14616783

  7. The immunosuppressive drug mycophenolate mofetil impairs the adhesion capacity of gastrointestinal tumour cells.

    PubMed

    Leckel, K; Beecken, W-D; Jonas, D; Oppermann, E; Coman, M C; Beck, K-F; Cinatl, J; Hailer, N P; Auth, M K H; Bechstein, W O; Shipkova, M; Blaheta, R A

    2003-11-01

    Immunosuppression correlates with the development and recurrence of cancer. Mycophenolate mofetil (MMF) has been shown to reduce adhesion molecule expression and leucocyte recruitment into the donor organ. We have hypothesized that MMF might also prevent receptor-dependent tumour dissemination. Therefore, we have investigated the effects of MMF on tumour cell adhesion to human umbilical vein endothelial cells (HUVEC) and compared them with the effects on T cell-endothelial cell interactions. Influence of MMF on cellular adhesion to HUVEC was analysed using isolated CD4+ and CD8+ T cells, or WiDr colon adenocarcinoma cells as the model tumour. HUVEC receptors ICAM-1, VCAM-1, E-selectin and P-selectin were detected by flow cytometry, Western blot or Northern blot analysis. Binding activity of T cells or WiDr cells in the presence of MMF were measured using immobilized receptor globulin chimeras. MMF potently blocked both T cell and WiDr cell binding to endothelium by 80%. Surface expression of the endothelial cell receptors was reduced by MMF in a dose-dependent manner. E-selectin mRNA was concurrently reduced with a maximum effect at 1 microm. Interestingly, MMF acted differently on T cells and WiDr cells. Maximum efficacy of MMF was reached at 10 and 1 microm, respectively. Furthermore, MMF specifically suppressed T cell attachment to ICAM-1, VCAM-1 and P-selectin. In contrast, MMF prevented WiDr cell attachment to E-selectin. In conclusion, our data reveal distinct effects of MMF on both T cell adhesion and tumour cell adhesion to endothelial cells. This suggests that MMF not only interferes with the invasion of alloactivated T cells, but might also be of value in managing post-transplantation malignancy.

  8. Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    Plasma protein binding (PPB) has vital importance in the characterization of drug distribution in the systemic circulation. Unfavorable PPB can pose a negative effect on clinical development of promising drug candidates. The drug distribution properties should be considered at the initial phases of the drug design and development. Therefore, PPB prediction models are receiving an increased attention. In the current study, we present a systematic approach using Support vector machine, Artificial neural network, k- nearest neighbor, Probabilistic neural network, Partial least square and Linear discriminant analysis to relate various in vitro and in silico molecular descriptors to a diverse dataset of 736 drugs/drug-like compounds. The overall accuracy of Support vector machine with Radial basis function kernel came out to be comparatively better than the rest of the applied algorithms. The training set accuracy, validation set accuracy, precision, sensitivity, specificity and F1 score for the Suprort vector machine was found to be 89.73%, 89.97%, 92.56%, 87.26%, 91.97% and 0.898, respectively. This model can potentially be useful in screening of relevant drug candidates at the preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. New Horizons on Molecular Pharmacology Applied to Drug Discovery: When Resonance Overcomes Radioligand Binding.

    PubMed

    Pernomian, Larissa; Gomes, Mayara Santos; Moreira, Josimar Dornelas; da Silva, Carlos Henrique Tomich de Paula; Rosa, Joaquin Maria Campos; Cardoso, Cristina Ribeiro de Barros

    2017-01-01

    One of the cornerstones of rational drug development is the measurement of molecular parameters derived from ligand-receptor interaction, which guides therapeutic windows definition. Over the last decades, radioligand binding has provided valuable contributions in this field as key method for such purposes. However, its limitations spurred the development of more exquisite techniques for determining such parameters. For instance, safety risks related to radioactivity waste, expensive and controlled disposal of radioisotopes, radiotracer separation-dependence for affinity analysis, and one-site mathematical models-based fitting of data make radioligand binding a suboptimal approach in providing measures of actual affinity conformations from ligands and G proteincoupled receptors (GPCR). Current advances on high-throughput screening (HTS) assays have markedly extended the options of sparing sensitive ways for monitoring ligand affinity. The advent of the novel bioluminescent donor NanoLuc luciferase (Nluc), engineered from Oplophorus gracilirostris luciferase, allowed fitting bioluminescence resonance energy transfer (BRET) for monitoring ligand binding. Such novel approach named Nluc-based BRET (NanoBRET) binding assay consists of a real-time homogeneous proximity assay that overcomes radioligand binding limitations but ensures the quality in affinity measurements. Here, we cover the main advantages of NanoBRET protocol and the undesirable drawbacks of radioligand binding as molecular methods that span pharmacological toolbox applied to Drug Discovery. Also, we provide a novel perspective for the application of NanoBRET technology in affinity assays for multiple-state binding mechanisms involving oligomerization and/or functional biased selectivity. This new angle was proposed based on specific biophysical criteria required for the real-time homogeneity assigned to the proximity NanoBRET protocol. Copyright© Bentham Science Publishers; For any queries, please email

  10. Reduced Adult Hippocampal Neurogenesis and Cognitive Impairments following Prenatal Treatment of the Antiepileptic Drug Valproic Acid

    PubMed Central

    Juliandi, Berry; Tanemura, Kentaro; Igarashi, Katsuhide; Tominaga, Takashi; Furukawa, Yusuke; Otsuka, Maky; Moriyama, Noriko; Ikegami, Daigo; Abematsu, Masahiko; Sanosaka, Tsukasa; Tsujimura, Keita; Narita, Minoru; Kanno, Jun; Nakashima, Kinichi

    2015-01-01

    Summary Prenatal exposure to valproic acid (VPA), an established antiepileptic drug, has been reported to impair postnatal cognitive function in children born to VPA-treated epileptic mothers. However, how these defects arise and how they can be overcome remain unknown. Using mice, we found that comparable postnatal cognitive functional impairment is very likely correlated to the untimely enhancement of embryonic neurogenesis, which led to depletion of the neural precursor cell pool and consequently a decreased level of adult neurogenesis in the hippocampus. Moreover, hippocampal neurons in the offspring of VPA-treated mice showed abnormal morphology and activity. Surprisingly, these impairments could be ameliorated by voluntary running. Our study suggests that although prenatal exposure to antiepileptic drugs such as VPA may have detrimental effects that persist until adulthood, these effects may be offset by a simple physical activity such as running. PMID:26677766

  11. Evaluation of Brain Pharmacokinetic and Neuropharmacodynamic Attributes of an Antiepileptic Drug, Lacosamide, in Hepatic and Renal Impairment: Preclinical Evidence.

    PubMed

    Kumar, Baldeep; Modi, Manish; Saikia, Biman; Medhi, Bikash

    2017-07-19

    The knowledge of pharmacokinetic and pharmacodynamic properties of antiepileptic drugs is helpful in optimizing drug therapy for epilepsy. This study was designed to evaluate the pharmacokinetic and pharmacodynamic properties of lacosamide in experimentally induced hepatic and renal impairment in seizure animals. Hepatic or renal impairment was induced by injection of carbon tetrachloride or diclofenac sodium, respectively. After induction, the animals were administered a single dose of lacosamide. At different time points, maximal electroshock (MES) seizure recordings were made followed by isolation of plasma and brain samples for drug quantification and pharmacodynamic measurements. Our results showed a significant increase in the area under the curve of lacosamide in hepatic and renal impairment groups. Reduced clearance of lacosamide was observed in animals with renal impairment. Along with pharmacokinetic alterations, the changes in pharmacodynamic effects of lacosamide were also observed in all the groups. Lacosamide showed a significant protection against MES-induced seizures, oxidative stress, and neuroinflammatory cytokines. These findings revealed that experimentally induced hepatic or renal impairment could alter the pharmacokinetic as well as pharmacodynamic properties of lacosamide. Hence, these conditions may affect the safety and efficacy of lacosamide.

  12. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    PubMed

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.

  13. Glutamate Impairs Mitochondria Aerobic Respiration Capacity and Enhances Glycolysis in Cultured Rat Astrocytes.

    PubMed

    Yan, Xu; Shi, Zhong Fang; Xu, Li Xin; Li, Jia Xin; Wu, Min; Wang, Xiao Xuan; Jia, Mei; Dong, Li Ping; Yang, Shao Hua; Yuan, Fang

    2017-01-01

    To study the effect of glutamate on metabolism, shifts in glycolysis and lactate release in rat astrocytes. After 10 days, secondary cultured astrocytes were treated with 1 mmol/L glutamate for 1 h, and the oxygen consumption rates (OCR) and extra cellular acidification rate (ECAR) was analyzed using a Seahorse XF 24 Extracellular Flux Analyzer. Cell viability was then evaluated by MTT assay. Moreover, changes in extracellular lactate concentration induced by glutamate were tested with a lactate detection kit. Compared with the control group, treatment with 1 mmol/L glutamate decreased the astrocytes' maximal respiration and spare respiratory capacity but increased their glycolytic capacity and glycolytic reserve. Further analysis found that 1-h treatment with different concentrations of glutamate (0.1-1 mmol/L) increased lactate release from astrocytes, however the cell viability was not affected by the glutamate treatment. The current study provided direct evidence that exogenous glutamate treatment impaired the mitochondrial respiration capacity of astrocytes and enhanced aerobic glycolysis, which could be involved in glutamate injury or protection mechanisms in response to neurological disorders. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  14. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

    PubMed Central

    Velkov, Tony

    2013-01-01

    Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD) of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed. PMID:23476633

  15. Recovery of Percent Vital Capacity by Breathing Training in Patients With Panic Disorder and Impaired Diaphragmatic Breathing.

    PubMed

    Yamada, Tatsuji; Inoue, Akiomi; Mafune, Kosuke; Hiro, Hisanori; Nagata, Shoji

    2017-09-01

    Slow diaphragmatic breathing is one of the therapeutic methods used in behavioral therapy for panic disorder. In practice, we have noticed that some of these patients could not perform diaphragmatic breathing and their percent vital capacity was initially reduced but could be recovered through breathing training. We conducted a comparative study with healthy controls to investigate the relationship between diaphragmatic breathing ability and percent vital capacity in patients with panic disorder. Our findings suggest that percent vital capacity in patients with impaired diaphragmatic breathing was significantly reduced compared with those with normal diaphragmatic breathing and that diaphragmatic breathing could be restored by breathing training. Percent vital capacity of the healthy controls was equivalent to that of the patients who had completed breathing training. This article provides preliminary findings regarding reduced vital capacity in relation to abnormal respiratory movements found in patients with panic disorder, potentially offering alternative perspectives for verifying the significance of breathing training for panic disorder.

  16. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  17. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGES

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  18. Seller's reputation and capacity on the illicit drug markets: 11-month study on the Finnish version of the Silk Road.

    PubMed

    Nurmi, Juha; Kaskela, Teemu; Perälä, Jussi; Oksanen, Atte

    2017-09-01

    This 11-month study analyzed illicit drug sales on the anonymous Tor network, with a focus on investigating whether a seller's reputation and capacity increased daily drug sales. The data were gathered from Silkkitie, the Finnish version of the Silk Road, by web crawling the site on a daily basis from (November 2014 to September 2015). The data include information on sellers (n=260) and products (n=3823). The measurements include the sellers' reputation, the sale amounts (in euros), the number of available products and the types of drugs sold. The sellers' capacity was measured using their full sales potential (in euros). Fixed-effects regression models were used to estimate the effects of sellers' reputation and capacity; these models were adjusted for the types of drugs sold. Overall, illicit drug sales totalled over 2 million euros during the study, but many products were not sold at all, and sellers were active for only a short time on average (mean=62.8days). Among the products sold, stimulants were most widely purchased, followed by cannabis, MDMA, and psychedelics. A seller's reputation and capacity were both associated with drug sales. The Tor network has enabled a transformation in drug sales. Due to the network's anonymity, the seller's reputation and capacity both have an impact on sales. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ca sup 2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huppertz, B.; Weyand, I.; Bauer, P.J.

    1990-06-05

    Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca{sup 2+} titration in the presence of the indicator arsenazo III and {sup 45}Ca{sup 2+} autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca{sup 2+} binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca{sup 2+} binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yieldmore » dissociation constants for the Ca{sup 2+} binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca{sup 2+} binding site per arrestin. No Ca{sup 2+} binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca{sup 2+} buffer.« less

  20. Connecting proteins with drug-like compounds: Open source drug discovery workflows with BindingDB and KNIME

    PubMed Central

    Berthold, Michael R.; Hedrick, Michael P.; Gilson, Michael K.

    2015-01-01

    Today’s large, public databases of protein–small molecule interaction data are creating important new opportunities for data mining and integration. At the same time, new graphical user interface-based workflow tools offer facile alternatives to custom scripting for informatics and data analysis. Here, we illustrate how the large protein-ligand database BindingDB may be incorporated into KNIME workflows as a step toward the integration of pharmacological data with broader biomolecular analyses. Thus, we describe a collection of KNIME workflows that access BindingDB data via RESTful webservices and, for more intensive queries, via a local distillation of the full BindingDB dataset. We focus in particular on the KNIME implementation of knowledge-based tools to generate informed hypotheses regarding protein targets of bioactive compounds, based on notions of chemical similarity. A number of variants of this basic approach are tested for seven existing drugs with relatively ill-defined therapeutic targets, leading to replication of some previously confirmed results and discovery of new, high-quality hits. Implications for future development are discussed. Database URL: www.bindingdb.org PMID:26384374

  1. Limited capacity in US pediatric drug trials: qualitative analysis of expert interviews.

    PubMed

    Wasserman, Richard; Bocian, Alison; Harris, Donna; Slora, Eric

    2011-04-01

    The recently renewed Best Pharmaceuticals for Children and Pediatric Research Equity Acts (BPCA/PREA) have continued industry incentives and opportunities for pediatric drug trials (PDTs). However, there is no current assessment of the capacity to perform PDTs. The aim of this study was to deepen understanding of the capacity for US PDTs by assessing PDT infrastructure, present barriers to PDTs, and potential approaches and solutions to identified issues. Pediatric clinical research experts participated in semi-structured interviews on current US pediatric research capacity (February-July 2007). An initial informant list was developed using purposive sampling, and supplemented and refined to generate a group of respondents to explore emerging themes. Each phone interview included a physician researcher and two health researchers who took notes and recorded the calls. Health researchers produced detailed summaries, which were verified by the physician researcher and informants. We then undertook qualitative analysis of the summaries, employing multiple coding, with the two health researchers and the physician researcher independently coding each summary for themes and subthemes. Coding variations were resolved by physician researcher/health researcher discussion and consensus achieved on themes and subthemes. The 33 informants' primary or secondary roles included academia (n = 21), federal official (5), industry medical officer (8), pediatric research network leader (10), pediatric specialist leader (8), pediatric clinical pharmacologist (5), and practitioner/research site director (9). While most experts noted an increase in PDTs since the initial passage of BPCA/PREA, a dominant theme of insufficient US PDT capacity emerged. Subthemes included (i) lack of systems for finding, incentivizing, and/or maintaining trial sites; (ii) complexity/demands of conducting PDTs in clinical settings; (iii) inadequate numbers of qualified pediatric pharmacologists and

  2. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    PubMed

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.

  3. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    USGS Publications Warehouse

    Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  4. Mutational analysis of vaccinia virus E3 protein: the biological functions do not correlate with its biochemical capacity to bind double-stranded RNA.

    PubMed

    Dueck, Kevin J; Hu, YuanShen Sandy; Chen, Peter; Deschambault, Yvon; Lee, Jocelyn; Varga, Jessie; Cao, Jingxin

    2015-05-01

    Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related

  5. Estimation of methacrylate monolith binding capacity from pressure drop data.

    PubMed

    Podgornik, Aleš; Smrekar, Vida; Krajnc, Peter; Strancar, Aleš

    2013-01-11

    Convective chromatographic media comprising of membranes and monoliths represent an important group of chromatographic supports due to their flow-unaffected chromatographic properties and consequently fast separation and purification even of large biological macromolecules. Consisting of a single piece of material, common characterization procedures based on analysis of a small sample assuming to be representative for the entire batch, cannot be applied. Because of that, non-invasive characterization methods are preferred. In this work pressure drop was investigated for an estimation of dynamic binding capacity (DBC) of proteins and plasmid DNA for monoliths with different pore sizes. It was demonstrated that methacrylate monolith surface area is reciprocally proportional to pore diameter and that pressure drop on monolith is reciprocally proportional to square pore size demonstrating that methacrylate monolith microstructure is preserved by changing pore size. Based on these facts mathematical formalism has been derived predicting that DBC is in linear correlation with the square root of pressure drop. This was experimentally confirmed for ion-exchange and hydrophobic interactions for proteins and plasmid DNA. Furthermore, pressure drop was also applied for an estimation of DBC in grafted layers of different thicknesses as estimated from the pressure drop data. It was demonstrated that the capacity is proportional to the estimated grafted layer thickness. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.

    PubMed

    Chetty, Sarentha; Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S

    2016-01-01

    The PR20 HIV-1 protease, a variant with 20 mutations, exhibits high levels of multi-drug resistance; however, to date, there has been no report detailing the impact of these 20 mutations on the conformational and drug binding landscape at a molecular level. In this report, we demonstrate the first account of a comprehensive study designed to elaborate on the impact of these mutations on the dynamic features as well as drug binding and resistance profile, using extensive molecular dynamics analyses. Comparative MD simulations for the wild-type and PR20 HIV proteases, starting from bound and unbound conformations in each case, were performed. Results showed that the apo conformation of the PR20 variant of the HIV protease displayed a tendency to remain in the open conformation for a longer period of time when compared to the wild type. This led to a phenomena in which the inhibitor seated at the active site of PR20 tends to diffuse away from the binding site leading to a significant change in inhibitor-protein association. Calculating the per-residue fluctuation (RMSF) and radius of gyration, further validated these findings. MM/GBSA showed that the occurrence of 20 mutations led to a drop in the calculated binding free energies (ΔGbind) by ~25.17 kcal/mol and ~5 kcal/mol for p2-NC, a natural peptide substrate, and darunavir, respectively, when compared to wild type. Furthermore, the residue interaction network showed a diminished inter-residue hydrogen bond network and changes in inter-residue connections as a result of these mutations. The increased conformational flexibility in PR20 as a result of loss of intra- and inter-molecular hydrogen bond interactions and other prominent binding forces led to a loss of protease grip on ligand. It is interesting to note that the difference in conformational flexibility between PR20 and WT conformations was much higher in the case of substrate-bound conformation as compared to DRV. Thus, developing analogues of DRV by

  7. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    NASA Astrophysics Data System (ADS)

    Morando, Maria Agnese; Saladino, Giorgio; D'Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-04-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.

  8. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes.

    PubMed

    Palleria, Caterina; Leporini, Christian; Maida, Francesca; Succurro, Elena; De Sarro, Giovambattista; Arturi, Franco; Russo, Emilio

    2016-07-01

    Type 2 diabetes mellitus is a complex metabolic disease that can cause serious damage to various organs. Among the best-known complications, an important role is played by cognitive impairment. Impairment of cognitive functioning has been reported both in type 1 and 2 diabetes mellitus. While this comorbidity has long been known, no major advances have been achieved in clinical research; it is clear that appropriate control of blood glucose levels represents the best current (although unsatisfactory) approach in the prevention of cognitive impairment. We have focused our attention on the possible effect on the brain of antidiabetic drugs, despite their effects on blood glucose levels, giving a brief rationale on the mechanisms (e.g. GLP-1, BDNF, ghrelin) that might be involved. Indeed, GLP-1 agonists are currently clinically studied in other neurodegenerative diseases (i.e. Parkinson's and Alzheimer's disease); furthermore, also other antidiabetic drugs have proven efficacy in preclinical studies. Overall, promising results are already available and finding new intervention strategies represents a current need in this field of research. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effect of bioceramic functional groups on drug binding and release kinetics

    NASA Astrophysics Data System (ADS)

    Trujillo, Christopher

    Bioceramics have been studied extensively as drug delivery systems (DDS). Those studies have aimed to tailor the drug binding and release kinetics to successfully treat infections and other diseases. This research suggests that the drug binding and release kinetics are predominantly driven by the functional groups available on the surface of a bioceramic. The goal of the present study is to explain the role of silicate and phosphate functional groups in drug binding to and release kinetics from bioceramics. alpha-cristobalite (Cris; SiO2) particles (90-150 microm) were prepared and doped with 0 microg (P-0), 39.1 microg (P-39.1), 78.2 microg (P-78.2), 165.5 microg (P-165.5) or 331 microg (P-331) of P 2O5 per gram Cris, using 85% orthophosphoric (H3PO 4) acid and thermal treatment. The material structure was analyzed using X-ray diffraction (XRD) with Rietveld Refinement and Fourier Transform Infrared (FTIR) spectroscopy with Gaussian fitting. XRD demonstrated an increase from sample P-0 (170.5373 A3) to P-331 (170.6466 A 3) in the unit cell volume as the P2O5 concentration increased in the material confirming phosphate silicate substitution in Cris. Moreover, FTIR showed the characteristic bands of phosphate functional groups of nu4 PO4/O-P-O bending, P-O-P stretching, P-O-P bending, P=O stretching, and P-O-H bending in doped Cris indicating phosphate incorporation in the silicate structure. Furthermore, FTIR showed that the nu4 PO4/O-P-O bending band around 557.6 cm-1 and P=O stretching band around 1343.9 cm-1 increased in area for samples P-39.1 to P-331 from 3.5 to 10.5 and from 10.1 to 22.4, respectively due to phosphate doping. In conjunction with the increase of the nu4 PO4/O-P-O bending band and P=O stretching band, a decrease in area of the O-Si-O bending bands around 488.1 and 629.8 cm-1 was noticed for samples P-39.1 to P-331 from 5 to 2 and from 11.8 to 5.4, respectively. Furthermore, Cris samples (200 mg, n=5 for each sample) were immersed separately in

  10. FINANCIAL CAPACITY OF OLDER AFRICAN AMERICANS WITH AMNESTIC MILD COGNITIVE IMPAIRMENT

    PubMed Central

    Triebel, Kristen L.; Okonkwo, Ozioma C.; Martin, Roy; Griffith, H. Randall; Crowther, Martha; Marson, Daniel C.

    2010-01-01

    This study investigated financial abilities of 154 patients with mild cognitive impairment (MCI) (116 Caucasian, 38 African American) using the Financial Capacity Instrument (FCI). In a series of linear regression models, we examined the effect of race on FCI performance and identified preliminary predictor variables that mediated observed racial differences on the FCI. Prior/premorbid abilities were identified. Predictor variables examined in the models included race and other demographic factors (age, education, gender), performance on global cognitive measures (MMSE, DRS-2 Total Score), history of cardiovascular disease (hypertension, diabetes, hypercholesterolemia), and a measure of educational achievement (WRAT-3 Arithmetic). African American patients with MCI performed below Caucasian patients with MCI on six of the seven FCI domains examined and on the FCI total score. WRAT-3 Arithmetic emerged as a partial mediator of group differences on the FCI, accounting for 54% of variance. In contrast, performance on global cognitive measures and history of cardiovascular disease only accounted for 14% and 2%, respectively, of the variance. Racial disparities in financial capacity appear to exist among patients with amnestic MCI. Basic academic math skills related to educational opportunity and quality of education account for a substantial proportion of the group difference in financial performance. PMID:20625268

  11. Financial capacity of older African Americans with amnestic mild cognitive impairment.

    PubMed

    Triebel, Kristen L; Okonkwo, Ozioma C; Martin, Roy; Griffith, Henry Randall; Crowther, Martha; Marson, Daniel C

    2010-01-01

    This study investigated financial abilities of 154 patients with mild cognitive impairment (MCI) (116 white, 38 African American) using the Financial Capacity Instrument (FCI). In a series of linear regression models, we examined the effect of race on FCI performance and identified preliminary predictor variables that mediated observed racial differences on the FCI. Prior/premorbid abilities were identified. Predictor variables examined in the models included race and other demographic factors (age, education, sex), performance on global cognitive measures (MMSE, DRS-2 Total Score), history of cardiovascular disease (hypertension, diabetes, hypercholesterolemia), and a measure of educational achievement (WRAT-3 Arithmetic). African American patients with MCI performed below white patients with MCI on 6 of the 7 FCI domains examined and on the FCI total score. WRAT-3 Arithmetic emerged as a partial mediator of group differences on the FCI, accounting for 54% of variance. In contrast, performance on global cognitive measures and history of cardiovascular disease only accounted for 14% and 2%, respectively, of the variance. Racial disparities in financial capacity seem to exist among patients with amnestic MCI. Basic academic math skills related to educational opportunity and quality of education account for a substantial proportion of the group difference in financial performance.

  12. 75 FR 21266 - Office of Safe and Drug-Free Schools; Overview Information; Building State Capacity for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... DEPARTMENT OF EDUCATION Office of Safe and Drug-Free Schools; Overview Information; Building State Capacity for Preventing Youth Substance Use and Violence; Notice Inviting Applications for New Awards for... Program: Building State Capacity for Preventing Youth Substance Use and Violence provides competitive...

  13. Identification of distant drug off-targets by direct superposition of binding pocket surfaces.

    PubMed

    Schumann, Marcel; Armen, Roger S

    2013-01-01

    Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target ("distant off-targets"). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target ("distant off-target").

  14. Identification of Distant Drug Off-Targets by Direct Superposition of Binding Pocket Surfaces

    PubMed Central

    Schumann, Marcel; Armen, Roger S.

    2013-01-01

    Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target (“distant off-targets”). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target (“distant off-target”). PMID:24391782

  15. Tropical soils in Mato Grosso, Brazil, retain high phosphorus (P) binding capacity after 30 years of intensive fertilization and will remain a P sink for another 50-160 years.

    NASA Astrophysics Data System (ADS)

    Porder, S.; Roy, E.; Willig, E.; Martinelli, L. A.; Pegorini, L.; Richards, P.; Spera, S. A.; Vazquez, F. F.

    2016-12-01

    Intensification of tropical agriculture is one way to meet increasing global food demand, but tropical soils often require more phosphorus (P) fertilizer than those in the world's traditional breadbaskets. Recent studies from Europe suggest that P fertilizer additions will eventually saturate soil P binding capacity, and can build a soil P bank upon which future crop production can draw. We tested this hypothesis in Mato Grosso, Brazil, where highly mechanized agriculture produces 9% of the world's soy harvest on soils with high P binding capacity. In this region, P fertilizer inputs typically exceed harvests by 10kg P/ha, and our expectation was that total P and available P would increase, and P binding capacity would decrease, with time in cultivation. To test this hypothesis, we measured P availability, binding, and accumulation on 31 fields ranging from 0-31 years in intensive production. We also estimated the number of years in production that would be required to saturate the soils with P, since after that time P additions could be reduced to equal harvest P removal. As expected, our data show increasing P availability, and decreasing P binding capacity, over time. A multiple regression including only soil [SiO2] (a proxy for both mineralogy and texture) and years in production explained 87, 63 and 91% of the observed variation in total P, Bray-extractable P, and P sorption capacity, respectively. However, the effect of [SiO2], and thus texture and mineralogy, was 1.7, 1.2, and 4.9 times more important in predicting our dependent variables than was years in production. Despite fertilizer inputs in excess of harvest removals, the reduction in P binding capacity is slow, and we estimate it will take between 50-160 years for fertilizer inputs to saturate the P binding capacity of these soils. These results suggest that the P tax imposed by high P binding soils in the tropics will impose substantial material costs to tropical farmers in the coming decades, and

  16. Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase

    PubMed Central

    Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E

    2012-01-01

    Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804

  17. Silk Fibroin-Based Nanoparticles for Drug Delivery

    PubMed Central

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  18. Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel

    PubMed Central

    Boiteux, Céline; Vorobyov, Igor; French, Robert J.; French, Christopher; Yarov-Yarovoy, Vladimir; Allen, Toby W.

    2014-01-01

    Voltage-gated sodium (Nav) channels are important targets in the treatment of a range of pathologies. Bacterial channels, for which crystal structures have been solved, exhibit modulation by local anesthetic and anti-epileptic agents, allowing molecular-level investigations into sodium channel-drug interactions. These structures reveal no basis for the “hinged lid”-based fast inactivation, seen in eukaryotic Nav channels. Thus, they enable examination of potential mechanisms of use- or state-dependent drug action based on activation gating, or slower pore-based inactivation processes. Multimicrosecond simulations of NavAb reveal high-affinity binding of benzocaine to F203 that is a surrogate for FS6, conserved in helix S6 of Domain IV of mammalian sodium channels, as well as low-affinity sites suggested to stabilize different states of the channel. Phenytoin exhibits a different binding distribution owing to preferential interactions at the membrane and water–protein interfaces. Two drug-access pathways into the pore are observed: via lateral fenestrations connecting to the membrane lipid phase, as well as via an aqueous pathway through the intracellular activation gate, despite being closed. These observations provide insight into drug modulation that will guide further developments of Nav inhibitors. PMID:25136136

  19. Cannabis-induced impairment of learning and memory: effect of different nootropic drugs.

    PubMed

    Abdel-Salam, Omar M E; Salem, Neveen A; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A

    2013-01-01

    Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ(9)-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose

  20. Cannabis-induced impairment of learning and memory: effect of different nootropic drugs

    PubMed Central

    Abdel-Salam, Omar M.E.; Salem, Neveen A.; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A.

    2013-01-01

    Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ9-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose

  1. Rapid incremental methods for the determination of serum iron and iron-binding capacity

    PubMed Central

    Beale, R. N.; Bostrom, J. O.; Taylor, R. F.

    1961-01-01

    Rapid methods depending on differential absorptiometry are described for the determination of the transferrin iron content and the latent iron-binding capacity of blood serum. Each determination requires as little as 0·5 ml. serum. The methods are well adapted for routine use in the `average' laboratory. Three or four sera may be completely analysed in 30 minutes. All operations are carried out in the cells or tubes used for the colorimetric measurements, no precipitation or heating being employed at any stage. Critical investigations of the reliability of the methods are attempted and ranges of normal values are included. PMID:13866116

  2. Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs

    NASA Astrophysics Data System (ADS)

    Li, Shaopeng; Yang, Mo; Zhou, Wenfei; Johnston, Trevor G.; Wang, Rui; Zhu, Jinsong

    2015-11-01

    The label-free and sensitive detection of small molecule drugs on SPRi is still a challenging task, mainly due to the limited surface immobilization capacity of the sensor. In this research, a dextran hydrogel-coated gold sensor chip for SPRi was successfully fabricated via photo-cross-linking for enhanced surface immobilization capacity. The density of the dextran hydrogel was optimized for protein immobilization and sensitive small molecule detection. The protein immobilization capacity of the hydrogel was 10 times greater than a bare gold surface, and 20 times greater than an 11-mercaptoundecanoic acid (MUA) surface. Such a drastic improvement in immobilization capacity allowed the SPRi sensor to detect adequate response signals when probing small molecule binding events. The binding signal of 4 nM liquid-phase biotin to streptavidin immobilized on the dextran surface reached 435 RU, while no response was observed on bare gold or MUA surfaces. The dextran hydrogel-coated SPRi sensor was also applied in a kinetic study of the binding between an immunosuppressive drug (FK506) and its target protein (FKBP12) in a high-throughput microarray format. The measured binding affinity was shown to be consistent with reported literature values, and a detection limit of 0.5 nM was achieved.

  3. Detection of illicit drugs in impaired driver saliva by a field-usable SERS analyzer

    NASA Astrophysics Data System (ADS)

    Shende, Chetan; Huang, Hermes; Farquharson, Stuart

    2014-05-01

    One of the greatest dangers of drug use is in combination with driving. According to the most recent National Highway Traffic Safety Administration (NHTSA) studies, more than 11% of drivers tested positive for illicit drugs, while 18% of drivers killed in accidents tested positive for illicit, prescription or over-the-counter drugs. Consequently, there is a need for a rapid, noninvasive, roadside drug testing device, similar to the breathalyzers used by law enforcement officials to estimate blood alcohol levels of impaired drivers. In an effort to satisfy this need we have been developing a sampling kit that allows extraction of drugs from 1 mL of saliva and detection by surfaceenhanced Raman spectroscopy using a portable Raman analyzer. Here we describe the development of the sampling kit and present measurements of diazepam at sub μg/mL concentrations measured in ~15 minutes.

  4. [Sleep disorders and impaired sleep as adverse drug reactions of psychotropic drugs: an evaluation of data of summaries of product characteristics].

    PubMed

    Gahr, Maximilian; Connemann, Bernhard J; Zeiss, René; Fröhlich, Albrecht

    2018-03-02

     Psychopharmacotherapy is essential in the treatment of many mental disorders. Adverse drug reactions (ADR) have impact on compliance and tolerability. Sleep disorders or impaired sleep may occur as ADRs of psychopharmacotherapy. Sleep disorders are associated with an increased risk for physical and mental illness and may impair cognition, impulse control, emotion regulation and mood. Objective of the following study was the systematic presentation of type and risk of sleep disorders/impairments of sleep of frequently prescribed psychotropic drugs.  Psychotropic agents that are most frequently prescribed in Germany were identified by using the Arzneiverordnungs-Report 2016. Summaries of product characteristics (SmPC) of corresponding original products were analyzed regarding presence and frequency of sleep disorders/impairments of sleep according to the International Classification of Sleep Disorders 3 (ICSD-3).  N = 64 SmPCs were analyzed. In most of the analyzed SmPCs, at least one sleep disorder (50/64; 78 %) was listed. At least one SmPC with a corresponding ADR was found in the categories insomnia (52 %), parasomnias (33 %), and sleep-related movement disorders (20 %); sleep-related breathing disorders (6 %) and central disorders of hypersomnolence (5 %) were rarely listed; circadian rhythm sleep-wake disorder was not found. The SmPCs of the four most frequently prescribed agents (citalopram > venlafaxine > mirtazapine > sertraline) listed insomnia as an ADR. Nearly all analysed hypnotics (except chloral hydrate) were associated with nightmares.  Most of the psychotropic agents frequently prescribed in Germany may induce sleep disorders/impairments of sleep. The four most frequently prescribed agents were antidepressants and all of the corresponding SmPCs listed insomnia as a possible ADR. Sleep disorders should be taken seriously as possible ADRs of psychopharmacotherapy. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    PubMed Central

    Morando, Maria Agnese; Saladino, Giorgio; D’Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-01-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed. PMID:27087366

  6. Statins are related to impaired exercise capacity in males but not females.

    PubMed

    Bahls, Martin; Groß, Stefan; Ittermann, Till; Busch, Raila; Gläser, Sven; Ewert, Ralf; Völzke, Henry; Felix, Stephan B; Dörr, Marcus

    2017-01-01

    Exercise and statins reduce cardiovascular disease (CVD). Exercise capacity may be assessed using cardiopulmonary exercise testing (CPET). Whether statin medication is associated with CPET parameters is unclear. We investigated if statins are related with exercise capacity during CPET in the general population. Cross-sectional data of two independent cohorts of the Study of Health in Pomerania (SHIP) were merged (n = 3,500; 50% males). Oxygen consumption (VO2) at peak exercise (VO2peak) and anaerobic threshold (VO2@AT) was assessed during symptom-limited CPET. Two linear regression models related VO2peak with statin usage were calculated. Model 1 adjusted for age, sex, previous myocardial infarction, and physical inactivity and model 2 additionally for body mass index, smoking, hypertension, diabetes and estimated glomerular filtration rate. Propensity score matching was used for validation. Statin usage was associated with lower VO2peak (no statin: 2336; 95%-confidence interval [CI]: 2287-2,385 vs. statin 2090; 95%-CI: 2,031-2149 ml/min; P < .0001) and VO2@AT (no statin: 1,172; 95%-CI: 1,142-1,202 vs. statin: 1,111; 95%-CI: 1,075-1,147 ml/min; P = .0061) in males but not females (VO2peak: no statin: 1,467; 95%-CI: 1,417-1,517 vs. statin: 1,503; 95%-CI: 1,426-1,579 ml/min; P = 1.00 and VO2@AT: no statin: 854; 95%-CI: 824-885 vs. statin 864; 95%-CI: 817-911 ml/min; P = 1.00). Model 2 revealed similar results. Propensity scores analysis confirmed the results. In the general population present statin medication was related with impaired exercise capacity in males but not females. Sex specific effects of statins on cardiopulmonary exercise capacity deserve further research.

  7. Bilirubin Binding Capacity in the Preterm Neonate

    PubMed Central

    Amin, Sanjiv B

    2016-01-01

    SYNOPSIS Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. PMID:27235205

  8. Techno-functional properties and in vitro bile acid-binding capacities of tamarillo (Solanum betaceum Cav.) hydrocolloids.

    PubMed

    Gannasin, Sri Puvanesvari; Adzahan, Noranizan Mohd; Mustafa, Shuhaimi; Muhammad, Kharidah

    2016-04-01

    Hydrocolloids were extracted from seed mucilage and the pulp fractions from red tamarillo (Solanum betaceum Cav.) mesocarp, and characterisation of their techno-functional properties and in vitro bile acid-binding capacities was performed. The seed mucilage hydrocolloids that were extracted, using either 1% citric acid (THC) or water (THW), had a good foaming capacity (32-36%), whereas the pulp hydrocolloids that were extracted, using 72% ethanol (THE) or 20mM HEPES buffer (THH), had no foaming capacity. The pulp hydrocolloid, however, possessed high oil-holding and water-holding capacities in the range of 3.3-3.6 g oil/g dry sample and 25-27 g water/g dry sample, respectively. This enabled the pulp hydrocolloid to entrap more bile acids (35-38% at a hydrocolloid concentration of 2%) in its gelatinous network in comparison to commercial oat fibre and other hydrocolloids studied. The exceptional emulsifying properties (80-96%) of both hydrocolloids suggest their potential applications as food emulsifiers and bile acid binders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Working Memory Capacity and Its Relation to Stroop Interference and Facilitation Effects in Individuals with Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Sung, Jee Eun; Kim, Jin Hee; Jeong, Jee Hyang; Kang, Heejin

    2012-01-01

    Purpose: The purposes of the study were to investigate (a) the task-specific differences in short-term memory (STM) and working memory capacity (WMC) in individuals with mild cognitive impairment (MCI) and normal elderly adults (NEAs), (b) the Stroop interference and facilitation effects, and (c) the relationship of STM and WMC to the Stroop…

  10. Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells

    NASA Astrophysics Data System (ADS)

    Choi, Youngseon; Kim, Minjung; Cho, Yoojin; Yun, Eunsuk; Song, Rita

    2013-02-01

    Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (Kd = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX-QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX-QD conjugate with antiDHFR-TAT-QD also confirmed that MTX-QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug-target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology.

  11. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses.

    PubMed

    Tashakori-Sabzevar, Faezeh; Mohajeri, Seyed Ahmad

    2015-05-01

    Recently, significant advances have been made in order to optimize drug delivery to ocular tissues. The main problems in ocular drug delivery are poor bioavailability and uncontrollable drug delivery of conventional ophthalmic preparations (e.g. eye drops). Hydrogels have been investigated since 1965 as new ocular drug delivery systems. Increase of hydrogel loading capacity, optimization of drug residence time on the ocular surface and biocompatibility with the eye tissue has been the main focus of previous studies. Molecular imprinting technology provided the opportunity to fulfill the above-mentioned objectives. Molecularly imprinted soft contact lenses (SCLs) have high potentials as novel drug delivery systems for the treatment of eye disorders. This technique is used for the preparation of polymers with specific binding sites for a template molecule. Previous studies indicated that molecular imprinting technology could be successfully applied for the preparation of SCLs as ocular drug delivery systems. Previous research, particularly in vivo studies, demonstrated that molecular imprinting is a versatile and effective method in optimizing the drug release behavior and enhancing the loading capacity of SCLs as new ocular drug delivery systems. This review highlights various potentials of molecularly imprinted contact lenses in enhancing the drug-loading capacity and controlling the drug release, compared to other ocular drug delivery systems. We have also studied the effects of contributing factors such as the type of comonomer, template/functional monomer molar ratio, crosslinker concentration in drug-loading capacity, and the release properties of molecularly imprinted hydrogels.

  12. Towards a Structural View of Drug Binding to hERG K+ Channels.

    PubMed

    Vandenberg, Jamie I; Perozo, Eduardo; Allen, Toby W

    2017-10-01

    The human ether-a-go-go-related gene (hERG) K + channel is of great medical and pharmaceutical relevance. Inherited mutations in hERG result in congenital long-QT syndrome which is associated with a markedly increased risk of cardiac arrhythmia and sudden death. hERG K + channels are also remarkably susceptible to block by a wide range of drugs, which in turn can cause drug-induced long-QT syndrome and an increased risk of sudden death. The recent determination of the near-atomic resolution structure of the hERG K + channel, using single-particle cryo-electron microscopy (cryo-EM), provides tremendous insights into how these channels work. It also suggests a way forward in our quest to understand why these channels are so promiscuous with respect to drug binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug

    NASA Astrophysics Data System (ADS)

    Anirudhan, Thayyath S.; Nima, Jayachandran; Divya, Peethambaran L.

    2015-11-01

    The present investigation concerns the development and evaluation of a novel drug delivery system, aminated-glycidylmethacrylate grafted cellulose-grafted polymethacrylic acid-succinyl cyclodextrin (Cell-g-(GMA/en)-PMA-SCD) for the controlled release of 5-Fluorouracil, an anticancer drug. The prepared drug carrier was characterized by FT-IR, XRD and SEM techniques. Binding kinetics and isotherm studies of 5-FU onto Cell-g-(GMA/en)-PMA-SCD were found to follow pseudo-second-order and Langmuir model respectively. Maximum binding capacity of drug carrier was found to be 149.09 mg g-1 at 37 °C. Swelling studies, in vitro release kinetics, drug loading efficiency and encapsulation efficiency of Cell-g-(GMA/en)-PMA-SCD were studied. The release kinetics was analyzed using Ritger-Peppas equation at pH 7.4. Cytotoxicity analysis on MCF-7 (human breast carcinoma) cells indicated that the drug carrier shows sustained and controlled release of drug to the target site. Hence, it is evident from this investigation that Cell-g-(GMA/en)-PMA-SCD could be a promising carrier for 5-FU.

  14. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    USGS Publications Warehouse

    Persson, Petra; Shrimpton, J. Mark; McCormick, Stephen D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol × mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol × mg protein−1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  15. Neutron diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details of drug binding

    PubMed Central

    Fisher, S. Zoë; Aggarwal, Mayank; Kovalevsky, Andrey Y.; Silverman, David N.; McKenna, Robert

    2012-01-01

    Carbonic anhydrases (CAs) catalyze the hydration of CO2 forming HCO3− and a proton, an important reaction for many physiological processes including respiration, fluid secretion, and pH regulation. As such, CA isoforms are prominent clinical targets for treating various diseases. The clinically used acetazolamide (AZM) is a sulfonamide that binds with high affinity to human CA isoform II (HCA II). There are several X-ray structures available of AZM bound to various CA isoforms, but these complexes do not show the charged state of AZM, or hydrogen (H) atom positions of the protein and solvent. Neutron diffraction is a useful technique for directly observing H atoms and the mapping of H-bonding networks that can greatly contribute to rational drug design. To this end the neutron structure of H/D exchanged HCA II crystals in complex with AZM was determined. The structure reveals the molecular details of AZM binding and the charged state of the bound drug. This represents the first determined neutron structure of a clinically used drug bound to its target. PMID:22928733

  16. Bilirubin Binding Capacity in the Preterm Neonate.

    PubMed

    Amin, Sanjiv B

    2016-06-01

    Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites.

    PubMed

    Wise, John G

    2012-06-26

    Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space.

  18. Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility.

    PubMed

    Enright, Elaine F; Joyce, Susan A; Gahan, Cormac G M; Griffin, Brendan T

    2017-04-03

    In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p < 0.05). Subsequent investigations in biorelevant media containing either the trihydroxy bile salt sodium taurocholate (TCA) or the dihydroxy bile salt sodium taurodeoxycholate (TDCA) revealed altered drug solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration

  19. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes.

    PubMed Central

    Tam, S W; Cook, L

    1984-01-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-[3H]SKF 10,047 (N-allylnormetazocine) and to dopamine D2 sites was investigated. In guinea pig brain membranes, (+)-[3H]SKF 10,047 bound to a single class of sites with a Kd of 4 X 10(-8) M and a Bmax of 333 fmol/mg of protein. This binding was different from mu, kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-[3H]SKF 10,047 binding with high to moderate affinities in the following order of potency: haloperidol greater than perphenazine greater than fluphenazine greater than acetophenazine greater than trifluoperazine greater than molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-[3H]SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-[3H]SKF 10,047 binding sites did not correlate with those for [3H]spiperone (dopamine D2) sites. [3H]-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-SKF 10,047. In the striatum, about half of the saturable [3H]haloperidol binding was to [3H]spiperone (D2) sites and the other half was to sites similar to (+)-[3H]SKF 10,047 binding sites. PMID:6147851

  20. Drug therapy management in patients with renal impairment: how to use creatinine-based formulas in clinical practice.

    PubMed

    Eppenga, Willemijn L; Kramers, Cornelis; Derijks, Hieronymus J; Wensing, Michel; Wetzels, Jack F M; De Smet, Peter A G M

    2016-12-01

    The use of estimated glomerular filtration rate (eGFR) in daily clinical practice. eGFR is a key component in drug therapy management (DTM) in patients with renal impairment. eGFR is routinely reported by laboratories whenever a serum creatinine testing is ordered. In this paper, we will discuss how to use eGFR knowing the limitations of serum creatinine-based formulas. Before starting a renally excreted drug, an equally effective drug which can be used more safely in patients with renal impairment should be considered. If a renally excreted drug is needed, the reliability of the eGFR should be assessed and when needed, a 24-h urine creatinine clearance collection should be performed. After achieving the best approximation of the true GFR, we suggest a gradual drug dose adaptation according to the renal function. A different approach for drugs with a narrow therapeutic window (NTW) is recommended compared to drugs with a broad therapeutic window. For practical purposes, a therapeutic window of 5 or less was defined as a NTW and a list of NTW drugs is presented. Considerations about the drug dose may be different at the start of the therapy or during the therapy and depending on the indication. Monitoring effectiveness and adverse drug reactions are important, especially for NTW drugs. Dose adjustment should be based on an ongoing assessment of clinical status and risk versus the benefit of the used regimen. When determining the most appropriate dosing regimen serum creatinine-based formulas should never be used naively but always in combination with clinical and pharmacological assessment of the individual patient.

  1. Alcohol and Other Drug Abuse as Coexisting Disabilities: Considerations for Counselors Serving Individuals Who Are Blind or Visually Impaired.

    ERIC Educational Resources Information Center

    Koch, D. Shane; Nelipovich, Michael; Sneed, Zach

    2002-01-01

    This article identifies the potential affect of alcohol and other drug abuse (AODA) on people who are blind or visually impaired, the barriers to providing effective AODA services for those people, and strategies for improving services for people with coexisting blindness or visual impairments and AODA. (Contains references.) (CR)

  2. Central nervous system penetration effectiveness of antiretroviral drugs and neuropsychological impairment in the Ontario HIV Treatment Network Cohort Study.

    PubMed

    Carvalhal, Adriana; Gill, M John; Letendre, Scott L; Rachlis, Anita; Bekele, Tsegaye; Raboud, Janet; Burchell, Ann; Rourke, Sean B

    2016-06-01

    Since the introduction of combination antiretroviral therapy (cART), the incidence of severe HIV-associated neurocognitive impairment has declined significantly, whereas the prevalence of the milder forms has increased. Studies suggest that better distribution of cART drugs into the CNS may be important in reducing viral replication in the CNS and in reducing HIV-related brain injury. Correlates of neuropsychological (NP) performance were determined in 417 participants of the Ontario HIV Treatment Cohort Study (OCS). All participants were on three cART drugs for at least 90 days prior to assessment. Multiple logistic and linear regression methods were used. Most participants were Caucasian men with mean age of 47 years. About two thirds had a nadir CD4+ T-cell count below 200 cells/μL and 92 % had an undetectable plasma HIV viral load. The median CNS penetration effectiveness (CPE) score was 7. Sixty percent of participants had neuropsychological impairment. Higher CPE values significantly correlated with lower prevalence of impairment in bivariate and multivariate analyses. In this cross-sectional analysis of HIV+ adults who had a low prevalence of comorbidities and were taking three-drug cART regimens, greater estimated distribution of cART drugs into the CNS was associated with better NP performance.

  3. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells.

    PubMed

    Ungvari, Zoltan; Tucsek, Zsuzsanna; Sosnowska, Danuta; Toth, Peter; Gautam, Tripti; Podlutsky, Andrej; Csiszar, Agnes; Losonczy, Gyorgy; Valcarcel-Ares, M Noa; Sonntag, William E; Csiszar, Anna

    2013-08-01

    Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.

  4. Deficient relational binding processes in adolescents with psychosis: evidence from impaired memory for source and temporal context.

    PubMed

    Doré, Marie-Claire; Caza, Nicole; Gingras, Nathalie; Rouleau, Nancie

    2007-11-01

    Findings from the literature consistently revealed episodic memory deficits in adolescents with psychosis. However, the nature of the dysfunction remains unclear. Based on a cognitive neuropsychological approach, a theoretically driven paradigm was used to generate valid interpretations about the underlying memory processes impaired in these patients. A total of 16 inpatient adolescents with psychosis and 19 individually matched controls were assessed using an experimental task designed to measure memory for source and temporal context of studied words. Retrospective confidence judgements for source and temporal context responses were also assessed. On word recognition, patients had more difficulty than controls discriminating target words from neutral distractors. In addition, patients identified both source and temporal context features of recognised items less often than controls. Confidence judgements analyses revealed that the difference between the proportions of correct and incorrect responses made with high confidence was lower in patients than in controls. In addition, the proportion of high-confident responses that were errors was higher in patients compared to controls. These findings suggest impaired relational binding processes in adolescents with psychosis, resulting in a difficulty to create unified memory representations. Our findings on retrospective confidence data point to impaired monitoring of retrieved information that may also impair memory performance in these individuals.

  5. Considerations on pharmacodynamics and pharmacokinetics: can everything be explained by the extent of drug binding to its receptor?

    PubMed

    Castañeda-Hernández, G; Granados-Soto, V

    2000-03-01

    It is frequently assumed that pharmacological responses depend solely on the extent of drug binding to its receptor according to the occupational theory. It is therefore presumed that the intensity of the effect is determined by drug concentration at its receptor site, yielding a unique concentration-effect relationship. However, when dependence, abstinence, and tolerance phenomena occur, as well as for pharmacological responses in vivo that are modulated by homeostatic mechanisms, the rate of drug input shifts the concentration-effect relationship. Hence, such responses cannot be explained on the sole basis of the extent of drug binding to its receptor. Information on the cellular and molecular processes involved in the generation of abstinence, dependence, and tolerance will undoubtedly result in the development of pharmacodynamic models allowing a satisfactory explanation of drug effects modulated by these phenomena. Notwithstanding, integrative physiology concepts are required to develop pharmacokinetic-pharmacodynamic models allowing the description of drug effects in an intact organism. It is therefore important to emphasize that integrative physiology cannot be neglected in pharmacology teaching and research, but should be considered as an equally valuable tool as molecular biology and other biomedical disciplines for the understanding of pharmacological effects.

  6. In silico Analysis of Conformational Changes Induced by Mutation of Aromatic Binding Residues: Consequences for Drug Binding in the hERG K+ Channel

    PubMed Central

    Knape, Kirsten; Linder, Tobias; Wolschann, Peter; Beyer, Anton; Stary-Weinzinger, Anna

    2011-01-01

    Pharmacological inhibition of cardiac hERG K+ channels is associated with increased risk of lethal arrhythmias. Many drugs reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic residues (F656 and Y652) substantially decreases the potency of numerous structurally diverse compounds. Nevertheless, some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations reveal conformational changes in the binding site induced by mutation Y652A. Loss of π-π-stacking between the two aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation. Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of mutation Y652A and provide a new structural interpretation for the sensitivity differences. PMID:22194911

  7. Effects of target binding kinetics on in vivo drug efficacy: koff , kon and rebinding.

    PubMed

    Vauquelin, Georges

    2016-08-01

    Optimal drug therapy often requires continuing high levels of target occupancy. Besides the traditional pharmacokinetic contribution, target binding kinetics is increasingly considered to play an important role as well. While most attention has been focused on the dissociation rate of the complex, recent reports expressed doubt about the unreserved translatability of this pharmacodynamic property into clinical efficacy. 'Micro'-pharmacokinetic mechanisms like drug rebinding and partitioning into the cell membrane may constitute a potential fix. Simulations were based on solving differential equations. Based on a selected range of association and dissociation rate constants, kon and koff , and rebinding potencies of the drugs as variables, their effects on the temporal in vivo occupancy profile of their targets, after one or multiple repetitive dosings, have here been simulated. Most strikingly, the simulations show that, when rebinding is also taken into account, increasing kon may produce closely the same outcome as decreasing koff when dosing is performed in accordance with the therapeutically most relevant constant [Lmax ]/KD ratio paradigm. Also, under certain conditions, rebinding may produce closely the same outcome as invoking slow diffusion of the drug between the plasma compartment and a target-containing 'effect' compartment. Although the present simulations should only be regarded as a 'proof of principle', these findings may help pharmacologists and medicinal chemists to devise ex vivo and in vitro binding kinetic assays that are more relevant and translatable to in vivo settings. © 2016 The British Pharmacological Society.

  8. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel.

    PubMed

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S; Korendovych, Ivan V; Zanni, Martin; DeGrado, William F; Gai, Feng; Hochstrasser, Robin M

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  9. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Ayanjeet, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Gai, Feng, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M.

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility ofmore » the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.« less

  10. Industry Perspective on Contemporary Protein-Binding Methodologies: Considerations for Regulatory Drug-Drug Interaction and Related Guidelines on Highly Bound Drugs.

    PubMed

    Di, Li; Breen, Christopher; Chambers, Rob; Eckley, Sean T; Fricke, Robert; Ghosh, Avijit; Harradine, Paul; Kalvass, J Cory; Ho, Stacy; Lee, Caroline A; Marathe, Punit; Perkins, Everett J; Qian, Mark; Tse, Susanna; Yan, Zhengyin; Zamek-Gliszczynski, Maciej J

    2017-12-01

    Regulatory agencies have recently issued drug-drug interaction guidelines, which require determination of plasma protein binding (PPB). To err on the conservative side, the agencies recommend that a 0.01 lower limit of fraction unbound (f u ) be used for highly bound compounds (>99%), irrespective of the actual measured values. While this may avoid false negatives, the recommendation would likely result in a high rate of false positive predictions, resulting in unnecessary clinical studies and more stringent inclusion/exclusion criteria, which may add cost and time in delivery of new medicines to patients. In this perspective, we provide a review of current approaches to measure PPB, and important determinants in enabling the accuracy and precision in these measurements. The ability to measure f u is further illustrated by a cross-company data comparison of PPB for warfarin and itraconazole, demonstrating good concordance of the measured f u values. The data indicate that f u values of ≤0.01 may be determined accurately across laboratories when appropriate methods are used. These data, along with numerous other examples presented in the literature, support the use of experimentally measured f u values for drug-drug interaction predictions, rather than using the arbitrary cutoff value of 0.01 as recommended in current regulatory guidelines. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Persistent right ventricular dysfunction, functional capacity limitation, exercise intolerance, and quality of life impairment following pulmonary embolism: Systematic review with meta-analysis.

    PubMed

    Sista, Akhilesh K; Miller, Larry E; Kahn, Susan R; Kline, Jeffrey A

    2017-02-01

    Long-term right ventricular (RV) function, functional capacity, exercise capacity, and quality of life following pulmonary embolism (PE), and the impact of thrombolysis, are unclear. A systematic review of studies that evaluated these outcomes with ⩾ 3-month mean follow-up after PE diagnosis was performed. For each outcome, random effects meta-analyses were performed. Twenty-six studies (3671 patients) with 18-month median follow-up were included. The pooled prevalence of RV dysfunction was 18.1%. Patients treated with thrombolysis had a lower, but not statistically significant, risk of RV dysfunction versus those treated with anticoagulation (odds ratio: 0.51, 95% CI: 0.24 to 1.13, p=0.10). Pooled prevalence of at least mild functional impairment (NYHA II-IV) was 33.2%, and at least moderate functional impairment (NYHA III-IV) was 11.3%. Patients treated with thrombolysis had a lower, but not statistically significant, risk of at least moderate functional impairment versus those treated with anticoagulation (odds ratio: 0.48, 95% CI: 0.15 to 1.49, p=0.20). Pooled 6-minute walk distance was 415 m (95% CI: 372 to 458 m), SF-36 Physical Component Score was 44.8 (95% CI: 43 to 46), and Pulmonary Embolism Quality of Life (QoL) Questionnaire total score was 9.1. Main limitations included heterogeneity among studies for many outcomes, variation in the completeness of data reported, and inclusion of data from non-randomized, non-controlled, and retrospective studies. Persistent RV dysfunction, impaired functional status, diminished exercise capacity, and reduced QoL are common in PE survivors. The effect of thrombolysis on RV function and functional status remains unclear.

  12. Cisplatin binds to pre-miR-200b and impairs its processing to mature microRNA.

    PubMed

    Mezencev, R; Wartell, R M

    2018-01-01

    Cisplatin is an important anticancer drug with a complex mode of action, a variety of possible targets, and numerous resistance mechanisms. While genomic DNA has traditionally been considered to be its most critical anticancer target, several lines of evidence suggest that various RNAs and other biomolecules may play a role in its anticancer mode of action. In this report we demonstrate that cisplatin modifies pre-miR-200b, impairs its processing to mature miRNA, and decreases miR-200b expression in ovarian cancer cells. Considering the role of miR-200b in epithelial-to-mesenchymal transition and cancer chemosensitivity, cisplatin-induced modification of pre-miR-200b and subsequent deregulation of mature miR-200b may, depending on cell context, limit anticancer activity of this important anticancer drug. More gener- ally, precursor miRNAs may be important targets of cisplatin and play a role in this drug's anticancer activity or modulate cell responses to this drug.

  13. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance

    PubMed Central

    Wang, Yi-Jun; Zhang, Yun-Kai; Kathawala, Rishil J.; Chen, Zhe-Sheng

    2014-01-01

    The phenomenon of multidrug resistance (MDR) has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC) transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs), such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance. PMID:25268163

  14. Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity.

    PubMed

    Luo, Bin; Xu, Shuai; Luo, An; Wang, Wen-Rui; Wang, Shi-Long; Guo, Jia; Lin, Yao; Zhao, Dong-Yuan; Wang, Chang-Chun

    2011-02-22

    Fabrication of magnetic particles (MPs) with high magnetization and large surface area simultaneously is critical for the application of MPs in bioseparation and drug delivery but remains a challenge. In this article, we describe an unprecedented approach to synthesize mesoporous magnetic colloidal nanocrystal clusters (MCNCs) stabilized by poly(γ-glutamic acid) (PGA) with high magnetization, large surface area (136 m(2)/g) and pore volume (0.57 cm(3)/g), excellent colloidal stability, prominent biocompatibility, and acid degradability. This result provides the important step toward the construction of a new family of MCNCs and demonstrates its capacity in a "magnetic motor" drug delivery system. Here, as an example, we explore the applicability of as-prepared mesoporous MCNCs as hydrophobic drug delivery vehicles (paclitaxel as model drug), and the resultant loading capacity is as high as 35.0 wt %. The antitumor efficacy measured by MTT assay is significantly enhanced, compared with free drugs. Thus, combined with their inherent high magnetization, the mesoporous MCNCs pave the way for applying magnetic targeting drug carriers in antitumor therapeutics.

  15. Do organizational strategies mediate nonverbal memory impairment in drug-naïve patients with obsessive-compulsive disorder?

    PubMed

    Shin, Na Young; Kang, Do-Hyung; Choi, Jung-Seok; Jung, Myung Hun; Jang, Joon Hwan; Kwon, Jun Soo

    2010-07-01

    The present study aimed to examine nonverbal memory and organizational skill functions in psychotropic-naïve patients with OCD. Forty-one drug-naïve, 41 medicated OCD patients and 41 healthy controls, all of whom were matched for gender, age, education and intelligence, were included in the study. The Rey-Osterrieth Complex Figure Test (RCFT) was administered to evaluate nonverbal memory ability and organizational skill. OCD patients demonstrated impaired nonverbal memory irrespective of medication status (F = 6.54, p < .01, eta(2)p = .098 for immediate recall; F = 7.76, p < .01, eta(2)p = .114 for delayed recall). Medicated patients showed deficits in organizational strategies (eta(2)p = .079), which mediated nonverbal memory impairment (Z = -2.20, p = .027). The difference of organizational skill between drug-naïve and control groups did not reach statistical significance (eta(2)p = .054) and the association between organization and nonverbal memory was weak in the drug-naïve sample (Z = -1.74, = .081). There was no significant difference between the patient groups in RCFT indices. Our findings suggest that the organizational strategies may not be an effective mediator of nonverbal memory impairment in OCD and indicate that the clinical characteristics may be important to be considered in future research. Further studies are needed to improve understanding of the nature of nonverbal memory dysfunction in OCD.

  16. Comparative studies of binding potential of Prunus armeniaca and Prunus domestica gums in tablets formulations.

    PubMed

    Rahim, Haroon; Khan, Mir Azam; Sadiq, Abdul; Khan, Shahzeb; Chishti, Kamran Ahmad; Rahman, Inayat U

    2015-05-01

    The current study was undertaken to compare the binding potential of Prunus armeniaca L. and Prunus domestica L. gums in tablets' formulations. Tablet batches (F-1 to F-9) were prepared Diclofenac sodium as model drug using 5%, 7.5% and 10% of each Prunus armeniaca L., Prunus domestica L. gums as binder. PVP K30 was used as a standard binder. Magnesium stearate was used as lubricant. Flow properties of granules (like bulk density, tapped density, Carr's index, Hausner's ratio, angle of repose) as well as the physical parameters of compressed tablets including hardness, friability, thickness and disintegration time were determined. Flow parameters of granules of all the batches were found good. Physical parameters (drug content, weight variation, thickness, hardness, friability, disintegration time) of formulated tablets were found within limit when tested. The dissolution studies showed that tablets formulations containing each Prunus domestica showed better binding capacity compared to Prunus armeniaca gum. The binding potential increased as the concentration of gums increased. The FTIR spectroscopic investigation showed that the formulations containing plant gum are compatible with the drug and other excipients used.

  17. Binding of Radioactive Benzylpenicillin to Sporulating Bacillus Cultures: Chemistry and Fluctuations in Specific Binding Capacity

    PubMed Central

    Lawrence, Paul J.; Rogolsky, Marvin; Hanh, Vo Thi

    1971-01-01

    The chemistry of the binding of 14C-benzylpenicillin to sporulating cultures of Bacillus megaterium and B. subtilis is similar to that in a 4-hr vegetative culture of Staphylococcus aureus. Unlabeled penicillins prevent the binding of 14C-benzylpenicillin, but benzylpenicilloic acid and benzylpenilloic acid do not. Bound antibiotic can be removed from cells with neutral hydroxylamine at 25 C. Sporulating cultures display two intervals of enhanced binding, whereas binding to stationaryphase S. aureus cells remains constant. The first period of increased binding activity occurs during formation of the spore septum or cell wall primordium development, and the second coincides with cortex biosynthesis. PMID:4942758

  18. Comprehensive insight into the binding of sunitinib, a multi-targeted anticancer drug to human serum albumin

    NASA Astrophysics Data System (ADS)

    Kabir, Md. Zahirul; Tee, Wei-Ven; Mohamad, Saharuddin B.; Alias, Zazali; Tayyab, Saad

    2017-06-01

    Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04 × 104 M-1), obtained at 298 K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.

  19. Candida Drug Resistance Protein 1, a Major Multidrug ATP Binding Cassette Transporter of Candida albicans, Translocates Fluorescent Phospholipids in a Reconstituted System†

    PubMed Central

    Shukla, Sudhanshu; Rai, Versha; Saini, Preeti; Banerjee, Dibyendu; Menon, Anant K.; Prasad, Rajendra

    2008-01-01

    Candida albicans drug resistance protein 1 (Cdr1p), an ATP-dependent drug efflux pump, contributes to multidrug resistance in Candida-infected immunocompromised patients. Previous cell-based assays suggested that Cdr1p also acts as a phospholipid translocator. To investigate this, we reconstituted purified Cdr1p into sealed membrane vesicles. Comparison of the ATPase activities of sealed and permeabilized proteoliposomes indicated that Cdr1p was asymmetrically reconstituted such that ~70% of the molecules had their ATP binding sites accessible to the extravesicular space. Fluorescent glycerophospholipids were incorporated into the outer leaflet of the proteoliposomes, and their transport into the inner leaflet was tracked with a quenching assay using membrane-impermeant dithionite. We observed ATP-dependent transport of the fluorescent lipids into the inner leaflet of the vesicles. With ~6 molecules of Cdr1p per vesicle on average, the half-time to reach the maximal extent of transport was ~15 min. Transport was reduced in vesicles reconstituted with Cdr1p variants with impaired ATPase activity and could be competed out to different levels by a molar excess of drugs such as fluconazole and miconazole that are known to be effluxed by Cdr1p. Transport was not affected by ampicillin, a compound that is not effluxed by Cdr1p. Our results suggest a direct link between the ability of Cdr1p to translocate fluorescent phospholipids and efflux drugs. We note that only a few members of the ABC superfamily of Candida have a well-defined role as drug exporters; thus, lipid translocation mediated by Cdr1p could reflect its cellular function. PMID:17924650

  20. Impact of impaired renal function on the pharmacokinetics of the antiepileptic drug lacosamide.

    PubMed

    Cawello, Willi; Fuhr, Uwe; Hering, Ursula; Maatouk, Haidar; Halabi, Atef

    2013-10-01

    The antiepileptic drug lacosamide is eliminated predominantly via the kidneys. Therefore, an evaluation of the impact of renal impairment on its pharmacokinetic profile is an important component of its safety assessment. The objective of this study was to evaluate the pharmacokinetic profile of lacosamide among individuals with renal impairment (mild, moderate, or severe) and among patients with end-stage renal disease (ESRD), including those on hemodialysis. This was an open-label, Phase I trial. The pharmacokinetics of a single oral 100-mg lacosamide dose were evaluated in five groups of participants: healthy controls, patients with mild, moderate, or severe renal impairment, and patients with ESRD (with and without hemodialysis). Forty participants completed the trial, eight in each group. In healthy volunteers, renal clearance accounted for approximately 30 % of total body clearance [geometric mean 0.5897 l/h (coefficient of variation 37.9 %) vs 2.13 l/h (20.8 %)]. With severe renal impairment, renal clearance was approximately 11 % of total body clearance [0.1428 l/h (31.8 %) vs 1.34 l/h (26.9 %)]. Terminal half-life and systemic exposure were increased with renal impairment, while total body clearance, renal clearance, and urinary excretion were decreased. Strong positive correlations between creatinine clearance, renal clearance, and urinary excretion were observed. Among patients with ESRD, approximately 50 % of lacosamide was cleared from systemic circulation by 4-h hemodialysis. In patients with essentially no renal clearance, nonrenal clearance was still present (1.1 l/h). Lacosamide was well tolerated by healthy volunteers and patients. In patients with mild-to-moderate renal impairment, lacosamide dose adjustment is not necessary, because total body clearance decreased by only approximately 20 %. Dose adjustment, however, is required for patients with severe renal impairment. Hemodialysis removes approximately 50 % of lacosamide from plasma; therefore

  1. High-Affinity Low-Capacity and Low-Affinity High-Capacity N-Acetyl-2-Aminofluorene (AAF) Macromolecular Binding Sites Are Revealed During the Growth Cycle of Adult Rat Hepatocytes in Primary Culture.

    PubMed

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.

  2. Correlation study between sperm concentration, hyaluronic acid-binding capacity and sperm aneuploidy in Hungarian patients.

    PubMed

    Mokánszki, Attila; Molnár, Zsuzsanna; Ujfalusi, Anikó; Balogh, Erzsébet; Bazsáné, Zsuzsa Kassai; Varga, Attila; Jakab, Attila; Oláh, Éva

    2012-12-01

    percentage of HA-bound spermatozoa in the normozoospermic group was significantly higher than the oligozoospermic, the asthenozoospermic and the oligoasthenozoospermic groups. Using FISH, disomy of sex chromosomes and chromosome 17, diploidy and estimated numerical chromosome aberration frequencies were significantly higher in the oligoasthenozoospermic group compared with the three other groups. A significant positive correlation was found between the sperm concentration and the HA-binding capacity, and significant negative correlations between the sperm concentration and the estimated numerical chromosomes aberrations as well as between the HA-binding ability and the estimated numerical chromosome aberrations were identified. We conclude that HA-binding assay and sperm aneuploidy study using FISH may help to predict the reproductive ability of selected infertile male patients and to provide appropriate genetic counselling. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting.

    PubMed

    Å Urga, Simon; Nanut, Milica Perišić; Kos, Janko; Sabotič, Jerica

    2017-04-18

    Lectins have been recognized as promising carrier molecules for targeted drug delivery. They specifically bind carbohydrate moieties on cell membranes and trigger cell internalization. Fungal lectin MpL (Macrolepiota procera lectin) does not provoke cancer cell cytotoxicity but is able to bind aminopeptidase N (CD13) and integrin α3β1, two glycoproteins that are overexpressed on the membrane of tumor cells. Upon binding, MpL is endocytosed in a clathrin-dependent manner and accumulates initially in the Golgi apparatus and, finally, in the lysosomes. For effective binding and internalization a functional binding site on the α-repeat is needed. To test the potential of MpL as a carrier for delivering protein drugs to cancer cells we constructed fusion proteins consisting of MpL and the cysteine peptidase inhibitors cystatin C and clitocypin. The fused proteins followed the same endocytic route as the unlinked MpL. Peptidase inhibitor-MpL fusions impaired both the intracellular degradation of extracellular matrix and the invasiveness of cancer cells. MpL is thus shown in vitro to be a lectin that can enable protein drugs to enter cancer cells, enhance their internalization and sort them to lysosomes and the Golgi apparatus.

  4. Quantification of oil binding capacity of structuring fats: A novel method and its application.

    PubMed

    Omonov, Tolibjon S; Bouzidi, Laziz; Narine, Suresh S

    2010-09-01

    A robust, well-defined and reproducible method to accurately measure the oil binding capacity (OBC) of structuring fats was developed. The method was validated using two oil/fat model systems, i.e., fully hydrogenated canola oil (FHCO) in canola oil (CO) (FHCO/CO) and fully hydrogenated soybean oil (FHSO) in CO (FHSO/CO). The mixtures were crystallized from the melt down to three different temperatures (15, 25 and 35 degrees C) at constant rates of cooling and the OBC was measured after different periods of storage time. The critical concentration of hard fat at which the solid fat network is stable and effectively binds oil has been also measured for mixtures crystallized at temperatures close to room temperature, i.e., 25 degrees C. Crystal structure, melting behavior, microstructure, and solid fat content of these binary systems have been investigated in relation to the OBC of the solid fat network using X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized light microscopy (PLM), and wide-line pulsed nuclear magnetic resonance (pNMR) techniques. The two model systems exhibited similar trends in OBC over time, a behavior attributed to their similar TAG composition and polymorphism. However, relatively smaller OBC values were achieved by the CO/FHSO compared to CO/FHCO samples, largely due to differences in their solid network structure. Four successive decreasing linear segments, identifying successive mechanisms of oil migration/binding, were observed in the experimental OBC versus fat weight fraction curves. The critical concentration of hard fat, at which the solid fat network is effective in binding oil, was also determined and found to be approximately 6wt% for both systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Economic analysis of use of counterfeit drugs: health impairment risk of counterfeit phosphodiesterase type 5 inhibitor taken as an example.

    PubMed

    Sugita, Minoru; Miyakawa, Michiko

    2010-07-01

    The size of the market for counterfeit drugs throughout the world is considerable. Many cases of health impairment due to counterfeits have been reported. The market share of counterfeits in drug markets in developed countries is smaller than that in developing countries. However, the size of the market for counterfeits of phosphodiesterase type 5 inhibitors (PDE5Is) used as anti-erectile-dysfunction drugs is not small. The purpose of the present study was to analyze the health impairment risk of taking the counterfeit PDE5Is and the convenience of obtaining the counterfeits in Japan, using an economic methodology in order to work out countermeasures for reducing the health impairment risk. Information was obtained by interviewing employees of pharmaceutical and chemical corporations in Japan. The size of the market for counterfeit PDE5Is in Japan was recently estimated to be about 2.5 times larger than that of genuine PDE5Is. The price of the counterfeits in their market is reported to be nearly equal to that of the genuine PDE5Is. An outbreak of severe hypoglycemia among users of counterfeit PDE5Is containing an antidiabetic drug in Singapore was reported in 2008, and seven patients remained comatose as a result of prolonged neuroglycopenia. Four of them subsequently died, so the health impairment risk due to counterfeit PDE5Is should not be ignored. In order to obtain a genuine PDE5I in Japan, a patient must be examined and have a prescription written at a medical institution, and buy it at a dispensing pharmacy. Focusing on the health impairment risk due to counterfeit PDE5Is and the convenience of obtaining the counterfeits in Japan, we analyzed the effects on the prices and quantities of PDE5Is in the market from demand and supply curves, using an economic methodology. From the analysis, it was shown that the health impairment risk due to the counterfeits is underestimated in the market in Japan. Physicians should warn their patients not to buy counterfeit

  6. Visual working memory capacity and the medial temporal lobe.

    PubMed

    Jeneson, Annette; Wixted, John T; Hopkins, Ramona O; Squire, Larry R

    2012-03-07

    Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.

  7. Fast Growth May Impair Regeneration Capacity in the Branching Coral Acropora muricata

    PubMed Central

    Denis, Vianney; Guillaume, Mireille M. M.; Goutx, Madeleine; de Palmas, Stéphane; Debreuil, Julien; Baker, Andrew C.; Boonstra, Roxane K.; Bruggemann, J. Henrich

    2013-01-01

    Regeneration of artificially induced lesions was monitored in nubbins of the branching coral Acropora muricata at two reef-flat sites representing contrasting environments at Réunion Island (21°07′S, 55°32′E). Growth of these injured nubbins was examined in parallel, and compared to controls. Biochemical compositions of the holobiont and the zooxanthellae density were determined at the onset of the experiment, and the photosynthetic efficiency (Fv/Fm) of zooxanthellae was monitored during the experiment. Acropora muricata rapidly regenerated small lesions, but regeneration rates significantly differed between sites. At the sheltered site characterized by high temperatures, temperature variations, and irradiance levels, regeneration took 192 days on average. At the exposed site, characterized by steadier temperatures and lower irradiation, nubbins demonstrated fast lesion repair (81 days), slower growth, lower zooxanthellae density, chlorophyll a concentration and lipid content than at the former site. A trade-off between growth and regeneration rates was evident here. High growth rates seem to impair regeneration capacity. We show that environmental conditions conducive to high zooxanthellae densities in corals are related to fast skeletal growth but also to reduced lesion regeneration rates. We hypothesize that a lowered regenerative capacity may be related to limited availability of energetic and cellular resources, consequences of coral holobionts operating at high levels of photosynthesis and associated growth. PMID:24023627

  8. Fast growth may impair regeneration capacity in the branching coral Acropora muricata.

    PubMed

    Denis, Vianney; Guillaume, Mireille M M; Goutx, Madeleine; de Palmas, Stéphane; Debreuil, Julien; Baker, Andrew C; Boonstra, Roxane K; Bruggemann, J Henrich

    2013-01-01

    Regeneration of artificially induced lesions was monitored in nubbins of the branching coral Acropora muricata at two reef-flat sites representing contrasting environments at Réunion Island (21°07'S, 55°32'E). Growth of these injured nubbins was examined in parallel, and compared to controls. Biochemical compositions of the holobiont and the zooxanthellae density were determined at the onset of the experiment, and the photosynthetic efficiency (Fv/Fm ) of zooxanthellae was monitored during the experiment. Acropora muricata rapidly regenerated small lesions, but regeneration rates significantly differed between sites. At the sheltered site characterized by high temperatures, temperature variations, and irradiance levels, regeneration took 192 days on average. At the exposed site, characterized by steadier temperatures and lower irradiation, nubbins demonstrated fast lesion repair (81 days), slower growth, lower zooxanthellae density, chlorophyll a concentration and lipid content than at the former site. A trade-off between growth and regeneration rates was evident here. High growth rates seem to impair regeneration capacity. We show that environmental conditions conducive to high zooxanthellae densities in corals are related to fast skeletal growth but also to reduced lesion regeneration rates. We hypothesize that a lowered regenerative capacity may be related to limited availability of energetic and cellular resources, consequences of coral holobionts operating at high levels of photosynthesis and associated growth.

  9. Effects of target binding kinetics on in vivo drug efficacy: koff, kon and rebinding

    PubMed Central

    2016-01-01

    Abstract Background and Purpose Optimal drug therapy often requires continuing high levels of target occupancy. Besides the traditional pharmacokinetic contribution, target binding kinetics is increasingly considered to play an important role as well. While most attention has been focused on the dissociation rate of the complex, recent reports expressed doubt about the unreserved translatability of this pharmacodynamic property into clinical efficacy. ‘Micro’‐pharmacokinetic mechanisms like drug rebinding and partitioning into the cell membrane may constitute a potential fix. Experimental Approach Simulations were based on solving differential equations. Key Results Based on a selected range of association and dissociation rate constants, kon and koff, and rebinding potencies of the drugs as variables, their effects on the temporal in vivo occupancy profile of their targets, after one or multiple repetitive dosings, have here been simulated. Conclusions and Implications Most strikingly, the simulations show that, when rebinding is also taken into account, increasing kon may produce closely the same outcome as decreasing koff when dosing is performed in accordance with the therapeutically most relevant constant [Lmax]/K D ratio paradigm. Also, under certain conditions, rebinding may produce closely the same outcome as invoking slow diffusion of the drug between the plasma compartment and a target‐containing ‘effect’ compartment. Although the present simulations should only be regarded as a ‘proof of principle’, these findings may help pharmacologists and medicinal chemists to devise ex vivo and in vitro binding kinetic assays that are more relevant and translatable to in vivo settings. PMID:27129075

  10. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates

    PubMed Central

    Acchione, Mauro; Kwon, Hyewon; Jochheim, Claudia M.; Atkins, William M.

    2012-01-01

    Antibody-drug conjugates (ADCs) with biotin as a model cargo tethered to IgG1 mAbs via different linkers and conjugation methods were prepared and tested for thermostability and ability to bind target antigen and Fc receptor. Most conjugates demonstrated decreased thermostability relative to unconjugated antibody, based on DSC, with carbohydrate and amine coupled ADCs showing the least effect compared with thiol coupled conjugates. A strong correlation between biotin-load and loss of stability is observed with thiol conjugation to one IgG scaffold, but the stability of a second IgG scaffold is relatively insensitive to biotin load. The same correlation for amine coupling was less significant. Binding of antibody to antigen and Fc receptor was investigated using surface plasmon resonance. None of the conjugates exhibited altered antigen affinity. Fc receptor FcγIIb (CD32b) interactions were investigated using captured antibody conjugate. Protein G and Protein A, known inhibitors of Fc receptor (FcR) binding to IgG, were also used to extend the analysis of the impact of conjugation on Fc receptor binding. H10NPEG4 was the only conjugate to show significant negative impact to FcR binding, which is likely due to higher biotin-load compared with the other ADCs. The ADC aHISNLC and aHISTPEG8 demonstrated some loss in affinity for FcR, but to much lower extent. The general insensitivity of target binding and effector function of the IgG1 platform to conjugation highlight their utility. The observed changes in thermostability require consideration for the choice of conjugation chemistry, depending on the system being pursued and particular application of the conjugate. PMID:22531451

  11. The association of antidepressant drug usage with cognitive impairment or dementia, including Alzheimer disease: A systematic review and meta‐analysis

    PubMed Central

    Moraros, John; Nwankwo, Chijioke; Patten, Scott B.

    2016-01-01

    1 Objective To determine if antidepressant drug usage is associated with cognitive impairment or dementia, including Alzheimer disease (AD). 2 Method We conducted a systematic search of Medline, PubMed, PsycINFO, Web of Science, Embase, CINAHL, and the Cochrane Library. An initial screen by abstracts and titles was performed, and relevant full articles were then reviewed and assessed for their methodologic quality. Crude effect estimates were extracted from the included articles and a pooled estimate was obtained using a random effects model. 3 Results Five articles were selected from an initial pool of 4,123 articles. Use of antidepressant drugs was associated with a significant twofold increase in the odds of some form of cognitive impairment or dementia (OR = 2.17). Age was identified as a likely modifier of the association between antidepressant use and some form of cognitive impairment or AD/dementia. Studies that included participants with an average age equal to or greater than 65 years showed an increased odds of some form of cognitive impairment with antidepressant drug usage (OR = 1.65), whereas those with participants less than age 65 revealed an even stronger association (OR = 3.25). 4 Conclusions Antidepressant drug usage is associated with AD/dementia and this is particularly evident if usage begins before age 65. This association may arise due to confounding by depression or depression severity. However, biological mechanisms potentially linking antidepressant exposure to dementia have been described, so an etiological effect of antidepressants is possible. With this confirmation that an association exists, clarification of underlying etiologic pathways requires urgent attention. PMID:28029715

  12. [Impairment of the immune system caused by drugs].

    PubMed

    Pichler, W J

    1987-03-21

    The immune response and the ensuing inflammation relies on a complex interaction of cells and mediators. Various drugs can interfere with individual steps of the immune response, and in so doing they often imitate regulatory mechanisms of the immune system itself. The immunosuppressive effect of corticosteroids is based on changes in cell migration, reduced responsiveness of monocytes/macrophages to various stimuli and diminished production of interleukin-2. Cyclosporin A appears to block prolactin binding to prolactin receptors on lymphocytes, thus interfering with the immunostimulatory effect of prolactin. It also appears to have a Calmodulin antagonism and might thus block lymphokine production. Anticoagulants may block delayed type hypersensitivity reactions, since activation of the coagulation cascade is involved in this type of immune reaction. Attempts to use calcium channel blockers as immunosuppressive agents, or to take advantage of the immunoregulatory effects of adrenergic substances/blockers or other neurotransmitters, are of experimental value only.

  13. 20 CFR 220.120 - The claimant's residual functional capacity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false The claimant's residual functional capacity... RETIREMENT ACT DETERMINING DISABILITY Residual Functional Capacity § 220.120 The claimant's residual functional capacity. (a) General. The claimant's impairment(s), and any related symptoms, such as pain, may...

  14. Effect of chromatographic conditions and plasmid DNA size on the dynamic binding capacity of a monolithic support.

    PubMed

    Bicho, Diana; Sousa, Ângela; Sousa, Fani; Queiroz, João; Tomaz, Cãndida

    2014-09-01

    DNA therapies are becoming recognized alternatives for the treatment and prevention of severe pathologies. Although most current trials have used plasmids <10 kbp, in the future larger plasmids would be required. The purpose of this work was to study the chromatographic behavior of nongrafted carbonyldiimidazole monolithic disks using plasmids with different sizes under hydrophobic conditions. Thereunto, the purification of several plasmids was performed. Higher size plasmids needed lower ammonium sulfate concentration, due to the greater number of interactions between the plasmids and monolith. The dynamic binding capacity experiments for the different plasmids revealed a lower capacity for bigger plasmids. It was also verified that the increase of salt concentration from 2.5 to 3 M of ammonium sulfate increased the capacity. At the highest salt concentration, a slight improvement in the capacity using lower flow rate was observed, possibly due to compaction of plasmid molecules and its better organization on the monolith channels. Finally, a low pH also had a positive effect on the capacity. So, this monolithic support proved to be appropriate to purify the supercoiled isoform of different plasmids with different sizes, providing a valuable instrument as a purification technique. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Visual Impairment

    MedlinePlus

    ... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ...

  16. Preservation of the capacity to appoint a proxy decision maker: implications for dementia research.

    PubMed

    Kim, Scott Y H; Karlawish, Jason H; Kim, H Myra; Wall, Ian F; Bozoki, Andrea C; Appelbaum, Paul S

    2011-02-01

    Research involving persons with impaired decision-making capacity (such as persons with Alzheimer disease [AD]) remains ethically challenging, especially when the research involves significant risk. If individuals incapable of consenting to research studies were able to appoint a research proxy, it would allow for an appointed surrogate (rather than a de facto surrogate) to represent the subject. To assess the extent to which persons with AD retain their capacity to appoint a research proxy. Interview study. Academic research. One hundred eighty-eight persons with AD were interviewed for their capacity to appoint a proxy for research and to provide consent to 2 hypothetical research scenarios, a lower-risk randomized clinical trial testing a new drug (drug RCT) and a higher-risk randomized clinical trial testing neurosurgical cell implants using a sham control condition (neurosurgical RCT). Categorical capacity status for each subject was determined by independent videotaped reviews of capacity interviews by 5 experienced psychiatrists. Categorical capacity determinations for the capacity to appoint a research proxy, capacity to consent to a drug RCT, and capacity to consent to a neurosurgical RCT. Data showed that 37.7% (40 of 106) of those deemed incapable of consenting to the drug RCT and 54.8% (86 of 157) of those deemed incapable of consenting to the neurosurgical RCT were found capable of appointing a research proxy. Only 7 of 186 (3.8%) were deemed capable of consenting to the neurosurgical RCT by all 5 psychiatrists. A substantial proportion of persons with AD who were thought incapable of consenting to lower-risk or higher-risk studies have preserved capacity for appointing a research proxy. Because few persons are found to be unequivocally capable of providing independent consent to higher-risk AD research, providing for an appointed surrogate even after the onset of AD, which might best be done in the early stages of the illness, may help address key

  17. Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells

    PubMed Central

    Cai, Xixi; Lin, Jiaping; Wang, Shaoyun

    2016-01-01

    Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY) with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 μg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives. PMID:28036002

  18. New perspectives on the computational characterization of the kinetics of binding-unbinding in drug design: implications for novel therapies.

    PubMed

    Moreno-Vargas, Liliana M; Prada-Gracia, Diego

    The efficiency and the propensity of a drug to be bound to its target protein have been inseparable concepts for decades now. The correlation between the pharmacological activity and the binding affinity has been the first rule to design and optimize a new drug rationally. However, this argument does not prove to be infallible when the results of in vivo assays have to be confronted. Only recently, we understand that other magnitudes as the kinetic rates of binding and unbinding, or the mean residence time of the complex drug-protein, are equally relevant to draw a more accurate model of the mechanism of action of a drug. It is in this scenario where new computational techniques to simulate the all-atom dynamics of the biomolecular system find its valuable place on the challenge of designing new molecules for more effective and less toxic therapies. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  19. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle.

    PubMed

    Frøsig, Christian; Pehmøller, Christian; Birk, Jesper B; Richter, Erik A; Wojtaszewski, Jørgen F P

    2010-11-15

    TBC1D1 is a Rab-GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise-induced regulation of TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all-out cycle exercise lasting either 30 s, 2  min or 20  min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (∼70-230%, P < 0.005), with the greatest response observed after 20  min of cycling. Interestingly, capacity of TBC1D1 to bind 14-3-3 protein showed a similar pattern of regulation, increasing 60-250% (P < 0.001). Furthermore, recombinant 5AMP-activated protein kinase (AMPK) induced both Ser237 phosphorylation and 14-3-3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus muscle (EDL) from whole body α1 or α2 AMPK knock-out and wild-type mice were stimulated to contract in vitro. In wild-type and α1 knock-out mice, contractions resulted in a similar ∼100% increase (P < 0.001) in Ser237 phosphorylation. Interestingly, muscle of α2 knock-out mice were characterized by reduced protein content of TBC1D1 (∼50%, P < 0.001) as well as in basal and contraction-stimulated (∼60%, P < 0.001) Ser237 phosphorylation, even after correction for the reduced TBC1D1 protein content. This study shows that TBC1D1 is Ser237 phosphorylated and 14-3-3 protein binding capacity is increased in response to exercise in human skeletal muscle. Furthermore, we show that the catalytic α2 AMPK subunit is the main (but probably not the only) donor of AMPK activity regulating TBC1D1 Ser237 phosphorylation in mouse EDL muscle.

  20. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  1. Development of new drugs for an old target: the penicillin binding proteins.

    PubMed

    Zervosen, Astrid; Sauvage, Eric; Frère, Jean-Marie; Charlier, Paulette; Luxen, André

    2012-10-24

    The widespread use of β-lactam antibiotics has led to the worldwide appearance of drug-resistant strains. Bacteria have developed resistance to β-lactams by two main mechanisms: the production of β-lactamases, sometimes accompanied by a decrease of outer membrane permeability, and the production of low-affinity, drug resistant Penicillin Binding Proteins (PBPs). PBPs remain attractive targets for developing new antibiotic agents because they catalyse the last steps of the biosynthesis of peptidoglycan, which is unique to bacteria, and lies outside the cytoplasmic membrane. Here we summarize the “current state of the art” of non-β-lactam inhibitors of PBPs, which have being developed in an attempt to counter the emergence of β-lactam resistance. These molecules are not susceptible to hydrolysis by β-lactamases and thus present a real alternative to β-lactams. We present transition state analogs such as boronic acids, which can covalently bind to the active serine residue in the catalytic site. Molecules containing ring structures different from the β-lactam-ring like lactivicin are able to acylate the active serine residue. High throughput screening methods, in combination with virtual screening methods and structure based design, have allowed the development of new molecules. Some of these novel inhibitors are active against major pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and thus open avenues new for the discovery of novel antibiotics.

  2. Obesity Impairs Skeletal Muscle Regeneration Through Inhibition of AMPK.

    PubMed

    Fu, Xing; Zhu, Meijun; Zhang, Shuming; Foretz, Marc; Viollet, Benoit; Du, Min

    2016-01-01

    Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. The obese condition is known to inhibit AMPK activity in multiple tissues. We hypothesized that the loss of AMPK activity is a major reason for hampered muscle regeneration in obese subjects. We found that obesity inhibits AMPK activity in regenerating muscle, which was associated with impeded satellite cell activation and impaired muscle regeneration. To test the mediatory role of AMPKα1, we knocked out AMPKα1 and found that both proliferation and differentiation of satellite cells are reduced after injury and that muscle regeneration is severely impeded, reminiscent of hampered muscle regeneration seen in obese subjects. Transplanted satellite cells with AMPKα1 deficiency had severely impaired myogenic capacity in regenerating muscle fibers. We also found that attenuated muscle regeneration in obese mice is rescued by AICAR, a drug that specifically activates AMPK, but AICAR treatment failed to improve muscle regeneration in obese mice with satellite cell-specific AMPKα1 knockout, demonstrating the importance of AMPKα1 in satellite cell activation and muscle regeneration. In summary, AMPKα1 is a key mediator linking obesity and impaired muscle regeneration, providing a convenient drug target to facilitate muscle regeneration in obese populations. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Membrane-Dependent Effects of a Cytoplasmic Helix on the Structure and Drug Binding of the Influenza Virus M2 Protein

    PubMed Central

    Cady, Sarah; Wang, Tuo; Hong, Mei

    2011-01-01

    The influenza A M2 protein forms a proton channel for virus infection and also mediates virus assembly and budding. The minimum protein length that encodes both functions contains the transmembrane (TM) domain (roughly residues 22 to 46) for the amantadine-sensitive proton-channel activity and an amphipathic cytoplasmic helix (roughly residues 45 to 62) for curvature induction and virus budding. However, structural studies involving the TM domain with or without the amphipathic helix differed on the drug-binding site. Here we use solid-state NMR spectroscopy to determine the amantadine binding site in the cytoplasmic-helix-containing M2(21–61). 13C-2H distance measurements of 13C-labeled protein and 2H-labeled amantadine showed that in DMPC bilayers, the first equivalent of drug bound S31 inside the M2(21–61) pore, similar to the behavior of M2TM in DMPC bilayers. The non-specific surface site of D44 observed in M2TM is disfavored in the longer peptide. Thus, the pharmacologically relevant drug-binding site in the fully functional M2(21–61) is S31 in the TM pore. Interestingly, when M2(21–61) was reconstituted into a virus-mimetic membrane containing 30% cholesterol, no chemical shift perturbation was observed for pore-lining residues, while M2TM in the same membrane exhibited drug-induced chemical shift changes. Reduction of the cholesterol level and the use of unsaturated phospholipids shifted the conformational equilibrium of M2TM fully to the bound state, but did not rescue drug binding to M2(21–61). These results suggest that the amphipathic helix, together with cholesterol, modulates the ability of the TM helices to bind amantadine. Thus, the M2 protein interacts with the lipid membrane and small-molecule inhibitors in a complex fashion, and a careful examination of the environmental dependence of the protein conformation is required to fully understand the structure-function relation of this protein. PMID:21661724

  4. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging

    PubMed Central

    Tang, Duozhuang; Tao, Si; Chen, Zhiyang; Koliesnik, Ievgen Oleksandrovich; Calmes, Philip Gerald; Hoerr, Verena; Han, Bing; Gebert, Nadja; Zörnig, Martin; Löffler, Bettina

    2016-01-01

    Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways. PMID:26951333

  5. Validation of the Argentine version of the Memory Binding Test (MBT) for Early Detection of Mild Cognitive Impairment

    PubMed Central

    Roman, Fabian; Iturry, Mónica; Rojas, Galeno; Barceló, Ernesto; Buschke, Herman; Allegri, Ricardo F.

    2016-01-01

    ABSTRACT Background: "Forgetfulness" is frequent in normal aging and characteristic of the early stages of dementia syndromes. The episodic memory test is central for detecting amnestic mild cognitive impairment (MCI). The Memory Binding Test (MBT) is a simple, easy and brief memory test to detect the early stage of episodic memory impairment. Objective: To validate the Argentine version of the MBT in a Latin American population and to estimate the diagnostic accuracy as a tool for early detection of MCI. Methods: 88 subjects (46 healthy controls and 42 patients with amnestic MCI) matched for age and educational level were evaluated by an extensive neuropsychological battery and the memory binding test. Results: A significantly better performance was detected in the control group; all MBT scales were predictive of MCI diagnosis (p<.01). The MBT showed high sensitivity (69%) and high specificity (88%), with a PPV of 93% and a NPV of 55% for associative paired recall. A statistically significant difference (c2=14,164, p<.001) was obtained when comparing the area under the curve (AUC) of the MBT (0.88) and the MMSE (0.70). Conclusion: The Argentine version of the MBT correlated significantly with the MMSE and the memory battery and is a useful tool in the detection of MCI. The operating characteristics of the MBT are well suited, surpassing other tests commonly used for detecting MCI. PMID:29213458

  6. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4

    PubMed Central

    Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir

  7. The association of antidepressant drug usage with cognitive impairment or dementia, including Alzheimer disease: A systematic review and meta-analysis.

    PubMed

    Moraros, John; Nwankwo, Chijioke; Patten, Scott B; Mousseau, Darrell D

    2017-03-01

    To determine if antidepressant drug usage is associated with cognitive impairment or dementia, including Alzheimer disease (AD). We conducted a systematic search of Medline, PubMed, PsycINFO, Web of Science, Embase, CINAHL, and the Cochrane Library. An initial screen by abstracts and titles was performed, and relevant full articles were then reviewed and assessed for their methodologic quality. Crude effect estimates were extracted from the included articles and a pooled estimate was obtained using a random effects model. Five articles were selected from an initial pool of 4,123 articles. Use of antidepressant drugs was associated with a significant twofold increase in the odds of some form of cognitive impairment or dementia (OR = 2.17). Age was identified as a likely modifier of the association between antidepressant use and some form of cognitive impairment or AD/dementia. Studies that included participants with an average age equal to or greater than 65 years showed an increased odds of some form of cognitive impairment with antidepressant drug usage (OR = 1.65), whereas those with participants less than age 65 revealed an even stronger association (OR = 3.25). Antidepressant drug usage is associated with AD/dementia and this is particularly evident if usage begins before age 65. This association may arise due to confounding by depression or depression severity. However, biological mechanisms potentially linking antidepressant exposure to dementia have been described, so an etiological effect of antidepressants is possible. With this confirmation that an association exists, clarification of underlying etiologic pathways requires urgent attention. © 2016 The Authors. Depression and Anxiety published by Wiley Periodicals, Inc.

  8. XBP1 (X-Box-Binding Protein-1)-Dependent O-GlcNAcylation Is Neuroprotective in Ischemic Stroke in Young Mice and Its Impairment in Aged Mice Is Rescued by Thiamet-G.

    PubMed

    Jiang, Meng; Yu, Shu; Yu, Zhui; Sheng, Huaxin; Li, Ying; Liu, Shuai; Warner, David S; Paschen, Wulf; Yang, Wei

    2017-06-01

    Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains. © 2017 American Heart Association, Inc.

  9. Using mutagenesis to explore conserved residues in the RNA-binding groove of influenza A virus nucleoprotein for antiviral drug development

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Lin; Hung, Hui-Chen; Lo, Shou-Chen; Chiang, Ching-Hui; Chen, I.-Jung; Hsu, John T.-A.; Hou, Ming-Hon

    2016-02-01

    Nucleoprotein (NP) is the most abundant type of RNA-binding viral protein in influenza A virus-infected cells and is necessary for viral RNA transcription and replication. Recent studies demonstrated that influenza NP is a valid target for antiviral drug development. The surface of the groove, covered with numerous conserved residues between the head and body domains of influenza A NP, plays a crucial role in RNA binding. To explore the mechanism by which NP binds RNA, we performed a series of site-directed mutagenesis in the RNA-binding groove, followed by surface plasmon resonance (SPR), to characterize the interactions between RNA and NP. Furthermore, a role of Y148 in NP stability and NP-RNA binding was evaluated. The aromatic residue of Y148 was found to stack with a nucleotide base. By interrupting the stacking interaction between Y148 and an RNA base, we identified an influenza virus NP inhibitor, (E, E)-1,7-bis(4-hydroxy-3-methoxyphenyl) -1,6-heptadiene-3,5-dione; this inhibitor reduced the NP’s RNA-binding affinity and hindered viral replication. Our findings will be useful for the development of new drugs that disrupt the interaction between RNA and viral NP in the influenza virus.

  10. Thermal treatment of galactose-branched polyelectrolyte microcapsules to improve drug delivery with reserved targetability.

    PubMed

    Zhang, Fu; Wu, Qi; Liu, Li-Jun; Chen, Zhi-Chun; Lin, Xian-Fu

    2008-06-05

    A novel multilayered drug delivery system by LbL assembly of galactosylated polyelectrolyte, which is possible to have the potential in hepatic targeting by the presence of galactose residues at the microcapsule's surface, is designed. Thermal treatment was performed on the capsules and a dramatic thermal shrinkage up to 60% decrease of capsule diameter above 50 degrees C was observed. This thermal behavior was then used to manipulate drug loading capacity and release rate. Heating after drug loading could seal the capsule shell, enhancing the loading capacity and reducing the release rate significantly. Excellent affinity between galactose-binding lectin and heated galactose-containing microcapsules were observed, indicating a stable targeting potential even after high temperature elevating up to 90 degrees C.

  11. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.

    PubMed

    Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis

    2004-12-21

    The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.

  12. Working memory binding and episodic memory formation in aging, mild cognitive impairment, and Alzheimer's dementia.

    PubMed

    van Geldorp, Bonnie; Heringa, Sophie M; van den Berg, Esther; Olde Rikkert, Marcel G M; Biessels, Geert Jan; Kessels, Roy P C

    2015-01-01

    Recent studies indicate that in both normal and pathological aging working memory (WM) performance deteriorates, especially when associations have to be maintained. However, most studies typically do not assess the relationship between WM and episodic memory formation. In the present study, we examined WM and episodic memory formation in normal aging and in patients with early Alzheimer's disease (mild cognitive impairment, MCI; and Alzheimer's dementia, AD). In the first study, 26 young adults (mean age 29.6 years) were compared to 18 middle-aged adults (mean age 52.2 years) and 25 older adults (mean age 72.8 years). We used an associative delayed-match-to-sample WM task, which requires participants to maintain two pairs of faces and houses presented on a computer screen for short (3 s) or long (6 s) maintenance intervals. After the WM task, an unexpected subsequent associative memory task was administered (two-alternative forced choice). In the second study, 27 patients with AD and 19 patients with MCI were compared to 25 older controls, using the same paradigm as that in Experiment 1. Older adults performed worse than both middle-aged and young adults. No effect of delay was observed in the healthy adults, and pairs that were processed during long maintenance intervals were not better remembered in the subsequent memory task. In the MCI and AD patients, longer maintenance intervals hampered the task performance. Also, both patient groups performed significantly worse than controls on the episodic memory task as well as the associative WM task. Aging and AD present with a decline in WM binding, a finding that extends similar results in episodic memory. Longer delays in the WM task did not affect episodic memory formation. We conclude that WM deficits are found when WM capacity is exceeded, which may occur during associative processing.

  13. Spectroscopic and molecular modeling study on the separate and simultaneous bindings of alprazolam and fluoxetine hydrochloride to human serum albumin (HSA): With the aim of the drug interactions probing

    NASA Astrophysics Data System (ADS)

    Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma

    2015-02-01

    The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy.

  14. Spectroscopic and molecular modeling study on the separate and simultaneous bindings of alprazolam and fluoxetine hydrochloride to human serum albumin (HSA): with the aim of the drug interactions probing.

    PubMed

    Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma

    2015-02-25

    The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Aldioxa improves delayed gastric emptying and impaired gastric compliance, pathophysiologic mechanisms of functional dyspepsia

    PubMed Central

    Asano, Teita; Aida, Shuji; Suemasu, Shintaro; Tahara, Kayoko; Tanaka, Ken-ichiro; Mizushima, Tohru

    2015-01-01

    Delayed gastric emptying and impaired gastric accommodation (decreased gastric compliance) play important roles in functional dyspepsia (FD). Here we screen for a clinically used drug with an ability to improve delayed gastric emptying in rats. Oral administration of aldioxa (dihydroxyaluminum allantoinate) partially improved clonidine- or restraint stress-induced delayed gastric emptying. Administration of allantoin, but not aluminium hydroxide, restored the gastric emptying. Both aldioxa and allantoin inhibited clonidine binding to the α-2 adrenergic receptor, suggesting that antagonistic activity of the allantoin moiety of aldioxa on this receptor is involved in the restoration of gastric emptying activity. Aldioxa or aluminium hydroxide but not allantoin restored gastric compliance with restraint stress, suggesting that aluminium hydroxide moiety is involved in this restoration. We propose that aldioxa is a candidate drug for FD, because its safety in humans has already been confirmed and its ameliorating effect on both of delayed gastric emptying and impaired gastric compliance are confirmed here. PMID:26620883

  16. Drug Resistance Mechanism of L10F, L10F/N88S and L90M mutations in CRF01_AE HIV-1 protease: Molecular dynamics simulations and binding free energy calculations.

    PubMed

    Vasavi, C S; Tamizhselvi, Ramasamy; Munusami, Punnagai

    2017-08-01

    HIV-1 protease plays a crucial role in viral replication and maturation, which makes it one of the most attractive targets for anti-retroviral therapy. The majority of HIV infections in developing countries are due to non-B subtype. Subtype AE is spreading rapidly and infecting huge population worldwide. The mutations in the active site of subtype AE directly impair the interactions with the inhibitor. The non-active site mutations influence the binding of the inhibitor indirectly and their resistance mechanism is not well understood. It is important to design new effective inhibitors that combat drug resistance in subtype AE protease. In this work, we examined the effect of non active site mutations L10F, L10F/N88S and L90M with nelfinavir using molecular dynamics simulation and binding free energy calculations. The simulations suggested that the L10F and L10F/N88S mutants decrease the binding affinity of nelfinavir, whereas the L90M mutant increases the binding affinity. The formation of hydrogen bonds between nelfinavir and Asp30 is crucial for effective binding. The benzamide moiety of nelfinavir shows large positional deviation in L10F and L10F/N88S complexes and the L10F/N88S mutation changes the hydrogen bond between the side chain atoms of 30th residue and the 88th residue. Consequently the hydrogen bond interaction between Asp30 and nelfinavir are destroyed leading to drug resistance. Our present study shed light on the resistance mechanism of the strongly linked mutation L10F/N88S observed experimentally in AE subtype. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. DNA Polyplexes as Combinatory Drug Carriers of Doxorubicin and Cisplatin: An In Vitro Study

    PubMed Central

    Kang, Han Chang; Cho, Hana; Bae, You Han

    2015-01-01

    Double helix nucleic acids were used as a combination drug carrier for doxorubicin (DOX), which physically intercalates with DNA double helices, and cisplatin (CDDP), which binds to DNA without an alkylation reaction. DNA interacting with DOX, CDDP, or both was complexed with positively charged, endosomolytic polymers. Compared with the free drug, the polyplexes (100 ~ 170 nm in size) delivered more drug into the cytosol and the nucleus and demonstrated similar or superior (up to a 7-fold increase) in vitro cell-killing activity. Additionally, the gene expression activities of most of the chemical drug-loaded plasmid DNA (pDNA) polyplexes were not impaired by the physical interactions between the nucleic acid and DOX/CDDP. When a model reporter pDNA (luciferase) was employed, it expressed luciferase protein at 0.7- ~ 1.4-fold the amount expressed by the polyplex with no bound drugs (a control), which indicated the fast translocation of the intercalated or bound drugs from the “carrier DNA” to the “nuclear DNA” of target cells. The proposed concept may offer the possibility of versatile combination therapies of genetic materials and small molecule drugs that bind to nucleic acids to treat various diseases. PMID:26132975

  18. The Binding Site of Human Adenosine Deaminase for Cd26/Dipeptidyl Peptidase IV

    PubMed Central

    Richard, Eva; Arredondo-Vega, Francisco X.; Santisteban, Ines; Kelly, Susan J.; Patel, Dhavalkumar D.; Hershfield, Michael S.

    2000-01-01

    Human, but not murine, adenosine deaminase (ADA) forms a complex with the cell membrane protein CD26/dipeptidyl peptidase IV. CD26-bound ADA has been postulated to regulate extracellular adenosine levels and to modulate the costimulatory function of CD26 on T lymphocytes. Absence of ADA–CD26 binding has been implicated in causing severe combined immunodeficiency due to ADA deficiency. Using human–mouse ADA hybrids and ADA point mutants, we have localized the amino acids critical for CD26 binding to the helical segment 126–143. Arg142 in human ADA and Gln142 in mouse ADA largely determine the capacity to bind CD26. Recombinant human ADA bearing the R142Q mutation had normal catalytic activity per molecule, but markedly impaired binding to a CD26+ ADA-deficient human T cell line. Reduced CD26 binding was also found with ADA from red cells and T cells of a healthy individual whose only expressed ADA has the R142Q mutation. Conversely, ADA with the E217K active site mutation, the only ADA expressed by a severely immunodeficient patient, showed normal CD26 binding. These findings argue that ADA binding to CD26 is not essential for immune function in humans. PMID:11067872

  19. Disruption of a -35kb enhancer impairs CTCF binding and MLH1 expression in colorectal cells.

    PubMed

    Liu, Qing; Thoms, Julie A; Nunez, Andrea C; Huang, Yizhou; Knezevic, Kathy; Packham, Deborah; Poulos, Rebecca C; Williams, Rachel; Beck, Dominik; Hawkins, Nicholas J; Ward, Robyn L; Wong, Jason W H; Hesson, Luke B; Sloane, Mathew A; Pimanda, John

    2018-06-13

    MLH1 is a major tumour suppressor gene involved in the pathogenesis of Lynch syndrome and various sporadic cancers. Despite their potential pathogenic importance, genomic regions capable of regulating MLH1 expression over long distances have yet to be identified. Here we use chromosome conformation capture (3C) to screen a 650-kb region flanking the MLH1 locus to identify interactions between the MLH1 promoter and distal regions in MLH1 expressing and non-expressing cells. Putative enhancers were functionally validated using luciferase reporter assays, chromatin immunoprecipitation and CRISPR-Cas9 mediated deletion of endogenous regions. To evaluate whether germline variants in the enhancer might contribute to impaired MLH1 expression in patients with suspected Lynch syndrome, we also screened germline DNA from a cohort of 74 patients with no known coding mutations or epimutations at the MLH1 promoter. A 1.8kb DNA fragment, 35kb upstream of the MLH1 transcription start site enhances MLH1 gene expression in colorectal cells. The enhancer was bound by CTCF and CRISPR-Cas9 mediated deletion of a core binding region impairs endogenous MLH1 expression. 5.4% of suspected Lynch syndrome patients have a rare single nucleotide variant (G>A; rs143969848; 2.5% in gnomAD European, non-Finnish) within a highly conserved CTCF binding motif, which disrupts enhancer activity in SW620 colorectal carcinoma cells. A CTCF bound region within the MLH1 -35 enhancer regulates MLH1 expression in colorectal cells and is worthy of scrutiny in future genetic screening strategies for suspected Lynch syndrome associated with loss of MLH1 expression. Copyright ©2018, American Association for Cancer Research.

  20. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs.

    PubMed

    Maxwell, Anthony; Lawson, David M

    2003-01-01

    DNA topoisomerases are essential enzymes in all cell types and have been found to be valuable drug targets both for antibacterial and anti-cancer chemotherapy. Type II topoisomerases possess a binding site for ATP, which can be exploited as a target for chemo-therapeutic agents. High-resolution structures of protein fragments containing this site complexed with antibiotics or an ATP analogue have provided vital information for the understanding of the action of existing drugs and for the potential development of novel anti-bacterial agents. In this article we have reviewed the structure and function of the ATPase domain of DNA gyrase (bacterial topoisomerase II), particularly highlighting novel information that has been revealed by structural studies. We discuss the efficacy and mode of action of existing drugs and consider the prospects for the development of novel agents.

  1. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    PubMed Central

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  2. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs.

    PubMed

    Han, Sangkwon; Bae, Hyung Jong; Kim, Junhoi; Shin, Sunghwan; Choi, Sung-Eun; Lee, Sung Hoon; Kwon, Sunghoon; Park, Wook

    2012-11-20

    A QR-coded microtaggant for the anti-counterfeiting of drugs is proposed that can provide high capacity and error-correction capability. It is fabricated lithographically in a microfluidic channel with special consideration of the island patterns in the QR Code. The microtaggant is incorporated in the drug capsule ("on-dose authentication") and can be read by a simple smartphone QR Code reader application when removed from the capsule and washed free of drug. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Finances in the Older Patient with Cognitive Impairment

    PubMed Central

    Widera, Eric; Steenpass, Veronika; Marson, Daniel; Sudore, Rebecca

    2013-01-01

    Financial capacity is the ability to manage money and financial assets in ways that meet a person’s needs and which are consistent with his/her values and self-interest. Financial capacity is essential for an individual to function independently in our society; however, dementia eventually leads to a complete loss of financial capacity. Many patients with cognitive impairment and their families turn to their primary care clinician for help with financial impairment, yet most clinicians do not understand their role or how to help. We review the prevalence and impact of financial incapacity in older adults with cognitive impairment. We also articulate the role of the primary clinician which includes: (1) educating older adult patients and families about the need for advance financial planning; (2) recognizing signs of possible impaired financial capacity; (3) assessing financial impairments in cognitively impaired adults; (4) recommending interventions to help patients maintain financial independence; and (5) knowing when and to whom to make medical and legal referrals. Clearly delineating the clinician’s role in financial impairment can lead to the establishment of effective financial protections and can limit the economic, psychological, and legal hardships of financial incapacity on patients with dementia and their families. PMID:21325186

  4. sigma opiates and certain antipsychotic drugs mutually inhibit (+)-(/sup 3/H)SKF 10,047 and (/sup 3/H)haloperidol binding in guinea pig brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tam, S.W.; Cook, L.

    1984-09-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-(/sup 3/H)SKF 10,047 (N-allylnormetazocine) and to dopamine D/sub 2/ sites was investigated. In guinea pig brain membranes, (+)-(/sup 3/H)SKF 10,047 bound to single class of sites with a K/sub d/ of 4 x 10/sup -8/ M and a B/sub max/ of 333 fmol/mg of protein. This binding was different from ..mu.., kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-(/sup 3/H)SKF 10,047 bindingmore » with high to moderate affinities in the following order of potency: haloperidol > perphenazine > fluphenazine > acetophenazine > trifluoperazine > molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-(/sup 3/H)SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-(/sup 3/H)SKF 10,047 binding sites did not correlate with those for (/sup 3/H)spiperone (dopamine D/sub 2/) sites. (/sup 3/H)-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-(/sup 3/H)SKF 10,047. In the striatum, about half of the saturable (/sup 3/H)haloperidol binding was to (/sup 3/H)spiperone (D/sub 2/) sites and the other half was to sites similar to (+)-(/sup 3/H)SKF 10,047 binding sites. 15 references, 4 figures, 1 table.« less

  5. Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting

    PubMed Central

    Kos, Janko; Sabotič, Jerica

    2017-01-01

    Lectins have been recognized as promising carrier molecules for targeted drug delivery. They specifically bind carbohydrate moieties on cell membranes and trigger cell internalization. Fungal lectin MpL (Macrolepiota procera lectin) does not provoke cancer cell cytotoxicity but is able to bind aminopeptidase N (CD13) and integrin α3β1, two glycoproteins that are overexpressed on the membrane of tumor cells. Upon binding, MpL is endocytosed in a clathrin-dependent manner and accumulates initially in the Golgi apparatus and, finally, in the lysosomes. For effective binding and internalization a functional binding site on the α-repeat is needed. To test the potential of MpL as a carrier for delivering protein drugs to cancer cells we constructed fusion proteins consisting of MpL and the cysteine peptidase inhibitors cystatin C and clitocypin. The fused proteins followed the same endocytic route as the unlinked MpL. Peptidase inhibitor-MpL fusions impaired both the intracellular degradation of extracellular matrix and the invasiveness of cancer cells. MpL is thus shown in vitro to be a lectin that can enable protein drugs to enter cancer cells, enhance their internalization and sort them to lysosomes and the Golgi apparatus. PMID:28460472

  6. Generation of therapeutic protein variants with the human serum albumin binding capacity via site-specific fatty acid conjugation.

    PubMed

    Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan

    2017-12-21

    Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.

  7. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line

    USGS Publications Warehouse

    Kienzler, Aude; Mahler, Barbara J.; Van Metre, Peter C.; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-01-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity.

  8. Antidiabetic drugs restore abnormal transport of amyloid-β across the blood-brain barrier and memory impairment in db/db mice.

    PubMed

    Chen, Fang; Dong, Rong Rong; Zhong, Kai Long; Ghosh, Arijit; Tang, Su Su; Long, Yan; Hu, Mei; Miao, Ming Xing; Liao, Jian Min; Sun, Hong Bing; Kong, Ling Yi; Hong, Hao

    2016-02-01

    Previous studies have shown significant changes in amyloid-β (Aβ) transport across the blood-brain barrier (BBB) under diabetic conditions with hypoinsulinemia, which is involved in diabetes-associated cognitive impairment. Present study employed db/db mice with hyperinsulinemia to investigate changes in Aβ transport across the BBB, hippocampal synaptic plasticity, and restorative effects of antidiabetic drugs. Our results showed that db/db mice exhibited similar changes in Aβ transport across the BBB to that of insulin-deficient mice. Chronic treatment of db/db mice with antidiabetic drugs such as metformin, glibenclamide and insulin glargine significantly decreased Aβ influx across the BBB determined by intra-arterial infusion of (125)I-Aβ(1-40), and expression of the receptor for advanced glycation end products (RAGE) participating in Aβ influx. Insulin glargine, but not, metformin or glibenclamide increased Aβ efflux across the BBB determined by stereotaxic intra-cerebral infusion of (125)I-Aβ(1-40), and expression of the low-density lipoprotein receptor related protein 1 (LRP1) participating in Aβ efflux. Moreover, treatment with these drugs significantly decreased hippocampal Aβ(1-40) or Aβ(1-42) and inhibited neuronal apoptosis. The drugs also ameliorated memory impairment confirmed by improved performance on behavioral tasks. However, insulin glargine or glibenclamide, but not metformin, restored hippocampal synaptic plasticity characterized by enhancing in vivo long-term potentiation (LTP). Further study found that these three drugs significantly restrained NF-κB, but only insulin glargine enhanced peroxisome proliferator-activated receptor γ (PPARγ) activity at the BBB in db/db mice. Our data indicate that the antidiabetic drugs can partially restore abnormal Aβ transport across the BBB and memory impairment under diabetic context. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design

    NASA Astrophysics Data System (ADS)

    Segura-Cabrera, Aldo; Bocanegra-García, Virgilio; Lizarazo-Ortega, Cristian; Guo, Xianwu; Correa-Basurto, José; Rodríguez-Pérez, Mario A.

    2011-12-01

    Onchocerciasis is a leading cause of blindness with at least 37 million people infected and more than 120 million people at risk of contracting the disease; most (99%) of this population, threatened by infection, live in Africa. The drug of choice for mass treatment is the microfilaricidal Mectizan® (ivermectin); it does not kill the adult stages of the parasite at the standard dose which is a single annual dose aimed at disease control. However, multiple treatments a year with ivermectin have effects on adult worms. The discovery of new therapeutic targets and drugs directed towards the killing of the adult parasites are thus urgently needed. The chitinase of filarial nematodes is a new drug target due to its essential function in the metabolism and molting of the parasite. Closantel is a potent and specific inhibitor of chitinase of Onchocerca volvulus (OvCHT1) and other filarial chitinases. However, the binding mode and specificity of closantel towards OvCHT1 remain unknown. In the absence of a crystallographic structure of OvCHT1, we developed a homology model of OvCHT1 using the currently available X-ray structures of human chitinases as templates. Energy minimization and molecular dynamics (MD) simulation of the model led to a high quality of 3D structure of OvCHIT1. A flexible docking study using closantel as the ligand on the binding site of OvCHIT1 and human chitinases was performed and demonstrated the differences in the closantel binding mode between OvCHIT1 and human chitinase. Furthermore, molecular dynamics simulations and free-energy calculation were employed to determine and compare the detailed binding mode of closantel with OvCHT1 and the structure of human chitinase. This comparative study allowed identification of structural features and properties responsible for differences in the computationally predicted closantel binding modes. The homology model and the closantel binding mode reported herein might help guide the rational development of

  10. How Proteins Bind Macrocycles

    PubMed Central

    Villar, Elizabeth A.; Beglov, Dmitri; Chennamadhavuni, Spandan; Porco, John A.; Kozakov, Dima; Vajda, Sandor; Whitty, Adrian

    2014-01-01

    The potential utility of synthetic macrocycles as drugs, particularly against low druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of macrocycles for good target protein-binding activity or bioavailability. To address this knowledge gap we analyze the binding modes of a representative set of macrocycle-protein complexes. The results, combined with consideration of the physicochemical properties of approved macrocyclic drugs, allow us to propose specific guidelines for the design of synthetic macrocycles libraries possessing structural and physicochemical features likely to favor strong binding to protein targets and also good bioavailability. We additionally provide evidence that large, natural product derived macrocycles can bind to targets that are not druggable by conventional, drug-like compounds, supporting the notion that natural product inspired synthetic macrocycles can expand the number of proteins that are druggable by synthetic small molecules. PMID:25038790

  11. Cognitive models of medical decision-making capacity in patients with mild cognitive impairment.

    PubMed

    Okonkwo, O C; Griffith, H R; Belue, K; Lanza, S; Zamrini, E Y; Harrell, L E; Brockington, J C; Clark, D; Raman, R; Marson, D C

    2008-03-01

    This study investigated cognitive predictors of medical decision-making capacity (MDC) in patients with amnestic mild cognitive impairment (MCI). A total of 56 healthy controls, 60 patients with MCI, and 31 patients with mild Alzheimer's disease (AD) were administered the Capacity to Consent to Treatment Instrument (CCTI) and a neuropsychological test battery. The CCTI assesses MDC across four established treatment consent standards--S1 (expressing choice), S3 (appreciation), S4 (reasoning), and S5 (understanding)--and one experimental standard [S2] (reasonable choice). Scores on neuropsychological measures were correlated with scores on each CCTI standard. Significant bivariate correlates were subsequently entered into stepwise regression analyses to identity group-specific multivariable predictors of MDC across CCTI standards. Different multivariable cognitive models emerged across groups and consent standards. For the MCI group, measures of short-term verbal memory were key predictors of MDC for each of the three clinically relevant standards (S3, S4, and S5). Secondary predictors were measures of executive function. In contrast, in the mild AD group, measures tapping executive function and processing speed were primary predictors of S3, S4, and S5. MDC in patients with MCI is supported primarily by short-term verbal memory. The findings demonstrate the impact of amnestic deficits on MDC in patients with MCI.

  12. A chitin-binding lectin from Moringa oleifera seeds (WSMoL) impairs the digestive physiology of the Mediterranean flour larvae, Anagasta kuehniella.

    PubMed

    de Oliveira, Caio Fernando Ramalho; de Moura, Maiara Celine; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso; Macedo, Maria Lígia Rodrigues

    2017-10-01

    Biotechnological techniques allow the investigation of alternatives to outdated chemical insecticides for crop protection; some investigations have focused on the identification of molecules tailored from nature for this purpose. We, herein, describe the negative effects of water-soluble lectin from Moringa oleifera seeds (WSMoL) on Anagasta kuehniella development. The chitin-binding lectin, WSMoL, impaired the larval weight gain by 50% and affected the activity of the pest's major digestive enzymes. The commitment of the digestive process became evident after controlled digestion studies, where the capacity of protein digestion was compromised by >90%. Upon acute exposure, the lectin was not resistant to digestion; however, chronic ingestion of WSMoL was able to reverse this feature. Thus, we show that resistance to digestion may not be a prerequisite for a lectin's ability to exert negative effects on larval physiology. The mechanism of action of WSMoL involves binding to chitin with possible disruption to the peritrophic membrane, causing disorder between the endo- and ectoperitrophic spaces. Additionally, results suggest that WSMoL may trigger apoptosis in gut cells, leading to the lower enzymatic activity observed in WSMoL-fed larvae. Although assays employing an artificial diet did not demonstrate effects of WSMoL on A. kuehniella mortality, this lectin may hold potential for exerting insecticide effects on other pest insects, as well for use in other experimental approaches, such as WSMoL-expressing plants. Moreover, the use of WSMoL with other biotechnological tools, such as 'pyramid' crops, may represent a strategy for delaying the evolution of pest resistance to transgenic crops, since its multiple site targets could act in synergism with other insecticide compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Drug allergy

    PubMed Central

    Warrington, Richard

    2012-01-01

    Allergic drug reactions occur when a drug, usually a low molecular weight molecule, has the ability to stimulate an immune response. This can be done in one of two ways. The first is by binding covalently to a self-protein, to produce a haptenated molecule that can be processed and presented to the adaptive immune system to induce an immune response. Sometimes the drug itself cannot do this but a reactive breakdown product of the drug is able to bind covalently to the requisite self-protein or peptide. The second way in which drugs can stimulate an immune response is by binding non-covalently to antigen presenting or antigen recognition molecules such as the major histocompatibility complex (MHC) or the T cell receptor. This is known as the p-I or pharmacological interaction hypothesis. The drug binding in this situation is reversible and stimulation of the response may occur on first exposure, not requiring previous sensitization. There is probably a dependence on the presence of certain MHC alleles and T cell receptor structures for this type of reaction to occur. PMID:22922763

  14. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    PubMed

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  15. Differential impairment of aspirin-dependent platelet cyclooxygenase acetylation by nonsteroidal antiinflammatory drugs

    PubMed Central

    Li, Xuanwen; Fries, Susanne; Li, Ruizhi; Lawson, John A.; Propert, Kathleen J.; Diamond, Scott L.; Blair, Ian A.; FitzGerald, Garret A.; Grosser, Tilo

    2014-01-01

    The cardiovascular safety of nonsteroidal antiinflammatory drugs (NSAIDs) may be influenced by interactions with antiplatelet doses of aspirin. We sought to quantitate precisely the propensity of commonly consumed NSAIDs—ibuprofen, naproxen, and celecoxib—to cause a drug–drug interaction with aspirin in vivo by measuring the target engagement of aspirin directly by MS. We developed a novel assay of cyclooxygenase-1 (COX-1) acetylation in platelets isolated from volunteers who were administered aspirin and used conventional and microfluidic assays to evaluate platelet function. Although ibuprofen, naproxen, and celecoxib all had the potential to compete with the access of aspirin to the substrate binding channel of COX-1 in vitro, exposure of volunteers to a single therapeutic dose of each NSAID followed by 325 mg aspirin revealed a potent drug–drug interaction between ibuprofen and aspirin and between naproxen and aspirin but not between celecoxib and aspirin. The imprecision of estimates of aspirin consumption and the differential impact on the ability of aspirin to inactivate platelet COX-1 will confound head-to-head comparisons of distinct NSAIDs in ongoing clinical studies designed to measure their cardiovascular risk. PMID:25385584

  16. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites.

    PubMed

    Nayal, Murad; Honig, Barry

    2006-06-01

    In this article we introduce a new method for the identification and the accurate characterization of protein surface cavities. The method is encoded in the program SCREEN (Surface Cavity REcognition and EvaluatioN). As a first test of the utility of our approach we used SCREEN to locate and analyze the surface cavities of a nonredundant set of 99 proteins cocrystallized with drugs. We find that this set of proteins has on average about 14 distinct cavities per protein. In all cases, a drug is bound at one (and sometimes more than one) of these cavities. Using cavity size alone as a criterion for predicting drug-binding sites yields a high balanced error rate of 15.7%, with only 71.7% coverage. Here we characterize each surface cavity by computing a comprehensive set of 408 physicochemical, structural, and geometric attributes. By applying modern machine learning techniques (Random Forests) we were able to develop a classifier that can identify drug-binding cavities with a balanced error rate of 7.2% and coverage of 88.9%. Only 18 of the 408 cavity attributes had a statistically significant role in the prediction. Of these 18 important attributes, almost all involved size and shape rather than physicochemical properties of the surface cavity. The implications of these results are discussed. A SCREEN Web server is available at http://interface.bioc.columbia.edu/screen. 2006 Wiley-Liss, Inc.

  17. Drug metabolism and ageing.

    PubMed

    Wynne, Hilary

    2005-06-01

    Older people are major consumers of drugs and because of this, as well as co-morbidity and age-related changes in pharmacokinetics and pharmacodynamics, are at risk of associated adverse drug reactions. While age does not alter drug absorption in a clinically significant way, and age-related changes in volume of drug distribution and protein binding are not of concern in chronic therapy, reduction in hepatic drug clearance is clinically important. Liver blood flow falls by about 35% between young adulthood and old age, and liver size by about 24-35% over the same period. First-pass metabolism of oral drugs avidly cleared by the liver and clearance of capacity-limited hepatically metabolized drugs fall in parallel with the fall in liver size, and clearance of drugs with a high hepatic extraction ratio falls in parallel with the fall in hepatic blood flow. In normal ageing, in general, activity of the cytochrome P450 enzymes is preserved, although a decline in frail older people has been noted, as well as in association with liver disease, cancer, trauma, sepsis, critical illness and renal failure. As the contribution of age, co-morbidity and concurrent drug therapy to altered drug clearance is impossible to predict in an individual older patient, it is wise to start any drug at a low dose and increase this slowly, monitoring carefully for beneficial and adverse effects.

  18. Sentence comprehension in specific language impairment: a task designed to distinguish between cognitive capacity and syntactic complexity.

    PubMed

    Leonard, Laurence B; Deevy, Patricia; Fey, Marc E; Bredin-Oja, Shelley L

    2013-04-01

    This study examined sentence comprehension in children with specific language impairment (SLI) in a manner designed to separate the contribution of cognitive capacity from the effects of syntactic structure. Nineteen children with SLI, 19 typically developing children matched for age (TD-A), and 19 younger typically developing children (TD-Y) matched according to sentence comprehension test scores responded to sentence comprehension items that varied in either length or their demands on cognitive capacity, based on the nature of the foils competing with the target picture. The TD-A children were accurate across all item types. The SLI and TD-Y groups were less accurate than the TD-A group on items with greater length and, especially, on items with the greatest demands on cognitive capacity. The types of errors were consistent with failure to retain details of the sentence apart from syntactic structure. The difficulty in the more demanding conditions seemed attributable to interference. Specifically, the children with SLI and the TD-Y children appeared to have difficulty retaining details of the target sentence when the information reflected in the foils closely resembled the information in the target sentence.

  19. Glycation of whey protein with dextrans of different molar mass: Effect on immunoglobulin E-binding capacity with blood sera obtained from patients with cow milk protein allergy.

    PubMed

    Xu, Lei; Gong, Yuansheng; Gern, James E; Ikeda, Shinya; Lucey, John A

    2018-05-16

    A growing concern around the world is the number of people who are suffering from food protein allergies. One potential approach to decrease protein allergenicity is to block IgE-binding epitopes of the protein allergen by attachment of polysaccharides via the Maillard reaction (i.e., glycation). Protein glycation has been extensively studied to modify various functional properties. We wanted to examine whether glycates could reduce IgE binding in patients with cow milk protein allergy and to explore how the size (molar mass; M W ) of the polysaccharide affects this IgE-binding capacity. Glycation was performed using the initial step of the Maillard reaction performed in aqueous solutions. The specific goal of this study was to reduce the IgE-binding capacity of whey protein isolate (WPI) through glycation with dextran (DX). Blood sera were obtained from 8 patients who had been diagnosed with cow milk protein allergy, and a composite sera sample was used for IgE-binding analysis by the ImmunoCap (Phadia, Uppsala, Sweden) method. The WPI was glycated with DX of M W ranging from 1 to 2,000 kDa, and the M W of purified glycates was determined using size-exclusion chromatography coupled with multiangle laser light scattering. The WPI to DX molar ratios in the glycates made from DX that had M W values of 1, 3.5, 10 (G10), 150, 500, and 2,000 kDa were 1:4, 1:3, 1:2, 1:1.5, 1:1, and 1:1, respectively. With the increase in the M W of DX, there was an increase in the M W values of the corresponding glycates but a decrease in the number of bound DX. The WPI-DX glycates had lower whey protein IgE-binding capacity than native WPI, with the lowest IgE-binding capacity obtained in the G10 glycate. The DX binding ratios and morphology results from atomic force microscopy images suggested that glycation of WPI with small-M W DX resulted in extensive protein surface coverage, probably due to the attachment of up to 4 DX molecules per whey protein. The lower IgE binding of the G10

  20. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis.

    PubMed

    Xie, Youming; Varshavsky, Alexander

    2002-12-01

    The ubiquitin system recognizes degradation signals of protein substrates through E3-E2 ubiquitin ligases, which produce a substrate-linked multi-ubiquitin chain. Ubiquitinated substrates are degraded by the 26S proteasome, which consists of the 20S protease and two 19S particles. We previously showed that UBR1 and UFD4, two E3 ligases of the yeast Saccharomyces cerevisiae, interact with specific proteasomal subunits. Here we advance this analysis for UFD4 and show that it interacts with RPT4 and RPT6, two subunits of the 19S particle. The 201-residue amino-terminal region of UFD4 is essential for its binding to RPT4 and RPT6. UFD4(DeltaN), which lacks this N-terminal region, adds ubiquitin to test substrates with apparently wild-type activity, but is impaired in conferring short half-lives on these substrates. We propose that interaction of a targeted substrate with the 26S proteasome involves contacts of specific proteasomal subunits with the substrate-bound ubiquitin ligase, with the substrate-linked multi-ubiquitin chain and with the substrate itself. This multiple-site binding may function to slow down dissociation of the substrate from the proteasome and to facilitate the unfolding of substrate through ATP-dependent movements of the chaperone subunits of the 19S particle.

  1. Impact of resistance mutations on inhibitor binding to HIV-1 integrase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qi; Buolamwini, John K.; Smith, Jeremy C.

    2013-11-08

    Here, HIV-1 integrase (IN) is essential for HIV-1 replication, catalyzing two key reaction steps termed 3' processing and strand transfer. Therefore, IN has become an important target for antiviral drug discovery. However, mutants have emerged, such as E92Q/N155H and G140S/Q148H, which confer resistance to raltegravir (RAL), the first IN strand transfer inhibitor (INSTI) approved by the FDA, and to the recently approved elvitegravir (EVG). To gain insights into the molecular mechanisms of ligand binding and drug resistance, we performed molecular dynamics (MD) simulations of homology models of the HIV-1 IN and four relevant mutants complexed with viral DNA and RAL.more » The results show that the structure and dynamics of the 140s loop, comprising residues 140 to 149, are strongly influenced by the IN mutations. In the simulation of the G140S/Q148H double mutant, we observe spontaneous dissociation of RAL from the active site, followed by an intrahelical swing-back of the 3' -OH group of nucleotide A17, consistent with the experimental observation that the G140S/Q148H mutant exhibits the highest resistance to RAL compared to other IN mutants. An important hydrogen bond between residues 145 and 148 is present in the wild-type IN but not in the G140S/Q148H mutant, accounting for the structural and dynamical differences of the 140s' loop and ultimately impairing RAL binding in the double mutant. End-point free energy calculations that broadly capture the experimentally known RAL binding profiles elucidate the contributions of the 140s' loop to RAL binding free energies and suggest possible approaches to overcoming drug resistance.« less

  2. Impairment in emotion perception from body movements in individuals with bipolar I and bipolar II disorder is associated with functional capacity.

    PubMed

    Vaskinn, Anja; Lagerberg, Trine Vik; Bjella, Thomas D; Simonsen, Carmen; Andreassen, Ole A; Ueland, Torill; Sundet, Kjetil

    2017-12-01

    Individuals with bipolar disorder present with moderate impairments in social cognition during the euthymic state. The impairment extends to theory of mind and to the perception of emotion in faces and voices, but it is unclear if emotion perception from body movements is affected. The main aim of this study was to examine if participants with bipolar disorder perform worse than healthy control participants on a task using point-light displays of human full figures moving in a manner indicative of a basic emotion (angry, happy, sad, fearful, neutral/no emotion). A secondary research question was whether diagnostic subtypes (bipolar I, bipolar II) and history of psychosis impacted on this type of emotion perception. Finally, symptomatic, neurocognitive, and functional correlates of emotion perception from body movements were investigated. Fifty-three individuals with bipolar I (n = 29) or bipolar II (n = 24) disorder, and 84 healthy control participants were assessed for emotion perception from body movements. The bipolar group also underwent clinical, cognitive, and functional assessment. Research questions were analyzed using analyses of variance and bivariate correlations. The bipolar disorder group differed significantly from healthy control participants for emotion perception from body movements (Cohen's d = 0.40). Analyses of variance yielded no effects of sex, diagnostic subtype (bipolar I, bipolar II), or history of psychosis. There was an effect of emotion, indicating that some emotions are easier to recognize. The lack of a significant group × emotion interaction effect points, however, to this being so regardless of the presence of bipolar disorder. Performance was unrelated to manic and depressive symptom load but showed significant associations with neurocognition and functional capacity. Individuals with bipolar disorder had a small but significant impairment in the ability to perceive emotions from body movement. The impairment was global, i

  3. Drug-Target Kinetics in Drug Discovery.

    PubMed

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  4. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.

  5. The NorM MATE transporter from N. gonorrhoeae: insights into drug and ion binding from atomistic molecular dynamics simulations.

    PubMed

    Leung, Yuk Ming; Holdbrook, Daniel A; Piggot, Thomas J; Khalid, Syma

    2014-07-15

    The multidrug and toxic compound extrusion transporters extrude a wide variety of substrates out of both mammalian and bacterial cells via the electrochemical gradient of protons and cations across the membrane. The substrates transported by these proteins include toxic metabolites and antimicrobial drugs. These proteins contribute to multidrug resistance in both mammalian and bacterial cells and are therefore extremely important from a biomedical perspective. Although specific residues of the protein are known to be responsible for the extrusion of solutes, mechanistic details and indeed structures of all the conformational states remain elusive. Here, we report the first, to our knowledge, simulation study of the recently resolved x-ray structure of the multidrug and toxic compound extrusion transporter, NorM from Neisseria gonorrhoeae (NorM_NG). Multiple, atomistic simulations of the unbound and bound forms of NorM in a phospholipid lipid bilayer allow us to identify the nature of the drug-protein/ion-protein interactions, and secondly determine how these interactions contribute to the conformational rearrangements of the protein. In particular, we identify the molecular rearrangements that occur to enable the Na(+) ion to enter the cation-binding cavity even in the presence of a bound drug molecule. These include side chain flipping of a key residue, GLU-261 from pointing toward the central cavity to pointing toward the cation binding side when bound to a Na(+) ion. Our simulations also provide support for cation binding in the drug-bound and apo states of NorM_NG. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Effectiveness of a drug dosing service provided by community pharmacists in polymedicated elderly patients with renal impairment — a comparative study

    PubMed Central

    2013-01-01

    Background Drug dosing errors are common in renal-impaired patients. Appropriate dosing adjustment and drug selection is important to ensure patients’ safety and to avoid adverse drug effects and poor outcomes. There are few studies on this issue in community pharmacies. The aims of this study were, firstly, to determine the prevalence of dosing inadequacy as a consequence of renal impairment in patients over 65 taking 3 or more drug products who were being attended in community pharmacies and, secondly, to evaluate the effectiveness of the community pharmacist’s intervention in improving dosing inadequacy in these patients when compared with usual care. Methods The study was carried out in 40 Spanish community pharmacies. The study had two phases: the first, with an observational, multicentre, cross sectional design, served to determine the dosing inadequacy, the drug-related problems per patient and to obtain the control group. The second phase, with a controlled study with historical control group, was the intervention phase. When dosing adjustments were needed, the pharmacists made recommendations to the physicians. A comparison was made between the control and the intervention group regarding the prevalence of drug dosing inadequacy and the mean number of drug-related problems per patient. Results The mean of the prevalence of drug dosing inadequacy was 17.5% [95% CI 14.6-21.5] in phase 1 and 15.5% [95% CI 14.5-16.6] in phase 2. The mean number of drug-related problems per patient was 0.7 [95% CI 0.5-0.8] in phase 1 and 0.50 [95% CI 0.4-0.6] in phase 2. The difference in the prevalence of dosing inadequacy between the control and intervention group before the pharmacists’ intervention was 0.73% [95% CI (−6.0) - 7.5] and after the pharmacists’ intervention it was 13.5% [95% CI 8.0 - 19.5] (p < 0.001) while the difference in the mean of drug-related problems per patient before the pharmacists’ intervention was 0.05 [95% CI( -0.2) - 0.3] and

  7. Method for estimating protein binding capacity of polymeric systems.

    PubMed

    Sharma, Vaibhav; Blackwood, Keith A; Haddow, David; Hook, Lilian; Mason, Chris; Dye, Julian F; García-Gareta, Elena

    2015-01-01

    Composite biomaterials made from synthetic and protein-based polymers are extensively researched in tissue engineering. To successfully fabricate a protein-polymer composite, it is critical to understand how strongly the protein binds to the synthetic polymer, which occurs through protein adsorption. Currently, there is no cost-effective and simple method for characterizing this interfacial binding. To characterize this interfacial binding, we introduce a simple three-step method that involves: 1) synthetic polymer surface characterisation, 2) a quick, inexpensive and robust novel immuno-based assay that uses protein extraction compounds to characterize protein binding strength followed by 3) an in vitro 2D model of cell culture to confirm the results of the immuno-based assay. Fibrinogen, precursor of fibrin, was adsorbed (test protein) on three different polymeric surfaces: silicone, poly(acrylic acid)-coated silicone and poly(allylamine)-coated silicone. Polystyrene surface was used as a reference. Characterisation of the different surfaces revealed different chemistry and roughness. The novel immuno-based assay showed significantly stronger binding of fibrinogen to both poly(acrylic acid) and poly(allylamine) coated silicone. Finally, cell studies showed that the strength of the interaction between the protein and the polymer had an effect on cell growth. This novel immuno-based assay is a valuable tool in developing composite biomaterials of synthetic and protein-based polymers with the potential to be applied in other fields of research where protein adsorption onto surfaces plays an important role.

  8. Associations between Depressive State and Impaired Higher-Level Functional Capacity in the Elderly with Long-Term Care Requirements.

    PubMed

    Ogata, Soshiro; Hayashi, Chisato; Sugiura, Keiko; Hayakawa, Kazuo

    2015-01-01

    Depressive state has been reported to be significantly associated with higher-level functional capacity among community-dwelling elderly. However, few studies have investigated the associations among people with long-term care requirements. We aimed to investigate the associations between depressive state and higher-level functional capacity and obtain marginal odds ratios using propensity score analyses in people with long-term care requirements. We conducted a cross-sectional study based on participants aged ≥ 65 years (n = 545) who were community dwelling and used outpatient care services for long-term preventive care. We measured higher-level functional capacity, depressive state, and possible confounders. Then, we estimated the marginal odds ratios (i.e., the change in odds of impaired higher-level functional capacity if all versus no participants were exposed to depressive state) by logistic models using generalized linear models with the inverse probability of treatment weighting (IPTW) for propensity score and design-based standard errors. Depressive state was used as the exposure variable and higher-level functional capacity as the outcome variable. The all absolute standardized differences after the IPTW using the propensity scores were < 10% which indicated negligible differences in the mean or prevalence of the covariates between non-depressive state and depressive state. The marginal odds ratios were estimated by the logistic models with IPTW using the propensity scores. The marginal odds ratios were 2.17 (95%CI: 1.13-4.19) for men and 2.57 (95%CI: 1.26-5.26) for women. Prevention of depressive state may contribute to not only depressive state but also higher-level functional capacity.

  9. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line.

    PubMed

    Kienzler, Aude; Mahler, Barbara J; Van Metre, Peter C; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-07-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The effects of methylglyoxal-bis(guanylhydrazone) on spermine binding and transport in liver mitochondria.

    PubMed

    Toninello, A; Via, L D; Di Noto, V; Mancon, M

    1999-12-15

    This study evaluated the effect of the anticancer drug methylglyoxal-bis(guanylhydrazone) (MGBG) on the binding of the polyamine spermine to the mitochondrial membrane and its transport into the inner compartment of this organelle. Spermine binding was studied by applying a new thermodynamic treatment of ligand-receptor interactions (Di Noto et al., Macromol Theory Simul 5: 165-181, 1996). Results showed that MGBG inhibited the binding of spermine to the site competent for the first step in polyamine transport; the interaction of spermine with this site, termed S1, also mediates the inhibitory effect of the polyamine on the mitochondrial permeability transition (Dalla Via et al., Biochim Biophys Acta 1284: 247-252, 1996). In the presence of 1 mM MGBG, the binding capacity and affinity of this site were reduced by about 2.6-fold; on the contrary, the binding capacity of the S2 site, which is most likely responsible for the internalization of cytoplasmic proteins (see Dalla Via et al., reference cited above), increased by about 1.3-fold, and its binding affinity remained unaffected. MGBG also inhibited the initial rate of spermine transport in a dose-dependent manner by establishing apparently sigmoidal kinetics. Consequently, the total extent of spermine accumulation inside mitochondria was inhibited. This inhibition in transport seems to reflect a conformational change at the level of the channel protein constituting the polyamine transport system, rather than competitive inhibition at the inner active site of the channel, thereby excluding the possibility that the polyamine and drug use the same transport pathway. Furthermore, it is suggested that, in the presence of MGBG, the S2 site is able to participate in residual spermine transport. MGBG also strongly inhibits deltapH-dependent spermine efflux, resulting in a complete block in the bidirectional flux of the polyamine and its sequestration inside the matrix space. The effects of MGBG on spermine accumulation

  11. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells

    PubMed Central

    2012-01-01

    Background Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1) and Akt). Results We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. Conclusion These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk. PMID:22709426

  12. Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation.

    PubMed

    Zhu, Yanyan; Yuan, Yuan; Xiao, Xiuchan; Zhang, Liyun; Guo, Yanzhi; Pu, Xuemei

    2014-11-01

    G-protein-coupled receptors (GPCRs) are currently one of the largest families of drug targets. The constitutive activation induced by mutation of key GPCR residues is associated closely with various diseases. However, the structural basis underlying such activation and its role in drug binding has remained unclear. Herein, we used all-atom molecular dynamics simulations and free energy calculations to study the effects of a D130N mutation on the structure of β2 adrenergic receptor (β2AR) and its binding of the agonist salbutamol. The results indicate that the mutation caused significant changes in some key helices. In particular, the mutation leads to the departure of transmembrane 3 (TM3) from transmembrane 6 (TM6) and marked changes in the NPxxY region as well as the complete disruption of a key ionic lock, all of which contribute to the observed constitutive activation. In addition, the D130N mutation weakens some important H-bonds, leading to structural changes in these regions. Binding free energy calculations indicate that van der Waals and electrostatic interactions are the main driving forces in binding salbutamol; however, binding strength in the mutant β2AR is significantly enhanced mainly through modifying electrostatic interactions. Further analysis revealed that the increase in binding energy upon mutation stems mainly from the H-bonds formed between the hydroxyl group of salbutamol and the serine residues of TM5. This observation suggests that modifications of the H-bond groups of this drug could significantly influence drug efficacy in the treatment of diseases associated with this mutation.

  13. Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements.

    PubMed

    Brent, G A; Williams, G R; Harney, J W; Forman, B M; Samuels, H H; Moore, D D; Larsen, P R

    1992-04-01

    Thyroid hormone response elements (T3REs) have been identified in a variety of promoters including those directing expression of rat GH (rGH), alpha-myosin heavy chain (rMHC), and malic enzyme (rME). A detailed biochemical and genetic analysis of the rGH element has shown that it consists of three hexamers related to the consensus [(A/G)GGT(C/A)A]. We have extended this analysis to the rMHC and rME elements. Binding of highly purified thyroid hormone receptor (T3R) to T3REs was determined using the gel shift assay, and thyroid hormone (T3) induction was measured in transient tranfections. We show that the wild type version of each of the three elements binds T3R dimers cooperatively. Mutational analysis of the rMHC and rME elements identified domains important for binding T3R dimers and allowed a direct determination of the relationship between T3R binding and function. In each element two hexamers are required for dimer binding, and mutations that interfere with dimer formation significantly reduce T3 induction. Similar to the rGH element, the rMHC T3RE contains three hexameric domains arranged as a direct repeat followed by an inverted copy, although the third domain is weaker than in rGH. All three are required for full function and T3R binding. The rME T3RE is a two-hexamer direct repeat T3RE, which also binds T3R monomer and dimer. Across a series of mutant elements, there was a strong correlation between dimer binding in vitro and function in vivo for rMHC (r = 0.99, P less than 0.01) and rME (r = 0.67, P less than 0.05) T3REs. Our results demonstrate a similar pattern of T3R dimer binding to a diverse array of hexameric sequences and arrangements in three wild type T3REs. Addition of nuclear protein enhanced T3R binding but did not alter the specificity of binding to wild type or mutant elements. Binding of purified T3R to T3REs was highly correlated with function, both with and without the addition of nuclear protein. T3R dimer formation is the common

  14. Drugs with anticholinergic effects and cognitive impairment, falls and all-cause mortality in older adults: A systematic review and meta-analysis

    PubMed Central

    Ruxton, Kimberley; Woodman, Richard J; Mangoni, Arduino A

    2015-01-01

    Aim The aim was to investigate associations between drugs with anticholinergic effects (DACEs) and cognitive impairment, falls and all-cause mortality in older adults. Methods A literature search using CINAHL, Cochrane Library, Embase and PubMed databases was conducted for randomized controlled trials, prospective and retrospective cohort and case-control studies examining the use of DACEs in subjects ≥65 years with outcomes on falls, cognitive impairment and all-cause mortality. Retrieved articles were published on or before June 2013. Anticholinergic exposure was investigated using drug class, DACE scoring systems (anticholinergic cognitive burden scale, ACB; anticholinergic drug scale, ADS; anticholinergic risk scale, ARS; anticholinergic component of the drug burden index, DBIAC) or assessment of individual DACEs. Meta-analyses were performed to pool the results from individual studies. Results Eighteen studies fulfilled the inclusion criteria (total 124 286 participants). Exposure to DACEs as a class was associated with increased odds of cognitive impairment (OR 1.45, 95% CI 1.16, 1.73). Olanzapine and trazodone were associated with increased odds and risk of falls (OR 2.16, 95% CI 1.05, 4.44; RR 1.79, 95% CI 1.60, 1.97, respectively), but amitriptyline, paroxetine and risperidone were not (RR 1.73, 95% CI 0.81, 2.65; RR 1.80, 95% CI 0.81, 2.79; RR 1.39, 95% CI 0.59, 3.26, respectively). A unit increase in the ACB scale was associated with a doubling in odds of all-cause mortality (OR 2.06, 95% CI 1.82, 2.33) but there were no associations with the DBIAC (OR 0.88, 95% CI 0.55, 1.42) or the ARS (OR 3.56, 95% CI 0.29, 43.27). Conclusions Certain individual DACEs or increased overall DACE exposure may increase the risks of cognitive impairment, falls and all-cause mortality in older adults. PMID:25735839

  15. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Hypertensive Patients With Primary Hyperaldosteronemia: Role of 5,6,7,8-Tetrahydrobiopterin Oxidation and Endothelial Nitric Oxide Synthase Uncoupling.

    PubMed

    Chen, Long; Ding, Mei-Lin; Wu, Fang; He, Wen; Li, Jin; Zhang, Xiao-Yu; Xie, Wen-Li; Duan, Sheng-Zhong; Xia, Wen-Hao; Tao, Jun

    2016-02-01

    Although hyperaldosteronemia exerts detrimental impacts on vascular endothelium in addition to elevating blood pressure, the effects and molecular mechanisms of hyperaldosteronemia on early endothelial progenitor cell (EPC)-mediated endothelial repair after arterial damage are yet to be determined. The aim of this study was to investigate the endothelial repair capacity of early EPCs from hypertensive patients with primary hyperaldosteronemia (PHA). In vivo endothelial repair capacity of early EPCs from PHAs (n=20), age- and blood pressure-matched essential hypertension patients (n=20), and age-matched healthy subjects (n=20) was evaluated by transplantation into a nude mouse carotid endothelial denudation model. Endothelial function was evaluated by flow-mediated dilation of brachial artery in human subjects. In vivo endothelial repair capacity of early EPCs and flow-mediated dilation were impaired both in PHAs and in essential hypertension patients when compared with age-matched healthy subjects; however, the early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs were impaired more severely than essential hypertension patients. Oral spironolactone improved early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs. Increased oxidative stress, oxidative 5,6,7,8-tetrahydrobiopterin degradation, endothelial nitric oxide synthase uncoupling and decreased nitric oxide production were found in early EPCs from PHAs. Nicotinamide adenine dinucleotide phosphate oxidase subunit p47(phox) knockdown or 5,6,7,8-tetrahydrobiopterin supplementation attenuated endothelial nitric oxide synthase uncoupling and enhanced in vivo endothelial repair capacity of early EPCs from PHAs. In conclusion, PHAs exhibited more impaired endothelial repair capacity of early EPCs than did essential hypertension patients independent of blood pressure, which was associated with mineralocorticoid receptor-dependent oxidative stress and subsequently 5

  16. Machine learning algorithms for the prediction of hERG and CYP450 binding in drug development.

    PubMed

    Klon, Anthony E

    2010-07-01

    The cost of developing new drugs is estimated at approximately $1 billion; the withdrawal of a marketed compound due to toxicity can result in serious financial loss for a pharmaceutical company. There has been a greater interest in the development of in silico tools that can identify compounds with metabolic liabilities before they are brought to market. The two largest classes of machine learning (ML) models, which will be discussed in this review, have been developed to predict binding to the human ether-a-go-go related gene (hERG) ion channel protein and the various CYP isoforms. Being able to identify potentially toxic compounds before they are made would greatly reduce the number of compound failures and the costs associated with drug development. This review summarizes the state of modeling hERG and CYP binding towards this goal since 2003 using ML algorithms. A wide variety of ML algorithms that are comparable in their overall performance are available. These ML methods may be applied regularly in discovery projects to flag compounds with potential metabolic liabilities.

  17. Speech and neurology-chemical impairment correlates

    NASA Astrophysics Data System (ADS)

    Hayre, Harb S.

    2002-05-01

    Speech correlates of alcohol/drug impairment and its neurological basis is presented with suggestion for further research in impairment from poly drug/medicine/inhalent/chew use/abuse, and prediagnosis of many neuro- and endocrin-related disorders. Nerve cells all over the body detect chemical entry by smoking, injection, drinking, chewing, or skin absorption, and transmit neurosignals to their corresponding cerebral subsystems, which in turn affect speech centers-Broca's and Wernick's area, and motor cortex. For instance, gustatory cells in the mouth, cranial and spinal nerve cells in the skin, and cilia/olfactory neurons in the nose are the intake sensing nerve cells. Alcohol depression, and brain cell damage were detected from telephone speech using IMPAIRLYZER-TM, and the results of these studies were presented at 1996 ASA meeting in Indianapolis, and 2001 German Acoustical Society-DEGA conference in Hamburg, Germany respectively. Speech based chemical Impairment measure results were presented at the 2001 meeting of ASA in Chicago. New data on neurotolerance based chemical impairment for alcohol, drugs, and medicine shall be presented, and shown not to fully support NIDA-SAMSHA drug and alcohol threshold used in drug testing domain.

  18. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats.

    PubMed

    Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian

    2016-10-02

    To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake-probably by promoting a feeling of satiety in rats to decrease their feeding behavior.

  19. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats

    PubMed Central

    Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian

    2016-01-01

    To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake—probably by promoting a feeling of satiety in rats to decrease their feeding behavior. PMID:27706095

  20. Attentional Bias for Non-drug Reward is Magnified in Addiction

    PubMed Central

    Anderson, Brian A.; Faulkner, Monica L.; Rilee, Jessica J.; Yantis, Steven; Marvel, Cherie L.

    2014-01-01

    Attentional biases for drug-related stimuli play a prominent role in addiction, predicting treatment outcome. Attentional biases also develop for stimuli that have been paired with non-drug reward in adults without a history of addiction, the magnitude of which is predicted by visual working memory capacity and impulsiveness. We tested the hypothesis that addiction is associated with an increased attentional bias for non-drug (monetary) reward relative to that of healthy controls, and that this bias is related to working memory impairments and increased impulsiveness. Seventeen patients receiving methadone maintenance treatment for opioid dependence and seventeen healthy controls participated. Impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11), visual working memory capacity was measured as the ability to recognize briefly presented color stimuli, and attentional bias was measured as the magnitude of response time slowing caused by irrelevant but previously reward-associated distractors in a visual search task. The results showed that attention was biased toward the distractors across all participants, replicating previous findings. Importantly, this bias was significantly greater in the patients than in the controls and was negatively correlated with visual working memory capacity. Patients were also significantly more impulsive than controls as a group. Our findings demonstrate that patients in treatment for addiction experience greater difficulty ignoring stimuli associated with non-drug reward. This non-specific reward-related bias could mediate the distracting quality of drug-related stimuli previously observed in addiction. PMID:24128148

  1. 20 CFR 416.976 - Impairment-related work expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... work, we will deduct payments you make toward its cost. (5) Payments for drugs and medical services. (i) If you must use drugs or medical services (including diagnostic procedures) to control your impairment(s), the payments you make for them may be deducted. The drugs or services must be prescribed (or...

  2. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding.

    PubMed

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2016-04-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Investigation of β-lactam antibacterial drugs, β-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review

    NASA Astrophysics Data System (ADS)

    Shapiro, Adam B.

    2016-06-01

    This review covers the uses of fluorescence polarization and anisotropy for the investigation of bacterial penicillin binding proteins (PBPs), which are the targets of β-lactam antibacterial drugs (penicillins, cephalosporins, carbapenems, and monobactams), and of the β-lactamase enzymes that destroy these drugs and help to render bacterial pathogens resistant to them. Fluorescence polarization and anisotropy-based methods for quantitation of β-lactam drugs are also reviewed. A particular emphasis is on methods for quantitative measurement of the interactions of β-lactams and other inhibitors with PBPs and β-lactamases.

  4. Exposure of Trypanosoma brucei to an N-acetylglucosamine-Binding Lectin Induces VSG Switching and Glycosylation Defects Resulting in Reduced Infectivity

    PubMed Central

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Van Damme, Els J. M.; Balzarini, Jan; González-Pacanowska, Dolores

    2015-01-01

    Trypanosoma brucei variant surface glycoproteins (VSG) are glycosylated by both paucimannose and oligomannose structures which are involved in the formation of a protective barrier against the immune system. Here, we report that the stinging nettle lectin (UDA), with predominant N-acetylglucosamine-binding specificity, interacts with glycosylated VSGs and kills parasites by provoking defects in endocytosis together with impaired cytokinesis. Prolonged exposure to UDA induced parasite resistance based on a diminished capacity to bind the lectin due to an enrichment of biantennary paucimannose and a reduction of triantennary oligomannose structures. Two molecular mechanisms involved in resistance were identified: VSG switching and modifications in N-glycan composition. Glycosylation defects were correlated with the down-regulation of the TbSTT3A and/or TbSTT3B genes (coding for oligosaccharyltransferases A and B, respectively) responsible for glycan specificity. Furthermore, UDA-resistant trypanosomes exhibited severely impaired infectivity indicating that the resistant phenotype entails a substantial fitness cost. The results obtained further support the modification of surface glycan composition resulting from down-regulation of the genes coding for oligosaccharyltransferases as a general resistance mechanism in response to prolonged exposure to carbohydrate-binding agents. PMID:25746926

  5. Comparison of Grammar in Neurodevelopmental Disorders: The Case of Binding in Williams Syndrome and Autism With and Without Language Impairment

    PubMed Central

    Modyanova, Nadya; Wexler, Ken

    2013-01-01

    This study investigates whether distinct neurodevelopmental disorders show distinct patterns of impairments in particular grammatical abilities and the relation of those grammatical patterns to general language delays and intellectual disabilities. We studied two disorders (autism and Williams syndrome [WS]) and two distinct properties (Principle A that governs reflexives and Principle B that, together with its associated pragmatic rule, governs pronouns) of the binding module of grammar. These properties are known to have markedly different courses of acquisition in typical development. We compare the knowledge of binding in children with autism with language impairment (ALI) and those with normal language (ALN) to that of children with WS, matched on age to the ALN group, and on age and nonverbal mental age (MA) to the ALI group, as well as to two groups of typically developing (TD) controls, matched on nonverbal MA to ALI and ALN groups. Our results reveal a remarkably different pattern of comprehension of personal pronouns and reflexives in ALI as opposed to ALN, WS, and two groups of TD controls. All five groups demonstrated an equal delay in their comprehension of personal pronouns, in line with widely reported delays in TD literature, argued to be due to delayed pragmatic abilities. However, and most strikingly, the ALI group also showed a pronounced difficulty in comprehension of reflexive pronouns, and particularly of the knowledge that the antecedent of a reflexive must c-command it. The revealed pattern confirms the existence of a particular impairment concerning Principle A in this module of grammar, unrelated to general language delays or cognitive deficits generally present in a large portion of individuals with autism as well as WS, or to general pragmatic deficits, known to be particularly prevalent in the population with autism. PMID:25170241

  6. New Antioxidant Drugs for Neonatal Brain Injury

    PubMed Central

    Tataranno, Maria Luisa; Longini, Mariangela; Buonocore, Giuseppe

    2015-01-01

    The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs) generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment. PMID:25685254

  7. A substitutional mutation in the DNA binding domain of the androgen receptor causes complete androgen insensitivity syndrome.

    PubMed

    Komori, S; Sakata, K; Kasumi, H; Tsuji, Y; Hamada, K; Koyama, K

    1999-10-01

    DNA analysis of the androgen receptor gene in a patient with complete androgen insensitivity syndrome identified a substitutional mutation (tyrosine converted to cysteine at position 571) in the DNA binding domain. In vitro transfection experiments with the patients' androgen receptor gene, indicated normal expression of the androgen receptor in transfected COS-7 cells compared to the wild type gene. There was also no evidence of impaired thermal stability of the 5 alpha-dihydrotestosterone-androgen receptor complex. However, the capacity of the androgen receptor to activate target gene transcription was found to be completely disrupted in a luciferase assay. These results confirmed that only one substitutional mutation in the DNA binding domain was related to the pathogenesis of the complete androgen insensitivity syndrome.

  8. Discover binding pathways using the sliding binding-box docking approach: application to binding pathways of oseltamivir to avian influenza H5N1 neuraminidase

    NASA Astrophysics Data System (ADS)

    Tran, Diem-Trang T.; Le, Ly T.; Truong, Thanh N.

    2013-08-01

    Drug binding and unbinding are transient processes which are hardly observed by experiment and difficult to analyze by computational techniques. In this paper, we employed a cost-effective method called "pathway docking" in which molecular docking was used to screen ligand-receptor binding free energy surface to reveal possible paths of ligand approaching protein binding pocket. A case study was applied on oseltamivir, the key drug against influenza a virus. The equilibrium pathways identified by this method are found to be similar to those identified in prior studies using highly expensive computational approaches.

  9. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    PubMed

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.

  10. Sleep Deprivation Decreases [11C]Raclopride’s Binding to Dopamine D2/D3 Receptors in the Human Brain

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Wong, Christopher; Ma, Jim; Pradhan, Kith; Tomasi, Dardo; Thanos, Peter K.; Ferré, Sergi; Jayne, Millard

    2009-01-01

    Sleep deprivation can markedly impair human performance contributing to accidents and poor productivity. The mechanisms underlying this impairment are not well understood but brain dopamine systems have been implicated. Here we test whether one night of sleep deprivation changes dopamine brain activity. We studied fifteen healthy subjects using positron emission tomography and [11C]raclopride (dopamine D2/3 receptor radioligand) and [11C]cocaine (dopamine transporter radioligand). Subjects were tested twice; after one night of rested sleep and after on night of sleep deprivation. [11C]Raclopride’s specific binding in striatum and thalamus were significantly reduced after sleep deprivation and the magnitude of this reduction correlated with increases in fatigue (tiredness and sleepiness) and with deterioration in cognitive performance (visual attention and working memory). In contrast sleep deprivation did not affect the specific binding of [11C]cocaine in striatum. Since [11C]raclopride competes with endogenous dopamine for binding to D2/D3 receptors, we interpret the decreases in binding to reflect dopamine increases with sleep deprivation. However, we can not rule out the possibility that decreased [11C]raclopride binding reflects decreases in receptor levels or affinity. Sleep deprivation did not affect dopamine transporters (target for most wake-promoting medications) and thus dopamine increases are likely to reflect increases in dopamine cell firing and/or release rather than decreases in dopamine reuptake. Inasmuch as dopamine-enhancing drugs increase wakefulness we postulate that dopamine increases after sleep deprivation is a mechanism by which the brain maintains arousal as the drive to sleep increases but one that is insufficient to counteract behavioral and cognitive impairment. PMID:18716203

  11. Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs.

    PubMed

    Kandeel, Mahmoud; Altaher, Abdullah; Kitade, Yukio; Abdelaziz, Magdi; Alnazawi, Mohamed; Elshazli, Kamal

    2016-10-01

    Camels are raised in harsh desert environment for hundreds of years ago. By modernization of live and the growing industrial revolution in camels rearing areas, camels are exposed to considerable amount of chemicals, industrial waste, environmental pollutions and drugs. Furthermore, camels have unique gene evolution of some genes to withstand living in harsh environments. In this work, the camel cytochrome P450 2E1 (CYP2E1) is compromised to detect its evolution rate and its power to bind with various chemicals, protoxins, procarcinogens, industrial toxins and drugs. In comparison with human CYP2E1, camel CYP2E1 more efficiently binds to small toxins as aniline, benzene, catechol, amides, butadiene, toluene and acrylamide. Larger compounds were more preferentially bound to the human CYP2E1 in comparison with camel CYP2E1. The binding of inhalant anesthetics was almost similar in both camel and human CYP2E1 coinciding with similar anesthetic effect as well as toxicity profiles. Furthermore, evolutionary analysis indicated the high evolution rate of camel CYP2E1 in comparison with human, farm and companion animals. The evolution rate of camel CYP2E1 was among the highest evolution rate in a subset of 57 different organisms. These results indicate rapid evolution and potent toxin binding power of camel CYP2E1. Copyright © 2016. Published by Elsevier Ltd.

  12. Differential binding of prohibitin-2 to estrogen receptor α and to drug-resistant ERα mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chigira, Takeru, E-mail: 8120661875@mail.ecc.u-tokyo.ac.jp; Nagatoishi, Satoru, E-mail: nagatoishi@bioeng.t.u-tokyo.ac.jp; Tsumoto, Kouhei, E-mail: tsumoto@bioeng.t.u-tokyo.ac.jp

    2015-08-07

    Endocrine resistance is one of the most challenging problems in estrogen receptor alpha (ERα)-positive breast cancer. The transcriptional activity of ERα is controlled by several coregulators, including prohibitin-2 (PHB2). Because of its ability to repress the transcriptional activity of activated ERα, PHB2 is a promising antiproliferative agent. In this study, were analyzed the interaction of PHB2 with ERα and three mutants (Y537S, D538G, and E380Q) that are frequently associated with a lack of sensitivity to hormonal treatments, to help advance novel drug discovery. PHB2 bound to ERα wild-type (WT), Y537S, and D538G, but did not bind to E380Q. The bindingmore » thermodynamics of Y537S and D538G to PHB2 were favorably altered entropically compared with those of WT to PHB2. Our results show that PHB2 binds to the ligand binding domain of ERα with a conformational change in the helix 12 of ERα. - Highlights: • Molten globule-likeness of an ERα repressor Prohibitin-2 (PHB2) is identified. • The thermodynamics is validated for the interaction between ERα and PHB2. • PHB2 binds to Y537S and D538G mutants of ERα commonly found in breast cancer. • ERα WT and mutants showed different thermodynamic parameters in the binding to PHB2. • ERα binds to PHB2 with conformational change involving packing of helix 12.« less

  13. Processing Binding Relations in Specific Language Impairment

    ERIC Educational Resources Information Center

    Schwartz, Richard G.; Hestvik, Arild; Seiger-Gardner, Liat; Almodovar, Diana

    2016-01-01

    Purpose: This sentence processing experiment examined the abilities of children with specific language impairment (SLI) and children with typical language development (TD) to establish relations between pronouns or reflexives and their antecedents in real time. Method: Twenty-two children with SLI and 24 age-matched children with TD (7;3-10;11…

  14. 20 CFR 404.1576 - Impairment-related work expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... enable you to work, we will deduct payments you make toward its cost. (5) Payments for drugs and medical services. (i) If you must use drugs or medical services (including diagnostic procedures) to control your impairment(s) the payments you make for them may be deducted. The drugs or services must be prescribed (or...

  15. The Assisted Decision-Making (Capacity) Act 2015: what it is and why it matters.

    PubMed

    Kelly, B D

    2017-05-01

    Ireland's Assisted Decision-Making (Capacity) Act 2015 was signed by President Higgins in December 2015 and scheduled for commencement in 2016. To explore the content and implications of the 2015 Act. Review of the 2015 Act and related literature. The 2015 Act places the "will and preferences" of persons with impaired mental capacity at the heart of decision-making relating to "personal welfare" (including healthcare) and "property and affairs". Capacity is to be "construed functionally" and interventions must be "for the benefit of the relevant person". The Act outlines three levels of decision-making assistance: "decision-making assistant", "co-decision-maker" (joint decision-maker) and "decision-making representative" (substitute decision-maker). There are procedures relating to "enduring power of attorney" and "advance healthcare directives"; in the case of the latter, a "refusal of treatment" can be legally binding, while a "request for a specific treatment" must "be taken into consideration". The 2015 Act is considerably more workable than the 2013 Bill that preceded it. Key challenges include the subtle decision-making required by patients, healthcare staff, Circuit Court judges and the director of the Decision Support Service; implementation of "advance healthcare directives", especially if they do not form part of a broader model of advance care planning (incorporating the flexibility required for unpredictable future circumstances); and the over-arching issue of logistics, as very many healthcare decisions are currently made in situations where the patient's capacity is impaired. A key challenge will lie in balancing the emphasis on autonomy with principles of beneficence, mutuality and care.

  16. Characterization of the cation-binding capacity of a potassium-adsorption filter used in red blood cell transfusion.

    PubMed

    Suzuki, Takao; Muto, Shigeaki; Miyata, Yukio; Maeda, Takao; Odate, Takayuki; Shimanaka, Kimio; Kusano, Eiji

    2015-06-01

    A K(+) -adsorption filter was developed to exchange K(+) in the supernatant of stored irradiated red blood cells with Na(+) . To date, however, the filter's adsorption capacity for K(+) has not been fully evaluated. Therefore, we characterized the cation-binding capacity of this filter. Artificial solutions containing various cations were continuously passed through the filter in 30 mL of sodium polystyrene sulfonate at 10 mL/min using an infusion pump at room temperature. The cation concentrations were measured before and during filtration. When a single solution containing K(+) , Li(+) , H(+) , Mg(2+) , Ca(2+) , or Al(3+) was continuously passed through the filter, the filter adsorbed K(+) and the other cations in exchange for Na(+) in direct proportion to the valence number. The order of affinity for cation adsorption to the filter was Ca(2+) >Mg(2+) >K(+) >H(+) >Li(+) . In K(+) -saturated conditions, the filter also adsorbed Na(+) . After complete adsorption of these cations on the filter, their concentration in the effluent increased in a sigmoidal manner over time. Cations that were bound to the filter were released if a second cation was passed through the filter, despite the different affinities of the two cations. The ability of the filter to bind cations, especially K(+) , should be helpful when it is used for red blood cell transfusion at the bedside. The filter may also be useful to gain a better understanding of the pharmacological properties of sodium polystyrene sulfonate. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  17. Dimeric isoxazolyl-1,4-dihydropyridines have enhanced binding at the multi-drug resistance transporter.

    PubMed

    Steiger, Scott A; Li, Chun; Backos, Donald S; Reigan, Philip; Natale, N R

    2017-06-15

    A series of dimeric isoxazolyl-1,4-dihydropyridines (IDHPs) were prepared by click chemistry and examined for their ability to bind the multi-drug resistance transporter (MDR-1), a member of the ATP-binding cassette superfamily (ABC). Eight compounds in the present study exhibited single digit micromolar binding to this efflux transporter. One monomeric IDHP m-Br-1c, possessed submicromolar binding of 510nM at MDR-1. Three of the dimeric IDHPs possessed <1.5µM activity, and 4b and 4c were observed to have superior binding selectivity compared to their corresponding monomers verses the voltage gated calcium channel (VGCC). The dimer with the best combination of activity and selectivity for MDR-1 was analog 4c containing an m-Br phenyl moiety in the 3-position of the isoxazole, and a tether with five ethyleneoxy units, referred to herein as Isoxaquidar. Two important controls, mono-triazole 5 and pyridine 6, also were examined, indicating that the triazole - incorporated as part of the click assembly as a spacer - contributes to MDR-1 binding. Compounds were also assayed at the allosteric site of the mGluR5 receptor, as a GPCR 7TM control, indicating that the p-Br IDHPs 4d, 4e and 4f with tethers of from n=2 to 5 ethylenedioxy units, had sub-micromolar affinities with 4d being the most efficacious at 193nM at mGluR5. The results are interpreted using a docking study using a human ABC as our current working hypothesis, and suggest that the distinct SARs emerging for these three divergent classes of biomolecular targets may be tunable, and amenable to the development of further selectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Capacity of the Catalan and Spanish Versions of the Bilingual Aphasia Test to Distinguish between Healthy Aging, Mild Cognitive Impairment and Alzheimer's Disease

    ERIC Educational Resources Information Center

    Gomez-Ruiz, Isabel; Aguilar-Alonso, Angel

    2011-01-01

    This study analysed the capacity of the Catalan and Spanish versions of the Bilingual Aphasia Test (BAT) to distinguish between normal and pathological aging. Both versions of the test were administered to 45 bilingual subjects: 15 healthy aging subjects, 15 patients with mild cognitive impairment and 15 patients with Alzheimer's disease. To…

  19. The NorM MATE Transporter from N. gonorrhoeae: Insights into Drug and Ion Binding from Atomistic Molecular Dynamics Simulations

    PubMed Central

    Leung, Yuk Ming; Holdbrook, Daniel A.; Piggot, Thomas J.; Khalid, Syma

    2014-01-01

    The multidrug and toxic compound extrusion transporters extrude a wide variety of substrates out of both mammalian and bacterial cells via the electrochemical gradient of protons and cations across the membrane. The substrates transported by these proteins include toxic metabolites and antimicrobial drugs. These proteins contribute to multidrug resistance in both mammalian and bacterial cells and are therefore extremely important from a biomedical perspective. Although specific residues of the protein are known to be responsible for the extrusion of solutes, mechanistic details and indeed structures of all the conformational states remain elusive. Here, we report the first, to our knowledge, simulation study of the recently resolved x-ray structure of the multidrug and toxic compound extrusion transporter, NorM from Neisseria gonorrhoeae (NorM_NG). Multiple, atomistic simulations of the unbound and bound forms of NorM in a phospholipid lipid bilayer allow us to identify the nature of the drug-protein/ion-protein interactions, and secondly determine how these interactions contribute to the conformational rearrangements of the protein. In particular, we identify the molecular rearrangements that occur to enable the Na+ ion to enter the cation-binding cavity even in the presence of a bound drug molecule. These include side chain flipping of a key residue, GLU-261 from pointing toward the central cavity to pointing toward the cation binding side when bound to a Na+ ion. Our simulations also provide support for cation binding in the drug-bound and apo states of NorM_NG. PMID:25028887

  20. Binding Free Energy Calculations for Lead Optimization: Assessment of Their Accuracy in an Industrial Drug Design Context.

    PubMed

    Homeyer, Nadine; Stoll, Friederike; Hillisch, Alexander; Gohlke, Holger

    2014-08-12

    Correctly ranking compounds according to their computed relative binding affinities will be of great value for decision making in the lead optimization phase of industrial drug discovery. However, the performance of existing computationally demanding binding free energy calculation methods in this context is largely unknown. We analyzed the performance of the molecular mechanics continuum solvent, the linear interaction energy (LIE), and the thermodynamic integration (TI) approach for three sets of compounds from industrial lead optimization projects. The data sets pose challenges typical for this early stage of drug discovery. None of the methods was sufficiently predictive when applied out of the box without considering these challenges. Detailed investigations of failures revealed critical points that are essential for good binding free energy predictions. When data set-specific features were considered accordingly, predictions valuable for lead optimization could be obtained for all approaches but LIE. Our findings lead to clear recommendations for when to use which of the above approaches. Our findings also stress the important role of expert knowledge in this process, not least for estimating the accuracy of prediction results by TI, using indicators such as the size and chemical structure of exchanged groups and the statistical error in the predictions. Such knowledge will be invaluable when it comes to the question which of the TI results can be trusted for decision making.

  1. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  2. High visual working memory capacity in trait social anxiety.

    PubMed

    Moriya, Jun; Sugiura, Yoshinori

    2012-01-01

    Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.

  3. Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring.

    PubMed

    Murray, Brendan G; Davies, Don A; Molder, Joel J; Howland, John G

    2017-05-01

    Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia in the offspring. Patients with schizophrenia display an array of cognitive symptoms, including impaired working memory capacity. Rodent models have been developed to understand the relationship between maternal immune activation and the cognitive symptoms of schizophrenia. The present experiment was designed to test whether maternal immune activation with the viral mimetic polyinosinic:polycytidylic acid (polyI:C) during pregnancy affects working memory capacity of the offspring. Pregnant Long Evans rats were treated with either saline or polyI:C (4mg/kg; i.v.) on gestational day 15. Male offspring of the litters (2-3months of age) were subsequently trained on a nonmatching-to-sample task with odors. After a criterion was met, the rats were tested on the odor span task, which requires rats to remember an increasing span of different odors to receive food reward. Rats were tested using delays of approximately 40s during the acquisition of the task. Importantly, polyI:C- and saline-treated offspring did not differ in performance of the nonmatching-to-sample task suggesting that both groups could perform a relatively simple working memory task. In contrast, polyI:C-treated offspring had reduced span capacity in the middle and late phases of odor span task acquisition. After task acquisition, the rats were tested using the 40s delay and a 10min delay. Both groups showed a delay-dependent decrease in span, although the polyI:C-treated offspring had significantly lower spans regardless of delay. Our results support the validity of the maternal immune activation model for studying the cognitive symptoms of neurodevelopmental disorders such as schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [Detection of auditory impairment in the offsprings caused by drug treatment of the dams].

    PubMed

    Kameyama, T; Nabeshima, T; Itoh, J

    1982-12-01

    To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.

  5. Obesity impairs skeletal muscle AMPK signaling during exercise: role of AMPKα2 in the regulation of exercise capacity in vivo.

    PubMed

    Lee-Young, R S; Ayala, J E; Fueger, P T; Mayes, W H; Kang, L; Wasserman, D H

    2011-07-01

    Skeletal muscle AMP-activated protein kinase (AMPK)α2 activity is impaired in obese, insulin-resistant individuals during exercise. We determined whether this defect contributes to the metabolic dysregulation and reduced exercise capacity observed in the obese state. C57BL/6J wild-type (WT) mice and/or mice expressing a kinase dead AMPKα2 subunit in skeletal muscle (α2-KD) were fed chow or high-fat (HF) diets from 3 to 16 weeks of age. At 15 weeks, mice performed an exercise stress test to determine exercise capacity. In WT mice, muscle glucose uptake and skeletal muscle AMPKα2 activity was assessed in chronically catheterized mice (carotid artery/jugular vein) at 16 weeks. In a separate study, HF-fed WT and α2-KD mice performed 5 weeks of exercise training (from 15 to 20 weeks of age) to test whether AMPKα2 is necessary to restore work tolerance. HF-fed WT mice had reduced exercise tolerance during an exercise stress test, and an attenuation in muscle glucose uptake and AMPKα2 activity during a single bout of exercise (P<0.05 versus chow). In chow-fed α2-KD mice, running speed and time were impaired ∼45 and ∼55%, respectively (P<0.05 versus WT chow); HF feeding further reduced running time ∼25% (P<0.05 versus α2-KD chow). In response to 5 weeks of exercise training, HF-fed WT and α2-KD mice increased maximum running speed ∼35% (P<0.05 versus pre-training) and maintained body weight at pre-training levels, whereas body weight increased in untrained HF WT and α2-KD mice. Exercise training restored running speed to levels seen in healthy, chow-fed mice. HF feeding impairs AMPKα2 activity in skeletal muscle during exercise in vivo. Although this defect directly contributes to reduced exercise capacity, findings in HF-fed α2-KD mice show that AMPKα2-independent mechanisms are also involved. Importantly, α2-KD mice on a HF-fed diet adapt to regular exercise by increasing exercise tolerance, demonstrating that this adaptation is independent of

  6. The role of citicoline in cognitive impairment: pharmacological characteristics, possible advantages, and doubts for an old drug with new perspectives

    PubMed Central

    Gareri, Pietro; Castagna, Alberto; Cotroneo, Antonino Maria; Putignano, Salvatore; De Sarro, Giovambattista; Bruni, Amalia Cecilia

    2015-01-01

    Background Citicoline is able to potentiate neuroplasticity and is a natural precursor of phospholipid synthesis, or rather serves as a choline source in the metabolic pathways for biosynthesis of acetylcholine. Several studies have shown that it can have beneficial effects both in degenerative and in vascular cognitive decline. The aim of the present study was to review the pharmacokinetics and pharmacodynamics of this drug and its role in cognitive impairment according to the present medical literature. Methods A MEDLINE® search was made using the following key words: citicoline, pharmacokinetics, pharmacodynamics, elderly, cognitive impairment, vascular dementia, and Alzheimer’s disease. Recent studies on the possible role of citicoline in increasing sirtuin 1 (SIRT1) expression were assessed. Some personal studies were also considered, such as the VITA study and the IDEALE study. Results Administered by both oral and intravenous routes, citicoline is converted into two major circulating metabolites, cytidine and choline. It is metabolized in the gut wall and liver. Pharmacokinetic studies suggested that it is well absorbed and highly bioavailable with oral dosing. A number of studies have clearly shown the possible role of citicoline in cognitive impairment of diverse etiology. It can also modulate the activity/expression of some protein kinases involved in neuronal death and increases SIRT1 expression in the central nervous system. The VITA study and the IDEALE study suggested that both parenteral and oral citicoline are effective and safe. Other studies have clearly demonstrated citicoline’s effects on several cognitive domains. Conversely, some studies did not point out any evidence of efficacy of this drug. Conclusion Citicoline appears to be a promising agent to improve cognitive impairment, especially of vascular origin. In fact, so far it appears as a drug with the ability to promote “safe” neuroprotection, capable of enhancing endogenous

  7. The role of citicoline in cognitive impairment: pharmacological characteristics, possible advantages, and doubts for an old drug with new perspectives.

    PubMed

    Gareri, Pietro; Castagna, Alberto; Cotroneo, Antonino Maria; Putignano, Salvatore; De Sarro, Giovambattista; Bruni, Amalia Cecilia

    2015-01-01

    Citicoline is able to potentiate neuroplasticity and is a natural precursor of phospholipid synthesis, or rather serves as a choline source in the metabolic pathways for biosynthesis of acetylcholine. Several studies have shown that it can have beneficial effects both in degenerative and in vascular cognitive decline. The aim of the present study was to review the pharmacokinetics and pharmacodynamics of this drug and its role in cognitive impairment according to the present medical literature. A MEDLINE(®) search was made using the following key words: citicoline, pharmacokinetics, pharmacodynamics, elderly, cognitive impairment, vascular dementia, and Alzheimer's disease. Recent studies on the possible role of citicoline in increasing sirtuin 1 (SIRT1) expression were assessed. Some personal studies were also considered, such as the VITA study and the IDEALE study. Administered by both oral and intravenous routes, citicoline is converted into two major circulating metabolites, cytidine and choline. It is metabolized in the gut wall and liver. Pharmacokinetic studies suggested that it is well absorbed and highly bioavailable with oral dosing. A number of studies have clearly shown the possible role of citicoline in cognitive impairment of diverse etiology. It can also modulate the activity/expression of some protein kinases involved in neuronal death and increases SIRT1 expression in the central nervous system. The VITA study and the IDEALE study suggested that both parenteral and oral citicoline are effective and safe. Other studies have clearly demonstrated citicoline's effects on several cognitive domains. Conversely, some studies did not point out any evidence of efficacy of this drug. Citicoline appears to be a promising agent to improve cognitive impairment, especially of vascular origin. In fact, so far it appears as a drug with the ability to promote "safe" neuroprotection, capable of enhancing endogenous protective. Large clinical trials are needed to

  8. Effects of dietary fibers with high water-binding capacity and swelling capacity on gastrointestinal functions, food intake and body weight in male rats.

    PubMed

    Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Peng, Jian

    2017-01-01

    Objective : The aim of this study was to investigate the effects of supplementation of dietary soluble fibers with high water-binding capacity (WBC) and swelling capacity (SC) on gastrointestinal tract mass, physicochemical properties of digesta, gastrointestinal mean retention time (MRT), body weight, and food intake in male rats. Methods : Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch plus guar gum (PWMS+GG), andPWMS plus xanthan gum (PWMS+XG) for three weeks. Results : WBC and SC of diets followed the order of PWMS+GG > KF > PWMS + XG > control. PWMS+GG and KF groups had a lower average daily food intake than the control group, but all the groups showed no difference in final body weightand the weight gain rate. The high WBC and SC of the PWMS+GG and KF groupsled to an increase of WBC and SC in the stomach digesta, and a gain of the cecal digesta weight, due to increased cecal moisture content. Conclusion : The inclusion of the novel fiber, PWMS+GG, in the diet of male rats appears to facilitate the modulation of WBC and SC of stomach digesta and the reduction of food intake.

  9. Decreased CB receptor binding and cannabinoid signaling in three brain regions of a rat model of schizophrenia.

    PubMed

    Szűcs, Edina; Dvorácskó, Szabolcs; Tömböly, Csaba; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor

    2016-10-28

    Schizophrenia is a serious mental health disorder characterized by several behavioral and biochemicel abnormalities. In a previous study we have shown that mu-opioid (MOP) receptor signaling is impaired in specific brain regions of our three-hit animal model of schizophrenia. Since the cannabinoid system is significantly influenced in schizophrenic patients, in the present work we investigated cannabinoid (CB) receptor binding and G-protein activation in cortical, subcortical and cerebellar regions of control and 'schizophrenic' rats. Cannabinoid agonist (WIN-55,212-2 mesylate) mediated G-protein activation was consistently decreased in all areas tested, and the difference was extremely significant in membranes prepared from the cerebellum. Interestingly, the cerebellar activity of WIN-55,212-2 stimulated G-proteins was substantially higher than those of cerebral cortex and subcortical region in control animals, indicating a primordial role of the cannabinoid system in the cerebellum. At the level of radioligand binding, the affinities of the CB receptors were also markedly decreased in the model animals. Capacity of the [ 3 H]WIN-55,212-2 binding was only higher in the cerebellum of 'schizophrenic' model rats. Taken together, in all three brain areas of model rats both cannabinoid receptor binding and cannabinoid agonist-mediated G-protein activation were regularly decreased. Our results revealed that besides the opioids, the endocannabinoid - cannabis receptor system also shows impairment in our rat model, increasing its face validity and translational utility. Copyright © 2016. Published by Elsevier Ireland Ltd.

  10. A Specific Peptide with Calcium-Binding Capacity from Defatted Schizochytrium sp. Protein Hydrolysates and the Molecular Properties.

    PubMed

    Cai, Xixi; Yang, Qian; Lin, Jiaping; Fu, Nanyan; Wang, Shaoyun

    2017-03-29

    Marine microorganisms have been proposed as a new kind of protein source. Efforts are needed in order to transform the protein-rich biological wastes left after lipid extraction into value-added bio-products. Thus, the utilization of protein recovered from defatted Schizochytrium sp. by-products presents an opportunity. A specific peptide Tyr-Leu (YL) with calcium-binding capacity was purified from defatted Schizochytrium sp. protein hydrolysates through gel filtration chromatography and RP-HPLC. The calcium-binding activity of YL reached 126.34 ± 3.40 μg/mg. The calcium-binding mechanism was investigated through ultraviolet, fluorescence and infrared spectroscopy. The results showed that calcium ions could form dative bonds with carboxyl oxygen atoms and amino nitrogen atoms as well as the nitrogen and oxygen atoms of amide bonds. YL-Ca exhibited excellent thermal stability and solubility, which was beneficial for its absorption and transport in the basic intestinal tract of the human body. Moreover, the cellular uptake of calcium in Caco-2 cells showed that YL-Ca could enhance calcium uptake efficiency and protect calcium ions against precipitation caused by dietary inhibitors such as tannic acid, oxalate, phytate and metal ions. The findings indicate that the by-product of Schizochytrium sp. is a promising source for making peptide-calcium bio-products as algae-based functional supplements for human beings.

  11. The impact of active site mutations of South African HIV PR on drug resistance: Insight from molecular dynamics simulations, binding free energy and per-residue footprints.

    PubMed

    Ahmed, Shaimaa M; Maguire, Glenn E M; Kruger, Hendrik G; Govender, Thirumala

    2014-04-01

    Molecular dynamics simulations and binding free energy calculations were used to provide an understanding of the impact of active site drug-resistant mutations of the South African HIV protease subtype C (C-SA HIV PR), V82A and V82F/I84V on drug resistance. Unique per-residue interaction energy 'footprints' were developed to map the overall drug-binding profiles for the wild type and mutants. Results confirmed that these mutations altered the overall binding landscape of the amino acid residues not only in the active site region but also in the flaps as well. Four FDA-approved drugs were investigated in this study; these include ritonavir (RTV), saquinavir (SQV), indinavir (IDV), and nelfinavir (NFV). Computational results compared against experimental findings were found to be complementary. Against the V82F/I84V variant, saquinavir, indinavir, and nelfinavir lose remarkable entropic contributions relative to both wild-type and V82A C-SA HIV PRs. The per-residue energy 'footprints' and the analysis of ligand-receptor interactions for the drug complexes with the wild type and mutants have also highlighted the nature of drug interactions. The data presented in this study will prove useful in the design of more potent inhibitors effective against drug-resistant HIV strains. © 2013 John Wiley & Sons A/S.

  12. Science review: Mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids

    PubMed Central

    Prigent, Hélène; Maxime, Virginie; Annane, Djillali

    2004-01-01

    This review describes current knowledge on the mechanisms that underlie glucocorticoid insufficiency in sepsis and the molecular action of glucocorticoids. In patients with severe sepsis, numerous factors predispose to glucocorticoid insufficiency, including drugs, coagulation disorders and inflammatory mediators. These factors may compromise the hypothalamic–pituitary axis (i.e. secondary adrenal insufficiency) or the adrenal glands (i.e. primary adrenal failure), or may impair glucocorticoid access to target cells (i.e. peripheral tissue resistance). Irreversible anatomical damages to the hypothalamus, pituitary, or adrenal glands rarely occur. Conversely, transient functional impairment in hormone synthesis may be a common complication of severe sepsis. Glucocorticoids interact with a specific cytosolic glucocorticoid receptor, which undergoes conformational changes, sheds heat shock proteins and translocates to the nucleus. Glucocorticoids may also interact with membrane binding sites at the surface of the cells. The molecular action of glucocorticoids results in genomic and nongenomic effects. Direct and indirect transcriptional and post-transcriptional effects related to the cytosolic glucocorticoid receptor account for the genomic effects. Nongenomic effects are probably subsequent to cytosolic interaction between the glucocorticoid receptor and proteins, or to interaction between glucocorticoids and specific membrane binding sites. PMID:15312206

  13. Tropical tannin-rich fodder intake modifies saliva-binding capacity in growing sheep.

    PubMed

    Vargas-Magaña, J J; Aguilar-Caballero, A J; Torres-Acosta, J F J; Sandoval-Castro, C A; Hoste, H; Capetillo-Leal, C M

    2013-12-01

    We evaluated the effect of feeding dietary tannins from Lysiloma latisiliquum fresh forage on the saliva tannin-binding capacity of hair sheep lambs without previous exposure to tannin-rich (TR) fodder. Twenty-four hair sheep lambs (13.6±3.04 kg LW) were fed a tannin-free diet at the beginning of the experimental period (from day 10 to 13). On day 14, lambs were distributed into three groups (n=8): control group (CG), fed with the tannin-free diet (from D10 to D112); tannin short-term group (TST), fed the basal diet and 650 g of L. latisiliquum forage (from D14 to D55); tannin long-term group (TLT), fed the basal diet and 650 g of L. latisiliquum forage (from D14 to D112). Saliva samples were collected from the mouth of each lamb in the morning before feeding time on D10 and D14 (baseline period), on D49 and D56 (period 1) and on D97 and D112 (period 2). The tannin binding response of salivary protein (∆% turbidity) was determined with the haze development test (HDT) using either tannic acid or L. latisiliquum forage acetone extract. A turbidity protein index (TPI) was calculated as (∆% turbidity/[salivary protein (mg)]). Differences in HDT and TPI in the different groups were compared by repeated measures ANOVA using Proc Mixed. All groups had similar ∆% turbidity throughout the experiment (P>0.05). At baseline and period 1, the TPI of the different groups was similar (P>0.05). On period 2 the TLT group showed higher TPI compared with CG (P<0.05). Meanwhile, CG and TST showed similar salivary TPI. The saliva of hair sheep lambs consuming TR L. latisiliquum fresh fodder (TLT group) increased their TPI compared with control lambs not exposed to tannins.

  14. Phosphorylation-Dependent 14-3-3 Binding to LRRK2 Is Impaired by Common Mutations of Familial Parkinson's Disease

    PubMed Central

    Li, Xianting; Wang, Qing Jun; Pan, Nina; Lee, Sangkyu; Zhao, Yingming; Chait, Brian T.; Yue, Zhenyu

    2011-01-01

    Background Recent studies show that mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are the cause of the most common inherited and some sporadic forms of Parkinson's disease (PD). The molecular mechanism underlying the pathogenic role of LRRK2 mutations in PD remains unknown. Methodology/Principal Findings Using affinity purification and mass spectrometric analysis, we investigated phosphorylation sites and binding proteins of LRRK2 purified from mouse brain. We identified multiple phosphorylation sites at N-terminus of LRRK2 including S910, S912, S935 and S973. Focusing on the high stoichiometry S935 phosphorylation site, we developed an anti-pS935 specific antibody and showed that LRRK2 is constitutively phosphorylated at S935 in various tissues (including brain) and at different ages in mice. We find that 14-3-3 proteins (especially isoforms γ and η) bind LRRK2 and this binding depends on phosphorylation of S935. The binding of 14-3-3, with little effect on dimer formation of LRRK2, confers protection of the phosphorylation status of S935. Furthermore, we show that protein kinase A (PKA), but not LRRK2 kinase itself, can cause the phosphorylation of LRRK2 at S935 in vitro and in cell culture, suggesting that PKA is a potential upstream kinase that regulates LRRK2 function. Finally, our study indicates that the common PD-related mutations of LRRK2, R1441G, Y1699C and G2019S, decrease homeostatic phosphorylation levels of S935 and impair 14-3-3 binding of LRRK2. Conclusions/Significance LRRK2 is extensively phosphorylated in vivo, and the phosphorylation of specific sites (e.g. S935) determines 14-3-3 binding of LRRK2. We propose that 14-3-3 is an important regulator of LRRK2-mediated cellular functions. Our study suggests that PKA, a cAMP-dependent kinase involved in regulating dopamine physiology, is a potential upstream kinase that phosphorylates LRRK2 at S935. Furthermore, the reduction of phosphorylation/14-3-3 binding of LRRK2 due to the common familial

  15. Distribution of cyclophilin B-binding sites in the subsets of human peripheral blood lymphocytes.

    PubMed

    Denys, A; Allain, F; Foxwell, B; Spik, G

    1997-08-01

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway and released in biological fluids. We have recently demonstrated that both free CyPB and CyPB-CsA complex specifically bind to peripheral blood T lymphocytes and are internalized. These results suggest that CyPB might promote the targeting of the drug into sensitive cells. Peripheral blood lymphocytes are subdivided in several populations according to their biological functions and sensitivity to CsA. We have investigated the binding of CyPB to these different subsets using a CyPB derivatized by fluorescein through its single cysteine which retains its binding properties. We have confirmed that only T cells were involved in the interaction with CyPB. The ligand binding was found to be heterogeneously distributed on the different T-cell subsets and surface-bound CyPB was mainly associated with the CD4-positive cells. No significant difference was noted between the CD45RA and CD45RO subsets, demonstrating that CyPB-binding sites were equally distributed between native and memory T cells. CD3 stimulation of T lymphocytes led to a decrease in the CyPB-binding capacity, that may be explained by a down-regulation of the CyPB-receptor expression upon T-cell activation. Finally, we demonstrated that CyPB-receptor-positive cells, isolated on CyPB sulphydryl-coupled affinity matrices, are more sensitive to CyPB-complexed CsA than mixed peripheral blood lymphocytes, suggesting that CyPB potentiates CsA activity through the binding of the complex. Taken together, our results demonstrate that CyPB-binding sites are mainly associated with resting cells of the helper T lymphocyte, and that CyPB might modulate the distribution of CsA through the drug targeting to sensitive cells.

  16. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    PubMed

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  17. Clinical role of protein binding of quinolones.

    PubMed

    Bergogne-Bérézin, Eugénie

    2002-01-01

    Protein binding of antibacterials in plasma and tissues has long been considered a component of their pharmacokinetic parameters, playing a potential role in distribution, excretion and therapeutic effectiveness. Since the beginning of the 'antibacterial era', this factor has been extensively analysed for all antibacterial classes, showing that wide variations of the degree of protein binding occur even in the same antibacterial class, as with beta-lactams. As the understanding of protein binding grew, the complexity of the binding system was increasingly perceived and its dynamic character described. Studies of protein binding of the fluoroquinolones have shown that the great majority of these drugs exhibit low protein binding, ranging from approximately 20 to 40% in plasma, and that they are bound predominantly to albumin. The potential role in pharmacokinetics-pharmacodynamics of binding of fluoroquinolones to plasma, tissue and intracellular proteins has been analysed, but it has not been established that protein binding has any significant direct or indirect impact on therapeutic effectiveness. Regarding the factors influencing the tissue distribution of antibacterials, physicochemical characteristics and the small molecular size of fluoroquinolones permit a rapid penetration into extravascular sites and intracellularly, with a rapid equilibrium being established between intravascular and extravascular compartments. The high concentrations of these drugs achieved in tissues, body fluids and intracellularly, in addition to their wide antibacterial spectrum, mean that fluoroquinolones have therapeutic effectiveness in a large variety of infections. The tolerability of quinolones has generally been reported as good, based upon long experience in using pefloxacin, ciprofloxacin and ofloxacin in clinical practice. Among more recently developed molecules, good tolerability has been reported for levofloxacin, moxifloxacin and gatifloxacin, but certain other new

  18. Analysis of adverse events of renal impairment related to platinum-based compounds using the Japanese Adverse Drug Event Report database.

    PubMed

    Naganuma, Misa; Motooka, Yumi; Sasaoka, Sayaka; Hatahira, Haruna; Hasegawa, Shiori; Fukuda, Akiho; Nakao, Satoshi; Shimada, Kazuyo; Hirade, Koseki; Mori, Takayuki; Yoshimura, Tomoaki; Kato, Takeshi; Nakamura, Mitsuhiro

    2018-01-01

    Platinum compounds cause several adverse events, such as nephrotoxicity, gastrointestinal toxicity, myelosuppression, ototoxicity, and neurotoxicity. We evaluated the incidence of renal impairment as adverse events are related to the administration of platinum compounds using the Japanese Adverse Drug Event Report database. We analyzed adverse events associated with the use of platinum compounds reported from April 2004 to November 2016. The reporting odds ratio at 95% confidence interval was used to detect the signal for each renal impairment incidence. We evaluated the time-to-onset profile of renal impairment and assessed the hazard type using Weibull shape parameter and used the applied association rule mining technique to discover undetected relationships such as possible risk factor. In total, 430,587 reports in the Japanese Adverse Drug Event Report database were analyzed. The reporting odds ratios (95% confidence interval) for renal impairment resulting from the use of cisplatin, oxaliplatin, carboplatin, and nedaplatin were 2.7 (2.5-3.0), 0.6 (0.5-0.7), 0.8 (0.7-1.0), and 1.3 (0.8-2.1), respectively. The lower limit of the reporting odds ratio (95% confidence interval) for cisplatin was >1. The median (lower-upper quartile) onset time of renal impairment following the use of platinum-based compounds was 6.0-8.0 days. The Weibull shape parameter β and 95% confidence interval upper limit of oxaliplatin were <1. In the association rule mining, the score of lift for patients who were treated with cisplatin and co-administered furosemide, loxoprofen, or pemetrexed was high. Similarly, the scores for patients with hypertension or diabetes mellitus were high. Our findings suggest a potential risk of renal impairment during cisplatin use in real-world setting. The present findings demonstrate that the incidence of renal impairment following cisplatin use should be closely monitored when patients are hypertensive or diabetic, or when they are co

  19. Large heat capacity change in a protein-monovalent cation interaction.

    PubMed

    Guinto, E R; Di Cera, E

    1996-07-09

    Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.

  20. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins

    NASA Astrophysics Data System (ADS)

    Poornima, C. S.; Dean, P. M.

    1995-12-01

    Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of `binding sites' by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2-4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.

  1. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

    PubMed Central

    Gao, Xuechuan; Hai, Xiao; Baigude, Huricha; Guan, Weihua; Liu, Zhiliang

    2016-01-01

    An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release. PMID:27876876

  2. Systematic evaluation of commercially available ultra-high performance liquid chromatography columns for drug metabolite profiling: optimization of chromatographic peak capacity.

    PubMed

    Dubbelman, Anne-Charlotte; Cuyckens, Filip; Dillen, Lieve; Gross, Gerhard; Hankemeier, Thomas; Vreeken, Rob J

    2014-12-29

    The present study investigated the practical use of modern ultra-high performance liquid chromatography (UHPLC) separation techniques for drug metabolite profiling, aiming to develop a widely applicable, high-throughput, easy-to-use chromatographic method, with a high chromatographic resolution to accommodate simultaneous qualitative and quantitative analysis of small-molecule drugs and metabolites in biological matrices. To this end, first the UHPLC system volume and variance were evaluated. Then, a mixture of 17 drugs and various metabolites (molecular mass of 151-749Da, logP of -1.04 to 6.7), was injected on six sub-2μm particle columns. Five newest generation core shell technology columns were compared and tested against one column packed with porous particles. Two aqueous (pH 2.7 and 6.8) and two organic mobile phases were evaluated, first with the same flow and temperature and subsequently at each column's individual limit of temperature and pressure. The results demonstrated that pre-column dead volume had negligible influence on the peak capacity and shape. In contrast, a decrease in post-column volume of 57% resulted in a substantial (47%) increase in median peak capacity and significantly improved peak shape. When the various combinations of stationary and mobile phases were used at the same flow rate (0.5mL/min) and temperature (45°C), limited differences were observed between the median peak capacities, with a maximum of 26%. At higher flow though (up to 0.9mL/min), a maximum difference of almost 40% in median peak capacity was found between columns. The finally selected combination of solid-core particle column and mobile phase composition was chosen for its selectivity, peak capacity, wide applicability and peak shape. The developed method was applied to rat hepatocyte samples incubated with the drug buspirone and demonstrated to provide a similar chromatographic resolution, but a 6 times higher signal-to-noise ratio than a more traditional UHPLC

  3. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy.

    PubMed

    van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C

    2014-03-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin

    PubMed Central

    Jackson, Abby J.; Anguizola, Jeanethe; Pfaunmiller, Erika L.; Hage, David S.

    2013-01-01

    Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1–3.3% (± one standard deviation) and elution within 0.50–3.00 min for solutes with binding affinities of 1 × 104–3 × 105 M−1. Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125–145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug–protein binding or related biointeractions. PMID:23657448

  5. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM;more » ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.« less

  6. Methotrexate transport mechanisms: the basis for targeted drug delivery and ß-folate-receptor-specific treatment.

    PubMed

    Fiehn, C

    2010-01-01

    Methotrexate (MTX) plays a pivotal role in the treatment of rheumatoid arthritis (RA). The transport mechanisms with which MTX reaches is target after application are an important part of MTX pharmacology and its concentration in target tissue such as RA synovial membrane might strongly influence the effectiveness of the drug. Physiological plasma protein binding of MTX to albumin is important for the distribution of MTX in the body and relative high concentrations of the drug are found in the liver. However, targeted drug delivery into inflamed joints and increased anti-arthritic efficiency can be obtained by covalent coupling of MTX ex-vivo to human serum albumin (MTX-HSA) or in-vivo to endogenous albumin mediated through the MTX-pro-drug AWO54. High expression of the folate receptor β (FR-β) on synovial macrophages of RA patients and its capacity to mediate binding and uptake of MTX has been demonstrated. To further improve drug treatment of RA, FR-β specific drugs have been developed and were characterised for their therapeutic potency in synovial inflammation. Therefore, different approaches to improve folate inhibitory and FR-β specific therapy of RA beyond MTX are in development and will be described.

  7. Spirometry, Static Lung Volumes, and Diffusing Capacity.

    PubMed

    Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H

    2017-09-01

    Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11

  8. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    planned to move to Avecia's larger facility with a capacity of 10 000 litres. Somatomedin-1 binding protein-3 was originally licenced to Welfide for Japan. On October 1 2001, Welfide Corporation merged with Mitsubishi-Tokyo Pharmaceuticals to form Mitsubishi Pharma Corporation. The new company is a subsidiary of Mitsubishi Chemical. In April 2003 Insmed initiated a named patient programme in Europe, that will make available somatomedin-1 binding protein-3 for the treatment of growth hormone insensitivity syndrome (GHIS)--Laron syndrome. The treatment of patients was initiated in Scandinavia, with authorisation pending in several other European countries. Somatomedin-1 binding protein-3 will be made available to those GHIS patients who, in the opinion of their doctor, may benefit from IGF-1 therapy. At precommercial scale quantities, the drug will be available on a limited basis. Safety data generated from the named patient programme will be used to support marketing applications in 2004. A phase II dose-ranging study in children with GHIS was completed at Saint Bartholomew's and the Royal London School of Medicine, London, UK. A single dose of somatomedin-1 binding protein-3 delivered the same amount of IGF-1 as two daily injections of unbound IGF-1. There were no adverse events reported. GHIS is a genetic condition in which patients do not produce adequate quantities of IGF because of a failure to respond to the growth hormone signal. This results in a slower growth rate and short stature. Insmed has acquired an exclusive licence to Pharmacia's regulatory filings concerning yeast-derived IGF-1. These filings were used by Pharmacia to receive marketing approvals in several European countries and also in the investigational New Drug Application with the US FDA. This licence will facilitate the development of SomatoKine for the treatment of children with GHIS. In January 2003, Insmed announced positive results from a double-blind, placebo-controlled, dose-ranging study of

  9. Implications of protein- and Peptide-based nanoparticles as potential vehicles for anticancer drugs.

    PubMed

    Elzoghby, Ahmed O; Elgohary, Mayada M; Kamel, Nayra M

    2015-01-01

    Protein-based nanocarriers have gained considerable attention as colloidal carrier systems for the delivery of anticancer drugs. Protein nanocarriers possess various advantages including their low cytotoxicity, abundant renewable sources, high drug-binding capacity, and significant uptake into the targeted tumor cells. Moreover, the unique protein structure offers the possibility of site-specific drug conjugation and tumor targeting using various ligands modifying the surface of protein nanocarriers. In this chapter, we highlight the most important applications of protein nanoparticles (NPs) for the delivery of anticancer drugs. We examine the various techniques that have been utilized for the preparation of anticancer drug-loaded protein NPs. Finally, the current chapter also reviews the major outcomes of the in vitro and in vivo investigations of surface-modified tumor-targeted protein NPs. © 2015 Elsevier Inc. All rights reserved.

  10. Mechanisms of impaired exercise capacity in short duration experimental hyperthyroidism.

    PubMed Central

    Martin, W H; Spina, R J; Korte, E; Yarasheski, K E; Angelopoulos, T J; Nemeth, P M; Saffitz, J E

    1991-01-01

    To investigate the mechanism of reduced exercise tolerance in hyperthyroidism, we characterized cardiovascular function and determinants of skeletal muscle metabolism in 18 healthy subjects aged 26 +/- 1 yr (mean +/- SE) before and after 2 wk of daily ingestion of 100 micrograms of triiodothyronine (T3). Resting oxygen uptake, heart rate, and cardiac output increased and heart rate and cardiac output at the same submaximal exercise intensity were higher in the hyperthyroid state (P less than 0.05). However, maximal oxygen uptake decreased after T3 administration (3.08 +/- 0.17 vs. 2.94 +/- 0.19 l/min; P less than 0.001) despite increased heart rate and cardiac output at maximal exercise (P less than 0.05). Plasma lactic acid concentration at an equivalent submaximal exercise intensity was elevated 25% (P less than 0.01) and the arteriovenous oxygen difference at maximal effort was reduced (P less than 0.05) in the hyperthyroid state. These effects were associated with a 21-37% decline in activities of oxidative (P less than 0.001) and glycolytic (P less than 0.05) enzymes in skeletal muscle and a 15% decrease in type IIA muscle fiber cross-sectional area (P less than 0.05). Lean body mass was reduced (P less than 0.001) and the rates of whole body leucine oxidation and protein breakdown were enhanced (P less than 0.05). Thus, exercise tolerance is impaired in short duration hyperthyroidism because of decreased skeletal muscle mass and oxidative capacity related to accelerated protein catabolism but cardiac pump function is not reduced. PMID:1752962

  11. Computer-Assisted Drug Formulation Design: Novel Approach in Drug Delivery.

    PubMed

    Metwally, Abdelkader A; Hathout, Rania M

    2015-08-03

    We hypothesize that, by using several chemo/bio informatics tools and statistical computational methods, we can study and then predict the behavior of several drugs in model nanoparticulate lipid and polymeric systems. Accordingly, two different matrices comprising tripalmitin, a core component of solid lipid nanoparticles (SLN), and PLGA were first modeled using molecular dynamics simulation, and then the interaction of drugs with these systems was studied by means of computing the free energy of binding using the molecular docking technique. These binding energies were hence correlated with the loadings of these drugs in the nanoparticles obtained experimentally from the available literature. The obtained relations were verified experimentally in our laboratory using curcumin as a model drug. Artificial neural networks were then used to establish the effect of the drugs' molecular descriptors on the binding energies and hence on the drug loading. The results showed that the used soft computing methods can provide an accurate method for in silico prediction of drug loading in tripalmitin-based and PLGA nanoparticulate systems. These results have the prospective of being applied to other nano drug-carrier systems, and this integrated statistical and chemo/bio informatics approach offers a new toolbox to the formulation science by proposing what we present as computer-assisted drug formulation design (CADFD).

  12. Brivaracetam: a novel antiepileptic drug for focal-onset seizures.

    PubMed

    Stephen, Linda J; Brodie, Martin J

    2018-01-01

    Brivaracetam (BRV), the n -propyl analogue of levetiracetam (LEV), is the latest antiepileptic drug (AED) to be licensed in Europe and the USA for the adjunctive treatment of focal-onset seizures with or without secondary generalization in patients aged 16 years or older. Like LEV, BRV binds to synaptic vesicle protein 2A (SV2A), but BRV has more selective binding and a 15- to 30-fold higher binding affinity than LEV. BRV is more effective than LEV in slowing synaptic vesicle mobilization and the two AEDs may act at different binding sites or interact with different conformational states of the SV2A protein. In animal models, BRV provides protection against focal and secondary generalized seizures and has significant anticonvulsant effects in genetic models of epilepsy. The drug undergoes first-order pharmacokinetics with an elimination half-life of 7-8 h. Although BRV is metabolized extensively, the main circulating compound is unchanged BRV. Around 95% of metabolites undergo renal elimination. No dose reduction is required in renal impairment, but it is recommended that the daily dose is reduced by one-third in hepatic dysfunction that may prolong half-life. BRV has a low potential for drug interactions. The efficacy and tolerability of adjunctive BRV in adults with focal-onset seizures have been explored in six randomized, placebo-controlled studies. These showed significant efficacy outcomes for doses of 50-200 mg/day. The most common adverse events reported were headache, somnolence, dizziness, fatigue and nausea. Patients who develop psychiatric symptoms with LEV appear to be at risk of similar side effects with BRV, although preliminary data suggest that these issues are likely to be less frequent and perhaps less severe. As with all AEDs, a low starting dose and slow titration schedule help to minimize side effects and optimize seizure control and thereby quality of life.

  13. Self-assembled Multifunctional DNA Nanoflowers for the Circumvention of Multidrug Resistance in Targeted Anticancer Drug Delivery.

    PubMed

    Mei, Lei; Zhu, Guizhi; Qiu, Liping; Wu, Cuichen; Chen, Huapei; Liang, Hao; Cansiz, Sena; Lv, Yifan; Zhang, Xiaobing; Tan, Weihong

    2015-11-01

    Cancer chemotherapy has been impeded by side effects and multidrug resistance (MDR) partially caused by drug efflux from cancer cells, which call for targeted drug delivery systems additionally able to circumvent MDR. Here we report multifunctional DNA nanoflowers (NFs) for targeted drug delivery to both chemosensitive and MDR cancer cells and circumvent MDR in both leukemia and breast cancer cell models. NFs are self-assembled via liquid crystallization of DNA generated by Rolling Circle Replication, during which NFs are incorporated with aptamers for specific cancer cell recognition, fluorophores for bioimaging, and Doxorubicin (Dox)-binding DNA for drug delivery. NF sizes are tunable (down to ~200 nm in diameter), and the densely packed drug-binding motifs and porous intrastructures endow NFs with high drug loading capacity (71.4%, wt/wt). The Dox-loaded NFs (NF-Dox) are stable at physiological pH, yet drug release is facilitated in acidic or basic conditions. NFs deliver Dox into target chemosensitive and MDR cancer cells, preventing drug efflux and enhancing drug retention in MDR cells. Consequently, NF-Dox induces potent cytotoxicity in both target chemosensitive cells and MDR cells, but not nontarget cells, thus concurrently circumventing MDR and reducing side effects. Overall, these NFs are promising to circumvent MDR in targeted cancer therapy.

  14. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

    PubMed

    Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

    2018-05-31

    Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

  15. Concerted application of LC-MS and ligand binding assays to better understand exposure of a large molecule drug.

    PubMed

    Xu, Weifeng; Jiang, Hao; Titsch, Craig; Gadkari, Snaehal; Batog, Alicja; Wang, Bonnie; Hippeli, Lauren; Yamamoto, Brent; Chadwick, Kristina; Wheeler, Jennifer; Thompson, Chris; Stahl, James; Willett, Scott; DeSilva, Binodh S; Myler, Heather; Dodge, Robert W; Pillutla, Renuka C

    2018-06-20

    A ligand-binding assay (LBA) was used to measure exposure of PRM-151, the recombinant form of human pentraxin-2 (PTX-2), a complex pentamer with multiple binding partners. However, the assay showed a lack of dose-dependent exposure in select preclinical species and it could not differentiate the infused PRM-151 from the endogenous PTX-2 in nonhuman primates. Instead of assessing interference from its multiple binding partners, which could be time consuming and laborious, a LC-MS assay avoid of these interference was implemented to measure 'total' drug without the use of immunoaffinity capture reagents. The resultant LC-MS data confirmed the original data and the lack of dose-dependent exposure is now understood to be due to the multiple and diverse targets and functions and resultant complex biodistribution rather than an assay artifact.

  16. Treating impaired cognition in schizophrenia: the case for combining cognitive-enhancing drugs with cognitive remediation.

    PubMed

    Michalopoulou, Panayiota G; Lewis, Shôn W; Wykes, Til; Jaeger, Judith; Kapur, Shitij

    2013-08-01

    Cognitive impairment is a well-documented feature of schizophrenia and represents a major impediment to the functional recovery of patients. The therapeutic strategies to improve cognition in schizophrenia have either used medications (collectively referred to as 'cognitive-enhancing drugs' in this article) or non-pharmacological training approaches ('cognitive remediation'). Cognitive-enhancing drugs have not as yet been successful and cognitive remediation has shown modest success. Therefore, we may need to explore new therapeutic paradigms to improve cognition in schizophrenia. The optimal approach may require a combination of cognitive-enhancing drugs with cognitive remediation. We review the available data from animal and human studies that provide the conceptual basis, proof-of-concept and illustrations of success of such combination strategies in experimental and clinical paradigms in other conditions. We address the major design issues relevant to the choice of the cognitive-enhancing drugs and cognitive remediation, as well as the timing and the duration of the intervention as will be relevant for schizophrenia. Finally, we address the practical realities of the development and testing of such combined approaches in the real-world clinical situation and conclude that while scientifically attractive, there are several practical difficulties to be overcome for this approach to be clinically feasible. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  17. Measures of Financial Capacity: A Review.

    PubMed

    Ghesquiere, Angela R; McAfee, Caitlin; Burnett, Jason

    2017-05-23

    Capacity to manage finances and make financial decisions can affect risk for financial exploitation and is often the basis for legal determinations of conservatorship/guardianship. Several structured assessments of financial capacity have been developed, but have not been compared regarding their focus, validity, or reliability. Therefore, we conducted a review of financial capacity measures to examine these factors. We searched electronic databases, reference lists in identified articles, conference proceedings and other grey literature for measures of financial capacity. We then extracted data on the length and domains of each measure, the population for which they were intended, and their validity and reliability. We identified 10 structured measures of financial capacity. Most measures could be completed in 25-30 min, and were designed to be administered to older adults with some level of cognitive impairment. Reliability and validity were high for most. Measurement of financial capacity is complex and multidimensional. When selecting a measure of financial capacity, consideration should be made of the population of focus and the domains of capacity to be assessed. More work is needed on the cultural sensitivity of financial capacity measures, their acceptability, and their use in clinical work. Better understanding of when, and to whom, to administer different financial capacity measures could enhance the ability to accurately detect those suffering from impaired financial capacity, and prevent related negative outcomes like financial exploitation. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Sleep driving: sleepwalking variant or misuse of z-drugs?

    PubMed

    Pressman, Mark R

    2011-10-01

    Sleep driving is most often classified as a variant of sleepwalking, but should be distinguished from impaired driving due to misuse or abuse of sedative/hypnotic drugs. Z-drugs; zolpidem and zopiclone in particular, have been associated with the majority of reported cases of impaired driving. Numerous studies have found z-drugs in driving under influence (DUI) related police stops, arrests and accidents. Impaired drivers are reported to have 1) blood levels of z-drugs that exceed therapeutic ranges 2) failed to take the medication at the correct time or remain in bed for sufficient time and/or 3) combined z-drugs with other central nervous system (CNS) depressants and/or alcohol. Consistent with CNS depression, z-drug-impaired drivers may demonstrate cognitive function at low levels with drivers still able to understand and respond to questions while sleepwalkers are completely unable to understand or interact with police. Z-drug-impaired drivers are often severely physically impaired, unable to stand up or maintain balance while sleepwalkers are able to stand and walk unaided. Sleep driving and impaired driving due to z-drugs may overlap. Sleep driving and drug-impaired driving are statistically rare events, but due to the billions of doses prescribed each year may still result in numerous DUI related arrests and accidents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. A correlational study between signature, writing abilities and decision-making capacity among people with initial cognitive impairment.

    PubMed

    Renier, M; Gnoato, F; Tessari, A; Formilan, M; Busonera, F; Albanese, P; Sartori, G; Cester, A

    2016-06-01

    Some clinical conditions, including dementia, compromise cognitive functions involved in decision-making processes, with repercussions on the ability to subscribe a will. Because of the increasing number of aged people with cognitive impairment there is an acute and growing need for decision-making capacity evidence-based assessment. Our study investigates the relationship between writing abilities and cognitive integrity to see if it is possible to make inferences on decision-making capacity through handwriting analysis. We also investigated the relationship between signature ability and cognitive integrity. Thirty-six participants with diagnosis of MCI and 38 participants with diagnosis of initial dementia were recruited. For each subject we collected two samples of signature-an actual and a previous one-and an extract of spontaneous writing. Furthermore, we administered a neuropsychological battery to investigate cognitive functions involved in decision-making. We found significant correlations between spontaneous writing indexes and neuropsychological test results. Nonetheless, the index of signature deterioration does not correlate with the level of cognitive decline. Our results suggest that a careful analysis of spontaneous writing can be useful to make inferences on decision-making capacity, whereas great caution should be taken in attributing validity to handwritten signature of subjects with MCI or dementia. The analysis of spontaneous writing can be a reliable aid in cases of retrospective evaluation of cognitive integrity. On the other side, the ability to sign is not an index of cognitive integrity.

  20. Soluble PD-L1 with PD-1-binding capacity exists in the plasma of patients with non-small cell lung cancer.

    PubMed

    Takeuchi, Masahiro; Doi, Tomomitsu; Obayashi, Kunie; Hirai, Ayako; Yoneda, Kazue; Tanaka, Fumihiro; Iwai, Yoshiko

    2018-04-01

    PD-L1 is one of the important immune checkpoint molecules that can be targeted by cancer immunotherapies. PD-L1 has a soluble form (sPD-L1) and a membrane-bound form (mPD-L1). Conventional enzyme-linked immunosorbent assay (ELISA) systems can detect sPD-L1 using anti-PD-L1 capture antibody through the antigen-antibody reaction, but cannot evaluate the quality and function of sPD-L1. In this study, we developed a novel ELISA system for the detection and quantification of sPD-L1 with PD-1-binding capacity (bsPD-L1). To capture bsPD-L1 through the ligand-receptor reaction, the anti-PD-L1 capture antibody in the conventional ELISA was replaced with PD-1-Ig fusion protein in the new ELISA. The new ELISA could detect bsPD-L1 in 29 out of 75 plasma samples from patients with non-small cell lung cancer (NSCLC), with higher sensitivity and frequency than the conventional ELISA. The western blot analysis showed that sPD-L1 in the plasma was glycosylated. Treatment of the samples with glycosidase reduced the absorbance determined by the new ELISA but had no effect on the absorbance determined by the conventional ELISA. These results suggest that glycosylation of sPD-L1 is important for its binding to the immobilized PD-1 in the new ELISA. Our new ELISA system may be useful for the evaluation of functional sPD-L1 with PD-1-binding capacity in cancer patients. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  1. Helicobacter pylori infection and drugs malabsorption.

    PubMed

    Lahner, Edith; Virili, Camilla; Santaguida, Maria Giulia; Annibale, Bruno; Centanni, Marco

    2014-08-14

    Drug absorption represents an important factor affecting the efficacy of oral drug treatment. Gastric secretion and motility seem to be critical for drug absorption. A causal relationship between impaired absorption of orally administered drugs and Helicobacter pylori (H. pylori) infection has been proposed. Associations have been reported between poor bioavailability of l-thyroxine and l-dopa and H. pylori infection. According to the Maastricht Florence Consensus Report on the management of H. pylori infection, H. pylori treatment improves the bioavailability of both these drugs, whereas the direct clinical benefits to patients still await to be established. Less strong seems the association between H. pylori infection and other drugs malabsorption, such as delavirdine and ketoconazole. The exact mechanisms forming the basis of the relationship between H. pylori infection and impaired drugs absorption and/or bioavailability are not fully elucidated. H. pylori infection may trigger a chronic inflammation of the gastric mucosa, and impaired gastric acid secretion often follows. The reduction of acid secretion closely relates with the wideness and the severity of the damage and may affect drug absorption. This minireview focuses on the evidence of H. pylori infection associated with impaired drug absorption.

  2. Missense Mutations in the N-Terminal Domain of Human Phenylalanine Hydroxylase Interfere with Binding of Regulatory Phenylalanine

    PubMed Central

    Gjetting, Torben; Petersen, Marie; Guldberg, Per; Güttler, Flemming

    2001-01-01

    Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46–48 (GAL) and 65–69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2–120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency. PMID:11326337

  3. Data quality in drug discovery: the role of analytical performance in ligand binding assays

    NASA Astrophysics Data System (ADS)

    Wätzig, Hermann; Oltmann-Norden, Imke; Steinicke, Franziska; Alhazmi, Hassan A.; Nachbar, Markus; El-Hady, Deia Abd; Albishri, Hassan M.; Baumann, Knut; Exner, Thomas; Böckler, Frank M.; El Deeb, Sami

    2015-09-01

    Despite its importance and all the considerable efforts made, the progress in drug discovery is limited. One main reason for this is the partly questionable data quality. Models relating biological activity and structures and in silico predictions rely on precisely and accurately measured binding data. However, these data vary so strongly, such that only variations by orders of magnitude are considered as unreliable. This can certainly be improved considering the high analytical performance in pharmaceutical quality control. Thus the principles, properties and performances of biochemical and cell-based assays are revisited and evaluated. In the part of biochemical assays immunoassays, fluorescence assays, surface plasmon resonance, isothermal calorimetry, nuclear magnetic resonance and affinity capillary electrophoresis are discussed in details, in addition radiation-based ligand binding assays, mass spectrometry, atomic force microscopy and microscale thermophoresis are briefly evaluated. In addition, general sources of error, such as solvent, dilution, sample pretreatment and the quality of reagents and reference materials are discussed. Biochemical assays can be optimized to provide good accuracy and precision (e.g. percental relative standard deviation <10 %). Cell-based assays are often considered superior related to the biological significance, however, typically they cannot still be considered as really quantitative, in particular when results are compared over longer periods of time or between laboratories. A very careful choice of assays is therefore recommended. Strategies to further optimize assays are outlined, considering the evaluation and the decrease of the relevant error sources. Analytical performance and data quality are still advancing and will further advance the progress in drug development.

  4. Modeling covalent-modifier drugs.

    PubMed

    Awoonor-Williams, Ernest; Walsh, Andrew G; Rowley, Christopher N

    2017-11-01

    In this review, we present a summary of how computer modeling has been used in the development of covalent-modifier drugs. Covalent-modifier drugs bind by forming a chemical bond with their target. This covalent binding can improve the selectivity of the drug for a target with complementary reactivity and result in increased binding affinities due to the strength of the covalent bond formed. In some cases, this results in irreversible inhibition of the target, but some targeted covalent inhibitor (TCI) drugs bind covalently but reversibly. Computer modeling is widely used in drug discovery, but different computational methods must be used to model covalent modifiers because of the chemical bonds formed. Structural and bioinformatic analysis has identified sites of modification that could yield selectivity for a chosen target. Docking methods, which are used to rank binding poses of large sets of inhibitors, have been augmented to support the formation of protein-ligand bonds and are now capable of predicting the binding pose of covalent modifiers accurately. The pK a 's of amino acids can be calculated in order to assess their reactivity towards electrophiles. QM/MM methods have been used to model the reaction mechanisms of covalent modification. The continued development of these tools will allow computation to aid in the development of new covalent-modifier drugs. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. From nose to brain: understanding transport capacity and transport rate of drugs.

    PubMed

    Wu, Hongbing; Hu, Kaili; Jiang, Xinguo

    2008-10-01

    The unique relationship between nasal cavity and cranial cavity tissues in anatomy and physiology makes intranasal delivery to the brain feasible. An intranasal delivery provides some drugs with short channels to bypass the blood-brain barrier (BBB), especially for those with fairly low brain concentrations after a routine delivery, thus greatly enhancing the therapeutic effect on brain diseases. In the past two decades, a good number of encouraging outcomes have been reported in the treatment of diseases of the brain or central nervous system (CNS) through nasal administration. In spite of the significant merit of bypassing the BBB, direct nose-to-brain delivery still bears the problems of low efficiency and volume for capacity due to the limited volume of the nasal cavity, the small area ratio of olfactory mucosa to nasal mucosa and the limitations of low dose and short retention time of drug absorption. It is crucial that selective distribution and retention time of drugs or preparations on olfactory mucosa should be enhanced so as to increase the direct delivery efficiency. In this article, we first briefly review the nose-to-brain transport pathways, before detailing the impacts on them, followed by a comprehensive summary of effective methods, including formulation modification, agglutinant-mediated transport and a brain-homing, peptide-mediated delivery based on phage display screening technique, with a view to providing a theoretic reference for elevating the therapeutic effects on brain diseases.

  6. Drug resistance-related mutations T369V/I in the connection subdomain of HIV-1 reverse transcriptase severely impair viral fitness.

    PubMed

    Wang, Zheng; Zhang, Junli; Li, Fan; Ji, Xiaolin; Liao, Lingjie; Ma, Liying; Xing, Hui; Feng, Yi; Li, Dan; Shao, Yiming

    2017-04-02

    Fitness is a key parameter in the measurement of transmission capacity of individual drug-resistant HIV. Drug-resistance related mutations (DRMs) T369V/I and A371V in the connection subdomain (CN) of reverse transcriptase (RT) occur at higher frequencies in the individuals experiencing antiretroviral therapy failure. Here, we evaluated the effects of T369V/I and A371V on viral fitness, in the presence or in the absence of thymidine analogue resistance-associated mutations (TAMs) and assessed the effect of potential RT structure-related mechanism on change in viral fitness. Mutations T369V/I, A371V, alone or in combination with TAMs were introduced into a modified HIV-1 infectious clone AT1 by site-directed mutagenesis. Then, experiments on mutant and wild-type virus AT2 were performed separately using a growth-competition assay, and then the relative fitness was calculated. Structural analysis of RT was conducted using Pymol software. Results showed that T369V/I severely impaired the relative virus fitness, and A371V compensated for the viral fitness reduction caused by TAMs. Structural modeling of RT suggests that T369V/I substitutions disrupt powerful hydrogen bonds formed by T369 and V365 in p51 and p66. This study indicates that the secondary DRMs within CN might efficiently damage viral fitness, and provides valuable information for clinical surveillance and prevention of HIV-1 strains carrying these DRMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hepatic drug clearance following traumatic injury.

    PubMed

    Slaughter, R L; Hassett, J M

    1985-11-01

    Trauma is a complex disease state associated with physiologic changes that have the potential to alter hepatic drug clearance mechanisms. These responses include alterations in hepatic blood flow, reduction in hepatic microsomal activity, reduction in hepatic excretion processes, and changes in protein binding. Hepatic blood flow is influenced by sympathomimetic activity. Both animal and human studies demonstrate an initial reduction and subsequent increase in hepatic blood flow, which coincides with an observed increase and subsequent return to normal in serum catecholamine concentrations. Unfortunately, there are no human studies that address the importance these findings may have to the clearance processes of high intrinsic clearance compounds. Animal studies of trauma indicate that hepatic microsomal activity is depressed during the post-traumatic period. Reduction in the hepatic clearance of antipyrine, a model low intrinsic compound, has also been demonstrated in animal models of trauma. In addition to these effects, hepatic excretion of substances such as indocyanine green and bilirubin have been demonstrated to be impaired in both traumatized animals and humans. Finally, substantial increases in the serum concentration of the binding protein alpha 1-acid glycoprotein occur in trauma patients. This has been reported to be associated with subsequent decreases in the free fraction of lidocaine and quinidine. In addition to changing serum drug concentration/response relationships, the pharmacokinetic behavior of drugs bound to alpha 1-acid glycoprotein should also change. Preliminary observations in our laboratory in a dog model of surgically-induced trauma have shown a reduction in the total clearance of lidocaine and reduction in free lidocaine concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Neuropsychological Predictors of Decision-Making Capacity over 9 Months in Mild-to-Moderate Dementia

    PubMed Central

    Moye, Jennifer; Karel, Michele J; Gurrera, Ronald J; Azar, Armin R

    2006-01-01

    BACKGROUND Older adults with dementia may have diminished capacity to make medical treatment decisions. OBJECTIVE To examine rates and neuropsychological predictors of treatment decision making, or consent capacity, among older adults with dementia over 9 months. DESIGN Consent capacity was assessed initially and 9 months later in subjects with and without dementia using a longitudinal repeated measures design. PARTICIPANTS Fifty-three older adults with dementia and 53 similarly aged adults without dementia. MEASUREMENTS A standardized measure MacArthur Competence Assessment Tool-Treatment of 4 legal standards for capacity (Understanding, Appreciation, Reasoning, and Expressing a Choice) and a neuropsychological battery. RESULTS In the dementia group, 9.4% had impaired capacity initially, and 26.4% had impaired capacity at 9 months. Mean scores in the dementia group were impaired relative to controls initially and at 9 months for Understanding (initial t=2.49, P=.01; 9-month t=3.22, P<.01) and Reasoning (initial t=2.18, P=.03; 9-month t=4.77, P<.01). Declining capacity over 9 months was attributable to a further reduction in Reasoning (group × time F=9.44, P=.003). Discriminant function analysis revealed that initial scores on naming, delayed Logical Memory, and Trails B were associated with impaired capacity at 9 months. CONCLUSIONS Some patients with mild-to-moderate dementia develop a clinically relevant impairment of consent capacity within a year. Consent capacity in adults with mild-to-moderate dementia should be reassessed periodically to ensure that it is adequate for each specific informed consent situation. Interventions that maximize Understanding and Reasoning by supporting naming, memory, and flexibility may help to optimize capacity in this patient group. PMID:16423129

  9. Marijuana, alcohol, and drug impaired driving among emerging adults: Changes from high school to one-year post high school

    PubMed Central

    Li, Kaigang; Simons-Morton, Bruce; Gee, Benjamin; Hingson, Ralph

    2016-01-01

    Introduction Driving while impaired (DWI) increases the risk of a motor vehicle crash by impairing performance. Few studies have examined the prevalence and predictors of marijuana, alcohol, and drug specific DWI among emerging adults. Methods The data from wave 3 (W3, high-school seniors, 2012, N=2407) and wave 4 (W4, one year after high school, N=2178) of the NEXT Generation Health Study with a nationally-representative cohort. W4 DWI (≥1 day of past 30 days) was specified for alcohol-specific, marijuana-specific, alcohol/marijuana-combined, illicit drug-related DWI. Multinomial logistic regression models estimated the association of W4 DWI with W3 covariates (perceived peer/parent influence, drinking/binge drinking, marijuana/illicit drug use), and W4 environmental-status variables (work/school/residence) adjusting for W3 overall DWI, demographic and complex-survey variables. Results Overall DWI prevalence from W3 to W4 changed slightly (14% to 15%). W4 DWI consisted of 4.34% drinking-specific, 5.02% marijuana-specific, 2.41% drinking/marijuana-combined, and 3.37% illicit drug-related DWI. W3 DWI was significantly associated with W4 alcohol-related and alcohol/marijuana-combined DWI, but not other DWI. W3 marijuana use, binge drinking, and illicit drug use were positively associated with W4 marijuana-specific, alcohol/marijuana-combined, and illicit drug-related DWI respectively. W3 friend drunkenness and marijuana use were positively associated with W4 alcohol-specific and marijuana-related DWI respectively. W3 peer marijuana use was negatively associated with W4 alcohol-specific DWI. Conclusions Driving under the influence of alcohol, marijuana, and illicit drugs is a persistent, threatening public health concern among emerging US adults. High-school seniors’ binge drinking as well as regular alcohol drinking and marijuana/illicit drug use were independently associated with respective DWI one year after high school. Peer drunkenness and marijuana use in

  10. Decision-Making Capacity for Chemotherapy and Associated Factors in Newly Diagnosed Patients with Lung Cancer.

    PubMed

    Ogawa, Asao; Kondo, Kyoko; Takei, Hiroyuki; Fujisawa, Daisuke; Ohe, Yuichiro; Akechi, Tatsuo

    2018-04-01

    The objective of this study was to assess decision-making capacity in patients newly diagnosed with lung cancer, clinical factors associated with impaired capacity, and physicians' perceptions of patients' decision-making capacity. We recruited 122 patients newly diagnosed with lung cancer. One hundred fourteen completed the assessment. All patients were receiving a combination of treatments (e.g., chemotherapy, chemo-radiotherapy, or targeted therapy). Decision-making capacity was assessed using the MacArthur Competence Tool for Treatment. Cognitive impairment, depressive symptoms, and frailty were also evaluated. Physicians' perceptions were compared with the ascertainments. Twenty-seven (24%, 95% confidence interval [CI], 16-31) patients were judged to have incapacity. Clinical teams had difficulty in judging six (22.2%) patients for incapacity. Logistic regression identified frailty (odds ratio, 3.51; 95% CI, 1.13-10.8) and cognitive impairment (odds ratio, 5.45; 95% CI, 1.26-23.6) as the factors associated with decision-making incapacity. Brain metastasis, emphysema, and depression were not associated with decision-making incapacity. A substantial proportion of patients diagnosed with lung cancer show impairments in their capacity to make a medical decision. Assessment of cognitive impairment and frailty may provide appropriate decision-making frameworks to act in the best interest of patients. Decision-making capacity is the cornerstone of clinical practice. A substantial proportion of patients with cancer show impairments in their capacity to make a medical decision. Assessment of cognitive impairment and frailty may provide appropriate decision-making frameworks to act in the best interest of patients. © AlphaMed Press 2017.

  11. Fluctuating capacity and advance decision-making in Bipolar Affective Disorder - Self-binding directives and self-determination.

    PubMed

    Gergel, Tania; Owen, Gareth S

    2015-01-01

    For people with Bipolar Affective Disorder, a self-binding (advance) directive (SBD), by which they commit themselves to treatment during future episodes of mania, even if unwilling, can seem the most rational way to deal with an imperfect predicament. Knowing that mania will almost certainly cause enormous damage to themselves, their preferred solution may well be to allow trusted others to enforce treatment and constraint, traumatic though this may be. No adequate provision exists for drafting a truly effective SBD and efforts to establish such provision are hampered by very valid, but also paralysing ethical, clinical and legal concerns. Effectively, the autonomy and rights of people with bipolar are being 'protected' through being denied an opportunity to protect themselves. From a standpoint firmly rooted in the clinical context and experience of mania, this article argues that an SBD, based on a patient-centred evaluation of capacity to make treatment decisions (DMC-T) and grounded within the clinician-patient relationship, could represent a legitimate and ethically coherent form of self-determination. After setting out background information on fluctuating capacity, mania and advance directives, this article proposes a framework for constructing such an SBD, and considers common objections, possible solutions and suggestions for future research. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids.

    PubMed

    Treyer, Andrea; Mateus, André; Wiśniewski, Jacek R; Boriss, Hinnerk; Matsson, Pär; Artursson, Per

    2018-06-04

    Intracellular unbound drug concentrations are the pharmacologically relevant concentrations for targets inside cells. Intracellular drug concentrations are determined by multiple processes, including the extent of drug binding to intracellular structures. The aim of this study was to evaluate the effect of neutral lipid (NL) and phospholipid (PL) levels on intracellular drug disposition. The NL and/or PL content of 3T3-L1 cells were enhanced, resulting in phenotypes (in terms of morphology and proteome) reminiscent of adipocytes (high NL and PL) or mild phospholipidosis (only high PL). Intracellular bioavailability ( F ic ) was then determined for 23 drugs in these cellular models and in untreated wild-type cells. A higher PL content led to higher intracellular drug binding and a lower F ic . The induction of NL did not further increase drug binding but led to altered F ic due to increased lysosomal pH. Further, there was a good correlation between binding to beads coated with pure PL and intracellular drug binding. In conclusion, our results suggest that PL content is a major determinant of drug binding in cells and that PL beads may constitute a simple alternative to estimating this parameter. Further, the presence of massive amounts of intracellular NLs did not influence drug binding significantly.

  13. Effect of hepatic impairment on the pharmacokinetics of a single dose of cilostazol.

    PubMed

    Bramer, S L; Forbes, W P

    1999-01-01

    The pharmacokinetic profiles of cilostazol and its metabolites following a single oral dose of cilostazol 100 mg were compared between individuals with impaired and normal liver function. The study was conducted as a single-centre, open-label, single dose pharmacokinetic and tolerability trial. 12 patients with impaired and compensated liver function were compared with 12 volunteers with normal liver function. Participants in each group were matched for gender, age and weight. Of the 12 patients with hepatic impairment examined in this study, 10 had mild impairment (Child-Pugh class A) and 2 had moderate impairment (Child-Pugh class B). Blood and urine were collected up to 144 hours after drug administration. Pharmacokinetics were determined by noncompartmental methods. Protein binding did not differ between the groups (95.2% healthy volunteers, 94.6% hepatically impaired patients). Mean +/- SD unbound oral clearance of cilostazol decreased by 8.6% because of hepatic impairment (3380 +/- 1400 ml/min in healthy volunteers, 3260 +/- 2030 ml/min in hepatically impaired patients). Total urinary excretion of metabolites was significantly higher in healthy volunteers (26 vs 17% of dose). Overall, the pharmacokinetics of cilostazol and its metabolites, OPC-13213 and OPC-13015, were not substantially different in those with mild and moderate hepatic disease compared with values in healthy volunteers. Except for terminal-phase disposition half-life and apparent terminal-phase volume of distribution for cilostazol, the ratios of geometric means of pharmacokinetic parameters for plasma cilostazol, OPC-13213 and OPC-13015 in those with hepatic impairment versus healthy volunteers were close to 100%. Based on the results of the pharmacokinetic analysis, dose adjustment in patients with mild hepatic impairment is not necessary. However, caution should be exercised when cilostazol is administered to patients with moderate or severe hepatic impairment.

  14. Free energy component analysis for drug design: a case study of HIV-1 protease-inhibitor binding.

    PubMed

    Kalra, P; Reddy, T V; Jayaram, B

    2001-12-06

    A theoretically rigorous and computationally tractable methodology for the prediction of the free energies of binding of protein-ligand complexes is presented. The method formulated involves developing molecular dynamics trajectories of the enzyme, the inhibitor, and the complex, followed by a free energy component analysis that conveys information on the physicochemical forces driving the protein-ligand complex formation and enables an elucidation of drug design principles for a given receptor from a thermodynamic perspective. The complexes of HIV-1 protease with two peptidomimetic inhibitors were taken as illustrative cases. Four-nanosecond-level all-atom molecular dynamics simulations using explicit solvent without any restraints were carried out on the protease-inhibitor complexes and the free proteases, and the trajectories were analyzed via a thermodynamic cycle to calculate the binding free energies. The computed free energies were seen to be in good accord with the reported data. It was noted that the net van der Waals and hydrophobic contributions were favorable to binding while the net electrostatics, entropies, and adaptation expense were unfavorable in these protease-inhibitor complexes. The hydrogen bond between the CH2OH group of the inhibitor at the scissile position and the catalytic aspartate was found to be favorable to binding. Various implicit solvent models were also considered and their shortcomings discussed. In addition, some plausible modifications to the inhibitor residues were attempted, which led to better binding affinities. The generality of the method and the transferability of the protocol with essentially no changes to any other protein-ligand system are emphasized.

  15. Funnel metadynamics as accurate binding free-energy method

    PubMed Central

    Limongelli, Vittorio; Bonomi, Massimiliano; Parrinello, Michele

    2013-01-01

    A detailed description of the events ruling ligand/protein interaction and an accurate estimation of the drug affinity to its target is of great help in speeding drug discovery strategies. We have developed a metadynamics-based approach, named funnel metadynamics, that allows the ligand to enhance the sampling of the target binding sites and its solvated states. This method leads to an efficient characterization of the binding free-energy surface and an accurate calculation of the absolute protein–ligand binding free energy. We illustrate our protocol in two systems, benzamidine/trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray conformation has been found as the lowest free-energy pose, and the computed protein–ligand binding free energy in good agreement with experiments. Furthermore, funnel metadynamics unveils important information about the binding process, such as the presence of alternative binding modes and the role of waters. The results achieved at an affordable computational cost make funnel metadynamics a valuable method for drug discovery and for dealing with a variety of problems in chemistry, physics, and material science. PMID:23553839

  16. [Voting by cognitively impaired persons: legal and ethical issues].

    PubMed

    Bosquet, Antoine; Medjkane, Amar; Vinceneux, Philippe; Mahé, Isabelle

    2010-03-01

    In democratic countries, cognitively impaired persons are a substantial and growing group of citizens. Most of them are citizens with dementia. In dementia, cognitive impairment induces a loss of some capacities, resulting in vulnerability and increased need for assistance. Voting by cognitively impaired persons raises any questions about the integrity of the electoral process, the risk of fraud and the respect of their citizenship. In France, the law is not definite about the voting of cognitively impaired persons. An objective assessment for voting capacity may be useful both for professionals in charge of voting organisation and for guardianship judge in order to help him in his decision to remove or keep the voting right of persons placed under guardianship. Assessing the reality of voting by cognitively impaired citizens is necessary to advance respect for their right to vote.

  17. Detection of phenazepam in impaired driving.

    PubMed

    Kerrigan, Sarah; Mellon, Monica Brady; Hinners, Paige

    2013-10-01

    Phenazepam is a potent 1,4-benzodiazepine that has gained notoriety among recreational drug users. First synthesized in Ukraine in the 1970s, it is one of the most commonly prescribed benzodiazepines in Russia and other commonwealth of independent state nations, where it is used therapeutically as a prescription drug. Reports of abuse are widespread and several European countries have taken steps to control its use. However, in the USA, phenazepam is not approved for use by the Food and Drug Administration, nor scheduled under the Federal Controlled Substances Act. Phenazepam is widely available on the Internet, and recreational drug users report a potency 10-fold greater than that of nordiazepam. We report a case of a 24-year-old male driver who was apprehended for impaired driving following a two-vehicle crash. The subject exhibited slurred speech and profound psychomotor impairment. Toxicology testing revealed phenazepam at a concentration of 76 ng/mL in blood, with no other drugs detected. This case report not only demonstrates the potential for adverse traffic safety consequences following the misuse of phenazepam, but also highlights the importance of analytical factors such as immunoassay cutoff concentration, cross-reactivity and comprehensive screening using chromatographic-based techniques for impaired driving investigations.

  18. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells.

    PubMed

    Bebawy, M; Combes, V; Lee, E; Jaiswal, R; Gong, J; Bonhoure, A; Grau, G E R

    2009-09-01

    Multidrug resistance (MDR), a significant impediment to the successful treatment of cancer clinically, has been attributed to the overexpression of P-glycoprotein (P-gp), a plasma membrane multidrug efflux transporter. P-gp maintains sublethal intracellular drug concentrations by virtue of its drug efflux capacity. The cellular regulation of P-gp expression is currently known to occur at either pre- or post-transcriptional levels. In this study, we identify a 'non-genetic' mechanism whereby microparticles (MPs) serve as vectors in the acquisition and spread of MDR. MPs isolated from drug-resistant cancer cells (VLB(100)) were co-cultured with drug sensitive cells (CCRF-CEM) over a 4 h period to allow for MP binding and P-gp transfer. Presence of P-gp on MPs was established using flow cytometry (FCM) and western blotting. Whole-cell drug accumulation assays using rhodamine 123 and daunorubicin (DNR) were carried out to validate the transfer of functional P-gp after co-culture. We establish that MPs shed in vitro from drug-resistant cancer cells incorporate cell surface P-gp from their donor cells, effectively bind to drug-sensitive recipient cells and transfer functional P-gp to the latter. These findings serve to substantially advance our understanding of the molecular basis for the emergence of MDR in cancer clinically and lead to new treatment strategies which target and inhibit MP mediated transfer of P-gp during the course of treatment.

  19. Equilibrium binding behavior of magnesium to wall teichoic acid.

    PubMed

    Thomas, Kieth J; Rice, Charles V

    2015-10-01

    Peptidoglycan and teichoic acids are the major cell wall components of Gram-positive bacteria that obtain and sequester metal ions required for biochemical processes. The delivery of metals to the cytoplasmic membrane is aided by anionic binding sites within the peptidoglycan and along the phosphodiester polymer of teichoic acid. The interaction with metals is a delicate balance between the need for attraction and ion diffusion to the membrane. Likewise, metal chelation from the extracellular fluid must initially have strong binding energetics that weaken within the cell wall to enable ion release. We employed atomic absorption and equilibrium dialysis to measure the metal binding capacity and metal binding affinity of wall teichoic acid and Mg2+. Data show that Mg2+ binds to WTA with a 1:2Mg2+ to phosphate ratio with a binding capacity of 1.27 μmol/mg. The affinity of Mg2+ to WTA was also found to be 41×10(3) M(-1) at low metal concentrations and 1.3×10(3) M(-1) at higher Mg2+ concentrations due to weakening electrostatic effects. These values are lower than the values describing Mg2+ interactions with peptidoglycan. However, the binding capacity of WTA is 4 times larger than peptidoglycan. External WTA initially binds metals with positive cooperativity, but metal binding switches to negative cooperativity, whereas interior WTA binds metals with only negative cooperativity. The relevance of this work is to describe changes in metal binding behavior depending on environment. When metals are sparse, chelation is strong to ensure survival yet the binding weakens when essential minerals are abundant. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Financial capacity in older adults: a growing concern for clinicians.

    PubMed

    Gardiner, Paul A; Byrne, Gerard J; Mitchell, Leander K; Pachana, Nancy A

    2015-02-02

    Older people with cognitive impairment and/or dementia may be particularly vulnerable to diminished financial decision-making capacity. Financial capacity refers to the ability to satisfactorily manage one's financial affairs in a manner consistent with personal self-interest and values. Impairment of financial capacity makes the older individual vulnerable to financial exploitation, may negatively affect their family's financial situation and places strain on relationships within the family. Clinicians are often on the front line of responding to queries regarding decision-making capacity, and clinical evaluation options are often not well understood. Assessment of financial capacity should include formal objective assessment in addition to a clinical interview and gathering contextual data. Development of a flexible, empirically supported and clinically relevant assessment approach that spans all dimensions of financial capacity yet is simple enough to be used by non-specialist clinicians is needed.

  1. Energetics of drug-DNA interactions.

    PubMed

    Chaires, J B

    1997-01-01

    Understanding the thermodynamics of drug binding to DNA is of both practical and fundamental interest. The practical interest lies in the contribution that thermodynamics can make to the rational design process for the development of new DNA targeted drugs. Thermodynamics offer key insights into the molecular forces that drive complex formation that cannot be obtained by structural or computational studies alone. The fundamental interest in these interactions lies in what they can reveal about the general problems of parsing and predicting ligand binding free energies. For these problems, drug-DNA interactions offer several distinct advantages, among them being that the structures of many drug-DNA complexes are known at high resolution and that such structures reveal that in many cases the drug acts as a rigid body, with little conformational change upon binding. Complete thermodynamic profiles (delta G, delta H, delta S, delta Cp) for numerous drug-DNA interactions have been obtained, with the help of high-sensitivity microcalorimetry. The purpose of this article is to offer a perspective on the interpretation of these thermodynamics parameters, and in particular how they might be correlated with known structural features. Obligatory conformational changes in the DNA to accommodate intercalators and the loss of translational and rotational freedom upon complex formation both present unfavorable free energy barriers for binding. Such barriers must be overcome by favorable free energy contributions from the hydrophobic transfer of ligand from solution into the binding site, polyelectrolyte contributions from coupled ion release, and molecular interactions (hydrogen and ionic bonds, van der Waals interactions) that form within the binding site. Theoretical and semiempirical tools that allow estimates of these contributions to be made will be discussed, and their use in dissecting experimental data illustrated. This process, even at the current level of approximation

  2. Automated On-tip Affinity Capture Coupled with Mass Spectrometry to Characterize Intact Antibody-Drug Conjugates from Blood

    NASA Astrophysics Data System (ADS)

    Li, Ke Sherry; Chu, Phillip Y.; Fourie-O'Donohue, Aimee; Srikumar, Neha; Kozak, Katherine R.; Liu, Yichin; Tran, John C.

    2018-05-01

    Antibody-drug conjugates (ADCs) present unique challenges for ligand-binding assays primarily due to the dynamic changes of the drug-to-antibody ratio (DAR) distribution in vivo and in vitro. Here, an automated on-tip affinity capture platform with subsequent mass spectrometry analysis was developed to accurately characterize the DAR distribution of ADCs from biological matrices. A variety of elution buffers were tested to offer optimal recovery, with trastuzumab serving as a surrogate to the ADCs. High assay repeatability (CV 3%) was achieved for trastuzumab antibody when captured below the maximal binding capacity of 7.5 μg. Efficient on-tip deglycosylation was also demonstrated in 1 h followed by affinity capture. Moreover, this tip-based platform affords higher throughput for DAR characterization when compared with a well-characterized bead-based method.

  3. Amnesia as an impairment of detail generation and binding: evidence from personal, fictional, and semantic narratives in K.C.

    PubMed

    Rosenbaum, R Shayna; Gilboa, Asaf; Levine, Brian; Winocur, Gordon; Moscovitch, Morris

    2009-09-01

    Autobiographical episodic recall involves active simultaneous generation and binding of various elements that were present during the initial experience. Deficits in this reconstructive process may account for some aspects of retrograde amnesia (RA) for personally experienced events. Constructive and reconstructive processes may involve similar mechanisms. If so, patients with extensive anterograde amnesia (AA) and RA should show deficits in non-recollective cognitive domains, such as imagining events that had never been experienced and recounting non-personal narratives, that presumably rely on constructive and re-constructive processes, respectively. To test these possibilities, patient K.C., who has severe AA and RA for personal episodes, was asked to generate fictional events and to recall and recognize details of well-known fairy tales and bible stories. K.C.'s performance on both tasks was better than expected given his severely impaired autobiographical episodic memory (AM), but significantly worse than that of control participants. K.C. was able to create a skeletal outline for both types of narratives, providing sufficient information to convey their gist, but the narratives were fragmented and lacking in detail. This deficit cannot be explained as resulting entirely from deficient stored semantic knowledge, because K.C. was able to discriminate between true and false details of non-personal semantic narratives on a recognition test, which he cannot do for personal events [Gilboa, A., Winocur, G., Rosenbaum, R.S., Poreh, A., Gao, F., Black, S.E., Westmacott, R., & Moscovitch, M. (2006a). Hippocampal contributions to recollection in retrograde and anterograde amnesia. Hippocampus, 16, 966-980]. Thus, retrograde AM impairment may be viewed as both a loss of information as well as a deficit in reconstructive processes that hamper or prevent the binding of information to generate a cohesive, detail-rich memory.

  4. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis.

    PubMed

    Wilson, Kris; Webster, Scott P; Iredale, John P; Zheng, Xiaozhong; Homer, Natalie Z; Pham, Nhan T; Auer, Manfred; Mole, Damian J

    2017-12-15

    The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.

  5. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Kris; Webster, Scott P.; Iredale, John P.; Zheng, Xiaozhong; Homer, Natalie Z.; Pham, Nhan T.; Auer, Manfred; Mole, Damian J.

    2018-01-01

    The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.

  6. Attentive Tracking Disrupts Feature Binding in Visual Working Memory

    PubMed Central

    Fougnie, Daryl; Marois, René

    2009-01-01

    One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460

  7. Comprehensive analog synthesis of (S)-valine thiazole peptidomimetic TTT-28 to understand enigmatic drug-binding sites of P-glycoprotein

    NASA Astrophysics Data System (ADS)

    Patel, Bhargav A.

    P-glycoprotein (P-gp) is considered an important therapeutic target for reversal of multidrug resistance (MDR) in cancer. It recognizes a diverse range of chemically and mechanistically dissimilar drugs. It has been postulated that the efflux by P-gp plays a major role in failure of chemotherapy. Hence, researchers have been trying to obtain a potent inhibitor of P-gp with specificity to tumor sites. In this pursuit, we previously were able to obtain a novel (S)-valine thiazole-derived peptidomimetic compound 1 ( TTT-28), which showed potent reversal of MDR in vitro as well as in vivo compared to verapamil, a well-known MDR modulator. We have also found that compound 1 triggers ATPase stimulation when incubated with P-gp alike verapamil, which implies its mechanism of action as competitive in nature. In this study, we attempted to understand structural requirements of ligands binding to a perplexing drug-binding site of P-gp and affecting its ATPase function. Toward this goal, we prepared a novel set of 64 analogues by fine tuning lead compound 1. These synthesized analogues were tested using ATPase activity assay. During the course of the study, a potent stimulator (1) of ATPase activity was transformed into an ATPase inhibitory leads such as compounds 43 , 57 and 113. The ATPase inhibitory activity of these compounds is predominantly contributed by the presence of a cyclohexyl group in place of the 2-aminobenzophenone moiety of ATPase activity stimulatory lead compound 1. Molecular modeling studies suggested a need for specific interactions with the drug-binding site of P-gp to induce different conformational states of P-gp to produce either stimulation or inhibition of ATPase activity. Collectively, this comprehensive synthesis work will facilitate further research towards P-gp inhibitor development.

  8. The Arrhythmogenic Calmodulin p.Phe142Leu Mutation Impairs C-domain Ca2+ Binding but Not Calmodulin-dependent Inhibition of the Cardiac Ryanodine Receptor*

    PubMed Central

    Liu, Yingjie; Larsen, Kamilla Taunsig; Nani, Alma; Tian, Xixi; Holt, Christian; Wang, Ruiwu; Fill, Michael

    2017-01-01

    A number of point mutations in the intracellular Ca2+-sensing protein calmodulin (CaM) are arrhythmogenic, yet their underlying mechanisms are not clear. These mutations generally decrease Ca2+ binding to CaM and impair inhibition of CaM-regulated Ca2+ channels like the cardiac Ca2+ release channel (ryanodine receptor, RyR2), and it appears that attenuated CaM Ca2+ binding correlates with impaired CaM-dependent RyR2 inhibition. Here, we investigated the RyR2 inhibitory action of the CaM p.Phe142Leu mutation (F142L; numbered including the start-Met), which markedly reduces CaM Ca2+ binding. Surprisingly, CaM-F142L had little to no aberrant effect on RyR2-mediated store overload-induced Ca2+ release in HEK293 cells compared with CaM-WT. Furthermore, CaM-F142L enhanced CaM-dependent RyR2 inhibition at the single channel level compared with CaM-WT. This is in stark contrast to the actions of arrhythmogenic CaM mutations N54I, D96V, N98S, and D130G, which all diminish CaM-dependent RyR2 inhibition. Thermodynamic analysis showed that apoCaM-F142L converts an endothermal interaction between CaM and the CaM-binding domain (CaMBD) of RyR2 into an exothermal one. Moreover, NMR spectra revealed that the CaM-F142L-CaMBD interaction is structurally different from that of CaM-WT at low Ca2+. These data indicate a distinct interaction between CaM-F142L and the RyR2 CaMBD, which may explain the stronger CaM-dependent RyR2 inhibition by CaM-F142L, despite its reduced Ca2+ binding. Collectively, these results add to our understanding of CaM-dependent regulation of RyR2 as well as the mechanistic effects of arrhythmogenic CaM mutations. The unique properties of the CaM-F142L mutation may provide novel clues on how to suppress excessive RyR2 Ca2+ release by manipulating the CaM-RyR2 interaction. PMID:27927985

  9. Cumulative and booster effects of tdcs sessions on drug cravings, lapse, and cognitive impairment in methamphetamine use disorder: A case study report.

    PubMed

    Shariatirad, Schwann; Vaziri, Alaleh; Hassani-Abharian, Peyman; Sharifi Fardshad, Mona; Molavi, Nader; Fitzgerald, Paul B

    2016-06-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation method, which shows promising therapeutic effects in controlling drug cravings. In this study, we present cumulative and booster effects of tDCS sessions on methamphetamine cravings, lapse, and cognitive impairment in a methamphetamine dependent subject. Our study shows cumulative effects of continuous anodal tDCS sessions on right dorsolateral prefrontal cortex (DLPFC) could reduce drug cravings and their consequences. Moreover, booster tDCS treatments might be helpful in controlling psychological stress and drug cravings. (Am J Addict 2016;25:264-266). © 2016 American Academy of Addiction Psychiatry.

  10. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts

    NASA Technical Reports Server (NTRS)

    Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.; hide

    1998-01-01

    Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.

  11. A missense allele of KARRIKIN-INSENSITIVE2 impairs ligand-binding and downstream signaling in Arabidopsis thaliana.

    PubMed

    Lee, Inhye; Kim, Kuglae; Lee, Sumin; Lee, Seungjun; Hwang, Eunjin; Shin, Kihye; Kim, Dayoung; Choi, Jungki; Choi, Hyunmo; Cha, Jeong Seok; Kim, Hoyoung; Lee, Rin-A; Jeong, Suyeong; Kim, Jeongsik; Kim, Yumi; Nam, Hong Gil; Park, Soon-Ki; Cho, Hyun-Soo; Soh, Moon-Soo

    2018-06-27

    A smoke-derived compound, karrikin (KAR), and an endogenous but as yet unidentified KARRIKIN INSENSITIVE2 (KAI2) ligand (KL) have been identified as chemical cues in higher plants that impact on multiple aspects of growth and development. Genetic screening of light-signaling mutants in Arabidopsis thaliana has identified a mutant designated as ply2 (pleiotropic long hypocotyl2) that has pleiotropic light-response defects. In this study, we used positional cloning to identify the molecular lesion of ply2 as a missense mutation of KAI2/HYPOSENSITIVE TO LIGHT, which causes a single amino acid substitution, Ala219Val. Physiological analysis and genetic epistasis analysis with the KL-signaling components MORE AXILLARY GROWTH2 (MAX2) and SUPPRESSOR OF MAX2 1 suggested that the pleiotropic phenotypes of the ply2 mutant can be ascribed to a defect in KL-signaling. Molecular and biochemical analyses revealed that the mutant KAI2ply2 protein is impaired in its ligand-binding activity. In support of this conclusion, X-ray crystallography studies suggested that the KAI2ply2 mutation not only results in a narrowed entrance gate for the ligand but also alters the structural flexibility of the helical lid domains. We discuss the structural implications of the Ala219 residue with regard to ligand-specific binding and signaling of KAI2, together with potential functions of KL-signaling in the context of the light-regulatory network in Arabidopsis thaliana.

  12. Recombinant γT305A fibrinogen indicates severely impaired fibrin polymerization due to the aberrant function of hole 'A' and calcium binding sites.

    PubMed

    Ikeda, Minami; Kobayashi, Tamaki; Arai, Shinpei; Mukai, Saki; Takezawa, Yuka; Terasawa, Fumiko; Okumura, Nobuo

    2014-08-01

    We examined a 6-month-old girl with inherited fibrinogen abnormality and no history of bleeding or thrombosis. Routine coagulation screening tests showed a markedly low level of plasma fibrinogen determined by functional measurement and also a low level by antigenic measurement (functional/antigenic ratio=0.295), suggesting hypodysfibrinogenemia. DNA sequence analysis was performed, and γT305A fibrinogen was synthesized in Chinese hamster ovary cells based on the results. We then functionally analyzed and compared with that of nearby recombinant γN308K fibrinogen. DNA sequence analysis revealed a heterozygous γT305A substitution (mature protein residue number). The γT305A fibrinogen indicated markedly impaired thrombin-catalyzed fibrin polymerization both in the presence or absence of 1mM calcium ion compared with that of γN308K fibrinogen. Protection of plasmin degradation in the presence of calcium ion or Gly-Pro-Arg-Pro peptide (analogue for so-called knob 'A') and factor XIIIa-catalyzed fibrinogen crosslinking demonstrated that the calcium binding sites, hole 'a' and D:D interaction sites were all markedly impaired, whereas γN308Kwas impaired at the latter two sites. Molecular modeling demonstrated that γT305 is localized at a shorter distance than γN308 from the high affinity calcium binding site and hole 'a'. Our findings suggest that γT305 might be important for construction of the overall structure of the γ module of fibrinogen. Substitution of γT305A leads to both dysfibrinogenemic and hypofibrinogenemic characterization, namely hypodysfibrinogenemia. We have already reported that recombinant γT305A fibrinogen was synthesized normally and secreted slightly, but was significantly reduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Harnessing the capacity of cell-penetrating peptides for drug delivery to the central nervous system.

    PubMed

    Kang, Ting; Gao, Xiaoling; Chen, Jun

    2014-01-01

    The existence of blood-brain barrier (BBB) represents the most formidable challenge for drug delivery to the central nervous system (CNS). Modern breakthrough in biology offers multiple choices for overcoming this barrier but yields modest outcomes for clinical application due to various problems such as safety concerns, insufficient delivery efficiency and poor penetration. Cell penetrating peptides (CPPs) possessing powerful transmembrane capacity have been shown to be effective transport vectors for bioactive molecules and an attractive alternative to traditional active targeting approaches. However, the non-specificity of CPPs has hindered them from targeting a desired site of action. Promisingly, design of novel CPP-mediated nanoparticulate delivery systems with specific targeting property may extricate CPPs from the dilemma. In this review, both the traditional and novel applications of CPPs-based strategies for CNS drug delivery will be discussed.

  14. Receptor-ligand binding sites and virtual screening.

    PubMed

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  15. Uncoupling phototoxicity-elicited neural dysmorphology and death by insidious function and selective impairment of Ran-binding protein 2 (Ranbp2).

    PubMed

    Cho, Kyoung-in; Haney, Victoria; Yoon, Dosuk; Hao, Yin; Ferreira, Paulo A

    2015-12-21

    Morphological disintegration of neurons is coupled invariably to neural death. In particular, disruption of outer segments of photoreceptor neurons triggers photoreceptor death regardless of the pathological stressors. We show that Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) mice with mutations in SUMO-binding motif (SBM) of cyclophilin-like domain (CLD) of Ran-binding protein 2 (Ranbp2) expressed in a null Ranbp2 background lack untoward effects in photoreceptors in the absence of light-stress. However, compared to wild type photoreceptors, light-stress elicits profound disintegration of outer segments of Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) with paradoxical age-dependent resistance of photoreceptors to death and genotype-independent activation of caspases. Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) exhibit photoreceptor death-independent changes in ubiquitin-proteasome system (UPS), but death-dependent increase of ubiquitin carrier protein 9(ubc9) levels. Hence, insidious functional impairment of SBM of Ranbp2's CLD promotes neuroprotection and uncoupling of photoreceptor degeneration and death against phototoxicity. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Hydroxychloroquine binding to cytoplasmic domain of Band 3 in human erythrocytes: Novel mechanistic insights into drug structure, efficacy and toxicity.

    PubMed

    Nakagawa, Mizuki; Sugawara, Kotomi; Goto, Tatsufumi; Wakui, Hideki; Nunomura, Wataru

    2016-05-13

    Hydroxychloroquine (HCQ) is a widely used drug in the treatment of autoimmune diseases, such as arthritis and systemic lupus erythematosus. It has also been prescribed for the treatment of malaria owing to its lower toxicity compared to its closely related compound chloroquine (CQ). However, the mechanisms of action of HCQ in erythrocytes (which bind preferentially this drug) have not been documented and the reasons underlying the lower side effects of HCQ compared to CQ remain unclear. Here we show that, although the activity of erythrocyte lactate dehydrogenase (LDH), but not GAPDH, was inhibited by both HCQ and CQ in vitro, LDH activity in erythrocytes incubated with 20 mM HCQ was not significantly reduced within 5 h in contrast to CQ did. Using HCQ coupled Sepharose chromatography (HCQ-Sepharose), we identified Band 3, spectrin, ankyrin, protein 4.1R and protein 4.2 as HCQ binding proteins in human erythrocyte plasma membrane. Recombinant cytoplasmic N-terminal 43 kDa domain of Band 3 bound to HCQ-Sepharose and was eluted with 40 mM (but not 20 mM) HCQ. Band 3 transport activity was reduced by only 23% in the presence of 20 mM HCQ. Taken together, these data demonstrate that HCQ binds to the cytoplasmic N-terminal domain of Band 3 in human erythrocytes but does not inhibit dramatically its transport activity. We hypothesize that the trapping of HCQ on Band 3 contributes to the lower side effects of the drug on energy production in erythrocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Pirfenidone and nintedanib for pulmonary fibrosis in clinical practice: Tolerability and adverse drug reactions.

    PubMed

    Galli, Jonathan A; Pandya, Aloknath; Vega-Olivo, Michelle; Dass, Chandra; Zhao, Huaqing; Criner, Gerard J

    2017-08-01

    The real-world tolerability of pirfenidone and nintedanib in non-clinical trial patients is unknown. Many patients with pulmonary fibrosis have significant medical co-morbidities or baseline characteristics that exclude them from clinical trial participation. We conducted a retrospective chart review study on subjects prescribed nintedanib or pirfenidone for pulmonary fibrosis treatment (any aetiology) from September 2014 to February 2016. A total of 186 subjects were included: 129 received pirfenidone and 57 were prescribed nintedanib and followed up for mean observation periods of 52 ± 17 weeks for pirfenidone and 41 ± 15 weeks for nintedanib. The primary outcome was drug discontinuation as a result of an adverse event. Subjects had significant respiratory impairment at baseline, 63% required home oxygen therapy and mean diffusion capacity of carbon monoxide (DLCO) was 36 ± 14% predicted. Drug discontinuation as a result of an adverse event occurred in 20.9% of subjects on pirfenidone and 26.3% on nintedanib. Drug discontinuation rates for both pirfenidone and nintedanib did not significantly differ from corresponding large clinical trials (ASCEND/CAPACITY and INPULSIS 1 and 2, respectively). Adverse events that occurred with highest frequency on pirfenidone were nausea (26.4%), rash/photosensitivity (14.7%) and dyspepsia/gastroesophageal reflux disease (GERD) (12.4%). Diarrhoea (52.6%) and nausea (29.8%) were reported most often with nintedanib therapy. Patients with pulmonary fibrosis treated with nintedanib or pirfenidone in routine clinical practice had drug tolerability and adverse event profiles comparable with subjects enrolled in clinical trials despite having a greater degree of respiratory impairment and a high prevalence of co-morbid medical conditions. © 2017 Asian Pacific Society of Respirology.

  18. Lack of color integration in visual short-term memory binding.

    PubMed

    Parra, Mario A; Cubelli, Roberto; Della Sala, Sergio

    2011-10-01

    Bicolored objects are retained in visual short-term memory (VSTM) less efficiently than unicolored objects. This is unlike shape-color combinations, whose retention in VSTM does not differ from that observed for shapes only. It is debated whether this is due to a lack of color integration and whether this may reflect the function of separate memory mechanisms. Participants judged whether the colors of bicolored objects (each with an external and an internalcolor) were the same or different across two consecutive screens. Colors had to be remembered either individually or in combination. In Experiment 1, external colors in the combined colors condition were remembered better than the internal colors, and performance for both was worse than that in the individual colors condition. The lack of color integration observed in Experiment 1 was further supported by a reduced capacity of VSTM to retain color combinations, relative to individual colors (Experiment 2). An additional account was found in Experiment 3, which showed spared color-color binding in the presence of impaired shape-color binding in a brain-damaged patient, thus suggesting that these two memory mechanisms are different.

  19. Balance impairment in chronic antiepileptic drug users: a twin and sibling study.

    PubMed

    Petty, Sandra J; Hill, Keith D; Haber, Natalie E; Paton, Lynda M; Lawrence, Kate M; Berkovic, Samuel F; Seibel, Markus J; O'Brien, Terence J; Wark, John D

    2010-02-01

    Patients taking antiepileptic drugs (AEDs) have an increased incidence of fractures. This study investigated chronic AED use and physical contributors to falls risk using an AED-discordant, twin and sibling matched-pair approach, and assessed clinically relevant subgroups: AED polytherapy; longer-duration AED; and falls history. Twenty-nine same-sex (mean age 44.9 years, 59% female), ambulatory, community-dwelling twin and sibling pairs, discordant for AED exposure (and AED-indication), were recruited. Validated clinical and laboratory tests of strength, gait, and balance were performed. Relevant AED levels, and fasting serum samples for 25-hydroxyvitamin D (25OHD), 1,25-dihydroxyvitamin D [1,25(OH)(2)D], and immunoreactive parathyroid hormone (iPTH) levels were taken. There were significant mean within-pair differences in tests of static and dynamic balance, with the AED user having poorer balance function than the AED nonuser. No difference was seen in lower limb strength or gait measures. Increased duration of AED therapy and AED polytherapy were independent predictors of increased sway. No significant within-pair differences were seen in fasting serum levels of 1,25(OH)(2)D, 25OHD and iPTH after Bonferroni correction. Balance performance is impaired in AED users compared to their matched nonuser siblings. Pairs where the AED users took AED polytherapy, or had a longer duration of AED use, had more impaired balance performance. These balance deficits may contribute to the increased rate of fractures in this population.

  20. A novel CD44-binding peptide from the pro-matrix metalloproteinase-9 hemopexin domain impairs adhesion and migration of chronic lymphocytic leukemia (CLL) cells.

    PubMed

    Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles

    2014-05-30

    (pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Roles of nonpolar and polar intermolecular interactions in the improvement of the drug loading capacity of PEO-b-PCL with increasing PCL content for two hydrophobic Cucurbitacin drugs.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2009-09-14

    Molecular dynamics (MD) simulation was used to study the roles of nonpolar and polar intermolecular interactions in the improvement of the drug loading capacity of poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) with increasing PCL content for two water insoluble anticancer drugs: Cucurbitacin B (CuB) and Cucurbitacin I (CuI). In particular, random binary mixture models containing 10-12 wt % drug and remaining PEO-b-PCL with three different PCL/PEO (w/w) ratios (0.5, 1, and 2) were used to calculate their Flory-Huggins interaction parameters (chi). The MD simulation results show that, for both CuB and CuI, the computed chi decreases (i.e., affinity increases) with increasing PCL/PEO ratio. Such results are consistent with our experimental observation that increasing the PCL/PEO (w/w) ratio from 1 to 4.8 significantly increases the drug loading capacity of micelles formed by PEO-b-PCL for both drugs. Analysis of the energy data shows that increasing affinity (loading) at higher PCL/PEO ratio is attributed to the increase in favorable polar interactions and to the formation of additional hydrogen bonds (H-bonds) between the drugs and the PCL block rather than to the increase in the hydrophobic characteristics of the diblock copolymer as one would normally expect. In fact, the nonpolar intermolecular interactions became more unfavorable at higher PCL/PEO ratio. Analysis of the radial distribution functions of the model mixtures indicates that at high PCL/PEO ratio, multiple H-bond sites on the PCL block interacted with single H-bond sites on the drug molecules. However, at low PCL/PEO ratio, only single H-bonds formed between various H-bond sites on the drug molecules and those of the PCL and PEO blocks. It seems that formation of H-bonds between multiple H-bond sites on the PCL block and single H-bond sites on the drug molecules is responsible for inducing drug/PEO-b-PCL affinity. The finding also explains the experimental observation that release rates

  2. Financial capacity in dementia: a systematic review.

    PubMed

    Sudo, Felipe Kenji; Laks, Jerson

    2017-07-01

    Financial capacity (FC) refers to a set of cognitively mediated abilities related to one's competency to manage propriety and income. Identifying intact from impaired FC in older persons with dementia is a growing concern in geriatric practice, but the best methods to assess this function still need to be determined. This study aims to review data on FC in dementia and on instruments used to assess this domain of capacity. Database search was performed in Medline, ISI Web of Knowledge, LILACS and PsycINFO. Studies that objectively assessed FC in dementia of any etiology were included. Of a total of 125 articles, 10 were included. Mild Alzheimer's Disease (AD) was associated with impaired complex FC abilities, namely checkbook management, bank statement management and financial judgment, but simple FC skills were preserved. Moderate AD was associated with impairment in all domains of FC. The Financial Capacity Instrument (FCI) was applied in most of the selected studies and correlated with neuropsychological and neuroimaging variables. Early dementia is associated with partially preserved FC. More validation studies using objective and evidence-based FC assessment tools, such as the FCI, are still needed.

  3. Binding and Utilization of Human Transferrin by Prevotella nigrescens

    PubMed Central

    Duchesne, Pascale; Grenier, Daniel; Mayrand, Denis

    1999-01-01

    To survive and multiply within their hosts, pathogens must possess efficient iron-scavenging mechanisms. In the present study, we investigate the capacity of Prevotella nigrescens and Prevotella intermedia to use various sources of iron for growth and characterize the transferrin-binding activity of P. nigrescens. Iron-saturated human transferrin and lactoferrin, but not ferric chloride and the iron-free form of transferrin, could be used as sources of iron by P. nigrescens and P. intermedia. Neither siderophore activity nor ferric reductase activity could be detected in P. nigrescens and P. intermedia. However, both species showed transferrin-binding activity as well as the capacity to proteolytically cleave transferrin. To various extents, all strains of P. nigrescens and P. intermedia tested demonstrated transferrin-binding activity. The activity was heat and protease sensitive. The capacity of P. nigrescens to bind transferrin was decreased when cells were grown in the presence of hemin. Preincubation of bacterial cells with hemin, hemoglobin, lactoferrin, fibrinogen, immunoglobulin G, or laminin did not affect transferrin-binding activity. The transferrin-binding protein could be extracted from the cell surface of P. nigrescens by treatment with a zwitterionic detergent. Subjecting the cell surface extract to affinity chromatography on an agarose-transferrin column revealed that it contained a protein having an estimated molecular mass of 37 kDa and possessing transferrin-binding activity. The transferrin-binding activity of P. nigrescens and P. intermedia may permit the bacteria to obtain iron for survival and growth in periodontal pockets. PMID:9916061

  4. Investigating the binding interactions of the anti-Alzheimer's drug donepezil with CYP3A4 and P-glycoprotein.

    PubMed

    McEneny-King, Alanna; Edginton, Andrea N; Rao, Praveen P N

    2015-01-15

    The anti-Alzheimer's agent donepezil is known to bind to the hepatic enzyme CYP3A4, but its relationship with the efflux transporter P-glycoprotein (P-gp) is not as well elucidated. We conducted in vitro inhibition studies of donepezil using human recombinant CYP3A4 and P-gp. These studies show that donepezil is a weak inhibitor of CYP3A4 (IC50=54.68±1.00μM) whereas the reference agent ketoconazole exhibited potent inhibition (CYP3A4 IC50=0.20±0.01μM). P-gp inhibition studies indicate that donepezil exhibits better inhibition relative to CYP3A4 (P-gp EC50=34.85±4.63μM) although it was less potent compared to ketoconazole (P-gp EC50=9.74±1.23μM). At higher concentrations, donepezil exhibited significant inhibition of CYP3A4 (69%, 84% and 87% inhibition at 100, 250 and 500μM, respectively). This indicates its potential to cause drug-drug interactions with other CYP3A4 substrates upon co-administration; however, this scenario is unlikely in vivo due to the low therapeutic concentrations of donepezil. Similarly, donepezil co-administration with P-gp substrates or inhibitors is unlikely to result in beneficial or adverse drug interactions. The molecular docking studies show that the 5,6-dimethoxyindan-1-one moiety of donepezil was oriented closer to the heme center in CYP3A4 whereas in the P-gp binding site, the protonated benzylpiperidine pharmacophore of donepezil played a major role in its binding ability. Energy parameters indicate that donepezil complex with both CYP3A4 and P-gp was less stable (CDOCKER energies=-15.05 and -4.91kcal/mol, respectively) compared to the ketoconazole-CYP3A4 and P-gp complex (CDOCKER energies=-41.89 and -20.03kcal/mol, respectively). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Analyte induced water adsorbability in gas phase biosensors: the influence of ethinylestradiol on the water binding protein capacity.

    PubMed

    Snopok, Borys; Kruglenko, Ivanna

    2015-05-07

    An ultra-sensitive gas phase biosensor/tracer/bio-sniffer is an emerging technology platform designed to provide real-time information on air-borne analytes, or those in liquids, through classical headspace analysis. The desired bio-sniffer measures gaseous 17α- ethinylestradiol (ETED) as frequency changes on a quartz crystal microbalance (QCM), which is a result of the interactions of liquid sample components in the headspace (ETED and water) with a biorecognition layer. The latter was constructed by immobilization of polyclonal antiserum against a phenolic A-ring of estrogenic receptors through protein A. The QCM response exhibited stretched exponential kinetics of negative frequency shifts with reversible and "irreversible" components of mass uptake onto the sensor surface in static headspace conditions when exposed to water solutions of ETED over the sensor working range, from 10(-10) to 10(-17) g L(-1). It was shown that the variations in the QCM response characteristics are due to the change of the water-binding capacity of the sensing layer induced by protein transformations initiated by the binding of ETED molecules. This result is well correlated with the natural physiological function of estrogens in controlling the homeostasis of body fluids in living beings.

  6. [Analysis of the binding capacity of the benzodiazepine site of gabaa receptor in mice C57BL/6 and BALB/C pretreated with anxiolytics].

    PubMed

    Iarkova, M A

    2011-01-01

    The level of specific 3H-flunitrazepam binding in synaptosomal membranes of C57BL/6 and BALB/c mice brain underwent to the stress of different types has been studied. Mild stress (Elevated Plus Maze) was shown to induce the decrease of benzodiazepine binding in BALB/c mice only, while the strong one (Exposure to a predator) was revealed to cause this decrease in both strains. Behavioral effects of different non-benzodiazepine drugs possessing anxiolytic properties (Afobazol, Ladasten and Noopept) was accompanied with the normalization of the level of benzodiazepine reception, reduced by the stress of both modalities.

  7. The need for drugged driving per se laws: a commentary.

    PubMed

    DuPont, Robert L; Voas, Robert B; Walsh, J Michael; Shea, Corinne; Talpins, Stephen K; Neil, Mark M

    2012-01-01

    Triggered by the new federal commitment announced by the Office of National Drug Control Policy (ONCDP) to encourage states to enact drugged driving per se laws, this article reviews the reasons to establish such laws and the issues that may arise when trying to enforce them. A review of the state of drunk driving per se laws and their implications for drugged driving is presented, with a review of impaired driving enforcement procedures and drug testing technology. Currently, enforcement of drugged driving laws is an adjunct to the enforcement of laws regarding alcohol impairment. Drivers are apprehended when showing signs of alcohol intoxication and only in the relatively few cases where the blood alcohol concentration of the arrested driver does not account for the observed behavior is the possibility of drug impairment pursued. In most states, the term impaired driving covers both alcohol and drug impairment; thus, driver conviction records may not distinguish between the two different sources of impairment. As a result, enforcement statistics do not reflect the prevalence of drugged driving. Based on the analysis presented, this article recommends a number of steps that can be taken to evaluate current drugged driving enforcement procedures and to move toward the enactment of drug per se laws.

  8. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    NASA Astrophysics Data System (ADS)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  9. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.

    PubMed

    Su, Min-Gang; Weng, Julia Tzu-Ya; Hsu, Justin Bo-Kai; Huang, Kai-Yao; Chi, Yu-Hsiang; Lee, Tzong-Yi

    2017-12-21

    Protein post-translational modification (PTM) plays an essential role in various cellular processes that modulates the physical and chemical properties, folding, conformation, stability and activity of proteins, thereby modifying the functions of proteins. The improved throughput of mass spectrometry (MS) or MS/MS technology has not only brought about a surge in proteome-scale studies, but also contributed to a fruitful list of identified PTMs. However, with the increase in the number of identified PTMs, perhaps the more crucial question is what kind of biological mechanisms these PTMs are involved in. This is particularly important in light of the fact that most protein-based pharmaceuticals deliver their therapeutic effects through some form of PTM. Yet, our understanding is still limited with respect to the local effects and frequency of PTM sites near pharmaceutical binding sites and the interfaces of protein-protein interaction (PPI). Understanding PTM's function is critical to our ability to manipulate the biological mechanisms of protein. In this study, to understand the regulation of protein functions by PTMs, we mapped 25,835 PTM sites to proteins with available three-dimensional (3D) structural information in the Protein Data Bank (PDB), including 1785 modified PTM sites on the 3D structure. Based on the acquired structural PTM sites, we proposed to use five properties for the structural characterization of PTM substrate sites: the spatial composition of amino acids, residues and side-chain orientations surrounding the PTM substrate sites, as well as the secondary structure, division of acidity and alkaline residues, and solvent-accessible surface area. We further mapped the structural PTM sites to the structures of drug binding and PPI sites, identifying a total of 1917 PTM sites that may affect PPI and 3951 PTM sites associated with drug-target binding. An integrated analytical platform (CruxPTM), with a variety of methods and online molecular docking

  10. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less

  11. Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ.

    PubMed

    Ruiz-Avila, Laura B; Huecas, Sonia; Artola, Marta; Vergoñós, Albert; Ramírez-Aportela, Erney; Cercenado, Emilia; Barasoain, Isabel; Vázquez-Villa, Henar; Martín-Fontecha, Mar; Chacón, Pablo; López-Rodríguez, María L; Andreu, José M

    2013-09-20

    Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.

  12. Stereoselective binding of doxazosin enantiomers to plasma proteins from rats, dogs and humans in vitro

    PubMed Central

    Sun, Jia-an; Kong, De-zhi; Zhen, Ya-qin; Li, Qing; Zhang, Wei; Zhang, Jiang-hua; Yin, Zhi-wei; Ren, Lei-ming

    2013-01-01

    Aim: (±)Doxazosin is a long-lasting inhibitor of α1-adrenoceptors that is widely used to treat benign prostatic hyperplasia and lower urinary tract symptoms. In this study we investigated the stereoselective binding of doxazosin enantiomers to the plasma proteins of rats, dogs and humans in vitro. Methods: Human, dog and rat plasma were prepared. Equilibrium dialysis was used to determine the plasma protein binding of each enantiomer in vitro. Chiral HPLC with fluorescence detection was used to measure the drug concentrations on each side of the dialysis membrane bag. Results: Both the enantiomers were highly bound to the plasma proteins of rats, dogs and humans [(−)doxazosin: 89.4%–94.3%; (+)doxazosin: 90.9%–95.4%]. (+)Doxazosin exhibited significantly higher protein binding capacities than (−)doxazosin in all the three species, and the difference in the bound concentration (Cb) between the two enantiomers was enhanced as their concentrations were increased. Although the percentage of the plasma protein binding in the dog plasma was significantly lower than that in the human plasma at 400 and 800 ng/mL, the corrected percentage of plasma protein binding was dog>human>rat. Conclusion: (−)Doxazosin and (+)doxazosin show stereoselective plasma protein binding with a significant species difference among rats, dogs and humans. PMID:24241343

  13. Novel poly(ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug.

    PubMed

    Basar, A O; Castro, S; Torres-Giner, S; Lagaron, J M; Turkoglu Sasmazel, H

    2017-12-01

    In the present study, a single and binary Ketoprofen-loaded mats of ultrathin fibers were developed by electrospinning and their physical properties and drug release capacity was analyzed. The single mat was prepared by solution electrospinning of poly(ε-caprolactone) (PCL) with Ketoprofen at a weight ratio of 5wt%. This Ketoprofen-containing PCL solution was also used as the oil phase in a 7:3 (wt/wt) emulsion with gelatin dissolved in acidified water. The resultant stable oil-in-water (O/W) emulsion of PCL-in-gelatin, also containing Ketoprofen at 5wt%, was electrospun to produce the binary mat. Cross-linking process was performed by means of glutaraldehyde vapor on the electrospun binary mat to prevent dissolution of the hydrophilic gelatin phase. The performed characterization indicated that Ketoprofen was successfully embedded in the single and binary electrospun mats, i.e. PCL and PCL/gelatin, and both mats showed high hydrophobicity but poor thermal resistance. In vitro release studies interestingly revealed that, in comparison to the single PCL electrospun mat, the binary PCL/gelatin mat significantly hindered Ketoprofen burst release and exhibited a sustained release capacity of the drug for up to 4days. In addition, the electrospun Ketoprofen-loaded mats showed enhanced attachment and proliferation of L929 mouse fibroblast cells, presenting the binary mat the highest cell growth yield due to its improved porosity. The here-developed electrospun materials clearly show a great deal of potential as novel wound dressings with an outstanding controlled capacity to release drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  15. Bindings in working memory: The role of object-based attention.

    PubMed

    Gao, Zaifeng; Wu, Fan; Qiu, Fangfang; He, Kaifeng; Yang, Yue; Shen, Mowei

    2017-02-01

    Over the past decade, it has been debated whether retaining bindings in working memory (WM) requires more attention than retaining constituent features, focusing on domain-general attention and space-based attention. Recently, we proposed that retaining bindings in WM needs more object-based attention than retaining constituent features (Shen, Huang, & Gao, 2015, Journal of Experimental Psychology: Human Perception and Performance, doi: 10.1037/xhp0000018 ). However, only unitized visual bindings were examined; to establish the role of object-based attention in retaining bindings in WM, more emperical evidence is required. We tested 4 new bindings that had been suggested requiring no more attention than the constituent features in the WM maintenance phase: The two constituent features of binding were stored in different WM modules (cross-module binding, Experiment 1), from auditory and visual modalities (cross-modal binding, Experiment 2), or temporally (cross-time binding, Experiments 3) or spatially (cross-space binding, Experiments 4-6) separated. In the critical condition, we added a secondary object feature-report task during the delay interval of the change-detection task, such that the secondary task competed for object-based attention with the to-be-memorized stimuli. If more object-based attention is required for retaining bindings than for retaining constituent features, the secondary task should impair the binding performance to a larger degree relative to the performance of constituent features. Indeed, Experiments 1-6 consistently revealed a significantly larger impairment for bindings than for the constituent features, suggesting that object-based attention plays a pivotal role in retaining bindings in WM.

  16. Drug Hypersensitivity: How Drugs Stimulate T Cells via Pharmacological Interaction with Immune Receptors.

    PubMed

    Pichler, Werner J; Adam, Jacqueline; Watkins, Stephen; Wuillemin, Natascha; Yun, James; Yerly, Daniel

    2015-01-01

    Small chemicals like drugs tend to bind to proteins via noncovalent bonds, e.g. hydrogen bonds, salt bridges or electrostatic interactions. Some chemicals interact with other molecules than the actual target ligand, representing so-called 'off-target' activities of drugs. Such interactions are a main cause of adverse side effects to drugs and are normally classified as predictable type A reactions. Detailed analysis of drug-induced immune reactions revealed that off-target activities also affect immune receptors, such as highly polymorphic human leukocyte antigens (HLA) or T cell receptors (TCR). Such drug interactions with immune receptors may lead to T cell stimulation, resulting in clinical symptoms of delayed-type hypersensitivity. They are assigned the 'pharmacological interaction with immune receptors' (p-i) concept. Analysis of p-i has revealed that drugs bind preferentially or exclusively to distinct HLA molecules (p-i HLA) or to distinct TCR (p-i TCR). P-i reactions differ from 'conventional' off-target drug reactions as the outcome is not due to the effect on the drug-modified cells themselves, but is the consequence of reactive T cells. Hence, the complex and diverse clinical manifestations of delayed-type hypersensitivity are caused by the functional heterogeneity of T cells. In the abacavir model of p-i HLA, the drug binding to HLA may result in alteration of the presenting peptides. More importantly, the drug binding to HLA generates a drug-modified HLA, which stimulates T cells directly, like an allo-HLA. In the sulfamethoxazole model of p-i TCR, responsive T cells likely require costimulation for full T cell activation. These findings may explain the similarity of delayed-type hypersensitivity reactions to graft-versus-host disease, and how systemic viral infections increase the risk of delayed-type hypersensitivity reactions. © 2015 The Author(s) Published by S. Karger AG, Basel.

  17. Expression profiles of glyceraldehyde-3-phosphate dehydrogenase from Clonorchis sinensis: a glycolytic enzyme with plasminogen binding capacity.

    PubMed

    Hu, Yue; Zhang, Erhong; Huang, Lisi; Li, Wenfang; Liang, Pei; Wang, Xiaoyun; Xu, Jin; Huang, Yan; Yu, Xinbing

    2014-12-01

    Globally, 15-20 million people are infected with Clonorchis sinensis (C. sinensis) which results in clonorchiasis. In China, clonorchiasis is considered to be one of the fastest-growing food-borne parasitic diseases. That more key molecules of C. sinensis are characterized will be helpful to understand biology and pathogenesis of the carcinogenic liver fluke. Glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) from many species have functions other than their catalytic role in glycolysis. In the present study, we analyzed the sequence and structure of GAPDH from C. sinensis (CsGAPDH) by using bioinformatics tools and obtained its recombinant protein by prokaryotic expression system, to learn its expression profiles and molecular property. CsGAPDH could bind to human intrahepatic biliary epithelial cell in vivo and in vitro by the method of immunofluorescence assays. CsGAPDH also disturbed in lumen of biliary tract near to the parasite in the liver of infected rat. Western blotting analysis together with immunofluorescence assay indicated that CsGAPDH was a component of excretory/secretory proteins (CsESPs) and a surface-localized protein of C. sinensis. Quantitative real-time PCR (Q-PCR) and Western blotting demonstrated that CsGAPDHs are expressed at the life stages of adult worm, metacercaria, and egg, but the expression levels were different from each other. Recombinant CsGAPDH (rCsGAPDH) was confirmed to have the capacity to catalyze the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate which was inhibited by AMP in a dose-dependent manner. In addition, rCsGAPDH was able to interact with human plasminogen in a dose-dependent manner by ELISA. The interaction could be inhibited by lysine. The plasminogen binding capacity of rCsGAPDH along with the distribution of CsGAPDH in vivo and in the liver of C. sinensis-infected rat hinted that surface-localized CsGAPDH might play an important role in host invasion of the worm besides its glycolytic

  18. Patterns of drug use and the influence of gender on self-reports of memory ability in ecstasy users: a web-based study.

    PubMed

    Rodgers, J; Buchanan, T; Scholey, A B; Heffernan, T M; Ling, J; Parrott, A C

    2003-12-01

    Research indicates that the use of recreational drugs, including MDMA ('ecstasy') can result in impairments in cognitive functioning. Recent evidence, based on accounts of 'on drug' effects and cortical binding ratios suggests that women may be more susceptible to the effects of MDMA; however, no research has explored whether there are differences in the long-term behavioural sequelae of the drug between men and women. In addition, little is known about the profile of functioning of the 'typical' user. The present investigation accessed a large sample of recreational drug users, using the Internet, to obtain self-reports of memory functioning with a view to exploring any differences in self-reported ability amongst male and female users, and the level of difficulty reported by the 'typical' ecstasy user. A web site (www.drugresearch.org.uk) was developed and used for data collection. Prospective memory ability was assessed using the Prospective Memory Questionnaire. Self-report of day-to-day memory performance was investigated using the Everyday Memory Questionnaire. The UEL Drug Questionnaire assessed the use of other substances. The number of mistakes made while completing the questionnaires was also taken as an objective measure of performance errors. Findings, based on datasets submitted from 763 respondents, indicate no differences in self-reports of functioning between male and female participants. An overall dissociation between the effects of cannabis and ecstasy on self-reported memory functioning and on the likelihood of making an error during the completion of the questionnaire was found. Typical ecstasy users were found to report significantly more difficulties in long-term prospective memory and to make more completion errors than users of other substances and drug naive controls. Whilst taking into account the fact that participants were recruited via the World Wide Web and that a number of stringent exclusion criteria were applied to the data, a

  19. Fluctuating capacity and advance decision-making in Bipolar Affective Disorder — Self-binding directives and self-determination

    PubMed Central

    Gergel, Tania; Owen, Gareth S.

    2015-01-01

    For people with Bipolar Affective Disorder, a self-binding (advance) directive (SBD), by which they commit themselves to treatment during future episodes of mania, even if unwilling, can seem the most rational way to deal with an imperfect predicament. Knowing that mania will almost certainly cause enormous damage to themselves, their preferred solution may well be to allow trusted others to enforce treatment and constraint, traumatic though this may be. No adequate provision exists for drafting a truly effective SBD and efforts to establish such provision are hampered by very valid, but also paralysing ethical, clinical and legal concerns. Effectively, the autonomy and rights of people with bipolar are being ‘protected’ through being denied an opportunity to protect themselves. From a standpoint firmly rooted in the clinical context and experience of mania, this article argues that an SBD, based on a patient-centred evaluation of capacity to make treatment decisions (DMC-T) and grounded within the clinician–patient relationship, could represent a legitimate and ethically coherent form of self-determination. After setting out background information on fluctuating capacity, mania and advance directives, this article proposes a framework for constructing such an SBD, and considers common objections, possible solutions and suggestions for future research. PMID:25939286

  20. Effects of clay on toxin binding capacity, ruminal fermentation, diet digestibility, and growth of steers fed high-concentrate diets.

    PubMed

    Antonelo, D S; Lancaster, N A; Melnichenko, S; Muegge, C R; Schoonmaker, J P

    2017-10-01

    Three experiments were conducted to determine the effect of increasing concentrations of a smectite clay on toxin binding capacity, ruminal fermentation, diet digestibility, and growth of feedlot cattle. In Exp. 1, 72 Angus × Simmental steers were blocked by BW (395 ± 9.9 kg) and randomly allotted to 3 treatments (4 pens/treatment and 6 steers/pen) to determine the effects of increasing amounts of clay (0, 1, or 2%) on performance. The clay was top-dressed on an 80% concentrate diet at a rate of 0, 113, or 226 g/steer daily to achieve the 0, 1, and 2% treatments, respectively. Steers were slaughtered at a target BW of 606 kg. In Exp. 2, 6 steers (596 ± 22.2 kg initial BW) were randomly allotted to the same 3 treatments in a replicated 3 × 3 Latin square design (21-d periods) to determine the effects of increasing amounts of clay on ruminal pH, VFA, and nutrient digestibility. In Exp. 3, 150 mg of clay was incubated in 10 mL of rumen fluid with 3 incremental concentrations (6 replicates per concentration) of aflatoxin B (AFB) or ergotamine tartate (ET) to determine binding capacity. During the first 33-d period, there was a quadratic effect of clay on ADG ( < 0.01) and G:F ( < 0.01), increasing from 0 to 1% clay and then decreasing from 1 to 2% clay. However, during the second 30-d period, clay linearly decreased ADG and G:F ( ≤ 0.03) and overall ADG, DMI, and G:F were not impacted ( ≥ 0.46). Clay linearly decreased marbling score ( = 0.05). Hepatic enzyme activity did not differ among treatments on d 0 or at slaughter ( ≥ 0.15). Clay linearly decreased ruminal lactate and propionate, linearly increased formate and the acetate:propionate ratio ( ≤ 0.04), and tended ( = 0.07) to linearly increase butyrate. Clay tended to linearly increase ( = 0.06) OM and CP apparent digestibility. Ruminal pH, urine pH, and other digestibility measures did not differ among treatments ( ≥ 0.15). Clay was able to effectively bind AFB and ET at concentrations above the

  1. Impairment of the Bacterial Biofilm Stability by Triclosan

    PubMed Central

    Hubas, Cédric; Behrens, Sebastian; Ricciardi, Francesco; Paterson, David M.

    2012-01-01

    The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (<63 µm) and exposed to a range of triclosan concentrations (control, 2 – 100 µg L−1) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of

  2. Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.

    PubMed

    Takada, Shingo; Kinugawa, Shintaro; Hirabayashi, Kagami; Suga, Tadashi; Yokota, Takashi; Takahashi, Masashige; Fukushima, Arata; Homma, Tsuneaki; Ono, Taisuke; Sobirin, Mochamad A; Masaki, Yoshihiro; Mizushima, Wataru; Kadoguchi, Tomoyasu; Okita, Koichi; Tsutsui, Hiroyuki

    2013-04-01

    NAD(P)H oxidase-induced oxidative stress is at least in part involved with lowered exercise capacity and impaired mitochondrial function in high-fat diet (HFD)-induced diabetic mice. NAD(P)H oxidase can be activated by activation of the renin-angiotensin system. We investigated whether ANG II receptor blocker can improve exercise capacity in diabetic mice. C57BL/6J mice were fed a normal diet (ND) or HFD, and each group of mice was divided into two groups: treatment with or without olmesartan (OLM; 3 mg·kg(-1)·day(-1) in the drinking water). The following groups of mice were studied: ND, ND+OLM, HFD, and HFD+OLM (n = 10 for each group). After 8 wk, HFD significantly increased body weight, plasma glucose, and insulin compared with ND, and OLM did not affect these parameters in either group. Exercise capacity, as determined by treadmill tests, was significantly reduced in HFD, and this reduction was ameliorated in HFD+OLM. ADP-dependent mitochondrial respiration was significantly decreased, and NAD(P)H oxidase activity and superoxide production by lucigenin chemiluminescence were significantly increased in skeletal muscle from HFD, which were attenuated by OLM. There were no such effects by OLM in ND. We concluded that OLM ameliorated the decrease in exercise capacity in diabetic mice via improvement in mitochondrial function and attenuation of oxidative stress in skeletal muscle. These data may have a clinical impact on exercise capacity in the medical treatment of diabetes mellitus.

  3. Binding of the immunomodulatory drug Bz-423 to mitochondrial FoF1-ATP synthase in living cells by FRET acceptor photobleaching

    NASA Astrophysics Data System (ADS)

    Starke, Ilka; Johnson, Kathryn M.; Petersen, Jan; Gräber, Peter; Opipari, Anthony W.; Glick, Gary D.; Börsch, Michael

    2016-03-01

    Bz-423 is a promising new drug for treatment of autoimmune diseases. This small molecule binds to subunit OSCP of the mitochondrial enzyme FoF1-ATP synthase and modulates its catalytic activities. We investigate the binding of Bz-423 to mitochondria in living cells and how subunit rotation in FoF1-ATP synthase, i.e. the mechanochemical mechanism of this enzyme, is affected by Bz-423. Therefore, the enzyme was marked selectively by genetic fusion with the fluorescent protein EGFP to the C terminus of subunit γ. Imaging the threedimensional arrangement of mitochondria in living yeast cells was possible at superresolution using structured illumination microscopy, SIM. We measured uptake and binding of a Cy5-labeled Bz-423 derivative to mitochondrial FoF1-ATP synthase in living yeast cells using FRET acceptor photobleaching microscopy. Our data confirmed the binding of Cy5-labeled Bz-423 to the top of the F1 domain of the enzyme in mitochondria of living Saccharomyces cerevisiae cells.

  4. Genetic loss of diazepam binding inhibitor in mice impairs social interest.

    PubMed

    Ujjainwala, A L; Courtney, C D; Rhoads, S G; Rhodes, J S; Christian, C A

    2018-06-01

    Neuropsychiatric disorders in which reduced social interest is a common symptom, such as autism, depression, and anxiety, are frequently associated with genetic mutations affecting γ-aminobutyric acid (GABA)ergic transmission. Benzodiazepine treatment, acting via GABA type-A receptors, improves social interaction in male mouse models with autism-like features. The protein diazepam binding inhibitor (DBI) can act as an endogenous benzodiazepine, but a role for DBI in social behavior has not been described. Here, we investigated the role of DBI in the social interest and recognition behavior of mice. The responses of DBI wild-type and knockout male and female mice to ovariectomized female wild-type mice (a neutral social stimulus) were evaluated in a habituation/dishabituation task. Both male and female knockout mice exhibited reduced social interest, and DBI knockout mice lacked the sex difference in social interest levels observed in wild-type mice, in which males showed higher social interest levels than females. The ability to discriminate between familiar and novel stimulus mice (social recognition) was not impaired in DBI-deficient mice of either sex. DBI knockouts could learn a rotarod motor task, and could discriminate between social and nonsocial odors. Both sexes of DBI knockout mice showed increased repetitive grooming behavior, but not in a manner that would account for the decrease in social investigation time. Genetic loss of DBI did not alter seminal vesicle weight, indicating that the social interest phenotype of males lacking DBI is not due to reduced circulating testosterone. Together, these studies show a novel role of DBI in driving social interest and motivation. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Individual differences in working memory capacity and workload capacity.

    PubMed

    Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta

    2014-01-01

    We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.

  6. The effect of ageing on recollection: the role of the binding updating process.

    PubMed

    Boujut, Arnaud; Clarys, David

    2016-10-01

    The aim of this study was to highlight the underlying process responsible for the age-related deficit in recollection. Through two experiments using the Remember-Know-Guess procedure (Gardiner, J. M., & Richardson-Klavehn, A. [2000]. Remembering and knowing. In The Oxford handbook of memory (pp. 229-244). New York, NY: Oxford University Press) in recognition, we manipulated the opportunity to update bindings between target items and their encoding context, in young and older adults. In the first experiment we impaired the binding updating process during the encoding of items, while in the second we supported this process. The results indicated that the "Remember" responses in the younger group were specifically reduced by the impairment of the binding updating process (Exp. 1), suggesting that this ability is useful for them to encode a specific episode. Conversely, only the "Remember" responses in the older group were improved in accuracy by supporting the binding updating process (Exp. 2), suggesting that their weakness in this ability is the source of their failure to improve the accuracy of their memories. The overall results support the hypothesis that the age-related decline in episodic memory is partly due to a greater vulnerability to interference on bindings, impairing the ability to update content-context bindings as and when events occur.

  7. Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer

    PubMed Central

    Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051

  8. Effects of atorvastatin metabolites on induction of drug-metabolizing enzymes and membrane transporters through human pregnane X receptor

    PubMed Central

    Hoffart, E; Ghebreghiorghis, L; Nussler, AK; Thasler, WE; Weiss, TS; Schwab, M; Burk, O

    2012-01-01

    BACKGROUND AND PURPOSE Atorvastatin metabolites differ in their potential for drug interaction because of differential inhibition of drug-metabolizing enzymes and transporters. We here investigate whether they exert differential effects on the induction of these genes via activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR). EXPERIMENTAL APPROACH Ligand binding to PXR or CAR was analysed by mammalian two-hybrid assembly and promoter/reporter gene assays. Additionally, surface plasmon resonance was used to analyse ligand binding to CAR. Primary human hepatocytes were treated with atorvastatin metabolites, and mRNA and protein expression of PXR-regulated genes was measured. Two-hybrid co-activator interaction and co-repressor release assays were utilized to elucidate the molecular mechanism of PXR activation. KEY RESULTS All atorvastatin metabolites induced the assembly of PXR and activated CYP3A4 promoter activity. Ligand binding to CAR could not be proven. In primary human hepatocytes, the para-hydroxy metabolite markedly reduced or abolished induction of cytochrome P450 and transporter genes. While significant differences in co-activator recruitment were not observed, para-hydroxy atorvastatin demonstrated only 50% release of co-repressors. CONCLUSIONS AND IMPLICATIONS Atorvastatin metabolites are ligands of PXR but not of CAR. Atorvastatin metabolites demonstrate differential induction of PXR target genes, which results from impaired release of co-repressors. Consequently, the properties of drug metabolites have to be taken into account when analysing PXR-dependent induction of drug metabolism and transport. The drug interaction potential of the active metabolite, para-hydroxy atorvastatin, might be lower than that of the parent compound. PMID:21913896

  9. Working Memory Capacity Predicts Effects of Methylphenidate on Reversal Learning

    PubMed Central

    van der Schaaf, Marieke E; Fallon, Sean J; ter Huurne, Niels; Buitelaar, Jan; Cools, Roshan

    2013-01-01

    Increased use of stimulant medication, such as methylphenidate, by healthy college students has raised questions about its cognitive-enhancing effects. Methylphenidate acts by increasing extracellular catecholamine levels and is generally accepted to remediate cognitive and reward deficits in patients with attention deficit hyperactivity disorder. However, the cognitive-enhancing effects of such ‘smart drugs' in the healthy population are still unclear. Here, we investigated effects of methylphenidate (Ritalin, 20 mg) on reward and punishment learning in healthy students (N=19) in a within-subject, double-blind, placebo-controlled cross-over design. Results revealed that methylphenidate effects varied both as a function of task demands and as a function of baseline working memory capacity. Specifically, methylphenidate improved reward vs punishment learning in high-working memory subjects, whereas it impaired reward vs punishment learning in low-working memory subjects. These results contribute to our understanding of individual differences in the cognitive-enhancing effects of methylphenidate in the healthy population. Moreover, they highlight the importance of taking into account both inter- and intra-individual differences in dopaminergic drug research. PMID:23612436

  10. Immunotherapy for the treatment of drug abuse.

    PubMed

    Kosten, Thomas; Owens, S Michael

    2005-10-01

    Antibody therapy (as either active or passive immunization) is designed primarily to prevent drugs of abuse from entering the central nervous system (CNS). Antidrug antibodies reduce rush, euphoria, and drug distribution to the brain at doses that exceed the apparent binding capacity of the antibody. This is accomplished through a pharmacokinetic antagonism, which reduces the amount of drug in the brain, the rate of clearance across the blood-brain barrier, and the volume of drug distribution. Because the antibodies remain primarily in the circulatory system, they have no apparent central nervous system side effects. Active immunization with drug-protein conjugate vaccines has been tested for cocaine, heroin, methamphetamine, and nicotine in animal, with 1 cocaine and 3 nicotine vaccines in Phase 2 human trials. Passive immunization with high affinity monoclonal antibodies has been tested for cocaine, methamphetamine, nicotine, and phencyclidine (PCP) in preclinical animal models. Antibodies have 2 immediate clinical applications in drug abuse treatment: to treat drug overdose and to reduce relapse to drug use in addicted patients. The specificity of the therapies, the lack of addiction liability, minimal side effects, and long-lasting protection against drug use offer major therapeutic benefit over conventional small molecule agonists and antagonists. Immunotherapies can also be combined with other antiaddiction medications and enhance behavioral therapies. Current immunotherapies already show efficacy, but improved antigen design and antibody engineering promise highly specific and rapidly developed treatments for both existing and future addictions.

  11. The effect of glycation on bovine serum albumin conformation and ligand binding properties with regard to gliclazide

    NASA Astrophysics Data System (ADS)

    Żurawska-Płaksej, Ewa; Rorbach-Dolata, Anna; Wiglusz, Katarzyna; Piwowar, Agnieszka

    2018-01-01

    Albumin, the major serum protein, plays a variety of functions, including binding and transporting endogenous and exogenous ligands. Its molecular structure is sensitive to different environmental modifiers, among which glucose is one of the most significant. In vivo albumin glycation occurs under physiological conditions, but it is increased in diabetes. Since bovine serum albumin (BSA) may serve as a model protein in in vitro experiments, we aimed to investigate the impact of glucose-mediated BSA glycation on the binding capacity towards gliclazide, as well as the ability of this drug to prevent glycation of the BSA molecule. To reflect normo- and hyperglycemia, the conditions of the glycation process were established. Structural changes of albumin after interaction with gliclazide (0-14 μM) were determined using fluorescence quenching and circular dichroism spectroscopy. Moreover, thermodynamic parameters as well as energy transfer parameters were determined. Calculated Stern-Volmer quenching constants, as well as binding constants for the BSA-gliclazide complex, were lower for the glycated form of albumin than for the unmodified protein. The largest, over 2-fold, decrease in values of binding parameters was observed for the sample with 30 mM of glucose, reflecting the poorly controlled diabetic state, which indicates that the degree of glycation had a critical influence on binding with gliclazide. In contrast to significant changes in the tertiary structure of BSA upon binding with gliclazide, only slight changes in the secondary structure were observed, which was reflected by about a 3% decrease of the α-helix content of glycated BSA (regardless of glucose concentration) in comparison to unmodified BSA. The presence of gliclazide during glycation did not affect its progress. The results of this study indicate that glycation significantly changed the binding ability of BSA towards gliclazide and the scale of these changes depended on glucose concentration. It

  12. Conformational Plasticity of the Influenza A M2 Transmembrane Helix in Lipid Bilayers Under Varying pH, Drug Binding and Membrane Thickness

    PubMed Central

    Hu, Fanghao; Luo, Wenbin; Cady, Sarah D.; Hong, Mei

    2010-01-01

    Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). 13C and 15N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, non-ideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and non-ideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (ϕ, ψ) torsion angles for three basis states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins. PMID:20883664

  13. Comparison of chemotherapeutic drug resistance in cells transfected with canine ABCG2 or feline ABCG2.

    PubMed

    Lewis, R S; Fidel, J; Dassanayake, S; Court, M H; Burke, N S; Mealey, K L

    2017-06-01

    ABCG2 (ATP binding cassette subfamily G, member 2) mediates resistance to a variety of cytotoxic agents. Although human ABCG2 is well characterized, the function of canine ABCG2 has not been studied previously. Feline ABCG2 has an amino acid substitution in the adenosine triphosphate-binding domain that decreases its transport capacity relative to human ABCG2. Our goal was to compare canine ABCG2-mediated chemotherapeutic drug resistance to feline ABCG2-mediated chemotherapeutic drug resistance. HEK-293 cells stably transfected with plasmid containing canine ABCG2, feline ABCG2 or no ABCG2 were exposed to carboplatin, doxorubicin, mitoxantrone, toceranib or vincristine, and cell survival was subsequently determined. Canine ABCG2 conferred a greater degree of chemotherapy resistance than feline ABCG2 for mitoxantrone. Neither canine nor feline ABCG2 conferred resistance to doxorubicin, vincristine or toceranib. Canine, but not feline, ABCG2 conferred resistance to carboplatin, a drug that is not reported to be a substrate for ABCG2 in other species. © 2015 John Wiley & Sons Ltd.

  14. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin.

    PubMed

    Zainuddin, Norhidayu; Ahmad, Ishak; Kargarzadeh, Hanieh; Ramli, Suria

    2017-05-01

    Nanocrystalline cellulose (NCC) extracted from lignocellulosic materials has been actively investigated as a drug delivery excipients due to its large surface area, high aspect ratio, and biodegradability. In this study, the hydrophobically modified NCC was used as a drug delivery excipient of hydrophobic drug curcumin. The modification of NCC with a cationic surfactant, cetyl trimethylammonium bromide (CTAB) was used to modulate the loading of hydrophobic drugs that would not normally bind to NCC. The FTIR, Elemental analysis, XRD, TGA, and TEM were used to confirm the modification of NCC with CTAB. The effect of concentration of CTAB on the binding efficiency of hydrophobic drug curcumin was investigated. The amounts of curcumin bound onto the CTAB-NCC nanoparticles were analyzed by UV-vis Spectrophotometric. The result showed that the modified CTAB-NCC bound a significant amount of curcumin, in a range from 80% to 96% curcumin added. Nevertheless, at higher concentration of CTAB resulted in lower binding efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias

    PubMed Central

    Cubeddu, Luigi X.

    2016-01-01

    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended. PMID:26926294

  17. Cloud computing for protein-ligand binding site comparison.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  18. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  19. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  20. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  1. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  2. Loading capacity and interaction of DNA binding on catanionic vesicles with different cationic surfactants.

    PubMed

    Xu, Lu; Chen, Jingfei; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2014-12-07

    Cationic and anionic (catanionic) vesicles were constructed from the mixtures of sodium laurate (SL) and alkyltrimethylammonium bromide (CnTAB, n = 12, 14, and 16) and were used to control the loading capacity of DNA. The binding saturation point (BSP) of DNA to catanionic vesicles increases with the chain length of cationic surfactants, which is at 1.0, 1.3 and 1.5 for CnTAB with n = 12, 14, and 16, respectively. Our measurements showed that the loading capacity and affinity of DNA can be controlled by catanionic vesicles. It increases with the chain length of cationic surfactants. Because of a large reduction in surface charge density, catanionic vesicles are prone to undergo re-aggregation or fusion with the addition of DNA. DNA molecules can still maintain original coil state during the interaction with catanionic CnTAL vesicles. (1)H NMR data reveals that the obvious dissociation of anionic ions, L(-), from catanionic C14TAL vesicles is due to the interaction with DNA; however, this phenomenon cannot be observed in C12TAB-SL vesicles. Agarose gel electrophoresis (AGE) results demonstrate that the electrostatic interaction between the two oppositely charged cationic and anionic surfactants is stronger than that between DNA and cationic surfactant, CnTAB (n = 12, 14, and 16). Not only is the dissociation of L(-) simply determined by the charge competition, but it also depends largely on the variations in the surface charge density as well as the cationic and anionic surfactant competing ability in geometry configuration of catanionic vesicles. The complicated interaction between DNA and catanionic vesicles induces the deformation of cationic vesicles. Our results should provide clear guidance for choosing more proper vectors for DNA delivery and gene therapy in cell experiments.

  3. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    PubMed

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  4. Capacity to consent to research among patients with bipolar disorder.

    PubMed

    Misra, Sahana; Ganzini, Linda

    2004-06-01

    Experts have debated the influence of mental illness on decision-making capacity. This paper reviews concepts of decision-making capacity and existing research on the influence of mental illness on capacity to consent to research. We propose how bipolar disorder, especially mania, may have an effect on consent capacity. The current conceptualization of capacity utilizes legal standards of 'choice', 'understanding', 'appreciation' and 'rational reasoning', as well as voluntarism, or the assurance that the patient is free to agree or to decline to participate in research. Studies of patients with schizophrenia suggest impaired cognition influences 'understanding' and is more important than severity of psychosis in affecting decision-making abilities. There are no studies of sources and extent of impairment to consent to research among manic patients. Mania may influence a patient's understanding of the research protocol, but also alter the patient's views, values and level of insight, thus impairing decision-making abilities at the 'appreciation' standard even when the patient understands the relevant information. Mania may impact freedom to decide, yet paradoxically, manic patients may be less influenced by others and less vulnerable to coercion, undue influence and undue incentives compared to patients without mental illness. We suggest that in patients with mood disorders, the legal standard of appreciation be thoroughly probed during the consent procedure. Studies of the effect of mania and depression on consent capacity and voluntarism are needed in order to develop processes that increase safeguards in the informed consent process.

  5. Amsacrine as a Topoisomerase II Poison: Importance of Drug-DNA Interactions†

    PubMed Central

    Ketron, Adam C.; Denny, William A.; Graves, David E.; Osheroff, Neil

    2012-01-01

    Amsacrine (m-AMSA) is an anticancer agent that displays activity against refractory acute leukemias as well as Hodgkin’s and non-Hodgkin’s lymphomas. The drug is comprised of an intercalative acridine moiety coupled to a 4’-amino-methanesulfon-m-anisidide head group. m-AMSA is historically significant in that it was the first drug demonstrated to function as a topoisomerase II poison. Although m-AMSA was designed as a DNA binding agent, the ability to intercalate does not appear to be the sole determinant of drug activity. Therefore, to more fully analyze structure-function relationships and the role of DNA binding in the action of m-AMSA, we analyzed a series of derivatives for the ability to enhance DNA cleavage mediated by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. Results indicate that the 3’-methoxy (m-AMSA) positively affects drug function, potentially by restricting the rotation of the head group in a favorable orientation. Shifting the methoxy to the 2’-position (o-AMSA), which abrogates drug function, appears to increase rotational freedom of the head group and may impair interactions of the 1’-substituent or other portions of the head group within the ternary complex. Finally, the non-intercalative m-AMSA head group enhanced enzyme-mediated DNA cleavage when it was detached from the acridine moiety, albeit with 100-fold lower affinity. Taken together, our results suggest that much of the activity and specificity of m-AMSA as a topoisomerase II poison is embodied in the head group, while DNA intercalation is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA cleavage complex. PMID:22304499

  6. MMPP Attenuates Non-Small Cell Lung Cancer Growth by Inhibiting the STAT3 DNA-Binding Activity via Direct Binding to the STAT3 DNA-Binding Domain.

    PubMed

    Son, Dong Ju; Zheng, Jie; Jung, Yu Yeon; Hwang, Chul Ju; Lee, Hee Pom; Woo, Ju Rang; Baek, Song Yi; Ham, Young Wan; Kang, Min Woong; Shong, Minho; Kweon, Gi Ryang; Song, Min Jong; Jung, Jae Kyung; Han, Sang-Bae; Kim, Bo Yeon; Yoon, Do Young; Choi, Bu Young; Hong, Jin Tae

    2017-01-01

    Rationale: Signal transducer and activator of transcription-3 (STAT3) plays a pivotal role in cancer biology. Many small-molecule inhibitors that target STAT3 have been developed as potential anticancer drugs. While designing small-molecule inhibitors that target the SH2 domain of STAT3 remains the leading focus for drug discovery, there has been a growing interest in targeting the DNA-binding domain (DBD) of the protein. Methods: We demonstrated the potential antitumor activity of a novel, small-molecule (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) that directly binds to the DBD of STAT3, in patient-derived non-small cell lung cancer (NSCLC) xenograft model as well as in NCI-H460 cell xenograft model in nude mice. Results: MMPP effectively inhibited the phosphorylation of STAT3 and its DNA binding activity in vitro and in vivo . It induced G1-phase cell cycle arrest and apoptosis through the regulation of cell cycle- and apoptosis-regulating genes by directly binding to the hydroxyl residue of threonine 456 in the DBD of STAT3. Furthermore, MMPP showed a similar or better antitumor activity than that of docetaxel or cisplatin. Conclusion: MMPP is suggested to be a potential candidate for further development as an anticancer drug that targets the DBD of STAT3.

  7. Fragment-based drug discovery and its application to challenging drug targets.

    PubMed

    Price, Amanda J; Howard, Steven; Cons, Benjamin D

    2017-11-08

    Fragment-based drug discovery (FBDD) is a technique for identifying low molecular weight chemical starting points for drug discovery. Since its inception 20 years ago, FBDD has grown in popularity to the point where it is now an established technique in industry and academia. The approach involves the biophysical screening of proteins against collections of low molecular weight compounds (fragments). Although fragments bind to proteins with relatively low affinity, they form efficient, high quality binding interactions with the protein architecture as they have to overcome a significant entropy barrier to bind. Of the biophysical methods available for fragment screening, X-ray protein crystallography is one of the most sensitive and least prone to false positives. It also provides detailed structural information of the protein-fragment complex at the atomic level. Fragment-based screening using X-ray crystallography is therefore an efficient method for identifying binding hotspots on proteins, which can then be exploited by chemists and biologists for the discovery of new drugs. The use of FBDD is illustrated here with a recently published case study of a drug discovery programme targeting the challenging protein-protein interaction Kelch-like ECH-associated protein 1:nuclear factor erythroid 2-related factor 2. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Identification and properties of steroid-binding proteins in nesting Chelonia mydas plasma.

    PubMed

    Ikonomopoulou, M P; Bradley, A J; Whittier, J M; Ibrahim, K

    2006-11-01

    We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4 degrees C with high affinity (K (a) = 1.49 +/- 0.09 x 10(9) M(-1); 0.17 +/- 0.02 x 10(7) M(-1)) and low binding capacity (B (max) = 3.24 +/- 0.84 x 10(-5) M; 0.33 +/- 0.06 x 10(-4) M). The binding affinity and capacity of testosterone at 23 and 36 degrees C, respectively were similar to those determined at 4 degrees C. However, oestradiol showed no binding activity at 36 degrees C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36 degrees C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.

  9. Dementia, Decision Making, and Capacity.

    PubMed

    Darby, R Ryan; Dickerson, Bradford C

    After participating in this activity, learners should be better able to:• Assess the neuropsychological literature on decision making and the medical and legal assessment of capacity in patients with dementia• Identify the limitations of integrating findings from decision-making research into capacity assessments for patients with dementia ABSTRACT: Medical and legal professionals face the challenge of assessing capacity and competency to make medical, legal, and financial decisions in dementia patients with impaired decision making. While such assessments have classically focused on the capacity for complex reasoning and executive functions, research in decision making has revealed that motivational and metacognitive processes are also important. We first briefly review the neuropsychological literature on decision making and on the medical and legal assessment of capacity. Next, we discuss the limitations of integrating findings from decision-making research into capacity assessments, including the group-to-individual inference problem, the unclear role of neuroimaging in capacity assessments, and the lack of capacity measures that integrate important facets of decision making. Finally, we present several case examples where we attempt to demonstrate the potential benefits and important limitations of using decision-making research to aid in capacity determinations.

  10. Self-Assembly and Drug Release Capacities of Organogels via Some Amide Compounds with Aromatic Substituent Headgroups

    PubMed Central

    Zhang, Lexin; Jiao, Tifeng; Ma, Kai; Xing, Ruirui; Liu, Yamei; Xiao, Yong; Zhou, Jingxin; Zhang, Qingrui; Peng, Qiuming

    2016-01-01

    In this work, some amide compounds with different aromatic substituent headgroups were synthesized and their gelation self-assembly behaviors in 22 solvents were characterized as new gelators. The obtained results indicated that the size of aromatic substituent headgroups in molecular skeletons in gelators showed crucial effect in the gel formation and self-assembly behavior of all compounds in the solvents used. Larger aromatic headgroups in molecular structures in the synthesized gelator molecules are helpful to form various gel nanostructures. Morphological investigations showed that the gelator molecules can self-assembly and stack into various organized aggregates with solvent change, such as wrinkle, belt, rod, and lamella-like structures. Spectral characterizations suggested that there existed various weak interactions including π-π stacking, hydrogen bonding, and hydrophobic forces due to aromatic substituent headgroups and alkyl substituent chains in molecular structures. In addition, the drug release capacities experiments demonstrated that the drug release rate in present obtained gels can be tuned by adjusting the concentrations of dye. The present work would open up enormous insight to design and investigate new kind of soft materials with designed molecular structures and tunable drug release performance. PMID:28773663

  11. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site.

    PubMed

    Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian

    2017-01-31

    Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.

  12. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site

    PubMed Central

    Claveria-Gimeno, Rafael; Lanuza, Pilar M.; Morales-Chueca, Ignacio; Jorge-Torres, Olga C.; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian

    2017-01-01

    Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities. PMID:28139759

  13. Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy.

    PubMed

    Bahrudin, Udin; Morisaki, Hiroko; Morisaki, Takayuki; Ninomiya, Haruaki; Higaki, Katsumi; Nanba, Eiji; Igawa, Osamu; Takashima, Seiji; Mizuta, Einosuke; Miake, Junichiro; Yamamoto, Yasutaka; Shirayoshi, Yasuaki; Kitakaze, Masafumi; Carrier, Lucie; Hisatome, Ichiro

    2008-12-26

    The ubiquitin-proteasome system is responsible for the disappearance of truncated cardiac myosin-binding protein C, and the suppression of its activity contributes to cardiac dysfunction. This study investigated whether missense cardiac myosin-binding protein C gene (MYBPC3) mutation in hypertrophic cardiomyopathy (HCM) leads to destabilization of its protein, causes UPS impairment, and is associated with cardiac dysfunction. Mutations were identified in Japanese HCM patients using denaturing HPLC and sequencing. Heterologous expression was investigated in COS-7 cells as well as neonatal rat cardiac myocytes to examine protein stability and proteasome activity. The cardiac function was measured using echocardiography. Five novel MYBPC3 mutations -- E344K, DeltaK814, Delta2864-2865GC, Q998E, and T1046M -- were identified in this study. Compared with the wild type and other mutations, the E334K protein level was significantly lower, it was degraded faster, it had a higher level of polyubiquination, and increased in cells pretreated with the proteasome inhibitor MG132 (50 microM, 6 h). The electrical charge of its amino acid at position 334 influenced its stability, but E334K did not affect its phosphorylation. The E334K protein reduced cellular 20 S proteasome activity, increased the proapoptotic/antiapoptotic protein ratio, and enhanced apoptosis in transfected Cos-7 cells and neonatal rat cardiac myocytes. Patients carrying the E334K mutation presented significant left ventricular dysfunction and dilation. The conclusion is the missense MYBPC3 mutation E334K destabilizes its protein through UPS and may contribute to cardiac dysfunction in HCM through impairment of the ubiquitin-proteasome system.

  14. Declining Financial Capacity in Mild Cognitive Impairment: A Six-Year Longitudinal Study.

    PubMed

    Martin, Roy C; Gerstenecker, Adam; Triebel, Kristen L; Falola, Michael; McPherson, Tarrant; Cutter, Gary; Marson, Daniel C

    2018-03-31

    To investigate financial skill decline over a 6-year period in persons with mild cognitive impairment (MCI) presumed due to Alzheimer's disease (AD). Study participants were cognitively normal (CN) older adults (n = 82) and adults with MCI (n = 91) based on consensus conference diagnosis. Participants completed baseline and up to six annual follow-up assessments that included standardized financial skills measurement (Financial Capacity Instrument; FCI; nine FCI domain and two global scores). We examined FCI change over time using mixed-model repeated measures analysis adjusted for baseline age and follow-up duration. At baseline, the CN group performed better than the MCI group across both global and seven domain scores. Group × Time interaction effects (all p's <.02) were found for all global and domain scores. The largest interaction effects were observed for complex domains of Financial Conceptual Knowledge, Checkbook Management, Bank Statement Management, and Bill Payment (all p's <.0001). Annualized decline in the MCI group's global scores, calculated in relation to CN group performance, was 10-17% over the initial 3-year time span and 22-24% at 6 years. Decline in FCI domain scores ranged from 6% (Knowledge of Assets/Estate) to 22% (Investment Decision-Making) at 3 year follow-up, and from 15% (Basic Monetary Skills) to 37% (Financial Judgment) at 6 year follow-up. Over a 6-year period, persons with MCI demonstrated significant declines in multiple financial skills and in particular financial judgment. The findings highlight the importance of ongoing oversight by family members and clinicians of financial skills and activities in persons with MCI.

  15. The recovery of factors associated with decision-making capacity in individuals with psychosis

    PubMed Central

    Fernandez, Colin; Kennedy, Miriam

    2017-01-01

    Background There is limited data on the recovery of factors associated with decisional capacity in patients with psychosis. Aims To study the relationship between changes in mental capacity, symptoms and global functioning using structured measures during treatment for psychosis. Method Fifty-six patients with psychosis were assessed for capacity to consent to treatment on admission and at 6 and 12 weeks following treatment. The MacArthur Competence Assessment Tool – Treatment, the Positive and Negative Symptom Scale and the Global Assessment of Functioning Scale were used to measure mental capacities, symptom severity and global functioning respectively. Treating consultants rated capacity to consent, masked to these measures. Results Greater impairments on all measures were found in patients assessed as lacking capacity. These improved with treatment over 12 weeks with significant effect sizes (0.5 to 0.6). Stronger correlations between mental capacities, positive symptoms (−0.47) and global functioning (0.56) were noted in the first 6 weeks. Conclusions Impairments in capacity in acute stages of psychosis are related to symptom severity and functional impairment. They improve during treatment, particularly in the first 6 weeks. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28507770

  16. Modeling a theory-based approach to examine the influence of neurocognitive impairment on HIV risk reduction behaviors among drug users in treatment

    PubMed Central

    Huedo-Medina, Tania B.; Shrestha, Roman; Copenhaver, Michael

    2016-01-01

    Although it is well established that people who use drugs (PWUDs) are characterized by significant neurocognitive impairment (NCI), there has been no examination of how NCI may impede one’s ability to accrue the expected HIV prevention benefits stemming from an otherwise efficacious intervention. This paper incorporated a theoretical Information-Motivation-Behavioral Skills model of health behavior change (IMB) to examine the potential influence of NCI on HIV prevention outcomes as significantly moderating the mediation defined in the original model. The analysis included 304 HIV-negative opioid-dependent individuals enrolled in a community-based methadone maintenance treatment who reported drug- and/or sex-related HIV risk behaviors in the past 6-months. Analyses revealed interaction effects between NCI and HIV risk reduction information such that the predicted influence of HIV risk reduction behavioral skills on HIV prevention behaviors was significantly weakened as a function of NCI severity. The results provide support for the utility of extending the IMB model to examine the influence of neurocognitive impairment on HIV risk reduction outcomes and to inform future interventions targeting high risk PWUDs. PMID:27052845

  17. Basic Mechanisms Underlying Postchemotherapy Cognitive Impairment

    DTIC Science & Technology

    2010-04-01

    Anagnostaras et al., 2001; Gerlai, 2001; Maren, 2008). None of the drug treatments affected either context- or cue-specific fear conditioning (data not shown...The grant proposal focused on using spontaneous alternation and fear conditioning as the two methods to assess the effects of drug treatment on...treat other conditions . Thus, the pathway to begin to use these drugs to treat post-chemotherapy cognitive impairment might be short

  18. Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery.

    PubMed

    Cappel, Daniel; Sherman, Woody; Beuming, Thijs

    2017-01-01

    The ability to accurately characterize the solvation properties (water locations and thermodynamics) of biomolecules is of great importance to drug discovery. While crystallography, NMR, and other experimental techniques can assist in determining the structure of water networks in proteins and protein-ligand complexes, most water molecules are not fully resolved and accurately placed. Furthermore, understanding the energetic effects of solvation and desolvation on binding requires an analysis of the thermodynamic properties of solvent involved in the interaction between ligands and proteins. WaterMap is a molecular dynamics-based computational method that uses statistical mechanics to describe the thermodynamic properties (entropy, enthalpy, and free energy) of water molecules at the surface of proteins. This method can be used to assess the solvent contributions to ligand binding affinity and to guide lead optimization. In this review, we provide a comprehensive summary of published uses of WaterMap, including applications to lead optimization, virtual screening, selectivity analysis, ligand pose prediction, and druggability assessment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at the Molecular Level.

    PubMed

    Nie, Haichen; Mo, Huaping; Zhang, Mingtao; Song, Yang; Fang, Ke; Taylor, Lynne S; Li, Tonglei; Byrn, Stephen R

    2015-07-06

    Strong associations between drug and polymeric carriers are expected to contribute to higher drug loading capacities and better physical stability of amorphous solid dispersions. However, molecular details of the interaction patterns and underlying mechanisms are still unclear. In the present study, a series of amorphous solid dispersions of clofazimine (CLF), an antileprosy drug, were prepared with different polymers by applying the solvent evaporation method. When using hypromellose phthalate (HPMCP) as the carrier, the amorphous solid dispersion system exhibits not only superior drug loading capacity (63% w/w) but also color change due to strong drug-polymer association. In order to further explain these experimental observations, the interaction between CLF and HPMCP was investigated in a nonpolar volatile solvent system (chloroform) prior to forming the solid dispersion. We observed significant UV/vis and (1)H NMR spectral changes suggesting the protonation of CLF and formation of ion pairs between CLF and HPMCP in chloroform. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) and diffusion order spectroscopy (DOSY) were employed to evaluate the strength of associations between drug and polymers, as well as the molecular mobility of CLF. Finally, by correlating the experimental values with quantum chemistry calculations, we demonstrate that the protonated CLF is binding to the carboxylate group of HPMCP as an ion pair and propose a possible structural model of the drug-polymer complex. Understanding the drug and carrier interaction patterns from a molecular perspective is critical for the rational design of new amorphous solid dispersions.

  20. Realistic mixture of illicit drugs impaired the oxidative status of the zebra mussel (Dreissena polymorpha).

    PubMed

    Parolini, Marco; Magni, Stefano; Castiglioni, Sara; Zuccato, Ettore; Binelli, Andrea

    2015-06-01

    Illicit drugs are considered to be emerging aquatic pollutants since they are commonly found in freshwater ecosystems in the high ng L(-1) to low μg L(-1) range concentrations. Although the environmental occurrence of the most common psychoactive compounds is well known, recently some investigations showed their potential toxicity toward non-target aquatic organisms. However, to date, these studies completely neglected that organisms in the real environment are exposed to a complex mixture, which could lead to dissimilar adverse effects. The present study investigated the oxidative alterations of the freshwater bivalve Dreissena polymorpha induced by a 14-d exposure to an environmentally relevant mixture of the most common illicit drugs found in the aquatic environment, namely cocaine (50 ng L(-1)), benzoylecgonine (300 ng L(-1)), amphetamine (300 ng L(-1)), morphine (100 ng L(-1)) and 3,4-methylenedioxymethamphetamine (50 ng L(-1)). The total oxidant status (TOS) was measured to investigate the increase in the reactive oxygen species' levels, while the activity of antioxidant enzymes and glutathione S-transferase were measured to note the eventual imbalances between pro-oxidant and antioxidant molecules. In addition, oxidative damage was assessed by measuring the levels of lipid peroxidation and protein carbonylation. Significant time-dependent increases of all the antioxidant activities were induced by the mixture. Moreover, the illicit drug mixture significantly increased the levels of carbonylated proteins and caused a slight variation in lipid peroxidation. Our results showed that a mixture of illicit drugs at realistic environmental concentrations can impair the oxidative status of the zebra mussel, posing a serious hazard to the health status of this bivalve species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Comparison of solute-binding properties of plastic materials used as pharmaceutical product containers.

    PubMed

    Jenke, Dennis; Couch, Tom; Gillum, Amy

    2010-01-01

    Material/water equilibrium binding constants (E(b)) were determined for 11 organic solutes and 2 plastic materials commonly used in pharmaceutical product containers (plasticized polyvinyl chloride and polyolefin). In general, solute binding by the plasticized polyvinyl chloride material was greater, by nearly an order of magnitude, than the binding by the polyolefin (on an equal weight basis). The utilization of the binding constants to facilitate container compatibility assessments (e.g., drug loss by container binding) for drug-containing products is discussed.

  2. Rapid Assessment and Response Studies of Injection Drug Use: Knowledge Gain, Capacity Building, and Intervention Development in a Multisite Study

    PubMed Central

    Stimson, Gerry V.; Fitch, Chris; Jarlais, Don Des; Poznyak, Vladimir; Perlis, Theresa; Oppenheimer, Edna; Rhodes, Tim

    2006-01-01

    Objectives. We evaluated the World Health Organization’s rapid assessment and response (RAR) method of assessing injection drug use and its associated health problems, focusing on knowledge gain, capacity building, and whether RAR leads to the development of interventions reducing the health effects of injection drug use. Methods. Data were derived from RAR studies conducted in Beijing, China; Bogotá, Colombia; Greater Rosario, Argentina; Hanoi, Vietnam; Kharkiv, Ukraine; Minsk, Belarus; Nairobi, Kenya; Penang, Malaysia; St. Petersburg, Russia; and Tehran, Iran. Results. Substantial gains in knowledge and response capacity were reported at all of the study sites. Before RAR initiation, prevention and intervention programs had been absent or inadequate at most of the sites. The RARs resulted in many new or modified interventions; 7 sites reported 24 health-related interventions that were subsequently developed and influenced by the RARs. Conclusions. RARs, which require relatively little external funding, appear to be effective in linking assessment to development of appropriate interventions. The present results add to the evidence that rapid assessment is an important public health tool. PMID:16380578

  3. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice

    PubMed Central

    2012-01-01

    Background Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior. PMID:23268962

  4. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice.

    PubMed

    Nagura, Hitoshi; Ishikawa, Yasuyuki; Kobayashi, Katsunori; Takao, Keizo; Tanaka, Tomo; Nishikawa, Kouki; Tamura, Hideki; Shiosaka, Sadao; Suzuki, Hidenori; Miyakawa, Tsuyoshi; Fujiyoshi, Yoshinori; Doi, Tomoko

    2012-12-26

    Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

  5. Complexation induced fluorescence and acid-base properties of dapoxyl dye with γ-cyclodextrin: a drug-binding application using displacement assays.

    PubMed

    Pal, Kaushik; Mallick, Suman; Koner, Apurba L

    2015-06-28

    Host-guest complexation of dapoxyl sodium sulphonate (DSS), an intramolecular charge transfer dye with water-soluble and non-toxic macrocycle γ-cyclodextrin (γ-CD), has been investigated in a wide pH range. Steady-state absorption, fluorescence and time-resolved fluorescence measurements confirm the positioning of DSS into the hydrophobic cavity of γ-CD. A large fluorescence enhancement ca. 30 times, due to 1 : 2 complex formation and host-assisted guest-protonation have been utilised for developing a method for the utilisation of CD based drug-delivery applications. A simple fluorescence-displacement based approach is implemented at physiological pH for the assessment of binding strength of pharmaceutically useful small drug molecules (ibuprofen, paracetamol, methyl salicylate, salicylic acid, aspirin, and piroxicam) and six important antibiotic drugs (resazurin, thiamphenicol, chloramphenicol, ampicillin, kanamycin, and sorbic acid) with γ-CD.

  6. Post-market drug evaluation research training capacity in Canada: an environmental scan of Canadian educational institutions.

    PubMed

    Wiens, Matthew O; Soon, Judith A; MacLeod, Stuart M; Sharma, Sunaina; Patel, Anik

    2014-01-01

    Ongoing efforts by Health Canada intended to modernize the legislation and regulation of pharmaceuticals will help improve the safety and effectiveness of drug products. It will be imperative to ensure that comprehensive and specialized training sites are available to train researchers to support the regulation of therapeutic products. The objective of this educational institution inventory was to conduct an environmental scan of educational institutions in Canada able to train students in areas of post-market drug evaluation research. A systematic web-based environmental scan of Canadian institutions was conducted. The website of each university was examined for potential academic programs. Six core programmatic areas were determined a priori as necessary to train competent post-market drug evaluation researchers. These included biostatistics, epidemiology, pharmacoepidemiology, health economics or pharmacoeconomics, pharmacogenetics or pharmacogenomics and patient safety/pharmacovigilance. Twenty-three academic institutions were identified that had the potential to train students in post-market drug evaluation research. Overall, 23 institutions taught courses in epidemiology, 22 in biostatistics, 17 in health economics/pharmacoeconomics, 5 in pharmacoepidemiology, 5 in pharmacogenetics/pharmacogenomics, and 3 in patient safety/pharmacovigilance. Of the 23 institutions, only the University of Ottawa offered six core courses. Two institutions offered five, seven offered four and the remaining 14 offered three or fewer. It is clear that some institutions may offer programs not entirely reflected in the nomenclature used for this review. As Heath Canada moves towards a more progressive licensing framework, augmented training to increase research capacity and expertise in drug safety and effectiveness is timely and necessary.

  7. Brentuximab vedotin, an antibody–drug conjugate, in patients with CD30‐positive haematologic malignancies and hepatic or renal impairment

    PubMed Central

    Chen, Robert; O'Connor, Owen A.; Gopal, Ajay K.; Ramchandren, Radhakrishnan; Goy, Andre; Matous, Jeffrey V.; Fasanmade, Adedigbo A.; Manley, Thomas J.; Han, Tae H.

    2016-01-01

    Abstract Aims Brentuximab vedotin, an antibody–drug conjugate (ADC), selectively delivers the microtubule‐disrupting agent monomethyl auristatin E (MMAE) into CD30‐expressing cells. The pharmacokinetics of brentuximab vedotin have been characterized in patients with CD30‐positive haematologic malignancies. The primary objective of this phase 1 open label evaluation was to assess the pharmacokinetics of brentuximab vedotin in patients with hepatic or renal impairment. Methods Systemic exposures were evaluated following intravenous administration of 1.2 mg kg–1 brentuximab vedotin in patients with CD30‐positive haematologic malignancies and hepatic (n = 7) or renal (n = 10) impairment and compared with those of unimpaired patients (n = 8) who received 1.2 mg kg–1 brentuximab vedotin in another arm of the study. Results For any hepatic impairment, the ratios of geometric means (90% confidence interval) for AUC(0,∞) were 0.67 (0.48, 0.93) for ADC and 2.29 (1.27, 4.12) for MMAE. Mild or moderate renal impairment caused no apparent change in ADC or MMAE exposures. Severe renal impairment (creatinine clearance <30 ml min–1; n = 3) decreased ADC exposures (0.71 [0.54, 0.94]) and increased MMAE exposures (1.90 [0.85, 4.21]). No consistent pattern of specific adverse events was evident, but analysis of the safety data was confounded by the patients' poor baseline conditions. Five patients died due to adverse events considered unrelated to brentuximab vedotin. All had substantial comorbidities and most had poor baseline performance status. Conclusions Hepatic impairment and severe renal impairment may cause decreases in brentuximab vedotin ADC exposures and increases in MMAE exposures. PMID:27115790

  8. Cancer 'survivor-care': II. Disruption of prefrontal brain activation top-down control of working memory capacity as possible mechanism for chemo-fog/brain (chemotherapy-associated cognitive impairment).

    PubMed

    Raffa, R B

    2013-08-01

    Cancer chemotherapy-associated cognitive impairments (termed 'chemo-fog' or 'chemo-brain'), particularly in memory, have been self-reported or identified in cancer survivors previously treated with chemotherapy. Although a variety of deficits have been detected, a consistent theme is a detriment in visuospatial working memory. The parietal cortex, a major site of storage of such memory, is implicated in chemotherapy-induced damage. However, if the findings of two recent publications are combined, the (pre)frontal cortex might be an equally viable target. Two recent studies, one postulating a mechanism for 'top-down control' of working memory capacity and another visualizing chemotherapy-induced alterations in brain activation during working memory processing, are reviewed and integrated. A computational model and the proposal that the prefrontal cortex plays a role in working memory via top-down control of parietal working memory capacity is consistent with a recent demonstration of decreased frontal hyperactivation following chemotherapy. Chemotherapy-associated impairment of visuospatial working memory might include the (pre)frontal cortex in addition to the parietal cortex. This provides new opportunity for basic science and clinical investigation. © 2013 John Wiley & Sons Ltd.

  9. Cross-Modal Binding in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Jones, Manon W.; Branigan, Holly P.; Parra, Mario A.; Logie, Robert H.

    2013-01-01

    The ability to learn visual-phonological associations is a unique predictor of word reading, and individuals with developmental dyslexia show impaired ability in learning these associations. In this study, we compared developmentally dyslexic and nondyslexic adults on their ability to form cross-modal associations (or "bindings") based…

  10. The mannose 6-phosphate-binding sites of M6P/IGF2R determine its capacity to suppress matrix invasion by squamous cell carcinoma cells

    PubMed Central

    Probst, Olivia C.; Karayel, Evren; Schida, Nicole; Nimmerfall, Elisabeth; Hehenberger, Elisabeth; Puxbaum, Verena; Mach, Lukas

    2013-01-01

    The M6P (mannose 6-phosphate)/IGF2R (insulin-like growth factor II receptor) interacts with a variety of factors that impinge on tumour invasion and metastasis. It has been shown that expression of wild-type M6P/IGF2R reduces the tumorigenic and invasive properties of receptor-deficient SCC-VII squamous cell carcinoma cells. We have now used mutant forms of M6P/IGF2R to assess the relevance of the different ligand-binding sites of the receptor for its biological activities in this cellular system. The results of the present study demonstrate that M6P/IGF2R does not require a functional binding site for insulin-like growth factor II for inhibition of anchorage-independent growth and matrix invasion by SCC-VII cells. In contrast, the simultaneous mutation of both M6P-binding sites is sufficient to impair all cellular functions of the receptor tested. These findings highlight that the interaction between M6P/IGF2R and M6P-modified ligands is not only important for intracellular accumulation of lysosomal enzymes and formation of dense lysosomes, but is also crucial for the ability of the receptor to suppress SCC-VII growth and invasion. The present study also shows that some of the biological activities of M6P/IGF2R in SCC-VII cells strongly depend on a functional M6P-binding site within domain 3, thus providing further evidence for the non-redundant cellular functions of the individual carbohydrate-binding domains of the receptor. PMID:23347038

  11. Cloud Computing for Protein-Ligand Binding Site Comparison

    PubMed Central

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  12. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  13. Molecular Containers Bind Drugs of Abuse in Vitro and Reverse the Hyperlocomotive Effect of Methamphetamine in Rats.

    PubMed

    Ganapati, Shweta; Grabitz, Stephanie D; Murkli, Steven; Scheffenbichler, Flora; Rudolph, Maíra I; Zavalij, Peter Y; Eikermann, Matthias; Isaacs, Lyle

    2017-08-17

    We measured the affinity of five molecular container compounds (calabadions 1 and 2, CB[7], sulfocalix[4]arene, and HP-β-CD) toward seven drugs of abuse in homogenous aqueous solution at physiological pH by various methods ( 1 H NMR, UV/Vis, isothermal titration calorimetry [ITC]) and found binding constants (K a values) spanning from <10 2 to >10 8  m -1 . We also report X-ray crystal structures of CB[7]⋅methamphetamine and 1⋅methamphetamine. We found that 2, but not CB[7], was able to ameliorate the hyperlocomotive activity of rats treated with methamphetamine. The bioavailability of the calabadions and their convergent building block synthesis suggest potential for further structural optimization as reversal agents for intoxication with nonopioid drugs of abuse for which no treatments are currently available. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorsteinson, Nels; Ban, Fuqiang; Santos-Filho, Osvaldo

    2009-01-01

    Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We alsomore » screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [{sup 3}H]5{alpha}-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 {mu}M concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost.« less

  15. Enhancing climate Adaptation Capacity for Drinking Water ...

    EPA Pesticide Factsheets

    Journal article This paper considers the adaptation capacity of conventional water treatment systems. A modeling framework is used to illustrate climate adaptation mechanisms that could enable conventional treatment systems to accommodate water quality impairments.

  16. Fundamental considerations in ski binding analysis.

    PubMed

    Mote, C D; Hull, M L

    1976-01-01

    1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier

  17. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells.

    PubMed

    Qaddoumi, Mohamed; Lee, Vincent H L

    2004-07-01

    To investigate the binding and uptake pattern of three plant lectins in rabbit conjunctival epithelial cells (RCECs) with respect to their potential for enhancing cellular macromolecular uptake. Three fluorescein-labeled plant lectins (Lycoperison esculentum, TL; Solanum tuberosum, STL; and Ulex europaeus 1, UEA-1) were screened with respect to time-, concentration-, and temperature-dependent binding and uptake. Chitin (30 mg/ml) and L-alpha-fucose (10 mM) were used as inhibitory sugars to correct for nonspecific binding of TL or STL and UEA-1, respectively. Confocal microscopy was used to confirm internalization of STL. The binding and uptake of all three lectins in RCECs was time-dependent (reaching a plateau at 1-2 h period) and saturable at 1-h period. The rank order of affinity constants (km) was STL>TL>UEA-1 with values of 0.39>0.48>4.81 microM, respectively. However, maximal, specific binding/uptake potential was in the order UEA-1>STL>TL with values of 53.7, 52.3, and 15.0 nM/mg of cell protein, respectively. Lectins showed temperature dependence in their uptake, with STL exhibiting the highest endocytic capacity. Internalized STL was visualized by confocal microscopy to be localized to the cell membrane and cytoplasm. Based on favorable binding and uptake characteristics, potato lectin appears to be a useful candidate for further investigation as an ocular drug delivery system.

  18. The heparin-binding domain of HB-EGF as an efficient cell-penetrating peptide for drug delivery.

    PubMed

    Luo, Zhao; Cao, Xue-Wei; Li, Chen; Wu, Miao-Dan; Yang, Xu-Zhong; Zhao, Jian; Wang, Fu-Jun

    2016-11-01

    Cell-penetrating peptides (CPPs) have been shown to be potential drug carriers for cancer therapy. The inherently low immunogenicity and cytotoxicity of human-derived CPPs make them more suitable for intracellular drug delivery compared to other delivery vehicles. In this work, the protein transduction ability of a novel CPP (termed HBP) derived from the heparin-binding domain of HB-EGF was evaluated. Our data shows, for the first time, that HBP possesses similar properties to typical CPPs and is a potent drug delivery vector for improving the antitumor activity of impermeable MAP30. The intrinsic bioactivities of recombinant MAP30-HBP were well preserved compared to those of free MAP30. Furthermore, HBP conjugated to the C-terminus of MAP30 promoted the cellular uptake of recombinant MAP30-HBP. Moreover, the fusion of HBP to MAP30 gave rise to significantly enhanced cytotoxic effects in all of the tumor cell lines tested. In HeLa cells, this cytotoxicity was mainly caused by the induction of cell apoptosis. Further investigation revealed that HBP enhanced MAP30-induced apoptosis through the activation of the mitochondrial- and death receptor-mediated signaling pathways. In addition, the MAP30-HBP fusion protein caused more HeLa cells to become arrested in S phase compared to MAP30 alone. These results highlight the MAP30-HBP fusion protein as a promising drug candidate for cancer therapy and demonstrate HBP, a novel CPP derived from human HB-EGF, as a new potential vector for antitumor drug delivery. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  19. Drug development and manufacturing

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  20. Some Sleep Drugs Can Impair Driving

    MedlinePlus

    ... prescribed sleep medications. Some sleep drugs contain an extended-release form of zolpidem that stays in the ... the regular form. FDA is particularly concerned about extended-release forms of zolpidem. They are sold as ...