Science.gov

Sample records for impairs sleep-dependent cortical

  1. Mechanisms of sleep-dependent consolidation of cortical plasticity

    PubMed Central

    Aton, Sara J.; Seibt, Julie; Dumoulin, Michelle; Jha, Sushil K.; Steinmetz, Nicholas; Coleman, Tammi; Naidoo, Nirinjini; Frank, Marcos G.

    2009-01-01

    Summary Sleep is thought to consolidate changes in synaptic strength, but the underlying mechanisms are unknown. We investigated the cellular events involved in this process in ocular dominance plasticity (ODP) - a canonical form of in vivo cortical plasticity triggered by monocular deprivation (MD) and consolidated by sleep via undetermined, activity-dependent mechanisms. We find that sleep consolidates ODP primarily by strengthening cortical responses to non-deprived eye stimulation. Consolidation is inhibited by reversible, intracortical antagonism of NMDA receptors (NMDARs) or cAMP-dependent protein kinase (PKA) during post-MD sleep. Consolidation is also associated with sleep-dependent increases in the activity of remodeling neurons, and in the phosphorylation of proteins required for potentiation of glutamatergic synapses. These findings demonstrate that synaptic strengthening via NMDAR and PKA activity is a key step in sleep-dependent consolidation of ODP. PMID:19217381

  2. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    PubMed

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions.

  3. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition

    PubMed Central

    Haggerty, Daniel C.

    2014-01-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. PMID:25008411

  4. Decoupling of Sleep-Dependent Cortical and Hippocampal Interactions in a Neurodevelopmental Model of Schizophrenia

    PubMed Central

    Phillips, Keith G.; Bartsch, Ullrich; McCarthy, Andrew P.; Edgar, Dale M.; Tricklebank, Mark D.; Wafford, Keith A.; Jones, Matt W.

    2012-01-01

    Summary Rhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and unit recordings in rats, we show that anteroposterior propagation of neocortical slow-waves coordinates timing of hippocampal ripples and prefrontal cortical spindles during NREM sleep. This coordination is selectively disrupted in a rat neurodevelopmental model of schizophrenia: fragmented NREM sleep and impaired slow-wave propagation in the model culminate in deficient ripple-spindle coordination and disrupted spike timing, potentially as a consequence of interneuronal abnormalities reflected by reduced parvalbumin expression. These data further define the interrelationships among slow-wave, spindle, and ripple events, indicating that sleep disturbances may be associated with state-dependent decoupling of hippocampal and cortical circuits in psychiatric diseases. PMID:23141065

  5. Discontinuity of cortical gradients reflects sensory impairment

    PubMed Central

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-01-01

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations—patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion—enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  6. Discontinuity of cortical gradients reflects sensory impairment.

    PubMed

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-12-29

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations-patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion-enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  7. Neural-Based Visual Stimulation with Infants with Cortical Impairment.

    ERIC Educational Resources Information Center

    Powell, S. A.

    1996-01-01

    In order to shed light on the needs of children with cortical visual impairments, normal visual development of infants is described. Infant preferences for motion, faces, and black-and-white patterns are explained. Colors useful in stimulating vision development and the time needed for exposure to visual stimuli are discussed. (CR)

  8. Observations on the Habilitation of Children with Cortical Visual Impairment.

    ERIC Educational Resources Information Center

    Groenveld, M.; And Others

    1990-01-01

    This article discusses the increasing incidence of cortical visual impairments, resulting from medical advancements making possible the survival of critically ill children with severe brain damage. Discussed are the prevalence of multiple handicaps, formation of visual concepts, foreground/background distinction, potential for mainstreaming, use…

  9. Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments.

    PubMed

    Butler, Pamela D; Martinez, Antigona; Foxe, John J; Kim, Dongsoo; Zemon, Vance; Silipo, Gail; Mahoney, Jeannette; Shpaner, Marina; Jalbrzikowski, Maria; Javitt, Daniel C

    2007-02-01

    dysfunction at the subcortical level that leads to secondary impairment in activation of cortical visual structures within dorsal and ventral stream visual pathways. Our finding of early visual dysfunction is consistent with and explanatory of classic literature showing subjective complaints of visual distortions and is consistent with early visual processing deficits reported in schizophrenia. Although deficits in visual processing have frequently been construed as resulting from failures of top-down processing, the present findings argue strongly for bottom-up rather than top-down dysfunction at least within the early visual pathway. Deficits in magnocellular processing in this task may reflect more general impairments in neuronal systems functioning, such as deficits in non-linear amplification and may thus represent an organizing principle for predicting neurocognitive dysfunction in schizophrenia. PMID:16984902

  10. Sleep-dependent motor memory consolidation in older adults depends on task demands.

    PubMed

    Gudberg, Christel; Wulff, Katharina; Johansen-Berg, Heidi

    2015-03-01

    It is often suggested that sleep-dependent consolidation of motor learning is impaired in older adults. The current study challenges this view and suggests that the degree of motor consolidation seen with sleep in older age groups depends on the kinematic demands of the task. We show that, when tested with a classic sequence learning task, requiring individuated finger movements, older adults did not show sleep-dependent consolidation. By contrast, when tested with an adapted sequence learning task, in which movements were performed with the whole hand, sleep-dependent motor improvement was observed in older adults. We suggest that age-related decline in fine motor dexterity may in part be responsible for the previously described deficit in sleep-dependent motor consolidation with aging. PMID:25618616

  11. The Reliability of the CVI Range: A Functional Vision Assessment for Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Newcomb, Sandra

    2010-01-01

    Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…

  12. Sleep and olfactory cortical plasticity

    PubMed Central

    Barnes, Dylan C.; Wilson, Donald A.

    2014-01-01

    In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders. PMID:24795585

  13. Sleep-dependent memory consolidation and accelerated forgetting.

    PubMed

    Atherton, Kathryn E; Nobre, Anna C; Zeman, Adam Z; Butler, Christopher R

    2014-05-01

    Accelerated long-term forgetting (ALF) is a form of memory impairment in which learning and initial retention of information appear normal but subsequent forgetting is excessively rapid. ALF is most commonly associated with epilepsy and, in particular, a form of late-onset epilepsy called transient epileptic amnesia (TEA). ALF provides a novel opportunity to investigate post-encoding memory processes, such as consolidation. Sleep is implicated in the consolidation of memory in healthy people and a deficit in sleep-dependent memory consolidation has been proposed as an explanation for ALF. If this proposal were correct, then sleep would not benefit memory retention in people with ALF as much as in healthy people, and ALF might only be apparent when the retention interval contains sleep. To test this theory, we compared performance on a sleep-sensitive memory task over a night of sleep and a day of wakefulness. We found, contrary to the hypothesis, that sleep benefits memory retention in TEA patients with ALF and that this benefit is no smaller in magnitude than that seen in healthy controls. Indeed, the patients performed significantly more poorly than the controls only in the wake condition and not the sleep condition. Patients were matched to controls on learning rate, initial retention, and the effect of time of day on cognitive performance. These results indicate that ALF is not caused by a disruption of sleep-dependent memory consolidation. Instead, ALF may be due to an encoding abnormality that goes undetected on behavioural assessments of learning, or by a deficit in memory consolidation processes that are not sleep-dependent. PMID:24657478

  14. Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory

    NASA Astrophysics Data System (ADS)

    Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.

    2004-10-01

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  15. Greater cortical thinning in normal older adults predicts later cognitive impairment

    PubMed Central

    Pacheco, Jennifer; Goh, Joshua O.; Kraut, Michael A.; Ferrucci, Luigi; Resnick, Susan M.

    2014-01-01

    Cross-sectional studies have shown regional differences in cortical thickness between healthy older adults and patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI). We now demonstrate that participants who subsequently develop cognitive impairment leading to a diagnosis of MCI or AD (n=25) experience greater cortical thinning in specific neuroanatomical regions compared to control participants who remained cognitively normal (n=96). Based on 8 years of annual MRI scans beginning an average of 11 years prior to onset of cognitive impairment, participants who developed cognitive impairment subsequent to the scanning period had greater longitudinal cortical thinning in the temporal poles and left medial temporal lobe compared to controls. No significant regional cortical thickness differences were found at baseline between the two study groups indicating that we are capturing a critical time when brain changes occur before behavioral manifestations of impairment are detectable. Our findings suggest that early events of the pathway that leads to cognitive impairment may involve the temporal lobe, and that this increased atrophy could be considered an early biomarker of neurodegeneration predictive of cognitive impairment years later. PMID:25311277

  16. Auditory cortical activation in severe-to-profound hearing-impaired patients monitored by SPET.

    PubMed

    Di Nardo, W; Di Giuda, D; Scarano, E; Picciotti, P M; Galla, S; De Rossi, G

    2006-08-01

    Single photon emission tomography was used to map blood flow increase in temporal and parietal cortex after auditory stimulation in 25 subjects: 10 normal-hearing, 10 severe-profound hearing-impaired and 5 totally deaf. After a 500 Hz pure tone stimulation, a marked perfusion increase was observed, particularly at the level of the contralateral auditory temporal cortex. Blood flow increase in temporal and parietal cortical areas of normal subjects was significantly higher than that observed in severe-to-profound hearing-impaired patients. In all cases, following 500 Hz pure tone acoustic stimulation, the most lateral sagittal slice tomograms (48.75 and 56.25 mm) showed the highest blood flow increase. Statistically significant differences were also observed between normal subjects and hearing-impaired patients in the 48.75 mm sagittal tomogram. In 2 hearing-impaired patients, the single photon emission tomography pattern showed activation of the intermediate sagittal tomogram, suggesting a possible new tonotopic cortical arrangement. No significant activation was present in totally deaf patients. In conclusion, Single Photon Emission Tomography appears to be a useful tool in the evaluation of auditory cortical activation and cortical plasticity, in severe-to-profound hearing-impaired patients. Moreover, it could be a useful test for the study of auditory central pathways.

  17. Sleep-Dependent Memory Consolidation in Children.

    PubMed

    Maski, Kiran P

    2015-06-01

    In the past 30 years, much research has been conducted elucidating the role of sleep in memory and learning; however, the interaction between sleep and cognitive functioning may be unknown in clinical realms. This article serves to provide a primer on sleep-dependent memory consolidation, a process in which memory is stabilized or even enhanced over a period of sleep. Given the increased amounts of sleep needed in infancy and childhood, the link between sleep and neuronal plasticity is highlighted in this article. Furthermore, sleep disruptions are common to children with neurodevelopmental disorders such as attention-deficit hyperactivity disorder; thus, recent studies showing direct relationships between sleep and memory functioning in such vulnerable groups are discussed. PMID:26072343

  18. Cortical Contributions to Impaired Contour Integration in Schizophrenia

    PubMed Central

    Silverstein, Steven M.; Harms, Michael P.; Carter, Cameron S.; Gold, James M.; Keane, Brian P.; MacDonald, Angus; Ragland, J. Daniel; Barch, Deanna M.

    2015-01-01

    Objectives Visual perceptual organization impairments in schizophrenia (SCZ) are well established, but their neurobiological bases are not. The current study used the previously validated Jittered Orientation Visual Integration (JOVI) task, along with fMRI, to examine the neural basis of contour integration (CI), and its impairment in SCZ. CI is an aspect of perceptual organization in which multiple distinct oriented elements are grouped into a single continuous boundary or shape. Methods On the JOVI, five levels of orientational jitter were added to non-contiguous closed contour elements embedded in background noise to progressively increase the difficulty in perceiving contour elements as left- or right-pointing ovals. Multi-site fMRI data were analyzed for 56 healthy control subjects and 47 people with SCZ. Results SCZ patients demonstrated poorer CI, and this was associated with increased activation in regions involved in global shape processing and visual attention, namely the lateral occipital complex and superior parietal lobules. There were no brain regions where controls demonstrated more activation than patients. Conclusions CI impairment in this sample of outpatients with SCZ was related to excessive activation in regions associated with object processing and allocation of visual-spatial attention. There was no evidence for basic impairments in contour element linking in the fMRI data. The latter may be limited to poor outcome patients, where more extensive structural and functional changes in the occipital lobe have been observed. PMID:26160288

  19. Outcomes and Opportunities: A Study of Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Roman Lantzy, Christine A.; Lantzy, Alan

    2010-01-01

    Pediatric View is an evaluation project that began in 1999 and is located at Western Pennsylvania Hospital in Pittsburgh. The purpose of Pediatric View is to provide developmental and functional vision evaluations to children who have ocular or cortical visual impairments. The evaluations are generally two hours in length, and a detailed report…

  20. A Survey of Parents of Children with Cortical or Cerebral Visual Impairment

    ERIC Educational Resources Information Center

    Jackel, Bernadette; Wilson, Michelle; Hartmann, Elizabeth

    2010-01-01

    Cortical or cerebral visual impairment (CVI) can result when the visual pathways and visual processing areas of the brain have been damaged. Children with CVI may have difficulty finding an object among other objects, viewing in the distance, orienting themselves in space, going from grass to pavement or other changes in surface, and copying…

  1. Visual Attention to Movement and Color in Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Cohen-Maitre, Stacey Ann; Haerich, Paul

    2005-01-01

    This study investigated the ability of color and motion to elicit and maintain visual attention in a sample of children with cortical visual impairment (CVI). It found that colorful and moving objects may be used to engage children with CVI, increase their motivation to use their residual vision, and promote visual learning.

  2. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  3. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia.

    PubMed

    Jantzie, Lauren L; Corbett, Christopher J; Firl, Daniel J; Robinson, Shenandoah

    2015-09-01

    Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) in Sprague-Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants.

  4. Mild cognitive impairment in patients with Parkinson's disease is associated with increased cortical degeneration.

    PubMed

    Hanganu, Alexandru; Bedetti, Christophe; Jubault, Thomas; Gagnon, Jean-Francois; Mejia-Constain, Béatriz; Degroot, Clotilde; Lafontaine, Anne-Louise; Chouinard, Sylvain; Monchi, Oury

    2013-09-01

    Mild cognitive impairment (MCI) can occur early in the course of Parkinson's disease (PD), and its presence increases the risk of developing dementia. Determining the cortical changes associated with MCI in PD, thus, may be useful in predicting the future development of dementia. To address this objective, 37 patients with PD, divided into 2 groups according to the presence or absence MCI (18 with and 19 without) and 16 matched controls, underwent anatomic magnetic resonance imaging. Corticometry analyses were performed to measure the changes in cortical thickness and surface area as well as their correlation with disease duration. Compared with healthy controls, the PD-MCI group exhibited increased atrophy and changes of local surface area in the bilateral occipital, left temporal, and frontal cortices; whereas the PD non-MCI group exhibited only unilateral thinning and decreased surface area in the occipital lobe and in the frontal cortex. In addition, a comparison between the PD-MCI and PD non-MCI groups revealed increased local surface area in the occipital lobe, temporal lobe, and postcentral gyrus for the cognitively impaired patients. It is noteworthy that, in the PD-MCI group, cortical thickness had a significant negative correlation with disease duration in the precentral, supramarginal, occipital, and superior temporal cortices; whereas, in the PD non-MCI group, such a correlation was absent. The findings from this study reveal that, at the same stage of PD evolution, the presence of MCI is associated with a higher level of cortical changes, suggesting that cortical degeneration is increased in patients with PD because of the presence of MCI. PMID:23801590

  5. Hippocampal and cortical atrophy in amyloid-negative mild cognitive impairments: comparison with amyloid-positive mild cognitive impairment.

    PubMed

    Ye, Byoung Seok; Seo, Sang Won; Kim, Chi Hun; Jeon, Seun; Kim, Geon Ha; Noh, Young; Cho, Hanna; Yoon, Cindy W; Kim, Hee Jin; Jang, Eun Young; Lee, Jeongmin; Kim, Jung-Hyun; Chin, Juhee; Lee, Jong Min; Kim, Jeong-Hun; Seong, Joon-kyung; Kim, Chang-Hun; Choe, Yearn Seong; Lee, Kyung Han; Na, Duk L

    2014-02-01

    Although patients with amnestic mild cognitive impairment (aMCI) are at higher risk of developing Alzheimer's disease (AD), their pathologies could be heterogeneous. We aimed to evaluate structural changes in amyloid-negative and amyloid-positive aMCI patients. Forty-eight aMCI patients who underwent Pittsburgh compound B (PiB) positron emission tomography were recruited. They were classified as PiB (-) aMCI (N = 16) and PiB (+) (N = 32). Hippocampal shape and regional cortical thickness were compared with 41 subjects with normal cognition (NC). Relative to NC, PiB(-) aMCI exhibited hippocampal deformity in the right cornu ammonis 1, whereas PiB(+) aMCI exhibited hippocampal deformity in bilateral subiculum and cornu ammonis 1 subregions. Relative to NC, PiB(-) aMCI showed cortical thinning in the left medial prefrontal and right anterior temporal regions, whereas PiB(+) aMCI exhibited cortical thinning in bilateral medial temporal regions, temporoparietal junctions and precuneus, and prefrontal cortices. Our findings suggest that structural changes in PiB(-) aMCI might be due to several possible pathologic changes, whereas structural changes in PiB(+) aMCI reflect AD-like structural changes.

  6. White matter integrity of cerebellar-cortical tracts in reading impaired children: A probabilistic tractography study

    PubMed Central

    Fernandez, Vindia G.; Juranek, Jenifer; Romanowska-Pawliczek, Anna; Stuebing, Karla; Williams, Victoria J.; Fletcher, Jack M.

    2016-01-01

    Little is known about the white matter integrity of cerebellar-cortical pathways in individuals with dyslexia. Building on previous findings of decreased volume in the anterior lobe of the cerebellum, we utilized novel cerebellar segmentation procedures and probabilistic tractography to examine tracts that connect the anterior lobe of the cerebellum and cortical regions typically associated with reading: the temporoparietal (TP), occipitotemporal (OT), and inferior frontal (IF) regions. The sample included 29 reading impaired children and 27 typical readers. We found greater fractional anisotropy (FA) for the poor readers in tracts connecting the cerebellum with TP and IF regions relative to typical readers. In the OT region, FA was greater for the older poor readers, but smaller for the younger ones. This study provides evidence for discrete, regionally-bound functions of the cerebellum and suggests that projections from the anterior cerebellum appear to have a regulatory effect on cortical pathways important for reading. PMID:26307492

  7. Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation

    PubMed Central

    Ji, Guangchen; Sun, Hao; Fu, Yu; Li, Zhen; Pais-Vieira, Miguel; Galhardo, Vasco; Neugebauer, Volker

    2010-01-01

    Cognitive deficits such as impaired decision-making can be a consequence of persistent pain. Normal functions of the intact amygdala and prefrontal cortex are required for emotion-based decision-making that relies on the ability to assess risk, attribute value and identify advantageous strategies. We tested the hypothesis that pain-related cognitive deficits result from amygdala-driven impairment of medial prefrontal cortical (mPFC) function. To do this, we used electrophysiological single-unit recordings in vivo, patch-clamp in brain slices, and various behavioral assays to show that increased neuronal activity in the amygdala in an animal model of arthritis pain was accompanied by decreased mPFC activation and impaired decision-making. Further, pharmacologic inhibition (with a CRF1 receptor antagonist) of pain-related hyperactivity in the basolateral amygdala (BLA), but not central amygdala (CeA), reversed deactivation of mPFC pyramidal cells and improved decision-making deficits. Pain-related cortical deactivation resulted from a shift of balance between inhibitory and excitatory synaptic transmission. Direct excitatory transmission to mPFC pyramidal cells did not change in the pain model whereas polysynaptic inhibitory transmission increased. GABAergic transmission was reduced by non-NMDA receptor antagonists, suggesting synaptic inhibition was glutamate-driven. The results are consistent with a model of BLA-driven feed-forward inhibition of mPFC neurons. In contrast to the differential effects of BLA versus CeA hyperactivity on cortical-cognitive functions, both amygdala nuclei modulate emotional-affective pain behavior. Thus this study shows that the amygdala contributes not only to emotional-affective but also cognitive effects of pain. The novel amygdalo-cortical pain mechanism has important implications for our understanding of amygdala functions and amygdalo-cortical interactions. PMID:20392966

  8. Cortical Amyloid β Deposition and Current Depressive Symptoms in Alzheimer Disease and Mild Cognitive Impairment.

    PubMed

    Chung, Jun Ku; Plitman, Eric; Nakajima, Shinichiro; Chakravarty, M Mallar; Caravaggio, Fernando; Gerretsen, Philip; Iwata, Yusuke; Graff-Guerrero, Ariel

    2016-05-01

    Depressive symptoms are frequently seen in patients with dementia and mild cognitive impairment (MCI). Evidence suggests that there may be a link between current depressive symptoms and Alzheimer disease (AD)-associated pathological changes, such as an increase in cortical amyloid-β (Aβ). However, limited in vivo studies have explored the relationship between current depressive symptoms and cortical Aβ in patients with MCI and AD. Our study, using a large sample of 455 patients with MCI and 153 patients with AD from the Alzheimer's disease Neuroimaging Initiatives, investigated whether current depressive symptoms are related to cortical Aβ deposition. Depressive symptoms were assessed using the Geriatric Depression Scale and Neuropsychiatric Inventory-depression/dysphoria. Cortical Aβ was quantified using positron emission tomography with the Aβ probe(18)F-florbetapir (AV-45).(18)F-florbetapir standardized uptake value ratio (AV-45 SUVR) from the frontal, cingulate, parietal, and temporal regions was estimated. A global AV-45 SUVR, defined as the average of frontal, cingulate, precuneus, and parietal cortex, was also used. We observed that current depressive symptoms were not related to cortical Aβ, after controlling for potential confounds, including history of major depression. We also observed that there was no difference in cortical Aβ between matched participants with high and low depressive symptoms, as well as no difference between matched participants with the presence and absence of depressive symptoms. The association between depression and cortical Aβ deposition does not exist, but the relationship is highly influenced by stressful events in the past, such as previous depressive episodes, and complex interactions of different pathways underlying both depression and dementia. PMID:26400248

  9. Cortical Amyloid β Deposition and Current Depressive Symptoms in Alzheimer Disease and Mild Cognitive Impairment.

    PubMed

    Chung, Jun Ku; Plitman, Eric; Nakajima, Shinichiro; Chakravarty, M Mallar; Caravaggio, Fernando; Gerretsen, Philip; Iwata, Yusuke; Graff-Guerrero, Ariel

    2016-05-01

    Depressive symptoms are frequently seen in patients with dementia and mild cognitive impairment (MCI). Evidence suggests that there may be a link between current depressive symptoms and Alzheimer disease (AD)-associated pathological changes, such as an increase in cortical amyloid-β (Aβ). However, limited in vivo studies have explored the relationship between current depressive symptoms and cortical Aβ in patients with MCI and AD. Our study, using a large sample of 455 patients with MCI and 153 patients with AD from the Alzheimer's disease Neuroimaging Initiatives, investigated whether current depressive symptoms are related to cortical Aβ deposition. Depressive symptoms were assessed using the Geriatric Depression Scale and Neuropsychiatric Inventory-depression/dysphoria. Cortical Aβ was quantified using positron emission tomography with the Aβ probe(18)F-florbetapir (AV-45).(18)F-florbetapir standardized uptake value ratio (AV-45 SUVR) from the frontal, cingulate, parietal, and temporal regions was estimated. A global AV-45 SUVR, defined as the average of frontal, cingulate, precuneus, and parietal cortex, was also used. We observed that current depressive symptoms were not related to cortical Aβ, after controlling for potential confounds, including history of major depression. We also observed that there was no difference in cortical Aβ between matched participants with high and low depressive symptoms, as well as no difference between matched participants with the presence and absence of depressive symptoms. The association between depression and cortical Aβ deposition does not exist, but the relationship is highly influenced by stressful events in the past, such as previous depressive episodes, and complex interactions of different pathways underlying both depression and dementia.

  10. Early neonatal 192 IgG saporin induces learning impairments and disrupts cortical morphogenesis in rats.

    PubMed

    Ricceri, Laura; Hohmann, Christine; Berger-Sweeney, Joanne

    2002-11-01

    We have shown previously that neonatal intraventricular injections of the selective cholinergic immunotoxin 192 IgG saporin on postnatal day 7 (pnd 7) induce marked cholinergic loss in hippocampus and neocortex and a learning impairment on pnd 15. In the present study, we analysed the behavioural, morphological and neurochemical effects of earlier intraventricular injection of the immunotoxin 192 IgG saporin (pnd 1 and 3). We hypothesised that these earlier lesions would interrupt a critical stage in neocortical maturation, and impair behavior more profoundly than the later lesions. Passive avoidance (PA) learning and locomotor activity during the PA test were assessed on pnd 15. Retention of the PA task was assessed on pnd 16. Reactivity to spatial and object novelty was assessed on pnd 180 in a spatial open field test with five objects. Choline acetyltransferase (ChAT) activity was measured in basal forebrain targets on pnd 20 and pnd 180. Neonatal administration of 192 IgG saporin resulted in a slower acquisition of the PA task in females; retention and locomotor activity were not affected. On pnd 180, reaction to spatial novelty was mildly impaired in lesioned rats of both sexes. There was a marked reduction of ChAT in the hippocampus and neocortex of lesioned rats of both sexes, at both ages. Morphological analysis of the somatosensory cortex of lesioned rats revealed alterations in cortical development with sex specific variations in total cortical thickness. These results suggest that interrupting cholinergic basal forebrain innervation of neocortex and hippocampus during the first postnatal days affects the development of cognitive behaviour, neurochemistry and cortical organisation in a sex specific manner. Furthermore, the alterations in cortical organization are more profound than those noted after a lesion later in postnatal development. These behavioural and morphological abnormalities could be considered a model for several neurodevelopmental

  11. Anhedonia in the psychosis risk syndrome: associations with social impairment and basal orbitofrontal cortical activity

    PubMed Central

    Cressman, Victoria L; Schobel, Scott A; Steinfeld, Sara; Ben-David, Shelly; Thompson, Judy L; Small, Scott A; Moore, Holly; Corcoran, Cheryl M

    2015-01-01

    Background/Objectives: Anhedonia is associated with poor social function in schizophrenia. Here, we examined this association in individuals at clinical high risk (CHR) for schizophrenia and related psychotic disorders, taking into account social anxiety. We then explored correlations between anhedonia and basal metabolic activity in selected forebrain regions implicated in reward processing. Methods: In 62 CHR individuals and 37 healthy controls, we measured social adjustment (Social Adjustment Self-Report Scale), social and physical anhedonia (Chapman Revised Anhedonia Scales), and social anxiety (Social Anxiety Scale for Adolescents) in cross-section. In a subgroup of 25 CHR individuals for whom high-spatial-resolution basal-state functional magnetic resonance imaging data were available, we also assessed correlations of these socio-affective constructs with basal cerebral blood volume in orbitofrontal cortex and related regions involved in reward processing. Results: Relative to controls, CHR individuals reported social impairment, greater social and physical anhedonia, and more social anxiety, exhibiting impairments comparable to schizophrenia. Regression analyses showed that anhedonia predicted social impairment and correlated negatively with basal cerebral blood volume within the orbitofrontal cortex (all P’s<0.05). Conclusions: Anhedonia and social anxiety are prominent in CHR individuals. Trait-like anhedonia may be a core phenotype related to orbitofrontal cortical function that, independent of symptoms, predicts social impairment. These data provide a rationale for interventions that target anhedonia and related activity in orbitofrontal cortical circuits in CHR individuals. PMID:27336033

  12. Prenatal Exposure to Arsenic Impairs Behavioral Flexibility and Cortical Structure in Mice

    PubMed Central

    Aung, Kyaw H.; Kyi-Tha-Thu, Chaw; Sano, Kazuhiro; Nakamura, Kazuaki; Tanoue, Akito; Nohara, Keiko; Kakeyama, Masaki; Tohyama, Chiharu; Tsukahara, Shinji; Maekawa, Fumihiko

    2016-01-01

    Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although, it has been demonstrated that exposure to sodium arsenite (NaAsO2) suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL), which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm) was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment. PMID:27064386

  13. Prenatal Exposure to Arsenic Impairs Behavioral Flexibility and Cortical Structure in Mice.

    PubMed

    Aung, Kyaw H; Kyi-Tha-Thu, Chaw; Sano, Kazuhiro; Nakamura, Kazuaki; Tanoue, Akito; Nohara, Keiko; Kakeyama, Masaki; Tohyama, Chiharu; Tsukahara, Shinji; Maekawa, Fumihiko

    2016-01-01

    Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although, it has been demonstrated that exposure to sodium arsenite (NaAsO2) suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL), which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm) was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment. PMID:27064386

  14. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice

    PubMed Central

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-01-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis. PMID:26946128

  15. Topological Properties of Large-Scale Cortical Networks Based on Multiple Morphological Features in Amnestic Mild Cognitive Impairment

    PubMed Central

    Li, Qiongling; Li, Xinwei; Wang, Xuetong; Li, Yuxia; Li, Kuncheng; Yu, Yang; Yin, Changhao; Li, Shuyu; Han, Ying

    2016-01-01

    Previous studies have demonstrated that amnestic mild cognitive impairment (aMCI) has disrupted properties of large-scale cortical networks based on cortical thickness and gray matter volume. However, it is largely unknown whether the topological properties of cortical networks based on geometric measures (i.e., sulcal depth, curvature, and metric distortion) change in aMCI patients compared with normal controls because these geometric features of cerebral cortex may be related to its intrinsic connectivity. Here, we compare properties in cortical networks constructed by six different morphological features in 36 aMCI participants and 36 normal controls. Six cortical features (3 volumetric and 3 geometric features) were extracted for each participant, and brain abnormities in aMCI were identified by cortical network based on graph theory method. All the cortical networks showed small-world properties. Regions showing significant differences mainly located in the medial temporal lobe and supramarginal and right inferior parietal lobe. In addition, we also found that the cortical networks constructed by cortical thickness and sulcal depth showed significant differences between the two groups. Our results indicated that geometric measure (i.e., sulcal depth) can be used to construct network to discriminate individuals with aMCI from controls besides volumetric measures. PMID:27057360

  16. Sleep-Dependent Learning and Motor-Skill Complexity

    ERIC Educational Resources Information Center

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics…

  17. Mechanisms of cortical neural synchronization related to healthy and impaired consciousness: evidence by quantitative electroencephalographic studies.

    PubMed

    Babiloni, Claudio; Vecchio, Fabrizio; Buffo, Paola; Iacoboni, Marco; Pistoia, Francesca; Sacco, Simona; Sara, Marco; Rossini, Paolo Maria

    2014-01-01

    In this paper, we review the contribution of our research group to the study of human consciousness by quantitative electroencephalographic (EEG) techniques. We posit that EEG techniques can be extremely useful for a direct measurement of brain electrophysiological activity related to human consciousness for their unsurpassable high temporal resolution (milliseconds). This activity can be expressed in terms of event-related potentials as well as changes of EEG rhythms of interest, for example the dominant alpha rhythms (about 8-12 Hz). The results of our studies, and those of several independent groups, lead support to the hypothesis that these techniques provide important insights about the neurophysiologic mechanisms underlying cortical neural synchronization/desynchronization and the regulation of neuromodulatory systems (e.g. dopaminergic, noradrenergic, cholinergic, etc.) at the basis of brain arousal and consciousness in healthy subjects and in patients with impairment of the consciousness. A possible interaction of these mechanisms and the drugs administered to patients with consciousness disorders is discussed.

  18. Summative effects of vascular risk factors on cortical thickness in mild cognitive impairment.

    PubMed

    Tchistiakova, Ekaterina; MacIntosh, Bradley J

    2016-09-01

    Vascular risk factors (VRFs) increase the risk of Alzheimer's disease (AD) and contribute to neurodegenerative processes. The purpose of this study was to investigate whether increasing number of VRFs contributes to within-cohort differences in cortical thickness (CThk) among adults with mild cognitive impairment (MCI) and cognitively intact older controls from the AD Neuroimaging Initiative 1, GO, and 2 data sets. Multivariate partial least squares analysis was used to investigate the effect of VRF index on regional CThk measurements, which produced a significant latent variable and identified patterns of cortical thinning in the MCI group but not controls. Subsequent analyses tested the interaction effects between VRF index and cognitive grouping and examined 1-year follow-up data. There was evidence of a VRF index by cognitive group interaction. Partial least squares results were replicated at 1-year follow-up among MCI cohort in a subset of baseline CThk regions. This study provides evidence that a summative VRF index accounts for some of the variance in brain tissue loss in regions implicated in AD among MCI adults. PMID:27459930

  19. Decisional impairments in cocaine addiction, reward bias, and cortical oscillation “unbalance”

    PubMed Central

    Balconi, Michela; Finocchiaro, Roberta

    2015-01-01

    A vast amount of research has suggested that subjects with substance use disorder (SUD) might have difficulty making advantageous decisions that opt in favor of a longer-term, larger reward than an immediate, smaller reward. The current research explored the impact of reward bias and cortical frontal asymmetry (left lateralization effect) in SUD in response to a decisional task (Iowa Gambling Task). Fifty SUD participants and 40 controls (CG) were tested using the Iowa Gambling Task. Electrophysiology (electroencephalography) recording was performed during task execution. We measured left and right dorsolateral prefrontal cortex power activity. Behavioral responses (gain/loss options); frequency band modulation (asymmetry index) for delta, theta, alpha, and beta band; and cortical source localization (standardized low-resolution brain electromagnetic tomography) were considered. The SUD group opted in favor of the immediate reward option (loss) more frequently than the long-term option (gain) when compared to the CG. Secondly, SUD showed increased left-hemisphere activation in response to losing (with immediate reward) choices in comparison with the CG. The left hemispheric unbalance effect and the “reward bias” were adduced to explain the decisional impairment in SUD. PMID:25848274

  20. Prenatal Exposure to Benzo(a)pyrene Impairs Later-Life Cortical Neuronal Function

    PubMed Central

    McCallister, Monique M.; Maguire, Mark; Ramesh, Aramandla; Aimin, Qiao; Liu, Sheng; Khoshbouei, Habibeh; Aschner, Michael; Ebner, Ford F.; Hood, Darryl B.

    2009-01-01

    Prenatal exposure to environmental contaminants, such as Benzo(a)pyrene [B(a)P] has been shown to impair brain development. The overarching hypothesis of our work is that glutamate receptor subunit expression is crucial for cortical evoked responses and that prenatal B(a)P exposure modulates the temporal developmental expression of glutamatergic receptor subunits in the somatosensory cortex. To characterize prenatal B(a)P exposure on the development of cortical function, pregnant Long Evans rats were exposed to low-level B(a)P (300μg/kg BW) by oral gavage on gestational days 14 to 17. At this exposure dose, there was no significant effect of B(a)P on 1) the number of pups born per litter, 2) the pre-weaning growth curves and 3) initial and final brain to body weight ratios. Control and B(a)P-exposed offspring were profiled for B(a)P metabolites in plasma and whole brain during the pre-weaning period. No detectable levels of metabolites were found in the control offspring. However, a time-dependent decrease in total metabolite concentration was observed in B(a)P-exposed offspring. On PND100-120, cerebrocortical mRNA expression was determined for the glutamatergic NMDA receptor subunit (NR2B) in control and B(a)P-exposed offspring. Neural activity was also recorded from neurons in primary somatic sensory (barrel) cortex. Semiquantitative PCR from B(a)P-exposed offspring revealed a significant 50% reduction in NR2B mRNA expression in B(a)P-exposed offspring relative to controls. Recordings from B(a)P-exposed offspring revealed that N-methyl-D-aspartate (NMDA) receptor -dependent neuronal activity in barrel cortex evoked by whisker stimulation was also significantly reduced (70%) as compared to controls. Analysis showed that the greatest deficit in cortical neuronal responses occurred in the shorter latency epochs from 5-20ms post-stimulus. The results suggest that in utero exposure to benzo(a)pyrene results in diminished mRNA expression of the NMDA NR2B receptor

  1. Top-down cortical input during NREM sleep consolidates perceptual memory.

    PubMed

    Miyamoto, D; Hirai, D; Fung, C C A; Inutsuka, A; Odagawa, M; Suzuki, T; Boehringer, R; Adaikkan, C; Matsubara, C; Matsuki, N; Fukai, T; McHugh, T J; Yamanaka, A; Murayama, M

    2016-06-10

    During tactile perception, long-range intracortical top-down axonal projections are essential for processing sensory information. Whether these projections regulate sleep-dependent long-term memory consolidation is unknown. We altered top-down inputs from higher-order cortex to sensory cortex during sleep and examined the consolidation of memories acquired earlier during awake texture perception. Mice learned novel textures and consolidated them during sleep. Within the first hour of non-rapid eye movement (NREM) sleep, optogenetic inhibition of top-down projecting axons from secondary motor cortex (M2) to primary somatosensory cortex (S1) impaired sleep-dependent reactivation of S1 neurons and memory consolidation. In NREM sleep and sleep-deprivation states, closed-loop asynchronous or synchronous M2-S1 coactivation, respectively, reduced or prolonged memory retention. Top-down cortical information flow in NREM sleep is thus required for perceptual memory consolidation. PMID:27229145

  2. Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults.

    PubMed

    Van Dun, Bram; Kania, Anna; Dillon, Harvey

    2016-02-01

    Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds-/m/, /g/, and /t/-were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users. PMID:27587919

  3. Prefrontal Cortical GABAergic Dysfunction Contributes to Age-Related Working Memory Impairment

    PubMed Central

    Bañuelos, Cristina; Beas, B. Sofia; McQuail, Joseph A.; Gilbert, Ryan J.; Frazier, Charles J.; Setlow, Barry

    2014-01-01

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions. PMID:24599447

  4. Differential Effect of an Anticholinergic Antidepressant on Sleep-Dependent Memory Consolidation

    PubMed Central

    Goerke, Monique; Cohrs, Stefan; Rodenbeck, Andrea; Kunz, Dieter

    2014-01-01

    Study Objectives: Rapid eye movement (REM) sleep is considered critical to the consolidation of procedural memory – the memory of skills and habits. Many antidepressants strongly suppress REM sleep, however, and procedural memory consolidation has been shown to be impaired in depressed patients on antidepressant therapy. As a result, it is important to determine whether antidepressive therapy can lead to amnestic impairment. We thus investigated the effects of the anticholinergic antidepressant amitriptyline on sleep-dependent memory consolidation. Design: Double-blind, placebo-controlled, randomized, parallel-group study. Setting: Sleep laboratory. Participants: Twenty-five healthy men (mean age: 26.8 ± 5.6 y). Interventions: 75 mg amitriptyline versus placebo. Measurements/Results: To test memory consolidation, a visual discrimination task, a finger-tapping task, the Rey-Osterrieth Complex Figure Test, and the Rey Auditory-Verbal Learning Test were performed. Sleep was measured using polysomnography. Our findings show that amitriptyline profoundly suppressed REM sleep and impaired perceptual skill learning, but not motor skill or declarative learning. Conclusions: Our study is the first to demonstrate that an antidepressant can affect procedural memory consolidation in healthy subjects. Moreover, considering the results of a recent study, in which selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors were shown not to impair procedural memory consolidation, our findings suggest that procedural memory consolidation is not facilitated by the characteristics of REM sleep captured by visual sleep scoring, but rather by the high cholinergic tone associated with REM sleep. Our study contributes to the understanding of potentially undesirable behavioral effects of amitriptyline. Citation: Goerke M, Cohrs S, Rodenbeck A, Kunz D. Differential effect of an anticholinergic antidepressant on sleep-dependent memory consolidation. SLEEP

  5. Cortical Source Multivariate EEG Synchronization Analysis on Amnestic Mild Cognitive Impairment in Type 2 Diabetes

    PubMed Central

    Bian, Zhijie; Li, Qiuli; Wang, Lei; Li, Xiaoli

    2014-01-01

    Is synchronization altered in amnestic mild cognitive impairment (aMCI) and normal cognitive functions subjects in type 2 diabetes mellitus (T2DM)? Resting eye-closed EEG data were recorded in 8 aMCI subjects and 11 age-matched controls in T2DM. Three multivariate synchronization algorithms (S-estimator (S), synchronization index (SI), and global synchronization index (GSI)) were used to measure the synchronization in five ROIs of sLORETA sources for seven bands. Results showed that aMCI group had lower synchronization values than control groups in parietal delta and beta2 bands, temporal delta and beta2 bands, and occipital theta and beta2 bands significantly. Temporal (r = 0.629; P = 0.004) and occipital (r = 0.648; P = 0.003) theta S values were significantly positive correlated with Boston Name Testing. In sum, each of methods reflected that the cortical source synchronization was significantly different between aMCI and control group, and these difference correlated with cognitive functions. PMID:25254248

  6. Herpes Simplex Virus-Type1 (HSV-1) Impairs DNA Repair in Cortical Neurons

    PubMed Central

    De Chiara, Giovanna; Racaniello, Mauro; Mollinari, Cristiana; Marcocci, Maria Elena; Aversa, Giorgia; Cardinale, Alessio; Giovanetti, Anna; Garaci, Enrico; Palamara, Anna Teresa; Merlo, Daniela

    2016-01-01

    Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer’s disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions. PMID:27803664

  7. Chronic cortical visual impairment in children: aetiology, prognosis, and associated neurological deficits

    PubMed Central

    Huo, R.; Burden, S.; Hoyt, C.; Good, W.

    1999-01-01

    BACKGROUND/AIMS—To evaluate prevalence, aetiology, prognosis, and associated neurological and ophthalmological problems in children with cortical visual impairment (CVI).
METHODS—The records of 7200 outpatients seen in the paediatric ophthalmology practice over the past 15 years were reviewed in order to compile data concerning CVI. In addition, the authors devised and applied a system for grading visual recovery in order to assess prognosis.
RESULTS—CVI occurred in 2.4% of all patients examined. The four most common causes of CVI were perinatal hypoxia (22%), cerebral vascular accident (14%), meningitis (12%), and acquired hypoxia (10%). Most children with CVI had associated neurological abnormalities. The most common were seizures (53%), cerebral palsy (26%) hemiparesis (12%), and hypotonia (5%). Associated ophthalmological problems were esotropia (19%), exotropia (18%), optic nerve atrophy (16%), ocular motor apraxia (15%), nystagmus (11%), and retinal disease (3%). On average, CVI patients improved by two levels as measured by the authors' scale.
CONCLUSION—The majority of children with CVI showed at least some recovery. In this group of children, CVI is often accompanied by additional ophthalmological problems and is nearly always associated with other, serious neurological abnormalities.

 PMID:10340973

  8. Sterilization by gamma radiation impairs the tensile fatigue life of cortical bone by two orders of magnitude.

    PubMed

    Akkus, Ozan; Belaney, Ryan M

    2005-09-01

    Cortical bone grafts are utilized frequently for skeletal reconstruction, spinal fusion and tumor surgery. Due to its efficacy and convenience terminal sterilization by gamma radiation is often essential to minimize disease transmission and infection. However, the impairment in the material properties of bone tissue secondary to gamma radiation sterilization is a concern since the mechanical functionality of a bone graft is of primary importance. While the extent of this impairment is well investigated for monotonic loading conditions, there does not seem to exist any information on the effects of gamma radiation sterilization on cortical bone's fatigue properties, the physiologically relevant mode of loading. In this study we investigated the degradation in the high-cycle and low-cycle tensile fatigue lives of cortical bone tissue secondary to gamma radiation sterilization at a dose of 36.4 kGy which approximately falls in the higher end of the standard dose range used in tissue banking. The high-cycle and the low-cycle fatigue tests were conducted under load control at initial strain levels of 0.2% and 0.4%, respectively. Monotonic tensile tests were also conducted to compare the impairment of fatigue properties with the impairment of monotonic properties. Results demonstrated that the impairment in both the high-cycle and the low-cycle fatigue lives were two orders of magnitude following sterilization, a change much more pronounced than that observed for monotonic loading. In conclusion, the results suggest that the impairment of the mechanical function of gamma radiation sterilized allografts is even worse in fatigue than monotonically. Therefore, grafts should be designed to minimize functional strains and avoid stress raisers to prevent premature fatigue failures.

  9. Sleep-dependent directional coupling between human neocortex and hippocampus.

    PubMed

    Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen

    2010-02-01

    Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex.

  10. Impairment of Oligodendroglia Maturation Leads to Aberrantly Increased Cortical Glutamate and Anxiety-Like Behaviors in Juvenile Mice

    PubMed Central

    Chen, Xianjun; Zhang, Weiguo; Li, Tao; Guo, Yu; Tian, Yanping; Wang, Fei; Liu, Shubao; Shen, Hai-Ying; Feng, Yue; Xiao, Lan

    2015-01-01

    Adolescence is the critical time for developing proper oligodendrocyte (OL)-neuron interaction and the peak of onset for many cognitive diseases, among which anxiety disorders display the highest prevalence. However, whether impairment of de novo OL development causes neuronal abnormalities and contributes to the early onset of anxiety phenotype in childhood still remains unexplored. In this study, we tested the hypothesis that defects in OL maturation manifests cortical neuron function and leads to anxiety-like behaviors in juvenile mice. We report here that conditional knockout of the Olig2 gene (Olig2 cKO) specifically in differentiating OLs in the mouse brain preferentially impaired OL maturation in the gray matter of cerebral cortex. Interestingly, localized proton magnetic resonance spectroscopy revealed that Olig2 cKO mice displayed abnormally elevated cortical glutamate levels. In addition, transmission electron microscopy demonstrated increased vesicle density in excitatory glutamatergic synapses in the cortex of the Olig2 cKO mice. Moreover, juvenile Olig2 cKO mice exhibited anxiety-like behaviors and impairment in behavioral inhibition. Taken together, our results suggest that impaired OL development affects glutamatergic neuron function in the cortex and causes anxiety-related behaviors in juvenile mice. These discoveries raise an intriguing possibility that OL defects may be a contributing mechanism for the onset of anxiety in childhood. PMID:26696827

  11. Prefrontal cortical thinning in HIV infection is associated with impaired striatal functioning.

    PubMed

    du Plessis, Stéfan; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2016-06-01

    While cortical thinning has been associated with HIV infection, it is unclear whether this reflects a direct effect of the virus, whether it is related to disruption of subcortical function or whether it is better explained by epiphenomena, such as drug abuse or comorbid medical conditions. The present study investigated the relationship between cortical thickness and subcortical function in HIV+ patients. Specifically, we examined the relationship between prefrontal cortical thickness and striatal function. Twenty-three largely treatment naïve, non-substance abusing HIV+ participants and 19 healthy controls matched for age, gender, and educational status were included. Cortical morphometry was performed using FreeSurfer software analysis. Striatal function was measured during an fMRI stop-signal anticipation task known to engage the striatum. Any cortical regions showing significant thinning were entered as dependent variables into a single linear regression model which included subcortical function, age, CD4 count, and a measure of global cognitive performance as independent predictors. The only cortical region that was significantly reduced after correction for multiple comparisons was the right superior frontal gyrus. Striatal activity was found to independently predict superior frontal gyral cortical thickness. While cortical thinning in HIV infection is likely multifactorial, viral induced subcortical dysfunction appears to play a role.

  12. Prefrontal cortical thinning in HIV infection is associated with impaired striatal functioning.

    PubMed

    du Plessis, Stéfan; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2016-06-01

    While cortical thinning has been associated with HIV infection, it is unclear whether this reflects a direct effect of the virus, whether it is related to disruption of subcortical function or whether it is better explained by epiphenomena, such as drug abuse or comorbid medical conditions. The present study investigated the relationship between cortical thickness and subcortical function in HIV+ patients. Specifically, we examined the relationship between prefrontal cortical thickness and striatal function. Twenty-three largely treatment naïve, non-substance abusing HIV+ participants and 19 healthy controls matched for age, gender, and educational status were included. Cortical morphometry was performed using FreeSurfer software analysis. Striatal function was measured during an fMRI stop-signal anticipation task known to engage the striatum. Any cortical regions showing significant thinning were entered as dependent variables into a single linear regression model which included subcortical function, age, CD4 count, and a measure of global cognitive performance as independent predictors. The only cortical region that was significantly reduced after correction for multiple comparisons was the right superior frontal gyrus. Striatal activity was found to independently predict superior frontal gyral cortical thickness. While cortical thinning in HIV infection is likely multifactorial, viral induced subcortical dysfunction appears to play a role. PMID:27173383

  13. Instrumental learning: an animal model for sleep dependent memory enhancement.

    PubMed

    Leenaars, Cathalijn H C; Girardi, Carlos E N; Joosten, Ruud N J M A; Lako, Irene M; Ruimschotel, Emma; Hanegraaf, Maaike A J; Dematteis, Maurice; Feenstra, Matthijs G P; Van Someren, Eus J W

    2013-07-15

    The relationship between learning and sleep is multifaceted; learning influences subsequent sleep characteristics, which may in turn influence subsequent memory. Studies in humans indicate that sleep may not only prevent degradation of acquired memories, but even enhance performance without further practice. In a rodent instrumental learning task, individual differences occur in how fast rats learn to associate lever pressing with food reward. Rats habitually sleep between learning sessions, and may differ in this respect. The current study assessed if the instrumental leaning paradigm could serve as a model to study sleep-dependent memory enhancement. Male Wistar rats performed 2 sessions of instrumental learning per day for 1-3 days. Electroencephalography was recorded both before and after the sessions. Sleep deprivation (3 h) was applied between the first and second session in a subgroup of rats. Measurements comprised the number of lever presses in each session, slow wave sleep (SWS) duration, Rapid Eye Movement Sleep (REMS) duration and sleep spindles. Baseline sleep parameters were similar for fast and slow learning rats. Task-exposure increased REMS-duration. The increase in REMS-duration was observed specifically after sessions in which learning occurred, but not after a later session. Sleep deprivation during the 3h period between the initial two sessions interfered with performance enhancement, but did not prevent this in all rats. Our considered movement control protocol induced partial sleep deprivation and also interfered with performance enhancement. The classic instrumental learning task provides a practical model for animal studies on sleep-dependent memory enhancement.

  14. Enhanced Spontaneous Oscillations in the Supplementary Motor Area Are Associated with Sleep-Dependent Offline Learning of Finger-Tapping Motor-Sequence Task

    PubMed Central

    Tamaki, Masako; Huang, Tsung-Ren; Yotsumoto, Yuko; Hämäläinen, Matti; Lin, Fa-Hsuan; Náñez, José E.; Watanabe, Takeo

    2013-01-01

    Sleep is beneficial for various types of learning and memory, including a finger-tapping motor-sequence task. However, methodological issues hinder clarification of the crucial cortical regions for sleep-dependent consolidation in motor-sequence learning. Here, to investigate the core cortical region for sleep-dependent consolidation of finger-tapping motor-sequence learning, while human subjects were asleep, we measured spontaneous cortical oscillations by magnetoencephalography together with polysomnography, and source-localized the origins of oscillations using individual anatomical brain information from MRI. First, we confirmed that performance of the task at a retest session after sleep significantly increased compared with performance at the training session before sleep. Second, spontaneous δ and fast-σ oscillations significantly increased in the supplementary motor area (SMA) during post-training compared with pretraining sleep, showing significant and high correlation with the performance increase. Third, the increased spontaneous oscillations in the SMA correlated with performance improvement were specific to slow-wave sleep. We also found that correlations of δ oscillation between the SMA and the prefrontal and between the SMA and the parietal regions tended to decrease after training. These results suggest that a core brain region for sleep-dependent consolidation of the finger-tapping motor-sequence learning resides in the SMA contralateral to the trained hand and is mediated by spontaneous δ and fast-σ oscillations, especially during slow-wave sleep. The consolidation may arise along with possible reorganization of a larger-scale cortical network that involves the SMA and cortical regions outside the motor regions, including prefrontal and parietal regions. PMID:23966709

  15. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation.

    PubMed

    Mark, R J; Pang, Z; Geddes, J W; Uchida, K; Mattson, M P

    1997-02-01

    A deficit in glucose uptake and a deposition of amyloid beta-peptide (A beta) each occur in vulnerable brain regions in Alzheimer's disease (AD). It is not known whether mechanistic links exist between A beta deposition and impaired glucose transport. We now report that A beta impairs glucose transport in cultured rat hippocampal and cortical neurons by a mechanism involving membrane lipid peroxidation. A beta impaired 3H-deoxy-glucose transport in a concentration-dependent manner and with a time course preceding neurodegeneration. The decrease in glucose transport was followed by a decrease in cellular ATP levels. Impairment of glucose transport, ATP depletion, and cell death were each prevented in cultures pretreated with antioxidants. Exposure to FeSO4, an established inducer of lipid peroxidation, also impaired glucose transport. Immunoprecipitation and Western blot analyses showed that exposure of cultures to A beta induced conjugation of 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, to the neuronal glucose transport protein GLUT3. HNE induced a concentration-dependent impairment of glucose transport and subsequent ATP depletion. Impaired glucose transport was not caused by a decreased energy demand in the neurons, because ouabain, which inhibits Na+/K(+)-ATPase activity and thereby reduces neuronal ATP hydrolysis rate, had little or no effect on glucose transport. Collectively, the data demonstrate that lipid peroxidation mediates A beta-induced impairment of glucose transport in neurons and suggest that this action of A beta may contribute to decreased glucose uptake and neuronal degeneration in AD. PMID:8994059

  16. Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning.

    PubMed

    Eskildsen, Simon F; Coupé, Pierrick; García-Lorenzo, Daniel; Fonov, Vladimir; Pruessner, Jens C; Collins, D Louis

    2013-01-15

    Predicting Alzheimer's disease (AD) in individuals with some symptoms of cognitive decline may have great influence on treatment choice and disease progression. Structural magnetic resonance imaging (MRI) has the potential of revealing early signs of neurodegeneration in the human brain and may thus aid in predicting and diagnosing AD. Surface-based cortical thickness measurements from T1-weighted MRI have demonstrated high sensitivity to cortical gray matter changes. In this study we investigated the possibility for using patterns of cortical thickness measurements for predicting AD in subjects with mild cognitive impairment (MCI). We used a novel technique for identifying cortical regions potentially discriminative for separating individuals with MCI who progress to probable AD, from individuals with MCI who do not progress to probable AD. Specific patterns of atrophy were identified at four time periods before diagnosis of probable AD and features were selected as regions of interest within these patterns. The selected regions were used for cortical thickness measurements and applied in a classifier for testing the ability to predict AD at the four stages. In the validation, the test subjects were excluded from the feature selection to obtain unbiased results. The accuracy of the prediction improved as the time to conversion from MCI to AD decreased, from 70% at 3 years before the clinical criteria for AD was met, to 76% at 6 months before AD. By inclusion of test subjects in the feature selection process, the prediction accuracies were artificially inflated to a range of 73% to 81%. Two important results emerge from this study. First, prediction accuracies of conversion from MCI to AD can be improved by learning the atrophy patterns that are specific to the different stages of disease progression. This has the potential to guide the further development of imaging biomarkers in AD. Second, the results show that one needs to be careful when designing training

  17. MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons.

    PubMed

    Li, Lei; Wei, Dan; Wang, Qiong; Pan, Jing; Liu, Rong; Zhang, Xu; Bao, Lan

    2012-09-12

    Neuronal migration is a fundamental process during the development of the cerebral cortex and is regulated by cytoskeletal components. Microtubule dynamics can be modulated by posttranslational modifications to tubulin subunits. Acetylation of α-tubulin at lysine 40 is important in regulating microtubule properties, and this process is controlled by acetyltransferase and deacetylase. MEC-17 is a newly discovered α-tubulin acetyltransferase that has been found to play a major role in the acetylation of α-tubulin in different species in vivo. However, the physiological function of MEC-17 during neural development is largely unknown. Here, we report that MEC-17 is critical for the migration of cortical neurons in the rat. MEC-17 was strongly expressed in the cerebral cortex during development. MEC-17 deficiency caused migratory defects in the cortical projection neurons and interneurons, and perturbed the transition of projection neurons from the multipolar stage to the unipolar/bipolar stage in the intermediate zone of the cortex. Furthermore, knockdown of α-tubulin deacetylase HDAC6 or overexpression of tubulin(K40Q) to mimic acetylated α-tubulin could reduce the migratory and morphological defects caused by MEC-17 deficiency in cortical projection neurons. Thus, MEC-17, which regulates the acetylation of α-tubulin, appears to control the migration and morphological transition of cortical neurons. This finding reveals the importance of MEC-17 and α-tubulin acetylation in cortical development.

  18. Emotional bias of sleep-dependent processing shifts from negative to positive with aging.

    PubMed

    Jones, Bethany J; Schultz, Kurt S; Adams, Sydney; Baran, Bengi; Spencer, Rebecca M C

    2016-09-01

    Age-related memory decline has been proposed to result partially from impairments in memory consolidation over sleep. However, such decline may reflect a shift toward selective processing of positive information with age rather than impaired sleep-related mechanisms. In the present study, young and older adults viewed negative and neutral pictures or positive and neutral pictures and underwent a recognition test after sleep or wake. Subjective emotional reactivity and affect were also measured. Compared with waking, sleep preserved valence ratings and memory for positive but not negative pictures in older adults and negative but not positive pictures in young adults. In older adults, memory for positive pictures was associated with slow wave sleep. Furthermore, slow wave sleep predicted positive affect in older adults but was inversely related to positive affect in young adults. These relationships were strongest for older adults with high memory for positive pictures and young adults with high memory for negative pictures. Collectively, these results indicate preserved but selective sleep-dependent memory processing with healthy aging that may be biased to enhance emotional well-being. PMID:27459938

  19. A longitudinal study of atrophy in amnestic mild cognitive impairment and normal aging revealed by cortical thickness.

    PubMed

    Yao, Zhijun; Hu, Bin; Liang, Chuanjiang; Zhao, Lina; Jackson, Mike

    2012-01-01

    In recent years, amnestic mild cognitive impairment (aMCI) has attracted significant attention as an indicator of high risk for Alzheimer's disease. An understanding of the pathology of aMCI may benefit the development of effective clinical treatments for dementia. In this work, we measured the cortical thickness of 109 aMCI subjects and 99 normal controls (NC) twice over two years. The longitudinal changes and the cross-sectional differences between the two types of participants were explored using the vertex thickness values. The thickness of the cortex in aMCI was found significantly reduced in both longitudinal and between-group comparisons, mainly in the temporal lobe, superolateral parietal lobe and some regions of the frontal cortices. Compared to NC, the aMCI showed a significantly high atrophy rate in the left lateral temporal lobe and left parahippocampal gyrus over two years. Additionally, a significant positive correlation between brain atrophy and the decline of Mini-Mental State Examination (MMSE) scores was also found in the left superior and left middle temporal gyrus in aMCI. These findings demonstrated specific longitudinal spatial patterns of cortical atrophy in aMCI and NC. The higher atrophy rate in aMCI might be responsible for the accelerated functional decline in the aMCI progression process.

  20. Anosognosia in mild cognitive impairment: Relationship to activation of cortical midline structures involved in self-appraisal

    PubMed Central

    Ries, Michele L.; Jabbar, Britta M.; Schmitz, Taylor W.; Trivedi, Mehul A.; Gleason, Carey E.; Carlsson, Cynthia M.; Rowley, Howard A.; Asthana, Sanjay; Johnson, Sterling C.

    2009-01-01

    Awareness of cognitive dysfunction shown by individuals with Mild Cognitive Impairment (MCI), a condition conferring risk for Alzheimer’s disease (AD), is variable. Anosognosia, or unawareness of loss of function, is beginning to be recognized as an important clinical symptom of MCI. However, little is known about the brain substrates underlying this symptom. We hypothesized that MCI participants’ activation of cortical midline structures (CMS) during self-appraisal would covary with level of insight into cognitive difficulties (indexed by a discrepancy score between patient and informant ratings of cognitive decline in each MCI participant). To address this hypothesis, we first compared 16 MCI participants and 16 age-matched controls, examining brain regions showing conjoint or differential BOLD response during self-appraisal. Second, we used regression to investigate the relationship between awareness of deficit in MCI and BOLD activity during self-appraisal, controlling for extent of memory impairment. Between-group comparisons indicated that MCI participants show subtly attenuated CMS activity during self-appraisal. Regression analysis revealed a highly-significant relationship between BOLD response during self-appraisal and self-awareness of deficit in MCI. This finding highlights the level of anosognosia in MCI as an important predictor of response to self-appraisal in cortical midline structures, brain regions vulnerable to changes in early AD. PMID:17445294

  1. The Limited Capacity of Sleep-Dependent Memory Consolidation.

    PubMed

    Feld, Gordon B; Weis, Patrick P; Born, Jan

    2016-01-01

    Sleep supports memory consolidation. However, the conceptually important influence of the amount of items encoded in a memory test on this effect has not been investigated. In two experiments, participants (n = 101) learned lists of word-pairs varying in length (40, 160, 320 word-pairs) in the evening before a night of sleep (sleep group) or of sleep deprivation (wake group). After 36 h (including a night allowing recovery sleep) retrieval was tested. Compared with wakefulness, post-learning sleep enhanced retention for the 160 word-pair condition (p < 0.01), importantly, this effect completely vanished for the 320 word-pair condition. This result indicates a limited capacity for sleep-dependent memory consolidation, which is consistent with an active system consolidation view on sleep's role for memory, if it is complemented by processes of active forgetting and/or gist abstraction. Whereas the absolute benefit from sleep should have increased with increasing amounts of successfully encoded items, if sleep only passively protected memory from interference. Moreover, the finding that retention performance was significantly diminished for the 320 word-pair condition compared to the 160 word-pair condition in the sleep group, makes it tempting to speculate that with increasing loads of information encoded during wakefulness, sleep might favor processes of forgetting over consolidation. PMID:27679589

  2. The Limited Capacity of Sleep-Dependent Memory Consolidation

    PubMed Central

    Feld, Gordon B.; Weis, Patrick P.; Born, Jan

    2016-01-01

    Sleep supports memory consolidation. However, the conceptually important influence of the amount of items encoded in a memory test on this effect has not been investigated. In two experiments, participants (n = 101) learned lists of word-pairs varying in length (40, 160, 320 word-pairs) in the evening before a night of sleep (sleep group) or of sleep deprivation (wake group). After 36 h (including a night allowing recovery sleep) retrieval was tested. Compared with wakefulness, post-learning sleep enhanced retention for the 160 word-pair condition (p < 0.01), importantly, this effect completely vanished for the 320 word-pair condition. This result indicates a limited capacity for sleep-dependent memory consolidation, which is consistent with an active system consolidation view on sleep’s role for memory, if it is complemented by processes of active forgetting and/or gist abstraction. Whereas the absolute benefit from sleep should have increased with increasing amounts of successfully encoded items, if sleep only passively protected memory from interference. Moreover, the finding that retention performance was significantly diminished for the 320 word-pair condition compared to the 160 word-pair condition in the sleep group, makes it tempting to speculate that with increasing loads of information encoded during wakefulness, sleep might favor processes of forgetting over consolidation. PMID:27679589

  3. The Limited Capacity of Sleep-Dependent Memory Consolidation

    PubMed Central

    Feld, Gordon B.; Weis, Patrick P.; Born, Jan

    2016-01-01

    Sleep supports memory consolidation. However, the conceptually important influence of the amount of items encoded in a memory test on this effect has not been investigated. In two experiments, participants (n = 101) learned lists of word-pairs varying in length (40, 160, 320 word-pairs) in the evening before a night of sleep (sleep group) or of sleep deprivation (wake group). After 36 h (including a night allowing recovery sleep) retrieval was tested. Compared with wakefulness, post-learning sleep enhanced retention for the 160 word-pair condition (p < 0.01), importantly, this effect completely vanished for the 320 word-pair condition. This result indicates a limited capacity for sleep-dependent memory consolidation, which is consistent with an active system consolidation view on sleep’s role for memory, if it is complemented by processes of active forgetting and/or gist abstraction. Whereas the absolute benefit from sleep should have increased with increasing amounts of successfully encoded items, if sleep only passively protected memory from interference. Moreover, the finding that retention performance was significantly diminished for the 320 word-pair condition compared to the 160 word-pair condition in the sleep group, makes it tempting to speculate that with increasing loads of information encoded during wakefulness, sleep might favor processes of forgetting over consolidation.

  4. The functional anatomy of sleep-dependent visual skill learning.

    PubMed

    Walker, Matthew P; Stickgold, Robert; Jolesz, Ferenc A; Yoo, Seung-Schik

    2005-11-01

    Learning of procedural skills develops gradually, with performance improving significantly with practice. But improvement on some tasks, including a visual texture discrimination task, continues in the absence of further practice, expressly during periods of sleep and not across equivalent waking episodes. Here we report that the brain activation revealed significantly different patterns of performance-related functional activity following a night of sleep relative to 1 h post-training without intervening sleep. When task activation patterns after a night of sleep were compared with activation patterns without intervening sleep (1 h post-training), significant regions of increased signal intensity were observed in the primary visual cortex, the occipital temporal junction, the medial temporal lobe and the inferior parietal lobe. In contrast, a region of decreased signal intensity was found in the right temporal pole. Corroborating these condition differences, correlations between behavioural performance and brain activation revealed significantly different patterns of performance-related functional activity following a night of sleep relative to those without intervening sleep. Together, these data provide evidence of overnight bi-directional changes in functional anatomy, differences that may form the neural basis of sleep-dependent learning expressed on this task.

  5. Impaired cortical neurogenesis in plexin-B1 and -B2 double deletion mutant.

    PubMed

    Daviaud, Nicolas; Chen, Karen; Huang, Yong; Friedel, Roland H; Zou, Hongyan

    2016-08-01

    Mammalian cortical expansion is tightly controlled by fine-tuning of proliferation and differentiation of neural progenitors in a region-specific manner. How extrinsic cues interface with cell-intrinsic programs to balance proliferative versus neurogenic decisions remains an unsolved question. We examined the function of Semaphorin receptors Plexin-B1 and -B2 in corticogenesis by generating double mutants, whereby Plexin-B2 was conditionally ablated in the developing brain in a Plexin-B1 null mutant background. Absence of both Plexin-Bs resulted in cortical thinning, particularly in the caudomedial cortex. Plexin-B1/B2 double, but not single, mutants exhibited a reduced neural progenitor pool, attributable to decreased proliferation and an altered division mode favoring cell cycle exit. This resulted in deficient production of neurons throughout the neurogenic period, proportionally affecting all cortical laminae. Consistent with the in vivo data, cultured neural progenitors lacking both Plexin-B1 and -B2 displayed decreased proliferative capacity and increased spontaneous differentiation. Our study therefore defines a novel function of Plexin-B1 and -B2 in transmitting extrinsic signals to maintain proliferative and undifferentiated states of neural progenitors. As single mutants displayed no apparent cortical defects, we conclude that Plexin-B1 and -B2 play redundant or compensatory roles during forebrain development to ensure proper neuronal production and neocortical expansion. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 882-899, 2016.

  6. Impaired Cognition in Rats with Cortical Dysplasia: Additional Impact of Early-Life Seizures

    ERIC Educational Resources Information Center

    Lucas, Marcella M.; Lenck-Santini, Pierre-Pascal; Holmes, Gregory L.; Scott, Rod C.

    2011-01-01

    One of the most common and serious co-morbidities in patients with epilepsy is cognitive impairment. While early-life seizures are considered a major cause for cognitive impairment, it is not known whether it is the seizures, the underlying neurological substrate or a combination that has the largest impact on eventual learning and memory. Teasing…

  7. Impaired learning-dependent cortical plasticity in Huntington's disease transgenic mice.

    PubMed

    Cybulska-Klosowicz, Anita; Mazarakis, Nektarios K; Van Dellen, Anton; Blakemore, Colin; Hannan, Anthony J; Kossut, Malgorzata

    2004-12-01

    Huntington's disease (HD) is a genetically transmitted neurodegenerative disorder. The neuropathology in HD is a selective neuronal cell death in several brain regions including cortex. Although changes in synaptic plasticity were shown within the hippocampus and striatum of HD transgenic mice, there are no studies considering neocortical synaptic plasticity abnormalities in HD. We examined the impact of the HD transgene upon learning-dependent plasticity of cortical representational maps. The effect of associative learning, in which stimulation of a row of vibrissae was paired with appetitive stimulus, upon functional representations of vibrissae in the barrel cortex, was investigated with 2-deoxyglucose brain mapping in presymptomatic R6/1 HD mice. In wild-type mice, cortical representation of the row of vibrissae involved in the training was expanded, while in HD mice the representation of this row was not expanded. The results suggest that presymptomatic R6/1 HD transgenic mice show deficits in plasticity of primary somatosensory cortex.

  8. Does vestibular stimulation activate thalamocortical mechanisms that reintegrate impaired cortical regions?

    PubMed

    Schiff, N D; Pulver, M

    1999-02-22

    Caloric stimulation induced a transient reversal of multimodal hemispatial cognitive deficits in an 81-year-old woman with an acute left cerebral hemisphere stroke. The patient had unawareness of her right hand (asomatognosia), right-sided visual unawareness (hemineglect), aphasia and right-sided weakness (hemiplegia) prior to the stimulation. Transient improvements in impaired sensory, motor, linguistic and cognitive function developed within 30 s following application of the caloric stimulus and onset of horizontal nystagmus. The effect persisted for 3 min and ceased completely after 5 min. While several recent reports have described the capacity of caloric stimulation to transiently improve or reverse a wide range of attentional, cognitive and motor impairments, most examples are in right-hemisphere-damaged patients with long-standing brain injury. Typically, patients have been tested several months or years after the onset of the deficit. A possible mechanism for the temporary reintegration of multiple cognitive functions in this patient is discussed. PMID:10097398

  9. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL.

  10. Memory suppression trades prolonged fear and sleep-dependent fear plasticity for the avoidance of current fear

    NASA Astrophysics Data System (ADS)

    Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu

    2013-07-01

    Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology.

  11. Sensitivity of cortical auditory evoked potential detection for hearing-impaired infants in response to short speech sounds

    PubMed Central

    Van Dun, Bram; Carter, Lyndal; Dillon, Harvey

    2012-01-01

    Cortical auditory evoked potentials (CAEPs) are an emerging tool for hearing aid fitting evaluation in young children who cannot provide reliable behavioral feedback. It is therefore useful to determine the relationship between the sensation level of speech sounds and the detection sensitivity of CAEPs, which is the ratio between the number of detections and the sum of detections and non-detections. Twenty-five sensorineurally hearing impaired infants with an age range of 8 to 30 months were tested once, 18 aided and 7 unaided. First, behavioral thresholds of speech stimuli /m/, /g/, and /t/ were determined using visual reinforcement orientation audiometry. Afterwards, the same speech stimuli were presented at 55, 65, and 75 dB sound pressure level, and CAEPs were recorded. An automatic statistical detection paradigm was used for CAEP detection. For sensation levels above 0, 10, and 20 dB respectively, detection sensitivities were equal to 72±10, 75±10, and 78±12%. In 79% of the cases, automatic detection P-values became smaller when the sensation level was increased by 10 dB. The results of this study suggest that the presence or absence of CAEPs can provide some indication of the audibility of a speech sound for infants with sensorineural hearing loss. The detection of a CAEP might provide confidence, to a degree commensurate with the detection probability, that the infant is detecting that sound at the level presented. When testing infants where the audibility of speech sounds has not been established behaviorally, the lack of a cortical response indicates the possibility, but by no means a certainty, that the sensation level is 10 dB or less. PMID:26557328

  12. Impaired long-term potentiation-like cortical plasticity in presymptomatic genetic frontotemporal dementia.

    PubMed

    Benussi, Alberto; Cosseddu, Maura; Filareto, Ilaria; Dell'Era, Valentina; Archetti, Silvana; Sofia Cotelli, Maria; Micheli, Anna; Padovani, Alessandro; Borroni, Barbara

    2016-09-01

    Neurophysiological biomarkers were assessed using a transcranial magnetic stimulation multiparadigm approach in 13 presymptomatic (n = 13 Granulin) and 14 symptomatic (n = 11 Granulin, n = 3 C9orf72) subjects with a pathogenic mutation for frontotemporal dementia (FTD). Intracortical facilitation and long-term potentiation-like plasticity were impaired in presymptomatic carriers, compared to healthy controls, more than 15 years before expected symptom onset. In symptomatic carriers, a decrease in short-interval intracortical inhibition, compared to presymptomatic carriers, was found. In conclusion, these biomarkers could provide the footprints of specific physiopathological processes in the development of this disease and possibly support the diagnosis of autosomal-dominant FTD. Ann Neurol 2016;80:472-476. PMID:27438089

  13. Mild cognitive impairment, poor episodic memory, and late-life depression are associated with cerebral cortical thinning and increased white matter hyperintensities

    PubMed Central

    Fujishima, Motonobu; Maikusa, Norihide; Nakamura, Kei; Nakatsuka, Masahiro; Matsuda, Hiroshi; Meguro, Kenichi

    2014-01-01

    In various independent studies to date, cerebral cortical thickness and white matter hyperintensity (WMH) volume have been associated with episodic memory, depression, and mild cognitive impairment (MCI). The aim of this study was to uncover variations in cortical thickness and WMH volume in association with episodic memory, depressive state, and the presence of MCI simultaneously in a single study population. The participants were 186 individuals with MCI (clinical dementia rating [CDR] of 0.5) and 136 healthy elderly controls (HCs; CDR of 0) drawn from two community-based cohort studies in northern Japan. We computed cerebral cortical thickness and WMH volume by using MR scans and statistically analyzed differences in these indices between HCs and MCI participants. We also assessed the associations of these indices with memory performance and depressive state in participants with MCI. Compared with HCs, MCI participants exhibited thinner cortices in the temporal and inferior parietal lobes and greater WMH volumes in the corona radiata and semioval center. In MCI participants, poor episodic memory was associated with thinner cortices in the left entorhinal region and increased WMH volume in the posterior periventricular regions. Compared with non-depressed MCI participants, depressed MCI participants showed reduced cortical thickness in the anterior medial temporal lobe and gyrus adjacent to the amygdala bilaterally, as well as greater WMH volume as a percentage of the total intracranial volume (WMHr). A higher WMHr was associated with cortical thinning in the frontal, temporal, and parietal regions in MCI participants. These results demonstrate that episodic memory and depression are associated with both cortical thickness and WMH volume in MCI participants. Additional longitudinal studies are needed to clarify the dynamic associations and interactions among these indices. PMID:25426066

  14. Cortical Amyloid Burden Differences Across Empirically-Derived Mild Cognitive Impairment Subtypes and Interaction with APOE ε4 Genotype

    PubMed Central

    Bangen, Katherine J.; Clark, Alexandra L.; Werhane, Madeline; Edmonds, Emily C.; Nation, Daniel A.; Evangelista, Nicole; Libon, David J.; Bondi, Mark W.; Delano-Wood, Lisa

    2016-01-01

    We examined cortical amyloid-β (Aβ) levels and interactions with apolipoprotein (APOE) ε4 genotype status across empirically-derived mild cognitive impairment (MCI) subgroups and cognitively normal older adults. Participants were 583 ADNI participants (444 MCI, 139 normal controls [NC]) with baseline florbetapir positron emission tomography (PET) amyloid imaging and neuropsychological testing. Of those with ADNI-defined MCI, a previous cluster analysis [1] classified 51% (n = 227) of the current sample as amnestic MCI, 8% (n = 37) as dysexecutive/mixed MCI, and 41% (n = 180) as cluster-derived normal (cognitively normal). Results demonstrated that the dysexecutive/mixed and amnestic MCI groups showed significantly greater levels of amyloid relative to the cluster-derived normal and NC groups who did not differ from each other. Additionally, 78% of the dysexecutive/mixed, 63% of the amnestic MCI, 42% of the cluster-derived normal, and 34% of the NC group exceeded the amyloid positivity threshold. Finally, a group by APOE genotype interaction demonstrated that APOE ε4 carriers within the amnestic MCI, cluster-derived normal, and NC groups showed significantly greater amyloid accumulation compared to non-carriers of their respective group. Such an interaction was not revealed within the dysexecutive/mixed MCI group which was characterized by both greater cognitive impairment and amyloid accumulation compared to the other participant groups. Our results from the ADNI cohort show considerable heterogeneity in Aβ across all groups studied, even within a group of robust NC participants. Findings suggest that conventional criteria for MCI may be susceptible to false positive diagnostic errors, and that onset of Aβ accumulation may occur earlier in APOE ε4 carriers compared to non-carriers. PMID:27031472

  15. Cortical Amyloid Burden Differences Across Empirically-Derived Mild Cognitive Impairment Subtypes and Interaction with APOE ɛ4 Genotype.

    PubMed

    Bangen, Katherine J; Clark, Alexandra L; Werhane, Madeline; Edmonds, Emily C; Nation, Daniel A; Evangelista, Nicole; Libon, David J; Bondi, Mark W; Delano-Wood, Lisa

    2016-03-29

    We examined cortical amyloid-β (Aβ) levels and interactions with apolipoprotein (APOE) ɛ4 genotype status across empirically-derived mild cognitive impairment (MCI) subgroups and cognitively normal older adults. Participants were 583 ADNI participants (444 MCI, 139 normal controls [NC]) with baseline florbetapir positron emission tomography (PET) amyloid imaging and neuropsychological testing. Of those with ADNI-defined MCI, a previous cluster analysis [1] classified 51% (n = 227) of the current sample as amnestic MCI, 8% (n = 37) as dysexecutive/mixed MCI, and 41% (n = 180) as cluster-derived normal (cognitively normal). Results demonstrated that the dysexecutive/mixed and amnestic MCI groups showed significantly greater levels of amyloid relative to the cluster-derived normal and NC groups who did not differ from each other. Additionally, 78% of the dysexecutive/mixed, 63% of the amnestic MCI, 42% of the cluster-derived normal, and 34% of the NC group exceeded the amyloid positivity threshold. Finally, a group by APOE genotype interaction demonstrated that APOE ɛ4 carriers within the amnestic MCI, cluster-derived normal, and NC groups showed significantly greater amyloid accumulation compared to non-carriers of their respective group. Such an interaction was not revealed within the dysexecutive/mixed MCI group which was characterized by both greater cognitive impairment and amyloid accumulation compared to the other participant groups. Our results from the ADNI cohort show considerable heterogeneity in Aβ across all groups studied, even within a group of robust NC participants. Findings suggest that conventional criteria for MCI may be susceptible to false positive diagnostic errors, and that onset of Aβ accumulation may occur earlier in APOE ɛ4 carriers compared to non-carriers. PMID:27031472

  16. Olfactory insights into sleep-dependent learning and memory.

    PubMed

    Shanahan, Laura K; Gottfried, Jay A

    2014-01-01

    Sleep is pervasive throughout most of the animal kingdom-even jellyfish and honeybees do it. Although the precise function of sleep remains elusive, research increasingly suggests that sleep plays a key role in memory consolidation. Newly formed memories are highly labile and susceptible to interference, and the sleep period offers an optimal window in which memories can be strengthened or modified. Interestingly, a small but growing research area has begun to explore the ability of odors to modulate memories during sleep. The unique anatomical organization of the olfactory system, including its intimate overlap with limbic systems mediating emotion and memory, and the lack of a requisite thalamic intermediary between the nasal periphery and olfactory cortex, suggests that odors may have privileged access to the brain during sleep. Indeed, it has become clear that the long-held assumption that odors have no impact on the sleeping brain is no longer tenable. Here, we summarize recent studies in both animal and human models showing that odor stimuli experienced in the waking state modulate olfactory cortical responses in sleep-like states, that delivery of odor contextual cues during sleep can enhance declarative memory and extinguish fear memory, and that olfactory associative learning can even be achieved entirely within sleep. Data reviewed here spotlight the emergence of a new research area that should hold far-reaching implications for future neuroscientific investigations of sleep, learning and memory, and olfactory system function. PMID:24767488

  17. Decreased prefrontal cortical sensitivity to monetary reward is associated with impaired motivation and self-control in cocaine addiction

    PubMed Central

    Goldstein, Rita Z.; Alia-Klein, Nelly; Tomasi, Dardo; Zhang, Lei; Cottone, Lisa A.; Maloney, Thomas; Telang, Frank; Caparelli, Elisabeth C.; Chang, Linda; Ernst, Thomas; Samaras, Dimitris; Squires, Nancy K.; Volkow, Nora D.

    2008-01-01

    Objective To examine the brain’s sensitivity to monetary rewards of different magnitudes in cocaine abusers and to study its association with motivation and self-control. Method Sixteen cocaine abusers and 13 matched healthy comparison subjects performed a forced-choice task under three monetary value conditions while brain activation was measured with functional magnetic resonance imaging. Objective measures of state motivation were assessed by reaction time and accuracy, and subjective measures were assessed by self-reports of task engagement. Measures of trait motivation and self-control were assessed with the Multidimensional Personality Questionnaire. Results The cocaine abusers demonstrated an overall reduced regional brain responsivity to differences between the monetary value conditions. Also, in comparison subjects but not in cocaine abusers reward-induced improvements in performance were associated with self-reports of task engagement, and money-induced activations in the lateral prefrontal cortex were associated with activations in the orbitofrontal cortex. For cocaine subjects, prefrontal cortex sensitivity to money was instead associated with motivation and self-control. Conclusions These findings suggest that in cocaine addiction (1) activation of the corticolimbic reward circuit to gradations of money is altered; (2) lack of a correlation between objective and subjective measures of state motivation may be indicative of disrupted perception of motivational drive, which could contribute to impairments in self-control; and (3) the lateral prefrontal cortex modulates trait motivation and deficits in self-control, and a possible underlying mechanism may encompass a breakdown in prefrontal-orbitofrontal cortical communication. PMID:17202543

  18. Cortical Visual Impairment

    MedlinePlus

    ... work? The eyes take a picture of an object. That message is sent to the brain by ... other sensory messages (hearing, proprioceptive (sensing where the object is in relation to the body), etc). The ...

  19. The magnitude of the somatosensory cortical activity is related to the mobility and strength impairments seen in children with cerebral palsy

    PubMed Central

    Heinrichs-Graham, Elizabeth; Becker, Katherine M.; Wilson, Tony W.

    2015-01-01

    The noted disruption of thalamocortical connections and abnormalities in tactile sensory function has resulted in a new definition of cerebral palsy (CP) that recognizes the sensorimotor integration process as central to the motor impairments seen in these children. Despite this updated definition, the connection between a child's motor impairments and somatosensory processing remains almost entirely unknown. In this investigation, we explored the relationship between the magnitude of neural activity within the somatosensory cortices, the strength of the ankle plantarflexors, and the gait spatiotemporal kinematics of a group of children with CP and a typically developing matched cohort. Our results revealed that the magnitude of somatosensory cortical activity in children with CP had a strong positive relationship with the ankle strength, step length, and walking speed. These results suggest that stronger activity within the somatosensory cortices in response to foot somatosensations was related to enhanced ankle plantarflexor strength and improved mobility in the children with CP. These results provide further support for the notion that children with CP exhibit, not only musculoskeletal deficits, but also somatosensory deficits that potentially contribute to their overall functional mobility and strength limitations. PMID:25717160

  20. The magnitude of the somatosensory cortical activity is related to the mobility and strength impairments seen in children with cerebral palsy.

    PubMed

    Kurz, Max J; Heinrichs-Graham, Elizabeth; Becker, Katherine M; Wilson, Tony W

    2015-05-01

    The noted disruption of thalamocortical connections and abnormalities in tactile sensory function has resulted in a new definition of cerebral palsy (CP) that recognizes the sensorimotor integration process as central to the motor impairments seen in these children. Despite this updated definition, the connection between a child's motor impairments and somatosensory processing remains almost entirely unknown. In this investigation, we explored the relationship between the magnitude of neural activity within the somatosensory cortices, the strength of the ankle plantarflexors, and the gait spatiotemporal kinematics of a group of children with CP and a typically developing matched cohort. Our results revealed that the magnitude of somatosensory cortical activity in children with CP had a strong positive relationship with the ankle strength, step length, and walking speed. These results suggest that stronger activity within the somatosensory cortices in response to foot somatosensations was related to enhanced ankle plantarflexor strength and improved mobility in the children with CP. These results provide further support for the notion that children with CP exhibit, not only musculoskeletal deficits, but also somatosensory deficits that potentially contribute to their overall functional mobility and strength limitations.

  1. Higher Education is Not Associated with Greater Cortical Thickness in Brain Areas Related to Literacy or Intelligence in Normal Aging or Mild Cognitive Impairment

    PubMed Central

    Pillai, Jagan A.; McEvoy, Linda K.; Hagler, Donald J.; Holland, Dominic; Dale, Anders M.; Salmon, David P.; Galasko, Douglas; Fennema-Notestine, Christine

    2012-01-01

    Education may reduce risk of dementia through passive reserve, by increasing neural substrate. We tested the hypotheses that education is associated with thicker cortex and reduced rates of atrophy in brain regions related to literacy and intellectual ability. Healthy older adults and those with mild cognitive impairment were categorized into High (≥18 yrs) and Low (≤13 yrs) education groups. Higher education was associated with thinner cortices in several areas, but one-year atrophy rates in these areas did not differ by education group. These results do not support a passive reserve model in which early life education protects against dementia by increasing cortical thickness. Connectivity and synaptic efficiency, or other lifestyle factors may more directly reflect cognitive reserve. PMID:22905705

  2. It's practice, with sleep, that makes perfect: implications of sleep-dependent learning and plasticity for skill performance.

    PubMed

    Walker, Matthew P; Stickgold, Robert

    2005-04-01

    Although there is no consensus regarding the functions of sleep, one exciting hypothesis is that sleep contributes importantly to learning and memory. Over the last decade, several studies have provided substantive evidence supporting the role of sleep in memory processing. This article focuses on sleep-dependent learning and brain plasticity in humans, specifically in the development of skill performance that is the foundation of many sports actions. The different forms and stages of human memory are discussed, then evidence of sleep-dependent skill learning and associated sleep-dependent brain plasticity is described. In conclusion, a consideration of the fundamental importance of sleep in real-life skill learning is provided.

  3. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    PubMed

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD. PMID:27103531

  4. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    PubMed

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD.

  5. Sleep as a window into early neural development: Shifts in sleep-dependent learning effects across early childhood

    PubMed Central

    Gómez, Rebecca L.; Edgin, Jamie O.

    2015-01-01

    Sleep is an important physiological state for the consolidation and generalization of new learning in children and adults. We review the literature on sleep-dependent memory consolidation and generalization in infants and preschool children and place the findings in the context of the development of the neural systems underlying memory (hippocampus and its connections to cortex). Based on the extended trajectory of hippocampal development, transitions in the nature of sleep-dependent learning are expected. The studies reviewed here show shifts in the nature of sleep-dependent learning across early childhood, with sleep facilitating generalization in infants but enhancing precise memory after 18–24 months of age. Future studies on sleep-dependent learning in infants and young children must take these transitions in early brain development into account. PMID:26557155

  6. Abnormal Changes of Brain Cortical Anatomy and the Association with Plasma MicroRNA107 Level in Amnestic Mild Cognitive Impairment

    PubMed Central

    Wang, Tao; Shi, Feng; Jin, Yan; Jiang, Weixiong; Shen, Dinggang; Xiao, Shifu

    2016-01-01

    MicroRNA107 (Mir107) has been thought to relate to the brain structure phenotype of Alzheimer’s disease. In this study, we evaluated the cortical anatomy in amnestic mild cognitive impairment (aMCI) and the relation between cortical anatomy and plasma levels of Mir107 and beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Twenty aMCI (20 aMCI) and 24 cognitively normal control (NC) subjects were recruited, and T1-weighted MR images were acquired. Cortical anatomical measurements, including cortical thickness (CT), surface area (SA), and local gyrification index (LGI), were assessed. Quantitative RT-PCR was used to examine plasma expression of Mir107, BACE1 mRNA. Thinner cortex was found in aMCI in areas associated with episodic memory and language, but with thicker cortex in other areas. SA decreased in aMCI in the areas associated with working memory and emotion. LGI showed a significant reduction in aMCI in the areas involved in language function. Changes in Mir107 and BACE1 messenger RNA plasma expression were correlated with changes in CT and SA. We found alterations in key left brain regions associated with memory, language, and emotion in aMCI that were significantly correlated with plasma expression of Mir107 and BACE1 mRNA. This combination study of brain anatomical alterations and gene information may shed lights on our understanding of the pathology of AD. Clinical Trial Registration: http://www.ClinicalTrials.gov, identifier NCT01819545. PMID:27242521

  7. Practice with sleep makes perfect: sleep-dependent motor skill learning.

    PubMed

    Walker, Matthew P; Brakefield, Tiffany; Morgan, Alexandra; Hobson, J Allan; Stickgold, Robert

    2002-07-01

    Improvement in motor skill performance is known to continue for at least 24 hr following training, yet the relative contributions of time spent awake and asleep are unknown. Here we provide evidence that a night of sleep results in a 20% increase in motor speed without loss of accuracy, while an equivalent period of time during wake provides no significant benefit. Furthermore, a significant correlation exists between the improved performance overnight and the amount of stage 2 NREM sleep, particularly late in the night. This finding of sleep-dependent motor skill improvement may have important implications for the efficient learning of all skilled actions in humans.

  8. Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: evidence for dysfunctional network activity in frontal-posterior cortices.

    PubMed

    Sun, Limin; Grützner, Christine; Bölte, Sven; Wibral, Michael; Tozman, Tahmine; Schlitt, Sabine; Poustka, Fritz; Singer, Wolf; Freitag, Christine M; Uhlhaas, Peter J

    2012-07-11

    Current theories of the pathophysiology of autism spectrum disorders (ASD) have focused on abnormal temporal coordination of neural activity in cortical circuits as a core impairment of the disorder. In the current study, we examined the possibility that gamma-band activity may be crucially involved in aberrant brain functioning in ASD. Magneto-encephalographic (MEG) data were recorded from 13 adult human participants with ASD and 16 controls during the presentation of Mooney faces. MEG data were analyzed in the 25-150 Hz frequency range and a beamforming approach was used to identify the sources of spectral power. Participants with ASD showed elevated reaction times and reduced detection rates during the perception of upright Mooney faces, while responses to inverted stimuli were in the normal range. Impaired perceptual organization in the ASD group was accompanied by a reduction in both the amplitude and phase locking of gamma-band activity. A beamforming approach identified distinct networks during perceptual organization in controls and participants with ASD. In controls, perceptual organization of Mooney faces involved increased 60-120 Hz activity in a frontoparietal network, while in the ASD group stronger activation was found in visual regions. These findings highlight the contribution of impaired gamma-band activity toward complex visual processing in ASD, suggesting atypical modulation of high-frequency power in frontoposterior networks.

  9. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

    PubMed Central

    Gulberti, A.; Moll, C.K.E.; Hamel, W.; Buhmann, C.; Koeppen, J.A.; Boelmans, K.; Zittel, S.; Gerloff, C.; Westphal, M.; Schneider, T.R.; Engel, A.K.

    2015-01-01

    Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD) patients, rhythmic auditory stimulation (RAS) induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS) and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing. PMID:26594626

  10. Sleep-Dependent Learning and Practice-Dependent Deterioration in an Orientation Discrimination Task

    PubMed Central

    Mednick, Sara C.; Drummond, Sean P.A.; Boynton, Geoffrey M.; Awh, Ed; Serences, John

    2009-01-01

    Learning new information requires practice. The degree of learning can be influenced by the amount of practice and whether subjects sleep between sessions. Over-practice, however, can lead to performance deterioration. The interaction between practice-dependent deterioration and sleep-dependent learning needs more study. We examine whether the amount of practice before sleep alters learning, and whether prior sleep protects against deterioration. Two groups (N = 33) were tested three times across two days on an orientation discrimination task. The High practice group was tested twice before a night of sleep and once after, at 9 a.m., 7 p.m., and 9 a.m. The Low practice group was tested once before a night of sleep and twice after, at 7 p.m., 9 a.m., and 7 p.m. Overall, both groups showed (1) deterioration with repeated, within-day testing, (2) performance improvement only after a night of sleep, (3) similar amounts of sleep-dependent learning and practice-dependent deterioration. In summary, we found that sleep resets visual contrast thresholds to a lower baseline (i.e., produces learning), but does not prevent over-practice deterioration effects. Likewise, over-practice deterioration does not influence the magnitude of overnight learning on this task. PMID:18410166

  11. Rescue of Impaired mGluR5-Driven Endocannabinoid Signaling Restores Prefrontal Cortical Output to Inhibit Pain in Arthritic Rats

    PubMed Central

    Kiritoshi, Takaki; Ji, Guangchen

    2016-01-01

    The medial prefrontal cortex (mPFC) serves executive functions that are impaired in neuropsychiatric disorders and pain. Underlying mechanisms remain to be determined. Here we advance the novel concept that metabotropic glutamate receptor 5 (mGluR5) fails to engage endocannabinoid (2-AG) signaling to overcome abnormal synaptic inhibition in pain, but restoring endocannabinoid signaling allows mGluR5 to increase mPFC output hence inhibit pain behaviors and mitigate cognitive deficits. Whole-cell patch-clamp recordings were made from layer V pyramidal cells in the infralimbic mPFC in rat brain slices. Electrical and optogenetic stimulations were used to analyze amygdala-driven mPFC activity. A selective mGluR5 activator (VU0360172) increased pyramidal output through an endocannabinoid-dependent mechanism because intracellular inhibition of the major 2-AG synthesizing enzyme diacylglycerol lipase or blockade of CB1 receptors abolished the facilitatory effect of VU0360172. In an arthritis pain model mGluR5 activation failed to overcome abnormal synaptic inhibition and increase pyramidal output. mGluR5 function was rescued by restoring 2-AG-CB1 signaling with a CB1 agonist (ACEA) or inhibitors of postsynaptic 2-AG hydrolyzing enzyme ABHD6 (intracellular WWL70) and monoacylglycerol lipase MGL (JZL184) or by blocking GABAergic inhibition with intracellular picrotoxin. CB1-mediated depolarization-induced suppression of synaptic inhibition (DSI) was also impaired in the pain model but could be restored by coapplication of VU0360172 and ACEA. Stereotaxic coadministration of VU0360172 and ACEA into the infralimbic, but not anterior cingulate, cortex mitigated decision-making deficits and pain behaviors of arthritic animals. The results suggest that rescue of impaired endocannabinoid-dependent mGluR5 function in the mPFC can restore mPFC output and cognitive functions and inhibit pain. SIGNIFICANCE STATEMENT Dysfunctions in prefrontal cortical interactions with subcortical

  12. Immature Cortical Responses to Auditory Stimuli in Specific Language Impairment: Evidence from ERPS to Rapid Tone Sequences

    ERIC Educational Resources Information Center

    Bishop, D. V. M.; McArthur, G. M.

    2004-01-01

    Event-related potentials (ERPs) to tone pairs and single tones were measured for 16 participants with specific language impairment (SLI) and 16 age-matched controls aged from 10 to 19 years. The tone pairs were separated by an inter-stimulus interval (ISI) of 20, 50 or 150 ms. The intraclass correlation (ICC) was computed for each participant…

  13. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development.

    PubMed

    Ma, Lei; Yang, Feng; Zhao, Rui; Li, Li; Kang, Xiaogang; Xiao, Lan; Jiang, Wen

    2015-10-01

    Developmental delay, cognitive impairment, and refractory epilepsy are the most frequent consequences found in patients suffering from malformations of cortical development (MCD). However, therapeutic options for these psychiatric and neurological comorbidities are currently limited. The development of white matter undergoes dramatic changes during postnatal brain maturation, thus myelination deficits resulting from MCD contribute to its comorbid diseases. Consequently, drugs specifically targeting white matter are a promising therapeutic option for the treatment of MCD. We have used an in utero irradiation rat model of MCD to investigate the effects of postnatal quetiapine treatment on brain myelination as well as neuropsychological and cognitive performances and seizure susceptibility. Fatally irradiated rats were treated with quetiapine (10mg/kg, i.p.) or saline once daily from postnatal day 0 (P0) to P30. We found that postnatal administration of quetiapine attenuated object recognition memory impairment and improved long-term spatial memory in the irradiated rats. Quetiapine treatment also reduced the susceptibility and severity of pentylenetetrazol-induced seizures. Importantly, quetiapine treatment resulted in an inhibition of irradiation-induced myelin breakdown in the cerebral cortex and corpus callosum. These findings suggest that quetiapine may have beneficial, postnatal effects in the irradiated rats, strongly suggesting that improving MCD-derived white matter pathology is a possible underlying mechanism. Collectively, these results indicate that brain myelination represents an encouraging pharmacological target to improve the prognosis of patients with MCD. PMID:26188240

  14. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development.

    PubMed

    Ma, Lei; Yang, Feng; Zhao, Rui; Li, Li; Kang, Xiaogang; Xiao, Lan; Jiang, Wen

    2015-10-01

    Developmental delay, cognitive impairment, and refractory epilepsy are the most frequent consequences found in patients suffering from malformations of cortical development (MCD). However, therapeutic options for these psychiatric and neurological comorbidities are currently limited. The development of white matter undergoes dramatic changes during postnatal brain maturation, thus myelination deficits resulting from MCD contribute to its comorbid diseases. Consequently, drugs specifically targeting white matter are a promising therapeutic option for the treatment of MCD. We have used an in utero irradiation rat model of MCD to investigate the effects of postnatal quetiapine treatment on brain myelination as well as neuropsychological and cognitive performances and seizure susceptibility. Fatally irradiated rats were treated with quetiapine (10mg/kg, i.p.) or saline once daily from postnatal day 0 (P0) to P30. We found that postnatal administration of quetiapine attenuated object recognition memory impairment and improved long-term spatial memory in the irradiated rats. Quetiapine treatment also reduced the susceptibility and severity of pentylenetetrazol-induced seizures. Importantly, quetiapine treatment resulted in an inhibition of irradiation-induced myelin breakdown in the cerebral cortex and corpus callosum. These findings suggest that quetiapine may have beneficial, postnatal effects in the irradiated rats, strongly suggesting that improving MCD-derived white matter pathology is a possible underlying mechanism. Collectively, these results indicate that brain myelination represents an encouraging pharmacological target to improve the prognosis of patients with MCD.

  15. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation

    PubMed Central

    Mantua, Janna; Mahan, Keenan M.; Henry, Owen S.; Spencer, Rebecca M. C.

    2015-01-01

    Individuals with a history of traumatic brain injury (TBI) often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations). Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-h later, following an interval awake or with overnight sleep. Young adult participants (18–22 years) were assigned to one of four experimental groups: TBI Sleep (n = 14), TBI Wake (n = 12), non-TBI Sleep (n = 15), non-TBI Wake (n = 15). Each TBI participant was >1 year post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-h intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation. PMID:26097451

  16. Does Abnormal Sleep Impair Memory Consolidation in Schizophrenia?

    PubMed Central

    Manoach, Dara S.; Stickgold, Robert

    2009-01-01

    Although disturbed sleep is a prominent feature of schizophrenia, its relation to the pathophysiology, signs, and symptoms of schizophrenia remains poorly understood. Sleep disturbances are well known to impair cognition in healthy individuals. Yet, in spite of its ubiquity in schizophrenia, abnormal sleep has generally been overlooked as a potential contributor to cognitive deficits. Amelioration of cognitive deficits is a current priority of the schizophrenia research community, but most efforts to define, characterize, and quantify cognitive deficits focus on cross-sectional measures. While this approach provides a valid snapshot of function, there is now overwhelming evidence that critical aspects of learning and memory consolidation happen offline, both over time and with sleep. Initial memory encoding is followed by a prolonged period of consolidation, integration, and reorganization, that continues over days or even years. Much of this evolution of memories is mediated by sleep. This article briefly reviews (i) what is known about abnormal sleep in schizophrenia, (ii) sleep-dependent memory consolidation in healthy individuals, (iii) recent findings of impaired sleep-dependent memory consolidation in schizophrenia, and (iv) implications of impaired sleep-dependent memory consolidation in schizophrenia. This literature suggests that abnormal sleep in schizophrenia disrupts attention and impairs sleep-dependent memory consolidation and task automation. We conclude that these sleep-dependent impairments may contribute substantially to generalized cognitive deficits in schizophrenia. Understanding this contribution may open new avenues to ameliorating cognitive dysfunction and thereby improve outcome in schizophrenia. PMID:19750201

  17. Diabetic Goto-Kakizaki rats display pronounced hyperglycemia and longer-lasting cognitive impairments following ischemia induced by cortical compression.

    PubMed

    Moreira, T; Cebers, G; Pickering, C; Ostenson, C-G; Efendic, S; Liljequist, S

    2007-02-23

    Hyperglycemia has been shown to worsen the outcome of brain ischemia in several animal models but few experimental studies have investigated impairments in cognition induced by ischemic brain lesions in hyperglycemic animals. The Goto-Kakizaki (GK) rat naturally develops type 2 diabetes characterized by mild hyperglycemia and insulin resistance. We hypothesized that GK rats would display more severe cerebral damage due to hyperglycemia-aggravated brain injury and, accordingly, more severe cognitive impairments. In this study, recovery of motor and cognitive functions of GK and healthy Wistar rats was examined following extradural compression (EC) of the sensorimotor cortex. For this purpose, tests of vestibulomotor function (beam-walking) and combined tests of motor function and learning (locomotor activity from day (D) 1 to D5, operant lever-pressing from D14 to D25) were used. EC consistently reduced cerebral blood flow in both strains. Anesthesia-challenge and EC resulted in pronounced hyperglycemia in GK but not in Wistar rats. Lower beam-walking scores, increased locomotor activity, impairments in long-term habituation and learning of operant lever-pressing were more pronounced and observed at later time-points in GK rats. Fluoro-Jade, a marker of irreversible neuronal degeneration, revealed consistent degeneration in the ipsilateral cortex, hippocampus and thalamus at 2, 7 and 14 days post-compression. The amount of degeneration in these structures was considerably higher in GK rats. Thus, GK rats exhibited marked hyperglycemia during EC, as well as longer-lasting behavioral deficits and increased neurodegeneration during recovery. The GK rat is thus an attractive model for neuropathologic and cognitive studies after ischemic brain injury in hyperglycemic rats. PMID:17175109

  18. What are the Effects of Severe Visual Impairment on the Cortical Organization and Connectivity of Primary Visual Cortex?

    PubMed Central

    Larsen, DeLaine D.; Luu, Julie D.; Burns, Marie E.; Krubitzer, Leah

    2009-01-01

    The organization and connections of the primary visual area (V1) were examined in mice that lacked functional rods (Gnat−/−), but had normal cone function. Because mice are nocturnal and rely almost exclusively on rod vision for normal behaviors, the Gnat−/− mice used in the present study are considered functionally blind. Our goal was to determine if visual cortex is reorganized in these mice, and to examine the neuroanatomical connections that may subserve reorganization. We found that most neurons in V1 responded to auditory, or some combination of auditory, somatosensory, and/or visual stimulation. We also determined that cortical connections of V1 in Gnat−/− mice were similar to those in normal animals, but even in normal animals, there is sparse input from auditory cortex (AC) to V1. An important observation was that most of the subcortical inputs to V1 were from thalamic nuclei that normally project to V1 such as the lateral geniculate (LG), lateral posterior (LP), and lateral dorsal (LD) nuclei. However, V1 also received some abnormal subcortical inputs from the anterior thalamic nuclei, the ventral posterior, the ventral lateral and the posterior nuclei. While the vision generated from the small number of cones appears to be sufficient to maintain most of the patterns of normal connectivity, the sparse abnormal thalamic inputs to VI, existing inputs from AC, and possibly abnormal inputs to LG and LP may be responsible for generating the alterations in the functional organization of V1. PMID:20057935

  19. Sleep-Dependent Consolidation of Procedural Motor Memories in Children and Adults: The Pre-Sleep Level of Performance Matters

    ERIC Educational Resources Information Center

    Wilhelm, Ines; Metzkow-Meszaros, Maila; Knapp, Susanne; Born, Jan

    2012-01-01

    In striking contrast to adults, in children sleep following training a motor task did not induce the expected (offline) gain in motor skill performance in previous studies. Children normally perform at distinctly lower levels than adults. Moreover, evidence in adults suggests that sleep dependent offline gains in skill essentially depend on the…

  20. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    PubMed

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease. PMID:27161368

  1. Single Dose of a Dopamine Agonist Impairs Reinforcement Learning in Humans: Evidence from Event-related Potentials and Computational Modeling of Striatal-Cortical Function

    PubMed Central

    Santesso, Diane L.; Evins, A. Eden; Frank, Michael J.; Cowman Schetter, Erika M.; Bogdan, Ryan; Pizzagalli, Diego A.

    2011-01-01

    Animal findings have highlighted the modulatory role of phasic dopamine (DA) signaling in incentive learning, particularly in the acquisition of reward-related behavior. In humans, these processes remain largely unknown. In a recent study we demonstrated that a single low dose of a D2/D3 agonist (pramipexole) – assumed to activate DA autoreceptors and thus reduce phasic DA bursts – impaired reward learning in healthy subjects performing a probabilistic reward task. The purpose of the present study was to extend these behavioral findings using event-related potentials and computational modeling. Compared to the placebo group, participants receiving pramipexole showed increased feedback-related negativity to probabilistic rewards and decreased activation in dorsal anterior cingulate regions previously implicated in integrating reinforcement history over time. Additionally, findings of blunted reward learning in participants receiving pramipexole were simulated by reduced presynaptic DA signaling in response to reward in a neural network model of striatal-cortical function. These preliminary findings offer important insights on the role of phasic DA signals on reinforcement learning in humans, and provide initial evidence regarding the spatio-temporal dynamics of brain mechanisms underlying these processes. PMID:18726908

  2. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    PubMed

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.

  3. Time- but not sleep-dependent consolidation promotes the emergence of cross-modal conceptual representations

    PubMed Central

    Hennies, Nora; Lewis, Penelope A.; Durrant, Simon J.; Cousins, James N.; Lambon Ralph, Matthew A.

    2014-01-01

    Conceptual knowledge about objects comprises a diverse set of multi-modal and generalisable information, which allows us to bring meaning to the stimuli in our environment. The formation of conceptual representations requires two key computational challenges: integrating information from different sensory modalities and abstracting statistical regularities across exemplars. Although these processes are thought to be facilitated by offline memory consolidation, investigations into how cross-modal concepts evolve offline, over time, rather than with continuous category exposure are still missing. Here, we aimed to mimic the formation of new conceptual representations by reducing this process to its two key computational challenges and exploring its evolution over an offline retention period. Participants learned to distinguish between members of two abstract categories based on a simple one-dimensional visual rule. Underlying the task was a more complex hidden indicator of category structure, which required the integration of information across two sensory modalities. In two experiments we investigated the impact of time- and sleep-dependent consolidation on category learning. Our results show that offline memory consolidation facilitated cross-modal category learning. Surprisingly, consolidation across wake, but not across sleep showed this beneficial effect. By demonstrating the importance of offline consolidation the current study provided further insights into the processes that underlie the formation of conceptual representations. PMID:25174663

  4. Age-related Changes in the Sleep-dependent Reorganization of Declarative Memories.

    PubMed

    Baran, Bengi; Mantua, Janna; Spencer, Rebecca M C

    2016-06-01

    Consolidation of declarative memories has been associated with slow wave sleep in young adults. Previous work suggests that, in spite of changes in sleep, sleep-dependent consolidation of declarative memories may be preserved with aging, although reduced relative to young adults. Previous work on young adults shows that, with consolidation, retrieval of declarative memories gradually becomes independent of the hippocampus. To investigate whether memories are similarly reorganized over sleep at the neural level, we compared functional brain activation associated with word pair recall following a nap and equivalent wake in young and older adults. SWS during the nap predicted better subsequent memory recall and was negatively associated with retrieval-related hippocampal activation in young adults. In contrast, in older adults there was no relationship between sleep and memory performance or with retrieval-related hippocampal activation. Furthermore, compared with young adults, postnap memory retrieval in older adults required strong functional connectivity of the hippocampus with the PFC, whereas there were no differences between young and older adults in the functional connectivity of the hippocampus following wakefulness. These results suggest that, although neural reorganization takes place over sleep in older adults, the shift is unique from that seen in young adults, perhaps reflecting memories at an earlier stage of stabilization.

  5. Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults

    PubMed Central

    Tchistiakova, Ekaterina; Anderson, Nicole D.; Greenwood, Carol E.; MacIntosh, Bradley J.

    2014-01-01

    Objective Type 2 diabetes mellitus is characterized by metabolic dysregulation in the form of hyperglycemia and insulin resistance and can have a profound impact on brain structure and vasculature. The primary aim of this study was to identify brain regions where the combined effects of type 2 diabetes and hypertension on brain health exceed those of hypertension alone. A secondary objective was to test whether vascular impairment and structural brain measures in this population are associated with cognitive function. Research design and methods We enrolled 18 diabetic participants with hypertension (HTN + T2DM, 7 women, 71.8 ± 5.6 years) and 22 participants with hypertension only (HTN, 12 women, 73.4 ± 6.2 years). Cerebrovascular reactivity (CVR) was assessed using blood oxygenation level dependent (BOLD) MRI during successive breath holds. Gray matter structure was evaluated using cortical thickness (CThk) measures estimated from T1-weighted images. Analyses of cognitive and blood data were also performed. Results Compared to HTN, HTN + T2DM had decreased CVR and CThk in a spatially overlapping region of the right occipital lobe (P < 0.025); CVR group differences were more expansive and included bilateral occipito-parietal areas (P < 0.025). Whereas CVR showed no significant associations with measures of cognitive function (P > 0.05), CThk in the right lingual gyrus ROI and regions resulting from a vertex-wise analysis (including posterior cingulate, precuneus, superior and middle frontal, and middle and inferior temporal regions (P < 0.025) were associated with executive function. Conclusions Individuals with T2DM and HTN showed decreased CVR and CThk compared to age-matched HTN controls. This study identifies brain regions that are impacted by the combined effects of comorbid T2DM and HTN conditions, with new evidence that the corresponding cortical thinning may contribute to cognitive decline. PMID:24967157

  6. Elevated intracranial dopamine impairs the glutamate-nitric oxide-cyclic guanosine monophosphate pathway in cortical astrocytes in rats with minimal hepatic encephalopathy

    PubMed Central

    DING, SAIDAN; HUANG, WEILONG; YE, YIRU; YANG, JIANJING; HU, JIANGNAN; WANG, XIAOBIN; LIU, LEPING; LU, QIN; LIN, YUANSHAO

    2014-01-01

    In a previous study by our group memory impairment in rats with minimal hepatic encephalopathy (MHE) was associated with the inhibition of the glutamate-nitric oxide-cyclic guanosine monophosphate (Glu-NO-cGMP) pathway due to elevated dopamine (DA). However, the effects of DA on the Glu-NO-cGMP pathway localized in primary cortical astrocytes (PCAs) had not been elucidated in rats with MHE. In the present study, it was identified that when the levels of DA in the cerebral cortex of rats with MHE and high-dose DA (3 mg/kg)-treated rats were increased, the co-localization of N-methyl-d-aspartate receptors subunit 1 (NMDAR1), calmodulin (CaM), nitric oxide synthase (nNOS), soluble guanylyl cyclase (sGC) and cyclic guanine monophosphate (cGMP) with the glial fibrillary acidic protein (GFAP), a marker protein of astrocytes, all significantly decreased, in both the MHE and high-dose DA-treated rats (P<0.01). Furthermore, NMDA-induced augmentation of the expression of NMDAR1, CaM, nNOS, sGC and cGMP localized in PCAs was decreased in MHE and DA-treated rats, as compared with the controls. Chronic exposure of cultured cerebral cortex PCAs to DA treatment induced a dose-dependent decrease in the concentration of intracellular calcium, nitrites and nitrates, the formation of cGMP and the expression of NMDAR1, CaM, nNOS and sGC/cGMP. High doses of DA (50 μM) significantly reduced NMDA-induced augmentation of the formation of cGMP and the contents of NMDAR1, CaM, nNOS, sGC and cGMP (P<0.01). These results suggest that the suppression of DA on the Glu-NO-cGMP pathway localized in PCAs contributes to memory impairment in rats with MHE. PMID:25059564

  7. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats.

    PubMed

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and CNPase(+) and OLIG2(+) oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho(+) oligodendrocytes were detected in the corpus callosum at ≥0.1%. In the dentate gyrus, CPZ at ≥0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1(+) and GRIN2A(+) hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2(+) granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. PMID:26577399

  8. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain

    PubMed Central

    Chao, Ming-Wei; Chen, Chie-Pein; Yang, Yu-Hsiu; Chuang, Yu-Chen; Chu, Tzu-Yun; Tseng, Chia-Yi

    2016-01-01

    Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development. PMID:27577752

  9. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain.

    PubMed

    Chao, Ming-Wei; Chen, Chie-Pein; Yang, Yu-Hsiu; Chuang, Yu-Chen; Chu, Tzu-Yun; Tseng, Chia-Yi

    2016-01-01

    Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development. PMID:27577752

  10. Disconnection Mechanism and Regional Cortical Atrophy Contribute to Impaired Processing of Facial Expressions and Theory of Mind in Multiple Sclerosis: A Structural MRI Study

    PubMed Central

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R. G.; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others’ mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients. PMID:24349280

  11. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    PubMed

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R G; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  12. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation

    PubMed Central

    Ramanathan, Dhakshin S.; Gulati, Tanuj; Ganguly, Karunesh

    2015-01-01

    Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning. PMID:26382320

  13. Impaired Memory and Evidence of Histopathology in CA1 Pyramidal Neurons through Injection of Aβ1-42 Peptides into the Frontal Cortices of Rat

    PubMed Central

    Eslamizade, Mohammad Javad; Madjd, Zahra; Rasoolijazi, Homa; Saffarzadeh, Fatemeh; Pirhajati, Vahid; Aligholi, Hadi; Janahmadi, Mahyar; Mehdizadeh, Mehdi

    2016-01-01

    Introduction: Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, which has much benefited from animal models to find the basics of its pathophysiology. In our previous work (Haghani, Shabani, Javan, Motamedi, & Janahmadi, 2012), a non-transgenic rat model of AD was used in electrophysiological studies. However, we did not investigate the histological aspects in the mentioned study. Methods: An AD model was developed through bilateral injection of amyloid-β peptides (Aβ) into the frontal cortices. Behavioral and histological methods were used to assess alterations in the memory and (ultra)structures. Furthermore, melatonin has been administered to assess its efficacy on this AD model. Results: Passive avoidance showed a progressive decline in the memory following Aβ injection. Furthermore, Nissl staining showed that Aβ neurotoxicity caused shrinkage of the CA1 pyramidal neurons. Neurodegeneration was clearly evident from Fluoro-jade labeled neurons in Aβ treated rats. Moreover, higher NF-κB immunoreactive CA1 pyramidal neurons were remarkably observed in Aβ treated rats. Ultrastructural analysis using electron microscopy also showed the evidence of subcellular abnormalities. Melatonin treatment in this model of AD prevented Aβ-induced increased NF-κB from immunoreaction and neurodegeneration. Discussion: This study suggests that injection of Aβ into the frontal cortices results in the memory decline and histochemical disturbances in CA1 pyramidal neurons. Furthermore, melatonin can prevent several histological changes induced by Aβ. PMID:27303597

  14. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP.

    PubMed

    Ravassard, Pascal; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Fraize, Nicolas; Libourel, Paul-Antoine; Lebarillier, Léa; Arthaud, Sébastien; Meissirel, Claire; Touret, Monique; Malleret, Gaël; Salin, Paul-Antoine

    2016-04-01

    Prolonged rapid-eye-movement (REM) sleep deprivation has long been used to study the role of REM sleep in learning and memory processes. However, this method potentially induces stress and fatigue that may directly affect cognitive functions. Here, by using a short-term and nonstressful REM sleep deprivation (RSD) method we assessed in rats the bidirectional influence of reduced and increased REM sleep amount on hippocampal-dependent emotional memory and plasticity. Our results indicate that 4 h RSD impaired consolidation of contextual fear conditioning (CFC) and induction of long-term potentiation (LTP), while decreasing density of Egr1/Zif268-expressing neurons in the CA1 region of the dorsal hippocampus. LTP and Egr1 expression were not affected in ventral CA1. Conversely, an increase in REM sleep restores and further facilitates CFC consolidation and LTP induction, and also increases Egr1 expression in dorsal CA1. Moreover, CFC consolidation, Egr1 neuron density, and LTP amplitude in dorsal CA1 show a positive correlation with REM sleep amount. Altogether, these results indicate that mild changes in REM sleep amount bidirectionally affect memory and synaptic plasticity mechanisms occurring in the CA1 area of the dorsal hippocampus.

  15. Circadian and sleep-dependent regulation of hormone release in humans

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    rhythm sleep disorders, including the dyssomnia of shift work and visual impairment. Yet to be fully investigated are the interactions of these factors with age and gender. Characterization of the factors governing hormone secretion is critical to understanding the temporal regulation of endocrine systems and presents many exciting areas for future research.

  16. Negative reinforcement impairs overnight memory consolidation.

    PubMed

    Stamm, Andrew W; Nguyen, Nam D; Seicol, Benjamin J; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert; Wamsley, Erin J

    2014-11-01

    Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism.

  17. Negative reinforcement impairs overnight memory consolidation.

    PubMed

    Stamm, Andrew W; Nguyen, Nam D; Seicol, Benjamin J; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert; Wamsley, Erin J

    2014-11-01

    Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism. PMID:25320351

  18. Negative reinforcement impairs overnight memory consolidation

    PubMed Central

    Stamm, Andrew W.; Nguyen, Nam D.; Seicol, Benjamin J.; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert

    2014-01-01

    Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism. PMID:25320351

  19. Sleep-Dependent Synaptic Down-Selection (I): Modeling the Benefits of Sleep on Memory Consolidation and Integration

    PubMed Central

    Nere, Andrew; Hashmi, Atif; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Sleep can favor the consolidation of both procedural and declarative memories, promote gist extraction, help the integration of new with old memories, and desaturate the ability to learn. It is often assumed that such beneficial effects are due to the reactivation of neural circuits in sleep to further strengthen the synapses modified during wake or transfer memories to different parts of the brain. A different possibility is that sleep may benefit memory not by further strengthening synapses, but rather by renormalizing synaptic strength to restore cellular homeostasis after net synaptic potentiation in wake. In this way, the sleep-dependent reactivation of neural circuits could result in the competitive down-selection of synapses that are activated infrequently and fit less well with the overall organization of memories. By using computer simulations, we show here that synaptic down-selection is in principle sufficient to explain the beneficial effects of sleep on the consolidation of procedural and declarative memories, on gist extraction, and on the integration of new with old memories, thereby addressing the plasticity-stability dilemma. PMID:24137153

  20. Cortical auditory disorders: clinical and psychoacoustic features.

    PubMed Central

    Mendez, M F; Geehan, G R

    1988-01-01

    The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and matching, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Images PMID:2450968

  1. Overexpressed neuroglobin raises threshold for nitric oxide-induced impairment of mitochondrial respiratory activities and stress signaling in primary cortical neurons.

    PubMed

    Singh, Shilpee; Zhuo, Ming; Gorgun, Falih M; Englander, Ella W

    2013-08-01

    Surges of nitric oxide compromise mitochondrial respiration primarily by competitive inhibition of oxygen binding to cytochrome c oxidase (complex IV) and are particularly injurious in neurons, which rely on oxidative phosphorylation for all their energy needs. Here, we show that transgenic overexpression of the neuronal globin protein, neuroglobin, helps diminish protein nitration, preserve mitochondrial function and sustain ATP content of primary cortical neurons challenged by extended nitric oxide exposure. Specifically, in transgenic neurons, elevated neuroglobin curtailed nitric oxide-induced alterations in mitochondrial oxygen consumption rates, including baseline oxygen consumption, consumption coupled with ATP synthesis, proton leak and spare respiratory capacity. Concomitantly, activation of genes involved in sensing and responding to oxidative/nitrosative stress, including the early-immediate c-Fos gene and the phase II antioxidant enzyme, heme oxygenase-1, was diminished in neuroglobin-overexpressing compared to wild-type neurons. Taken together, these differences reflect a lesser insult produced by similar concentrations of nitric oxide in neuroglobin-overexpressing compared to wild-type neurons, suggesting that abundant neuroglobin buffers nitric oxide and raises the threshold of nitric oxide-mediated injury in neurons.

  2. Dose-dependent impairment of inhibitory avoidance retention in rats by immediate post-training infusion of a mitogen-activated protein kinase kinase inhibitor into cortical structures.

    PubMed

    Walz, R; Roesler, R; Quevedo, J; Rockenbach, I C; Amaral, O B; Vianna, M R; Lenz, G; Medina, J H; Izquierdo, I

    1999-11-15

    Mitogen-activated protein kinase (MAPK) is a serine/threonine protein kinase abundantly expressed in postmitotic neurons of the developed nervous system. MAPK is activated in and required for both the induction of long-term potentiation (LTP) in hippocampal slices and the acquisition of fear conditioning training in rats. The present work was performed in order to test the effect of the specific inhibitor of MAPK kinase (MAPKK), PD 098059, on retention of a step-down inhibitory avoidance (IA). Adult male Wistar rats were bilaterally injected (0.5 microl/side) with PD 098059 (at 0.5, 5, or 50 microM) or vehicle into the entorhinal cortex or into the parietal cortex immediately after IA training using a 0.4 mA footshock. Retention testing was carried out 24 h after training. PD 098059 impaired retention when injected into the entorhinal cortex at the dose of 50 microM, but not at the doses of 5 or 0.5 microM. When infused into the parietal cortex, PD 098059 was amnestic at the doses of 5 and 50 microM. The drug had no effect when infused at the highest dose in either structure 6 h after training. Our results suggest that the MAPKK inhibitor impairs IA retention memory in a dose-dependent manner when injected immediately after training into entorhinal cortex or parietal cortex. The effective dose is variable according to the neocortical structure studied.

  3. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation.

    PubMed

    Civier, Oren; Bullock, Daniel; Max, Ludo; Guenther, Frank H

    2013-09-01

    Atypical white-matter integrity and elevated dopamine levels have been reported for individuals who stutter. We investigated how such abnormalities may lead to speech dysfluencies due to their effects on a syllable-sequencing circuit that consists of basal ganglia (BG), thalamus, and left ventral premotor cortex (vPMC). "Neurally impaired" versions of the neurocomputational speech production model GODIVA were utilized to test two hypotheses: (1) that white-matter abnormalities disturb the circuit via corticostriatal projections carrying copies of executed motor commands and (2) that dopaminergic abnormalities disturb the circuit via the striatum. Simulation results support both hypotheses: in both scenarios, the neural abnormalities delay readout of the next syllable's motor program, leading to dysfluency. The results also account for brain imaging findings during dysfluent speech. It is concluded that each of the two abnormality types can cause stuttering moments, probably by affecting the same BG-thalamus-vPMC circuit.

  4. Time-dependent impairment of inhibitory avoidance retention in rats by posttraining infusion of a mitogen-activated protein kinase kinase inhibitor into cortical and limbic structures.

    PubMed

    Walz, R; Roesler, R; Quevedo, J; Sant'Anna, M K; Madruga, M; Rodrigues, C; Gottfried, C; Medina, J H; Izquierdo, I

    2000-01-01

    Mitogen-activated protein kinase (MAPK) is abundantly expressed in postmitotic neurons of the developed nervous system. MAPK is activated and required for induction of long-term potentiation (LTP) in the CA1 area of the hippocampus, which is blocked by the specific inhibitor of the MAPK kinase, PD 098059. Recently it was demonstrated that MAPK is activated in the hippocampus after training and is necessary for contextual fear conditioning learning. The present work tests the role of the MAPK cascade in step-down inhibitory avoidance (IA) retention. PD 098059 (50 microM) was bilaterally injected (0.5 microl/side) into the CA1 region of the dorsal hippocampus or entorhinal cortex at 0, 90, 180, or 360 min, or into the amygdala or parietal cortex at 0, 180, or 360 min after IA training in rats using a 0.4-mA foot shock. Retention testing was carried out 24 h after training. PD 098059 impaired retention when injected into the dorsal hippocampus at 180 min, but not 0, 90, and 360 min after training. When infused into the entorhinal cortex, PD 098059 was amnestic at 0 and 180 min, but not at 90 and 360 min after training. The MAPKK inhibitor also impairs IA retention when infused into the parietal cortex immediately after training, but not at 180 or 360 min. Infusions performed into amygdala were amnestic at 180 min, but not at 0 and 360 min after training. Our results suggest a time-dependent involvement of the MAPK cascade in the posttraining memory processing of IA; the time dependency is different in the hippocampus, amygdala, entorhinal cortex, or parietal cortex of rats.

  5. Sleep-Dependent Synaptic Down-Selection (II): Single-Neuron Level Benefits for Matching, Selectivity, and Specificity.

    PubMed

    Hashmi, Atif; Nere, Andrew; Tononi, Giulio

    2013-01-01

    In a companion paper (1), we used computer simulations to show that a strategy of activity-dependent, on-line net synaptic potentiation during wake, followed by off-line synaptic depression during sleep, can provide a parsimonious account for several memory benefits of sleep at the systems level, including the consolidation of procedural and declarative memories, gist extraction, and integration of new with old memories. In this paper, we consider the theoretical benefits of this two-step process at the single-neuron level and employ the theoretical notion of Matching between brain and environment to measure how this process increases the ability of the neuron to capture regularities in the environment and model them internally. We show that down-selection during sleep is beneficial for increasing or restoring Matching after learning, after integrating new with old memories, and after forgetting irrelevant material. By contrast, alternative schemes, such as additional potentiation in wake, potentiation in sleep, or synaptic renormalization in wake, decrease Matching. We also argue that, by selecting appropriate loops through the brain that tie feedforward synapses with feedback ones in the same dendritic domain, different subsets of neurons can learn to specialize for different contingencies and form sequences of nested perception-action loops. By potentiating such loops when interacting with the environment in wake, and depressing them when disconnected from the environment in sleep, neurons can learn to match the long-term statistical structure of the environment while avoiding spurious modes of functioning and catastrophic interference. Finally, such a two-step process has the additional benefit of desaturating the neuron's ability to learn and of maintaining cellular homeostasis. Thus, sleep-dependent synaptic renormalization offers a parsimonious account for both cellular and systems level effects of sleep on learning and memory. PMID:24151486

  6. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination.

    PubMed

    Metz, Gerlinde A; Whishaw, Ian Q

    2002-04-15

    The ladder rung walking test is a new task to assess skilled walking and measure both forelimb and hindlimb placing, stepping, and inter-limb co-ordination. Rats spontaneously walk from a starting location to a goal along a horizontal ladder. The spacing between the rungs of the ladder is variable and can be changed to prevent the animal from learning either the absolute or relative location of the rungs. The testing procedure requires minimal training and allows detailed quantitative and qualitative analysis using video recording. The utility of the test is described with postoperative data obtained from animals with unilateral neocortical strokes produced by pial stripping over the motor cortex, neonatal and adult unilateral corticospinal tract lesions produced by tract section at the pyramids, and unilateral dopamine depletions produced by injection of 6-hydroxydopamine into the nigrostriatal bundle. In addition, a group of aged rats was examined. Deficits in limb placing, stepping and co-ordination displayed by the animals demonstrate that this test can discriminate between lesions of the motor system or age-associated impairments. The test is useful for assessing loss and recovery of function due to brain or spinal cord injury, the effectiveness of treatment therapies, as well as compensatory processes through which animals adapt to nervous system injury. PMID:11992668

  7. Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness

    PubMed Central

    Prehn, Christian; Krogias, Christos; Schneider, Ruth; Klein, Jan; Gold, Ralf; Lukas, Carsten

    2015-01-01

    to cognitive impairment, depression and daytime sleepiness, partly indicating involvement of complex neuronal networks. PMID:26114298

  8. Slow oscillations during sleep coordinate interregional communication in cortical networks.

    PubMed

    Cox, Roy; van Driel, Joram; de Boer, Marieke; Talamini, Lucia M

    2014-12-10

    Large-amplitude sleep slow oscillations group faster neuronal oscillations and are of functional relevance for memory performance. However, relatively little is known about the impact of slow oscillations on functionally coupled networks. Here, we provide a comprehensive view on how human slow oscillatory dynamics influence various measures of brain processing. We demonstrate that slow oscillations coordinate interregional cortical communication, as assessed by phase synchrony in the sleep spindle frequency range and cross-frequency coupling between spindle and beta activity. Furthermore, we show that the organizing role of slow oscillations is restricted to circumscribed topographical areas. These findings add importantly to our basic understanding of the orchestrating role of slow oscillations. In addition, they are of considerable relevance for accounts of sleep-dependent memory reprocessing and consolidation. PMID:25505340

  9. Ascent to moderate altitude impairs overnight memory improvements.

    PubMed

    Tesler, Noemi; Latshang, Tsogyal D; Lo Cascio, Christian M; Stadelmann, Katrin; Stoewhas, Anne-Christin; Kohler, Malcolm; Bloch, Konrad E; Achermann, Peter; Huber, Reto

    2015-02-01

    Several studies showed beneficial effects of sleep on memory performance. Slow waves, the electroencephalographic characteristic of deep sleep, reflected on the neuronal level by synchronous slow oscillations, seem crucial for these benefits. Traveling to moderate altitudes decreases deep sleep. In a randomized cross-over design healthy male subjects performed a visuo-motor learning task in Zurich (490 m) and at Davos Jakobshorn (2590 m) in random order. Memory performance was assessed immediately after learning, before sleep, and in the morning after a night of sleep. Sleep EEG recordings were performed during the nights. Our findings show an altitude induced reduction of sleep dependent memory performance. Moreover, this impaired sleep dependent memory performance was associated with reduced slow wave derived measures of neuronal synchronization. Our results are consistent with a critical role of slow waves for the beneficial effects of sleep on memory that is susceptible to natural environmental influences. PMID:25449393

  10. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    PubMed

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  11. Spatiotemporal SERT expression in cortical map development.

    PubMed

    Chen, Xiaoning; Petit, Emilie I; Dobrenis, Kostantin; Sze, Ji Ying

    2016-09-01

    The cerebral cortex is organized into morphologically distinct areas that provide biological frameworks underlying perception, cognition, and behavior. Profiling mouse and human cortical transcriptomes have revealed temporal-specific differential gene expression modules in distinct neocortical areas during cortical map establishment. However, the biological roles of spatiotemporal gene expression in cortical patterning and how cortical topographic gene expression is regulated are largely unknown. Here, we characterize temporal- and spatial-defined expression of serotonin (5-HT) transporter (SERT) in glutamatergic neurons during sensory map development in mice. SERT is transiently expressed in glutamatergic thalamic neurons projecting to sensory cortices and in pyramidal neurons in the prefrontal cortex (PFC) and hippocampus (HPC) during the period that lays down the basic functional neural circuits. We previously identified that knockout of SERT in the thalamic neurons blocks 5-HT uptake by their thalamocortical axons, resulting in excessive 5-HT signaling that impairs sensory map architecture. In contrast, here we show that selective SERT knockout in the PFC and HPC neurons does not perturb sensory map patterning. These data suggest that transient SERT expression in specific glutamatergic neurons provides area-specific instructions for cortical map patterning. Hence, genetic and pharmacological manipulations of this SERT function could illuminate the fundamental genetic programming of cortex-specific maps and biological roles of temporal-specific cortical topographic gene expression in normal development and mental disorders. PMID:27282696

  12. Bilingual aphasia and subcortical-cortical lesions.

    PubMed

    Moretti, R; Bava, A; Torre, P; Antonello, R M; Zorzon, M; Zivadinov, R; Cazzato, G

    2001-06-01

    The use of the mother tongue relies on implicit memory procedures that are mainly controlled by subcortical structures. A second language depends on the integrity of the explicit memory system, largely subserved by cortical areas. Therefore, bilinguals can be considered as neurolinguistic models which contribute to the understanding of how the cortical and subcortical language systems communicate while maintaining independent functions. We describe a patient who developed an impairment of the mother tongue after an infarct of the caudate. During follow-up, a dramatic improvement of the mother tongue accompanied by worsening of the second language became evident after the extension of the ischemic lesion to the cortex.

  13. Sleep Promotes Cortical Response Potentiation Following Visual Experience

    PubMed Central

    Aton, Sara J.; Suresh, Aneesha; Broussard, Christopher; Frank, Marcos G.

    2014-01-01

    Study Objectives: Sleep has been hypothesized to globally reduce synaptic strength. However, recent findings suggest that in the context of learning and memory consolidation, sleep may promote synaptic potentiation. We tested the requirement for sleep in a naturally occurring form of experience-dependent synaptic potentiation in the adult mouse visual cortex (V1), which is initiated by patterned visual experience. Design: Visual responses were recorded in individual V1 neurons before and after presentation of an oriented grating stimulus, and after subsequent sleep or sleep deprivation. Measurements and Results: We find that V1 response potentiation—associated with a shift in orientation preference in favor of the presented stimulus—occurs only after sleep and only during the entrained circadian sleep phase, and is blocked by sleep deprivation. Induction of plasticity following stimulus presentation is associated with an increase in principal neuron firing in V1, which is present in all behavioral states and occurs regardless of time of day. Sleep dependent potentiation is proportional to phase-locking of neuronal activity with thalamocortical spindle oscillations. Conclusions: Our results suggest that sleep can promote cortical synaptic potentiation in vivo, and that this potentiation may be mediated by slow wave sleep spindles. Citation: Aton SJ, Suresh A, Broussard C, Frank MG. Sleep promotes cortical response potentiation following visual experience. SLEEP 2014;37(7):1163-1170. PMID:25061244

  14. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  15. Chronic methamphetamine self-administration disrupts cortical control of cognition.

    PubMed

    Bernheim, Aurelien; See, Ronald E; Reichel, Carmela M

    2016-10-01

    Methamphetamine (meth) is one of the most abused substances worldwide. Chronic use has been associated with repeated relapse episodes that may be exacerbated by cognitive impairments during drug abstinence. Growing evidence demonstrates that meth compromises prefrontal cortex activity, resulting in persisting attentional and memory impairments. After summarizing recent studies of meth-induced cognitive dysfunction using a translationally relevant model of self-administered meth, this review emphasizes the cortical brain changes contributing to cognitive dysregulation during abstinence. Finally, we propose the use of cognitive enhancers during abstinence that may promote a drug-free state by reversing cortical dysfunction linked with prolonged meth abuse. PMID:27450578

  16. Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent

    PubMed Central

    Alagapan, Sankaraleengam; Schmidt, Stephen L.; Lefebvre, Jérémie; Hadar, Eldad; Shin, Hae Won; Frӧhlich, Flavio

    2016-01-01

    Cortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired. However, the mechanism by which periodic brain stimulation alters endogenous oscillation dynamics is debated and appears to depend on brain state. Here, we demonstrate with a static model and a neural oscillator model that recurrent excitation in the thalamo-cortical circuit, together with recruitment of cortico-cortical connections, can explain the enhancement of oscillations by brain stimulation as a function of brain state. We then performed concurrent invasive recording and stimulation of the human cortical surface to elucidate the response of cortical oscillations to periodic stimulation and support the findings from the computational models. We found that (1) stimulation enhanced the targeted oscillation power, (2) this enhancement outlasted stimulation, and (3) the effect of stimulation depended on behavioral state. Together, our results show successful target engagement of oscillations by periodic brain stimulation and highlight the role of nonlinear interaction between endogenous network oscillations and stimulation. These mechanistic insights will contribute to the design of adaptive, more targeted stimulation paradigms. PMID:27023427

  17. Cortical State and Attention

    PubMed Central

    Harris, Kenneth D.; Thiele, Alexander

    2012-01-01

    Preface The brain continuously adapts its processing machinery to behavioural demands. To achieve this it rapidly modulates the operating mode of cortical circuits, controlling the way information is transformed and routed. This article will focus on two experimental approaches by which the control of cortical information processing has been investigated: the study of state-dependent cortical processing in rodents, and attention in the primate visual system. Both processes involve a modulation of low-frequency activity fluctuations and spiking correlation, and are mediated by common receptor systems. We suggest that selective attention involves processes similar to state change, operating at a local columnar level to enhance the representation of otherwise nonsalient features while suppressing internally generated activity patterns. PMID:21829219

  18. Bidirectional plasticity of cortical pattern recognition and behavioral sensory acuity

    PubMed Central

    Chapuis, Julie; Wilson, Donald A.

    2011-01-01

    Learning to adapt to a complex and fluctuating environment requires the ability to adjust neural representations of sensory stimuli. Through pattern completion processes, cortical networks can reconstruct familiar patterns from degraded input patterns, while pattern separation processes allow discrimination of even highly overlapping inputs. Here we show that the balance between pattern separation and completion is experience-dependent. Rats given extensive training with overlapping complex odorant mixtures show improved behavioral discrimination ability and enhanced cortical ensemble pattern separation. In contrast, behavioral training to disregard normally detectable differences between overlapping mixtures results in impaired cortical ensemble pattern separation (enhanced pattern completion) and impaired discrimination. This bidirectional effect was not found in the olfactory bulb, and may be due to plasticity within olfactory cortex itself. Thus pattern recognition, and the balance between pattern separation and completion, is highly malleable based on task demands and occurs in concert with changes in perceptual performance. PMID:22101640

  19. Cortical dynamics revisited.

    PubMed

    Singer, Wolf

    2013-12-01

    Recent discoveries on the organisation of the cortical connectome together with novel data on the dynamics of neuronal interactions require an extension of classical concepts on information processing in the cerebral cortex. These new insights justify considering the brain as a complex, self-organised system with nonlinear dynamics in which principles of distributed, parallel processing coexist with serial operations within highly interconnected networks. The observed dynamics suggest that cortical networks are capable of providing an extremely high-dimensional state space in which a large amount of evolutionary and ontogenetically acquired information can coexist and be accessible to rapid parallel search.

  20. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms

    PubMed Central

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Study Objectives: Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). Methods: The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Results: Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Conclusion: Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. Citation: Suh S, Kim H, Dang-Vu TT, Joo E, Shin C. Cortical thinning and altered cortico-cortical structural covariance of the default mode network in patients with

  1. Visualization of Cortical Dynamics

    NASA Astrophysics Data System (ADS)

    Grinvald, Amiram

    2003-03-01

    Recent progress in studies of cortical dynamics will be reviewed including the combination of real time optical imaging based on voltage sensitive dyes, single and multi- unit recordings, LFP, intracellular recordings and microstimulation. To image the flow of neuronal activity from one cortical site to the next, in real time, we have used optical imaging based on newly designed voltage sensitive dyes and a Fuji 128x 128 fast camera which we modified. A factor of 20-40 fold improvement in the signal to noise ratio was obtained with the new dye during in vivo imaging experiments. This improvements has facilitates the exploration of cortical dynamics without signal averaging in the millisecond time domain. We confirmed that the voltage sensitive dye signal indeed reflects membrane potential changes in populations of neurons by showing that the time course of the intracellular activity recorded intracellularly from a single neuron was highly correlated in many cases with the optical signal from a small patch of cortex recorded nearby. We showed that the firing of single cortical neurons is not a random process but occurs when the on-going pattern of million of neurons is similar to the functional architecture map which correspond to the tuning properties of that neuron. Chronic optical imaging, combined with electrical recordings and microstimulation, over a long period of times of more than a year, was successfully applied also to the study of higher brain functions in the behaving macaque monkey.

  2. Cortical thinning in psychopathy

    PubMed Central

    Ly, Martina; Motzkin, Julian C.; Philippi, Carissa L.; Kirk, Gregory R.; Newman, Joseph P.; Kiehl, Kent A.; Koenigs, Michael

    2013-01-01

    Objective Psychopathy is a personality disorder associated with severely antisocial behavior and a host of cognitive and affective deficits. The neuropathological basis of the disorder has not been clearly established. Cortical thickness is a sensitive measure of brain structure that has been used to identify neurobiological abnormalities in a number of psychiatric disorders. The purpose of this study is to evaluate cortical thickness and corresponding functional connectivity in criminal psychopaths. Method Using T1 MRI data, we computed cortical thickness maps in a sample of adult male prison inmates selected based on psychopathy diagnosis (n=21 psychopathic inmates, n=31 non-psychopathic inmates). Using rest-fMRI data from a subset of these inmates (n=20 psychopathic inmates, n=20 non-psychopathic inmates), we then computed functional connectivity within networks exhibiting significant thinning among psychopaths. Results Relative to non-psychopaths, psychopaths exhibited significantly thinner cortex in a number of regions, including left insula and dorsal anterior cingulate cortex, bilateral precentral gyrus, bilateral anterior temporal cortex, and right inferior frontal gyrus. These neurostructural differences were not due to differences in age, IQ, or substance abuse. Psychopaths also exhibited a corresponding reduction in functional connectivity between left insula and left dorsal anterior cingulate cortex. Conclusions Psychopathy is associated with a distinct pattern of cortical thinning and reduced functional connectivity. PMID:22581200

  3. Impaired consciousness in epilepsy.

    PubMed

    Blumenfeld, Hal

    2012-09-01

    Consciousness is essential to normal human life. In epileptic seizures consciousness is often transiently lost, which makes it impossible for the individual to experience or respond. These effects have huge consequences for safety, productivity, emotional health, and quality of life. To prevent impaired consciousness in epilepsy, it is necessary to understand the mechanisms that lead to brain dysfunction during seizures. Normally the consciousness system-a specialised set of cortical-subcortical structures-maintains alertness, attention, and awareness. Advances in neuroimaging, electrophysiology, and prospective behavioural testing have shed light on how epileptic seizures disrupt the consciousness system. Diverse seizure types, including absence, generalised tonic-clonic, and complex partial seizures, converge on the same set of anatomical structures through different mechanisms to disrupt consciousness. Understanding of these mechanisms could lead to improved treatment strategies to prevent impairment of consciousness and improve the quality of life of people with epilepsy.

  4. Patterns of cortical thinning in nondemented Parkinson's disease patients

    PubMed Central

    Uribe, Carme; Segura, Barbara; Baggio, Hugo Cesar; Abos, Alexandra; Marti, Maria Jose; Valldeoriola, Francesc; Compta, Yaroslau; Bargallo, Nuria

    2016-01-01

    ABSTRACT Background Clinical variability in the Parkinson's disease phenotype suggests the existence of disease subtypes. We investigated whether distinct anatomical patterns of atrophy can be identified in Parkinson's disease using a hypothesis‐free, data‐driven approach based on cortical thickness data. Methods T1‐weighted 3‐tesla MRI and a comprehensive neuropsychological assessment were performed in a sample of 88 nondemented Parkinson's disease patients and 31 healthy controls. We performed a hierarchical cluster analysis of imaging data using Ward's linkage method. A general linear model with cortical thickness data was used to compare clustering groups. Results We observed 3 patterns of cortical thinning in patients when compared with healthy controls. Pattern 1 (n = 30, 34.09%) consisted of cortical atrophy in bilateral precentral gyrus, inferior and superior parietal lobules, cuneus, posterior cingulate, and parahippocampal gyrus. These patients showed worse cognitive performance when compared with controls and the other 2 patterns. Pattern 2 (n = 29, 32.95%) consisted of cortical atrophy involving occipital and frontal as well as superior parietal areas and included patients with younger age at onset. Finally, in pattern 3 (n = 29, 32.95%), there was no detectable cortical thinning. Patients in the 3 patterns did not differ in disease duration, motor severity, dopaminergic medication doses, or presence of mild cognitive impairment. Conclusions Three cortical atrophy subtypes were identified in nondemented Parkinson's disease patients: (1) parieto‐temporal pattern of atrophy with worse cognitive performance, (2) occipital and frontal cortical atrophy and younger disease onset, and (3) patients without detectable cortical atrophy. These findings may help identify prognosis markers in Parkinson's disease. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement

  5. Prefrontal cortical dopamine transmission is decreased in alcoholism

    PubMed Central

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L.; Douaihy, Antoine B.; Frankle, W. Gordon

    2014-01-01

    Objective Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such working memory, attention, inhibitory control and risk/reward decisions--all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies in alcoholics that have demonstrated less dopamine in the striatum, we hypothesized decreased dopamine transmission in the prefrontal cortex in alcoholism. To test this hypothesis, we used amphetamine and [11C]FLB 457 positron emission tomography (PET) to measure cortical dopamine transmission in a group of 21 recently abstinent alcoholics and matched healthy controls. Methods [11C]FLB 457 binding potential (BPND) was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg−1 of d-amphetamine. Results Amphetamine-induced displacement of [11C]FLB 457 binding potential (Δ BPND) was significantly smaller in the cortical regions in alcoholics compared to healthy controls. Cortical regions that demonstrated lower dopamine transmission in alcoholics included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex and medial temporal lobe. Conclusions The results of this study for the first time unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism. PMID:24874293

  6. Purely Cortical Anaplastic Ependymoma

    PubMed Central

    Romero, Flávio Ramalho; Zanini, Marco Antônio; Ducati, Luis Gustavo; Vital, Roberto Bezerra; de Lima Neto, Newton Moreira; Gabarra, Roberto Colichio

    2012-01-01

    Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma. PMID:23119204

  7. Purely cortical anaplastic ependymoma.

    PubMed

    Romero, Flávio Ramalho; Zanini, Marco Antônio; Ducati, Luis Gustavo; Vital, Roberto Bezerra; de Lima Neto, Newton Moreira; Gabarra, Roberto Colichio

    2012-01-01

    Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma.

  8. Posterior Cortical Atrophy

    PubMed Central

    Crutch, Sebastian J; Lehmann, Manja; Schott, Jonathan M; Rabinovici, Gil D; Rossor, Martin N; Fox, Nick C

    2013-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome that is characterized by a progressive decline in visuospatial, visuoperceptual, literacy and praxic skills. The progressive neurodegeneration affecting parietal, occipital and occipito-temporal cortices which underlies PCA is attributable to Alzheimer's disease (AD) in the majority of patients. However, alternative underlying aetiologies including Dementia with Lewy Bodies (DLB), corticobasal degeneration (CBD) and prion disease have also been identified, and not all PCA patients have atrophy on clinical imaging. This heterogeneity has led to diagnostic and terminological inconsistencies, caused difficulty comparing studies from different centres, and limited the generalizability of clinical trials and investigations of factors driving phenotypic variability. Significant challenges remain in identifying the factors associated with both the selective vulnerability of posterior cortical regions and the young age of onset seen in PCA. Greater awareness of the syndrome and agreement over the correspondence between syndrome-and disease-level classifications are required in order to improve diagnostic accuracy, research study design and clinical management. PMID:22265212

  9. Cortical dopamine dysfunction in symptomatic and premanifest Huntington's disease gene carriers.

    PubMed

    Pavese, Nicola; Politis, Marios; Tai, Yen F; Barker, Roger A; Tabrizi, Sarah J; Mason, Sarah L; Brooks, David J; Piccini, Paola

    2010-02-01

    We used (11)C-raclopride PET, a marker of D(2) dopamine receptor binding, and statistical parametric mapping (SPM) to localise cortical D(2) receptor dysfunction in individual Huntington's disease (HD) gene carriers (16 symptomatic and 11 premanifest subjects) and assess its clinical significance. 62.5% of symptomatic HD patients and 54.5% of premanifest carriers showed cortical reductions in D(2) binding. The most frequent decreases in cortical binding in individual HD subjects were seen in temporal and frontal areas. Symptomatic HD subjects with decreased cortical D(2) binding had worse scores on neuropsychological tests assessing attention and executive functions than subjects without cortical dopamine dysfunction, notwithstanding comparable reduction in striatal D(2) binding and motor disability. Our results indicate that cortical dopaminergic dysfunction is common in both symptomatic and premanifest HD gene carriers. It is an early event in HD pathophysiology and could contribute to the impairment in neuropsychological performance in these patients.

  10. Posterior cortical atrophy: an atypical variant of Alzheimer disease.

    PubMed

    Suárez-González, Aida; Henley, Susie M; Walton, Jill; Crutch, Sebastian J

    2015-06-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by striking progressive visual impairment and a pattern of atrophy mainly involving posterior cortices. PCA is the most frequent atypical presentation of Alzheimer disease. The purpose of this article is to provide a summary of PCA's neuropsychiatric manifestations. Emotional and psychotic symptoms are discussed in the context of signal characteristic features of the PCA syndrome (the early onset, focal loss of visual perception, focal posterior brain atrophy) and the underlying cause of the disease. The authors' experience with psychotherapeutic intervention and PCA support groups is shared in detail.

  11. Regional Cortical Thinning Associated with Detectable Levels of HIV DNA

    PubMed Central

    Kirk, Gregory R.; Sailasuta, Napapon; Valcour, Victor; Shiramizu, Bruce; Nakamoto, Beau K.; Shikuma, Cecilia

    2012-01-01

    High levels of human immunodeficiency virus (HIV) DNA in peripheral blood mononuclear cells (PBMCs), and specifically within CD14+ blood monocytes, have been found in HIV-infected individuals with neurocognitive impairment and dementia. The failure of highly active antiretroviral therapy (HAART) to eliminate cognitive dysfunction in HIV may be secondary to persistence of HIV-infected PBMCs which cross the blood-brain barrier, leading to perivascular inflammation and neuronal injury. This study assessed brain cortical thickness relative to HIV DNA levels and identified, we believe for the first time, a neuroimaging correlate of detectable PBMC HIV DNA in subjects with undetectable HIV RNA. Cortical thickness was compared between age- and education-matched groups of older (>40 years) HIV-seropositive subjects on HAART who had detectable (N = 9) and undetectable (N = 10) PBMC HIV DNA. Statistical testing revealed highly significant (P < 0.001) cortical thinning associated with detectable HIV DNA. The largest regions affected were in bilateral insula, orbitofrontal and temporal cortices, right superior frontal cortex, and right caudal anterior cingulate. Cortical thinning correlated significantly with a measure of psychomotor speed. The areas of reduced cortical thickness are key nodes in cognitive and emotional processing networks and may be etiologically important in HIV-related neurological deficits. PMID:22016479

  12. Cortical Clefts and Cortical Bumps: A Continuous Spectrum

    PubMed Central

    Furruqh, Farha; Thirunavukarasu, Suresh; Vivekandan, Ravichandran

    2016-01-01

    Cortical ‘clefts’ (schizencephaly) and cortical ‘bumps’ (polymicrogyria) are malformations arising due to defects in postmigrational development of neurons. They are frequently encountered together, with schizencephalic clefts being lined by polymicrogyria. We present the case of an eight-year-old boy who presented with seizures. Imaging revealed closed lip schizencephaly, polymicrogyria and a deep ‘incomplete’ cleft lined by polymicrogyria not communicating with the lateral ventricle. We speculate that hypoperfusion or ischaemic cortical injury during neuronal development may lead to a spectrum of malformations ranging from polymicrogyria to incomplete cortical clefts to schizencephaly. PMID:27630923

  13. Cortical Clefts and Cortical Bumps: A Continuous Spectrum.

    PubMed

    Biswas, Asthik; Furruqh, Farha; Thirunavukarasu, Suresh; Vivekandan, Ravichandran

    2016-07-01

    Cortical 'clefts' (schizencephaly) and cortical 'bumps' (polymicrogyria) are malformations arising due to defects in postmigrational development of neurons. They are frequently encountered together, with schizencephalic clefts being lined by polymicrogyria. We present the case of an eight-year-old boy who presented with seizures. Imaging revealed closed lip schizencephaly, polymicrogyria and a deep 'incomplete' cleft lined by polymicrogyria not communicating with the lateral ventricle. We speculate that hypoperfusion or ischaemic cortical injury during neuronal development may lead to a spectrum of malformations ranging from polymicrogyria to incomplete cortical clefts to schizencephaly. PMID:27630923

  14. Cortical Basal Ganglionic Degeneration

    PubMed Central

    Scarmeas, Nikolaos; Chin, Steven S.; Marder, Karen

    2011-01-01

    In this case study, we describe the symptoms, neuropsychological testing, and brain pathology of a retired mason's assistant with cortical basal ganglionic degeneration (CBGD). CBGD is an extremely rare neurodegenerative disease that is categorized under both Parkinsonian syndromes and frontal lobe dementias. It affects men and women nearly equally, and the age of onset is usually in the sixth decade of life. CBGD is characterized by Parkinson's-like motor symptoms and by deficits of movement and cognition, indicating focal brain pathology. Neuronal cell loss is ultimately responsible for the neurological symptoms. PMID:14602941

  15. Impact of prenatal environmental stress on cortical development

    PubMed Central

    Ishii, Seiji; Hashimoto-Torii, Kazue

    2015-01-01

    Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS) cells to demonstrate: (1) molecular mechanisms shared by various types of environmental stressors, (2) the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and (3) interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders. PMID:26074774

  16. Time in Cortical Circuits

    PubMed Central

    Shadlen, Michael N.; Jazayeri, Mehrdad; Nobre, Anna C.; Buonomano, Dean V.

    2015-01-01

    Time is central to cognition. However, the neural basis for time-dependent cognition remains poorly understood. We explore how the temporal features of neural activity in cortical circuits and their capacity for plasticity can contribute to time-dependent cognition over short time scales. This neural activity is linked to cognition that operates in the present or anticipates events or stimuli in the near future. We focus on deliberation and planning in the context of decision making as a cognitive process that integrates information across time. We progress to consider how temporal expectations of the future modulate perception. We propose that understanding the neural basis for how the brain tells time and operates in time will be necessary to develop general models of cognition. SIGNIFICANCE STATEMENT Time is central to cognition. However, the neural basis for time-dependent cognition remains poorly understood. We explore how the temporal features of neural activity in cortical circuits and their capacity for plasticity can contribute to time-dependent cognition over short time scales. We propose that understanding the neural basis for how the brain tells time and operates in time will be necessary to develop general models of cognition. PMID:26468192

  17. Cortical thickness abnormalities associated with dyslexia, independent of remediation status.

    PubMed

    Ma, Yizhou; Koyama, Maki S; Milham, Michael P; Castellanos, F Xavier; Quinn, Brian T; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2015-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the "reading network." Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same "double hit" of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status.

  18. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    PubMed Central

    Ma, Yizhou; Koyama, Maki S.; Milham, Michael P.; Castellanos, F. Xavier; Quinn, Brian T.; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2014-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status. PMID:25610779

  19. Regional vulnerability of longitudinal cortical association connectivity

    PubMed Central

    Ceschin, Rafael; Lee, Vince K.; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior–anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior–anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal–thalamic–striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated

  20. fMRI and sleep correlates of the age-related impairment in motor memory consolidation.

    PubMed

    Fogel, Stuart M; Albouy, Genevieve; Vien, Catherine; Popovicci, Romana; King, Bradley R; Hoge, Rick; Jbabdi, Saad; Benali, Habib; Karni, Avi; Maquet, Pierre; Carrier, Julie; Doyon, Julien

    2014-08-01

    Behavioral studies indicate that older adults exhibit normal motor sequence learning (MSL), but paradoxically, show impaired consolidation of the new memory trace. However, the neural and physiological mechanisms underlying this impairment are entirely unknown. Here, we sought to identify, through functional magnetic resonance imaging during MSL and electroencephalographic (EEG) recordings during daytime sleep, the functional correlates and physiological characteristics of this age-related motor memory deficit. As predicted, older subjects did not exhibit sleep-dependent gains in performance (i.e., behavioral changes that reflect consolidation) and had reduced sleep spindles compared with young subjects. Brain imaging analyses also revealed that changes in activity across the retention interval in the putamen and related brain regions were associated with sleep spindles. This change in striatal activity was increased in young subjects, but reduced by comparison in older subjects. These findings suggest that the deficit in sleep-dependent motor memory consolidation in elderly individuals is related to a reduction in sleep spindle oscillations and to an associated decrease of activity in the cortico-striatal network.

  1. fMRI and sleep correlates of the age-related impairment in motor memory consolidation.

    PubMed

    Fogel, Stuart M; Albouy, Genevieve; Vien, Catherine; Popovicci, Romana; King, Bradley R; Hoge, Rick; Jbabdi, Saad; Benali, Habib; Karni, Avi; Maquet, Pierre; Carrier, Julie; Doyon, Julien

    2014-08-01

    Behavioral studies indicate that older adults exhibit normal motor sequence learning (MSL), but paradoxically, show impaired consolidation of the new memory trace. However, the neural and physiological mechanisms underlying this impairment are entirely unknown. Here, we sought to identify, through functional magnetic resonance imaging during MSL and electroencephalographic (EEG) recordings during daytime sleep, the functional correlates and physiological characteristics of this age-related motor memory deficit. As predicted, older subjects did not exhibit sleep-dependent gains in performance (i.e., behavioral changes that reflect consolidation) and had reduced sleep spindles compared with young subjects. Brain imaging analyses also revealed that changes in activity across the retention interval in the putamen and related brain regions were associated with sleep spindles. This change in striatal activity was increased in young subjects, but reduced by comparison in older subjects. These findings suggest that the deficit in sleep-dependent motor memory consolidation in elderly individuals is related to a reduction in sleep spindle oscillations and to an associated decrease of activity in the cortico-striatal network. PMID:24302373

  2. Cortico-cortical communication dynamics

    PubMed Central

    Roland, Per E.; Hilgetag, Claus C.; Deco, Gustavo

    2014-01-01

    In principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG), and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review. PMID:24847217

  3. Visual cortical contributions to associative cerebellar learning

    PubMed Central

    Steinmetz, Adam B.; Harmon, Thomas C.; Freeman, John H.

    2013-01-01

    Eye-blink conditioning (EBC) is a form of associative learning that depends on the cerebellum. Previous reports suggested that sensory cortex is necessary for trace EBC but not for delay EBC. The trace and delay EBC procedures used in these studies differed by the presence or absence of a temporal gap between the end of the conditioned stimulus and the onset of the unconditioned stimulus (trace interval) and in the interval between the onset of the CS and the US (inter-stimulus interval, ISI). The current study examined the role of the visual cortex in delay, long-delay, and trace EBC, matching CS duration and inter-stimulus interval between groups. In Experiment 1, extensive removal of the visual cortex impaired acquisition of long-delay and trace EBC but had no effect on delay EBC. In Experiment 2, bilateral inactivation of the visual cortex impaired acquisition and retention of long-delay and trace EBC, but had no effect on delay EBC. In Experiment 3, unilateral inactivation of the visual cortex impaired long-delay EBC but had no effect on trace EBC. The results indicate that the visual cortex facilitates EBC with relatively long ISIs, regardless of whether there is a trace interval or not. Moreover, the ipsilateral projections from the visual cortex to the pontine nuclei are sufficient for modulating long-delay EBC, whereas trace EBC involves bilateral visual cortical interactions with forebrain systems including the hippocampus and prefrontal cortex. PMID:23791556

  4. Modeling cortical circuits.

    SciTech Connect

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  5. Cortical plasticity and rehabilitation.

    PubMed

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  6. Decoding of Covert Vowel Articulation Using Electroencephalography Cortical Currents

    PubMed Central

    Yoshimura, Natsue; Nishimoto, Atsushi; Belkacem, Abdelkader Nasreddine; Shin, Duk; Kambara, Hiroyuki; Hanakawa, Takashi; Koike, Yasuharu

    2016-01-01

    With the goal of providing assistive technology for the communication impaired, we proposed electroencephalography (EEG) cortical currents as a new approach for EEG-based brain-computer interface spellers. EEG cortical currents were estimated with a variational Bayesian method that uses functional magnetic resonance imaging (fMRI) data as a hierarchical prior. EEG and fMRI data were recorded from ten healthy participants during covert articulation of Japanese vowels /a/ and /i/, as well as during a no-imagery control task. Applying a sparse logistic regression (SLR) method to classify the three tasks, mean classification accuracy using EEG cortical currents was significantly higher than that using EEG sensor signals and was also comparable to accuracies in previous studies using electrocorticography. SLR weight analysis revealed vertices of EEG cortical currents that were highly contributive to classification for each participant, and the vertices showed discriminative time series signals according to the three tasks. Furthermore, functional connectivity analysis focusing on the highly contributive vertices revealed positive and negative correlations among areas related to speech processing. As the same findings were not observed using EEG sensor signals, our results demonstrate the potential utility of EEG cortical currents not only for engineering purposes such as brain-computer interfaces but also for neuroscientific purposes such as the identification of neural signaling related to language processing. PMID:27199638

  7. Taste - impaired

    MedlinePlus

    ... longer. Causes of impaired taste include: Bell's palsy Common cold Flu and other viral infections Nasal infection, nasal ... your diet. For taste problems due to the common cold or flu, normal taste should return when the ...

  8. Cortical overgrowth in fetuses with isolated ventriculomegaly.

    PubMed

    Kyriakopoulou, Vanessa; Vatansever, Deniz; Elkommos, Samia; Dawson, Sarah; McGuinness, Amy; Allsop, Joanna; Molnár, Zoltán; Hajnal, Joseph; Rutherford, Mary

    2014-08-01

    Mild cerebral ventricular enlargement is associated with schizophrenia, autism, epilepsy, and attention-deficit/hyperactivity disorder. Fetal ventriculomegaly is the most common central nervous system (CNS) abnormality affecting 1% of fetuses and is associated with cognitive, language, and behavioral impairments in childhood. Neurodevelopmental outcome is partially predictable by the 2-dimensional size of the ventricles in the absence of other abnormalities. We hypothesized that isolated fetal ventriculomegaly is a marker of altered brain development characterized by relative overgrowth and aimed to quantify brain growth using volumetric magnetic resonance imaging (MRI) in fetuses with isolated ventriculomegaly. Fetal brain MRI (1.5 T) was performed in 60 normal fetuses and 65 with isolated ventriculomegaly, across a gestational age range of 22-38 weeks. Volumetric analysis of the ventricles and supratentorial brain structures was performed on 3-dimensional reconstructed datasets. Fetuses with isolated ventriculomegaly had increased brain parenchyma volumes when compared with the control cohort (9.6%, P < 0.0001) with enlargement restricted to the cortical gray matter (17.2%, P = 0.002). The extracerebral cerebrospinal fluid and third and fourth ventricles were also enlarged. White matter, basal ganglia, and thalamic volumes were not significantly different between cohorts. The presence of relative cortical overgrowth in fetuses with ventriculomegaly may represent the neurobiological substrate for cognitive, language, and behavioral deficits in these children.

  9. Cognitive impairment in multiple sclerosis.

    PubMed

    Jongen, P J; Ter Horst, A T; Brands, A M

    2012-04-01

    Cognitive impairment occurs in 40-65% of multiple sclerosis (MS) patients, typically involving complex attention, information processing speed, (episodic) memory and executive functions. It is seen in the subclinical radiologically isolated syndrome, clinically isolated syndrome, and all phases of clinical MS. In pediatric-onset MS cognition is frequently impaired and worsens relatively rapidly. Cognitive impairment often affects personal life and vocational status. Depression, anxiety and fatigue aggravate symptoms, whereas cognitive reserve partially protects. Cognitive dysfunction correlates to brain magnetic resonance imaging (MRI) lesion volumes and (regional) atrophy, and degree of and increase in MRI abnormalities predict further worsening. Experimental MRI indicates a crucial role for (focal) cortical lesions and atrophy, abnormal cortical integrity, and early changes in normal appearing brain tissue. Functional MRI suggests compensatory reorganization and adaptation changes in neural activities. Screening tools are the Brief Repeatable Neuropsychological Battery, Symbol Digit Modalities Test and Audio Recorded Cognitive Screen. The Minimal Assessment of Cognitive Function in Multiple Sclerosis (MS) is used for formal neuropsychological evaluation. What constitutes a clinically relevant change and how to optimally monitor cognition are issues to be settled. In relapsing-remitting MS timely and adequate disease modifying drug treatment may stabilize or possibly improve cognition. There is no evidence-based symptomatic drug treatment, nor are there optimal non-pharmacological approaches. Leisure activities enhance cognitive reserve. Cognitive rehabilitation in MS patients is still in its infancy. Cognitive behavioral therapy, exercise, and education programs are promising psychosocial interventions to improve coping and lessen cognitive symptoms.

  10. Sleep-Dependent Declarative Memory Consolidation—Unaffected after Blocking NMDA or AMPA Receptors but Enhanced by NMDA Coagonist D-Cycloserine

    PubMed Central

    Feld, Gordon B; Lange, Tanja; Gais, Steffen; Born, Jan

    2013-01-01

    Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors. PMID:23887151

  11. Analysis of Cortical Flow Models In Vivo

    PubMed Central

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  12. Spatial integration and cortical dynamics.

    PubMed Central

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-01

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8570604

  13. Visual impairment.

    PubMed

    Ellenberger, Carl

    2016-01-01

    This chapter can guide the use of imaging in the evaluation of common visual syndromes: transient visual disturbance, including migraine and amaurosis fugax; acute optic neuropathy complicating multiple sclerosis, neuromyelitis optica spectrum disorder, Leber hereditary optic neuropathy, and Susac syndrome; papilledema and pseudotumor cerebri syndrome; cerebral disturbances of vision, including posterior cerebral arterial occlusion, posterior reversible encephalopathy, hemianopia after anterior temporal lobe resection, posterior cortical atrophy, and conversion blindness. Finally, practical efforts in visual rehabilitation by sensory substitution for blind patients can improve their lives and disclose new information about the brain. PMID:27430448

  14. Models of cortical malformation--Chemical and physical.

    PubMed

    Luhmann, Heiko J

    2016-02-15

    Pharmaco-resistant epilepsies, and also some neuropsychiatric disorders, are often associated with malformations in hippocampal and neocortical structures. The mechanisms leading to these cortical malformations causing an imbalance between the excitatory and inhibitory system are largely unknown. Animal models using chemical or physical manipulations reproduce different human pathologies by interfering with cell generation and neuronal migration. The model of in utero injection of methylazoxymethanol (MAM) acetate mimics periventricular nodular heterotopia. The freeze lesion model reproduces (poly)microgyria, focal heterotopia and schizencephaly. The in utero irradiation model causes microgyria and heterotopia. Intraperitoneal injections of carmustine 1-3-bis-chloroethyl-nitrosurea (BCNU) to pregnant rats produces laminar disorganization, heterotopias and cytomegalic neurons. The ibotenic acid model induces focal cortical malformations, which resemble human microgyria and ulegyria. Cortical dysplasia can be also observed following prenatal exposure to ethanol, cocaine or antiepileptic drugs. All these models of cortical malformations are characterized by a pronounced hyperexcitability, few of them also produce spontaneous epileptic seizures. This dysfunction results from an impairment in GABAergic inhibition and/or an increase in glutamatergic synaptic transmission. The cortical region initiating or contributing to this hyperexcitability may not necessarily correspond to the site of the focal malformation. In some models wide-spread molecular and functional changes can be observed in remote regions of the brain, where they cause pathophysiological activities. This paper gives an overview on different animal models of cortical malformations, which are mostly used in rodents and which mimic the pathology and to some extent the pathophysiology of neuronal migration disorders associated with epilepsy in humans.

  15. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions

    PubMed Central

    Nam, Kie Woo; Castellanos, Nazareth; Simmons, Andrew; Froudist-Walsh, Seán; Allin, Matthew P.; Walshe, Muriel; Murray, Robin M.; Evans, Alan; Muehlboeck, J-Sebastian; Nosarti, Chiara

    2015-01-01

    Very preterm birth (gestational age < 33 weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15 years) and beginning of adulthood (mean age 20 years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing. PMID:25871628

  16. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions.

    PubMed

    Nam, Kie Woo; Castellanos, Nazareth; Simmons, Andrew; Froudist-Walsh, Seán; Allin, Matthew P; Walshe, Muriel; Murray, Robin M; Evans, Alan; Muehlboeck, J-Sebastian; Nosarti, Chiara

    2015-07-15

    Very preterm birth (gestational age <33 weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15 years) and beginning of adulthood (mean age 20 years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing. PMID:25871628

  17. The evolution of alexia and simultanagnosia in posterior cortical atrophy.

    PubMed

    Mendez, M F; Cherrier, M M

    1998-04-01

    Early alexia and higher visual impairments characterize Posterior cortical atrophy (PCA), a progressive dementing syndrome most often caused by Alzheimer disease. Posterior cortical atrophy is rare, and the nature of the visual impairments in PCA are unclear. The authors observed two patients who had an insidiously progressive reading difficulty characterized by letter-by-letter reading and otherwise intact cognitive functions. Over time, these patients developed "ventral simultanagnosia" with preserved detection of multiple stimuli but inability to interpret whole scenes. Subsequently, they progressed to Balint syndrome with "dorsal simultanagnosia," optic ataxia, and oculomotor apraxia. Structural imaging was normal, but functional imaging revealed posterior cortical dysfunction. On a letter reading task, both patients had a word superiority effect, and on a whole word reading task, they could not read most words with missing or crosshatched letters. An inability to assess whole scenes progressed to an inability to detect more than one stimulus in an array. These findings suggest an evolution of PCA with progressive difficulty in visual integration beginning with letters, progressing to whole scenes, and culminating in Balint syndrome. These changes may reflect an extension of the pathophysiology of PCA from the extrastriate visual cortex to its occipitotemporal and occipitoparietal connections. PMID:9652488

  18. Increased visual cortical thickness in sight-recovery individuals.

    PubMed

    Guerreiro, Maria J S; Erfort, Maria V; Henssler, Jonathan; Putzar, Lisa; Röder, Brigitte

    2015-12-01

    Individuals who are born blind due to dense bilateral cataracts and who later regain vision due to cataract surgery provide a unique model to evaluate the effect of early sensory experience in humans. In recent years, several studies have started to assess the functional consequences of early visual deprivation in these individuals, revealing a number of behavioral impairments in visual and multisensory functions. In contrast, the extent to which a transient period of congenital visual deprivation impacts brain structure has not yet been investigated. The present study investigated this by assessing cortical thickness of occipital areas in a group of six cataract-reversal individuals and a group of six age-matched normally sighted controls. This analysis revealed higher cortical thickness in cataract-reversal individuals in the left calcarine sulcus, in the superior occipital gyrus and in the transverse occipital sulcus bilaterally. In addition, occipital cortical thickness correlated negatively with behavioral performance in an audio-visual task for which visual input was critical, and positively with behavioral performance in auditory tasks. Together, these results underscore the critical role of early sensory experience in shaping brain structure and suggest that increased occipital cortical thickness, while potentially compensatory for auditory sensory processing, might be maladaptive for visual recovery in cases of sight restoration.

  19. Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy.

    PubMed

    Crimins, Johanna L; Rocher, Anne B; Peters, Alan; Shultz, Penny; Lewis, Jada; Luebke, Jennifer I

    2011-11-01

    Cortical neuron death is prevalent by 9 months in rTg(tau(P301L))4510 tau mutant mice (TG) and surviving pyramidal cells exhibit dendritic regression and spine loss. We used whole-cell patch-clamp recordings to investigate the impact of these marked structural changes on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) of layer 3 pyramidal cells in frontal cortical slices from behaviorally characterized TG and non-transgenic (NT) mice at this age. Frontal lobe function of TG mice was intact following a short delay interval but impaired following a long delay interval in an object recognition test, and cortical atrophy and cell loss were pronounced. Surviving TG cells had significantly reduced dendritic diameters, total spine density, and mushroom spines, yet sEPSCs were increased and sIPSCs were unchanged in frequency. Thus, despite significant regressive structural changes, synaptic responses were not reduced in TG cells, indicating that homeostatic compensatory mechanisms occur during progressive tauopathy. Consistent with this idea, surviving TG cells were more intrinsically excitable than NT cells, and exhibited sprouting of filopodia and axonal boutons. Moreover, the neuropil in TG mice showed an increased density of asymmetric synapses, although their mean size was reduced. Taken together, these data indicate that during progressive tauopathy, cortical pyramidal cells compensate for loss of afferent input by increased excitability and establishment of new synapses. These compensatory homeostatic mechanisms may play an important role in slowing the progression of neuronal network dysfunction during neurodegenerative tauopathies.

  20. Contralesional neglect in monkeys with small unilateral parietal cortical ablations.

    PubMed

    Marshall, J W B; Baker, H F; Ridley, R M

    2002-10-17

    Transient contralesional spatial neglect, in addition to motor impairment in the contralesional arm, is sometimes seen in patients following cerebral infarction in the right hemisphere and is seen following experimental occlusion of the right middle cerebral artery in primates. To test whether contralesional visuospatial neglect arises from a disruption of the forward flow of information from the striate cortex through the dorsal territory of the middle cerebral artery, we made a small strip suction ablation in the right parietal cortex from the medial edge of the dorsal cortical surface to the posterior ventral edge of the superior temporal gyrus in marmoset monkeys. These monkeys did not exhibit a motor impairment, or misreaching, with the contralesional arm. When they were unrestrained and free to use either arm, they were impaired at finding rewards in their contralesional space and in choosing the nearer of two rewards hidden in ipsilesional space (i.e. they had an ultra-ipsilesional bias in ipsilesional space). Comparison of performance under four conditions in a task in which the monkeys were constrained to reach into each hemispace with each arm separately indicated that they were impaired at reaching into contralesional, but not ipsilesional, space with either arm but they did not exhibit any impairment confined to the contralesional arm. These impairments in contralesional space were transient suggesting that the monkeys were able to re-align their egocentric spatial coordinates to obviate these deficits.

  1. A circuit for motor cortical modulation of auditory cortical activity.

    PubMed

    Nelson, Anders; Schneider, David M; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-09-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  2. Effects of cortical damage on binocular depth perception.

    PubMed

    Bridge, Holly

    2016-06-19

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy.This article is part of the themed issue 'Vision in our three-dimensional world'.

  3. Effects of cortical damage on binocular depth perception

    PubMed Central

    2016-01-01

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269597

  4. Effects of cortical damage on binocular depth perception.

    PubMed

    Bridge, Holly

    2016-06-19

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269597

  5. Isolated executive impairment and associated frontal neuropathology.

    PubMed

    Johnson, Julene K; Vogt, Brent A; Kim, Ronald; Cotman, Carl W; Head, Elizabeth

    2004-01-01

    Cognitive impairment in the absence of dementia is common in elderly individuals and is most often studied in the context of an isolated impairment in memory. In the current study, we report the neuropsychological and neuropathological features of a nondemented elderly individual with isolated impairment on a test of executive function (i.e., Trail Making Test) and preserved memory, language, and visuospatial function. Postmortem studies indicated that cortical neurofibrillary tangles (NFT) varied considerably, and some regions contained large numbers of neuritic senile plaques. Semiquantitative immunohistochemistry showed higher NFT and amyloid-beta (Abeta) loads in the frontal cortex relative to the temporal, entorhinal, occipital, and parietal cortices. A survey of the entire cingulate gyrus showed a wide dispersion of Abeta42 with the highest concentration in the perigenual part of the anterior cingulate cortex; Abeta appeared to be linked with neuron loss and did not overlap with the heaviest neuritic degeneration. The current case may represent a nonmemory presentation of mild cognitive impairment (executive mild cognitive impairment) that is associated with frontal and anterior cingulate pathology and may be an early stage of the frontal variant of Alzheimer disease.

  6. Evaluating long-latency auditory evoked potentials in the diagnosis of cortical hearing loss in children

    PubMed Central

    Lopez-Soto, Teresa; Postigo-Madueno, Amparo; Nunez-Abades, Pedro

    2016-01-01

    In centrally related hearing loss, there is no apparent damage in the auditory system, but the patient is unable to hear sounds. In patients with cortical hearing loss (and in the absence of communication deficit, either total or partial, as in agnosia or aphasia), some attention-related or language-based disorders may lead to a wrong diagnosis of hearing impairment. The authors present two patients (8 and 11 years old) with no anatomical damage to the ear, the absence of neurological damage or trauma, but immature cortical auditory evoked potentials. Both patients presented a clinical history of multiple diagnoses over several years. Because the most visible symptom was moderate hearing loss, the patients were recurrently referred to audiological testing, with no improvement. This report describes the use of long-latency evoked potentials to determine cases of cortical hearing loss, where hearing impairment is a consequence of underdevelopment at the central nervous system. PMID:27006780

  7. Imprinting and recalling cortical ensembles.

    PubMed

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. PMID:27516599

  8. Grid cells and cortical representation.

    PubMed

    Moser, Edvard I; Roudi, Yasser; Witter, Menno P; Kentros, Clifford; Bonhoeffer, Tobias; Moser, May-Britt

    2014-07-01

    One of the grand challenges in neuroscience is to comprehend neural computation in the association cortices, the parts of the cortex that have shown the largest expansion and differentiation during mammalian evolution and that are thought to contribute profoundly to the emergence of advanced cognition in humans. In this Review, we use grid cells in the medial entorhinal cortex as a gateway to understand network computation at a stage of cortical processing in which firing patterns are shaped not primarily by incoming sensory signals but to a large extent by the intrinsic properties of the local circuit.

  9. Horizontal integration and cortical dynamics.

    PubMed

    Gilbert, C D

    1992-07-01

    We have discussed several results that lead to a view that cells in the visual system are endowed with dynamic properties, influenced by context, expectation, and long-term modifications of the cortical network. These observations will be important for understanding how neuronal ensembles produce a system that perceives, remembers, and adapts to injury. The advantage to being able to observe changes at early stages in a sensory pathway is that one may be able to understand the way in which neuronal ensembles encode and represent images at the level of their receptive field properties, of cortical topographies, and of the patterns of connections between cells participating in a network.

  10. Apraxia in a patient with lesion located in right sub-cortical area. Analysis of errors.

    PubMed

    Mozaz, M; Marti, J F; Carrera, E; De la Puente, E

    1990-12-01

    This report describes a case of apraxia caused by a right sided sub-cortical lesion. Performance on test for apraxia was impaired. A new type of error which involved demonstrating the use of objects on one's own body is reported. Some theoretical interpretations of the findings are discussed.

  11. Neural Correlates of Impaired Vision in Adolescents Born Extremely Preterm and/or Extremely Low Birthweight

    PubMed Central

    Kelly, Claire E.; Cheong, Jeanie L. Y.; Molloy, Carly; Anderson, Peter J.; Lee, Katherine J.; Burnett, Alice C.; Connelly, Alan; Doyle, Lex W.; Thompson, Deanne K.

    2014-01-01

    Background Adolescents born extremely preterm (EP; <28 weeks' gestation) and/or extremely low birthweight (ELBW; <1000 g) experience high rates of visual impairments, however the potential neural correlates of visual impairments in EP/ELBW adolescents require further investigation. This study aimed to: 1) compare optic radiation and primary visual cortical structure between EP/ELBW adolescents and normal birthweight controls; 2) investigate associations between perinatal factors and optic radiation and primary visual cortical structure in EP/ELBW adolescents; 3) investigate associations between optic radiation and primary visual cortical structure in EP/ELBW adolescents and the odds of impaired vision. Methods 196 EP/ELBW adolescents and 143 controls underwent magnetic resonance imaging at a mean age of 18 years. Optic radiations were delineated using constrained spherical deconvolution based probabilistic tractography. Primary visual cortices were segmented using FreeSurfer software. Diffusion tensor variables and tract volume of the optic radiations, as well as volume, surface area and thickness of the primary visual cortices, were estimated. Results Axial, radial and mean diffusivities within the optic radiations, and primary visual cortical thickness, were higher in the EP/ELBW adolescents than controls. Within EP/ELBW adolescents, postnatal corticosteroid exposure was associated with altered optic radiation diffusion values and lower tract volume, while decreasing gestational age at birth was associated with increased primary visual cortical volume, area and thickness. Furthermore, decreasing optic radiation fractional anisotropy and tract volume, and increasing optic radiation diffusivity in EP/ELBW adolescents were associated with increased odds of impaired vision, whereas primary visual cortical measures were not associated with the odds of impaired vision. Conclusions Optic radiation and primary visual cortical structure are altered in EP/ELBW adolescents

  12. [Cognitive impairment in Parkinson's disease].

    PubMed

    Tachibana, Hisao

    2013-01-01

    Cognitive impairment is a common finding in Parkinson's disease (PD), even in the early stages. The concept of mild cognitive impairment (MCI) in PD was recently formalized with diagnosis being reached after impairments in neuropsychological tasks become significant in at least one domain. The brain profile of cognitive deficits involves executive functions (e. g., planning, set shifting, set maintenance, problem solving), attention and memory function. Memory deficits are characterized by impairments in delayed recall, temporal ordering and conditional associate learning. PD patients demonstrate relatively preserved recognition. Visuospatial dysfunctions have also been reported, while language is largely preserved. The existence of two distinct mild cognitive syndromes has also been suggested. One of these affects mainly the frontostriatal executive deficits that are modulated by dopaminergic medications and by a genetically determined level of prefrontal cortex dopamine release. The other affects the more-posterior cortical abilities, such as visuospatial and memory functions, and is suggested to be associated with an increased risk for conversion to dementia. Cross-sectional studies have commonly reported dementia in 20-30% of PD patients, although the 8-year cumulative incidence of dementia may be as high as 78%. Factors associated with dementia in PD are age at onset, age at the time of examination, akinetic-rigid form PD, depression, hallucination, rapid eye movement sleep behavioral disorder and severe olfactory deficits. Clinical features generally involve the same type of deficits as those found in MCI patients, which are more severe and more extensive. The phenomenology of the dementia syndrome is similar to that seen in dementia with Lewy bodies, and clinicopathological correlation studies have revealed varying results with regard to neurochemical deficits and the pathological substrate underlying cognitive impairment and dementia. Early cognitive

  13. Pitch-Responsive Cortical Regions in Congenital Amusia.

    PubMed

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-01

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. PMID:26961952

  14. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals

    PubMed Central

    Toda, Tomohisa; Shinmyo, Yohei; Dinh Duong, Tung Anh; Masuda, Kosuke; Kawasaki, Hiroshi

    2016-01-01

    Because folding of the cerebral cortex in the mammalian brain is believed to be crucial for higher brain functions, the mechanisms underlying its formation during development and evolution are of great interest. Although it has been proposed that increased neural progenitors in the subventricular zone (SVZ) are responsible for making cortical folds, their roles in cortical folding are still largely unclear, mainly because genetic methods for gyrencephalic mammals had been poorly available. Here, by taking an advantage of our newly developed in utero electroporation technique for the gyrencephalic brain of ferrets, we investigated the role of SVZ progenitors in cortical folding. We found regional differences in the abundance of SVZ progenitors in the developing ferret brain even before cortical folds began to be formed. When Tbr2 transcription factor was inhibited, intermediate progenitor cells were markedly reduced in the ferret cerebral cortex. Interestingly, outer radial glial cells were also reduced by inhibiting Tbr2. We uncovered that reduced numbers of SVZ progenitors resulted in impaired cortical folding. When Tbr2 was inhibited, upper cortical layers were preferentially reduced in gyri compared to those in sulci. Our findings indicate the biological importance of SVZ progenitors in cortical folding in the gyrencephalic brain. PMID:27403992

  15. Early detection of AD using cortical thickness measurements

    NASA Astrophysics Data System (ADS)

    Spjuth, M.; Gravesen, F.; Eskildsen, S. F.; Østergaard, L. R.

    2007-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that causes cortical atrophy and impaired cognitive functions. The diagnosis is difficult to make and is often made over a longer period of time using a combination of neuropsychological tests, and structural and functional imaging. Due to the impact of early intervention the challenge of distinguishing early AD from normal ageing has received increasing attention. This study uses cortical thickness measurements to characterize the atrophy in nine mild AD patients (mean MMSE-score 23.3 (std: 2.6)) compared to five healthy middle-aged subjects. A fully automated method based on deformable models is used for delineation of the inner and outer boundaries of the cerebral cortex from Magnetic Resonance Images. This allows observer independent high-resolution quantification of the cortical thickness. The cortex analysis facilitates detection of alterations throughout the entire cortical mantle. To perform inter-subject thickness comparison in which the spatial information is retained, a feature-based registration algorithm is developed which uses local cortical curvature, normal vector, and a distance measure. A comparison of the two study groups reveals that the lateral side of the hemispheres shows diffuse thinner areas in the mild AD group but especially the medial side shows a pronounced thinner area which can be explained by early limbic changes in AD. For classification principal component analysis is applied to reduce the high number of thickness measurements (>200,000) into fewer features. All mild AD and healthy middle-aged subjects are classified correctly (sensitivity and specificity 100%).

  16. Biomechanics of Single Cortical Neurons

    PubMed Central

    Bernick, Kristin B.; Prevost, Thibault P.; Suresh, Subra; Socrate, Simona

    2011-01-01

    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude – 10, 1, and 0.1 μm/s. Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper-) elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented into a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. PMID:20971217

  17. Sleep-Dependent Consolidation of Statistical Learning

    ERIC Educational Resources Information Center

    Durrant, Simon J.; Taylor, Charlotte; Cairney, Scott; Lewis, Penelope A.

    2011-01-01

    The importance of sleep for memory consolidation has been firmly established over the past decade. Recent work has extended this by suggesting that sleep is also critical for the integration of disparate fragments of information into a unified schema, and for the abstraction of underlying rules. The question of which aspects of sleep play a…

  18. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology.

    PubMed

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-03-22

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies.

  19. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology

    PubMed Central

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-01-01

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252

  20. Hearing Loss Severity: Impaired Processing of Formant Transition Duration

    ERIC Educational Resources Information Center

    Coez, A.; Belin, P.; Bizaguet, E.; Ferrary, E.; Zilbovicius, M.; Samson, Y.

    2010-01-01

    Normal hearing listeners exploit the formant transition (FT) detection to identify place of articulation for stop consonants. Neuro-imaging studies revealed that short FT induced less cortical activation than long FT. To determine the ability of hearing impaired listeners to distinguish short and long formant transitions (FT) from vowels of the…

  1. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat.

    PubMed

    Ego-Stengel, Valérie; Wilson, Matthew A

    2010-01-01

    The hippocampus plays a key role in the acquisition of new memories for places and events. Evidence suggests that the consolidation of these memories is enhanced during sleep. At the neuronal level, reactivation of awake experience in the hippocampus during sharp-wave ripple events, characteristic of slow-wave sleep, has been proposed as a neural mechanism for sleep-dependent memory consolidation. However, a causal relation between sleep reactivation and memory consolidation has not been established. Here we show that disrupting neuronal activity during ripple events impairs spatial learning. We trained rats daily in two identical spatial navigation tasks followed each by a 1-hour rest period. After one of the tasks, stimulation of hippocampal afferents selectively disrupted neuronal activity associated with ripple events without changing the sleep-wake structure. Rats learned the control task significantly faster than the task followed by rest stimulation, indicating that interfering with hippocampal processing during sleep led to decreased learning.

  2. Cortical hyperexcitability and sensitivity to discomfort glare.

    PubMed

    Bargary, Gary; Furlan, Michele; Raynham, Peter J; Barbur, John L; Smith, Andrew T

    2015-03-01

    It is well established that there are two main aspects to glare, the visual impairment and the discomfort, known as disability and discomfort glare, respectively. In contrast to the case of disability glare we understand very little about the underlying mechanisms or physiology of discomfort glare. This study attempts to elucidate the neural mechanisms involved using fMRI and glare sources with controlled levels of retinal illuminance. Prior to carrying out the fMRI experiment, we determined each participant's discomfort glare threshold. The participants were then divided into two groups of equal size based on their ranked sensitivity to discomfort glare, a low and high sensitivity group. In the fMRI experiment each participant was presented with three levels of glare intensity whilst simultaneously required to carry out a simple behavioral task. We compared BOLD responses between the two groups and found that the group more sensitive to glare had an increased response that was localized at three discrete, bilateral cortical locations: one in the cunei, one in the lingual gyri and one in the superior parietal lobules. This increased response was present for all light levels tested, whether or not they were intense enough to cause discomfort glare. Based on the results, we present the case that discomfort glare may be a response to hyperexcitability or saturation of visual neurons. PMID:25659503

  3. Anatomical imbalance between cortical networks in autism.

    PubMed

    Watanabe, Takamitsu; Rees, Geraint

    2016-01-01

    Influential psychological models of autism spectrum disorder (ASD) have proposed that this prevalent developmental disorder results from impairment of global (integrative) information processing and overload of local (sensory) information. However, little neuroanatomical evidence consistent with this account has been reported. Here, we examined relative grey matter volumes (rGMVs) between three cortical networks, how they changed with age, and their relationship with core symptomatology. Using public neuroimaging data of high-functioning ASD males and age-/sex-/IQ-matched controls, we first identified age-associated atypical increases in rGMVs of the regions of two sensory systems (auditory and visual networks), and an age-related aberrant decrease in rGMV of a task-control system (fronto-parietal network, FPN) in ASD children. While the enlarged rGMV of the auditory network in ASD adults was associated with the severity of autistic socio-communicational core symptom, that of the visual network was instead correlated with the severity of restricted and repetitive behaviours in ASD. Notably, the atypically decreased rGMV of FPN predicted both of the two core symptoms. These findings suggest that disproportionate undergrowth of a task-control system (FPN) may be a common anatomical basis for the two ASD core symptoms, and relative overgrowth of the two different sensory systems selectively compounds the distinct symptoms.

  4. Anatomical imbalance between cortical networks in autism

    PubMed Central

    Watanabe, Takamitsu; Rees, Geraint

    2016-01-01

    Influential psychological models of autism spectrum disorder (ASD) have proposed that this prevalent developmental disorder results from impairment of global (integrative) information processing and overload of local (sensory) information. However, little neuroanatomical evidence consistent with this account has been reported. Here, we examined relative grey matter volumes (rGMVs) between three cortical networks, how they changed with age, and their relationship with core symptomatology. Using public neuroimaging data of high-functioning ASD males and age-/sex-/IQ-matched controls, we first identified age-associated atypical increases in rGMVs of the regions of two sensory systems (auditory and visual networks), and an age-related aberrant decrease in rGMV of a task-control system (fronto-parietal network, FPN) in ASD children. While the enlarged rGMV of the auditory network in ASD adults was associated with the severity of autistic socio-communicational core symptom, that of the visual network was instead correlated with the severity of restricted and repetitive behaviours in ASD. Notably, the atypically decreased rGMV of FPN predicted both of the two core symptoms. These findings suggest that disproportionate undergrowth of a task-control system (FPN) may be a common anatomical basis for the two ASD core symptoms, and relative overgrowth of the two different sensory systems selectively compounds the distinct symptoms. PMID:27484308

  5. Anatomical imbalance between cortical networks in autism.

    PubMed

    Watanabe, Takamitsu; Rees, Geraint

    2016-01-01

    Influential psychological models of autism spectrum disorder (ASD) have proposed that this prevalent developmental disorder results from impairment of global (integrative) information processing and overload of local (sensory) information. However, little neuroanatomical evidence consistent with this account has been reported. Here, we examined relative grey matter volumes (rGMVs) between three cortical networks, how they changed with age, and their relationship with core symptomatology. Using public neuroimaging data of high-functioning ASD males and age-/sex-/IQ-matched controls, we first identified age-associated atypical increases in rGMVs of the regions of two sensory systems (auditory and visual networks), and an age-related aberrant decrease in rGMV of a task-control system (fronto-parietal network, FPN) in ASD children. While the enlarged rGMV of the auditory network in ASD adults was associated with the severity of autistic socio-communicational core symptom, that of the visual network was instead correlated with the severity of restricted and repetitive behaviours in ASD. Notably, the atypically decreased rGMV of FPN predicted both of the two core symptoms. These findings suggest that disproportionate undergrowth of a task-control system (FPN) may be a common anatomical basis for the two ASD core symptoms, and relative overgrowth of the two different sensory systems selectively compounds the distinct symptoms. PMID:27484308

  6. Slower postnatal growth is associated with delayed cerebral cortical maturation in preterm newborns.

    PubMed

    Vinall, Jillian; Grunau, Ruth E; Brant, Rollin; Chau, Vann; Poskitt, Kenneth J; Synnes, Anne R; Miller, Steven P

    2013-01-16

    Slower postnatal growth is an important predictor of adverse neurodevelopmental outcomes in infants born preterm. However, the relationship between postnatal growth and cortical development remains largely unknown. Therefore, we examined the association between neonatal growth and diffusion tensor imaging measures of microstructural cortical development in infants born very preterm. Participants were 95 neonates born between 24 and 32 weeks gestational age studied twice with diffusion tensor imaging: scan 1 at a median of 32.1 weeks (interquartile range, 30.4 to 33.6) and scan 2 at a median of 40.3 weeks (interquartile range, 38.7 to 42.7). Fractional anisotropy and eigenvalues were recorded from 15 anatomically defined cortical regions. Weight, head circumference, and length were recorded at birth and at the time of each scan. Growth between scans was examined in relation to diffusion tensor imaging measures at scans 1 and 2, accounting for gestational age, birth weight, sex, postmenstrual age, known brain injury (white matter injury, intraventricular hemorrhage, and cerebellar hemorrhage), and neonatal illness (patent ductus arteriosus, days intubated, infection, and necrotizing enterocolitis). Impaired weight, length, and head growth were associated with delayed microstructural development of the cortical gray matter (fractional anisotropy: P < 0.001), but not white matter (fractional anisotropy: P = 0.529), after accounting for prenatal growth, neonatal illness, and brain injury. Avoiding growth impairment during neonatal care may allow cortical development to proceed optimally and, ultimately, may provide an opportunity to reduce neurological disabilities related to preterm birth.

  7. Examining cortical thickness in male and female DWI offenders.

    PubMed

    Dedovic, Katarina; Pruessner, Jens; Tremblay, Jacques; Nadeau, Louise; Ouimet, Marie Claude; Lepage, Martin; Brown, Thomas G

    2016-04-21

    Some sex differences have been detected in driving while impaired by alcohol (DWI) offenders. However, understanding of the key factors contributing to DWI among male and female drivers remains elusive, limiting development of targeted interventions. Sex-based neurocognitive analyses could provide the much-needed insight. We examined whether male DWI offenders show cortical thickness anomalies that differ from those in female DWI offenders, when compared to their respective controls. Moderating role of sex and alcohol use on DWI status was also investigated. Sixty-one DWI offenders (29 male; 32 female) and 58 controls (29 male; 29 female) completed an anatomical brain scan and assessments on other relevant characteristics. Only male DWI offenders had reduced cortical thickness in the right dorsal posterior cingulate cortex (PCC), a region involved in cognitive control. Lower cortical thickness was associated with increased odds of DWI status only among males who have not engaged in very hazardous pattern of alcohol misuse in the previous 12 months. Thus, for these male DWI drivers, interventions that could impact PCC could be most advantageous. Continued multidimensional sex analysis of the neural characteristics of male and female DWI offenders is warranted. PMID:27016386

  8. Cortical networks of procedural learning: evidence from cerebellar damage.

    PubMed

    Torriero, Sara; Oliveri, Massimiliano; Koch, Giacomo; Lo Gerfo, Emanuele; Salerno, Silvia; Petrosini, Laura; Caltagirone, Carlo

    2007-03-25

    The lateral cerebellum plays a critical role in procedural learning that goes beyond the strict motor control functions attributed to it. Patients with cerebellar damage show marked impairment in the acquisition of procedures, as revealed by their performance on the serial reaction time task (SRTT). Here we present the case of a patient affected by ischemic damage involving the left cerebellum who showed a selective deficit in procedural learning while performing the SRTT with the left hand. The deficit recovered when the cortical excitability of an extensive network involving both cerebellar hemispheres and the dorsolateral prefrontal cortex (DLPFC) was decreased by low-frequency repetitive transcranial magnetic stimulation (rTMS). Although inhibition of the right DLPFC or a control fronto-parietal region did not modify the patient's performance, inhibition of the right (unaffected) cerebellum and the left DLPFC markedly improved task performance. These findings could be explained by the modulation of a set of inhibitory and excitatory connections between the lateral cerebellum and the contralateral prefrontal area induced by rTMS. The presence of left cerebellar damage is likely associated with a reduced excitatory drive from sub-cortical left cerebellar nuclei towards the right DLPFC, causing reduced excitability of the right DLPFC and, conversely, unbalanced activation of the left DLPFC. Inhibition of the left DLPFC would reduce the unbalancing of cortical activation, thus explaining the observed selective recovery of procedural memory. PMID:17166525

  9. Examining cortical thickness in male and female DWI offenders.

    PubMed

    Dedovic, Katarina; Pruessner, Jens; Tremblay, Jacques; Nadeau, Louise; Ouimet, Marie Claude; Lepage, Martin; Brown, Thomas G

    2016-04-21

    Some sex differences have been detected in driving while impaired by alcohol (DWI) offenders. However, understanding of the key factors contributing to DWI among male and female drivers remains elusive, limiting development of targeted interventions. Sex-based neurocognitive analyses could provide the much-needed insight. We examined whether male DWI offenders show cortical thickness anomalies that differ from those in female DWI offenders, when compared to their respective controls. Moderating role of sex and alcohol use on DWI status was also investigated. Sixty-one DWI offenders (29 male; 32 female) and 58 controls (29 male; 29 female) completed an anatomical brain scan and assessments on other relevant characteristics. Only male DWI offenders had reduced cortical thickness in the right dorsal posterior cingulate cortex (PCC), a region involved in cognitive control. Lower cortical thickness was associated with increased odds of DWI status only among males who have not engaged in very hazardous pattern of alcohol misuse in the previous 12 months. Thus, for these male DWI drivers, interventions that could impact PCC could be most advantageous. Continued multidimensional sex analysis of the neural characteristics of male and female DWI offenders is warranted.

  10. Reduced Sleep Spindles in Schizophrenia: A Treatable Endophenotype That Links Risk Genes to Impaired Cognition?

    PubMed

    Manoach, Dara S; Pan, Jen Q; Purcell, Shaun M; Stickgold, Robert

    2016-10-15

    Although schizophrenia (SZ) is defined by waking phenomena, abnormal sleep is a common feature. In particular, there is accumulating evidence of a sleep spindle deficit. Sleep spindles, a defining thalamocortical oscillation of non-rapid eye movement stage 2 sleep, correlate with IQ and are thought to promote long-term potentiation and enhance memory consolidation. We review evidence that reduced spindle activity in SZ is an endophenotype that impairs sleep-dependent memory consolidation, contributes to symptoms, and is a novel treatment biomarker. Studies showing that spindles can be pharmacologically enhanced in SZ and that increasing spindles improves memory in healthy individuals suggest that treating spindle deficits in patients with SZ may improve cognition. Spindle activity is highly heritable, and recent large-scale genome-wide association studies have identified SZ risk genes that may contribute to spindle deficits and illuminate their mechanisms. For example, the SZ risk gene CACNA1I encodes a calcium channel that is abundantly expressed in the thalamic spindle generator and plays a critical role in spindle activity based on a mouse knockout. Future genetic studies of animals and humans can delineate the role of this and other genes in spindles. Such cross-disciplinary research, by forging empirical links in causal chains from risk genes to proteins and cellular functions to endophenotypes, cognitive impairments, symptoms, and diagnosis, has the potential to advance the mechanistic understanding, treatment, and prevention of SZ. This review highlights the importance of deficient sleep-dependent memory consolidation among the cognitive deficits of SZ and implicates reduced sleep spindles as a potentially treatable mechanism.

  11. Reconstitution of cortical Dynein function.

    PubMed

    Roth, Sophie; Laan, Liedewij; Dogterom, Marileen

    2014-01-01

    Cytoplasmic dynein is a major microtubule (MT)-associated motor in nearly all eukaryotic cells. A subpopulation of dyneins associates with the cell cortex and the interaction of this cortical dynein with MTs helps to drive processes such as nuclear migration, mitotic spindle orientation, and cytoskeletal reorientation during wound healing. In this chapter, we describe three types of assays in which interactions between cortical dynein and MTs are reconstituted in vitro at increasing levels of complexity. In the first 1D assay, MTs, nucleated from a centrosome attached to a surface, grow against dynein-coated gold barriers. In this assay configuration, the interactions between MTs and dynein attached to a barrier can be studied in great detail. In the second and third assays, a freely moving dynamic aster is placed in either a 2D microfabricated chamber or a 3D water-in-oil emulsion droplet, with dynein-coated boundaries. These assays can be used to study how cortical dynein positions centrosomes. Finally, we discuss future possibilities for increasing the complexity of these reconstituted systems.

  12. Cortical Control of Affective Networks

    PubMed Central

    Kumar, Sunil; Black, Sherilynn J.; Hultman, Rainbo; Szabo, Steven T.; DeMaio, Kristine D.; Du, Jeanette; Katz, Brittany M.; Feng, Guoping; Covington, Herbert E.; Dzirasa, Kafui

    2013-01-01

    Transcranial magnetic stimulation and deep brain stimulation have emerged as therapeutic modalities for treatment refractory depression; however, little remains known regarding the circuitry that mediates the therapeutic effect of these approaches. Here we show that direct optogenetic stimulation of prefrontal cortex (PFC) descending projection neurons in mice engineered to express Chr2 in layer V pyramidal neurons (Thy1–Chr2 mice) models an antidepressant-like effect in mice subjected to a forced-swim test. Furthermore, we show that this PFC stimulation induces a long-lasting suppression of anxiety-like behavior (but not conditioned social avoidance) in socially stressed Thy1–Chr2 mice: an effect that is observed >10 d after the last stimulation. Finally, we use optogenetic stimulation and multicircuit recording techniques concurrently in Thy1–Chr2 mice to demonstrate that activation of cortical projection neurons entrains neural oscillatory activity and drives synchrony across limbic brain areas that regulate affect. Importantly, these neural oscillatory changes directly correlate with the temporally precise activation and suppression of limbic unit activity. Together, our findings show that the direct activation of cortical projection systems is sufficient to modulate activity across networks underlying affective regulation. They also suggest that optogenetic stimulation of cortical projection systems may serve as a viable therapeutic strategy for treating affective disorders. PMID:23325249

  13. Cognitive Impairment in Multiple Sclerosis

    PubMed Central

    Lovera, Jesus; Kovner, Blake

    2012-01-01

    Cognitive Impairment (CI) is a serious complication of MS, and the domains affected are well established but new affected domains such as theory of mind are still being identified. The evidence that some disease modifying therapies (DMTs) may improve and prevent the development of CI in MS is not solid. Recent studies on the prevalence CI in MS, although not as solid as studies completed prior to DMT introduction, suggest that CI remains a problem even among people on DMTs and even at the very earliest stages of MS. Functional MRI studies and studies using diffusion tractography show that the impact of lesions on cognition depends on the particular cortical networks affected and their plasticity. Cognitive rehabilitation and L-amphetamine appear promising treatments, cholinesterase inhibitors and memantine have failed, and data on Ginkgo and exercise are limited. We need more work to understand and develop treatment for CI in MS. PMID:22791241

  14. Differential impact of partial cortical blindness on gaze strategies when sitting and walking - an immersive virtual reality study

    PubMed Central

    Iorizzo, Dana B.; Riley, Meghan E.; Hayhoe, Mary; Huxlin, Krystel R.

    2011-01-01

    The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ~80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ~90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. PMID:21414339

  15. Differential impact of partial cortical blindness on gaze strategies when sitting and walking - an immersive virtual reality study.

    PubMed

    Iorizzo, Dana B; Riley, Meghan E; Hayhoe, Mary; Huxlin, Krystel R

    2011-05-25

    The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ∼80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ∼90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life.

  16. Plasticity of spatial hearing: behavioural effects of cortical inactivation

    PubMed Central

    Nodal, Fernando R; Bajo, Victoria M; King, Andrew J

    2012-01-01

    The contribution of auditory cortex to spatial information processing was explored behaviourally in adult ferrets by reversibly deactivating different cortical areas by subdural placement of a polymer that released the GABAA agonist muscimol over a period of weeks. The spatial extent and time course of cortical inactivation were determined electrophysiologically. Muscimol-Elvax was placed bilaterally over the anterior (AEG), middle (MEG) or posterior ectosylvian gyrus (PEG), so that different regions of the auditory cortex could be deactivated in different cases. Sound localization accuracy in the horizontal plane was assessed by measuring both the initial head orienting and approach-to-target responses made by the animals. Head orienting behaviour was unaffected by silencing any region of the auditory cortex, whereas the accuracy of approach-to-target responses to brief sounds (40 ms noise bursts) was reduced by muscimol-Elvax but not by drug-free implants. Modest but significant localization impairments were observed after deactivating the MEG, AEG or PEG, although the largest deficits were produced in animals in which the MEG, where the primary auditory fields are located, was silenced. We also examined experience-induced spatial plasticity by reversibly plugging one ear. In control animals, localization accuracy for both approach-to-target and head orienting responses was initially impaired by monaural occlusion, but recovered with training over the next few days. Deactivating any part of the auditory cortex resulted in less complete recovery than in controls, with the largest deficits observed after silencing the higher-level cortical areas in the AEG and PEG. Although suggesting that each region of auditory cortex contributes to spatial learning, differences in the localization deficits and degree of adaptation between groups imply a regional specialization in the processing of spatial information across the auditory cortex. PMID:22547635

  17. Numerosity Impairment in Corticobasal Syndrome

    PubMed Central

    Koss, Shira; Clark, Robin; Vesely, Luisa; Weinstein, Jessica; Anderson, Chivon; Richmond, Lauren; Farag, Christine; Gross, Rachel; Liang, Tsao-Wei; Grossman, Murray

    2010-01-01

    OBJECTIVE We assessed the representation of numerosity in corticobasal syndrome (CBS), a neurodegenerative condition affecting the parietal lobe. METHOD Patients judged whether a target numerosity (e.g., “3”) falls between two bounding numerosities (e.g., “1” and “5”). We manipulated the format for representing numerosity (Arabic numerals or dot arrays), the size of the gap between the two bounding numerosities, the absolute magnitude of the numerosities, and the order for presenting the bounding numerosities. In a subset of patients with available imaging, we related performance to cortical atrophy using voxel-based morphometry (VBM). RESULTS CBS patients were significantly impaired overall (65.7% ±16.2 correct) compared to healthy seniors (96.6% ± 2.4 correct), and required three times longer than controls to judge correct stimuli. This deficit was equally evident for Arabic numeral and dot array formats. Controls were significantly slower with smaller gaps than larger gaps, consistent with the greater challenge distinguishing between numerosities that are more similar to each other than very different numerosities. However, CBS patients were equally slow and inaccurate for all gap sizes. Controls also were significantly slower with larger numerosities than smaller numerosities, but CBS patients were equally slow and inaccurate with all numerosity magnitudes. VBM revealed significant cortical atrophy in parietal and frontal regions in CBS compared to controls, including the intraparietal sulcus. CONCLUSIONS These observations are consistent with the claim that the representation of numerosity is degraded in CBS. PMID:20604622

  18. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging.

    PubMed

    Mander, Bryce A; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Lindquist, John R; Ancoli-Israel, Sonia; Jagust, William; Walker, Matthew P

    2013-03-01

    Aging has independently been associated with regional brain atrophy, reduced slow wave activity (SWA) during non-rapid eye movement (NREM) sleep and impaired long-term retention of episodic memories. However, whether the interaction of these factors represents a neuropatholgical pathway associated with cognitive decline in later life remains unknown. We found that age-related medial prefrontal cortex (mPFC) gray-matter atrophy was associated with reduced NREM SWA in older adults, the extent to which statistically mediated the impairment of overnight sleep-dependent memory retention. Moreover, this memory impairment was further associated with persistent hippocampal activation and reduced task-related hippocampal-prefrontal cortex functional connectivity, potentially representing impoverished hippocampal-neocortical memory transformation. Together, these data support a model in which age-related mPFC atrophy diminishes SWA, the functional consequence of which is impaired long-term memory. Such findings suggest that sleep disruption in the elderly, mediated by structural brain changes, represents a contributing factor to age-related cognitive decline in later life.

  19. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy

    PubMed Central

    Gelinas, Jennifer N.; Khodagholy, Dion; Thesen, Thomas; Devinsky, Orrin; Buzsáki, György

    2016-01-01

    Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy. PMID:27111281

  20. The effect of blur on cortical responses to global form and motion

    PubMed Central

    Burton, Eliza A.; Wattam-Bell, John; Rubin, Gary S.; Atkinson, Janette; Braddick, Oliver; Nardini, Marko

    2015-01-01

    Global form and motion sensitivity undergo long development in childhood with motion sensitivity rather than form being impaired in a number of childhood disorders and both impaired in adult clinical populations. This suggests extended development and vulnerability of extrastriate cortical areas associated with global processing. However, in some developmental and clinical populations, it remains unclear to what extent impairments might reflect deficits at earlier stages of visual processing, such as reduced visual acuity and contrast sensitivity. To address this, we investigated the impact of degraded spatial vision on cortical global form and motion processing in healthy adults. Loss of high spatial frequencies was simulated using a diffuser to blur the stimuli. Participants completed behavioral and EEG tests of global form and motion perception under three levels of blur. For the behavioral tests, participants' form and motion coherence thresholds were measured using a two-alternative, forced-choice procedure. Steady-state visual evoked potentials were used to measure cortical responses to changes in the coherence of global form and motion stimuli. Both global form and global motion perception were impaired with increasing blur as measured by elevated behavioral thresholds and reduced cortical responses. However, form thresholds showed greater impairment in both behavioral and EEG measures than motion thresholds at the highest levels of blur. The results suggest that high spatial frequencies play an important role in the perception of both global form and motion but are especially significant for global form. Overall, the results reveal complex interactions between low-level factors and global visual processing, highlighting the importance of taking these factors into account when investigating extrastriate function in low vision populations. PMID:26605841

  1. Cortical microtubule rearrangements and cell wall patterning

    PubMed Central

    Oda, Yoshihisa

    2015-01-01

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning. PMID:25904930

  2. Circadian regulation of human cortical excitability

    PubMed Central

    Ly, Julien Q. M.; Gaggioni, Giulia; Chellappa, Sarah L.; Papachilleos, Soterios; Brzozowski, Alexandre; Borsu, Chloé; Rosanova, Mario; Sarasso, Simone; Middleton, Benita; Luxen, André; Archer, Simon N.; Phillips, Christophe; Dijk, Derk-Jan; Maquet, Pierre; Massimini, Marcello; Vandewalle, Gilles

    2016-01-01

    Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation. PMID:27339884

  3. Inhibitory Circuits in Cortical Layer 5

    PubMed Central

    Naka, Alexander; Adesnik, Hillel

    2016-01-01

    Inhibitory neurons play a fundamental role in cortical computation and behavior. Recent technological advances, such as two photon imaging, targeted in vivo recording, and molecular profiling, have improved our understanding of the function and diversity of cortical interneurons, but for technical reasons most work has been directed towards inhibitory neurons in the superficial cortical layers. Here we review current knowledge specifically on layer 5 (L5) inhibitory microcircuits, which play a critical role in controlling cortical output. We focus on recent work from the well-studied rodent barrel cortex, but also draw on evidence from studies in primary visual cortex and other cortical areas. The diversity of both deep inhibitory neurons and their pyramidal cell targets make this a challenging but essential area of study in cortical computation and sensory processing. PMID:27199675

  4. Hamilton-Jacobi skeleton on cortical surfaces.

    PubMed

    Shi, Y; Thompson, P M; Dinov, I; Toga, A W

    2008-05-01

    In this paper, we propose a new method to construct graphical representations of cortical folding patterns by computing skeletons on triangulated cortical surfaces. In our approach, a cortical surface is first partitioned into sulcal and gyral regions via the solution of a variational problem using graph cuts, which can guarantee global optimality. After that, we extend the method of Hamilton-Jacobi skeleton [1] to subsets of triangulated surfaces, together with a geometrically intuitive pruning process that can trade off between skeleton complexity and the completeness of representing folding patterns. Compared with previous work that uses skeletons of 3-D volumes to represent sulcal patterns, the skeletons on cortical surfaces can be easily decomposed into branches and provide a simpler way to construct graphical representations of cortical morphometry. In our experiments, we demonstrate our method on two different cortical surface models, its ability of capturing major sulcal patterns and its application to compute skeletons of gyral regions. PMID:18450539

  5. Circadian regulation of human cortical excitability.

    PubMed

    Ly, Julien Q M; Gaggioni, Giulia; Chellappa, Sarah L; Papachilleos, Soterios; Brzozowski, Alexandre; Borsu, Chloé; Rosanova, Mario; Sarasso, Simone; Middleton, Benita; Luxen, André; Archer, Simon N; Phillips, Christophe; Dijk, Derk-Jan; Maquet, Pierre; Massimini, Marcello; Vandewalle, Gilles

    2016-06-24

    Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation.

  6. A Rare Hydrocephalus Complication: Cortical Blindness.

    PubMed

    Ünal, Emre; Göçmen, Rahşan; Işıkay, Ayşe İlksen; Tekşam, Özlem

    2015-01-01

    Cortical blindness related to bilateral occipital lobe infarction is an extremely rare complication of hydrocephalus. Compression of the posterior cerebral artery, secondary to tentorial herniation, is the cause of occipital infarction. Particularly in children and mentally ill patients, cortical blindness may be missed. Therefore, early diagnosis and treatment of hydrocephalus is important. We present herein a child of ventricular shunt malfunction complicated by cortical blindness. PMID:27411424

  7. Communication and wiring in the cortical connectome

    PubMed Central

    Budd, Julian M. L.; Kisvárday, Zoltán F.

    2012-01-01

    In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns

  8. Cortical Tremor (CT) with coincident orthostatic movements.

    PubMed

    Termsarasab, Pichet; Frucht, Steven J

    2015-01-01

    Cortical tremor (CT) is a form of cortical reflex myoclonus that can mimic essential tremor (ET). Clinical features that are helpful in distinguishing CT from ET are the irregular and jerky appearance of the movements. We report two patients with CT with coexisting orthostatic movements, either orthostatic tremor (OT) or myoclonus, who experienced functional improvement in both cortical myoclonus and orthostatic movements when treated with levetiracetam. PMID:26788343

  9. A Rare Hydrocephalus Complication: Cortical Blindness.

    PubMed

    Ünal, Emre; Göçmen, Rahşan; Işıkay, Ayşe İlksen; Tekşam, Özlem

    2015-01-01

    Cortical blindness related to bilateral occipital lobe infarction is an extremely rare complication of hydrocephalus. Compression of the posterior cerebral artery, secondary to tentorial herniation, is the cause of occipital infarction. Particularly in children and mentally ill patients, cortical blindness may be missed. Therefore, early diagnosis and treatment of hydrocephalus is important. We present herein a child of ventricular shunt malfunction complicated by cortical blindness.

  10. Prefrontal cortical volume reduction associated with frontal cortex function deficit in 6-week abstinent crack-cocaine dependent men

    PubMed Central

    Fein, George; Di Sclafani, Victoria; Meyerhoff, Dieter J.

    2010-01-01

    Background This study examined regional cortical volumes in 6-week abstinent men dependent on crack-cocaine only (Cr) or on both crack-cocaine and alcohol (CrA). Our goal was to test the a priori hypothesis of prefrontal cortical volume reduction, along with associated impairments in frontal mediated functions, and to look for differences between the Cr and CrA groups. Methods Structural magnetic resonance imaging (MRI) of the brain and neuropsychological assessment were performed on 17 6-week abstinent Cr subjects, 29 six-week abstinent CrA subjects, and 20 normal controls. Cortical volume was quantified in the prefrontal, parietal, temporal and occipital regions. Results Cr and CrA subjects showed comparable reductions in prefrontal gray matter volume compared to controls; this reduction was negatively associated with performance impairments in the executive function domain. Conclusions Dependence on Cr (with or without concomitant alcohol dependence) was associated with reduced prefrontal cortical volume. Cr dependence with concomitant alcohol dependence was not associated with greater prefrontal volume reductions than Cr dependence alone. The existence of these findings at 6-week abstinence indicates that they are not a result of acute cocaine or alcohol exposure. The association of reduced prefrontal cortical volume with cognitive impairments in frontal cortex mediated abilities suggests that this reduced cerebral volume has functional consequences. PMID:12167554

  11. A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment

    PubMed Central

    Dash, Suryadeep; Lomber, Stephen G.

    2016-01-01

    Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades. PMID:27509130

  12. Asymmetrical effects of unilateral right or left amygdala damage on auditory cortical processing of vocal emotions

    PubMed Central

    Frühholz, Sascha; Hofstetter, Christoph; Cristinzio, Chiara; Saj, Arnaud; Seeck, Margitta; Vuilleumier, Patrik; Grandjean, Didier

    2015-01-01

    We tested whether human amygdala lesions impair vocal processing in intact cortical networks. In two functional MRI experiments, patients with unilateral amygdala resection either listened to voices and nonvocal sounds or heard binaural vocalizations with attention directed toward or away from emotional information on one side. In experiment 1, all patients showed reduced activation to voices in the ipsilesional auditory cortex. In experiment 2, emotional voices evoked increased activity in both the auditory cortex and the intact amygdala for right-damaged patients, whereas no such effects were found for left-damaged amygdala patients. Furthermore, the left inferior frontal cortex was functionally connected with the intact amygdala in right-damaged patients, but only with homologous right frontal areas and not with the amygdala in left-damaged patients. Thus, unilateral amygdala damage leads to globally reduced ipsilesional cortical voice processing, but only left amygdala lesions are sufficient to suppress the enhanced auditory cortical processing of vocal emotions. PMID:25605886

  13. Altered Theta Oscillations and Aberrant Cortical Excitatory Activity in the 5XFAD Model of Alzheimer's Disease

    PubMed Central

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Trog, Astrid; Lundt, Andreas; Wormuth, Carola; Broich, Karl; Weiergräber, Marco; Papazoglou, Anna

    2015-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by impairment of memory function. The 5XFAD mouse model was analyzed and compared with wild-type (WT) controls for aberrant cortical excitability and hippocampal theta oscillations by using simultaneous video-electroencephalogram (EEG) monitoring. Seizure staging revealed that 5XFAD mice exhibited cortical hyperexcitability whereas controls did not. In addition, 5XFAD mice displayed a significant increase in hippocampal theta activity from the light to dark phase during nonmotor activity. We also observed a reduction in mean theta frequency in 5XFAD mice compared to controls that was again most prominent during nonmotor activity. Transcriptome analysis of hippocampal probes and subsequent qPCR validation revealed an upregulation of Plcd4 that might be indicative of enhanced muscarinic signalling. Our results suggest that 5XFAD mice exhibit altered cortical excitability, hippocampal dysrhythmicity, and potential changes in muscarinic signaling. PMID:25922768

  14. A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment.

    PubMed

    Peel, Tyler R; Hafed, Ziad M; Dash, Suryadeep; Lomber, Stephen G; Corneil, Brian D

    2016-08-01

    Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades. PMID:27509130

  15. Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin

    PubMed Central

    Tomatis, Vanesa M.; Papadopulos, Andreas; Malintan, Nancy T.; Martin, Sally; Wallis, Tristan; Gormal, Rachel S.; Kendrick-Jones, John; Buss, Folma

    2013-01-01

    Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca2+-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI–specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane. PMID:23382463

  16. Cortical Specializations Underlying Fast Computations

    PubMed Central

    Volgushev, Maxim

    2016-01-01

    The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988

  17. Cortical control of facial expression.

    PubMed

    Müri, René M

    2016-06-01

    The present Review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human nonverbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be either voluntarily or emotionally controlled. Recent studies in nonhuman primates and humans have revealed that the motor control of facial expressions has a distributed neural representation. At least five cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and the rostral and caudal cingulate cortex. The results of studies in humans and nonhuman primates suggest that the innervation of the face is bilaterally controlled for the upper part and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, because they receive input from different structures of the limbic system. PMID:26418049

  18. Gyrification from constrained cortical expansion

    PubMed Central

    Tallinen, Tuomas; Chung, Jun Young; Biggins, John S.; Mahadevan, L.

    2014-01-01

    The exterior of the mammalian brain—the cerebral cortex—has a conserved layered structure whose thickness varies little across species. However, selection pressures over evolutionary time scales have led to cortices that have a large surface area to volume ratio in some organisms, with the result that the brain is strongly convoluted into sulci and gyri. Here we show that the gyrification can arise as a nonlinear consequence of a simple mechanical instability driven by tangential expansion of the gray matter constrained by the white matter. A physical mimic of the process using a layered swelling gel captures the essence of the mechanism, and numerical simulations of the brain treated as a soft solid lead to the formation of cusped sulci and smooth gyri similar to those in the brain. The resulting gyrification patterns are a function of relative cortical expansion and relative thickness (compared with brain size), and are consistent with observations of a wide range of brains, ranging from smooth to highly convoluted. Furthermore, this dependence on two simple geometric parameters that characterize the brain also allows us to qualitatively explain how variations in these parameters lead to anatomical anomalies in such situations as polymicrogyria, pachygyria, and lissencephalia. PMID:25136099

  19. Acetaminophen Induces Apoptosis in Rat Cortical Neurons

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Blanco, Almudena; Muñoz-Fernández, Maríangeles; Ceña, Valentín

    2010-01-01

    Background Acetaminophen (AAP) is widely prescribed for treatment of mild pain and fever in western countries. It is generally considered a safe drug and the most frequently reported adverse effect associated with acetaminophen is hepatotoxicity, which generally occurs after acute overdose. During AAP overdose, encephalopathy might develop and contribute to morbidity and mortality. Our hypothesis is that AAP causes direct neuronal toxicity contributing to the general AAP toxicity syndrome. Methodology/Principal Findings We report that AAP causes direct toxicity on rat cortical neurons both in vitro and in vivo as measured by LDH release. We have found that AAP causes concentration-dependent neuronal death in vitro at concentrations (1 and 2 mM) that are reached in human plasma during AAP overdose, and that are also reached in the cerebrospinal fluid of rats for 3 hours following i.p injection of AAP doses (250 and 500 mg/Kg) that are below those required to induce acute hepatic failure in rats. AAP also increases both neuronal cytochrome P450 isoform CYP2E1 enzymatic activity and protein levels as determined by Western blot, leading to neuronal death through mitochondrial–mediated mechanisms that involve cytochrome c release and caspase 3 activation. In addition, in vivo experiments show that i.p. AAP (250 and 500 mg/Kg) injection induces neuronal death in the rat cortex as measured by TUNEL, validating the in vitro data. Conclusions/Significance The data presented here establish, for the first time, a direct neurotoxic action by AAP both in vivo and in vitro in rats at doses below those required to produce hepatotoxicity and suggest that this neurotoxicity might be involved in the general toxic syndrome observed during patient APP overdose and, possibly, also when AAP doses in the upper dosing schedule are used, especially if other risk factors (moderate drinking, fasting, nutritional impairment) are present. PMID:21170329

  20. Cholinesterase inhibitors affect brain potentials in amnestic mild cognitive impairment

    PubMed Central

    Irimajiri, Rie; Michalewski, Henry J; Golob, Edward J; Starr, Arnold

    2007-01-01

    Amnestic mild cognitive impairment (MCI) is an isolated episodic memory disorder that has a high likelihood of progressing to Alzheimer’s disease. Auditory sensory cortical responses (P50, N100) have been shown to be increased in amplitude in MCI compared to older controls. We tested whether (1) cortical potentials to other sensory modalities (somatosensory and visual) were also affected in MCI and (2) cholinesterase inhibitors (ChEIs), one of the therapies used in this disorder, modulated sensory cortical potentials in MCI. Somatosensory cortical potentials to median nerve stimulation and visual cortical potentials to reversing checkerboard stimulation were recorded from 15 older controls and 15 amnestic MCI subjects (single domain). Results were analyzed as a function of diagnosis (Control, MCI) and ChEIs treatment (Treated MCI, Untreated MCI). Somatosensory and visual potentials did not differ significantly in amplitude in MCI subjects compared to controls. When ChEIs use was considered, somatosensory potentials (N20, P50) but not visual potentials (N70, P100, N150) were of larger amplitude in untreated MCI subjects compared to treated MCI subjects. Three individual MCI subjects showed increased N20 amplitude while off ChEIs compared to while on ChEIs. An enhancement of N20 somatosensory cortical activity occurs in amnestic single domain MCI and is sensitive to modulation by ChEIs. PMID:17320833

  1. Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements.

    PubMed

    Kopec, Charles D; Erlich, Jeffrey C; Brunton, Bingni W; Deisseroth, Karl; Brody, Carlos D

    2015-10-21

    Neural activity in frontal cortical areas has been causally linked to short-term memory (STM), but whether this activity is necessary for forming, maintaining, or reading out STM remains unclear. In rats performing a memory-guided orienting task, the frontal orienting fields in cortex (FOF) are considered critical for STM maintenance, and during each trial display a monotonically increasing neural encoding for STM. Here, we transiently inactivated either the FOF or the superior colliculus and found that the resulting impairments in memory-guided orienting performance followed a monotonically decreasing time course, surprisingly opposite to the neural encoding. A dynamical attractor model in which STM relies equally on cortical and subcortical regions reconciled the encoding and inactivation data. We confirmed key predictions of the model, including a time-dependent relationship between trial difficulty and perturbability, and substantial, supralinear, impairment following simultaneous inactivation of the FOF and superior colliculus during memory maintenance.

  2. Aberrant synchrony in the somatosensory cortices predicts motor performance errors in children with cerebral palsy.

    PubMed

    Kurz, Max J; Heinrichs-Graham, Elizabeth; Arpin, David J; Becker, Katherine M; Wilson, Tony W

    2014-02-01

    Cerebral palsy (CP) results from a perinatal brain injury that often results in sensory impairments and greater errors in motor performance. Although these impairments have been well catalogued, the relationship between sensory processing networks and errors in motor performance has not been well explored. Children with CP and typically developing age-matched controls participated in this investigation. We used high-density magnetoencephalography to measure event-related oscillatory changes in the somatosensory cortices following tactile stimulation to the bottom of the foot. In addition, we quantified the amount of variability or errors in the isometric ankle joint torques as these children attempted to match a target. Our results showed that neural populations in the somatosensory cortices of children with CP were desynchronized by the tactile stimulus, whereas those of typically developing children were clearly synchronized. Such desynchronization suggests that children with CP were unable to fully integrate the external stimulus into ongoing sensorimotor computations. Our results also indicated that children with CP had a greater amount of errors in their motor output when they attempted to match the target force, and this amount of error was negatively correlated with the degree of synchronization present in the somatosensory cortices. These results are the first to show that the motor performance errors of children with CP are linked with neural synchronization within the somatosensory cortices.

  3. Cortical thickness gradients in structural hierarchies

    PubMed Central

    Wagstyl, Konrad; Ronan, Lisa; Goodyer, Ian M.; Fletcher, Paul C.

    2015-01-01

    MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used—the thickness of the cortex—shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants. We therefore sought to determine whether patterns of cortical thickness mirror a key motif of the cortex, specifically its structural hierarchical organisation. We delineated three sensory hierarchies (visual, somatosensory and auditory) in two species—macaque and human—and explored whether cortical thickness was correlated with specific cytoarchitectural characteristics. Importantly, we controlled for cortical folding which impacts upon thickness and may obscure regional differences. Our results suggest that an easily measurable macroscopic brain parameter, namely, cortical thickness, is systematically related to cytoarchitecture and to the structural hierarchical organisation of the cortex. We argue that the measurement of cortical thickness gradients may become an important way to develop our understanding of brain structure–function relationships. The identification of alterations in such gradients may complement the observation of regionally localised cortical thickness changes in our understanding of normal development and neuropsychiatric illnesses. PMID:25725468

  4. Cortical Correspondence with Probabilistic Fiber Connectivity

    PubMed Central

    Oguz, Ipek; Niethammer, Marc; Cates, Josh; Whitaker, Ross; Fletcher, Thomas; Vachet, Clement; Styner, Martin

    2009-01-01

    This paper presents a novel method of optimizing point-based correspondence among populations of human cortical surfaces by combining structural cues with probabilistic connectivity maps. The proposed method establishes a tradeoff between an even sampling of the cortical surfaces (a low surface entropy) and the similarity of corresponding points across the population (a low ensemble entropy). The similarity metric, however, isn’t constrained to be just spatial proximity, but uses local sulcal depth measurements as well as probabilistic connectivity maps, computed from DWI scans via a stochastic tractography algorithm, to enhance the correspondence definition. We propose a novel method for projecting this fiber connectivity information on the cortical surface, using a surface evolution technique. Our cortical correspondence method does not require a spherical parameterization. Experimental results are presented, showing improved correspondence quality demonstrated by a cortical thickness analysis, as compared to correspondence methods using spatial metrics as the sole correspondence criterion. PMID:19694301

  5. Cortical Cartography and Caret Software

    PubMed Central

    Van Essen, David C.

    2011-01-01

    Caret software is widely used for analyzing and visualizing many types of fMRI data, often in conjunction with experimental data from other modalities. This article places Caret’s development in a historical context that spans three decades of brain mapping – from the early days of manually generated flat maps to the nascent field of human connectomics. It also highlights some of Caret’s distinctive capabilities. This includes the ease of visualizing data on surfaces and/or volumes and on atlases as well as individual subjects. Caret can display many types of experimental data using various combinations of overlays (e.g., fMRI activation maps, cortical parcellations, areal boundaries), and it has other features that facilitate the analysis and visualization of complex neuroimaging datasets. PMID:22062192

  6. Gyrification from constrained cortical expansion

    NASA Astrophysics Data System (ADS)

    Tallinen, Tuomas

    The convolutions of the human brain are a symbol of its functional complexity. But how does the outer surface of the brain, the layered cortex of neuronal gray matter get its folds? In this talk, we ask to which extent folding of the brain can be explained as a purely mechanical consequence of unpatterned growth of the cortical layer relative to the sublayers. Modeling the growing brain as a soft layered solid leads to elastic instabilities and the formation of cusped sulci and smooth gyri consistent with observations across species in both normal and pathological situations. Furthermore, we apply initial geometries obtained from fetal brain MRI to address the question of how the brain geometry and folding patterns may be coupled via mechanics.

  7. Cortical cartography and Caret software.

    PubMed

    Van Essen, David C

    2012-08-15

    Caret software is widely used for analyzing and visualizing many types of fMRI data, often in conjunction with experimental data from other modalities. This article places Caret's development in a historical context that spans three decades of brain mapping--from the early days of manually generated flat maps to the nascent field of human connectomics. It also highlights some of Caret's distinctive capabilities. This includes the ease of visualizing data on surfaces and/or volumes and on atlases as well as individual subjects. Caret can display many types of experimental data using various combinations of overlays (e.g., fMRI activation maps, cortical parcellations, areal boundaries), and it has other features that facilitate the analysis and visualization of complex neuroimaging datasets.

  8. Nicotinic modulation of cortical circuits

    PubMed Central

    Arroyo, Sergio; Bennett, Corbett; Hestrin, Shaul

    2014-01-01

    The ascending cholinergic neuromodulatory system sends projections throughout cortex and has been shown to play an important role in a number of cognitive functions including arousal, working memory, and attention. However, despite a wealth of behavioral and anatomical data, understanding how cholinergic synapses modulate cortical function has been limited by the inability to selectively activate cholinergic axons. Now, with the development of optogenetic tools and cell-type specific Cre-driver mouse lines, it has become possible to stimulate cholinergic axons from the basal forebrain (BF) and probe cholinergic synapses in the cortex for the first time. Here we review recent work studying the cell-type specificity of nicotinic signaling in the cortex, synaptic mechanisms mediating cholinergic transmission, and the potential functional role of nicotinic modulation. PMID:24734005

  9. N-Methyl D-Aspartate Receptor Antagonist Kynurenic Acid Affects Human Cortical Development

    PubMed Central

    Bagasrawala, Inseyah; Zecevic, Nada; Radonjić, Nevena V.

    2016-01-01

    Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan degradation, acts as an endogenous N-methyl-D-aspartate receptor (NMDAR) antagonist. Elevated levels of KYNA have been observed in pregnant women after viral infections and are considered to play a role in neurodevelopmental disorders. However, the consequences of KYNA-induced NMDAR blockade in human cortical development still remain elusive. To study the potential impact of KYNA on human neurodevelopment, we used an in vitro system of multipotent cortical progenitors, i.e., radial glia cells (RGCs), enriched from human cerebral cortex at mid-gestation (16–19 gestational weeks). KYNA treatment significantly decreased RGCs proliferation and survival by antagonizing NMDAR. This alteration resulted in a reduced number of cortical progenitors and neurons while number and activation of astrocytes increased. KYNA treatment reduced differentiation of RGCs into GABAergic neurons, while differentiation into glutamatergic neurons was relatively spared. Furthermore, in mixed cortical cultures KYNA triggered an inflammatory response as evidenced by increased levels of the pro-inflammatory cytokine IL-6. In conclusion, elevated levels of KYNA play a significant role in human RGC fate determination by antagonizing NMDARs and by activating an inflammatory response. The altered cell composition observed in cell culture following exposure to elevated KYNA levels suggests a mechanism for impairment of cortical circuitry formation in the fetal brain after viral infection, as seen in neurodevelopmental disorders such as schizophrenia. PMID:27746712

  10. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation

    PubMed Central

    Carmo-Silva, Sara; Botelho, Mariana; de Almeida, Luís Pereira; Cavadas, Cláudia

    2016-01-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  11. Unsupervised fetal cortical surface parcellation

    NASA Astrophysics Data System (ADS)

    Dahdouh, Sonia; Limperopoulos, Catherine

    2016-03-01

    At the core of many neuro-imaging studies, atlas-based brain parcellations are used for example to study normal brain evolution across the lifespan. These atlases rely on the assumption that the same anatomical features are present on all subjects to be studied and that these features are stable enough to allow meaningful comparisons between different brain surfaces and structures These methods, however, often fail when applied to fetal MRI data, due to the lack of consistent anatomical features present across gestation. This paper presents a novel surface-based fetal cortical parcellation framework which attempts to circumvent the lack of consistent anatomical features by proposing a brain parcellation scheme that is based solely on learned geometrical features. A mesh signature incorporating both extrinsic and intrinsic geometrical features is proposed and used in a clustering scheme to define a parcellation of the fetal brain. This parcellation is then learned using a Random Forest (RF) based learning approach and then further refined in an alpha-expansion graph-cut scheme. Based on the votes obtained by the RF inference procedure, a probability map is computed and used as a data term in the graph-cut procedure. The smoothness term is defined by learning a transition matrix based on the dihedral angles of the faces. Qualitative and quantitative results on a cohort of both healthy and high-risk fetuses are presented. Both visual and quantitative assessments show good results demonstrating a reliable method for fetal brain data and the possibility of obtaining a parcellation of the fetal cortical surfaces using only geometrical features.

  12. Cortical spreading depression: An enigma

    NASA Astrophysics Data System (ADS)

    Miura, R. M.; Huang, H.; Wylie, J. J.

    2007-08-01

    The brain is a complex organ with active components composed largely of neurons, glial cells, and blood vessels. There exists an enormous experimental and theoretical literature on the mechanisms involved in the functioning of the brain, but we still do not have a good understanding of how it works on a gross mechanistic level. In general, the brain maintains a homeostatic state with relatively small ion concentration changes, the major ions being sodium, potassium, and chloride. Calcium ions are present in smaller quantities but still play an important role in many phenomena. Cortical spreading depression (CSD for short) was discovered over 60 years ago by A.A.P. Leão, a Brazilian physiologist doing his doctoral research on epilepsy at Harvard University, “Spreading depression of activity in the cerebral cortex," J. Neurophysiol., 7 (1944), pp. 359-390. Cortical spreading depression is characterized by massive changes in ionic concentrations and slow nonlinear chemical waves, with speeds on the order of mm/min, in the cortex of different brain structures in various experimental animals. In humans, CSD is associated with migraine with aura, where a light scintillation in the visual field propagates, then disappears, and is followed by a sustained headache. To date, CSD remains an enigma, and further detailed experimental and theoretical investigations are needed to develop a comprehensive picture of the diverse mechanisms involved in producing CSD. A number of mechanisms have been hypothesized to be important for CSD wave propagation. In this paper, we briefly describe several characteristics of CSD wave propagation, and examine some of the mechanisms that are believed to be important, including ion diffusion, membrane ionic currents, osmotic effects, spatial buffering, neurotransmitter substances, gap junctions, metabolic pumps, and synaptic connections. Continuum models of CSD, consisting of coupled nonlinear diffusion equations for the ion concentrations, and

  13. Cortical thickness, volume and surface area in patients with bipolar disorder types I and II

    PubMed Central

    Abé, Christoph; Ekman, Carl-Johan; Sellgren, Carl; Petrovic, Predrag; Ingvar, Martin; Landén, Mikael

    2016-01-01

    Background Bipolar disorder (BD) is a common chronic psychiatric disorder mainly characterized by episodes of mania, hypomania and depression. The disorder is associated with cognitive impairments and structural brain abnormalities, such as lower cortical volumes in primarily frontal brain regions than healthy controls. Although bipolar disorder types I (BDI) and II (BDII) exhibit different symptoms and severity, previous studies have focused on BDI. Furthermore, the most frequently investigated measure in this population is cortical volume. The aim of our study was to investigate abnormalities in patients with BDI and BDII by simultaneously analyzing cortical volume, thickness and surface area, which yields more information about disease- and symptom-related neurobiology. Methods We used MRI to measure cortical volume, thickness and area in patients with BDI and BDII as well as in healthy controls. The large study cohort enabled us to adjust for important confounding factors. Results We included 81 patients with BDI, 59 with BDII and 85 controls in our analyses. Cortical volume, thickness and surface area abnormalities were present in frontal, temporal and medial occipital regions in patients with BD. Lithium and antiepileptic drug use had an effect on the observed differences in medial occipital regions. Patients with the subtypes BDI and BDII displayed common cortical abnormalities, such as lower volume, thickness and surface area than healthy controls in frontal brain regions but differed in temporal and medial prefrontal regions, where only those with BDI had abnormally low cortical volume and thickness. Limitations The group differences can be explained by progressive changes, but also by premorbid conditions. They could also have been influenced by unknown factors, such as social, environmental or genetic factors. Conclusion Our findings suggest diagnosis-related neurobiological differences between the BD subtypes, which could explain distinct symptoms and

  14. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    PubMed

    Meda, Shashwath A; Pryweller, Jennifer R; Thornton-Wells, Tricia A

    2012-01-01

    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex

  15. Cytoskeletal proteins in cortical development and disease: actin associated proteins in periventricular heterotopia

    PubMed Central

    Lian, Gewei; Sheen, Volney L.

    2015-01-01

    The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins. Disruption in the actin cytoskeleton in the brain gives rise to periventricular heterotopia (PH), a malformation of cortical development, characterized by abnormal neurons clustered deep in the brain along the lateral ventricles. This disorder can give rise to seizures, dyslexia and psychiatric disturbances. Anatomically, PH is characterized by a smaller brain (impaired proliferation), heterotopia (impaired initial migration) and disruption along the neuroependymal lining (impaired cell-cell adhesion). Genes causal for PH have also been implicated in actin-dependent processes. The current review provides mechanistic insight into actin cytoskeletal regulation of cortical development in the context of this malformation of cortical development. PMID:25883548

  16. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury.

    PubMed

    Herbert, Wendy J; Powell, Kimerly; Buford, John A

    2015-11-01

    The purposes of this pilot study were to create a model of focal cortical ischemia in Macaca fascicularis and to explore contributions of the reticulospinal system in recovery of reaching. Endothelin-1 was used to create a focal lesion in the shoulder/elbow representation of left primary motor cortex (M1) of two adult female macaques. Repetitive microstimulation was used to map upper limb motor outputs from right and left cortical motor areas and from the pontomedullary reticular formation (PMRF). In subject 1 with a small lesion and spontaneous recovery, reaching was mildly impaired. Changes were evident in the shoulder/elbow representations of both the lesioned and contralesional M1, and there appeared to be fewer than expected upper limb responses from the left (ipsilesional) PMRF. In subject 2 with a substantial lesion, reaching was severely impaired immediately after the lesion. After 12 weeks of intensive rehabilitative training, reach performance recovered to near-baseline levels, but movement times remained about 50% slower. Surprisingly, the shoulder/elbow representation in the lesioned M1 remained completely absent after recovery, and there was a little change in the contralesional M1. There was a definite difference in motor output patterns for left versus right PMRF for this subject, with an increase in right arm responses from right PMRF and a paucity of left arm responses from left PMRF. The results are consistent with increased reliance on PMRF motor outputs for recovery of voluntary upper limb motor control after significant cortical ischemic injury. PMID:26231990

  17. Alteration of Electro-Cortical Activity in Microgravity

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Brummer, Vera; Carnahan, Heather; Askew, Christopher D.; Guardiera, Simon; Struder, Heiko K.

    2008-06-01

    There is growing interest in the effects of weightlessness on central nervous system (CNS) activity. Due to technical and logistical limitations it presently seems impossible to apply imaging techniques as fMRI or PET in weightless environments e.g. on ISS or during parabolic flights. Within this study we evaluated changes in brain cortical activity using low resolution brain electromagnetic tomography (LORETA) during parabolic flights. Results showed a distinct inhibition of right frontal area activity >12Hz during phases of microgravity compared to normal gravity. We conclude that the inhibition of high frequency frontal activity during microgravity may serve as a marker of emotional anxiety and/or indisposition associated with weightlessness. This puts a new light on the debate as to whether cognitive and sensorimotor impairments are attributable to primary physiological effects or secondary psychological effects of a weightless environment.

  18. Synaptic unreliability facilitates information transmission in balanced cortical populations

    NASA Astrophysics Data System (ADS)

    Gatys, Leon A.; Ecker, Alexander S.; Tchumatchenko, Tatjana; Bethge, Matthias

    2015-06-01

    Synaptic unreliability is one of the major sources of biophysical noise in the brain. In the context of neural information processing, it is a central question how neural systems can afford this unreliability. Here we examine how synaptic noise affects signal transmission in cortical circuits, where excitation and inhibition are thought to be tightly balanced. Surprisingly, we find that in this balanced state synaptic response variability actually facilitates information transmission, rather than impairing it. In particular, the transmission of fast-varying signals benefits from synaptic noise, as it instantaneously increases the amount of information shared between presynaptic signal and postsynaptic current. Furthermore we show that the beneficial effect of noise is based on a very general mechanism which contrary to stochastic resonance does not reach an optimum at a finite noise level.

  19. Acute cortical deafness in a child with MELAS syndrome.

    PubMed

    Pittet, Marie P; Idan, Roni B; Kern, Ilse; Guinand, Nils; Van, Hélène Cao; Toso, Seema; Fluss, Joël

    2016-05-01

    Auditory impairment in mitochondrial disorders are usually due to peripheral sensorineural dysfunction. Central deafness is only rarely reported. We report here an 11-year-old boy with MELAS syndrome who presented with subacute deafness after waking up from sleep. Peripheral hearing loss was rapidly excluded. A brain MRI documented bilateral stroke-like lesions predominantly affecting the superior temporal lobe, including the primary auditory cortex, confirming the central nature of deafness. Slow recovery was observed in the following weeks. This case serves to illustrate the numerous challenges caused by MELAS and the unusual occurrence of acute cortical deafness, that to our knowledge has not be described so far in a child in this setting.

  20. Degraded attentional modulation of cortical neural populations in strabismic amblyopia

    PubMed Central

    Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti

    2016-01-01

    Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI–informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye. PMID:26885628

  1. Motor-cortical oscillations in early stages of Parkinson's disease

    PubMed Central

    Pollok, B; Krause, V; Martsch, W; Wach, C; Schnitzler, A; Südmeyer, M

    2012-01-01

    Pathophysiological changes in basal ganglia-thalamo-cortical circuits are well established in idiopathic Parkinson's disease (PD). However, it remains open whether such alterations already occur at early stages representing a characteristic neurophysiological marker of PD. Therefore, the present study aims at elucidating changes of synchronised oscillatory activity in early PD patients. In this study, we performed whole-head magnetoencephalography (MEG) in a resting condition and during steady state contraction of the more severely affected forearm in 10 drug–naive, de novo patients, in 10 early-stage patients with chronic medication and in 10 age-matched control subjects. While cortico-muscular coherence (CMC) did not differ between groups, patients showed increased sensori-motor cortical power at beta frequency (13–30 Hz) during rest as well as during isometric contraction compared to controls. In healthy control subjects the power of the contralateral hemisphere was significantly suppressed during isometric contraction. By contrast, both hemispheres were activated equally strongly in de novo patients. In medicated patients, the pattern was found to be reversed. Contralateral beta power was significantly correlated with motor impairment during isometric contraction but not during rest. The present results suggest that the reduced ability of the primary motor cortex to disengage from increased beta band oscillations during the execution of movements is an early marker of PD. PMID:22547636

  2. A Turing Reaction-Diffusion Model for Human Cortical Folding Patterns and Cortical Pattern Malformations

    NASA Astrophysics Data System (ADS)

    Hurdal, Monica K.; Striegel, Deborah A.

    2011-11-01

    Modeling and understanding cortical folding pattern formation is important for quantifying cortical development. We present a biomathematical model for cortical folding pattern formation in the human brain and apply this model to study diseases involving cortical pattern malformations associated with neural migration disorders. Polymicrogyria is a cortical malformation disease resulting in an excessive number of small gyri. Our mathematical model uses a Turing reaction-diffusion system to model cortical folding. The lateral ventricle (LV) and ventricular zone (VZ) of the brain are critical components in the formation of cortical patterning. In early cortical development the shape of the LV can be modeled with a prolate spheroid and the VZ with a prolate spheroid surface. We use our model to study how global cortex characteristics, such as size and shape of the LV, affect cortical pattern formation. We demonstrate increasing domain scale can increase the number of gyri and sulci formed. Changes in LV shape can account for sulcus directionality. By incorporating LV size and shape, our model is able to elucidate which parameters can lead to excessive cortical folding.

  3. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain.

    PubMed

    Kim, Sun Kwang; Hayashi, Hideaki; Ishikawa, Tatsuya; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Youichi; Inada, Hiroyuki; Roh, Seung Eon; Kim, Sang Jeong; Lee, Gihyun; Bae, Hyunsu; Moorhouse, Andrew J; Mikoshiba, Katsuhiko; Fukazawa, Yugo; Koizumi, Schuichi; Nabekura, Junichi

    2016-05-01

    Long-term treatments to ameliorate peripheral neuropathic pain that includes mechanical allodynia are limited. While glial activation and altered nociceptive transmission within the spinal cord are associated with the pathogenesis of mechanical allodynia, changes in cortical circuits also accompany peripheral nerve injury and may represent additional therapeutic targets. Dendritic spine plasticity in the S1 cortex appears within days following nerve injury; however, the underlying cellular mechanisms of this plasticity and whether it has a causal relationship to allodynia remain unsolved. Furthermore, it is not known whether glial activation occurs within the S1 cortex following injury or whether it contributes to this S1 synaptic plasticity. Using in vivo 2-photon imaging with genetic and pharmacological manipulations of murine models, we have shown that sciatic nerve ligation induces a re-emergence of immature metabotropic glutamate receptor 5 (mGluR5) signaling in S1 astroglia, which elicits spontaneous somatic Ca2+ transients, synaptogenic thrombospondin 1 (TSP-1) release, and synapse formation. This S1 astrocyte reactivation was evident only during the first week after injury and correlated with the temporal changes in S1 extracellular glutamate levels and dendritic spine turnover. Blocking the astrocytic mGluR5-signaling pathway suppressed mechanical allodynia, while activating this pathway in the absence of any peripheral injury induced long-lasting (>1 month) allodynia. We conclude that reawakened astrocytes are a key trigger for S1 circuit rewiring and that this contributes to neuropathic mechanical allodynia. PMID:27064281

  4. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain

    PubMed Central

    Hayashi, Hideaki; Ishikawa, Tatsuya; Shibata, Keisuke; Inada, Hiroyuki; Roh, Seung Eon; Kim, Sang Jeong; Moorhouse, Andrew J.

    2016-01-01

    Long-term treatments to ameliorate peripheral neuropathic pain that includes mechanical allodynia are limited. While glial activation and altered nociceptive transmission within the spinal cord are associated with the pathogenesis of mechanical allodynia, changes in cortical circuits also accompany peripheral nerve injury and may represent additional therapeutic targets. Dendritic spine plasticity in the S1 cortex appears within days following nerve injury; however, the underlying cellular mechanisms of this plasticity and whether it has a causal relationship to allodynia remain unsolved. Furthermore, it is not known whether glial activation occurs within the S1 cortex following injury or whether it contributes to this S1 synaptic plasticity. Using in vivo 2-photon imaging with genetic and pharmacological manipulations of murine models, we have shown that sciatic nerve ligation induces a re-emergence of immature metabotropic glutamate receptor 5 (mGluR5) signaling in S1 astroglia, which elicits spontaneous somatic Ca2+ transients, synaptogenic thrombospondin 1 (TSP-1) release, and synapse formation. This S1 astrocyte reactivation was evident only during the first week after injury and correlated with the temporal changes in S1 extracellular glutamate levels and dendritic spine turnover. Blocking the astrocytic mGluR5-signaling pathway suppressed mechanical allodynia, while activating this pathway in the absence of any peripheral injury induced long-lasting (>1 month) allodynia. We conclude that reawakened astrocytes are a key trigger for S1 circuit rewiring and that this contributes to neuropathic mechanical allodynia. PMID:27064281

  5. [Preoperative direct cortical and sub-cortical electric stimulation during cerebral surgery in functional areas].

    PubMed

    Duffau, H; Capelle, L; Sichez, J P; Bitar, A; Faillot, T; Arthuis, F; Van Effenterre, R; Fohanno, D

    1999-09-01

    Indications of surgical treatment for lesions in functional cerebral areas depend on the ratio between the definitive neurological deficit and the beneficial effect of resection. Detection of eloquent cortex is difficult because of important individual variability. Peroperative direct cortical and subcortical electrical stimulations (DCS) provide the most precise and reliable method currently available allowing identification and preservation of neurons essential for motricity, sensitivity++ and language. We report our preliminary experience with DCS in surgery of intracerebral infiltrative tumors with a consecutive series of 15 patients operated from November 96 through September 97 in our institution. Presenting symptoms in the 15 patients (8 males, 7 females, mean age 43 years) were seizures in 11 cases (73%) and neurological deficit in 4 cases (27%). Clinical examination was normal in 11 patients and revealed hemiparesia in 4. Magnetic resonance imaging (MRI) with three-dimensional reconstruction showed a precentral tumor in 10 cases, central lesion in one patient, postcentral lesion in two cases, right insular tumor (non-dominant hemisphere) in one case. All patients underwent surgical resection using DCS with detection in 13 cases of motor cortex and subcortical pathways under genera anesthesia, in one case of somatosensory area under local anesthesia, and in one case of language areas also under local anesthesia. The tumor was recurrent in two patients had been operated earlier but without DCS. Resection, verified by postoperative MRI, was total in 12 cases (80%) and estimated at 80% in 3 patients. Histological examination revealed an infiltrative glioma in 12 cases (8 low grade astrocytomas, 3 low grade oligodendrogliomas, and one anaplastic oligodendroglioma), and metastases in 3 cases. Eight patients had no postoperative deficit, while the other 7 patients were impaired, with, in all cases except one, complete recovery in 15 days to 2 months. Direct

  6. Linking cortical network synchrony and excitability

    PubMed Central

    Meisel, Christian

    2016-01-01

    ABSTRACT Theoretical approaches based on dynamical systems theory can provide useful frameworks to guide experiments and analysis techniques when investigating cortical network activity. The notion of phase transitions between qualitatively different kinds of network dynamics has been such a framework inspiring novel approaches to neurophysiological data analysis over the recent years. One particular intriguing hypothesis has been that cortical networks reside in the vicinity of a phase transition. Although the final verdict on this hypothesis is still out, trying to understand cortex dynamics from this viewpoint has recently led to interesting insights on cortical network function with relevance for clinical practice. PMID:27065159

  7. Focal Cortical Dysplasia in Childhood Epilepsy.

    PubMed

    Shaker, Tarek; Bernier, Anne; Carmant, Lionel

    2016-05-01

    Focal cortical dysplasia is a common cause of medication resistant epilepsy. A better understanding of its presentation, pathophysiology and consequences have helped us improved its treatment and outcome. This paper reviews the most recent classification, pathophysiology and imaging findings in clinical research as well as the knowledge gained from studying genetic and lesional animal models of focal cortical dysplasia. This review of this recently gained knowledge will most likely help develop new research models and new therapeutic targets for patients with epilepsy associated with focal cortical dysplasia. PMID:27544467

  8. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth.

    PubMed

    De Zio, Daniela; Molinari, Francesca; Rizza, Salvatore; Gatta, Lucia; Ciotti, Maria Teresa; Salvatore, Anna Maria; Mathiassen, Søs Grønbæk; Cwetsch, Andrzej W; Filomeni, Giuseppe; Rosano, Giuseppe; Ferraro, Elisabetta

    2015-11-01

    The establishment of neuronal polarity and axonal outgrowth are key processes affecting neuronal migration and synapse formation, their impairment likely leading to cognitive deficits. Here we have found that the apoptotic protease activating factor 1 (Apaf1), apart from its canonical role in apoptosis, plays an additional function in cortical neurons, where its deficiency specifically impairs axonal growth. Given the central role played by centrosomes and microtubules in the polarized extension of the axon, our data suggest that Apaf1-deletion affects axonal outgrowth through an impairment of centrosome organization. In line with this, centrosomal protein expression, as well as their centrosomal localization proved to be altered upon Apaf1-deletion. Strikingly, we also found that Apaf1-loss affects trans-Golgi components and leads to a robust activation of AMP-dependent protein kinase (AMPK), this confirming the stressful conditions induced by Apaf1-deficiency. Since AMPK hyper-phosphorylation is known to impair a proper axon elongation, our finding contributes to explain the effect of Apaf1-deficiency on axogenesis. We also discovered that the signaling pathways mediating axonal growth and involving glycogen synthase kinase-3β, liver kinase B1, and collapsing-response mediator protein-2 are altered in Apaf1-KO neurons. Overall, our results reveal a novel non-apoptotic role for Apaf1 in axonal outgrowth, suggesting that the neuronal phenotype due to Apaf1-deletion could not only be fully ascribed to apoptosis inhibition, but might also be the result of defects in axogenesis. The discovery of new molecules involved in axonal elongation has a clinical relevance since it might help to explain neurological abnormalities occurring during early brain development. PMID:25975226

  9. Speech impairment (adult)

    MedlinePlus

    Language impairment; Impairment of speech; Inability to speak; Aphasia; Dysarthria; Slurred speech; Dysphonia voice disorders ... environment and keep external stimuli to a minimum. Speak in a normal tone of voice (this condition ...

  10. Neuropsychological evidence of impaired cognitive empathy in euthymic bipolar disorder.

    PubMed

    Shamay-Tsoory, Simone; Harari, Hagai; Szepsenwol, Ohad; Levkovitz, Yechiel

    2009-01-01

    The empathic abilities have never been examined in bipolar disorder patients, despite frequent observations of impaired social behavior. To examine the neuropsychological processes that underlie the affective and cognitive empathic ability in bipolar disorder, the authors compared affective and cognitive empathic abilities, as well as theory of mind and executive functions, of euthymic bipolar disorder patients and healthy comparison subjects. Significant deficits in cognitive empathy and theory of mind were observed, while affective empathy was elevated in bipolar disorder. Patients showed impaired cognitive flexibility (shifting and reversal learning) but intact planning behavior. Impaired cognitive empathy was related with performance in neurocognitive tasks of cognitive flexibility, suggesting that prefrontal cortical dysfunction may account for impaired cognitive empathy in bipolar disorder. PMID:19359453

  11. Grey matter volumetric changes related to recovery from hand paresis after cortical sensorimotor stroke.

    PubMed

    Abela, E; Seiler, A; Missimer, J H; Federspiel, A; Hess, C W; Sturzenegger, M; Weder, B J; Wiest, R

    2015-09-01

    Preclinical studies using animal models have shown that grey matter plasticity in both perilesional and distant neural networks contributes to behavioural recovery of sensorimotor functions after ischaemic cortical stroke. Whether such morphological changes can be detected after human cortical stroke is not yet known, but this would be essential to better understand post-stroke brain architecture and its impact on recovery. Using serial behavioural and high-resolution magnetic resonance imaging (MRI) measurements, we tracked recovery of dexterous hand function in 28 patients with ischaemic stroke involving the primary sensorimotor cortices. We were able to classify three recovery subgroups (fast, slow, and poor) using response feature analysis of individual recovery curves. To detect areas with significant longitudinal grey matter volume (GMV) change, we performed tensor-based morphometry of MRI data acquired in the subacute phase, i.e. after the stage compromised by acute oedema and inflammation. We found significant GMV expansion in the perilesional premotor cortex, ipsilesional mediodorsal thalamus, and caudate nucleus, and GMV contraction in the contralesional cerebellum. According to an interaction model, patients with fast recovery had more perilesional than subcortical expansion, whereas the contrary was true for patients with impaired recovery. Also, there were significant voxel-wise correlations between motor performance and ipsilesional GMV contraction in the posterior parietal lobes and expansion in dorsolateral prefrontal cortex. In sum, perilesional GMV expansion is associated with successful recovery after cortical stroke, possibly reflecting the restructuring of local cortical networks. Distant changes within the prefrontal-striato-thalamic network are related to impaired recovery, probably indicating higher demands on cognitive control of motor behaviour.

  12. Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons

    PubMed Central

    Bissonette, Gregory B.; Bae, Mihyun H.; Suresh, Tejas; Jaffe, David E.; Powell, Elizabeth M.

    2013-01-01

    Alterations of inhibitory GABAergic neurons are implicated in multiple psychiatric and neurological disorders, including schizophrenia, autism and epilepsy. In particular, interneuron deficits in prefrontal areas, along with presumed decreased inhibition, have been reported in several human patients. The majority of forebrain GABAergic interneurons arise from a single subcortical source before migrating to their final regional destination. Factors that govern the interneuron populations have been identified, demonstrating that a single gene mutation may globally affect forebrain structures or a single area. In particular, mice lacking the urokinase plasminogen activator receptor (Plaur) gene have decreased GABAergic interneurons in frontal and parietal, but not caudal, cortical regions. Plaur assists in the activation of hepatocyte growth factor/scatter factor (HGF/SF), and several of the interneuron deficits are correlated with decreased levels of HGF/SF. In some cortical regions, the interneuron deficit can be remediated by endogenous overexpression of HGF/SF. In this study, we demonstrate decreased parvalbumin-expressing interneurons in the medial frontal cortex, but not in the hippocampus or basal lateral amygdala in the Plaur null mouse. The Plaur null mouse demonstrates impaired medial frontal cortical function in extinction of cued fear conditioning and the inability to form attentional sets. Endogenous HGF/SF overexpression increased the number of PV-expressing cells in medial frontal cortical areas to levels greater than found in wildtype mice, but did not remediate the behavioral deficits. These data suggest that proper medial frontal cortical function is dependent upon optimum levels of inhibition and that a deficit or excess of interneuron numbers impairs normal cognition. PMID:24211452

  13. Cortical circuits for perceptual inference.

    PubMed

    Friston, Karl; Kiebel, Stefan

    2009-10-01

    This paper assumes that cortical circuits have evolved to enable inference about the causes of sensory input received by the brain. This provides a principled specification of what neural circuits have to achieve. Here, we attempt to address how the brain makes inferences by casting inference as an optimisation problem. We look at how the ensuing recognition dynamics could be supported by directed connections and message-passing among neuronal populations, given our knowledge of intrinsic and extrinsic neuronal connections. We assume that the brain models the world as a dynamic system, which imposes causal structure on the sensorium. Perception is equated with the optimisation or inversion of this internal model, to explain sensory input. Given a model of how sensory data are generated, we use a generic variational approach to model inversion to furnish equations that prescribe recognition; i.e., the dynamics of neuronal activity that represents the causes of sensory input. Here, we focus on a model whose hierarchical and dynamical structure enables simulated brains to recognise and predict sequences of sensory states. We first review these models and their inversion under a variational free-energy formulation. We then show that the brain has the necessary infrastructure to implement this inversion and present stimulations using synthetic birds that generate and recognise birdsongs.

  14. Cortical circuits for perceptual inference.

    PubMed

    Friston, Karl; Kiebel, Stefan

    2009-10-01

    This paper assumes that cortical circuits have evolved to enable inference about the causes of sensory input received by the brain. This provides a principled specification of what neural circuits have to achieve. Here, we attempt to address how the brain makes inferences by casting inference as an optimisation problem. We look at how the ensuing recognition dynamics could be supported by directed connections and message-passing among neuronal populations, given our knowledge of intrinsic and extrinsic neuronal connections. We assume that the brain models the world as a dynamic system, which imposes causal structure on the sensorium. Perception is equated with the optimisation or inversion of this internal model, to explain sensory input. Given a model of how sensory data are generated, we use a generic variational approach to model inversion to furnish equations that prescribe recognition; i.e., the dynamics of neuronal activity that represents the causes of sensory input. Here, we focus on a model whose hierarchical and dynamical structure enables simulated brains to recognise and predict sequences of sensory states. We first review these models and their inversion under a variational free-energy formulation. We then show that the brain has the necessary infrastructure to implement this inversion and present stimulations using synthetic birds that generate and recognise birdsongs. PMID:19635656

  15. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  16. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  17. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  18. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  19. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II...

  20. Left anterior temporal cortex actively engages in speech perception: A direct cortical stimulation study.

    PubMed

    Matsumoto, Riki; Imamura, Hisaji; Inouchi, Morito; Nakagawa, Tomokazu; Yokoyama, Yohei; Matsuhashi, Masao; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2011-04-01

    Recent neuroimaging studies proposed the importance of the anterior auditory pathway for speech comprehension. Its clinical significance is implicated by semantic dementia or pure word deafness. Neurodegenerative or cerebrovascular nature, however, precluded precise localization of the cortex responsible for speech perception. Electrical cortical stimulation could delineate such localization by producing transient, functional impairment. We investigated engagement of the left anterior temporal cortex in speech perception by means of direct electrical cortical stimulation. Subjects were two partial epilepsy patients, who underwent direct cortical stimulation as a part of invasive presurgical evaluations. Stimulus sites were coregistered to presurgical 3D-MRI, and then to MNI standard space for anatomical localization. Separate from the posterior temporal language area, electrical cortical stimulation revealed a well-restricted language area in the anterior part of the superior temporal sulcus and gyrus (aSTS/STG) in both patients. Auditory sentence comprehension was impaired upon electrical stimulation of aSTS/STG. In one patient, additional investigation revealed that the functional impairment was restricted to auditory sentence comprehension with preserved visual sentence comprehension and perception of music and environmental sounds. Both patients reported that they could hear the voice but not understand the sentence well (e.g., heard as a series of meaningless utterance). The standard coordinates of this restricted area at left aSTS/STG well corresponded with the coordinates of speech perception reported in neuroimaging activation studies in healthy subjects. The present combined anatomo-functional case study, for the first time, demonstrated that aSTS/STG in the language dominant hemisphere actively engages in speech perception.

  1. Reduced cortical thickness, surface area in patients with chronic obstructive pulmonary disease: a surface-based morphometry and neuropsychological study.

    PubMed

    Chen, Ji; Lin, In-Tsang; Zhang, Haiyan; Lin, Jianzhong; Zheng, Shili; Fan, Ming; Zhang, Jiaxing

    2016-06-01

    Neural impairments accompanying chronic obstructive pulmonary disease (COPD) have received growing research attention. Previous neuroimaging studies exclusively used volumetric methods to measure cortical volume as a whole rather than focusing on anatomical and neuropathological distinct indices. Here we decomposed the cortical architecture into cortical thickness (CTh), surface area (SA), and gyrification, for the first time, to provide a more integrative profile of brain damage in COPD. Clinical T1-weighted MRI scans were acquired in 25 stable COPD patients (mean age 69) and 25 age-matched controls. Images were processed using surface-based morphometry to obtain cortical parameters enabling more accurate measurement in deep sulci and localized regional mapping. Demographic, physiological, and cognitive assessments were made and correlated with cortical indices. Compared to controls, COPD patients showed significantly reduced CTh broadly distributed in motor, parietal, and prefrontal cortices, together with more circumscribed SA reduction in dorsomedial prefrontal cortex and Broca's area (cluster-level P < 0.05 corrected). No abnormal gyrification was detected. Decreased CTh in parietofrontal networks strongly correlated with visuospatial construction impairment in COPD patients. Furthermore, thinner dorsolateral prefrontal cortex (DLPFC) best predicted poorer performance (r (2)  = 0.315, P = 0.004), and was associated with lower arterial oxygen saturation. These data indicate that cortical thinning is a key morphologic feature associated with COPD that could be partly attributed to oxygen desaturation and contributes to COPD visual memory and drawing deficits. Surface-based morphometry provides valuable information concerning COPD, and could ultimately help us to characterize the neurodegenerative pattern and to clarify neurologic mechanisms underlying cognitive dysfunction in COPD patients. PMID:25986304

  2. Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony.

    PubMed

    Sales-Carbonell, Carola; Rueda-Orozco, Pavel E; Soria-Gómez, Edgar; Buzsáki, György; Marsicano, Giovanni; Robbe, David

    2013-01-01

    Activation of type 1 cannabinoid receptors (CB1R) decreases GABA and glutamate release in cortical and subcortical regions, with complex outcomes on cortical network activity. To date there have been few attempts to disentangle the region- and cell-specific mechanisms underlying the effects of cannabinoids on cortical network activity in vivo. Here we addressed this issue by combining in vivo electrophysiological recordings with local and systemic pharmacological manipulations in conditional mutant mice lacking CB1R expression in different neuronal populations. First we report that cannabinoids induce hypersynchronous thalamocortical oscillations while decreasing the amplitude of faster cortical oscillations. Then we demonstrate that CB1R at striatonigral synapses (basal ganglia direct pathway) mediate the thalamocortical hypersynchrony, whereas activation of CB1R expressed in cortical glutamatergic neurons decreases cortical synchrony. Finally we show that activation of CB1 expressed in cortical glutamatergic neurons limits the cannabinoid-induced thalamocortical hypersynchrony. By reporting that CB1R activations in cortical and subcortical regions have contrasting effects on cortical synchrony, our study bridges the gap between cellular and in vivo network effects of cannabinoids. Incidentally, the thalamocortical hypersynchrony we report suggests a potential mechanism to explain the sensory "high" experienced during recreational consumption of marijuana.

  3. Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony

    PubMed Central

    Sales-Carbonell, Carola; Rueda-Orozco, Pavel E.; Soria-Gómez, Edgar; Buzsáki, György; Marsicano, Giovanni; Robbe, David

    2013-01-01

    Activation of type 1 cannabinoid receptors (CB1R) decreases GABA and glutamate release in cortical and subcortical regions, with complex outcomes on cortical network activity. To date there have been few attempts to disentangle the region- and cell-specific mechanisms underlying the effects of cannabinoids on cortical network activity in vivo. Here we addressed this issue by combining in vivo electrophysiological recordings with local and systemic pharmacological manipulations in conditional mutant mice lacking CB1R expression in different neuronal populations. First we report that cannabinoids induce hypersynchronous thalamocortical oscillations while decreasing the amplitude of faster cortical oscillations. Then we demonstrate that CB1R at striatonigral synapses (basal ganglia direct pathway) mediate the thalamocortical hypersynchrony, whereas activation of CB1R expressed in cortical glutamatergic neurons decreases cortical synchrony. Finally we show that activation of CB1 expressed in cortical glutamatergic neurons limits the cannabinoid-induced thalamocortical hypersynchrony. By reporting that CB1R activations in cortical and subcortical regions have contrasting effects on cortical synchrony, our study bridges the gap between cellular and in vivo network effects of cannabinoids. Incidentally, the thalamocortical hypersynchrony we report suggests a potential mechanism to explain the sensory “high” experienced during recreational consumption of marijuana. PMID:23269835

  4. Cortical Neural Computation by Discrete Results Hypothesis

    PubMed Central

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast

  5. Development and evolution of cortical fields.

    PubMed

    Arai, Yoko; Pierani, Alessandra

    2014-09-01

    The neocortex is the brain structure that has been subjected to a major size expansion, in its relative size, during mammalian evolution. It arises from the cortical primordium through coordinated growth of neural progenitor cells along both the tangential and radial axes and their patterning providing spatial coordinates. Functional neocortical areas are ultimately consolidated by environmental influences such as peripheral sensory inputs. Throughout neocortical evolution, cortical areas have become more sophisticated and numerous. This increase in number is possibly involved in the complexification of neocortical function in primates. Whereas extensive divergence of functional cortical fields is observed during evolution, the fundamental mechanisms supporting the allocation of cortical areas and their wiring are conserved, suggesting the presence of core genetic mechanisms operating in different species. We will discuss some of the basic molecular mechanisms including morphogen-dependent ones involved in the precise orchestration of neurogenesis in different cortical areas, elucidated from studies in rodents. Attention will be paid to the role of Cajal-Retzius neurons, which were recently proposed to be migrating signaling units also involved in arealization, will be addressed. We will further review recent works on molecular mechanisms of cortical patterning resulting from comparative analyses between different species during evolution.

  6. Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas.

    PubMed

    Sellers, Kristin K; Bennett, Davis V; Hutt, Axel; Williams, James H; Fröhlich, Flavio

    2015-06-01

    During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers.

  7. Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas

    PubMed Central

    Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.

    2015-01-01

    During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839

  8. Memory Impairment in Children with Language Impairment

    ERIC Educational Resources Information Center

    Baird, Gillian; Dworzynski, Katharina; Slonims, Vicky; Simonoff, Emily

    2010-01-01

    Aim: The aim of this study was to assess whether any memory impairment co-occurring with language impairment is global, affecting both verbal and visual domains, or domain specific. Method: Visual and verbal memory, learning, and processing speed were assessed in children aged 6 years to 16 years 11 months (mean 9y 9m, SD 2y 6mo) with current,…

  9. Euchromatin histone methyltransferase 1 regulates cortical neuronal network development

    PubMed Central

    Bart Martens, Marijn; Frega, Monica; Classen, Jessica; Epping, Lisa; Bijvank, Elske; Benevento, Marco; van Bokhoven, Hans; Tiesinga, Paul; Schubert, Dirk; Nadif Kasri, Nael

    2016-01-01

    Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks. Here we used micro-electrode arrays and whole-cell patch-clamp recordings to investigate the impact of EHMT1 deficiency at the network and single cell level. We show that EHMT1 deficiency impaired neural network activity during the transition from uncorrelated background action potential firing to synchronized network bursting. Spontaneous bursting and excitatory synaptic currents were transiently reduced, whereas miniature excitatory postsynaptic currents were not affected. Finally, we show that loss of function of EHMT1 ultimately resulted in less regular network bursting patterns later in development. These data suggest that the developmental impairments observed in EHMT1-deficient networks may result in a temporal misalignment between activity-dependent developmental processes thereby contributing to the pathophysiology of Kleefstra syndrome. PMID:27767173

  10. Enrichment and training improve cognition in rats with cortical malformations.

    PubMed

    Jenks, Kyle R; Lucas, Marcella M; Duffy, Ben A; Robbins, Ashlee A; Gimi, Barjor; Barry, Jeremy M; Scott, Rod C

    2013-01-01

    Children with malformations of cortical development (MCD) frequently have associated cognitive impairments which reduce quality of life. We hypothesized that cognitive deficits associated with MCD can be improved with environmental manipulation or additional training. The E17 methylazoxymethanol acetate (MAM) exposure model bears many anatomical hallmarks seen in human MCDs as well as similar behavioral and cognitive deficits. We divided control and MAM exposed Sprague-Dawley rats into enriched and non-enriched groups and tested performance in the Morris water maze. Another group similarly divided underwent sociability testing and also underwent Magnetic Resonance Imaging (MRI) scans pre and post enrichment. A third group of control and MAM rats without enrichment were trained until they reached criterion on the place avoidance task. MAM rats had impaired performance on spatial tasks and enrichment improved performance of both control and MAM animals. Although MAM rats did not have a deficit in sociability they showed similar improvement with enrichment as controls. MRI revealed a whole brain volume decrease with MAM exposure, and an increase in both MAM and control enriched volumes in comparison to non-enriched animals. In the place avoidance task, MAM rats required approximately 3 times as long to reach criterion as control animals, but with additional training were able to reach control performance. Environmental manipulation and additional training can improve cognition in a rodent MCD model. We therefore suggest that patients with MCD may benefit from appropriate alterations in educational strategies, social interaction and environment. These factors should be considered in therapeutic strategies.

  11. Cortical thinning of parahippocampal subregions in very early Alzheimer's disease.

    PubMed

    Krumm, Sabine; Kivisaari, Sasa L; Probst, Alphonse; Monsch, Andreas U; Reinhardt, Julia; Ulmer, Stephan; Stippich, Christoph; Kressig, Reto W; Taylor, Kirsten I

    2016-02-01

    The stereotypical pattern of neurofibrillary tangle spreading in the earliest stages of typical Alzheimer's dementia (AD) predicts that medial perirhinal cortex (mPRC) atrophy precedes entorhinal cortex (ERC) atrophy, whereas the status of the parahippocampal cortex (PHC) remains unclear. Atrophy studies have focused on more advanced rather than early AD patients, and usually segment the entire PRC as opposed to the mPRC versus lateral PRC (lPRC). The present study therefore determined the extent of ERC, mPRC, lPRC, and PHC atrophy in very early AD (mean Mini-Mental State Examination score = 26) patients and its presumed prodrome amnestic mild cognitive impairment (mean Mini-Mental State Examination score = 28) compared to demographically matched controls. PHG structures were manually segmented (blinded rater) and cortical thicknesses extracted. ERC and mPRC were similarly atrophied in both patient groups. The lPRC was atrophied in the AD group only. Thus, atrophic changes in very early AD broadly map onto the pattern of neurofibrillary tangle spreading and suggest that mPRC, ERC, and lPRC, but not PHC-associated functional impairments, characterize very early-stage AD. PMID:26827657

  12. Dynamic cortical lateralization during olfactory discrimination learning

    PubMed Central

    Cohen, Yaniv; Putrino, David; Wilson, Donald A

    2015-01-01

    Key points Odour discrimination and memory involve changes in the primary olfactory (piriform) cortex. The results obtained in the present study suggest that there is an asymmetry in piriform cortical change, with learning-related changes in cortical oscillations emerging with different time courses over the course of multiday training in the left and right piriform cortices in rats. There is an initial decrease in coherence between the left and right piriform cortices during the early stages of the odour discrimination task, which recovers as the animals approach criterion performance. This decreased coherence is expressed when the animals are performing the task relative to when they are in their home cage. The results suggest a transient cortical asymmetry during learning and raise new questions about the functions and mechanisms of cerebral lateralization. Abstract Bilateral cortical circuits are not necessarily symmetrical. Asymmetry, or cerebral lateralization, allows functional specialization of bilateral brain regions and has been described in humans for such diverse functions as perception, memory and emotion. There is also evidence for asymmetry in the human olfactory system, although evidence in non-human animal models is lacking. In the present study, we took advantage of the known changes in olfactory cortical local field potentials that occur over the course of odour discrimination training to test for functional asymmetry in piriform cortical activity during learning. Both right and left piriform cortex local field potential activities were recorded. The results obtained demonstrate a robust interhemispheric asymmetry in anterior piriform cortex activity that emerges during specific stages of odour discrimination learning, with a transient bias toward the left hemisphere. This asymmetry is not apparent during error trials. Furthermore, functional connectivity (coherence) between the bilateral anterior piriform cortices is learning- and context

  13. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders

    NASA Astrophysics Data System (ADS)

    Kana, Rajesh K.; Libero, Lauren E.; Moore, Marie S.

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills

  14. Multimodal neuroimaging evidence of alterations in cortical structure and function in HIV-infected older adults

    PubMed Central

    Wilson, Tony W.; Heinrichs-Graham, Elizabeth; Becker, Katherine M.; Aloi, Joey; Robertson, Kevin R.; Sandkovsky, Uriel; White, Matthew L.; O’Neill, Jennifer; Knott, Nichole L.; Fox, Howard S.; Swindells, Susan

    2015-01-01

    Combination antiretroviral therapy transformed HIV-infection from a terminal illness to a manageable condition, but these patients remain at a significantly elevated risk of developing cognitive impairments and the mechanisms are not understood. Some previous neuroimaging studies have found hyperactivation in fronto-parietal networks of HIV-infected patients, whereas others reported aberrations restricted to sensory cortices. In this study, we utilize high-resolution structural and neurophysiological imaging to determine whether alterations in brain structure, function, or both contribute to HIV-related cognitive impairments. HIV-infected adults and individually-matched controls completed 3-Tesla structural magnetic-resonance imaging (sMRI) and a mechanoreception task during magnetoencephalography (MEG). MEG data was examined using advanced beamforming methods, and sMRI data was analyzed using the latest voxel-based morphometry methods with DARTEL. We found significantly reduced theta responses in the postcentral gyrus and increased alpha activity in the prefrontal cortices of HIV-infected patients compared with controls. Patients also had reduced gray matter volume in the postcentral gyrus, parahippocampal gyrus, and other regions. Importantly, reduced gray matter volume in the left postcentral gyrus was spatially-coincident with abnormal MEG responses in HIV-infected patients. Finally, left prefrontal and postcentral gyrus activity was correlated with neuropsychological performance and, when used in conjunction, these two MEG findings had a sensitivity and specificity of over 87.5% for HIV-associated cognitive impairment. This study is the first to demonstrate abnormally increased activity in association cortices with simultaneously decreased activity in sensory areas. These MEG findings had excellent sensitivity and specificity for HIV-associated cognitive impairment, and may hold promise as a potential disease marker. PMID:25376125

  15. Multimodal neuroimaging evidence of alterations in cortical structure and function in HIV-infected older adults.

    PubMed

    Wilson, Tony W; Heinrichs-Graham, Elizabeth; Becker, Katherine M; Aloi, Joseph; Robertson, Kevin R; Sandkovsky, Uriel; White, Matthew L; O'Neill, Jennifer; Knott, Nichole L; Fox, Howard S; Swindells, Susan

    2015-03-01

    Combination antiretroviral therapy transformed human immunodeficiency virus (HIV)-infection from a terminal illness to a manageable condition, but these patients remain at a significantly elevated risk of developing cognitive impairments and the mechanisms are not understood. Some previous neuroimaging studies have found hyperactivation in frontoparietal networks of HIV-infected patients, whereas others reported aberrations restricted to sensory cortices. In this study, we utilize high-resolution structural and neurophysiological imaging to determine whether alterations in brain structure, function, or both contribute to HIV-related cognitive impairments. HIV-infected adults and individually matched controls completed 3-Tesla structural magnetic resonance imaging (sMRI) and a mechanoreception task during magnetoencephalography (MEG). MEG data were examined using advanced beamforming methods, and sMRI data were analyzed using the latest voxel-based morphometry methods with DARTEL. We found significantly reduced theta responses in the postcentral gyrus and increased alpha activity in the prefrontal cortices of HIV-infected patients compared with controls. Patients also had reduced gray matter volume in the postcentral gyrus, parahippocampal gyrus, and other regions. Importantly, reduced gray matter volume in the left postcentral gyrus was spatially coincident with abnormal MEG responses in HIV-infected patients. Finally, left prefrontal and postcentral gyrus activity was correlated with neuropsychological performance and, when used in conjunction, these two MEG findings had a sensitivity and specificity of over 87.5% for HIV-associated cognitive impairment. This study is the first to demonstrate abnormally increased activity in association cortices with simultaneously decreased activity in sensory areas. These MEG findings had excellent sensitivity and specificity for HIV-associated cognitive impairment, and may hold promise as a potential disease marker.

  16. Recent advancements in diffusion MRI for investigating cortical development after preterm birth—potential and pitfalls

    PubMed Central

    Dudink, J.; Pieterman, K.; Leemans, A.; Kleinnijenhuis, M.; van Cappellen van Walsum, A. M.; Hoebeek, F. E.

    2015-01-01

    Preterm infants are born during a critical period of brain maturation, in which even subtle events can result in substantial behavioral, motor and cognitive deficits, as well as psychiatric diseases. Recent evidence shows that the main source for these devastating disabilities is not necessarily white matter (WM) damage but could also be disruptions of cortical microstructure. Animal studies showed how moderate hypoxic-ischemic conditions did not result in significant neuronal loss in the developing brain, but did cause significantly impaired dendritic growth and synapse formation alongside a disturbed development of neuronal connectivity as measured using diffusion magnetic resonance imaging (dMRI). When using more advanced acquisition settings such as high-angular resolution diffusion imaging (HARDI), more advanced reconstruction methods can be applied to investigate the cortical microstructure with higher levels of detail. Recent advances in dMRI acquisition and analysis have great potential to contribute to a better understanding of neuronal connectivity impairment in preterm birth. We will review the current understanding of abnormal preterm cortical development, novel approaches in dMRI, and the pitfalls in scanning vulnerable preterm infants. PMID:25653607

  17. Evidence of temporal cortical dysfunction in rhesus monkeys following chronic cocaine self-administration.

    PubMed

    Liu, S; Heitz, R P; Sampson, A R; Zhang, W; Bradberry, C W

    2008-09-01

    Cocaine abusers show impaired performance on cognitive tasks that engage prefrontal cortex. These deficits may contribute to impaired control and relapse in abusers. Understanding the neuronal substrates that lead to these deficits requires animal models that are relevant to the human condition. However, to date, models have mostly focused on behaviors mediated by subcortical systems. Here we evaluated the impact of long-term self-administration of cocaine in the rhesus monkey on cognitive performance. Tests included stimulus discrimination (SD)/reversal and delayed alternation tasks. The chronic cocaine animals showed marked deficits in ability to organize their behavior for maximal reward. This was demonstrated by an increased time needed to acquire SDs. Deficits were also indicated by an increased time to initially learn the delayed alternation task, and to adapt strategies for bypassing a reliance on working memory to respond accurately. Working memory per se (delay dependent performance) was not affected by chronic self-administration. This pattern of cognitive deficits suggests dysfunction that extends beyond localized prefrontal cortical areas. In particular, it appears that temporal cortical function is also compromised. This agrees with other recent clinical and preclinical findings, and suggests further study into addiction related dysfunction across more widespread cortical networks is warranted. PMID:18096561

  18. Disembodied Mind: Cortical Changes Following Brainstem Injury in Patients with Locked-in Syndrome

    PubMed Central

    Pistoia, Francesca; Cornia, Riccardo; Conson, Massimiliano; Gosseries, Olivia; Carolei, Antonio; Sacco, Simona; Quattrocchi, Carlo C.; Mallio, Carlo A.; Iani, Cristina; Mambro, Debora Di; Sarà, Marco

    2016-01-01

    Locked-in syndrome (LIS) following ventral brainstem damage is the most severe form of motor disability. Patients are completely entrapped in an unresponsive body despite consciousness is preserved. Although the main feature of LIS is this extreme motor impairment, minor non-motor dysfunctions such as motor imagery defects and impaired emotional recognition have been reported suggesting an alteration of embodied cognition, defined as the effects that the body and its performances may have on cognitive domains. We investigated the presence of structural cortical changes in LIS, which may account for the reported cognitive dysfunctions. For this aim, magnetic resonance imaging scans were acquired in 11 patients with LIS (6 males and 5 females; mean age: 52.3±5.2SD years; mean time interval from injury to evaluation: 9±1.2SD months) and 44 healthy control subjects matching patients for age, sex and education. Freesurfer software was used to process data and to estimate cortical volumes in LIS patients as compared to healthy subjects. Results showed a selective cortical volume loss in patients involving the superior frontal gyrus, the pars opercularis and the insular cortex in the left hemisphere, and the superior and medium frontal gyrus, the pars opercularis, the insular cortex, and the superior parietal lobule in the right hemisphere. As these structures are typically associated with the mirror neuron system, which represents the neural substrate for embodied simulation processes, our results provide neuroanatomical support for potential disembodiment in LIS. PMID:27347263

  19. Periventricular Heterotopia: Shuttling of Proteins through Vesicles and Actin in Cortical Development and Disease

    PubMed Central

    Sheen, Volney L.

    2012-01-01

    During cortical development, proliferating neural progenitors exhibit polarized apical and basolateral membranes that are maintained by tightly controlled and membrane-specific vesicular trafficking pathways. Disruption of polarity through impaired delivery of proteins can alter cell fate decisions and consequent expansion of the progenitor pool, as well as impact the integrity of the neuroependymal lining. Loss of neuroependymal integrity disrupts radial glial scaffolding and alters initial neuronal migration from the ventricular zone. Vesicle trafficking is also required for maintenance of lipid and protein cycling within the leading and trailing edge of migratory neurons, as well as dendrites and synapses of mature neurons. Defects in this transport machinery disrupt neuronal identity, migration, and connectivity and give rise to a malformation of cortical development termed as periventricular heterotopia (PH). PH is characterized by a reduction in brain size, ectopic clusters of neurons localized along the lateral ventricle, and epilepsy and dyslexia. These anatomical anomalies correlate with developmental impairments in neural progenitor proliferation and specification, migration from loss of neuroependymal integrity and neuronal motility, and aberrant neuronal process extension. Genes causal for PH regulate vesicle-mediated endocytosis along an actin cytoskeletal network. This paper explores the role of these dynamic processes in cortical development and disease. PMID:24278701

  20. ERBB4 Polymorphism and Family History of Psychiatric Disorders on Age-Related Cortical Changes in Healthy Children

    PubMed Central

    Douet, Vanessa; Chang, Linda; Lee, Kristin; Ernst, Thomas

    2015-01-01

    Background Genetic variations in ERBB4 were associated with increased susceptibility for schizophrenia (SCZ) and bipolar disorders (BPD). Structural imaging studies showed cortical abnormalities in adolescents and adults with SCZ or BPD. However, less is known about subclinical cortical changes or the influence of ERBB4 on cortical development. Methods 971 healthy children (ages 3–20 years old; 462 girls and 509 boys) were genotyped for the ERBB4-rs7598440 variants, had structural MRI, and cognitive evaluation (NIH Toolbox ®). We investigated the effects of ERBB4 variants and family history of SCZ and/or BPD (FH) on cortical measures and cognitive performances across ages 3–20 years using a general additive model. Results Variations in ERBB4 and FH impact differentially the age-related cortical changes in regions often affected by SCZ and BPD. The ERBB4-TT-risk genotype children with no FH had subtle cortical changes across the age span, primarily located in the left temporal lobe and superior parietal cortex. In contrast, the TT-risk genotype children with FH had more pronounced age-related changes, mainly in the frontal lobes compared to the non-risk genotype children. Interactive effects of age, FH and ERBB4 variations were also found on episodic memory and working memory, which are often impaired in SCZ and BPD. Conclusions Healthy children carrying the risk-genotype in ERBB4 and/or with FH had cortical measures resembling those reported in SCZ or BPD. These subclinical cortical variations may provide early indicators for increased risk of psychiatric disorders and improve our understanding of the effect of the NRG1–ERBB4 pathway on brain development. PMID:25744101

  1. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  2. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease.

    PubMed

    Zuccato, Chiara; Marullo, Manuela; Conforti, Paola; MacDonald, Marcy E; Tartari, Marzia; Cattaneo, Elena

    2008-04-01

    One cardinal feature of Huntington's disease (HD) is the degeneration of striatal neurons, whose survival greatly depends on the binding of cortical brain-derived neurotrophic factor (BDNF) with high-affinity (TrkB) and low-affinity neurotrophin receptors [p75 pan-neurotrophin receptor (p75(NTR))]. With a few exceptions, results obtained in HD mouse models demonstrate a reduction in cortical BDNF mRNA and protein, although autopsy data from a limited number of human HD cortices are conflicting. These studies indicate the presence of defects in cortical BDNF gene transcription and transport to striatum. We provide new evidence indicating a significant reduction in BDNF mRNA and protein in the cortex of 20 HD subjects in comparison with 17 controls, which supports the hypothesis of impaired BDNF production in human HD cortex. Analyses of the BDNF isoforms show that transcription from BDNF promoter II and IV is down-regulated in human HD cortex from an early symptomatic stage. We also found that TrkB mRNA levels are reduced in caudate tissue but not in the cortex, whereas the mRNA levels of T-Shc (a truncated TrkB isoform) and p75(NTR) are increased in the caudate. This indicates that, in addition to the reduction in BDNF mRNA, there is also unbalanced neurotrophic receptor signaling in HD. PMID:18093249

  3. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model.

    PubMed

    Zagha, Edward; Murray, John D; McCormick, David A

    2016-01-01

    Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input-output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation. PMID:27595137

  4. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model

    PubMed Central

    Murray, John D.; McCormick, David A.

    2016-01-01

    Abstract Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input–output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation.

  5. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model.

    PubMed

    Zagha, Edward; Murray, John D; McCormick, David A

    2016-01-01

    Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input-output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation.

  6. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model

    PubMed Central

    Murray, John D.; McCormick, David A.

    2016-01-01

    Abstract Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input–output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation. PMID:27595137

  7. Cortical thinning in bipolar disorder and schizophrenia.

    PubMed

    Knöchel, Christian; Reuter, Johanna; Reinke, Britta; Stäblein, Michael; Marbach, Katharina; Feddern, Richard; Kuhlmann, Kristina; Alves, Gilberto; Prvulovic, David; Wenzler, Sofia; Linden, David E J; Oertel-Knöchel, Viola

    2016-04-01

    Although schizophrenia (SZ) and bipolar disorder (BD) share some clinical features such as psychotic symptoms and cognitive dysfunctions, little is known about possible pathophysiological similarities between both diseases. Therefore, we investigated the potential topographical overlap and segregation of cortical thickness abnormalities in SZ and BD patients. We analyzed 3D-anatomical magnetic resonance imaging datasets with the FreeSurfer 5.1.0 software to examine cortical thickness and volumes in three groups of participants: n=34 BD patients, n=32 SZ patients and n=38 healthy controls. We observed similar bilateral cortical thickness reductions in BD and SZ patients predominantly in the pars opercularis of the inferior frontal gyrus and in the anterior and posterior cingulate. We also found disease-specific cortical reductions in the orbitofrontal cortex for BD patients and in dorsal frontal and temporal areas for SZ. Furthermore, inferior frontal gyrus cortical thinning was associated with deficits in psychomotor speed and executive functioning in SZ patients and with age at onset in both groups. Our findings support the hypothesis that thinning of the frontal cortex may represent a biological feature shared by both disease groups. The associations between cognitive deficits and the reported findings in SZ and to a lesser degree in BD patients add to the functional relevance of our results. However, further studies are needed to corroborate a model of shared pathophysiological disease features across BD and SZ. PMID:26876312

  8. Automatic parcellation of longitudinal cortical surfaces

    NASA Astrophysics Data System (ADS)

    Alassaf, Manal H.; Hahn, James K.

    2015-03-01

    We present a novel automatic method to parcellate the cortical surfaces of the neonatal brain longitudinal atlas at different stages of development. A labeled brain atlas of newborn at 41 weeks gestational age (GA) is used to propagate labels of anatomical regions of interest to an unlabeled spatio-temporal atlas, which provides a dynamic model of brain development at each week between 28-44 GA weeks. First, labels from the cortical volume of the labeled newborn brain are propagated to an age-matched cortical surface from the spatio-temporal atlas. Then, labels are propagated across the cortical surfaces of each week of the spatio-temporal atlas by registering successive cortical surfaces using a novel approach and an energy optimization function. This procedure incorporates local and global, spatial and temporal information when assigning the labels to each surface. The result is a complete parcellation of 17 neonatal brain surfaces of the spatio-temporal atlas with similar points per labels distributions across weeks.

  9. Malformations of cortical development and epilepsy.

    PubMed

    Leventer, Richard J; Guerrini, Renzo; Dobyns, William B

    2008-01-01

    Malformations of cortical development (MCDs) are macroscopic or microscopic abnormalities of the cerebral cortex that arise as a consequence of an interruption to the normal steps of formation of the cortical plate. The human cortex develops its basic structure during the first two trimesters of pregnancy as a series of overlapping steps, beginning with proliferation and differentiation of neurons, which then migrate before finally organizing themselves in the developing cortex. Abnormalities at any of these stages, be they environmental or genetic in origin, may cause disruption of neuronal circuitry and predispose to a variety of clinical consequences, the most common of which is epileptic seizures. A large number of MCDs have now been described, each with characteristic pathological, clinical, and imaging features. The causes of many of these MCDs have been determined through the study of affected individuals, with many MCDs now established as being secondary to mutations in cortical development genes. This review will highlight the best-known of the human cortical malformations associated with epilepsy. The pathological, clinical, imaging, and etiologic features of each MCD will be summarized, with representative magnetic resonance imaging (MRI) images shown for each MCD. The malformations tuberous sclerosis, focal cortical dysplasia, hemimegalencephaly, classical lissencephaly, subcortical band heterotopia, periventricular nodular heterotopia, polymicrogyria, and schizencephaly will be presented. PMID:18472484

  10. Intraoperative determination and display of cortical function

    NASA Astrophysics Data System (ADS)

    Bass, W. Andrew; Galloway, Robert L., Jr.; Dawant, Benoit M.; Maciunas, Robert J.

    1997-05-01

    One of the most important issues in neurosurgical lesion resection is margin definition. And while there is still some effort required to exactly determine lesion boundaries from tomographic images, the lesions are at least perceptible on the scans. What is not visible is the location of function. Functional imaging such as PET and fMRI hold some promise for cortical function localization; however, intraoperative cortical mapping can provide exact localization of function without ambiguity. Since tomographic images can provide lesion margin definition and cortical mapping can provide functional information we have developed a system for combining the two in our Interactive, Image-Guided system. For cortical surface mapping we need a surface description. Brain contours are extracted from a MRI volume using a deformable model approach and rendered from multiple angular positions. As the surgeon moves a probe, its position is displayed on the view closes to the angular position of the probe. During functional mapping, positive response to stimulation result in a color overlay 'dot' added to the cortical surface display. Different colored dots are used to distinguish between motor function and language function. And a third color is used to display overlapping functionality. This information is used to guide the resection around functionally eloquent areas of the cortex.

  11. Cortical reorganization in the aging brain.

    PubMed

    Dinse, Hubert R

    2006-01-01

    Aging exerts major reorganization and remodeling at all levels of brain structure and function. Studies in aged animals and in human elderly individuals demonstrate that sensorimotor cortical representational maps undergo significant alterations. Because cortical reorganization is paralleled by a decline in perceptual and behavioral performance, this type of cortical remodeling differs from the plastic reorganization observed during learning processes in young individuals where map changes are associated with a gain in performance. It is now clear that brain plasticity is operational into old age; therefore, protocols for interventions such as training, exercising, practicing, and stimulation, which make use of neuroplasticity principles, are effective to ameliorate some forms of cortical and behavioral age-related changes, indicating that aging effects are not irreversible but treatable. However, old individuals cannot be rejuvenated, but restoration of function is possible through the emergence of new processing strategies. This implies that cortical reorganization in the aging brain occurs twice: during aging, and during treatment of age-related changes.

  12. Human Cortical Excitability Increases with Time Awake

    PubMed Central

    Huber, Reto; Mäki, Hanna; Rosanova, Mario; Casarotto, Silvia; Canali, Paola; Casali, Adenauer G.; Tononi, Giulio

    2013-01-01

    Prolonged wakefulness is associated not only with obvious changes in the way we feel and perform but also with well-known clinical effects, such as increased susceptibility to seizures, to hallucinations, and relief of depressive symptoms. These clinical effects suggest that prolonged wakefulness may be associated with significant changes in the state of cortical circuits. While recent animal experiments have reported a progressive increase of cortical excitability with time awake, no conclusive evidence could be gathered in humans. In this study, we combine transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to monitor cortical excitability in healthy individuals as a function of time awake. We observed that the excitability of the human frontal cortex, measured as the immediate (0–20 ms) EEG reaction to TMS, progressively increases with time awake, from morning to evening and after one night of total sleep deprivation, and that it decreases after recovery sleep. By continuously monitoring vigilance, we also found that this modulation in cortical responsiveness is tonic and not attributable to transient fluctuations of the level of arousal. The present results provide noninvasive electrophysiological evidence that wakefulness is associated with a steady increase in the excitability of human cortical circuits that is rebalanced during sleep. PMID:22314045

  13. Depression in Cognitive Impairment

    PubMed Central

    Pellegrino, Laurel D.; Lyketsos, Constantine G.; Marano, Christopher M.

    2014-01-01

    Depression and cognitive disorders, including dementia and mild cognitive impairment, are common in the elderly. Depression is also a common feature of cognitive impairment although the symptoms of depression in cognitive impairment differ from depression without cognitive impairment. Pre-morbid depression approximately doubles the risk of subsequent dementia. There are two predominant, though not mutually exclusive, constructs linking pre-morbid depression to subsequent cognitive impairment: Alzheimer’s pathology and the vascular depression hypothesis. When evaluating a patient with depression and cognitive impairment, it is important to obtain caregiver input and to evaluate for alternative etiologies for depressive symptoms such as delirium. We recommend a sequential approach to the treatment of depression in dementia patients: (1) a period of watchful waiting for milder symptoms, (2) psychosocial treatment program, (3) a medication trial for more severe symptoms or failure of psychosocial interventions, and (4) possible ECT for refractory symptoms. PMID:23933974

  14. Impaired Inhibition of Prepotent Motor Tendencies in Friedreich Ataxia Demonstrated by the Simon Interference Task

    ERIC Educational Resources Information Center

    Corben, L. A.; Akhlaghi, H.; Georgiou-Karistianis, N.; Bradshaw, J. L.; Egan, G. F.; Storey, E.; Churchyard, A. J.; Delatycki, M. B.

    2011-01-01

    Friedreich ataxia (FRDA) is the most common of the genetically inherited ataxias. We recently demonstrated that people with FRDA have impairment in motor planning--most likely because of pathology affecting the cerebral cortex and/or cerebello-cortical projections. We used the Simon interference task to examine how effective 13 individuals with…

  15. Functional Cortical and Cerebellar Reorganization in a Case of Moyamoya Disease

    PubMed Central

    Calabrò, Rocco S.; Bramanti, Placido; Baglieri, Annalisa; Corallo, Francesco; De Luca, Rosaria; De Salvo, Simona

    2015-01-01

    Background: Functional studies have been previous reported in stroke patients, but no studies of functional magnetic resonance imaging have been performed in Moyamoya disease. Objective: To assess the cortical and cerebellar reorganization in a moyamoya patient. Methods: We reported a case of a patient suffering from moyamoya disease, undergoing a neuropsychological assessment, a neurocognitive rehabilitative treatment, an electroencephalogram evaluation, and a functional magnetic resonance imaging examination. Results: The subject showed a cognitive impairment, a slow electroencephalogram activity, and the ipsi- and controlateral motor cortex and cerebellar functional magnetic resonance imaging activation. Conclusions: This is the first functional magnetic resonance imaging case study reported in moyamoya disease. We showed a cortical reorganization, which could play an important role in clinical evaluation and motor recovery. The cerebellar activation, showed after cognitive and motor rehabilitation, could support the idea that the cerebellum contains several cognitive-related subregions involved in different functional networks in moyamoya disease. PMID:25852976

  16. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    PubMed Central

    ten Brinke, Michiel M.; Boele, Henk-Jan; Spanke, Jochen K.; Potters, Jan-Willem; Kornysheva, Katja; Wulff, Peer; IJpelaar, Anna C.H.G.; Koekkoek, Sebastiaan K.E.; De Zeeuw, Chris I.

    2015-01-01

    Summary Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs). However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS)-related complex spike responses, and molecular layer interneuron (MLI) activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval. PMID:26655909

  17. Role of secondary sensory cortices in emotional memory storage and retrieval in rats.

    PubMed

    Sacco, Tiziana; Sacchetti, Benedetto

    2010-08-01

    Visual, acoustic, and olfactory stimuli associated with a highly charged emotional situation take on the affective qualities of that situation. Where the emotional meaning of a given sensory experience is stored is a matter of debate. We found that excitotoxic lesions of auditory, visual, or olfactory secondary sensory cortices impaired remote, but not recent, fear memories in rats. Amnesia was modality-specific and not due to an interference with sensory or emotional processes. In these sites, memory persistence was dependent on ongoing protein kinase Mzeta activity and was associated with an increased activity of layers II-IV, thus suggesting a synaptic strengthening of corticocortical connections. Lesions of the same areas left intact the memory of sensory stimuli not associated with any emotional charge. We propose that secondary sensory cortices support memory storage and retrieval of sensory stimuli that have acquired a behavioral salience with the experience.

  18. Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement

    PubMed Central

    Hsieh, Lawrence S.; Wen, John H.; Claycomb, Kumiko; Huang, Yuegao; Harrsch, Felicia A.; Naegele, Janice R.; Hyder, Fahmeed; Buchanan, Gordon F.; Bordey, Angelique

    2016-01-01

    Focal cortical dysplasia (FCD), a local malformation of cortical development, is the most common cause of pharmacoresistant epilepsy associated with life-long neurocognitive impairments. It remains unclear whether neuronal misplacement is required for seizure activity. Here we show that dyslamination and white matter heterotopia are not necessary for seizure generation in a murine model of type II FCDs. These experimental FCDs generated by increasing mTOR activity in layer 2/3 neurons of the medial prefrontal cortex are associated with tonic-clonic seizures and a normal survival rate. Preventing all FCD-related defects, including neuronal misplacement and dysmorphogenesis, with rapamycin treatments from birth eliminates seizures, but seizures recur after rapamycin withdrawal. In addition, bypassing neuronal misplacement and heterotopia using inducible vectors do not prevent seizure occurrence. Collectively, data obtained using our new experimental FCD-associated epilepsy suggest that life-long treatment to reduce neuronal dysmorphogenesis is required to suppress seizures in individuals with FCD. PMID:27249187

  19. Lateralization of observational fear learning at the cortical but not thalamic level in mice.

    PubMed

    Kim, Sangwoo; Mátyás, Ferenc; Lee, Sukchan; Acsády, László; Shin, Hee-Sup

    2012-09-18

    Major cognitive and emotional faculties are dominantly lateralized in the human cerebral cortex. The mechanism of this lateralization has remained elusive owing to the inaccessibility of human brains to many experimental manipulations. In this study we demonstrate the hemispheric lateralization of observational fear learning in mice. Using unilateral inactivation as well as electrical stimulation of the anterior cingulate cortex (ACC), we show that observational fear learning is controlled by the right but not the left ACC. In contrast to the cortex, inactivation of either left or right thalamic nuclei, both of which are in reciprocal connection to ACC, induced similar impairment of this behavior. The data suggest that lateralization of negative emotions is an evolutionarily conserved trait and mainly involves cortical operations. Lateralization of the observational fear learning behavior in a rodent model will allow detailed analysis of cortical asymmetry in cognitive functions.

  20. Autonomic cardiovascular regulation and cortical tone.

    PubMed

    Duschek, Stefan; Wörsching, Jana; Reyes Del Paso, Gustavo A

    2015-09-01

    This study aimed to investigate interactions between tonic cortical arousal and features of autonomic cardiovascular regulation. In 50 healthy subjects, the power spectrum of the spontaneous EEG was obtained at resting state. Concurrently, respiratory sinus arrhythmia (RSA), baroreflex sensitivity (BRS) and R-wave to pulse interval (RPI) were recorded as indices of cardiovascular control. At the bivariate level, only a negative correlation between beta power recorded at frontal electrode positions and RPI was found. However, when common variance of BRS and RSA was controlled for in multiple regression analyses, a positive association between alpha power and RSA, and an inverse relationship with BRS, also arose. The findings concerning RPI and RSA are suggestive of a relationship between higher levels of cortical tone and increased sympathetic and reduced vagal cardiac influences. The inverse association between BRS and alpha activity may reflect bottom-up modulation of cortical arousal by baroreceptor afferents. PMID:25080269

  1. Decision by division: making cortical maps.

    PubMed

    Rakic, Pasko; Ayoub, Albert E; Breunig, Joshua J; Dominguez, Martin H

    2009-05-01

    In the past three decades, mounting evidence has revealed that specification of the basic cortical neuronal classes starts at the time of their final mitotic divisions in the embryonic proliferative zones. This early cell determination continues during the migration of the newborn neurons across the widening cerebral wall, and it is in the cortical plate that they attain their final positions and establish species-specific cytoarchitectonic areas. Here, the development and evolutionary expansion of the neocortex is viewed in the context of the radial unit and protomap hypotheses. A broad spectrum of findings gave insight into the pathogenesis of cortical malformations and the biological bases for the evolution of the modern human neocortex. We examine the history and evidence behind the concept of early specification of neurons and provide the latest compendium of genes and signaling molecules involved in neuronal fate determination and specification.

  2. The ontogeny of the cortical language network.

    PubMed

    Skeide, Michael A; Friederici, Angela D

    2016-05-01

    Language-processing functions follow heterogeneous developmental trajectories. The human embryo can already distinguish vowels in utero, but grammatical complexity is usually not fully mastered until at least 7 years of age. Examining the current literature, we propose that the ontogeny of the cortical language network can be roughly subdivided into two main developmental stages. In the first stage extending over the first 3 years of life, the infant rapidly acquires bottom-up processing capacities, which are primarily implemented bilaterally in the temporal cortices. In the second stage continuing into adolescence, top-down processes emerge gradually with the increasing functional selectivity and structural connectivity of the left inferior frontal cortex.

  3. Rasmussen's encephalitis presenting as focal cortical dysplasia.

    PubMed

    O'Rourke, D J; Bergin, A; Rotenberg, A; Peters, J; Gorman, M; Poduri, A; Cryan, J; Lidov, H; Madsen, J; Harini, C

    2014-01-01

    Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD) and discuss the literature on this topic. PMID:25667877

  4. Cortical Networks for Visual Self-Recognition

    NASA Astrophysics Data System (ADS)

    Sugiura, Motoaki

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed.

  5. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-06-25

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  6. Number processing in posterior cortical atrophy--a neuropsycholgical case study.

    PubMed

    Delazer, M; Karner, E; Zamarian, L; Donnemiller, E; Benke, Th

    2006-01-01

    Posterior cortical atrophy (PCA) is an uncommon syndrome of dementia with early onset, characterised by disorders of higher visual function, variable symptoms of Balint's syndrome, visual agnosia, alexia, agraphia, finger agnosia, right-left disorientation and dyscalculia [Benson D. F., Davis R. J., & Snyder B. D. (1988). Posterior cortical atrophy. Archives of Neurology, 45, 789-793]. In a single case study specific numerical deficits were observed which may be predicted by parietal neurodegeneration (more pronounced on the right side; verified by SPECT). Besides impairments in all tasks involving visuo-spatial abilities (e.g., dot counting, analog number scale task), deficits appeared in tasks requiring access to an internal representation of numbers such as mental number bisection, approximation, estimation and semantic facts. In number comparison an increased distance effect was found. In simple arithmetic, a striking dissociation between operations was found-multiplication and addition facts being preserved at a superficial level, subtraction and division being severely impaired. The study confirms the close relation between spatial and numerical processing and highlights the modular organisation of the semantic system (number semantics impaired). Moreover, the study adds evidence about the clinical manifestation of the particular degenerative syndrome. PMID:15936044

  7. Self-Related Processing and Deactivation of Cortical Midline Regions in Disorders of Consciousness

    PubMed Central

    Crone, Julia Sophia; Höller, Yvonne; Bergmann, Jürgen; Golaszewski, Stefan; Trinka, Eugen; Kronbichler, Martin

    2013-01-01

    Self-related stimuli activate anterior parts of cortical midline regions, which normally show task-induced deactivation. Deactivation in medial posterior and frontal regions is associated with the ability to focus attention on the demands of the task, and therefore, with consciousness. Studies investigating patients with impaired consciousness, that is, patients in minimally conscious state and patients with unresponsive wakefulness syndrome (formerly vegetative state), demonstrate that these patients show responses to self-related content in the anterior cingulate cortex. However, it remains unclear if these responses are an indication for conscious processing of stimuli or are due to automatic processing. To shed further light on this issue, we investigated responses of cortical midline regions to the own and another name in 27 patients with a disorder of consciousness and compared them to task-induced deactivation. While almost all of the control subjects responding to the own name demonstrated higher activation due to the self-related content in anterior midline regions and additional deactivation, none of the responding patients did so. Differences between groups showed a similar pattern of findings. Despite the relation between behavioral responsiveness in patients and activation in response to the own name, the findings of this study do not provide evidence for a direct association of activation in anterior midline regions and conscious processing. The deficits in processing of self-referential content in anterior midline regions may rather be due to general impairments in cognitive processing and not particularly linked to impaired consciousness. PMID:23986685

  8. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations

    PubMed Central

    Kim, Tae; Thankachan, Stephen; McKenna, James T.; McNally, James M.; Yang, Chun; Choi, Jee Hyun; Chen, Lichao; Kocsis, Bernat; Deisseroth, Karl; Strecker, Robert E.; Basheer, Radhika; McCarley, Robert W.

    2015-01-01

    Cortical gamma band oscillations (GBO, 30–80 Hz, typically ∼40 Hz) are involved in higher cognitive functions such as feature binding, attention, and working memory. GBO abnormalities are a feature of several neuropsychiatric disorders associated with dysfunction of cortical fast-spiking interneurons containing the calcium-binding protein parvalbumin (PV). GBO vary according to the state of arousal, are modulated by attention, and are correlated with conscious awareness. However, the subcortical cell types underlying the state-dependent control of GBO are not well understood. Here we tested the role of one cell type in the wakefulness-promoting basal forebrain (BF) region, cortically projecting GABAergic neurons containing PV, whose virally transduced fibers we found apposed cortical PV interneurons involved in generating GBO. Optogenetic stimulation of BF PV neurons in mice preferentially increased cortical GBO power by entraining a cortical oscillator with a resonant frequency of ∼40 Hz, as revealed by analysis of both rhythmic and nonrhythmic BF PV stimulation. Selective saporin lesions of BF cholinergic neurons did not alter the enhancement of cortical GBO power induced by BF PV stimulation. Importantly, bilateral optogenetic inhibition of BF PV neurons decreased the power of the 40-Hz auditory steady-state response, a read-out of the ability of the cortex to generate GBO used in clinical studies. Our results are surprising and novel in indicating that this presumptively inhibitory BF PV input controls cortical GBO, likely by synchronizing the activity of cortical PV interneurons. BF PV neurons may represent a previously unidentified therapeutic target to treat disorders involving abnormal GBO, such as schizophrenia. PMID:25733878

  9. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT.

    PubMed

    Treece, G M; Gee, A H

    2015-02-01

    The local structure of the proximal femoral cortex is of interest since both fracture risk, and the effects of various interventions aimed at reducing that risk, are associated with cortical properties focused in particular regions rather than dispersed over the whole bone. Much of the femoral cortex is less than 3mm thick, appearing so blurred in clinical CT that its actual density is not apparent in the data, and neither thresholding nor full-width half-maximum techniques are capable of determining its width. Our previous work on cortical bone mapping showed how to produce more accurate estimates of cortical thickness by assuming a fixed value of the cortical density for each hip. However, although cortical density varies much less over the proximal femur than thickness, what little variation there is leads to errors in thickness measurement. In this paper, we develop the cortical bone mapping technique by exploiting local estimates of imaging blur to correct the global density estimate, thus providing a local density estimate as well as more accurate estimates of thickness. We also consider measurement of cortical mass surface density and the density of trabecular bone immediately adjacent to the cortex. Performance is assessed with ex vivo clinical QCT scans of proximal femurs, with true values derived from high resolution HRpQCT scans of the same bones. We demonstrate superior estimation of thickness than is possible with alternative techniques (accuracy 0.12 ± 0.39 mm for cortices in the range 1-3mm), and that local cortical density estimation is feasible for densities >800 mg/cm(3).

  10. Education for the Hearing Impaired (Auditorily Impaired).

    ERIC Educational Resources Information Center

    World Federation of the Deaf, Rome (Italy).

    Education for the hearing impaired is discussed in nine conference papers. J. N. Howarth describes "The Education of Deaf Children in Schools for Hearing Pupils in the United Kingdom" and A.I.Dyachkov of the U.S.S.R. outlines Didactical Principles of Educating the Deaf in the Light of their Rehabilitation Goal." Seven papers from Poland are also…

  11. Development or Impairment?

    ERIC Educational Resources Information Center

    Hakansson, Gisela

    2010-01-01

    Joanne Paradis' Keynote Article on bilingualism and specific language impairment (SLI) is an impressive overview of research in language acquisition and language impairment. Studying different populations is crucial both for theorizing about language acquisition mechanisms, and for practical purposes of diagnosing and supporting children with…

  12. Motor Cortex and Motor Cortical Interhemispheric Communication in Walking After Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding.

    PubMed

    Charalambous, Charalambos C; Bowden, Mark G; Adkins, DeAnna L

    2016-01-01

    Despite the plethora of human neurophysiological research, the bilateral involvement of the leg motor cortical areas and their interhemispheric interaction during both normal and impaired human walking is poorly understood. Using transcranial magnetic stimulation (TMS), we have expanded our understanding of the role upper-extremity motor cortical areas play in normal movements and how stroke alters this role, and probed the efficacy of interventions to improve post-stroke arm function. However, similar investigations of the legs have lagged behind, in part, due to the anatomical difficulty in using TMS to stimulate the leg motor cortical areas. Additionally, leg movements are predominately bilaterally controlled and require interlimb coordination that may involve both hemispheres. The sensitive, but invasive, tools used in animal models of locomotion hold great potential for increasing our understanding of the bihemispheric motor cortical control of walking. In this review, we discuss 3 themes associated with the bihemispheric motor cortical control of walking after stroke: (a) what is known about the role of the bihemispheric motor cortical control in healthy and poststroke leg movements, (b) how the neural remodeling of the contralesional hemisphere can affect walking recovery after a stroke, and (c) what is the effect of behavioral rehabilitation training of walking on the neural remodeling of the motor cortical areas bilaterally. For each theme, we discuss how rodent models can enhance the present knowledge on human walking by testing hypotheses that cannot be investigated in humans, and how these findings can then be back-translated into the neurorehabilitation of poststroke walking.

  13. Pharmacokinetics of cefuroxime in porcine cortical and cancellous bone determined by microdialysis.

    PubMed

    Tøttrup, Mikkel; Hardlei, Tore Forsingdal; Bendtsen, Michael; Bue, Mats; Brock, Birgitte; Fuursted, Kurt; Søballe, Kjeld; Birke-Sørensen, Hanne

    2014-06-01

    Traditionally, the pharmacokinetics of antimicrobials in bone have been investigated using bone biopsy specimens, but this approach suffers from considerable methodological limitations. Consequently, new methods are needed. The objectives of this study were to assess the feasibility of microdialysis (MD) for measuring cefuroxime in bone and to obtain pharmacokinetic profiles for the same drug in porcine cortical and cancellous bone. The measurements were conducted in bone wax sealed and unsealed drill holes in cortical bone and in drill holes in cancellous bone and in subcutaneous tissue. As a reference, the free and total plasma concentrations were also measured. The animals received a bolus of 1,500 mg cefuroxime over 30 min. No significant differences were found between the key pharmacokinetic parameters for sealed and unsealed drill holes in cortical bone. The mean ± standard error of the mean area under the concentration-time curve (AUC) values from 0 to 5 h were 6,013 ± 1,339, 3,222 ± 1086, 2,232 ± 635, and 952 ± 290 min · μg/ml for free plasma, subcutaneous tissue, cancellous bone, and cortical bone, respectively (P < 0.01, analysis of variance). The AUC for cortical bone was also significantly different from that for cancellous bone (P = 0.04). This heterogeneous tissue distribution was also reflected in other key pharmacokinetic parameters. This study validates MD as a suitable method for measuring cefuroxime in bone. Cefuroxime penetration was impaired for all tissues, and bone may not be considered one distinct compartment.

  14. N-Cadherin Sustains Motility and Polarity of Future Cortical Interneurons during Tangential Migration

    PubMed Central

    Luccardini, Camilla; Hennekinne, Laetitia; Viou, Lucie; Yanagida, Mitsutoshi; Murakami, Fujio; Kessaris, Nicoletta; Ma, Xufei; Adelstein, Robert S.; Mège, René-Marc

    2013-01-01

    In the developing brain, cortical GABAergic interneurons migrate long distances from the medial ganglionic eminence (MGE) in which they are generated, to the cortex in which they settle. MGE cells express the cell adhesion molecule N-cadherin, a homophilic cell–cell adhesion molecule that regulates numerous steps of brain development, from neuroepithelium morphogenesis to synapse formation. N-cadherin is also expressed in embryonic territories crossed by MGE cells during their migration. In this study, we demonstrate that N-cadherin is a key player in the long-distance migration of future cortical interneurons. Using N-cadherin-coated substrate, we show that N-cadherin-dependent adhesion promotes the migration of mouse MGE cells in vitro. Conversely, mouse MGE cells electroporated with a construct interfering with cadherin function show reduced cell motility, leading process instability, and impaired polarization associated with abnormal myosin IIB dynamics. In vivo, the capability of electroporated MGE cells to invade the developing cortical plate is altered. Using genetic ablation of N-cadherin in mouse embryos, we show that N-cadherin-depleted MGEs are severely disorganized. MGE cells hardly exit the disorganized proliferative area. N-cadherin ablation at the postmitotic stage, which does not affect MGE morphogenesis, alters MGE cell motility and directionality. The tangential migration to the cortex of N-cadherin ablated MGE cells is delayed, and their radial migration within the cortical plate is perturbed. Altogether, these results identify N-cadherin as a pivotal adhesion substrate that activates cell motility in future cortical interneurons and maintains cell polarity over their long-distance migration to the developing cortex. PMID:24227724

  15. Mapping gray matter volume and cortical thickness in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojuan; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kuncheng

    2010-03-01

    Gray matter volume and cortical thickness are two important indices widely used to detect neuropathological changes in brain structural magnetic resonance imaging. Using optimized voxel-based morphometry (VBM) protocol and surface-based cortical thickness measure, this study comprehensively investigated the regional changes in cortical gray matter volume and cortical thickness in Alzheimer's disease (AD). Thirteen patients with AD and fourteen age- and gender-matched healthy controls were included in this study. Results showed that voxel-based gray matter volume and cortical thickness reductions were highly correlated in the temporal lobe and its medial structure in AD. Moreover significant reduced cortical regions of gray matter volume were obviously more than that of cortical thickness. These findings suggest that gray matter volume and cortical thickness, as two important imaging markers, are effective indices for detecting the neuroanatomical alterations and help us understand the neuropathology from different views in AD.

  16. Malformations of cortical development and neocortical focus.

    PubMed

    Luhmann, Heiko J; Kilb, Werner; Clusmann, Hans

    2014-01-01

    Developmental neocortical malformations resulting from abnormal neurogenesis, disturbances in programmed cell death, or neuronal migration disorders may cause a long-term hyperexcitability. Early generated Cajal-Retzius and subplate neurons play important roles in transient cortical circuits, and structural/functional disorders in early cortical development may induce persistent network disturbances and epileptic disorders. In particular, depolarizing GABAergic responses are important for the regulation of neurodevelopmental events, like neurogenesis or migration, while pathophysiological alterations in chloride homeostasis may cause epileptic activity. Although modern imaging techniques may provide an estimate of the structural lesion, the site and extent of the cortical malformation may not correlate with the epileptogenic zone. The neocortical focus may be surrounded by widespread molecular, structural, and functional disturbances, which are difficult to recognize with imaging technologies. However, modern imaging and electrophysiological techniques enable focused hypotheses of the neocortical epileptogenic zone, thus allowing more specific epilepsy surgery. Focal cortical malformation can be successfully removed with minimal rim, close to or even within eloquent cortex with a promising risk-benefit ratio.

  17. Touch inhibits subcortical and cortical nociceptive responses

    PubMed Central

    Mancini, Flavia; Beaumont, Anne-Lise; Hu, Li; Haggard, Patrick; Iannetti, Gian Domenico D.

    2015-01-01

    Abstract The neural mechanisms of the powerful analgesia induced by touching a painful body part are controversial. A long tradition of neurophysiologic studies in anaesthetized spinal animals indicate that touch can gate nociceptive input at spinal level. In contrast, recent studies in awake humans have suggested that supraspinal mechanisms can be sufficient to drive touch-induced analgesia. To investigate this issue, we evaluated the modulation exerted by touch on established electrophysiologic markers of nociceptive function at both subcortical and cortical levels in humans. Aδ and C skin nociceptors were selectively activated by high-power laser pulses. As markers of subcortical and cortical function, we recorded the laser blink reflex, which is generated by brainstem circuits before the arrival of nociceptive signals at the cortex, and laser-evoked potentials, which reflect neural activity of a wide array of cortical areas. If subcortical nociceptive responses are inhibited by concomitant touch, supraspinal mechanisms alone are unlikely to be sufficient to drive touch-induced analgesia. Touch induced a clear analgesic effect, suppressed the laser blink reflex, and inhibited both Aδ-fibre and C-fibre laser-evoked potentials. Thus, we conclude that touch-induced analgesia is likely to be mediated by a subcortical gating of the ascending nociceptive input, which in turn results in a modulation of cortical responses. Hence, supraspinal mechanisms alone are not sufficient to mediate touch-induced analgesia. PMID:26058037

  18. Cortical Memory Mechanisms and Language Origins

    ERIC Educational Resources Information Center

    Aboitiz, Francisco; Garcia, Ricardo R.; Bosman, Conrado; Brunetti, Enzo

    2006-01-01

    We have previously proposed that cortical auditory-vocal networks of the monkey brain can be partly homologized with language networks that participate in the phonological loop. In this paper, we suggest that other linguistic phenomena like semantic and syntactic processing also rely on the activation of transient memory networks, which can be…

  19. Junk DNA Used in Cerebral Cortical Evolution.

    PubMed

    Pratt, Thomas; Price, David J

    2016-06-15

    In this issue of Neuron, Rani et al. (2016) address important questions about the mechanisms of cerebral cortical evolution. They describe how a primate-specific long non-coding RNA titrates the levels of a microRNA that regulates an ancient signaling pathway controlling neuronal numbers. PMID:27311076

  20. Cortical connectivity during word association search.

    PubMed

    Ivanitsky, A M; Nikolaev, A R; Ivanitsky, G A

    2001-08-01

    Cortical connectivity was studied in tasks of generating the use of words in comparison with reading aloud the same words. These tasks were used earlier in PET and high density ERP recordings studies (Posner and Raichle, 1997; Abdullaev and Posner, 1998), in which both the functional anatomy and the time course of cortical areas involved in word processing were described. The wavelet transforms of ERP records and the calculation of correlations between wavelet curves were used to reveal connections between cortical areas. Three stages of intracortical communications while task performance were found. These were: (1) the connections between right and left frontal and central areas which preceded stimulus delivery and persisted up to 180 ms after it; (2) the network connecting right and left frontal with left posterior temporal-parietal junction at 280-450 ms; and (3) communications between left and right temporal zones in 550-800 ms. The data are in good agreement with results of previous PET and ERP studies and supply the earlier findings with circuitry of cortical information transfer.

  1. Development of Cortical Circuitry and Cognitive Function.

    ERIC Educational Resources Information Center

    Goldman-Rakic, Patricia S.

    1987-01-01

    Recent studies on the biological development of the prefrontal cortex in rhesus monkeys are reviewed. These studies have elucidated the basic neural circuitry underlying the delayed-response function in adult nonhuman primates and suggest that a critical mass of cortical synapses is important for the emergence of this cognitive function. (BN)

  2. Central cortical cleanup and zonular deficiency

    PubMed Central

    Mansour, Ahmad M; Antonios, Rafic S; Ahmed, Iqbal Ike K

    2016-01-01

    Background Complete removal of the cortex has been advocated to prevent posterior capsular opacification but carries the risk of zonular dehiscence, hence there is a need for a safe maximal cortical cleanup technique in eyes with severe diffuse zonulopathy in subjects above age 90. Methods We used bimanual central cortical cleaning by elevating central fibers and aspirating them toward the periphery. Peripheral cortical fibers were removed passively only when they became loose due to copious irrigation. A one-piece foldable implant was inserted without a capsular tension ring. Postoperative corticosteroid drops were used. Results This technique was safely performed in a dozen eyes with severe pseudo-exfoliation or brunescent cataract with weak zonules. Posterior capsular rupture, iritis, vitreous loss, and lens subluxation were not observed. Moderate capsular phimosis occurred but with maintained central vision. Conclusion The dogma of “complete cortical cleanup” in severe zonulopathy needs to be revisited in favor of a clear visual axis with maximal preservation of the damaged zonules. This technique is ideal in patients above age 90 where posterior capsular opacification and late dislocation of intraocular lens–capsule bag complex are unlikely to occur until several years postoperatively. PMID:27784979

  3. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    PubMed

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery. PMID:23002940

  4. The Diversity of Cortical Inhibitory Synapses

    PubMed Central

    Kubota, Yoshiyuki; Karube, Fuyuki; Nomura, Masaki; Kawaguchi, Yasuo

    2016-01-01

    The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their inhibitory postsynaptic potential (IPSP) size is not uniform. Thus, cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit. PMID:27199670

  5. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data.

    PubMed

    Cho, Youngsang; Seong, Joon-Kyung; Jeong, Yong; Shin, Sung Yong

    2012-02-01

    Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In

  6. Quantifying the deficit—imaging neurobehavioural impairment in childhood epilepsy

    PubMed Central

    2015-01-01

    Background Neurobehavioral impairments such as learning difficulty, autism, attention deficit hyperactivity disorder (ADHD) and mood or behavioural problems are known to be increased in children with epilepsy; however, they remain under-recognised and often cause considerable morbidity. Quantitative neuroimaging techniques offer a potential avenue to improving our understanding of the underlying pathological basis for these disorders, aiding with diagnosis and risk stratification. Methods A systematic review was undertaken for original research articles involving magnetic resonance imaging in children with epilepsy and one or more neurobehavioural impairments. Studies were reviewed with respect to patient population, methodology and magnetic resonance imaging (MRI) findings. Results A total of 25 studies were identified and included in this review. The majority of studies looked at single impairments, commonly cognitive impairment or ADHD, with few studies reporting on other impairments. Reductions in cortical grey matter and disruptions of functional and structural brain networks were associated with poorer cognitive performance and disruptions of grey and white matter within a fronto-striatal-cerebellar network associated with ADHD. Insufficient studies were available to report on other impairments. Conclusions Relatively few studies exist in this field and those that do are methodologically diverse. Further investigation is required to determine if the changes reported to date are epilepsy syndrome specific or have broader applicability. PMID:25853081

  7. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    PubMed Central

    Ducharme, Simon; Albaugh, Matthew D.; Nguyen, Tuong-Vi; Hudziak, James J.; Mateos-Pérez, J.M.; Labbe, Aurelie; Evans, Alan C.; Karama, Sherif

    2015-01-01

    This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753) from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear) was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015) [1]. PMID:26702424

  8. Posterior cortical atrophy--a prototypical case of dementia beginning with visual symptoms: case report.

    PubMed

    Caixeta, Leonardo Ferreira; Taleb, Alexandre Chater; Ghini, Bruno Galafassi; Soares, Vânia Lúcia Dias; Caixeta, Victor de Melo; Vargas, Ciro

    2013-10-01

    Dementia presenting with prominent higher order visual symptoms may be observed in a range of neurodegenerative conditions and is often challenging to diagnose. We describe a case of progressive dementia presenting with prominent visual cortical symptoms. A 55-year-old, right-handed, woman with early onset of visual impairment not associated with anterior visual pathology, presenting with dyslexia, visual agnosia, Balint's syndrome, and spatial disorientation. Ophthalmologists should consider this condition especially in presenile patients with slowly progressive higher-order visual symptoms. Although described in association with different conditions, it may also occur in Alzheimer disease.

  9. Different levels of implicit emotional recognition in posterior cortical atrophy (PCA).

    PubMed

    Gonzalez-Gadea, María Luz; Ibanez, Agustín; Damm, Juliane; Ramirez Romero, Diana Andrea; Abrevaya, Sofia; Manes, Facundo; Richly, Pablo; Roca, Maria

    2015-01-01

    Previous single-case reports in posterior cortical atrophy (PCA) have shown preserved nonconscious visual recognition despite the absence of explicit recognition. In this study, we investigated three levels of visual recognition in both a female patient with PCA and a control group during the presentation of neutral, positive, and negative affective stimuli. Our results confirmed the profile of impaired explicit recognition and intact psychophysiological responses in the patient. In addition, she was able to implicitly recognize the valence and intensity of arousal of these stimuli. We suggest that implicit emotional awareness may mediates explicit and psychophysiological recognition in PCA.

  10. Localization of metastatic adrenal cortical carcinoma with Ga-67

    SciTech Connect

    Ward, F.T.; Anderson, J.H.; Jelinek, J.; Anderson, D.W. )

    1991-02-01

    Data are limited on the localization of Ga-67 in primary or metastatic adrenal cortical carcinoma. We report the localization of Ga-67 to pathologically confirmed adrenal cortical carcinoma metastatic to the lung. A review of the literature revealed four patients have previously been reported to have metastatic adrenal cortical carcinoma detected on Ga-67 scan. Gallium imaging may be useful in the evaluation of patients with adrenal cortical carcinoma. SPECT imaging should further improve lesion resolution and localization.

  11. Abnormal functioning of the left temporal lobe in language-impaired children.

    PubMed

    Helenius, Päivi; Sivonen, Päivi; Parviainen, Tiina; Isoaho, Pia; Hannus, Sinikka; Kauppila, Timo; Salmelin, Riitta; Isotalo, Leena

    2014-03-01

    Specific language impairment is associated with enduring problems in language-related functions. We followed the spatiotemporal course of cortical activation in SLI using magnetoencephalography. In the experiment, children with normal and impaired language development heard spoken real words and pseudowords presented only once or two times in a row. In typically developing children, the activation in the bilateral superior temporal cortices was attenuated to the second presentation of the same word. In SLI children, this repetition effect was nearly nonexistent in the left hemisphere. Furthermore, the activation was equally strong to words and pseudowords in SLI children whereas in the typically developing children the left hemisphere activation persisted longer for pseudowords than words. Our results indicate that the short-term maintenance of linguistic activation that underlies spoken word recognition is defective in SLI particularly in the left language-dominant hemisphere. The unusually rapid decay of speech-evoked activation can contribute to impaired vocabulary growth.

  12. Abnormal functioning of the left temporal lobe in language-impaired children.

    PubMed

    Helenius, Päivi; Sivonen, Päivi; Parviainen, Tiina; Isoaho, Pia; Hannus, Sinikka; Kauppila, Timo; Salmelin, Riitta; Isotalo, Leena

    2014-03-01

    Specific language impairment is associated with enduring problems in language-related functions. We followed the spatiotemporal course of cortical activation in SLI using magnetoencephalography. In the experiment, children with normal and impaired language development heard spoken real words and pseudowords presented only once or two times in a row. In typically developing children, the activation in the bilateral superior temporal cortices was attenuated to the second presentation of the same word. In SLI children, this repetition effect was nearly nonexistent in the left hemisphere. Furthermore, the activation was equally strong to words and pseudowords in SLI children whereas in the typically developing children the left hemisphere activation persisted longer for pseudowords than words. Our results indicate that the short-term maintenance of linguistic activation that underlies spoken word recognition is defective in SLI particularly in the left language-dominant hemisphere. The unusually rapid decay of speech-evoked activation can contribute to impaired vocabulary growth. PMID:24568877

  13. Impairment in Non-Word Repetition: A Marker for Language Impairment or Reading Impairment?

    ERIC Educational Resources Information Center

    Baird, Gillian; Slonims, Vicky; Simonoff, Emily; Dworzynski, Katharina

    2011-01-01

    Aim: A deficit in non-word repetition (NWR), a measure of short-term phonological memory proposed as a marker for language impairment, is found not only in language impairment but also in reading impairment. We evaluated the strength of association between language impairment and reading impairment in children with current, past, and no language…

  14. Variability in Cortical Representations of Speech Sound Perception

    ERIC Educational Resources Information Center

    Boatman, Dana F.

    2007-01-01

    Recent brain mapping studies have provided new insights into the cortical systems that mediate human speech perception. Electrocortical stimulation mapping (ESM) is a brain mapping method that is used clinically to localize cortical functions in neurosurgical patients. Recent ESM studies have yielded new insights into the cortical systems that…

  15. Hearing or speech impairment - resources

    MedlinePlus

    Resources - hearing or speech impairment ... The following organizations are good resources for information on hearing impairment or speech impairment: Alexander Graham Bell Association for the Deaf and Hard of Hearing -- www.agbell. ...

  16. Predicting perception in noise using cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; McMillan, Garnett P; Penman, Tina M; Gille, Sun Mi

    2013-12-01

    Speech perception in background noise is a common challenge across individuals and health conditions (e.g., hearing impairment, aging, etc.). Both behavioral and physiological measures have been used to understand the important factors that contribute to perception-in-noise abilities. The addition of a physiological measure provides additional information about signal-in-noise encoding in the auditory system and may be useful in clarifying some of the variability in perception-in-noise abilities across individuals. Fifteen young normal-hearing individuals were tested using both electrophysiology and behavioral methods as a means to determine (1) the effects of signal-to-noise ratio (SNR) and signal level and (2) how well cortical auditory evoked potentials (CAEPs) can predict perception in noise. Three correlation/regression approaches were used to determine how well CAEPs predicted behavior. Main effects of SNR were found for both electrophysiology and speech perception measures, while signal level effects were found generally only for speech testing. These results demonstrate that when signals are presented in noise, sensitivity to SNR cues obscures any encoding of signal level cues. Electrophysiology and behavioral measures were strongly correlated. The best physiological predictors (e.g., latency, amplitude, and area of CAEP waves) of behavior (SNR at which 50 % of the sentence is understood) were N1 latency and N1 amplitude measures. In addition, behavior was best predicted by the 70-dB signal/5-dB SNR CAEP condition. It will be important in future studies to determine the relationship of electrophysiology and behavior in populations who experience difficulty understanding speech in noise such as those with hearing impairment or age-related deficits.

  17. The neural correlates of motor intentional disorders in patients with subcortical vascular cognitive impairment.

    PubMed

    Kim, Geon Ha; Seo, Sang Won; Jung, Kihyo; Kwon, Oh-Hun; Kwon, Hunki; Kim, Jong Hun; Roh, Jee Hoon; Kim, Min-Jeong; Lee, Byung Hwa; Yoon, Doo Sang; Hwang, Jung Won; Lee, Jong Min; Jeong, Jee Hyang; You, Heecheon; Heilman, Kenneth M; Na, Duk L

    2016-01-01

    Subcortical vascular cognitive impairment (SVCI) refers to cognitive impairment associated with small vessel disease. Motor intentional disorders (MID) have been reported in patients with SVCI. However, there are no studies exploring the neuroanatomical regions related to MID in SVCI patients. The aim of this study, therefore, was to investigate the neural correlates of MID in SVCI patients. Thirty-one patients with SVCI as well as 10 healthy match control participants were included. A "Pinch-Grip" apparatus was used to quantify the force control capabilities of the index finger in four different movement phases including initiation, development, maintenance, and termination. All participants underwent magnetic resonance imaging (MRI). Topographical cortical areas and white matter tracts correlated with the performances of the four different movement phases were assessed by the surface-based morphometry and tract-based spatial statistics analyses. Poorer performance in the maintenance task was related to cortical thinning in bilateral dorsolateral prefrontal, orbitofrontal and parietal cortices, while poorer performance in the termination task was associated with the disruption of fronto-parietal cortical areas as well as the white matter tracts including splenium and association fibers such as superior longitudinal fasciculus. Our study demonstrates that cortical areas and underlying white matter tracts associated with fronto-parietal attentional system play an important role in motor impersistence and perseveration in SVCI patients. PMID:26514838

  18. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Nardone, R; Tezzon, F; Höller, Y; Golaszewski, S; Trinka, E; Brigo, F

    2014-06-01

    Several Transcranial Magnetic Stimulation (TMS) techniques can be applied to noninvasively measure cortical excitability and brain plasticity in humans. TMS has been used to assess neuroplastic changes in Alzheimer's disease (AD), corroborating findings that cortical physiology is altered in AD due to the underlying neurodegenerative process. In fact, many TMS studies have provided physiological evidence of abnormalities in cortical excitability, connectivity, and plasticity in patients with AD. Moreover, the combination of TMS with other neurophysiological techniques, such as high-density electroencephalography (EEG), makes it possible to study local and network cortical plasticity directly. Interestingly, several TMS studies revealed abnormalities in patients with early AD and even with mild cognitive impairment (MCI), thus enabling early identification of subjects in whom the cholinergic degeneration has occurred. Furthermore, TMS can influence brain function if delivered repetitively; repetitive TMS (rTMS) is capable of modulating cortical excitability and inducing long-lasting neuroplastic changes. Preliminary findings have suggested that rTMS can enhance performances on several cognitive functions impaired in AD and MCI. However, further well-controlled studies with appropriate methodology in larger patient cohorts are needed to replicate and extend the initial findings. The purpose of this paper was to provide an updated and comprehensive systematic review of the studies that have employed TMS/rTMS in patients with MCI and AD.

  19. Impairments to Vision

    MedlinePlus

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  20. Kids' Quest: Vision Impairment

    MedlinePlus

    ... important job. Â Return to Steps World-Wide Web Search Kids Health: What is Vision Impairment What ... for the Blind (AFB) created the Braille Bug web site to teach sighted children about braille, and ...

  1. Serotonin modulation of cortical neurons and networks

    PubMed Central

    Celada, Pau; Puig, M. Victoria; Artigas, Francesc

    2013-01-01

    The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe

  2. Novel Cortical Thickness Pattern for Accurate Detection of Alzheimer's Disease.

    PubMed

    Zheng, Weihao; Yao, Zhijun; Hu, Bin; Gao, Xiang; Cai, Hanshu; Moore, Philip

    2015-01-01

    Brain network occupies an important position in representing abnormalities in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Currently, most studies only focused on morphological features of regions of interest without exploring the interregional alterations. In order to investigate the potential discriminative power of a morphological network in AD diagnosis and to provide supportive evidence on the feasibility of an individual structural network study, we propose a novel approach of extracting the correlative features from magnetic resonance imaging, which consists of a two-step approach for constructing an individual thickness network with low computational complexity. Firstly, multi-distance combination is utilized for accurate evaluation of between-region dissimilarity; and then the dissimilarity is transformed to connectivity via calculation of correlation function. An evaluation of the proposed approach has been conducted with 189 normal controls, 198 MCI subjects, and 163 AD patients using machine learning techniques. Results show that the observed correlative feature suggests significant promotion in classification performance compared with cortical thickness, with accuracy of 89.88% and area of 0.9588 under receiver operating characteristic curve. We further improved the performance by integrating both thickness and apolipoprotein E ɛ4 allele information with correlative features. New achieved accuracies are 92.11% and 79.37% in separating AD from normal controls and AD converters from non-converters, respectively. Differences between using diverse distance measurements and various correlation transformation functions are also discussed to explore an optimal way for network establishment. PMID:26444768

  3. Posterior cortical dementia with alexia: neurobehavioural, MRI, and PET findings.

    PubMed Central

    Freedman, L; Selchen, D H; Black, S E; Kaplan, R; Garnett, E S; Nahmias, C

    1991-01-01

    A progressive disorder of relatively focal but asymmetric biposterior dysfunction is described in a 54 year old right handed male. Initial clinical features included letter-by-letter alexia, visual anomia, acalculia, mild agraphia, constructional apraxia, and visuospatial compromise. Serial testing demonstrated relentless deterioration with additional development of transcortical sensory aphasia, Gerstmann's tetrad, and severe visuoperceptual impairment. Amnesia was not an early clinical feature. Judgment, personality, insight, and awareness remained preserved throughout most of the clinical course. Extinction in the right visual field to bilateral stimulation was the sole neurological abnormality. Early CT was normal and late MRI showed asymmetrical bioccipitoparietal atrophy with greater involvement of the left hemisphere. Results from positron emission tomography (PET) showed bilaterally asymmetric (left greater than right) occipitotemporoparietal hypometabolism. The metabolic decrement was strikingly asymmetric with a 50% reduction in glucose consumption confined to the left occipital cortex. The picture of occipitotemporoparietal compromise verified by MRI, PET, and neurobehavioural testing would be unusual for such degenerative dementias as Alzheimer's (AD) and Pick's disease, although atypical AD with predominant occipital lobe involvement cannot be excluded. This case supports the concepts of posterior cortical dementia (PCD) as a clinically distinct entity and for the first time documents its corresponding metabolic deficit using PET. Images PMID:1865209

  4. Literacy and visual impairment.

    PubMed

    Erickson, Karen A; Hatton, Deborah

    2007-02-01

    Research supporting specific instructional approaches for young children with visual impairments and blindness is limited. There is, however, a growing body of evidence to support the belief that the critical components of emergent and early conventional literacy for children with visual impairments do not differ markedly from those of their sighted peers. Specifically, infants and toddlers with visual impairments and blindness require interactions that support their oral language development, awareness of print or braille, and opportunities to explore writing. Although these very young children are often delayed in developing emergent literacy understandings, the path of their development is consistent with emergent literacy development of sighted children. The research regarding older children with visual impairments and blindness suggests that they too benefit from instruction that emphasizes the critical elements of early literacy instruction for all children. Research also suggests that specific strategies, such as repeated readings, direct instruction in phonics, and big word decoding that emphasizes morphemes, can benefit school-aged children with visual impairments and blindness. Further research is needed if we are to understand fully the most effective approaches to emergent and early literacy instruction for children with visual impairments and blindness, but there is a solid base from which we can begin. PMID:17340383

  5. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs.

    PubMed

    Bello, Oscar Daniel; Cappa, Andrea Isabel; de Paola, Matilde; Zanetti, María Natalia; Fukuda, Mitsunori; Fissore, Rafael A; Mayorga, Luis S; Michaut, Marcela A

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. PMID:27423421

  6. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs.

    PubMed

    Bello, Oscar Daniel; Cappa, Andrea Isabel; de Paola, Matilde; Zanetti, María Natalia; Fukuda, Mitsunori; Fissore, Rafael A; Mayorga, Luis S; Michaut, Marcela A

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs.

  7. Malformations of Cortical Development: From Postnatal to Fetal Imaging.

    PubMed

    Lerman-Sagie, Tally; Leibovitz, Zvi

    2016-09-01

    Abnormal fetal corticogenesis results in malformations of cortical development (MCD). Abnormal cell proliferation leads to microcephaly or megalencephaly, incomplete neuronal migration results in heterotopia and lissencephaly, neuronal overmigration manifests as cobblestone malformations, and anomalous postmigrational cortical organization is responsible for polymicrogyria and focal cortical dysplasias. MCD comprises various congenital brain disorders, caused by different genetic, infectious, or vascular etiologies and is associated with significant neurological morbidity. Although MCD are rarely diagnosed prenatally, both dedicated multiplanar neurosonography and magnetic resonance imaging enable good demonstration of fetal cortical development. The imaging signs of fetal MCD are: delayed or absent cerebral sulcation; premature abnormal sulci; thin and irregular hemispheric parenchyma; wide abnormal overdeveloped gyri; wide opening of isolated sulci; nodular bulging into the lateral ventricles; cortical clefts; intraparenchymal echogenic nodules; and cortical thickening. The postnatal and prenatal imaging features of four main malformations of cortical development-lissencephaly, cobblestone malformations, periventricular nodular heterotopia, and polymicrogyria-are described. PMID:27670206

  8. Impaired neural discrimination of emotional speech prosody in children with autism spectrum disorder and language impairment.

    PubMed

    Lindström, R; Lepistö-Paisley, T; Vanhala, R; Alén, R; Kujala, T

    2016-08-15

    Autism spectrum disorders (ASD) are characterized by deficient social and communication skills, including difficulties in perceiving speech prosody. The present study addressed processing of emotional prosodic changes (sad, scornful and commanding) in natural word stimuli in typically developed school-aged children and in children with ASD and language impairment. We found that the responses to a repetitive word were diminished in amplitude in the children with ASD, reflecting impaired speech encoding. Furthermore, the amplitude of the MMN/LDN component, reflecting cortical discrimination of sound changes, was diminished in the children with ASD for the scornful deviant. In addition, the amplitude of the P3a, reflecting involuntary orienting to attention-catching changes, was diminished in the children with ASD for the scornful deviant and tended to be smaller for the sad deviant. These results suggest that prosody processing in ASD is impaired at various levels of neural processing, including deficient pre-attentive discrimination and involuntary orientation to speech prosody. PMID:27291458

  9. Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer's disease, and vascular cognitive impairment.

    PubMed

    Lindeboom, Jaap; Weinstein, Henry

    2004-04-19

    In this review, the neuropsychological symptoms of different diseases in the elderly are described. After a brief explanation of relevant principles in the neuropsychological assessment of older individuals, a summary of the complex relation between ageing and cognition is presented. It may be concluded that cognitive decline is not an inevitable outcome of ageing, and may well be the result of unrecognised pathology. The term mild cognitive impairment is reserved for patients whose impairment is objectively demonstrable but is not pronounced in more than one domain of cognition and does not seriously affect activities of daily living. The initial phase of Alzheimer's disease is marked by a progressive deterioration of episodic memory. When the process advances, the impairment spreads to other functions, such as semantic memory, language and visuo-spatial ability. Vascular dementia is the second most common type of dementia; however, it is increasingly being recognised that vascular dementia is actually a heterogeneous syndrome and that several vascular pathologies can lead to cognitive deterioration. In contrast to the striking deficits produced by cortical infarcts, lesions of the subcortical white matter are mainly associated with a non-specific slowing of behaviour. Cerebrovascular disease also plays an important role in forms of cognitive decline other than dementia, and as such, it appears to be no less prevalent in old age than Alzheimer's disease. Neuropsychology is an important asset to the study and treatment of cognitive decline, but must be embedded in a multi-disciplinary context.

  10. Shining a light on posterior cortical atrophy.

    PubMed

    Crutch, Sebastian J; Schott, Jonathan M; Rabinovici, Gil D; Boeve, Bradley F; Cappa, Stefano F; Dickerson, Bradford C; Dubois, Bruno; Graff-Radford, Neill R; Krolak-Salmon, Pierre; Lehmann, Manja; Mendez, Mario F; Pijnenburg, Yolande; Ryan, Natalie S; Scheltens, Philip; Shakespeare, Tim; Tang-Wai, David F; van der Flier, Wiesje M; Bain, Lisa; Carrillo, Maria C; Fox, Nick C

    2013-07-01

    Posterior cortical atrophy (PCA) is a clinicoradiologic syndrome characterized by progressive decline in visual processing skills, relatively intact memory and language in the early stages, and atrophy of posterior brain regions. Misdiagnosis of PCA is common, owing not only to its relative rarity and unusual and variable presentation, but also because patients frequently first seek the opinion of an ophthalmologist, who may note normal eye examinations by their usual tests but may not appreciate cortical brain dysfunction. Seeking to raise awareness of the disease, stimulate research, and promote collaboration, a multidisciplinary group of PCA research clinicians formed an international working party, which had its first face-to-face meeting on July 13, 2012 in Vancouver, Canada, prior to the Alzheimer's Association International Conference. PMID:23274153

  11. Cortical dysplasia, genetic abnormalities and neurocutaneous syndromes.

    PubMed

    Vinters, H V; Park, S H; Johnson, M W; Mischel, P S; Catania, M; Kerfoot, C

    1999-11-01

    Cortical dysplasia (CD) represents a common neuropathologic substrate of pediatric epilepsy, one frequently encountered in surgical resection specimens from infants and children with intractable seizure disorders, including infantile spasms. Severe CD shows similarities to structural features noted in tubers from individuals with tuberous sclerosis (TSC). The latter disorder, one with neurocutaneous and visceral manifestations, results from mutations in one of two recently cloned genes, TSC1 or TSC2, which encode (respectively) the proteins hamartin and tuberin. There is circumstantial evidence that both proteins may influence cell growth and differentiation, specifically that they may represent growth suppressors. Neither protein has a defined role in brain development. We discuss and illustrate neuropathologic features of both CD and TSC, and discuss the patterns and time course of hamartin/tuberin expression in normal brain, CD and TSC. Other recently cloned genes associated with cortical malformations encompassed by the term CD are briefly described. PMID:10575248

  12. Parcellating Cortical Functional Networks in Individuals

    PubMed Central

    Wang, Danhong; Buckner, Randy L.; Fox, Michael D.; Holt, Daphne J.; Holmes, Avram J.; Stoecklein, Sophia; Langs, Georg; Pan, Ruiqi; Qian, Tianyi; Li, Kuncheng; Baker, Justin T.; Stufflebeam, Steven M.; Wang, Kai; Wang, Xiaomin; Hong, Bo; Liu, Hesheng

    2015-01-01

    The capacity to identify the unique functional architecture of an individual’s brain is a critical step towards personalized medicine and understanding the neural basis of variations in human cognition and behavior. Here, we developed a novel cortical parcellation approach to accurately map functional organization at the individual level using resting-state fMRI. A population-based functional atlas and a map of inter-individual variability were employed to guide the iterative search for functional networks in individual subjects. Functional networks mapped by this approach were highly reproducible within subjects and effectively captured the variability across subjects, including individual differences in brain lateralization. The algorithm performed well across different subject populations and data types including task fMRI data. The approach was then validated by invasive cortical stimulation mapping in surgical patients, suggesting great potential for use in clinical applications. PMID:26551545

  13. Plasticity of Cortical Excitatory-Inhibitory Balance

    PubMed Central

    Froemke, Robert C.

    2015-01-01

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior. PMID:25897875

  14. Massive cortical reorganization in sighted Braille readers.

    PubMed

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  15. Inhibitory interneurons in visual cortical plasticity.

    PubMed

    van Versendaal, Daniëlle; Levelt, Christiaan N

    2016-10-01

    For proper maturation of the neocortex and acquisition of specific functions and skills, exposure to sensory stimuli is vital during critical periods of development when synaptic connectivity is highly malleable. To preserve reliable cortical processing, it is essential that these critical periods end after which learning becomes more conditional and active interaction with the environment becomes more important. How these age-dependent forms of plasticity are regulated has been studied extensively in the primary visual cortex. This has revealed that inhibitory innervation plays a crucial role and that a temporary decrease in inhibition is essential for plasticity to take place. Here, we discuss how different interneuron subsets regulate plasticity during different stages of cortical maturation. We propose a theory in which different interneuron subsets select the sources of neuronal input that undergo plasticity.

  16. Massive cortical reorganization in sighted Braille readers.

    PubMed

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-01-01

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills. PMID:26976813

  17. Relearning to See in Cortical Blindness.

    PubMed

    Melnick, Michael D; Tadin, Duje; Huxlin, Krystel R

    2016-04-01

    The incidence of cortically induced blindness is increasing as our population ages. The major cause of cortically induced blindness is stroke affecting the primary visual cortex. While the impact of this form of vision loss is devastating to quality of life, the development of principled, effective rehabilitation strategies for this condition lags far behind those used to treat motor stroke victims. Here we summarize recent developments in the still emerging field of visual restitution therapy, and compare the relative effectiveness of different approaches. We also draw insights into the properties of recovered vision, its limitations and likely neural substrates. We hope that these insights will guide future research and bring us closer to the goal of providing much-needed rehabilitation solutions for this patient population. PMID:26659828

  18. Bioengineered functional brain-like cortical tissue

    PubMed Central

    Tang-Schomer, Min D.; White, James D.; Tien, Lee W.; Schmitt, L. Ian; Valentin, Thomas M.; Graziano, Daniel J.; Hopkins, Amy M.; Omenetto, Fiorenzo G.; Haydon, Philip G.; Kaplan, David L.

    2014-01-01

    The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function. We show that, on injury, this brain-like tissue responds in vitro with biochemical and electrophysiological outcomes that mimic observations in vivo. This modular 3D brain-like tissue is capable of real-time nondestructive assessments, offering previously unidentified directions for studies of brain homeostasis and injury. PMID:25114234

  19. Permanent Cortical Blindness After Bronchial Artery Embolization

    SciTech Connect

    Doorn, Colette S. van De Boo, Diederick W.; Weersink, Els J. M.; Delden, Otto M. van Reekers, Jim A. Lienden, Krijn P. van

    2013-12-15

    A 35-year-old female with a known medical history of cystic fibrosis was admitted to our institution for massive hemoptysis. CTA depicted a hypertrophied bronchial artery to the right upper lobe and showed signs of recent bleeding at that location. Bronchial artery embolization (BAE) was performed with gelfoam slurry, because pronounced shunting to the pulmonary artery was present. Immediately after BAE, the patient developed bilateral cortical blindness. Control angiography showed an initially not opacified anastomosis between the embolized bronchial artery and the right subclavian artery, near to the origin of the right vertebral artery. Cessation of outflow in the bronchial circulation reversed the flow through the anastomosis and allowed for spill of embolization material into the posterior circulation. Unfortunately the cortical blindness presented was permanent.

  20. Do Cortical Circuits Need Protecting from Themselves?

    PubMed

    Trevelyan, Andrew J

    2016-08-01

    All hippocampal and neocortical networks can be driven to seize quite easily. This can be done using drugs, by altering the ionic constituency of the bathing medium [cerebrospinal fluid (CSF)], or by electrical stimulation (both experimentally and clinically, as in electroconvulsive therapy). It is worth asking why this is so, because this will both tell us more about potentially devastating neurological disorders and extend our understanding of cortical function and architecture. Here I review work examining the features of cortical networks that bias activity towards and away from hyperexcitability. I suggest that several cellular- and circuit-level features of rapidly responsive interneuron networks tip the balance away from seizure in the healthy brain. PMID:27378547

  1. APC/C-Cdh1 coordinates neurogenesis and cortical size during development

    NASA Astrophysics Data System (ADS)

    Delgado-Esteban, Maria; García-Higuera, Irene; Maestre, Carolina; Moreno, Sergio; Almeida, Angeles

    2013-12-01

    The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1—which regulates mitosis exit and G1-phase length in dividing cells—regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.

  2. Albuminuria, Cerebrovascular Disease and Cortical Atrophy: among Cognitively Normal Elderly Individuals.

    PubMed

    Cho, Eun Bin; Shin, Hee-Young; Park, Sang Eon; Chun, Phillip; Jang, Hye Ryoun; Yang, Jin-ju; Kim, Hee Jin; Kim, Yeo Jin; Jung, Na-Yeon; Lee, Jin San; Lee, Juyoun; Jang, Young Kyoung; Jang, Eun Young; Kang, Mira; Lee, Jong-Min; Kim, Changsoo; Min, Ju-Hong; Ryu, Seungho; Na, Duk L; Seo, Sang Won

    2016-02-15

    We tested the hypothesis that decreased glomerular filtration rate and albuminuria have different roles in brain structure alterations. We enrolled 1,215 cognitively normal individuals, all of whom underwent high-resolution T1-weighted volumetric magnetic resonance imaging scans. The cerebral small vessel disease burdens were assessed with white matter hyperintensities (WMH), lacunes, and microbleeds. Subjects were considered to have an abnormally elevated urine albumin creatinine ratio if the value was ≥17 mg/g for men and ≥25 mg/g for women. Albuminuria, but not estimated glomerular filtration rate (eGFR), was associated with increased WMH burdens (p = 0.002). The data was analyzed after adjusting for age, sex, education, history of hypertension, diabetes mellitus, hyperlipidemia, ischemic heart disease, stroke, total cholesterol level, body mass index, status of smoking and alcohol drinking, and intracranial volume. Albuminuria was also associated with cortical thinning, predominantly in the frontal and occipital regions (both p < 0.01) in multiple linear regression analysis. However, eGFR was not associated with cortical thickness. Furthermore, path analysis for cortical thickness showed that albuminuria was associated with frontal thinning partially mediated by WMH burdens. The assessment of albuminuria is needed to improve our ability to identify individuals with high risk for cognitive impairments, and further institute appropriate preventive measures.

  3. A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel.

    PubMed

    Wang, Gang; Zhang, Xiaofeng; Su, Qingtang; Shi, Jie; Caselli, Richard J; Wang, Yalin

    2015-05-01

    Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for research on brain development and neurodegenerative diseases. This paper presents a heat kernel based cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel theory, to capture the gray matter geometry information from the in vivo brain magnetic resonance (MR) images. First, we construct a tetrahedral mesh that matches the MR images and reflects the inherent geometric characteristics. Second, the harmonic field is computed by the volumetric Laplace-Beltrami operator and the direction of the steamline is obtained by tracing the maximum heat transfer probability based on the heat kernel diffusion. Thereby we can calculate the cortical thickness information between the point on the pial and white matter surfaces. The new method relies on intrinsic brain geometry structure and the computation is robust and accurate. To validate our algorithm, we apply it to study the thickness differences associated with Alzheimer's disease (AD) and mild cognitive impairment (MCI) on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Our preliminary experimental results on 151 subjects (51 AD, 45 MCI, 55 controls) show that the new algorithm may successfully detect statistically significant difference among patients of AD, MCI and healthy control subjects. Our computational framework is efficient and very general. It has the potential to be used for thickness estimation on any biological structures with clearly defined inner and outer surfaces.

  4. A Novel Cortical Thickness Estimation Method based on Volumetric Laplace-Beltrami Operator and Heat Kernel

    PubMed Central

    Wang, Gang; Zhang, Xiaofeng; Su, Qingtang; Shi, Jie; Caselli, Richard J.; Wang, Yalin

    2015-01-01

    Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for research on brain development and neurodegenerative diseases. This paper presents a heat kernel based cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel theory, to capture the grey matter geometry information from the in vivo brain magnetic resonance (MR) images. First, we construct a tetrahedral mesh that matches the MR images and reflects the inherent geometric characteristics. Second, the harmonic field is computed by the volumetric Laplace-Beltrami operator and the direction of the steamline is obtained by tracing the maximum heat transfer probability based on the heat kernel diffusion. Thereby we can calculate the cortical thickness information between the point on the pial and white matter surfaces. The new method relies on intrinsic brain geometry structure and the computation is robust and accurate. To validate our algorithm, we apply it to study the thickness differences associated with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Our preliminary experimental results on 151 subjects (51 AD, 45 MCI, 55 controls) show that the new algorithm may successfully detect statistically significant difference among patients of AD, MCI and healthy control subjects. Our computational framework is efficient and very general. It has the potential to be used for thickness estimation on any biological structures with clearly defined inner and outer surfaces. PMID:25700360

  5. Reduced cerebral cortical thickness in Non-cirrhotic patients with hepatitis C.

    PubMed

    Hjerrild, Simon; Renvillard, Signe Groth; Leutscher, Peter; Sørensen, Leif Hougaard; Østergaard, Leif; Eskildsen, Simon Fristed; Videbech, Poul

    2016-04-01

    Hepatitis C virus (HCV) infection is associated with fatigue, depression, and cognitive impairment even in the absence of severe liver fibrosis or cirrhosis. HCV has been hypothesised to cause neurodegenerative changes through low-grade neuroinflammation. Our aim was to examine whether cortical thickness (CTh) differs between chronic HCV patients and healthy controls, suggestive of cortical atrophy. In this case-control study 43 HCV patients without severe liver fibrosis, substance abuse, or comorbid HIV or hepatitis B virus infection, and 43 age and sex matched controls underwent MRI. Cortical thickness was measured using a surface based approach. Participants underwent semi-structured psychiatric interview and fatigue was assessed using the fatigue severity scale. HCV was associated with higher fatigue scores, and 58 % of HCV patients suffered from significant fatigue (p < 0.0001). Depression was observed in 16 % of patients. Areas of significantly reduced CTh were found in both left and right occipital cortex and in the left frontal lobe after correction for multiple comparisons (p < 0.05). No association between fatigue, former substance abuse, or psychotropic medication and CTh was found. No overall difference in cerebral white and grey matter volume was found. The findings support the hypothesis that HCV is associated with neurodegenerative changes. PMID:26530221

  6. Albuminuria, Cerebrovascular Disease and Cortical Atrophy: among Cognitively Normal Elderly Individuals.

    PubMed

    Cho, Eun Bin; Shin, Hee-Young; Park, Sang Eon; Chun, Phillip; Jang, Hye Ryoun; Yang, Jin-ju; Kim, Hee Jin; Kim, Yeo Jin; Jung, Na-Yeon; Lee, Jin San; Lee, Juyoun; Jang, Young Kyoung; Jang, Eun Young; Kang, Mira; Lee, Jong-Min; Kim, Changsoo; Min, Ju-Hong; Ryu, Seungho; Na, Duk L; Seo, Sang Won

    2016-01-01

    We tested the hypothesis that decreased glomerular filtration rate and albuminuria have different roles in brain structure alterations. We enrolled 1,215 cognitively normal individuals, all of whom underwent high-resolution T1-weighted volumetric magnetic resonance imaging scans. The cerebral small vessel disease burdens were assessed with white matter hyperintensities (WMH), lacunes, and microbleeds. Subjects were considered to have an abnormally elevated urine albumin creatinine ratio if the value was ≥17 mg/g for men and ≥25 mg/g for women. Albuminuria, but not estimated glomerular filtration rate (eGFR), was associated with increased WMH burdens (p = 0.002). The data was analyzed after adjusting for age, sex, education, history of hypertension, diabetes mellitus, hyperlipidemia, ischemic heart disease, stroke, total cholesterol level, body mass index, status of smoking and alcohol drinking, and intracranial volume. Albuminuria was also associated with cortical thinning, predominantly in the frontal and occipital regions (both p < 0.01) in multiple linear regression analysis. However, eGFR was not associated with cortical thickness. Furthermore, path analysis for cortical thickness showed that albuminuria was associated with frontal thinning partially mediated by WMH burdens. The assessment of albuminuria is needed to improve our ability to identify individuals with high risk for cognitive impairments, and further institute appropriate preventive measures. PMID:26878913

  7. Cortical response to psycho-physiological changes in auto-adaptive robot assisted gait training.

    PubMed

    Jelinek, Herbert F; August, Katherine G; Imam, Md Hasan; Khandoker, Ahsan H; Koenig, Alexander; Riener, Robert

    2011-01-01

    Robot-assisted treadmill training improves motor function and walking ability in neurologically impaired patients. However, despite attention having been shown to play a role in training success, psychological responsiveness to task difficulty and motivational levels at task onset have not been measured. Seven healthy subjects participated in a robot-assist treadmill training task. Subjects engaged in a virtual task with varying difficulty levels that was shown to induce a feeling of being bored, excited and over-stressed. The participants' mental engagement was measured using the ECG-based heart rate variability in real time, during gait training as a proxy for EEG and psychological test batteries. Heart rate variability (HRV), which has been shown to reflect cortical engagement for both cognitive and physical tasks, was measured using nonlinear measures obtained from the Poincaré plot. We show that the cortical response to the task measured with HRV varies in relation to the level of mental engagement in response to the difficulty level of the virtual task. From these results we propose that nonlinear measures quantify cortical response / motivational level to robot-assist motor learning tasks and that the adaptation to the task is dependent on the level of motivation.

  8. Reduced cortical neurotransmitter receptor complex levels in fetal Down syndrome brain.

    PubMed

    Falsafi, Soheil Keihan; Dierssen, Mara; Ghafari, Maryam; Pollak, Arnold; Lubec, Gert

    2016-01-01

    In this study, cortical receptor complex levels were determined in fetal Down syndrome (DS, trisomy 21) brain. Frontal cortices were obtained from individuals with DS (19th-22nd week of gestation) and controls. Membrane proteins were extracted, assayed on blue native gels and immunoblotted with brain receptor antibodies. Levels of a D1R-containing complex were markedly decreased in male and female cortices of DS individuals. Females with DS had significant reductions of nicotinic acetylcholine receptors α4 and α7, NMDA receptor GluN1 and AMPA receptor GluA1- and GluA3-containing receptor complexes. Levels of other brain receptor complexes (5-hydroxytryptamine 1A, GluA2 and GluR4 receptor-containing complexes) were comparable between the groups of females. Levels of GluA2- and GluA3-containing complexes were significantly increased in males. Decreased levels of D1R complexes in both sexes, along with the significant reduction of α4, α7-containing receptor complexes observed in females, may explain the brain deficits and impaired cognition observed in DS.

  9. Behavioral training reverses global cortical network dysfunction induced by perinatal antidepressant exposure

    PubMed Central

    Zhou, Xiaoming; Lu, Jordan Y.-F.; Darling, Ryan D.; Simpson, Kimberly L.; Zhu, Xiaoqing; Wang, Fang; Yu, Liping; Sun, Xinde; Merzenich, Michael M.; Lin, Rick C. S.

    2015-01-01

    Abnormal cortical circuitry and function as well as distortions in the modulatory neurological processes controlling cortical plasticity have been argued to underlie the origin of autism. Here, we chemically distorted those processes using an antidepressant drug-exposure model to generate developmental neurological distortions like those characteristics expressed in autism, and then intensively trained altered young rodents to evaluate the potential for neuroplasticity-driven renormalization. We found that young rats that were injected s.c. with the antidepressant citalopram from postnatal d 1–10 displayed impaired neuronal repetition-rate following capacity in the primary auditory cortex (A1). With a focus on recovering grossly degraded auditory system processing in this model, we showed that targeted temporal processing deficits induced by early-life antidepressant exposure within the A1 were almost completely reversed through implementation of a simple behavioral training strategy (i.e., a modified go/no-go repetition-rate discrimination task). Degraded parvalbumin inhibitory GABAergic neurons and the fast inhibitory actions that they control were also renormalized by training. Importantly, antidepressant-induced degradation of serotonergic and dopaminergic neuromodulatory systems regulating cortical neuroplasticity was sharply reversed. These findings bear important implications for neuroplasticity-based therapeutics in autistic patients. PMID:25646455

  10. Cortical compensation associated with dysphagia caused by selective degeneration of bulbar motor neurons.

    PubMed

    Dziewas, Rainer; Teismann, Inga K; Suntrup, Sonja; Schiffbauer, Hagen; Steinstraeter, Olaf; Warnecke, Tobias; Ringelstein, Erich-Bernd; Pantev, Christo

    2009-04-01

    According to recent neuroimaging studies, swallowing is processed within multiple regions of the human brain. In contrast to this, little is known about the cortical contribution and compensatory mechanisms produced by impaired swallowing. In the present study, we therefore investigated the cortical topography of volitional swallowing in patients with X-linked bulbospinal neuronopathy (Kennedy disease, KD). Eight dysphagic patients with genetically proven KD and an age-matched healthy control group were studied by means of whole-head magnetoencephalography using a previously established swallowing paradigm. Analysis of data was carried out with synthetic aperture magnetometry (SAM). The group analysis of individual SAM results was performed using a permutation test. KD patients showed significantly larger swallow-related activation of the bilateral primary sensorimotor cortex than healthy controls. In contrast to the control group, in KD patients the maximum activity was located in the right sensorimotor cortex. Furthermore, while in nondysphagic subjects a previously described time-dependent shift from the left to the right hemisphere was found during the one second of most pronounced swallow-related muscle activity, KD patients showed a strong right hemispheric activation in each time segment analyzed. Since the right hemisphere has an established role in the coordination of the pharyngeal phase of swallowing, the stronger right hemispheric activation observed in KD patients indicates cortical compensation of pharyngeal phase dysphagia. PMID:18548558

  11. Reduced glucose metabolism in temporo-parietal cortices of women with borderline personality disorder.

    PubMed

    Lange, Claudia; Kracht, Lutz; Herholz, Karl; Sachsse, Ulrich; Irle, Eva

    2005-07-30

    Individuals with borderline personality disorder (BPD) and posttraumatic stress disorder (PTSD) often experience dissociative symptoms. Evidence is increasing that stress-related hyperglutamatergic states may contribute to dissociative symptoms and neurodegeneration in temporo-parietal cortical areas. Seventeen young women with BPD who had been exposed to severe childhood physical/sexual abuse and presented with pronounced dissociative symptoms underwent (18)fluoro-2-deoxyglucose positron emission tomography (FDG-PET). Nine healthy, matched volunteers served as comparison subjects. Borderline subjects displayed reduced FDG uptake (as analyzed by SPM) in the right temporal pole/anterior fusiform gyrus and in the left precuneus and posterior cingulate cortex. Impaired memory performance among borderline subjects was significantly correlated with metabolic activity in ventromedial and lateral temporal cortices. Our results demonstrate regional hypometabolism in temporal and medial parietal cortical regions known to be involved in episodic memory consolidation and retrieval. Currently, the precuneus/posterior cingulate cortex is modeled as part of a network of tonically active brain regions that continuously gather information about the world around and within us. Decreased resting metabolic rate of these regions may reflect dissociative symptoms and possibly also identity disturbances and interpersonal difficulties of individuals with BPD.

  12. Cortical subnetwork dynamics during human language tasks.

    PubMed

    Collard, Maxwell J; Fifer, Matthew S; Benz, Heather L; McMullen, David P; Wang, Yujing; Milsap, Griffin W; Korzeniewska, Anna; Crone, Nathan E

    2016-07-15

    Language tasks require the coordinated activation of multiple subnetworks-groups of related cortical interactions involved in specific components of task processing. Although electrocorticography (ECoG) has sufficient temporal and spatial resolution to capture the dynamics of event-related interactions between cortical sites, it is difficult to decompose these complex spatiotemporal patterns into functionally discrete subnetworks without explicit knowledge of each subnetwork's timing. We hypothesized that subnetworks corresponding to distinct components of task-related processing could be identified as groups of interactions with co-varying strengths. In this study, five subjects implanted with ECoG grids over language areas performed word repetition and picture naming. We estimated the interaction strength between each pair of electrodes during each task using a time-varying dynamic Bayesian network (tvDBN) model constructed from the power of high gamma (70-110Hz) activity, a surrogate for population firing rates. We then reduced the dimensionality of this model using principal component analysis (PCA) to identify groups of interactions with co-varying strengths, which we term functional network components (FNCs). This data-driven technique estimates both the weight of each interaction's contribution to a particular subnetwork, and the temporal profile of each subnetwork's activation during the task. We found FNCs with temporal and anatomical features consistent with articulatory preparation in both tasks, and with auditory and visual processing in the word repetition and picture naming tasks, respectively. These FNCs were highly consistent between subjects with similar electrode placement, and were robust enough to be characterized in single trials. Furthermore, the interaction patterns uncovered by FNC analysis correlated well with recent literature suggesting important functional-anatomical distinctions between processing external and self-produced speech. Our

  13. Motor cortical plasticity in Parkinson's disease.

    PubMed

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  14. Biodegradable foam coating of cortical allografts.

    PubMed

    Bondre, S; Lewandrowski, K U; Hasirci, V; Cattaneo, M V; Gresser, J D; Wise, D L; Tomford, W W; Trantolo, D J

    2000-06-01

    Clinical outcomes of bone allograft procedures may be improved by modifying the surface of the graft with an osteoconductive biopolymeric coating. In this comparative in vitro study, we evaluated the dimensional stability, mechanical strength, hydrophilicity, and water uptake of biodegradable foams of poly(propylene fumarate) (PPF) and poly(d,l-lactic-co glycolic acid) (PLGA) when applied as surface coatings to cortical bone. Cortical bone samples were divided into four groups: Type I, untreated bone; Type II, laser-perforated bone; Type III, partially demineralized bone; and Type IV, laser-perforated and partially demineralized bone. Results show that PPF wets easily, achieving 12.5% wt/wt in 30 min. Compressive tests on the PPF foam material showed that the compressive strength was 6.8 MPa prior to in vitro incubation but then gradually reduced to 1.9 MPa at 8 weeks. Push-out and pulloff strength tests showed that initially both PPF and PLGA foam coatings had comparable adherence strengths to the cortical bone samples (100-150 N). When additional geometrical surface alteration by perforation and demineralization of the bony substrate was employed, in vitro adherence of the PPF foam coating was further increased to 120 N, demonstrating a statistically significant improvement of push-out strength throughout the entire 8-week observation period (p<0.0002 for all four data points). The pore geometry of PPF-foam coatings changed little over the 2-month evaluation period. In comparison, PLGA foam coating around the cortical bone samples rapidly lost structure with a decrease of 67% in strength seen after 1-week in vitro incubation. These new types of bone allografts may be particularly useful where the use of other replacement materials is not feasible or practical.

  15. Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients.

    PubMed

    Li, Shuyu; Yuan, Xiankun; Pu, Fang; Li, Deyu; Fan, Yubo; Wu, Liyong; Chao, Wang; Chen, Nan; He, Yong; Han, Ying

    2014-08-01

    Previous studies have suggested that amnestic mild cognitive impairment (aMCI) is associated with changes in cortical morphological features, such as cortical thickness, sulcal depth, surface area, gray matter volume, metric distortion, and mean curvature. These features have been proven to have specific neuropathological and genetic underpinnings. However, most studies primarily focused on mass-univariate methods, and cortical features were generally explored in isolation. Here, we used a multivariate method to characterize the complex and subtle structural changing pattern of cortical anatomy in 24 aMCI human participants and 26 normal human controls. Six cortical features were extracted for each participant, and the spatial patterns of brain abnormities in aMCI were identified by high classification weights using a support vector machine method. The classification accuracy in discriminating the two groups was 76% in the left hemisphere and 80% in the right hemisphere when all six cortical features were used. Regions showing high weights were subtle, spatially complex, and predominately located in the left medial temporal lobe and the supramarginal and right inferior parietal lobes. In addition, we also found that the six morphological features had different contributions in discriminating the two groups even for the same region. Our results indicated that the neuroanatomical patterns that discriminated individuals with aMCI from controls were truly multidimensional and had different effects on the morphological features. Furthermore, the regions identified by our method could potentially be useful for clinical diagnosis. PMID:25100588

  16. Optimal combination of multiple cortical surface parcellations

    NASA Astrophysics Data System (ADS)

    Hu, Xintao; Guo, Lei; Li, Gang; Li, Kaiming; Liu, Tianming

    2010-03-01

    A variety of methodologies have been developed for the parcellation of human cortical surface into sulcal or gyral regions due to its importance in structural and functional mapping of the human brain. However, characterizing the performance of surface parcellation methods and the estimation of ground truth of segmentation are still open problems. In this paper, we present an algorithm for simultaneous truth and performance estimation of various approaches for human cortical surface parcellation. The probabilistic true segmentation is estimated as a weighted combination of the segmentations resulted from multiple methods. Afterward, an Expectation-Maximization (EM) algorithm is used to optimize the weighting depending on the estimated performance level of each method. Furthermore, a spatial homogeneity constraint modeled by the Hidden Markov Random Field (HMRF) theory is incorporated to refine the estimated true segmentation into a spatially homogenous decision. The proposed method has been evaluated using both synthetic and real data. The experimental results demonstrate the validity of the method proposed in this paper. Also, it has been used to generate reference sulci regions to perform a comparison study of three methods for cortical surface parcellation.

  17. Partial volume correction using cortical surfaces

    NASA Astrophysics Data System (ADS)

    Blaasvær, Kamille R.; Haubro, Camilla D.; Eskildsen, Simon F.; Borghammer, Per; Otzen, Daniel; Ostergaard, Lasse R.

    2010-03-01

    Partial volume effect (PVE) in positron emission tomography (PET) leads to inaccurate estimation of regional metabolic activities among neighbouring tissues with different tracer concentration. This may be one of the main limiting factors in the utilization of PET in clinical practice. Partial volume correction (PVC) methods have been widely studied to address this issue. MRI based PVC methods are well-established.1 Their performance depend on the quality of the co-registration of the MR and PET dataset, on the correctness of the estimated point-spread function (PSF) of the PET scanner and largely on the performance of the segmentation method that divide the brain into brain tissue compartments.1, 2 In the present study a method for PVC is suggested, that utilizes cortical surfaces, to obtain detailed anatomical information. The objectives are to improve the performance of PVC, facilitate a study of the relationship between metabolic activity in the cerebral cortex and cortical thicknesses, and to obtain an improved visualization of PET data. The gray matter metabolic activity after performing PVC was recovered by 99.7 - 99.8 % , in relation to the true activity when testing on simple simulated data with different PSFs and by 97.9 - 100 % when testing on simulated brain PET data at different cortical thicknesses. When studying the relationship between metabolic activities and anatomical structures it was shown on simulated brain PET data, that it is important to correct for PVE in order to get the true relationship.

  18. Visual stimuli recruit intrinsically generated cortical ensembles.

    PubMed

    Miller, Jae-eun Kang; Ayzenshtat, Inbal; Carrillo-Reid, Luis; Yuste, Rafael

    2014-09-23

    The cortical microcircuit is built with recurrent excitatory connections, and it has long been suggested that the purpose of this design is to enable intrinsically driven reverberating activity. To understand the dynamics of neocortical intrinsic activity better, we performed two-photon calcium imaging of populations of neurons from the primary visual cortex of awake mice during visual stimulation and spontaneous activity. In both conditions, cortical activity is dominated by coactive groups of neurons, forming ensembles whose activation cannot be explained by the independent firing properties of their contributing neurons, considered in isolation. Moreover, individual neurons flexibly join multiple ensembles, vastly expanding the encoding potential of the circuit. Intriguingly, the same coactive ensembles can repeat spontaneously and in response to visual stimuli, indicating that stimulus-evoked responses arise from activating these intrinsic building blocks. Although the spatial properties of stimulus-driven and spontaneous ensembles are similar, spontaneous ensembles are active at random intervals, whereas visually evoked ensembles are time-locked to stimuli. We conclude that neuronal ensembles, built by the coactivation of flexible groups of neurons, are emergent functional units of cortical activity and propose that visual stimuli recruit intrinsically generated ensembles to represent visual attributes. PMID:25201983

  19. Astrocytes refine cortical connectivity at dendritic spines

    PubMed Central

    Risher, W Christopher; Patel, Sagar; Kim, Il Hwan; Uezu, Akiyoshi; Bhagat, Srishti; Wilton, Daniel K; Pilaz, Louis-Jan; Singh Alvarado, Jonnathan; Calhan, Osman Y; Silver, Debra L; Stevens, Beth; Calakos, Nicole; Soderling, Scott H; Eroglu, Cagla

    2014-01-01

    During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.04047.001 PMID:25517933

  20. Computational modeling of epidural cortical stimulation

    NASA Astrophysics Data System (ADS)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2008-12-01

    Epidural cortical stimulation (ECS) is a developing therapy to treat neurological disorders. However, it is not clear how the cortical anatomy or the polarity and position of the electrode affects current flow and neural activation in the cortex. We developed a 3D computational model simulating ECS over the precentral gyrus. With the electrode placed directly above the gyrus, about half of the stimulus current flowed through the crown of the gyrus while current density was low along the banks deep in the sulci. Beneath the electrode, neurons oriented perpendicular to the cortical surface were depolarized by anodic stimulation, and neurons oriented parallel to the boundary were depolarized by cathodic stimulation. Activation was localized to the crown of the gyrus, and neurons on the banks deep in the sulci were not polarized. During regulated voltage stimulation, the magnitude of the activating function was inversely proportional to the thickness of the CSF and dura. During regulated current stimulation, the activating function was not sensitive to the thickness of the dura but was slightly more sensitive than during regulated voltage stimulation to the thickness of the CSF. Varying the width of the gyrus and the position of the electrode altered the distribution of the activating function due to changes in the orientation of the neurons beneath the electrode. Bipolar stimulation, although often used in clinical practice, reduced spatial selectivity as well as selectivity for neuron orientation.

  1. Stochastic Computations in Cortical Microcircuit Models

    PubMed Central

    Maass, Wolfgang

    2013-01-01

    Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this hypothesis by showing that even very detailed models for cortical microcircuits, with data-based diverse nonlinear neurons and synapses, have a stationary distribution of network states and trajectories of network states to which they converge exponentially fast from any initial state. We demonstrate that this convergence holds in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits. We further show that, in the presence of background network oscillations, separate stationary distributions emerge for different phases of the oscillation, in accordance with experimentally reported phase-specific codes. We complement these theoretical results by computer simulations that investigate resulting computation times for typical probabilistic inference tasks on these internally stored distributions, such as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we show that the inherent stochastic dynamics of generic cortical microcircuits enables them to quickly generate approximate solutions to difficult constraint satisfaction problems, where stored knowledge and current inputs jointly constrain possible solutions. This provides a powerful new computing paradigm for networks of spiking neurons, that also throws new light on how networks of neurons in the brain could carry out complex computational tasks such as prediction, imagination, memory recall and problem solving. PMID:24244126

  2. Familial Precocious Fetal Abnormal Cortical Sulcation.

    PubMed

    Frassoni, Carolina; Avagliano, Laura; Inverardi, Francesca; Spaccini, Luigina; Parazzini, Cecilia; Rustico, Maria Angela; Bulfamante, Gaetano; Righini, Andrea

    2016-08-01

    The development of the human cerebral cortex is a complex and precisely programmed process by which alterations may lead to morphological and functional neurological abnormalities. We report familial cases of prenatally diagnosed abnormal brain, characterized by aberrant symmetrical mesial oversulcation of the parietooccipital lobes, in fetuses affected by abnormal skeletal features. Fetal brain anomalies were characterized by prenatal magnetic resonance imaging at 21 weeks of gestation and histologically evaluated at 22 weeks. Histological examination added relevant information showing some focal cortical areas of micropoligyria and heterotopic extension of the cortical plate into the marginal zone beneath the cortical surface. Genetic analysis of the fetuses excluded FGFR3 mutations known to be related to skeletal dysplasia and aberrant symmetrical oversulcation in other brain areas (temporal lobes). Hence, the present report suggests the existence of a class of rare syndromes of skeleton and brain development abnormality unrelated to FGFR3 mutations or related to other not described FGFR3 gene defects. Using magnetic resonance imaging, histopathology and molecular characterization we provide an example of a translational study of a rare and unreported brain congenital malformation. PMID:27177044

  3. Cortical Reorganization following Injury Early in Life

    PubMed Central

    Artzi, Moran; Shiran, Shelly Irene; Weinstein, Maya; Myers, Vicki; Tarrasch, Ricardo; Schertz, Mitchell; Fattal-Valevski, Aviva; Miller, Elka; Gordon, Andrew M.; Green, Dido; Ben Bashat, Dafna

    2016-01-01

    The brain has a remarkable capacity for reorganization following injury, especially during the first years of life. Knowledge of structural reorganization and its consequences following perinatal injury is sparse. Here we studied changes in brain tissue volume, morphology, perfusion, and integrity in children with hemiplegia compared to typically developing children, using MRI. Children with hemiplegia demonstrated reduced total cerebral volume, with increased cerebrospinal fluid (CSF) and reduced total white matter volumes, with no differences in total gray matter volume, compared to typically developing children. An increase in cortical thickness at the hemisphere contralateral to the lesion (CLH) was detected in motor and language areas, which may reflect compensation for the gray matter loss in the lesion area or retention of ipsilateral pathways. In addition, reduced cortical thickness, perfusion, and surface area were detected in limbic areas. Increased CSF volume and precentral cortical thickness and reduced white matter volume were correlated with worse motor performance. Brain reorganization of the gray matter within the CLH, while not necessarily indicating better outcome, is suggested as a response to neuronal deficits following injury early in life. PMID:27298741

  4. Coverage, continuity, and visual cortical architecture

    PubMed Central

    2011-01-01

    Background The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. Results We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all the previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Conclusions Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise. PMID:22329968

  5. Experience dependent plasticity alters cortical synchronization

    PubMed Central

    Kilgard, M.P.; Vazquez, J.L.; Engineer, N.D.; Pandya, P.K.

    2008-01-01

    Theories of temporal coding by cortical neurons are supported by observations that individual neurons can respond to sensory stimulation with millisecond precision and that activity in large populations is often highly correlated. Synchronization is highest between neurons with overlapping receptive fields and modulated by both sensory stimulation and behavioral state. It is not yet clear whether cortical synchronization is an epiphenomenon or a critical component of efficient information transmission. Experimental manipulations that generate receptive field plasticity can be used to test the relationship between synchronization and receptive fields. Here we demonstrate that increasing receptive field size in primary auditory cortex by repeatedly pairing a train of tones with nucleus basalis (NB) stimulation increases synchronization, and decreasing receptive field size by pairing different tone frequencies with NB stimulation decreases synchronization. These observations seem to support the conclusion that neural synchronization is simply an artifact caused by common inputs. However, pairing tone trains of different carrier frequencies with NB stimulation increases receptive field size without increasing synchronization, and environmental enrichment increases synchronization without increasing receptive field size. The observation that receptive fields and synchronization can be manipulated independently suggests that common inputs are only one of many factors shaping the strength and temporal precision of cortical synchronization and supports the hypothesis that precise neural synchronization contributes to sensory information processing. PMID:17317055

  6. How Nox2-Containing NADPH Oxidase Affects Cortical Circuits in the NMDA Receptor Antagonist Model of Schizophrenia

    PubMed Central

    Wang, Xin; Pinto-Duarte, António; Sejnowski, Terrence J.

    2013-01-01

    Abstract Significance: Schizophrenia is a complex neuropsychiatric disorder affecting around 1% of the population worldwide. Its mode of inheritance suggests a multigenic neurodevelopmental disorder with symptoms appearing during late adolescence/early adulthood, with its onset strongly influenced by environmental stimuli. Many neurotransmitter systems, including dopamine, glutamate, and gamma-aminobutyric acid, show alterations in affected individuals, and the behavioral and physiological characteristics of the disease can be mimicked by drugs that produce blockade of N-methyl-d-aspartate glutamate receptors (NMDARs). Recent Advances: Mounting evidence suggests that drugs that block NMDARs specifically impair the inhibitory capacity of parvalbumin-expressing (PV+) fast-spiking neurons in adult and developing rodents, and alterations in these inhibitory neurons is one of the most consistent findings in the schizophrenic postmortem brain. Disruption of the inhibitory capacity of PV+ inhibitory neurons will alter the functional balance between excitation and inhibition in prefrontal cortical circuits producing impairment of working memory processes such as those observed in schizophrenia. Critical Issues: Mechanistically, the effect of NMDAR antagonists can be attributed to the activation of the Nox2-dependent reduced form of nicotinamide adenine dinucleotide phosphate oxidase pathway in cortical neurons, which is consistent with the emerging role of oxidative stress in the pathogenesis of mental disorders, specifically schizophrenia. Here we review the mechanisms by which NMDAR antagonists produce lasting impairment of the cortical PV+ neuronal system and the roles played by Nox2-dependent oxidative stress mechanisms. Future Directions: The discovery of the pathways by which oxidative stress leads to unbalanced excitation and inhibition in cortical neural circuits opens a new perspective toward understanding the biological underpinnings of schizophrenia. Antioxid

  7. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    PubMed

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes.

  8. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    PubMed Central

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  9. Trainable Mentally Impaired/Severely Multiply Impaired/Autistic Impaired/Severely Mentally Impaired. Product Evaluation Report 1989-1990.

    ERIC Educational Resources Information Center

    Claus, Richard N.; And Others

    The evaluation report describes special education services provided to trainable mentally impaired (TMI), autistic impaired (AI), severely multiply impaired (SXI), and severely mentally impaired (SMI) students at and through the Melvin G. Millet Learning Center (Bridgeport, Michigan). The eight program components are described individually and…

  10. Environmental enrichment rescues the degraded auditory temporal resolution of cortical neurons induced by early noise exposure.

    PubMed

    Jiang, Cuiping; Xu, Xiaoxiao; Yu, Liping; Xu, Jinghong; Zhang, Jiping

    2015-09-01

    The accurate processing of sound temporal information is crucial to human speech perception and other species-specific communication. During postnatal development, the auditory cortex shows environmental and experience-dependent plasticity. However, how the postnatal environment affects cortical processing of sound temporal information is not fully understood. The aim of the present study was to determine whether postnatal noise exposure impairs neural temporal resolution in the auditory cortex, and, if so, whether environmental enrichment can rescue this degraded neural temporal acuity. Using the neural gap detection threshold determined in anesthetized rats as an index of temporal acuity, we found that exposure of juvenile rats to moderate-level noise induced much higher neural gap detection thresholds in adulthood than exposure of adult rats to the same noise. Environmental enrichment did not affect cortical neural gap detection thresholds in normally developing rats. However, rearing of rats with early noise exposure in an enriched environment promoted recovery from the noise-induced degraded neural temporal resolution. In addition, the tonal stimuli in the enriched environment contributed to only a portion of the recovery. These results provide evidence for noise-induced developmental impairment in neural gap detection thresholds in the auditory cortex, and suggest a therapeutic potential for environmental enrichment as a non-invasive approach to rescue developmentally degraded auditory temporal processing.

  11. Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson's disease.

    PubMed

    Melloni, Margherita; Sedeño, Lucas; Hesse, Eugenia; García-Cordero, Indira; Mikulan, Ezequiel; Plastino, Angelo; Marcotti, Aida; López, José David; Bustamante, Catalina; Lopera, Francisco; Pineda, David; García, Adolfo M; Manes, Facundo; Trujillo, Natalia; Ibáñez, Agustín

    2015-07-08

    Impairments of action language have been documented in early stage Parkinson's disease (EPD). The action-sentence compatibility effect (ACE) paradigm has revealed that EPD involves deficits to integrate action-verb processing and ongoing motor actions. Recent studies suggest that an abolished ACE in EPD reflects a cortico-subcortical disruption, and recent neurocognitive models highlight the role of the basal ganglia (BG) in motor-language coupling. Building on such breakthroughs, we report the first exploration of convergent cortical and subcortical signatures of ACE in EPD patients and matched controls. Specifically, we combined cortical recordings of the motor potential, functional connectivity measures, and structural analysis of the BG through voxel-based morphometry. Relative to controls, EPD patients exhibited an impaired ACE, a reduced motor potential, and aberrant frontotemporal connectivity. Furthermore, motor potential abnormalities during the ACE task were predicted by overall BG volume and atrophy. These results corroborate that motor-language coupling is mainly subserved by a cortico-subcortical network including the BG as a key hub. They also evince that action-verb processing may constitute a neurocognitive marker of EPD. Our findings suggest that research on the relationship between language and motor domains is crucial to develop models of motor cognition as well as diagnostic and intervention strategies.

  12. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    PubMed

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN.

  13. Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson's disease.

    PubMed

    Melloni, Margherita; Sedeño, Lucas; Hesse, Eugenia; García-Cordero, Indira; Mikulan, Ezequiel; Plastino, Angelo; Marcotti, Aida; López, José David; Bustamante, Catalina; Lopera, Francisco; Pineda, David; García, Adolfo M; Manes, Facundo; Trujillo, Natalia; Ibáñez, Agustín

    2015-01-01

    Impairments of action language have been documented in early stage Parkinson's disease (EPD). The action-sentence compatibility effect (ACE) paradigm has revealed that EPD involves deficits to integrate action-verb processing and ongoing motor actions. Recent studies suggest that an abolished ACE in EPD reflects a cortico-subcortical disruption, and recent neurocognitive models highlight the role of the basal ganglia (BG) in motor-language coupling. Building on such breakthroughs, we report the first exploration of convergent cortical and subcortical signatures of ACE in EPD patients and matched controls. Specifically, we combined cortical recordings of the motor potential, functional connectivity measures, and structural analysis of the BG through voxel-based morphometry. Relative to controls, EPD patients exhibited an impaired ACE, a reduced motor potential, and aberrant frontotemporal connectivity. Furthermore, motor potential abnormalities during the ACE task were predicted by overall BG volume and atrophy. These results corroborate that motor-language coupling is mainly subserved by a cortico-subcortical network including the BG as a key hub. They also evince that action-verb processing may constitute a neurocognitive marker of EPD. Our findings suggest that research on the relationship between language and motor domains is crucial to develop models of motor cognition as well as diagnostic and intervention strategies. PMID:26152329

  14. Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson’s disease

    PubMed Central

    Melloni, Margherita; Sedeño, Lucas; Hesse, Eugenia; García-Cordero, Indira; Mikulan, Ezequiel; Plastino, Angelo; Marcotti, Aida; López, José David; Bustamante, Catalina; Lopera, Francisco; Pineda, David; García, Adolfo M.; Manes, Facundo; Trujillo, Natalia; Ibáñez, Agustín

    2015-01-01

    Impairments of action language have been documented in early stage Parkinson’s disease (EPD). The action-sentence compatibility effect (ACE) paradigm has revealed that EPD involves deficits to integrate action-verb processing and ongoing motor actions. Recent studies suggest that an abolished ACE in EPD reflects a cortico-subcortical disruption, and recent neurocognitive models highlight the role of the basal ganglia (BG) in motor-language coupling. Building on such breakthroughs, we report the first exploration of convergent cortical and subcortical signatures of ACE in EPD patients and matched controls. Specifically, we combined cortical recordings of the motor potential, functional connectivity measures, and structural analysis of the BG through voxel-based morphometry. Relative to controls, EPD patients exhibited an impaired ACE, a reduced motor potential, and aberrant frontotemporal connectivity. Furthermore, motor potential abnormalities during the ACE task were predicted by overall BG volume and atrophy. These results corroborate that motor-language coupling is mainly subserved by a cortico-subcortical network including the BG as a key hub. They also evince that action-verb processing may constitute a neurocognitive marker of EPD. Our findings suggest that research on the relationship between language and motor domains is crucial to develop models of motor cognition as well as diagnostic and intervention strategies. PMID:26152329

  15. Lamin B1 protein is required for dendrite development in primary mouse cortical neurons

    PubMed Central

    Giacomini, Caterina; Mahajani, Sameehan; Ruffilli, Roberta; Marotta, Roberto; Gasparini, Laura

    2016-01-01

    Lamin B1, a key component of the nuclear lamina, plays an important role in brain development and function. A duplication of the human lamin B1 (LMNB1) gene has been linked to adult-onset autosomal dominant leukodystrophy, and mouse and human loss-of-function mutations in lamin B1 are susceptibility factors for neural tube defects. In the mouse, experimental ablation of endogenous lamin B1 (Lmnb1) severely impairs embryonic corticogenesis. Here we report that in primary mouse cortical neurons, LMNB1 overexpression reduces axonal outgrowth, whereas deficiency of endogenous Lmnb1 results in aberrant dendritic development. In the absence of Lmnb1, both the length and complexity of dendrites are reduced, and their growth is unresponsive to KCl stimulation. This defective dendritic outgrowth stems from impaired ERK signaling. In Lmnb1-null neurons, ERK is correctly phosphorylated, but phospho-ERK fails to translocate to the nucleus, possibly due to delocalization of nuclear pore complexes (NPCs) at the nuclear envelope. Taken together, these data highlight a previously unrecognized role of lamin B1 in dendrite development of mouse cortical neurons through regulation of nuclear shuttling of specific signaling molecules and NPC distribution. PMID:26510501

  16. Cognitive impairment and diabetes.

    PubMed

    Dash, Sandip K

    2013-05-01

    The aim of this manuscript is to provide a brief review of the link between diabetes mellitus with cognitive impairment, the possible pathophysiology linking the two, and some possible therapeutic interventions for the treatment of this condition. The prevalence of diabetes increases with age, so also dementia increases in later life. As the population ages, type 2 diabetes and AD are increasing. Both diseases are chronic and are the leading causes of morbidity and mortality. Recent studies showed that older people with type 2 diabetes have a higher risk of cognitive decline. The precise mechanism linking the two remains to be found out. Several hypothetical mechanisms have been postulated. Type 2 diabetes is a risk factor for AD and vascular dementia. The association between diabetes and AD is particularly strong among carriers of the APOE ε4. Several studies have linked dementia to diabetes. Impaired fasting glucose and impaired glucose tolerance and insulin resistance have also been associated with poor cognitive performance and at risk of developing cognitive impairment. Studies have suggested that metabolic syndrome may be linked to vascular dementia, while contrasting findings showed the role of metabolic syndrome to AD. In this review, how diabetes and cognitive impairment and Alzheimer's disease are mutually linked, possible mechanism linking the two and some possible therapeutic interventions with some patents that seem to be good therapeutic targets in future are discussed.

  17. Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging.

    PubMed

    Lalo, Ulyana; Rasooli-Nejad, Seyed; Pankratov, Yuriy

    2014-10-01

    Maintaining brain function during aging is very important for mental and physical health. Recent studies showed a crucial importance of communication between two major types of brain cells: neurons transmitting electrical signals, and glial cells, which maintain the well-being and function of neurons. Still, the study of age-related changes in neuron-glia signalling is far from complete. We have shown previously that cortical astrocytes are capable of releasing ATP by a quantal soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complex-dependent mechanism. Release of ATP from cortical astrocytes can be activated via various pathways, including direct UV-uncaging of intracellular Ca²⁺ or G-protein-coupled receptors. Importantly, release of both ATP and glutamate from neocortical astrocytes was not observed in brain slices of dominant-negative SNARE (dnSNARE) mice, expressing dnSNARE domain selectively in astrocytes. We also discovered that astrocyte-driven ATP can cause significant attenuation of synaptic inhibition in the pyramidal neurons via Ca²⁺-interaction between the neuronal ATP and γ-aminobutyric acid (GABA) receptors. Furthermore, we showed that astrocyte-derived ATP can facilitate the induction of long-term potentiation of synaptic plasticity in the neocortex. Our recent data have shown that an age-related decrease in the astroglial Ca²⁺ signalling can cause a substantial decrease in the exocytosis of gliotransmitters, in particular ATP. Age-related impairment of ATP release from cortical astrocytes can cause a decrease in the extent of astroglial modulation of synaptic transmission in the neocortex and can therefore contribute to the age-related impairment of synaptic plasticity and cognitive decline. Combined, our results strongly support the physiological relevance of glial exocytosis for glia-neuron communications and brain function. PMID:25233403

  18. A Modified Controlled Cortical Impact Technique to Model Mild Traumatic Brain Injury Mechanics in Mice

    PubMed Central

    Chen, YungChia; Mao, Haojie; Yang, King H.; Abel, Ted; Meaney, David F.

    2014-01-01

    For the past 25 years, controlled cortical impact (CCI) has been a useful tool in traumatic brain injury (TBI) research, creating injury patterns that includes primary contusion, neuronal loss, and traumatic axonal damage. However, when CCI was first developed, very little was known on the underlying biomechanics of mild TBI. This paper uses information generated from recent computational models of mild TBI in humans to alter CCI and better reflect the biomechanical conditions of mild TBI. Using a finite element model of CCI in the mouse, we adjusted three primary features of CCI: the speed of the impact to achieve strain rates within the range associated with mild TBI, the shape, and material of the impounder to minimize strain concentrations in the brain, and the impact depth to control the peak deformation that occurred in the cortex and hippocampus. For these modified cortical impact conditions, we observed peak strains and strain rates throughout the brain were significantly reduced and consistent with estimated strains and strain rates observed in human mild TBI. We saw breakdown of the blood–brain barrier but no primary hemorrhage. Moreover, neuronal degeneration, axonal injury, and both astrocytic and microglia reactivity were observed up to 8 days after injury. Significant deficits in rotarod performance appeared early after injury, but we observed no impairment in spatial object recognition or contextual fear conditioning response 5 and 8 days after injury, respectively. Together, these data show that simulating the biomechanical conditions of mild TBI with a modified cortical impact technique produces regions of cellular reactivity and neuronal loss that coincide with only a transient behavioral impairment. PMID:24994996

  19. Repetition Priming and Cortical Arousal in Healthy Aging and Alzheimer’s Disease

    PubMed Central

    Kane, Amy E.; Festa, Elena K.; Salmon, David P.; Heindel, William C.

    2015-01-01

    Repetition priming refers to a form of implicit memory in which prior exposure to a stimulus facilitates the subsequent processing of the same or a related stimulus. One frequently used repetition priming task is word-stem completion priming. In this task, participants complete a series of beginning word stems with the first word that comes to mind after having viewed, in an unrelated context, words that can complete some of the stems. Patients with Alzheimer’s disease (AD) exhibit a significant deficit in word-stem completion priming, but the neural mechanisms underlying this deficit have yet to be identified. The present study examined the possibility that the word-stem completion priming deficit in AD is due to disruption of ascending neuromodulatory systems that mediate cortical arousal by comparing word-stem completion priming and behavioral measures of spatial orienting and phasic alerting. Results showed that in healthy elderly controls higher levels of phasic alerting were associated with a sharpening of the temporal dynamics of priming across two delay intervals: those with higher levels of alerting showed more immediate priming but less delayed priming than those with lesser levels of alerting. In patients with AD, priming was impaired despite intact levels of phasic alerting and spatial orienting, and group status rather than individual levels of alerting or orienting predicted the magnitude of their stem-completion priming. Furthermore, the change in priming across delays they displayed was not related to level of alerting or orienting. These findings support the role of the noradrenergic projection system in modulating the level of steady-state cortical activation (or “cortical tonus”) underlying both phasic alerting and the temporal dynamics of repetition priming. However, impaired priming in patients with AD does not appear to be due to disruption of this neuromodulatory system. PMID:25701794

  20. Aberrant Functional Connectivity and Structural Atrophy in Subcortical Vascular Cognitive Impairment: Relationship with Cognitive Impairments.

    PubMed

    Zhou, Xia; Hu, Xiaopeng; Zhang, Chao; Wang, Haibao; Zhu, Xiaoqun; Xu, Liyan; Sun, Zhongwu; Yu, Yongqiang

    2016-01-01

    Abnormal structures in the cortical and subcortical regions have been identified in subcortical vascular cognition impairment (SVCI). However, little is known about the functional alterations in SVCI, and no study refers to the functional connectivity in the prefrontal and subcortical regions in this context. The medial prefrontal cortex (MPFC) is an important region of the executive network and default mode network, and the subcortical thalamus plays vital roles in mediating or modulating these two networks. To investigate both thalamus- and MPFC-related functional connectivity as well as its relationship with cognition in SVCI, 32 SVCI patients and 23 control individuals were administered neuropsychological assessments. They also underwent structural and functional magnetic resonance imaging scans. Voxel-based morphometry and functional connectivity analysis were performed to detect gray matter (GM) atrophy and to characterize the functional alterations in the thalamus and the MPFC. For structural data, we observed that GM atrophy was distributed in both cortical regions and subcortical areas. For functional data, we observed that the thalamus functional connectivity in SVCI was significantly decreased in several cortical regions [i.e., the orbitofrontal lobe (OFL)], which are mainly involved in executive function and memory function. However, connectivity was increased in several frontal regions (i.e., the inferior frontal gyrus), which may be induced by the compensatory recruitment of the decreased functional connectivity. The MPFC functional connectivity was also decreased in executive- and memory-related regions (i.e., the anterior cingulate cortex) along with a motor region (i.e., the supplementary motor area). In addition, the cognitive performance was closely correlated with functional connectivity between the left thalamus and the left OFL in SVCI. The present study, thus, provides evidence for an association between structural and functional alterations

  1. Aberrant Functional Connectivity and Structural Atrophy in Subcortical Vascular Cognitive Impairment: Relationship with Cognitive Impairments

    PubMed Central

    Zhou, Xia; Hu, Xiaopeng; Zhang, Chao; Wang, Haibao; Zhu, Xiaoqun; Xu, Liyan; Sun, Zhongwu; Yu, Yongqiang

    2016-01-01

    Abnormal structures in the cortical and subcortical regions have been identified in subcortical vascular cognition impairment (SVCI). However, little is known about the functional alterations in SVCI, and no study refers to the functional connectivity in the prefrontal and subcortical regions in this context. The medial prefrontal cortex (MPFC) is an important region of the executive network and default mode network, and the subcortical thalamus plays vital roles in mediating or modulating these two networks. To investigate both thalamus- and MPFC-related functional connectivity as well as its relationship with cognition in SVCI, 32 SVCI patients and 23 control individuals were administered neuropsychological assessments. They also underwent structural and functional magnetic resonance imaging scans. Voxel-based morphometry and functional connectivity analysis were performed to detect gray matter (GM) atrophy and to characterize the functional alterations in the thalamus and the MPFC. For structural data, we observed that GM atrophy was distributed in both cortical regions and subcortical areas. For functional data, we observed that the thalamus functional connectivity in SVCI was significantly decreased in several cortical regions [i.e., the orbitofrontal lobe (OFL)], which are mainly involved in executive function and memory function. However, connectivity was increased in several frontal regions (i.e., the inferior frontal gyrus), which may be induced by the compensatory recruitment of the decreased functional connectivity. The MPFC functional connectivity was also decreased in executive- and memory-related regions (i.e., the anterior cingulate cortex) along with a motor region (i.e., the supplementary motor area). In addition, the cognitive performance was closely correlated with functional connectivity between the left thalamus and the left OFL in SVCI. The present study, thus, provides evidence for an association between structural and functional alterations

  2. Aberrant Functional Connectivity and Structural Atrophy in Subcortical Vascular Cognitive Impairment: Relationship with Cognitive Impairments.

    PubMed

    Zhou, Xia; Hu, Xiaopeng; Zhang, Chao; Wang, Haibao; Zhu, Xiaoqun; Xu, Liyan; Sun, Zhongwu; Yu, Yongqiang

    2016-01-01

    Abnormal structures in the cortical and subcortical regions have been identified in subcortical vascular cognition impairment (SVCI). However, little is known about the functional alterations in SVCI, and no study refers to the functional connectivity in the prefrontal and subcortical regions in this context. The medial prefrontal cortex (MPFC) is an important region of the executive network and default mode network, and the subcortical thalamus plays vital roles in mediating or modulating these two networks. To investigate both thalamus- and MPFC-related functional connectivity as well as its relationship with cognition in SVCI, 32 SVCI patients and 23 control individuals were administered neuropsychological assessments. They also underwent structural and functional magnetic resonance imaging scans. Voxel-based morphometry and functional connectivity analysis were performed to detect gray matter (GM) atrophy and to characterize the functional alterations in the thalamus and the MPFC. For structural data, we observed that GM atrophy was distributed in both cortical regions and subcortical areas. For functional data, we observed that the thalamus functional connectivity in SVCI was significantly decreased in several cortical regions [i.e., the orbitofrontal lobe (OFL)], which are mainly involved in executive function and memory function. However, connectivity was increased in several frontal regions (i.e., the inferior frontal gyrus), which may be induced by the compensatory recruitment of the decreased functional connectivity. The MPFC functional connectivity was also decreased in executive- and memory-related regions (i.e., the anterior cingulate cortex) along with a motor region (i.e., the supplementary motor area). In addition, the cognitive performance was closely correlated with functional connectivity between the left thalamus and the left OFL in SVCI. The present study, thus, provides evidence for an association between structural and functional alterations

  3. Amyloid deposition in Parkinson Disease and Cognitive Impairment: A Systematic Review

    PubMed Central

    Petrou, Myria; Dwamena, Ben A.; Foerster, Bradley R.; MacEachern, Mark P.; Bohnen, Nicolaas I.; Muller, Martijn; Albin, Roger L.; Frey, Kirk A.

    2015-01-01

    Background Varying degrees of cortical amyloid deposition are reported in the setting of Parkinsonism with cognitive impairment. We performed a systematic review to estimate the prevalence of Alzheimer disease (AD) range cortical amyloid deposition amongst patients with Parkinson disease with dementia (PDD), Parkinson disease with mild cognitive impairment (PD-MCI) and dementia with Lewy bodies (DLB). We included amyloid PET imaging studies using Pittsburgh Compound B (PiB). Methods We searched the databases Ovid MEDLINE, PubMed, Embase, Scopus, and Web of Science for articles pertaining to amyloid imaging in Parkinsonism and impaired cognition. We identified 11 articles using PiB imaging to quantify cortical amyloid. We used the metan module in Stata, version 11.0, to calculate point prevalence estimates of patients with “PiB-positive” studies, ie patients showing AD range cortical Aβ-amyloid deposition. Heterogeneity was assessed. A scatterplot was used to assess publication bias. Results Overall pooled prevalence of “PiB-positive” studies across all three entities along the spectrum of Parkinson disease and impaired cognition (specifically PDD, PD-MCI and DLB) was 0.41 (95% CI 0.24-0.57). Prevalence of “PiB-positive” studies was 0.68 (95% CI 0.55-0.82) in the DLB group, 0.34 (95% CI 0.13-0.56) in the PDD group and 0.05 (95% CI -0.07-0.17) in the PD-MCI group. Conclusion There is substantial variability in the prevalence of “PiB-positive” studies in subjects with Parkinsonism and cognitive impairment. Higher prevalence of PiB positive studies was encountered among subjects with DLB as opposed to subjects with PDD. PD-MCI subjects showed overall lower prevalence of PiB positive studies than reported findings in non-PD related MCI. PMID:25879534

  4. Pairing Voluntary Movement and Muscle-Located Electrical Stimulation Increases Cortical Excitability

    PubMed Central

    Jochumsen, Mads; Niazi, Imran K.; Signal, Nada; Nedergaard, Rasmus W.; Holt, Kelly; Haavik, Heidi; Taylor, Denise

    2016-01-01

    Learning new motor skills has been correlated with increased cortical excitability. In this study, different location of electrical stimulation (ES), nerve, or muscle, was paired with voluntary movement to investigate if ES paired with voluntary movement (a) would increase the excitability of cortical projections to tibialis anterior and (b) if stimulation location mattered. Cortical excitability changes were quantified using motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) at varying intensities during four conditions. Twelve healthy subjects performed 50 dorsiflexions at the ankle during nerve or muscle ES at motor threshold (MTh). ES alone was delivered 50 times and the movement was performed 50 times. A significant increase in the excitability from pre- to post-intervention (P = 0.0061) and pre- to 30 min post-intervention (P = 0.017) measurements was observed when voluntary movement was paired with muscle ES located at tibialis anterior. An increase of 50 ± 57 and 28 ± 54% in the maximum MEPs was obtained for voluntary movement paired with muscle-located and nerve-located ES, respectively. The maximum MEPs for voluntary movement alone and muscle-located ES alone were −5 ± 28 and 2 ± 42%, respectively. Pairing voluntary movement with muscle-located ES increases excitability of corticospinal projections of tibialis anterior in healthy participants. This finding suggests that active participation during muscle-located ES protocols increases cortical excitability to a greater extent than stimulation alone. The next stage of this research is to investigate the effect in people with stroke. The results may have implications for motor recovery in patients with motor impairments following neurological injury. PMID:27733823

  5. Coronary artery disease affects cortical circuitry associated with brain-heart integration during volitional exercise.

    PubMed

    Norton, Katelyn N; Badrov, Mark B; Barron, Carly C; Suskin, Neville; Heinecke, Armin; Shoemaker, J Kevin

    2015-08-01

    This study tested the hypothesis that coronary artery disease (CAD) alters the cortical circuitry associated with exercise. Observations of changes in heart rate (HR) and in cortical blood oxygenation level-dependent (BOLD) images were made in 23 control subjects [control; 8 women; 63 ± 11 yr; mean arterial pressure (MAP): 90 ± 9 mmHg] (mean ± SD) and 17 similarly aged CAD patients (4 women; 59 ± 9 yr; MAP: 87 ± 10 mmHg). Four repeated bouts each of 30%, 40%, and 50% of maximal voluntary contraction (MVC) force (LAB session), and seven repeated bouts of isometric handgrip (IHG) at 40% MVC force (fMRI session), were performed, with each contraction lasting 20 s and separated by 40 s of rest. There was a main effect of group (P = 0.03) on HR responses across all IHG intensities. Compared with control, CAD demonstrated less task-dependent deactivation in the posterior cingulate cortex and medial prefrontal cortex, and reduced activation in the right anterior insula, bilateral precentral cortex, and occipital lobe (P < 0.05). When correlated with HR, CAD demonstrated reduced activation in the bilateral insula and posterior cingulate cortex, and reduced deactivation in the dorsal anterior cingulate cortex, and bilateral precentral cortex (P < 0.05). The increased variability in expected autonomic regions and decrease in total cortical activation in response to the IHG task are associated with a diminished HR response to volitional effort in CAD. Therefore, relative to similarly aged and healthy individuals, CAD impairs the heart rate response and modifies the cortical patterns associated with cardiovascular control during IHG.

  6. Cortical EEG oscillations and network connectivity as efficacy indices for assessing drugs with cognition enhancing potential.

    PubMed

    Ahnaou, A; Huysmans, H; Jacobs, T; Drinkenburg, W H I M

    2014-11-01

    Synchronization of electroencephalographic (EEG) oscillations represents a core mechanism for cortical and subcortical networks, and disturbance in neural synchrony underlies cognitive processing deficits in neurological and neuropsychiatric disorders. Here, we investigated the effects of cognition enhancers (donepezil, rivastigmine, tacrine, galantamine and memantine), which are approved for symptomatic treatment of dementia, on EEG oscillations and network connectivity in conscious rats chronically instrumented with epidural electrodes in different cortical areas. Next, EEG network indices of cognitive impairments with the muscarinic receptor antagonist scopolamine were modeled. Lastly, we examined the efficacy of cognition enhancers to normalize those aberrant oscillations. Cognition enhancers elicited systematic ("fingerprint") enhancement of cortical slow theta (4.5-6 Hz) and gamma (30.5-50 Hz) oscillations correlated with lower activity levels. Principal component analysis (PCA) revealed a compact cluster that corresponds to shared underlying mechanisms as compared to different drug classes. Functional network connectivity revealed consistent elevated coherent slow theta activity in parieto-occipital and between interhemispheric cortical areas. In rats instrumented with depth hippocampal CA1-CA3 electrodes, donepezil elicited similar oscillatory and coherent activities in cortico-hippocampal networks. When combined with scopolamine, the cognition enhancers attenuated the leftward shift in coherent slow delta activity. Such a consistent shift in EEG coherence into slow oscillations associated with altered slow theta and gamma oscillations may underlie cognitive deficits in scopolamine-treated animals, whereas enhanced coherent slow theta and gamma activity may be a relevant mechanism by which cognition enhancers exert their beneficial effect on plasticity and cognitive processes. The findings underscore that PCA and network connectivity are valuable tools to

  7. Human Ecstasy Use is Associated with Increased Cortical Excitability: An fMRI Study

    PubMed Central

    Bauernfeind, Amy L; Dietrich, Mary S; Blackford, Jennifer U; Charboneau, Evonne J; Lillevig, James G; Cannistraci, Christopher J; Woodward, Neil D; Cao, Aize; Watkins, Tristan; Di Iorio, Christina R; Cascio, Carissa; Salomon, Ronald M; Cowan, Ronald L

    2011-01-01

    The serotonergic neurotoxin, 3,4-methylenedioxymethamphetamine (MDMA/Ecstasy), is a highly popular recreational drug. Human recreational MDMA users have neurocognitive and neuropsychiatric impairments, and human neuroimaging data are consistent with animal reports of serotonin neurotoxicity. However, functional neuroimaging studies have not found consistent effects of MDMA on brain neurophysiology in human users. Several lines of evidence suggest that studying MDMA effects in visual system might reveal the general cortical and subcortical neurophysiological consequences of MDMA use. We used 3 T functional magnetic resonance imaging during visual stimulation to compare visual system lateral geniculate nucleus (LGN) and Brodmann Area (BA) 17 and BA 18 activation in 20 long abstinent (479.95±580.65 days) MDMA users and 20 non-MDMA user controls. Lifetime quantity of MDMA use was strongly positively correlated with blood oxygenation level-dependent (BOLD) signal intensity in bilateral LGN (rs=0.59; p=0.007), BA 17 (rs=0.50; p=0.027), and BA 18 (rs=0.48; p=0.031), and with the spatial extent of activation in BA 17 (rs=0.059; p=0.007) and BA 18 (rs=0.55; p=0.013). There were no between-group differences in brain activation in any region, but the heaviest MDMA users showed a significantly greater spatial extent of activation than controls in BA 17 (p=0.031) and BA 18 (p=0.049). These results suggest that human recreational MDMA use may be associated with a long-lasting increase in cortical excitability, possibly through loss of serotonin input to cortical and subcortical regions. When considered in the context of previous results, cortical hyper-excitability may be a biomarker for MDMA-induced serotonin neurotoxicity. PMID:21326196

  8. Permanent Suppression of Cortical Oscillations in Mice After Adolescent Exposure to Cannabinoids: Receptor Mechanisms

    PubMed Central

    Raver, Sylvina M.; Keller, Asaf

    2014-01-01

    Marijuana use in adolescence, but not adulthood, may permanently impair cognitive functioning and increase the risk of developing schizophrenia. Cortical oscillations are patterns of neural network activity implicated in cognitive processing, and are abnormal in patients with schizophrenia. We have recently reported that cortical oscillations are suppressed in adult mice that were treated, in adolescence but not adulthood, with the cannabinoids WIN55,212-2 (WIN) or Δ9tetrahydrocannabinol (THC). WIN and THC are cannabinoid types 1 and 2 receptor (CB1R & CB2R) agonists, and also have activity at non-cannabinoid receptor targets. However, as acute WIN and THC administration can suppress oscillations through CB1Rs, we hypothesize that a similar mechanism underlies the permanent suppression of oscillations by repeated cannabinoid exposure in adolescence. Here we test the prediction that cannabinoid exposure in adolescence permanently suppresses cortical oscillations by acting through CB1Rs, and that these suppressive effects can be antagonized by a CB1R antagonist. We treated adolescent mice with various cannabinoid compounds, and pharmacologically-evoked oscillations in vitro in adult mice. We find that WIN exposure for six days in early adolescence suppresses oscillations preferentially in adult medial prefrontal cortex (mPFC) via CB1Rs, and that a similar CB1R mechanism accounts for the suppressive effects of long-term (20 day) adolescent THC in adult somatosensory cortex (SCx). Unexpectedly, we also find that CB2Rs may be involved in the suppression of oscillations in both mPFC and SCx by long-term adolescent cannabinoid exposure, and that non-cannabinoid receptors may also contribute to oscillation suppression in adult mPFC. These findings represent a novel attempt to antagonize the effects of adolescent cannabinoid exposure on neural network activity, and reveal the contribution of non-CB1R targets to the suppression of cortical oscillations. PMID:25036610

  9. Postmortem validation of MRI cortical volume measurements in MS.

    PubMed

    Popescu, Veronica; Klaver, Roel; Versteeg, Adriaan; Voorn, Pieter; Twisk, Jos W R; Barkhof, Frederik; Geurts, Jeroen J G; Vrenken, Hugo

    2016-06-01

    Grey matter (GM) atrophy is a prominent aspect of multiple sclerosis pathology and an important outcome in studies. GM atrophy measurement requires accurate GM segmentation. Several methods are used in vivo for measuring GM volumes in MS, but assessing their validity in vivo remains challenging. In this postmortem study, we evaluated the correlation between postmortem MRI cortical volume or thickness and the cortical thickness measured on histological sections. Sixteen MS brains were scanned in situ using 3DT1-weighted MRI and these images were used to measure regional cortical volume using FSL-SIENAX, FreeSurfer, and SPM, and regional cortical thickness using FreeSurfer. Subsequently, cortical thickness was measured histologically in 5 systematically sampled cortical areas. Linear regression analyses were used to evaluate the relation between MRI regional cortical volume or thickness and histological cortical thickness to determine which postprocessing technique was most valid. After correction for multiple comparisons, we observed a significant correlation with the histological cortical thickness for FSL-SIENAX cortical volume with manual editing (std. β = 0.345, adjusted R(2)  = 0.105, P = 0.005), and FreeSurfer cortical volume with manual editing (std. β = 0.379, adjusted R(2)  = 0.129, P = 0.003). In addition, there was a significant correlation between FreeSurfer cortical thickness with manual editing and histological cortical thickness (std. β = 0.381, adjusted R(2)  = 0.130, P = 0.003). The results support the use of FSL-SIENAX and FreeSurfer in cases of severe MS pathology. Interestingly none of the methods were significant in automated mode, which supports the use of manual editing to improve the automated segmentation. Hum Brain Mapp 37:2223-2233, 2016. © 2016 Wiley Periodicals, Inc. PMID:26945922

  10. A Quantitative Near-Infrared Spectroscopy Study: A Decrease in Cerebral Hemoglobin Oxygenation in Alzheimer's Disease and Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Arai, Heii; Takano, Maki; Miyakawa, Koichi; Ota, Tsuneyoshi; Takahashi, Tadashi; Asaka, Hirokazu; Kawaguchi, Tsuneaki

    2006-01-01

    A newly developed quantitative near-infrared spectroscopy (NIRS) system was used to measure changes in cortical hemoglobin oxygenation during the Verbal Fluency Task in 32 healthy controls, 15 subjects with mild cognitive impairment (MCI), and 15 patients with Alzheimer's disease (AD). The amplitude of changes in the waveform, which was…

  11. Dietary carbohydrate in relation to cortical and nuclear lens opacities in the Melbourne Visual Impairment Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE: In vitro and in vivo animal studies suggest that dietary carbohydrates play a role in cataractogenesis. Few epidemiologic studies have been conducted to evaluate this association. The objective of this study was to examine the cross-sectional associations between total carbohydrate intake, ...

  12. Morphological and Behavioural Evidence for Impaired Prefrontal Cortical Function in Female CB1 Receptor Deficient Mice

    PubMed Central

    Lee, Tiffany T.-Y.; Filipski, Sarah B.; Hill, Matthew N.; McEwen, Bruce S.

    2014-01-01

    The medial prefrontal cortex (mPFC) is known to regulate higher order processes like cognitive flexibility. Accumulating behavioral evidence suggests that endocannabinoid (eCB) signaling regulates neuronal architecture within the PFC, as well as certain forms of cognitive flexibility; however, all of these studies have been performed in male rodents and it is currently unknown whether the eCB system performs a similar role in females. To this extent, dendritic morphology of layer II/III neurons in the infra- and prelimbic regions of the mPFC was analyzed and cognitive ability and flexibility in a fixed-platform Morris water maze task was assessed in adult female CB1 receptor knockout (CB1KO) mice. Similar to data generated in male mice, female mice exhibited no difference in acquisition relative to wildtype (WT); however, during reversal learning, CB1KO females spent more time in the original training quadrant and took significantly longer to learn the location of the new platform relative to WT. Within the mPFC, female mice had reduced length and complexity of layer II/III neurons within the prelimbic, but not infralimbic region of the PFC. Taken together, these findings indicate that the role of eCB signaling in cognitive flexibility is independent of sex and disrupted CB1 receptor signaling results in compromised structure and function of the PFC, at least within the prelimbic division. PMID:24907533

  13. The autism-related gene SNRPN regulates cortical and spine development via controlling nuclear receptor Nr4a1.

    PubMed

    Li, Huiping; Zhao, Pingping; Xu, Qiong; Shan, Shifang; Hu, Chunchun; Qiu, Zilong; Xu, Xiu

    2016-01-01

    The small nuclear ribonucleoprotein polypeptide N (SNRPN) gene, encoding the RNA-associated SmN protein, duplications or deletions of which are strongly associated with neurodevelopmental disabilities. SNRPN-coding protein is highly expressed in the brain. However, the role of SNRPN protein in neural development remains largely unknown. Here we showed that the expression of SNRPN increased markedly during postnatal brain development. Overexpression or knockdown of SNRPN in cortical neurons impaired neurite outgrowth, neuron migration, and the distribution of dendritic spines. We found that SNRPN regulated the expression level of Nr4a1, a critical nuclear receptor during neural development, in cultured primary cortical neurons. The abnormal spine development caused by SNRPN overexpression could be fully rescued by Nr4a1 co-expression. Importantly, we found that either knockdown of Nr4a1 or 3, 3'- Diindolylmethane (DIM), an Nr4a1 antagonist, were able to rescue the effects of SNRPN knockdown on neurite outgrowth of embryonic cortical neurons, providing the potential therapeutic methods for SNRPN deletion disorders. We thus concluded that maintaining the proper level of SNRPN is critical in cortical neurodevelopment. Finally, Nr4a1 may serve as a potential drug target for SNRPN-related neurodevelopmental disabilities, including Prader-Willi syndrome (PWS) and autism spectrum disorders (ASDs). PMID:27430727

  14. The autism-related gene SNRPN regulates cortical and spine development via controlling nuclear receptor Nr4a1

    PubMed Central

    Li, Huiping; Zhao, Pingping; Xu, Qiong; Shan, Shifang; Hu, Chunchun; Qiu, Zilong; Xu, Xiu

    2016-01-01

    The small nuclear ribonucleoprotein polypeptide N (SNRPN) gene, encoding the RNA-associated SmN protein, duplications or deletions of which are strongly associated with neurodevelopmental disabilities. SNRPN-coding protein is highly expressed in the brain. However, the role of SNRPN protein in neural development remains largely unknown. Here we showed that the expression of SNRPN increased markedly during postnatal brain development. Overexpression or knockdown of SNRPN in cortical neurons impaired neurite outgrowth, neuron migration, and the distribution of dendritic spines. We found that SNRPN regulated the expression level of Nr4a1, a critical nuclear receptor during neural development, in cultured primary cortical neurons. The abnormal spine development caused by SNRPN overexpression could be fully rescued by Nr4a1 co-expression. Importantly, we found that either knockdown of Nr4a1 or 3, 3′- Diindolylmethane (DIM), an Nr4a1 antagonist, were able to rescue the effects of SNRPN knockdown on neurite outgrowth of embryonic cortical neurons, providing the potential therapeutic methods for SNRPN deletion disorders. We thus concluded that maintaining the proper level of SNRPN is critical in cortical neurodevelopment. Finally, Nr4a1 may serve as a potential drug target for SNRPN-related neurodevelopmental disabilities, including Prader-Willi syndrome (PWS) and autism spectrum disorders (ASDs). PMID:27430727

  15. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region.

    PubMed

    Liu, Wei; Zhou, Hui; Liu, Lei; Zhao, Chuntao; Deng, Yaqi; Chen, Lina; Wu, Laiman; Mandrycky, Nicole; McNabb, Christopher T; Peng, Yuanbo; Fuchs, Perry N; Lu, Jie; Sheen, Volney; Qiu, Mengsheng; Mao, Meng; Lu, Q Richard

    2015-05-01

    The basic helix-loop-helix (bHLH) transcription factor Olig2 is crucial for mammalian central nervous system development. Human ortholog OLIG2 is located in the Down syndrome critical region in trisomy 21. To investigate the effect of Olig2 misexpression on brain development, we generated a developmentally regulated Olig2-overexpressing transgenic line with a Cre/loxP system. The transgenic mice with Olig2 misexpression in cortical neural stem/progenitor cells exhibited microcephaly, cortical dyslamination, hippocampus malformation, and profound motor deficits. Ectopic misexpression of Olig2 impaired cortical progenitor proliferation and caused precocious cell cycle exit. Massive neuronal cell death was detected in the developing cortex of Olig2-misexpressing mice. In addition, Olig2 misexpression led to a significant downregulation of neuronal specification factors including Ngn1, Ngn2 and Pax6, and a defect in cortical neurogenesis. Chromatin-immunoprecipitation and sequencing (ChIP-Seq) analysis indicates that Olig2 directly targets the promoter and/or enhancer regions of Nfatc4, Dscr1/Rcan1 and Dyrk1a, the critical neurogenic genes that contribute to Down syndrome phenotypes, and inhibits their expression. Together, our study suggests that Olig2 misexpression in neural stem cells elicits neurogenesis defects and neuronal cell death, which may contribute to developmental disorders including Down syndrome, where OLIG2 is triplicated on chromosomal 21. PMID:25747816

  16. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region.

    PubMed

    Liu, Wei; Zhou, Hui; Liu, Lei; Zhao, Chuntao; Deng, Yaqi; Chen, Lina; Wu, Laiman; Mandrycky, Nicole; McNabb, Christopher T; Peng, Yuanbo; Fuchs, Perry N; Lu, Jie; Sheen, Volney; Qiu, Mengsheng; Mao, Meng; Lu, Q Richard

    2015-05-01

    The basic helix-loop-helix (bHLH) transcription factor Olig2 is crucial for mammalian central nervous system development. Human ortholog OLIG2 is located in the Down syndrome critical region in trisomy 21. To investigate the effect of Olig2 misexpression on brain development, we generated a developmentally regulated Olig2-overexpressing transgenic line with a Cre/loxP system. The transgenic mice with Olig2 misexpression in cortical neural stem/progenitor cells exhibited microcephaly, cortical dyslamination, hippocampus malformation, and profound motor deficits. Ectopic misexpression of Olig2 impaired cortical progenitor proliferation and caused precocious cell cycle exit. Massive neuronal cell death was detected in the developing cortex of Olig2-misexpressing mice. In addition, Olig2 misexpression led to a significant downregulation of neuronal specification factors including Ngn1, Ngn2 and Pax6, and a defect in cortical neurogenesis. Chromatin-immunoprecipitation and sequencing (ChIP-Seq) analysis indicates that Olig2 directly targets the promoter and/or enhancer regions of Nfatc4, Dscr1/Rcan1 and Dyrk1a, the critical neurogenic genes that contribute to Down syndrome phenotypes, and inhibits their expression. Together, our study suggests that Olig2 misexpression in neural stem cells elicits neurogenesis defects and neuronal cell death, which may contribute to developmental disorders including Down syndrome, where OLIG2 is triplicated on chromosomal 21.

  17. Critical Fluctuations in Cortical Models Near Instability

    PubMed Central

    Aburn, Matthew J.; Holmes, C. A.; Roberts, James A.; Boonstra, Tjeerd W.; Breakspear, Michael

    2012-01-01

    Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where non-linearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power law scaling, and bistable switching have been suggested as generic indicators of the approach to bifurcation in non-linear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen–Rit model) of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations. PMID:22952464

  18. Automatic cortical thickness analysis on rodent brain

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Ehlers, Cindy; Crews, Fulton; Niethammer, Marc; Budin, Francois; Paniagua, Beatriz; Sulik, Kathy; Johns, Josephine; Styner, Martin; Oguz, Ipek

    2011-03-01

    Localized difference in the cortex is one of the most useful morphometric traits in human and animal brain studies. There are many tools and methods already developed to automatically measure and analyze cortical thickness for the human brain. However, these tools cannot be directly applied to rodent brains due to the different scales; even adult rodent brains are 50 to 100 times smaller than humans. This paper describes an algorithm for automatically measuring the cortical thickness of mouse and rat brains. The algorithm consists of three steps: segmentation, thickness measurement, and statistical analysis among experimental groups. The segmentation step provides the neocortex separation from other brain structures and thus is a preprocessing step for the thickness measurement. In the thickness measurement step, the thickness is computed by solving a Laplacian PDE and a transport equation. The Laplacian PDE first creates streamlines as an analogy of cortical columns; the transport equation computes the length of the streamlines. The result is stored as a thickness map over the neocortex surface. For the statistical analysis, it is important to sample thickness at corresponding points. This is achieved by the particle correspondence algorithm which minimizes entropy between dynamically moving sample points called particles. Since the computational cost of the correspondence algorithm may limit the number of corresponding points, we use thin-plate spline based interpolation to increase the number of corresponding sample points. As a driving application, we measured the thickness difference to assess the effects of adolescent intermittent ethanol exposure that persist into adulthood and performed t-test between the control and exposed rat groups. We found significantly differing regions in both hemispheres.

  19. Mineralocorticoid production of adrenal cortical adenomas.

    PubMed

    Gláz, E; Rácz, K; Varga, I; Kiss, R; Tóth, M; Fütö, L

    1993-04-01

    We studied in vitro and in vivo corticosteroid production as well as the presence of symptoms of an increased mineralocorticoid effect in patients with 'silent' adrenal cortical adenomas, and compared these results to those found in patients with classical mineralocorticoid excess syndromes. We found that under in vitro conditions, cells from 'silent' adrenal cortical adenomas (n = 19) produced substantial amounts of both zona glomerulosa and fasciculata steroids, although the production of steroids in these cells was lower compared to that in mineralocorticoid-producing adenoma cells (n = 26). Patients with aldosterone-producing and 'silent' adenomas had significantly increased plasma atrial natriuretic peptide levels, which remained non-suppressible after upright posture and furosemide administration. Of the 25 patients with 'silent' adenomas, 11 had low and non-stimulable plasma renin activity (PRA) before but, in most cases, not after adrenal surgery. When compared to those with normal PRA (n = 14), patients with low PRA 'silent' adenomas (n = 11) had higher blood pressure which was significantly reduced after surgery, and a mild hypokalemia before but not after surgery. Although basal plasma concentrations of aldosterone, 18-hydroxy-corticosterone, corticosterone, deoxycorticosterone, 18-hydroxy-DOC, cortisol,11-deoxycortisol and 17-hydroxy-progesterone (17-OH-P) were not increased in either groups of 'silent' adenomas, ACTH stimulation produced a hyperreactive response for all measured steroids, of which an extremely high 17-OH-P seemed to be one of the most intriguing findings. We consider that these observations in 'silent' adrenal cortical adenomas may justify surgical intervention, irrespective of the size and potential malignancy of these adenomas. PMID:8481352

  20. Specific Language Impairment

    MedlinePlus

    ... to distinguish between children who are struggling to learn a new language and children with true language impairments. After studying a large group of Hispanic children who speak English as a second language, NIDCD-funded researchers have developed a dual ...

  1. Hearing Impaired: Curriculum Guide.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    The curriculum guide is intended to assist families, school administrators, and teachers providing educational services to hearing impaired (HI) children in regular and special classes in Alberta, Canada. Explained in the introduction are such curriculum aspects as goals and purpose, population to be served, eligibility criteria, three…

  2. ALTERED PREFRONTAL AND INSULAR CORTICAL THICKNESS IN ADOLESCENT MARIJUANA USERS

    PubMed Central

    Lopez-Larson, Melissa P.; Bogorodzki, Piotr; Rogowska, Jadwiga; McGlade, Erin; King, Jace B.; Terry, Janine; Yurgelun-Todd, Deborah

    2011-01-01

    Introduction There are limited data regarding the impact of marijuana (MJ) on cortical development during adolescence. Adolescence is a period of substantial brain maturation and cortical thickness abnormalities may be indicative of disruptions of normal cortical development. This investigation applied cortical-surface based techniques to compare cortical thickness measures in MJ using adolescents compared to non-using controls. Methods Eighteen adolescents with heavy MJ use and 18 non-using controls similar in age received MRI scans using a 3T Siemens scanner. Cortical reconstruction and volumetric segmentation was performed with FreeSurfer. Group differences in cortical thickness were assessed using statistical difference maps covarying for age and gender. Results Compared to non-users, MJ users had decreased cortical thickness in right caudal middle frontal, bilateral insula and bilateral superior frontal corticies. Marijuana users had increased cortical thickness in the bilateral lingual, right superior temporal, right inferior parietal and left paracentral regions. In the MJ users, negative correlations were found between frontal and lingual regions for urinary cannabinoid levels and between age of onset of use and the right superior frontal gyrus. Conclusion This is one of the first studies to evaluate cortical thickness in a group of adolescents with heavy MJ use compared to non-users. Our findings are consistent with prior studies that documented abnormalities in prefrontal and insular regions. Our results suggest that age of regular use may be associated with altered prefrontal cortical gray matter development in adolescents. Furthermore, reduced insular cortical thickness may be a biological marker for increased risk of substance dependence. PMID:21310189

  3. Effect of mescaline on single cortical neurones.

    PubMed

    Bradshaw, C M; Roberts, M H; Szabadi, E

    1971-12-01

    The effects of mescaline upon single cortical neurones were studied, using the microiontophoretic technique. Mescaline elicited excitatory and depressant responses similar to those evoked by noradrenaline (NA) and 5-hydroxytryptamine (5-HI). The responses to NA and mescaline were usually in the same direction, the neurone being either excited by both drugs or depressed by both drugs. The correlation between the effects of mescaline and 5-HT, however, was less consistent. The beta-adrenoceptor blocking agent MJ-1999 and the 5-HT antagonist methysergide were both effective in antagonizing mescaline responses.

  4. Music and learning-induced cortical plasticity.

    PubMed

    Pantev, Christo; Ross, Bernhard; Fujioka, Takkao; Trainor, Laurel J; Schulte, Michael; Schulz, Matthias

    2003-11-01

    Auditory stimuli are encoded by frequency-tuned neurons in the auditory cortex. There are a number of tonotopic maps, indicating that there are multiple representations, as in a mosaic. However, the cortical organization is not fixed due to the brain's capacity to adapt to current requirements of the environment. Several experiments on cerebral cortical organization in musicians demonstrate an astonishing plasticity. We used the MEG technique in a number of studies to investigate the changes that occur in the human auditory cortex when a skill is acquired, such as when learning to play a musical instrument. We found enlarged cortical representation of tones of the musical scale as compared to pure tones in skilled musicians. Enlargement was correlated with the age at which musicians began to practice. We also investigated cortical representations for notes of different timbre (violin and trumpet) and found that they are enhanced in violinists and trumpeters, preferentially for the timbre of the instrument on which the musician was trained. In recent studies we extended these findings in three ways. First, we show that we can use MEG to measure the effects of relatively short-term laboratory training involving learning to perceive virtual instead of spectral pitch and that the switch to perceiving virtual pitch is manifested in the gamma band frequency. Second, we show that there is cross-modal plasticity in that when the lips of trumpet players are stimulated (trumpet players assess their auditory performance by monitoring the position and pressure of their lips touching the mouthpiece of their instrument) at the same time as a trumpet tone, activation in the somatosensory cortex is increased more than it is during the sum of the separate lip and trumpet tone stimulation. Third, we show that musicians' automatic encoding and discrimination of pitch contour and interval information in melodies are specifically enhanced compared to those in nonmusicians in that

  5. Evidence of cortical reorganization in hemiparetic patients

    SciTech Connect

    Brion, J.P.; Demeurisse, G.; Capon, A. )

    1989-08-01

    We studied the mechanisms underlying the recovery of motor function of the hand using a bidimensional xenon-133 inhalation technique to measure regional cerebral blood flow at rest and during the performance of a motor task (test condition). The regional cerebral blood flow patterns under rest and test conditions were compared in normal control and in stroke patients with either a cortico-subcortical or a deep-seated lesion. Functional recovery appears to depend upon cortical reorganization involving both hemispheres, particularly in both parietal regions in the subgroup of patients with cortico-subcortical lesions.

  6. Late onset reversible cortical blindness following electrocution.

    PubMed

    Chauhan, Bhumir; Philip, Vivek J; Shankar, Udaya C

    2015-12-01

    An elderly gentleman presented with acute onset of bilateral visual blurring and generalized headache after 1 week post electrocution injury. Clinically, the symptoms were attributed to cortical lesion. Magnetic resonance imaging (MRI) of brain revealed bilaterally symmetrical diffusion restriction in parietal and occipital areas. Treatment with intravenous steroids resulted in remarkable improvement in symptoms. Neurological injury secondary to electrocution is a well described entity having a variety of clinical presentation. We put forward our experience with this unique case presenting as post electrocution delayed onset of visual symptoms. Discussion and review of literature related to this clinical entity will also be presented. PMID:26571457

  7. Multiscale Modeling of Cortical Neural Networks

    NASA Astrophysics Data System (ADS)

    Torben-Nielsen, Benjamin; Stiefel, Klaus M.

    2009-09-01

    In this study, we describe efforts at modeling the electrophysiological dynamics of cortical networks in a multi-scale manner. Specifically, we describe the implementation of a network model composed of simple single-compartmental neuron models, in which a single complex multi-compartmental model of a pyramidal neuron is embedded. The network is capable of generating Δ (2 Hz, observed during deep sleep states) and γ (40 Hz, observed during wakefulness) oscillations, which are then imposed onto the multi-compartmental model, thus providing realistic, dynamic boundary conditions. We furthermore discuss the challenges and chances involved in multi-scale modeling of neural function.

  8. Multimodal MRI classification in vascular mild cognitive impairment.

    PubMed

    Diciotti, Stefano; Ciulli, Stefano; Ginestroni, Andrea; Salvadori, Emilia; Poggesi, Anna; Pantoni, Leonardo; Inzitari, Domenico; Mascalchi, Mario; Toschi, Nicola

    2015-08-01

    Vascular mild cognitive impairment (VMCI) is a disorder in which multimodal MRI can add significant value by combining diffusion tensor imaging (DTI) with brain morphometry. In this study we implemented and compared machine learning techniques for multimodal classification between 58 VMCI patients and 29 healthy subjects as well as for discrimination (within the VMCI group) between patients with different cognitive performances. For each subject, a cortical feature vector was constructed based on cortical parcellation and cortical and subcortical volumetric segmentation and a DTI feature vector was formed by combining descriptive statistical metrics related to the distribution of DTI invariants within white matter. We employed both a sequential minimal optimization and a functional tree classifier, using feature selection and 10-fold cross-validation, and compared their performances in monomodal and multimodal classification for both classification problems (healthy subjects vs VMCI and prediction of cognitive performance). While monomodal classification resulted in satisfactory performance in most cases, turning from monomodal to multimodal classification resulted in an improvement of the performance in the discrimination between VMCI patients with low cognitive performance and healthy subjects by up to 10% in sensitivity (leaving specificity unchanged). We therefore are able to confirm the usefulness of machine learning techniques in discriminating diseased states based on neuroimaging data. PMID:26737240

  9. Effects of polar cortical cytoskeleton and unbalanced cortical surface tension on intercellular bridge thinning during cytokinesis

    NASA Astrophysics Data System (ADS)

    Wang, Li; An, Mei-Wen; Li, Xiao-Na; Yang, Fang; Liu, Yang

    2011-12-01

    To probe the contributions of polar cortical cytoskeleton and the surface tension of daughter cells to intercellular bridge thinning dynamics during cytokinesis, we applied cytochalasin D (CD) or colchicine (COLC) in a highly localized manner to polar regions of dividing normal rat kidney (NRK) cells. We observed cellular morphological changes and analyzed the intercellular bridge thinning trajectories of dividing cells with different polar cortical characteristics. Global blebbistatin (BS) application was used to obtain cells losing active contractile force groups. Our results show that locally released CD or colchicine at the polar region caused inhibition of cytokinesis before ingression. Similar treatment at phases after ingression allowed completion of cytokinesis but dramatically influenced the trajectories of intercellular bridge thinning. Disturbing single polar cortical actin induced transformation of the intercellular bridge thinning process, and polar cortical tension controlled deformation time of intercellular bridges. Our study provides a feasible framework to induce and analyze the effects of local changes in mechanical properties of cellular components on single cellular cytokinesis.

  10. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing

    PubMed Central

    Casanova, Manuel F.

    2014-01-01

    The prefrontal cortex of the primate brain has a modular architecture based on the aggregation of neurons in minicolumnar arrangements having afferent and efferent connections distributed across many brain regions to represent, select and/or maintain behavioural goals and executive commands. Prefrontal cortical microcircuits are assumed to play a key role in the perception to action cycle that integrates relevant information about environment, and then selects and enacts behavioural responses. Thus, neurons within the interlaminar microcircuits participate in various functional states requiring the integration of signals across cortical layers and the selection of executive variables. Recent research suggests that executive abilities emerge from cortico-cortical interactions between interlaminar prefrontal cortical microcircuits, whereas their disruption is involved in a broad spectrum of neurologic and psychiatric disorders such as autism, schizophrenia, Alzheimer’s and drug addiction. The focus of this review is on the structural, functional and pathological approaches involving cortical minicolumns. Based on recent technological progress it has been demonstrated that microstimulation of infragranular cortical layers with patterns of microcurrents derived from supragranular layers led to an increase in cognitive performance. This suggests that interlaminar prefrontal cortical microcircuits are playing a causal role in improving cognitive performance. An important reason for the new interest in cortical modularity comes from both the impressive progress in understanding anatomical, physiological and pathological facets of cortical microcircuits and the promise of neural prosthetics for patients with neurological and psychiatric disorders. PMID:24531625

  11. Genetic and epigenetic contributions to the cortical phenotype in mammals☆

    PubMed Central

    Larsen, DeLaine D.; Krubitzer, Leah

    2008-01-01

    One aspect of cortical organization, cortical field size, is variable both within and across species. The observed variability arises from a variety of sources, including genes intrinsic to the neocortex and a number of extrinsic and epigenetic factors. Genes intrinsic to the cortex are directly involved in the development and specification of cortical fields and are regulated from both signaling centers located outside of the neocortex, which secrete diffusible molecules, and the expression of transcription factors within the neocortex. In addition, extrinsic factors such as the type, location and density of sensory receptor arrays and how these receptor arrays are utilized, are also strongly related to cortical field size. Epigenetic factors including the relative activity patterns generated by the different types of physical stimuli in a given environment also contribute to differences in cortical organization, including cortical field size. Since both genetic and epigenetic factors contribute to cortical organization, some aspects of the cortical phenotype evolve, while other aspects of the cortical phenotype persist only if the environment in which an individual develops is relatively stable. PMID:18331904

  12. Gyral parcellation of cortical surfaces via coupled flow field tracking

    NASA Astrophysics Data System (ADS)

    Li, Gang; Guo, Lei; Li, Kaiming; Nie, Jingxin; Liu, Tianming

    2010-03-01

    This paper presents a novel method for parcellation of the cortical surface of human brain into gyral based regions via coupled flow field tracking. The proposed method consists of two major steps. First, the cortical surface is automatically parcellated into sulcal based regions using several procedures: estimating principal curvatures and principal directions; applying the hidden Markov random field and the Expectation-Maximization (HMRF-EM) framework for sulcal region segmentation based on the maximum principal curvature; diffusing the maximum principal direction field in order to propagate reliable and informative principal directions at gyral crests and sulcal bottoms to other flat cortical regions with noisy principal directions by minimization of an energy function; tracking the flow field towards sulcal bottoms to parcellate the cortical surfaces into sulcal basins. The sulcal parcellation provides a very good initialization for the following steps of gyral parcellation on cortical surfaces. Second, based on the sulcal parcellation results, the cortical surface is further parcellated into gyral based regions using the following procedures: extracting gyral crest segments; dilating gyral crest segments; inverting the principal direction flow field and tracking the flow field towards gyral crests in order to partition the cortical surface into a collection of gyral patches; merging gyral patches to obtain gyral parcellation of the cortical surface. The proposed algorithm pipeline is applied to nine randomly selected cortical surfaces of normal brains and promising results are obtained. The accuracy of the semi-automatic gyral parcellation is comparable to that labeled manually by experts.

  13. Cortical maturation and myelination in healthy toddlers and young children

    PubMed Central

    Deoni, Sean C.L.; Dean, Douglas C.; Remer, Justin; Dirks, Holly; O’Muircheartaigh, Jonathan

    2015-01-01

    The maturation of cortical structures, and the establishment of their connectivity, are critical neurodevelopmental processes that support and enable cognitive and behavioral functioning. Measures of cortical development, including thickness, curvature, and gyrification have been extensively studied in older children, adolescents, and adults, revealing regional associations with cognitive performance, and alterations with disease or pathology. In addition to these gross morphometric measures, increased attention has recently focused on quantifying more specific indices of cortical structure, in particular intracortical myelination, and their relationship to cognitive skills, including IQ, executive functioning, and language performance. Here we analyze the progression of cortical myelination across early childhood, from 1 to 6 years of age, in vivo for the first time. Using two quantitative imaging techniques, namely T1 relaxation time and myelin water fraction (MWF) imaging, we characterize myelination throughout the cortex, examine developmental trends, and investigate hemispheric and gender-based differences. We present a pattern of cortical myelination that broadly mirrors established histological timelines, with somatosensory, motor and visual cortices myelinating by 1 year of age; and frontal and temporal cortices exhibiting more protracted myelination. Developmental trajectories, defined by logarithmic functions (increasing for MWF, decreasing for T1), were characterized for each of 68 cortical regions. Comparisons of trajectories between hemispheres and gender revealed no significant differences. Results illustrate the ability to quantitatively map cortical myelination throughout early neurodevelopment, and may provide an important new tool for investigating typical and atypical development. PMID:25944614

  14. Cortical maturation and myelination in healthy toddlers and young children.

    PubMed

    Deoni, Sean C L; Dean, Douglas C; Remer, Justin; Dirks, Holly; O'Muircheartaigh, Jonathan

    2015-07-15

    The maturation of cortical structures, and the establishment of their connectivity, are critical neurodevelopmental processes that support and enable cognitive and behavioral functioning. Measures of cortical development, including thickness, curvature, and gyrification have been extensively studied in older children, adolescents, and adults, revealing regional associations with cognitive performance, and alterations with disease or pathology. In addition to these gross morphometric measures, increased attention has recently focused on quantifying more specific indices of cortical structure, in particular intracortical myelination, and their relationship to cognitive skills, including IQ, executive functioning, and language performance. Here we analyze the progression of cortical myelination across early childhood, from 1 to 6 years of age, in vivo for the first time. Using two quantitative imaging techniques, namely T1 relaxation time and myelin water fraction (MWF) imaging, we characterize myelination throughout the cortex, examine developmental trends, and investigate hemispheric and gender-based differences. We present a pattern of cortical myelination that broadly mirrors established histological timelines, with somatosensory, motor and visual cortices myelinating by 1 year of age; and frontal and temporal cortices exhibiting more protracted myelination. Developmental trajectories, defined by logarithmic functions (increasing for MWF, decreasing for T1), were characterized for each of 68 cortical regions. Comparisons of trajectories between hemispheres and gender revealed no significant differences. Results illustrate the ability to quantitatively map cortical myelination throughout early neurodevelopment, and may provide an important new tool for investigating typical and atypical development.

  15. Periosteal PTHrP Regulates Cortical Bone Remodeling During Fracture Healing.

    PubMed

    Wang, Meina; Nasiri, Ali R; Broadus, Arthur E; Tommasini, Steven M

    2015-12-01

    Parathyroid hormone-related protein (PTHrP) is widely expressed in the fibrous outer layer of the periosteum (PO), and the PTH/PTHrP type I receptor (PTHR1) is expressed in the inner PO cambial layer. The cambial layer gives rise to the PO osteoblasts (OBs) and osteoclasts (OCs) that model/remodel the cortical bone surface during development as well as during fracture healing. PTHrP has been implicated in the regulation of PO modeling during development, but nothing is known as regards a role of PTHrP in this location during fracture healing. We propose that PTHrP in the fibrous layer of the PO may be a key regulatory factor in remodeling bone formation during fracture repair. We first assessed whether PTHrP expression in the fibrous PO is associated with PO osteoblast induction in the subjacent cambial PO using a tibial fracture model in PTHrP-lacZ mice. Our results revealed that both PTHrP expression and osteoblast induction in PO were induced 3 days post-fracture. We then investigated a potential functional role of PO PTHrP during fracture repair by performing tibial fracture surgery in 10-week-old CD1 control and PTHrP conditional knockout (PTHrP cKO) mice that lack PO PTHrP. We found that callus size and formation as well as woven bone mineralization in PTHrP cKO mice were impaired compared to that in CD1 mice. Concordant with these findings, functional enzyme staining revealed impaired OB formation and OC activity in the cKO mice. We conclude that deleting PO PTHrP impairs cartilaginous callus formation, maturation and ossification as well as remodeling during fracture healing. These data are the initial genetic evidence suggesting that PO PTHrP may induce osteoblastic activity and regulate fracture healing on the cortical bone surface. PMID:26164475

  16. Cortical Polarity of the RING Protein PAR-2 Is Maintained by Exchange Rate Kinetics at the Cortical-Cytoplasmic Boundary.

    PubMed

    Arata, Yukinobu; Hiroshima, Michio; Pack, Chan-Gi; Ramanujam, Ravikrishna; Motegi, Fumio; Nakazato, Kenichi; Shindo, Yuki; Wiseman, Paul W; Sawa, Hitoshi; Kobayashi, Tetsuya J; Brandão, Hugo B; Shibata, Tatsuo; Sako, Yasushi

    2016-08-23

    Cell polarity arises through the spatial segregation of polarity regulators. PAR proteins are polarity regulators that localize asymmetrically to two opposing cortical domains. However, it is unclear how the spatially segregated PAR proteins interact to maintain their mutually exclusive partitioning. Here, single-molecule detection analysis in Caenorhabditis elegans embryos reveals that cortical PAR-2 diffuses only short distances, and, as a result, most PAR-2 molecules associate and dissociate from the cortex without crossing into the opposing domain. Our results show that cortical PAR-2 asymmetry is maintained by the local exchange reactions that occur at the cortical-cytoplasmic boundary. Additionally, we demonstrate that local exchange reactions are sufficient to maintain cortical asymmetry in a parameter-free mathematical model. These findings suggest that anterior and posterior PAR proteins primarily interact through the cytoplasmic pool and not via cortical diffusion. PMID:27524610

  17. Baroreceptor cortical effects, emotions and pain.

    PubMed

    Mini, A; Rau, H; Montoya, P; Palomba, D; Birbaumer, N

    1995-02-01

    The specificity of baroreceptor-dependent inhibition of pain reactions to electrical stimuli was investigated during induction of different emotional states in 27 subjects. Baroreceptors were stimulated through the PRES (Phase Related External Suction) technique, while emotions were induced by means of pleasant, neutral and unpleasant slides. The dependent variables were pain ratings, somatic evoked potentials (N150 and P260) recorded from Fz, Cz and Pz, and skin conductance response (SCR), while heart rate was recorded as a PRES requirement. Valence and arousal ratings were obtained in front of each slide. During suction (external baroreceptor activation) reduced pain ratings, cortical disfacilitation (from Pz, as revealed by N150) and lower SCR were found as compared to pressure (baroreceptor deactivation). Moreover, brain evoked potentials (N150 and P260) reflecting cortical inhibition were found under condition of baroreceptor stimulation during unpleasant slides, but not during pleasant or neutral ones: this result was found in the high blood pressure subjects only. Data showed also a valence effect on pain ratings: pain was evaluated to be higher during unpleasant slides, than neutral and pleasant ones. Results are discussed in the light of "baroreceptor reward" hypothesis, which proposes a learning mechanism for the development of essential hypertension. PMID:7790290

  18. Cable energy function of cortical axons.

    PubMed

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship.

  19. Increased auditory cortical representation in musicians.

    PubMed

    Pantev, C; Oostenveld, R; Engelien, A; Ross, B; Roberts, L E; Hoke, M

    1998-04-23

    Acoustic stimuli are processed throughout the auditory projection pathway, including the neocortex, by neurons that are aggregated into 'tonotopic' maps according to their specific frequency tunings. Research on animals has shown that tonotopic representations are not statically fixed in the adult organism but can reorganize after damage to the cochlea or after training the intact subject to discriminate between auditory stimuli. Here we used functional magnetic source imaging (single dipole model) to measure cortical representations in highly skilled musicians. Dipole moments for piano tones, but not for pure tones of similar fundamental frequency (matched in loudness), were found to be enlarged by about 25% in musicians compared with control subjects who had never played an instrument. Enlargement was correlated with the age at which musicians began to practise and did not differ between musicians with absolute or relative pitch. These results, when interpreted with evidence for modified somatosensory representations of the fingering digits in skilled violinists, suggest that use-dependent functional reorganization extends across the sensory cortices to reflect the pattern of sensory input processed by the subject during development of musical skill.

  20. Many Specialists for Suppressing Cortical Excitation

    PubMed Central

    Burkhalter, Andreas

    2008-01-01

    Cortical computations are critically dependent on GABA-releasing neurons for dynamically balancing excitation with inhibition that is proportional to the overall level of activity. Although it is widely accepted that there are multiple types of interneurons, defining their identities based on qualitative descriptions of morphological, molecular and physiological features has failed to produce a universally accepted ‘parts list’, which is needed to understand the roles that interneurons play in cortical processing. A list of features has been published by the Petilla Interneurons Nomenclature Group, which represents an important step toward an unbiased classification of interneurons. To this end some essential features have recently been studied quantitatively and their association was examined using multidimensional cluster analyses. These studies revealed at least 3 distinct electrophysiological, 6 morphological and 15 molecular phenotypes. This is a conservative estimate of the number of interneuron types, which almost certainly will be revised as more quantitative studies will be performed and similarities will be defined objectively. It is clear that interneurons are organized with physiological attributes representing the most general, molecular characteristics the most detailed and morphological features occupying the middle ground. By themselves, none of these features are sufficient to define classes of interneurons. The challenge will be to determine which features belong together and how cell type-specific feature combinations are genetically specified. PMID:19225588

  1. Cable energy function of cortical axons

    PubMed Central

    Ju, Huiwen; Hines, Michael L.; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na+-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na+-counting method severely underestimates energy cost in the cable model by 20–70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  2. A dipole model for spreading cortical depression.

    PubMed

    Tepley, N; Wijesinghe, R S

    1996-01-01

    Spreading Cortical Depression (SCD) is the hyper-excitation, followed by extreme suppression of spontaneous electrical activity in the cortex. This work models SCD propagation using current dipoles to represent excitable pyramidal cells. An area of cortex, either gyrus or sulcus, supporting SCD is represented by surface dipoles oriented perpendicular to the surface. Magnetic fields created by these individual surface dipoles are calculated using the Biot-Savart law. We have assumed a plane volume conductor to represent the sulcus to simplify the mathematical derivation. The sources included in cortical surface area of 10(-4)mm2 is represented by a signal dipole. The magnetic field arising from the entire excited area of the cortex is obtained by summing the fields due to these individual dipoles. The simulated waveforms suggest that the shapes, amplitudes, and durations of the SCD signals depend on the size of the active area of cortex involved in SCD, as well as the location and orientation of the detector. Using this dipole model, we are able to simulate the Large Amplitude Waves (LAWs) similar to those observed by Barkley et al. (1990) while measuring spontaneous activity from migraine headache patients using the assumption that these LAWs arise from propagation of SCD across a sulcus. The shape of the simulated LAW waveform is strongly influenced by the relationships between the detector location and orientation, the propagation direction of the SCD wave, and the orientation of the sulcus. PMID:8813414

  3. Object recognition by artificial cortical maps.

    PubMed

    Plebe, Alessio; Domenella, Rosaria Grazia

    2007-09-01

    Object recognition is one of the most important functions of the human visual system, yet one of the least understood, this despite the fact that vision is certainly the most studied function of the brain. We understand relatively well how several processes in the cortical visual areas that support recognition capabilities take place, such as orientation discrimination and color constancy. This paper proposes a model of the development of object recognition capability, based on two main theoretical principles. The first is that recognition does not imply any sort of geometrical reconstruction, it is instead fully driven by the two dimensional view captured by the retina. The second assumption is that all the processing functions involved in recognition are not genetically determined or hardwired in neural circuits, but are the result of interactions between epigenetic influences and basic neural plasticity mechanisms. The model is organized in modules roughly related to the main visual biological areas, and is implemented mainly using the LISSOM architecture, a recent neural self-organizing map model that simulates the effects of intercortical lateral connections. This paper shows how recognition capabilities, similar to those found in brain ventral visual areas, can develop spontaneously by exposure to natural images in an artificial cortical model.

  4. Correlation of cerebral cortical morphology with behavior

    SciTech Connect

    Norton, S.

    1989-03-01

    Association between functional damage and damage to the central nervous system from toxic agents can be used to determine the value of behavioral tests as predictors of damage to the nervous system. Variability in data from behavioral tests may be caused, in part, by varying levels of structural differences in the nervous system. Stepwise multiple regression is one method for analyzing the relationship between variability in data resulting from linkage between functional and morphological or other parameters of the structure of the nervous system. As an example, the predictive value of four behavioral tests is assessed in detecting thinning of the cerebral cortex following gestational exposure of rats to ionizing radiation. In this analysis, there were seven independent variables for predicting cortical thickness. The sequence of number of times each variable was used in prediction, from most frequent to least frequent, was: angle of stride greater than negative geotaxis greater than continuous corridor greater than body weight greater than width of stride greater than length of stride greater than reflex suspension. The data support the concept that there are varying degrees of predictive associations between these functional and cortical parameters.

  5. Astrocytes regulate cortical state switching in vivo.

    PubMed

    Poskanzer, Kira E; Yuste, Rafael

    2016-05-10

    The role of astrocytes in neuronal function has received increasing recognition, but disagreement remains about their function at the circuit level. Here we use in vivo two-photon calcium imaging of neocortical astrocytes while monitoring the activity state of the local neuronal circuit electrophysiologically and optically. We find that astrocytic calcium activity precedes spontaneous circuit shifts to the slow-oscillation-dominated state, a neocortical rhythm characterized by synchronized neuronal firing and important for sleep and memory. Further, we show that optogenetic activation of astrocytes switches the local neuronal circuit to this slow-oscillation state. Finally, using two-photon imaging of extracellular glutamate, we find that astrocytic transients in glutamate co-occur with shifts to the synchronized state and that optogenetically activated astrocytes can generate these glutamate transients. We conclude that astrocytes can indeed trigger the low-frequency state of a cortical circuit by altering extracellular glutamate, and therefore play a causal role in the control of cortical synchronizations. PMID:27122314

  6. Automatic segmentation editing for cortical surface reconstruction

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Xu, Chenyang; Rettmann, Maryam E.; Prince, Jerry L.

    2001-07-01

    Segmentation and representation of the human cerebral cortex from magnetic resonance images is an important goal in neuroscience and medicine. Accurate cortical segmentation requires preprocessing of the image data to separate certain subcortical structures from the cortex in order to generate a good initial white-matter/gray-matter interface. This step is typically manual or semi-automatic. In this paper, we propose an automatic procedure that is based on a careful analysis of the brain anatomy. Following a fuzzy segmentation of the brain image, the method first extracts the ventricles using a geometric deformable surface model. A region force, derived from the cerebrospinal membership function, is used to deform the surface towards the boundary of the ventricles, while a curvature force controls the smoothness of the surface and prevents it from growing into the outer pial surface. Next, region-growing identifies and fills the subcortical regions in each cortical slice using the detected ventricles as seeds and the white matter and several automatically determined sealing lines as boundaries. To make the method robust to segmentation artifacts, a putamen mask drawn in the Talairach coordinate system is also used to help the region growing process. Visual inspection and initial results on 15 subjects show the success of the proposed method.

  7. Cortical cartography reveals political and physical maps.

    PubMed

    Loring, David W; Gaillard, William Davis; Bookheimer, Susan Y; Meador, Kimford J; Ojemann, Jeffrey G

    2014-05-01

    Advances in functional imaging have provided noninvasive techniques to probe brain organization of multiple constructs including language and memory. Because of high overall rates of agreements with older techniques, including Wada testing and cortical stimulation mapping (CSM), some have proposed that those approaches should be largely abandoned because of their invasiveness, and replaced with noninvasive functional imaging methods. High overall agreement, however, is based largely on concordant language lateralization in series dominated by cases of typical cerebral dominance. Advocating a universal switch from Wada testing and cortical stimulation mapping to functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG) ignores the differences in specific expertise across epilepsy centers, many of which often have greater skill with one approach rather than the other, and that Wada, CSM, fMRI, and MEG protocols vary across institutions resulting in different outcomes and reliability. Specific patient characteristics also affect whether Wada or CSM might influence surgical management, making it difficult to accept broad recommendations against currently useful clinical tools. Although the development of noninvasive techniques has diminished the frequency of more invasive approaches, advocating their use to replace Wada testing and CSM across all epilepsy surgery programs without consideration of the different skills, protocols, and expertise at any given center site is ill-advised.

  8. Rapid Bidirectional Reorganization of Cortical Microcircuits

    PubMed Central

    Albieri, Giorgia; Barnes, Samuel J.; de Celis Alonso, Benito; Cheetham, Claire E.J.; Edwards, Clarissa E.; Lowe, Andrew S.; Karunaratne, Harini; Dear, John P.; Lee, Kalok C.; Finnerty, Gerald T.

    2015-01-01

    Mature neocortex adapts to altered sensory input by changing neural activity in cortical circuits. The underlying cellular mechanisms remain unclear. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to show reorganization in somatosensory cortex elicited by altered whisker sensory input. We found that there was rapid expansion followed by retraction of whisker cortical maps. The cellular basis for the reorganization in primary somatosensory cortex was investigated with paired electrophysiological recordings in the periphery of the expanded whisker representation. During map expansion, the chance of finding a monosynaptic connection between pairs of pyramidal neurons increased 3-fold. Despite the rapid increase in local excitatory connectivity, the average strength and synaptic dynamics did not change, which suggests that new excitatory connections rapidly acquire the properties of established excitatory connections. During map retraction, entire excitatory connections between pyramidal neurons were lost. In contrast, connectivity between pyramidal neurons and fast spiking interneurons was unchanged. Hence, the changes in local excitatory connectivity did not occur in all circuits involving pyramidal neurons. Our data show that pyramidal neurons are recruited to and eliminated from local excitatory networks over days. These findings suggest that the local excitatory connectome is dynamic in mature neocortex. PMID:24836895

  9. Massive cortical reorganization in sighted Braille readers

    PubMed Central

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-01-01

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills. DOI: http://dx.doi.org/10.7554/eLife.10762.001 PMID:26976813

  10. Development and specification of GABAergic cortical interneurons

    PubMed Central

    2013-01-01

    GABAergic interneurons are inhibitory neurons of the nervous system that play a vital role in neural circuitry and activity. They are so named due to their release of the neurotransmitter gamma-aminobutyric acid (GABA), and occupy different areas of the brain. This review will focus primarily on GABAergic interneurons of the mammalian cerebral cortex from a developmental standpoint. There is a diverse amount of cortical interneuronal subtypes that may be categorized by a number of characteristics; this review will classify them largely by the protein markers they express. The developmental origins of GABAergic interneurons will be discussed, as well as factors that influence the complex migration routes that these interneurons must take in order to ultimately localize in the cerebral cortex where they will integrate with the neural circuitry set in place. This review will also place an emphasis on the transcriptional network of genes that play a role in the specification and maintenance of GABAergic interneuron fate. Gaining an understanding of the different aspects of cortical interneuron development and specification, especially in humans, has many useful clinical applications that may serve to treat various neurological disorders linked to alterations in interneuron populations. PMID:23618463

  11. Many specialists for suppressing cortical excitation.

    PubMed

    Burkhalter, Andreas

    2008-12-01

    Cortical computations are critically dependent on GABA-releasing neurons for dynamically balancing excitation with inhibition that is proportional to the overall level of activity. Although it is widely accepted that there are multiple types of interneurons, defining their identities based on qualitative descriptions of morphological, molecular and physiological features has failed to produce a universally accepted 'parts list', which is needed to understand the roles that interneurons play in cortical processing. A list of features has been published by the Petilla Interneurons Nomenclature Group, which represents an important step toward an unbiased classification of interneurons. To this end some essential features have recently been studied quantitatively and their association was examined using multidimensional cluster analyses. These studies revealed at least 3 distinct electrophysiological, 6 morphological and 15 molecular phenotypes. This is a conservative estimate of the number of interneuron types, which almost certainly will be revised as more quantitative studies will be performed and similarities will be defined objectively. It is clear that interneurons are organized with physiological attributes representing the most general, molecular characteristics the most detailed and morphological features occupying the middle ground. By themselves, none of these features are sufficient to define classes of interneurons. The challenge will be to determine which features belong together and how cell type-specific feature combinations are genetically specified. PMID:19225588

  12. Astrocytes regulate cortical state switching in vivo

    PubMed Central

    Poskanzer, Kira E.; Yuste, Rafael

    2016-01-01

    The role of astrocytes in neuronal function has received increasing recognition, but disagreement remains about their function at the circuit level. Here we use in vivo two-photon calcium imaging of neocortical astrocytes while monitoring the activity state of the local neuronal circuit electrophysiologically and optically. We find that astrocytic calcium activity precedes spontaneous circuit shifts to the slow-oscillation–dominated state, a neocortical rhythm characterized by synchronized neuronal firing and important for sleep and memory. Further, we show that optogenetic activation of astrocytes switches the local neuronal circuit to this slow-oscillation state. Finally, using two-photon imaging of extracellular glutamate, we find that astrocytic transients in glutamate co-occur with shifts to the synchronized state and that optogenetically activated astrocytes can generate these glutamate transients. We conclude that astrocytes can indeed trigger the low-frequency state of a cortical circuit by altering extracellular glutamate, and therefore play a causal role in the control of cortical synchronizations. PMID:27122314

  13. Integrated cortical structural marker for Alzheimer's disease.

    PubMed

    Ming, Jing; Harms, Michael P; Morris, John C; Beg, M Faisal; Wang, Lei

    2015-01-01

    In this article, we propose an approach to integrate cortical morphology measures for improving the discrimination of individuals with and without very mild Alzheimer's disease (AD). FreeSurfer was applied to scans collected from 83 participants with very mild AD and 124 cognitively normal individuals. We generated cortex thickness, white matter convexity (aka "sulcal depth"), and white matter surface metric distortion measures on a normalized surface atlas in this first study to integrate high resolution gray matter thickness and white matter surface geometric measures in identifying very mild AD. Principal component analysis was applied to each individual structural measure to generate eigenvectors. Discrimination power based on individual and combined measures are compared, based on stepwise logistic regression and 10-fold cross-validation. Global AD likelihood index and surface-based likelihood maps were also generated. Our results show complementary patterns on the cortical surface between thickness, which reflects gray matter atrophy, convexity, which reflects white matter sulcal depth changes and metric distortion, which reflects white matter surface area changes. The classifier integrating all 3 types of surface measures significantly improved classification performance compared with classification based on single measures. The principal component analysis-based approach provides a framework for achieving high discrimination power by integrating high-dimensional data, and this method could be very powerful in future studies for early diagnosis of diseases that are known to be associated with abnormal gyral and sulcal patterns. PMID:25444604

  14. Crowding: a cortical constraint on object recognition.

    PubMed

    Pelli, Denis G

    2008-08-01

    The external world is mapped retinotopically onto the primary visual cortex (V1). We show here that objects in the world, unless they are very dissimilar, can be recognized only if they are sufficiently separated in visual cortex: specifically, in V1, at least 6mm apart in the radial direction (increasing eccentricity) or 1mm apart in the circumferential direction (equal eccentricity). Objects closer together than this critical spacing are perceived as an unidentifiable jumble. This is called 'crowding'. It severely limits visual processing, including speed of reading and searching. The conclusion about visual cortex rests on three findings. First, psychophysically, the necessary 'critical' spacing, in the visual field, is proportional to (roughly half) the eccentricity of the objects. Second, the critical spacing is independent of the size and kind of object. Third, anatomically, the representation of the visual field on the cortical surface is such that the position in V1 (and several other areas) is the logarithm of eccentricity in the visual field. Furthermore, we show that much of this can be accounted for by supposing that each 'combining field', defined by the critical spacing measurements, is implemented by a fixed number of cortical neurons.

  15. The cortical representation of simple mathematical expressions.

    PubMed

    Maruyama, Masaki; Pallier, Christophe; Jobert, Antoinette; Sigman, Mariano; Dehaene, Stanislas

    2012-07-16

    Written mathematical notation conveys, in a compact visual form, the nested functional relations among abstract concepts such as operators, numbers or sets. Is the comprehension of mathematical expressions derived from the human capacity for processing the recursive structure of language? Or does algebraic processing rely only on a language-independent network, jointly involving the visual system for parsing the string of mathematical symbols and the intraparietal system for representing numbers and operators? We tested these competing hypotheses by scanning mathematically trained adults while they viewed simple strings ranging from randomly arranged characters to mathematical expressions with up to three levels of nested parentheses. Syntactic effects were observed in behavior and in brain activation measured with functional magnetic resonance imaging (fMRI) and magneto-encephalography (MEG). Bilateral occipito-temporal cortices and right parietal and precentral cortices appeared as the primary nodes for mathematical syntax. MEG estimated that a mathematical expression could be parsed by posterior visual regions in less than 180 ms. Nevertheless, a small increase in activation with increasing expression complexity was observed in linguistic regions of interest, including the left inferior frontal gyrus and the posterior superior temporal sulcus. We suggest that mathematical syntax, although arising historically from language competence, becomes "compiled" into visuo-spatial areas in well-trained mathematics students.

  16. Whose Cortical Column Would that Be?

    PubMed Central

    da Costa, Nuno Maçarico; Martin, Kevan A. C.

    2010-01-01

    The cortical column has been an invaluable concept to explain the functional organization of the neocortex. While this idea was born out of experiments that cleverly combined electrophysiological recordings with anatomy, no one has ‘seen’ the anatomy of a column. All we know is that when we record through the cortex of primates, ungulates, and carnivores in a trajectory perpendicular to its surface there is a remarkable constancy in the receptive field properties of the neurons regarding one set of stimulus features. There is no obvious morphological analog for this functional architecture, in fact much of the anatomical data seems to challenge it. Here we describe historically the origins of the concept of the cortical column and the struggles of the pioneers to define the columnar architecture. We suggest that in the concept of a ‘canonical circuit’ we may find the means to reconcile the structure of neocortex with its functional architecture. The canonical microcircuit respects the known connectivity of the neocortex, and it is flexible enough to change transiently the architecture of its network in order to perform the required computations. PMID:20640245

  17. Cable energy function of cortical axons.

    PubMed

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  18. Chemistry for the Visually Impaired.

    ERIC Educational Resources Information Center

    Ratliff, Judy L.

    1997-01-01

    Discusses modifications to general education or introductory chemistry courses that allow visually impaired students to participate productively. Describes a strategy for teaching about elements and density, and the construction of a conductivity tester for visually impaired students. (JRH)

  19. Cerebral Asymmetries in Sleep-Dependent Processes of Memory Consolidation

    ERIC Educational Resources Information Center

    Peigneux, Philippe; Schmitz, Remy; Willems, Sylvie

    2007-01-01

    Preference for previously seen, unfamiliar objects reflects a memory bias on affective judgment, known as the "mere exposure effect" (MEE). Here, we investigated the effect of time, post-exposure sleep, and the brain hemisphere solicited on preference generalization toward objects viewed in different perspectives. When presented in the right…

  20. Sleep-Dependent Facilitation of Episodic Memory Details

    PubMed Central

    van der Helm, Els; Gujar, Ninad; Nishida, Masaki; Walker, Matthew P.

    2011-01-01

    While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements) and context- (contextual details associated with those elements) learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep). These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent) aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation. PMID:22114672

  1. Sleep-dependent modulation of affectively guided decision-making.

    PubMed

    Pace-Schott, Edward F; Nave, Genevieve; Morgan, Alexandra; Spencer, Rebecca M C

    2012-02-01

    A question of great interest in current sleep research is whether and how sleep might facilitate complex cognitive skills such as decision-making. The Iowa Gambling Task (IGT) was used to investigate effects of sleep on affect-guided decision-making. After a brief standardized preview of the IGT that was insufficient to learn its underlying rule, participants underwent a 12-h delay containing either a normal night's sleep (Sleep group; N = 28) or continuous daytime wake (Wake group; N = 26). Following the delay, both groups performed the full IGT. To control for circadian effects, two additional groups performed both the preview and the full task either in the morning (N = 17) or the evening (N = 21). In the IGT, four decks of cards were presented. Draws from two 'advantageous decks' yielded low play-money rewards, occasional low losses and, over multiple draws, a net gain. Draws from 'disadvantageous' decks yielded high rewards, occasional high losses and, over multiple draws, a net loss. Participants were instructed to win and avoid losing as much as possible, and better performance was defined as more advantageous draws. Relative to the wake group, the sleep group showed both superior behavioral outcome (more advantageous draws) and superior rule understanding (blindly judged from statements written at task completion). Neither measure differentiated the two control groups. These results illustrate a role of sleep in optimizing decision-making, a benefit that may be brought about by changes in underlying emotional or cognitive processes. PMID:21535281

  2. Sleep-dependent modulation of affectively guided decision-making.

    PubMed

    Pace-Schott, Edward F; Nave, Genevieve; Morgan, Alexandra; Spencer, Rebecca M C

    2012-02-01

    A question of great interest in current sleep research is whether and how sleep might facilitate complex cognitive skills such as decision-making. The Iowa Gambling Task (IGT) was used to investigate effects of sleep on affect-guided decision-making. After a brief standardized preview of the IGT that was insufficient to learn its underlying rule, participants underwent a 12-h delay containing either a normal night's sleep (Sleep group; N = 28) or continuous daytime wake (Wake group; N = 26). Following the delay, both groups performed the full IGT. To control for circadian effects, two additional groups performed both the preview and the full task either in the morning (N = 17) or the evening (N = 21). In the IGT, four decks of cards were presented. Draws from two 'advantageous decks' yielded low play-money rewards, occasional low losses and, over multiple draws, a net gain. Draws from 'disadvantageous' decks yielded high rewards, occasional high losses and, over multiple draws, a net loss. Participants were instructed to win and avoid losing as much as possible, and better performance was defined as more advantageous draws. Relative to the wake group, the sleep group showed both superior behavioral outcome (more advantageous draws) and superior rule understanding (blindly judged from statements written at task completion). Neither measure differentiated the two control groups. These results illustrate a role of sleep in optimizing decision-making, a benefit that may be brought about by changes in underlying emotional or cognitive processes.

  3. Early and Phasic Cortical Metabolic Changes in Vestibular Neuritis Onset

    PubMed Central

    Alessandrini, Marco; Pagani, Marco; Napolitano, Bianca; Micarelli, Alessandro; Candidi, Matteo; Bruno, Ernesto; Chiaravalloti, Agostino; Di Pietro, Barbara; Schillaci, Orazio

    2013-01-01

    Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF) are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN), that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients’ cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34) and Temporal (BA 38) cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34) and of the emotional response to the new pathologic condition (BA 38) respectively. These interpretations were further supported by changes in patients’ subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding knowledge about

  4. 4-Hydroxyhexenal (HHE) impairs glutamate transport in astrocyte cultures.

    PubMed

    Lovell, Mark A; Bradley, Melissa A; Fister, Shuling X

    2012-01-01

    Multiple studies show elevations of α,β-unsaturated aldehydic by-products of lipid peroxidation including 4-hydroxynonenal and acrolein in vulnerable brain regions of subjects throughout the progression of Alzheimer's disease (AD). More recently 4-hydroxyhexenal (HHE), a diffusible α,β-unsaturated aldehyde resulting from peroxidation of ω-3 polyunsaturated fatty acids, was shown to be elevated in the hippocampus/parahippocampal gyrus (HPG) of subjects with preclinical AD (PCAD) and in late stage AD (LAD). HHE treatment of primary rat cortical neuron cultures led to a time- and concentration-dependent decrease in survival and glucose uptake. To determine if HHE also impairs glutamate uptake, primary rat astrocyte cultures were exposed to HHE for 4 hours and glutamate transport measured. Results show subtoxic (2.5 μM) HHE concentrations significantly (p < 0.05) impair glutamate uptake in primary astrocytes. Immunoprecipitation of excitatory amino acid transporter-2 (EAAT-2), the primary glutamate transporter in brain, from normal control, mild cognitive impairment (MCI), PCAD, and LAD HPG followed by quantification of HHE immunolabeling showed a significant increase in HHE positive EAAT-2 in MCI and LAD HPG. Together these data suggest HHE can significantly impair glutamate uptake and may play a role in the pathogenesis of AD. PMID:22766736

  5. Melatonin promotes distal dendritic ramifications in layer II/III cortical pyramidal cells of rats exposed to toluene vapors.

    PubMed

    Pascual, Rodrigo; Bustamante, Carlos

    2010-10-01

    We have previously shown that toluene inhalation produces significant impairments in the basilar dendritic outgrowth of pyramidal cortical cells. This neurotoxic effect was markedly inhibited by melatonin administration at a dose of 5mg kg(-1). The present study was designed to determine whether toluene and melatonin equally affect all basilar dendritic segments or if a differential response exists between the segments. Twenty-eight male mice were weaned at postnatal day 21 (P21) and randomly assigned to either the control (C; n=10,) or toluene (T; n=18) group. Between P22-P32, male rats were placed into a glass chamber and exposed to either toluene vapors (5-000-6000 ppm) or clean air for 10 min a day. When toluene exposure ended (P32), animals were further assigned to the following experimental groups: (a) control/saline (C/S; n=10), (b) toluene/saline (T/S; n=10), or (c) toluene/melatonin 5mg kg(-1) (T/M; n=8). Melatonin or vehicle solutions were administered daily between P32 and P38. Forty-eight hours after the final toluene exposure, the animals were sacrificed, and the pyramidal cortical cells were stained using the Golgi-Cox-Sholl procedure. The number of basilar dendritic branches/order was counted using the centrifugal ordering method. The results indicate that (i) toluene inhalation significantly impairs both proximal and distal basilar dendritic ramifications (in the parietal and frontal/occipital cortices, respectively) and (ii) melatonin both protects neurons from toluene neurotoxicity in all cortical areas studied and increases the complexity of the dendritic tree above control values.

  6. Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment.

    PubMed

    Banerjee, Gargi; Wilson, Duncan; Jäger, Hans R; Werring, David J

    2016-05-01

    Dementia is a global growing concern, affecting over 35 million people with a global economic impact of over $604 billion US. With an ageing population the number of people affected is expected double over the next two decades. Vascular cognitive impairment can be caused by various types of cerebrovascular disease, including cortical and subcortical infarcts, and the more diffuse white matter injury due to cerebral small vessel disease. Although this type of cognitive impairment is usually considered the second most common form of dementia after Alzheimer's disease, there is increasing recognition of the vascular contribution to neurodegeneration, with both pathologies frequently coexisting. The aim of this review is to highlight the recent advances in the understanding of vascular cognitive impairment, with a focus on small vessel diseases of the brain. We discuss recently identified small vessel imaging markers that have been associated with cognitive impairment, namely cerebral microbleeds, enlarged perivascular spaces, cortical superficial siderosis, and microinfarcts. We will also consider quantitative techniques including diffusion tensor imaging, magnetic resonance perfusion imaging with arterial spin labelling, functional magnetic resonance imaging and positron emission tomography. As well as potentially shedding light on the mechanism by which cerebral small vessel diseases cause dementia, these novel imaging biomarkers are also of increasing relevance given their ability to guide diagnosis and reflect disease progression, which may in the future be useful for therapeutic interventions. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.

  7. Impairment, disability, and handicap.

    PubMed

    Mooney, V

    1987-08-01

    It seems clear that the orthopedic surgeon cannot separate impairment from disability. The measurement of impairment is clouded by the inability to measure dynamic function. A range of motion demonstrated by a patient in the doctor's office does not fully describe the functional potential of either the extremity or the spine. Moreover, the rules by which disability is defined are interpreted with a natural sympathy of the physician's care for the patient. The physician may have less sympathy i