Science.gov

Sample records for impairs sleep-dependent cortical

  1. The Sedating Antidepressant Trazodone Impairs Sleep-Dependent Cortical Plasticity

    PubMed Central

    Dumoulin, Michelle C.; Coleman, Tammi; Shiraishi, Mia; Frank, Marcos G.

    2009-01-01

    Background Recent findings indicate that certain classes of hypnotics that target GABAA receptors impair sleep-dependent brain plasticity. However, the effects of hypnotics acting at monoamine receptors (e.g., the antidepressant trazodone) on this process are unknown. We therefore assessed the effects of commonly-prescribed medications for the treatment of insomnia (trazodone and the non-benzodiazepine GABAA receptor agonists zaleplon and eszopiclone) in a canonical model of sleep-dependent, in vivo synaptic plasticity in the primary visual cortex (V1) known as ocular dominance plasticity. Methodology/Principal Findings After a 6-h baseline period of sleep/wake polysomnographic recording, cats underwent 6 h of continuous waking combined with monocular deprivation (MD) to trigger synaptic remodeling. Cats subsequently received an i.p. injection of either vehicle, trazodone (10 mg/kg), zaleplon (10 mg/kg), or eszopiclone (1–10 mg/kg), and were allowed an 8-h period of post-MD sleep before ocular dominance plasticity was assessed. We found that while zaleplon and eszopiclone had profound effects on sleeping cortical electroencephalographic (EEG) activity, only trazodone (which did not alter EEG activity) significantly impaired sleep-dependent consolidation of ocular dominance plasticity. This was associated with deficits in both the normal depression of V1 neuronal responses to deprived-eye stimulation, and potentiation of responses to non-deprived eye stimulation, which accompany ocular dominance plasticity. Conclusions/Significance Taken together, our data suggest that the monoamine receptors targeted by trazodone play an important role in sleep-dependent consolidation of synaptic plasticity. They also demonstrate that changes in sleep architecture are not necessarily reliable predictors of how hypnotics affect sleep-dependent neural functions. PMID:19568418

  2. The Non-Benzodiazepine Hypnotic Zolpidem Impairs Sleep-Dependent Cortical Plasticity

    PubMed Central

    Seibt, Julie; Aton, Sara J.; Jha, Sushil K.; Coleman, Tammi; Dumoulin, Michelle C.; Frank, Marcos G.

    2008-01-01

    Study Objectives: The effects of hypnotics on sleep-dependent brain plasticity are unknown. We have shown that sleep enhances a canonical model of in vivo cortical plasticity, known as ocular dominance plasticity (ODP). We investigated the effects of 3 different classes of hypnotics on ODP. Design: Polysomnographic recordings were performed during the entire experiment (20 h). After a baseline sleep/wake recording (6 h), cats received 6 h of monocular deprivation (MD) followed by an i.p. injection of triazolam (1–10 mg/kg i.p.), zolpidem (10 mg/kg i.p.), ramelteon (0.1–1 mg/kg i.p.), or vehicle (DMSO i.p.). They were then allowed to sleep ad lib for 8 h, after which they were prepared for optical imaging of intrinsic cortical signals and single-unit electrophysiology. Setting: Basic neurophysiology laboratory Patients or Participants: Cats (male and female) in the critical period of visual development (postnatal days 28–41) Interventions: N/A Measurements and Results: Zolpidem reduced cortical plasticity by ∼50% as assessed with optical imaging of intrinsic cortical signals. This was not due to abnormal sleep architecture because triazolam, which perturbed sleep architecture and sleep EEGs more profoundly than zolpidem, had no effect on plasticity. Ramelteon minimally altered sleep and had no effect on ODP. Conclusions: Our findings demonstrate that alterations in sleep architecture do not necessarily lead to impairments in sleep function. Conversely, hypnotics that produce more “physiological” sleep based on polysomnography may impair critical brain processes, depending on their pharmacology. Citation: Seibt J; Aton SJ; Jha SK; Coleman T; Dumoulin MC; Frank MG. The non-benzodiazepine hypnotic zolpidem impairs sleep-dependent cortical plasticity. SLEEP 2008;31(10):1381–1391. PMID:18853935

  3. Mechanisms of sleep-dependent consolidation of cortical plasticity

    PubMed Central

    Aton, Sara J.; Seibt, Julie; Dumoulin, Michelle; Jha, Sushil K.; Steinmetz, Nicholas; Coleman, Tammi; Naidoo, Nirinjini; Frank, Marcos G.

    2009-01-01

    Summary Sleep is thought to consolidate changes in synaptic strength, but the underlying mechanisms are unknown. We investigated the cellular events involved in this process in ocular dominance plasticity (ODP) - a canonical form of in vivo cortical plasticity triggered by monocular deprivation (MD) and consolidated by sleep via undetermined, activity-dependent mechanisms. We find that sleep consolidates ODP primarily by strengthening cortical responses to non-deprived eye stimulation. Consolidation is inhibited by reversible, intracortical antagonism of NMDA receptors (NMDARs) or cAMP-dependent protein kinase (PKA) during post-MD sleep. Consolidation is also associated with sleep-dependent increases in the activity of remodeling neurons, and in the phosphorylation of proteins required for potentiation of glutamatergic synapses. These findings demonstrate that synaptic strengthening via NMDAR and PKA activity is a key step in sleep-dependent consolidation of ODP. PMID:19217381

  4. Neuronal Oscillations Indicate Sleep-dependent Changes in the Cortical Memory Trace.

    PubMed

    Köster, Moritz; Finger, Holger; Kater, Maren-Jo; Schenk, Christoph; Gruber, Thomas

    2017-04-01

    Sleep promotes the consolidation of newly acquired associative memories. Here we used neuronal oscillations in the human EEG to investigate sleep-dependent changes in the cortical memory trace. The retrieval activity for object-color associations was assessed immediately after encoding and after 3 hr of sleep or wakefulness. Sleep had beneficial effects on memory performance and led to reduced event-related theta and gamma power during the retrieval of associative memories. Furthermore, event-related alpha suppression was attenuated in the wake group for memorized and novel stimuli. There were no sleep-dependent changes in retrieval activity for missed items or items retrieved without color. Thus, the sleep-dependent reduction in theta and gamma oscillations was specific for the retrieval of associative memories. In line with theoretical accounts on sleep-dependent memory consolidation, decreased theta may indicate reduced mediotemporal activity because of a transfer of information into neocortical networks during sleep, whereas reduced parietal gamma may reflect effects of synaptic downscaling. Changes in alpha suppression in the wake group possibly index reduced attentional resources that may also contribute to a lower memory performance in this group. These findings indicate that the consolidation of associative memories during sleep is associated with profound changes in the cortical memory trace and relies on multiple neuronal processes working in concert.

  5. Cortical Visual Impairment

    MedlinePlus

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  6. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    PubMed

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  7. Decoupling of sleep-dependent cortical and hippocampal interactions in a neurodevelopmental model of schizophrenia.

    PubMed

    Phillips, Keith G; Bartsch, Ullrich; McCarthy, Andrew P; Edgar, Dale M; Tricklebank, Mark D; Wafford, Keith A; Jones, Matt W

    2012-11-08

    Rhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and unit recordings in rats, we show that anteroposterior propagation of neocortical slow-waves coordinates timing of hippocampal ripples and prefrontal cortical spindles during NREM sleep. This coordination is selectively disrupted in a rat neurodevelopmental model of schizophrenia: fragmented NREM sleep and impaired slow-wave propagation in the model culminate in deficient ripple-spindle coordination and disrupted spike timing, potentially as a consequence of interneuronal abnormalities reflected by reduced parvalbumin expression. These data further define the interrelationships among slow-wave, spindle, and ripple events, indicating that sleep disturbances may be associated with state-dependent decoupling of hippocampal and cortical circuits in psychiatric diseases.

  8. Decoupling of Sleep-Dependent Cortical and Hippocampal Interactions in a Neurodevelopmental Model of Schizophrenia

    PubMed Central

    Phillips, Keith G.; Bartsch, Ullrich; McCarthy, Andrew P.; Edgar, Dale M.; Tricklebank, Mark D.; Wafford, Keith A.; Jones, Matt W.

    2012-01-01

    Summary Rhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and unit recordings in rats, we show that anteroposterior propagation of neocortical slow-waves coordinates timing of hippocampal ripples and prefrontal cortical spindles during NREM sleep. This coordination is selectively disrupted in a rat neurodevelopmental model of schizophrenia: fragmented NREM sleep and impaired slow-wave propagation in the model culminate in deficient ripple-spindle coordination and disrupted spike timing, potentially as a consequence of interneuronal abnormalities reflected by reduced parvalbumin expression. These data further define the interrelationships among slow-wave, spindle, and ripple events, indicating that sleep disturbances may be associated with state-dependent decoupling of hippocampal and cortical circuits in psychiatric diseases. PMID:23141065

  9. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment.

    PubMed

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2015-01-01

    Sleep quality and architecture as well as sleep's homeostatic and circadian controls change with healthy aging. Changes include reductions in slow-wave sleep's (SWS) percent and spectral power in the sleep electroencephalogram (EEG), number and amplitude of sleep spindles, rapid eye movement (REM) density and the amplitude of circadian rhythms, as well as a phase advance (moved earlier in time) of the brain's circadian clock. With mild cognitive impairment (MCI) there are further reductions of sleep quality, SWS, spindles, and percent REM, all of which further diminish, along with a profound disruption of circadian rhythmicity, with the conversion to Alzheimer's disease (AD). Sleep disorders may represent risk factors for dementias (e.g., REM Behavior Disorder presages Parkinson's disease) and sleep disorders are themselves extremely prevalent in neurodegenerative diseases. Working memory , formation of new episodic memories, and processing speed all decline with healthy aging whereas semantic, recognition, and emotional declarative memory are spared. In MCI, episodic and working memory further decline along with declines in semantic memory. In young adults, sleep-dependent memory consolidation (SDC) is widely observed for both declarative and procedural memory tasks. However, with healthy aging, although SDC for declarative memory is preserved, certain procedural tasks, such as motor-sequence learning, do not show SDC. In younger adults, fragmentation of sleep can reduce SDC, and a normative increase in sleep fragmentation may account for reduced SDC with healthy aging. Whereas sleep disorders such as insomnia, obstructive sleep apnea, and narcolepsy can impair SDC in the absence of neurodegenerative changes, the incidence of sleep disorders increases both with normal aging and, further, with neurodegenerative disease. Specific features of sleep architecture, such as sleep spindles and SWS are strongly linked to SDC. Diminution of these features with healthy aging

  10. Smad-dependent alterations of PPT cholinergic neurons as a pathophysiological mechanism of age-related sleep-dependent memory impairments.

    PubMed

    George, O; Parducz, A; Dupret, D; Kharouby, M; Le Moal, M; Piazza, P V; Mayo, W

    2006-12-01

    In humans, memory impairments are highly prevalent in the aged population, but their functional and structural origins are still unknown. We hypothesized that circadian rhythm alterations may predict spatial memory impairment in aged rats. We demonstrate an association between sleep/wake circadian rhythm disturbances (non-REM sleep fragmentation) and spatial memory impairments in aged rats. We show by light and electron microscopy that these age-related disruptions in circadian rhythm and spatial memory are also associated with degeneration of cholinergic neurons of the pedunculopontine nucleus (PPT), a structure known to be involved in sleep and cognitive functions and which is altered during aging. Finally, we demonstrate that a trophic deregulation of the PPT occur in aged impaired rats, involving an over activation of the TGFbeta-Smad cascade, a signalling pathway involved in neurodegeneration. In conclusion these results provide a new pathophysiological mechanism for age-related sleep-dependent memory impairments opening the ground for the development of new therapeutic approaches of these pathologies.

  11. Discontinuity of cortical gradients reflects sensory impairment

    PubMed Central

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-01-01

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations—patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion—enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  12. Neural-Based Visual Stimulation with Infants with Cortical Impairment.

    ERIC Educational Resources Information Center

    Powell, S. A.

    1996-01-01

    In order to shed light on the needs of children with cortical visual impairments, normal visual development of infants is described. Infant preferences for motion, faces, and black-and-white patterns are explained. Colors useful in stimulating vision development and the time needed for exposure to visual stimuli are discussed. (CR)

  13. Observations on the Habilitation of Children with Cortical Visual Impairment.

    ERIC Educational Resources Information Center

    Groenveld, M.; And Others

    1990-01-01

    This article discusses the increasing incidence of cortical visual impairments, resulting from medical advancements making possible the survival of critically ill children with severe brain damage. Discussed are the prevalence of multiple handicaps, formation of visual concepts, foreground/background distinction, potential for mainstreaming, use…

  14. Neural-Based Visual Stimulation with Infants with Cortical Impairment.

    ERIC Educational Resources Information Center

    Powell, S. A.

    1996-01-01

    In order to shed light on the needs of children with cortical visual impairments, normal visual development of infants is described. Infant preferences for motion, faces, and black-and-white patterns are explained. Colors useful in stimulating vision development and the time needed for exposure to visual stimuli are discussed. (CR)

  15. Observations on the Habilitation of Children with Cortical Visual Impairment.

    ERIC Educational Resources Information Center

    Groenveld, M.; And Others

    1990-01-01

    This article discusses the increasing incidence of cortical visual impairments, resulting from medical advancements making possible the survival of critically ill children with severe brain damage. Discussed are the prevalence of multiple handicaps, formation of visual concepts, foreground/background distinction, potential for mainstreaming, use…

  16. Impaired cortical mitochondrial function following TBI precedes behavioral changes

    PubMed Central

    Watson, William D.; Buonora, John E.; Yarnell, Angela M.; Lucky, Jessica J.; D’Acchille, Michaela I.; McMullen, David C.; Boston, Andrew G.; Kuczmarski, Andrew V.; Kean, William S.; Verma, Ajay; Grunberg, Neil E.; Cole, Jeffrey T.

    2014-01-01

    Traumatic brain injury (TBI) pathophysiology can be attributed to either the immediate, primary physical injury, or the delayed, secondary injury which begins minutes to hours after the initial injury and can persist for several months or longer. Because these secondary cascades are delayed and last for a significant time period post-TBI, they are primary research targets for new therapeutics. To investigate changes in mitochondrial function after a brain injury, both the cortical impact site and ipsilateral hippocampus of adult male rats 7 and 17 days after a controlled cortical impact (CCI) injury were examined. State 3, state 4, and uncoupler-stimulated rates of oxygen consumption, respiratory control ratios (RCRs) were measured and membrane potential quantified, and all were significantly decreased in 7 day post-TBI cortical mitochondria. By contrast, hippocampal mitochondria at 7 days showed only non-significant decreases in rates of oxygen consumption and membrane potential. NADH oxidase activities measured in disrupted mitochondria were normal in both injured cortex and hippocampus at 7 days post-CCI. Respiratory and phosphorylation capacities at 17 days post-CCI were comparable to naïve animals for both cortical and hippocampus mitochondria. However, unlike oxidative phosphorylation, membrane potential of mitochondria in the cortical lining of the impact site did not recover at 17 days, suggesting that while diminished cortical membrane potential at 17 days does not adversely affect mitochondrial capacity to synthesize ATP, it may negatively impact other membrane potential-sensitive mitochondrial functions. Memory status, as assessed by a passive avoidance paradigm, was not significantly impaired until 17 days after injury. These results indicate pronounced disturbances in cortical mitochondrial function 7 days after CCI which precede the behavioral impairment observed at 17 days. PMID:24550822

  17. Discriminant analysis of multiple cortical changes in mild cognitive impairment

    NASA Astrophysics Data System (ADS)

    Wu, Congling; Guo, Shengwen; Lai, Chunren; Wu, Yupeng; Zhao, Di; Jiang, Xingjun

    2017-02-01

    To reveal the differences in brain structures and morphological changes between the mild cognitive impairment (MCI) and the normal control (NC), analyze and predict the risk of MCI conversion. First, the baseline and 2-year longitudinal follow-up magnetic resonance (MR) images of 73 NC, 46 patients with stable MCI (sMCI) and 40 patients with converted MCI (cMCI) were selected. Second, the FreeSurfer was used to extract the cortical features, including the cortical thickness, surface area, gray matter volume and mean curvature. Third, the support vector machine-recursive feature elimination method (SVM-RFE) were adopted to determine salient features for effective discrimination. Finally, the distribution and importance of essential brain regions were described. The experimental results showed that the cortical thickness and gray matter volume exhibited prominent capability in discrimination, and surface area and mean curvature behaved relatively weak. Furthermore, the combination of different morphological features, especially the baseline combined with the longitudinal changes, can be used to evidently improve the performance of classification. In addition, brain regions with high weights predominately located in the temporal lobe and the frontal lobe, which were relative to emotional control and memory functions. It suggests that there were significant different patterns in the brain structure and changes between the compared group, which could not only be effectively applied for classification, but also be used to evaluate and predict the conversion of the patients with MCI.

  18. Sleep-dependent memory consolidation and its implications for psychiatry.

    PubMed

    Goerke, Monique; Müller, Notger G; Cohrs, Stefan

    2017-02-01

    Both sleep disturbance and memory impairment are very common in psychiatric disorders. Since sleep has been shown to play a role in the process of transferring newly acquired information into long-term memory, i.e., consolidation, it is important to highlight this link in the context of psychiatric disorders. Along these lines, after providing a brief overview of healthy human sleep, current neurobiological models on sleep-dependent memory consolidation and resultant opportunities to manipulate the memory consolidation process, recent findings on sleep disturbances and sleep-dependent memory consolidation in patients with insomnia, major depression, schizophrenia, and post-traumatic stress disorder are systematically reviewed. Furthermore, possible underlying neuropathologies and their implications on therapeutic strategies are discussed. This review aims at sensitizing the reader for recognizing sleep disturbances as a potential contributor to cognitive deficits in several disorders, a fact which is often overlooked up to date.

  19. Motor cortical plasticity is impaired in Unverricht-Lundborg disease.

    PubMed

    Danner, Nils; Säisänen, Laura; Määttä, Sara; Julkunen, Petro; Hukkanen, Taina; Könönen, Mervi; Hyppönen, Jelena; Kälviäinen, Reetta; Mervaala, Esa

    2011-09-01

    Patients with Unverricht-Lundborg disease, also referred to as progressive myoclonus epilepsy type 1, exhibit widespread motor symptoms and signs in addition to epileptic seizures, which suggest abnormal excitability of the primary motor pathways. To explore the plasticity of the sensory-motor cortex, we employed a modern neurophysiological method, the paired associative stimulation protocol, which resembles the concept of long-term potentiation of experimental studies. Seven patients with genetically verified Unverricht-Lundborg disease and 13 healthy control subjects were enrolled in the study to characterize cortical sensory-motor plasticity. In the study protocol, peripheral electric median nerve stimulation preceded navigated transcranial magnetic stimulation targeted to the representation area of thenar musculature on the contralateral primary motor cortex. The protocol consisted of 132 transcranial magnetic stimulation trials at 0.2 Hz, preceded by peripheral sensory stimulation at 25 ms. Motor-evoked potential amplitudes were analyzed at baseline and after the paired associative stimulation protocol at an intensity of 130% of the individual motor threshold. The patients with Unverricht-Lundborg disease exhibited an average decrease of 15% in motor-evoked potential amplitudes 30 minutes after paired associative stimulation, whereas in the control subjects, a significant increase (101%) was observed (P < .05), as expected. The results indicate a lack of normal cortical plasticity in Unverricht-Lundborg disease, which stresses the role of abnormal motor cortical functions or sensorimotor integration as possible pathophysiological contributors to the motor symptoms. The impaired cortical plasticity may be associated with the previously reported structural and physiological abnormalities of the primary motor cortex.

  20. Memory Impairment at Initial Clinical Presentation in Posterior Cortical Atrophy.

    PubMed

    Ahmed, Samrah; Baker, Ian; Husain, Masud; Thompson, Sian; Kipps, Christopher; Hornberger, Michael; Hodges, John R; Butler, Christopher R

    2016-04-23

    Posterior cortical atrophy (PCA) is characterized by core visuospatial and visuoperceptual deficits, and predominant atrophy in the parieto-occipital cortex. The most common underlying pathology is Alzheimer's disease (AD). Existing diagnostic criteria suggest that episodic memory is relatively preserved. The aim of this study was to examine memory performance at initial clinical presentation in PCA, compared to early-onset AD patients (EOAD). 15 PCA patients and 32 EOAD patients, and 34 healthy controls were entered into the study. Patients were tested on the Addenbrooke's Cognitive Examination (ACE-R), consisting of subscales in memory and visuospatial skills. PCA and EOAD patients were significantly impaired compared to controls on the ACE total score (p < 0.001), visuospatial skills (p < 0.001), and memory (p < 0.001). Consistent with the salient diagnostic deficits, PCA patients were significantly more impaired on visuospatial skills compared to EOAD patients (p < 0.001). However, there was no significant difference between patient groups in memory. Further analysis of learning, recall, and recognition components of the memory subscale showed that EOAD and PCA patients were significantly impaired compared to controls on all three components (p < 0.001), however, there was no significant difference between EOAD and PCA patients. The results of this study show that memory is impaired in the majority of PCA patients at clinical presentation. The findings suggest that memory impairment must be considered in assessment and management of PCA. Further study into memory in PCA is warranted, since the ACE-R is a brief screening tool and is likely to underestimate the presence of memory impairment.

  1. Cortical asymmetries in normal, mild cognitive impairment, and Alzheimer's disease.

    PubMed

    Kim, Jong Hun; Lee, Jong Weon; Kim, Geon Ha; Roh, Jee Hoon; Kim, Min-Jeong; Seo, Sang Won; Kim, Sung Tae; Jeon, Seun; Lee, Jong-Min; Heilman, Kenneth M; Na, Duk L

    2012-09-01

    There are functional and structural neocortical hemispheric asymmetries in people with normal cognition. These asymmetries may be altered in patients with Alzheimer's disease (AD) because there is a loss of neuronal connectivity in the heteromodal cortex. The purpose of this study is to test the hypothesis that individuals with amnestic mild cognitive impairment (aMCI), mild AD, and moderate to severe AD have progressive reductions in thickness asymmetries of the heteromodal neocortex. Right-handed elderly volunteers including normal cognition (NC), aMCI, and AD underwent 3-D volume imaging for cortical thickness. Although the cortical asymmetry pattern observed in normal cognition brains was generally maintained in aMCI and AD, there was a progressive decrease in the degree of asymmetry, especially in the inferior parietal lobule. A reduction of neocortical asymmetries may be a characteristic sign that occurs in patients with AD. Future studies are needed to evaluate whether this loss is specific to AD and if measurements of asymmetry can be used as diagnostic markers and for monitoring disease progression.

  2. Sleep-dependent motor memory consolidation in older adults depends on task demands.

    PubMed

    Gudberg, Christel; Wulff, Katharina; Johansen-Berg, Heidi

    2015-03-01

    It is often suggested that sleep-dependent consolidation of motor learning is impaired in older adults. The current study challenges this view and suggests that the degree of motor consolidation seen with sleep in older age groups depends on the kinematic demands of the task. We show that, when tested with a classic sequence learning task, requiring individuated finger movements, older adults did not show sleep-dependent consolidation. By contrast, when tested with an adapted sequence learning task, in which movements were performed with the whole hand, sleep-dependent motor improvement was observed in older adults. We suggest that age-related decline in fine motor dexterity may in part be responsible for the previously described deficit in sleep-dependent motor consolidation with aging.

  3. Sleep-dependent motor memory consolidation in older adults depends on task demands

    PubMed Central

    Gudberg, Christel; Wulff, Katharina; Johansen-Berg, Heidi

    2015-01-01

    It is often suggested that sleep-dependent consolidation of motor learning is impaired in older adults. The current study challenges this view and suggests that the degree of motor consolidation seen with sleep in older age groups depends on the kinematic demands of the task. We show that, when tested with a classic sequence learning task, requiring individuated finger movements, older adults did not show sleep-dependent consolidation. By contrast, when tested with an adapted sequence learning task, in which movements were performed with the whole hand, sleep-dependent motor improvement was observed in older adults. We suggest that age-related decline in fine motor dexterity may in part be responsible for the previously described deficit in sleep-dependent motor consolidation with aging. PMID:25618616

  4. Prevalence of cortical superficial siderosis in patients with cognitive impairment.

    PubMed

    Wollenweber, Frank Arne; Buerger, Katharina; Mueller, Claudia; Ertl-Wagner, Birgit; Malik, Rainer; Dichgans, Martin; Linn, Jennifer; Opherk, Christian

    2014-02-01

    Cortical superficial siderosis (cSS) is a magnetic resonance imaging marker of cerebral amyloid angiopathy (CAA) and can be its sole imaging sign. cSS has further been identified as a risk marker for future intracranial hemorrhage. Although uncommon in the general population, cSS may be much more prevalent in high risk populations for amyloid pathology. We aimed to determine the frequency of cSS in patients with cognitive impairment presenting to a memory clinic. We prospectively evaluated consecutive patients presenting to our memory clinic between April 2011 and April 2013. Subjects received neuropsychological testing using the Consortium to Establish a Registry for Alzheimer's Disease battery (CERAD-NP). Two hundred and twelve patients with documented cognitive impairment further underwent a standardized 3T-MR-imaging protocol with T2*-weighted gradient-echo sequences for detection of cSS. Thirteen of 212 patients (6.1 %) displayed cSS. In seven of them (54 %) cSS was the only imaging sign of CAA. Patients with cSS did not differ from patients without cSS with regard to medical history, age or cardiovascular risk profile. Subjects with cSS performed worse in the mini-mental state examination (p = 0.001), showed more white matter hyperintensities (p = 0.005) and more often had microbleeds (p = 0.001) compared to those without cSS. cSS is common in patients with cognitive impairment. It is associated with lower cognitive scores, white matter hyperintensities and microbleeds and can be the only imaging sign for CAA in this patient group.

  5. Cortical visual impairment in children: identification, evaluation and diagnosis.

    PubMed

    Lehman, Sharon S

    2012-09-01

    Cortical visual impairment (CVI) is a major cause of visual loss in children worldwide. The definition of this condition is constantly evolving with respect to definition, identifying those at risk and technology for diagnosis. These advances can be used for early diagnosis, design of accommodations and services, as well as future therapies and prevention strategies. Clinical questionnaires are being developed and tested for reliability in an attempt to identify those at risk for CVI. The definition is constantly being modified and now includes deficits in vision-guided motor planning and higher level executive functions. Neuroimaging techniques, such as MRI, functional MRI, and diffusion tensor imaging; electrophysiologic testing, such as sweep visual-evoked potentials; and perceptual testing, allow for further refinements in correlating structural defects and deficits in function. Recent developments will allow identification of those children at risk for CVI and earlier interventions for specific deficits. A child's performance is built on previously mastered skills, making timely prediction of deficits and intervention essential.

  6. The Reliability of the CVI Range: A Functional Vision Assessment for Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Newcomb, Sandra

    2010-01-01

    Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…

  7. The Reliability of the CVI Range: A Functional Vision Assessment for Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Newcomb, Sandra

    2010-01-01

    Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…

  8. Sleep-dependent memory consolidation and accelerated forgetting.

    PubMed

    Atherton, Kathryn E; Nobre, Anna C; Zeman, Adam Z; Butler, Christopher R

    2014-05-01

    Accelerated long-term forgetting (ALF) is a form of memory impairment in which learning and initial retention of information appear normal but subsequent forgetting is excessively rapid. ALF is most commonly associated with epilepsy and, in particular, a form of late-onset epilepsy called transient epileptic amnesia (TEA). ALF provides a novel opportunity to investigate post-encoding memory processes, such as consolidation. Sleep is implicated in the consolidation of memory in healthy people and a deficit in sleep-dependent memory consolidation has been proposed as an explanation for ALF. If this proposal were correct, then sleep would not benefit memory retention in people with ALF as much as in healthy people, and ALF might only be apparent when the retention interval contains sleep. To test this theory, we compared performance on a sleep-sensitive memory task over a night of sleep and a day of wakefulness. We found, contrary to the hypothesis, that sleep benefits memory retention in TEA patients with ALF and that this benefit is no smaller in magnitude than that seen in healthy controls. Indeed, the patients performed significantly more poorly than the controls only in the wake condition and not the sleep condition. Patients were matched to controls on learning rate, initial retention, and the effect of time of day on cognitive performance. These results indicate that ALF is not caused by a disruption of sleep-dependent memory consolidation. Instead, ALF may be due to an encoding abnormality that goes undetected on behavioural assessments of learning, or by a deficit in memory consolidation processes that are not sleep-dependent. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Sleep-dependent memory consolidation and accelerated forgetting

    PubMed Central

    Atherton, Kathryn E.; Nobre, Anna C.; Zeman, Adam Z.; Butler, Christopher R.

    2014-01-01

    Accelerated long-term forgetting (ALF) is a form of memory impairment in which learning and initial retention of information appear normal but subsequent forgetting is excessively rapid. ALF is most commonly associated with epilepsy and, in particular, a form of late-onset epilepsy called transient epileptic amnesia (TEA). ALF provides a novel opportunity to investigate post-encoding memory processes, such as consolidation. Sleep is implicated in the consolidation of memory in healthy people and a deficit in sleep-dependent memory consolidation has been proposed as an explanation for ALF. If this proposal were correct, then sleep would not benefit memory retention in people with ALF as much as in healthy people, and ALF might only be apparent when the retention interval contains sleep. To test this theory, we compared performance on a sleep-sensitive memory task over a night of sleep and a day of wakefulness. We found, contrary to the hypothesis, that sleep benefits memory retention in TEA patients with ALF and that this benefit is no smaller in magnitude than that seen in healthy controls. Indeed, the patients performed significantly more poorly than the controls only in the wake condition and not the sleep condition. Patients were matched to controls on learning rate, initial retention, and the effect of time of day on cognitive performance. These results indicate that ALF is not caused by a disruption of sleep-dependent memory consolidation. Instead, ALF may be due to an encoding abnormality that goes undetected on behavioural assessments of learning, or by a deficit in memory consolidation processes that are not sleep-dependent. PMID:24657478

  10. Neural correlates of cognitive impairment in posterior cortical atrophy.

    PubMed

    Kas, Aurélie; de Souza, Leonardo Cruz; Samri, Dalila; Bartolomeo, Paolo; Lacomblez, Lucette; Kalafat, Michel; Migliaccio, Raffaella; Thiebaut de Schotten, Michel; Cohen, Laurent; Dubois, Bruno; Habert, Marie-Odile; Sarazin, Marie

    2011-05-01

    With the prospect of disease-modifying drugs that will target the physiopathological process of Alzheimer's disease, it is now crucial to increase the understanding of the atypical focal presentations of Alzheimer's disease, such as posterior cortical atrophy. This study aimed to (i) characterize the brain perfusion profile in posterior cortical atrophy using regions of interest and a voxel-based approach; (ii) study the influence of the disease duration on the clinical and imaging profiles; and (iii) explore the correlations between brain perfusion and cognitive deficits. Thirty-nine patients with posterior cortical atrophy underwent a specific battery of neuropsychological tests, mainly targeting visuospatial functions, and a brain perfusion scintigraphy with 99mTc-ethyl cysteinate dimer. The imaging analysis included a comparison with a group of 24 patients with Alzheimer's disease, matched for age, disease duration and Mini-Mental State Examination, and 24 healthy controls. The single-photon emission computed tomography profile in patients with posterior cortical atrophy was characterized by extensive and severe hypoperfusion in the occipital, parietal, posterior temporal cortices and in a smaller cortical area corresponding to the frontal eye fields (Brodmann areas 6/8). Compared with patients with Alzheimer's disease, the group with posterior cortical atrophy showed more severe occipitoparietal hypoperfusion and higher perfusion in the frontal, anterior cingulate and mesiotemporal regions. When considering the disease duration, the functional changes began and remained centred on the posterior lobes, even in the late stage. Correlation analyses of brain perfusion and neuropsychological scores in posterior cortical atrophy highlighted the prominent role of left inferior parietal damage in acalculia, Gerstmann's syndrome, left-right indistinction and limb apraxia, whereas damage to the bilateral dorsal occipitoparietal regions appeared to be involved in B

  11. Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory

    NASA Astrophysics Data System (ADS)

    Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.

    2004-10-01

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  12. Regional impairments of cortical folding in premature infants

    PubMed Central

    Engelhardt, Erin; Inder, Terrie E; Alexopoulos, Dimitrios; Dierker, Donna L; Hill, Jason; Van Essen, David; Neil, Jeffrey J

    2015-01-01

    Objective This study was undertaken to evaluate the influence of preterm birth and other factors on cerebral cortical maturation. Methods We have evaluated the effects of preterm birth on cortical folding by applying cortical cartography methods to a cohort of 52 preterm infants (<31 weeks gestation, mild or no injury on conventional magnetic resonance imaging) and 12 term-born control infants. All infants were evaluated at term-equivalent postmenstrual age. Results Preterm infants had lower values for the global measures of gyrification index (GI; 2.06 ± 0.07 vs 1.80 ± 0.12, p < 0.001; control vs preterm) and cortical surface area (CSA; 316 ± 24 cm2 vs 257 ± 40 cm2, p < 0.001). Regional analysis of sulcal depth and cortical shape showed the greatest impact of preterm birth on the insula, superior temporal sulcus, and ventral portions of the pre- and postcentral sulci in both hemispheres. Although CSA and GI are related, CSA was more sensitive to antenatal and postnatal factors than GI. Both measures were lower in preterm infants of lower birth weight standard deviation scores and smaller occipitofrontal circumference at time of scan, whereas CSA alone was lower in association with smaller occipitofrontal circumference at birth. CSA was also lower in infants with higher critical illness in the first 24 hours of life, exposure to postnatal steroids, and prolonged endotracheal intubation. Interpretation Preterm birth disrupts cortical development in a regionally specific fashion with abnormalities evident by term-equivalent postmenstrual age. This disruption is influenced by both antenatal growth and postnatal course. PMID:25425403

  13. Stimulation of the brain with radiofrequency electromagnetic field pulses affects sleep-dependent performance improvement.

    PubMed

    Lustenberger, Caroline; Murbach, Manuel; Dürr, Roland; Schmid, Marc Ralph; Kuster, Niels; Achermann, Peter; Huber, Reto

    2013-09-01

    Sleep-dependent performance improvements seem to be closely related to sleep spindles (12-15 Hz) and sleep slow-wave activity (SWA, 0.75-4.5 Hz). Pulse-modulated radiofrequency electromagnetic fields (RF EMF, carrier frequency 900 MHz) are capable to modulate these electroencephalographic (EEG) characteristics of sleep. The aim of our study was to explore possible mechanisms how RF EMF affect cortical activity during sleep and to test whether such effects on cortical activity during sleep interact with sleep-dependent performance changes. Sixteen male subjects underwent 2 experimental nights, one of them with all-night 0.25-0.8 Hz pulsed RF EMF exposure. All-night EEG was recorded. To investigate RF EMF induced changes in overnight performance improvement, subjects were trained for both nights on a motor task in the evening and the morning. We obtained good sleep quality in all subjects under both conditions (mean sleep efficiency > 90%). After pulsed RF EMF we found increased SWA during exposure to pulse-modulated RF EMF compared to sham exposure (P < 0.05) toward the end of the sleep period. Spindle activity was not affected. Moreover, subjects showed an increased RF EMF burst-related response in the SWA range, indicated by an increase in event-related EEG spectral power and phase changes in the SWA range. Notably, during exposure, sleep-dependent performance improvement in the motor sequence task was reduced compared to the sham condition (-20.1%, P = 0.03). The changes in the time course of SWA during the exposure night may reflect an interaction of RF EMF with the renormalization of cortical excitability during sleep, with a negative impact on sleep-dependent performance improvement. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Cortical spreading depression impairs oxygen delivery and metabolism in mice.

    PubMed

    Yuzawa, Izumi; Sakadžić, Sava; Srinivasan, Vivek J; Shin, Hwa Kyoung; Eikermann-Haerter, Katharina; Boas, David A; Ayata, Cenk

    2012-02-01

    Cortical spreading depression (CSD) is associated with severe hypoperfusion in mice. Using minimally invasive multimodal optical imaging, we show that severe flow reductions during and after spreading depression are associated with a steep decline in cerebral metabolic rate of oxygen. Concurrent severe hemoglobin desaturation suggests that the oxygen metabolism becomes at least in part supply limited, and the decrease in cortical blood volume implicates vasoconstriction as the mechanism. In support of oxygen supply-demand mismatch, cortical nicotinamide adenine dinucleotide (NADH) fluorescence increases during spreading depression for at least 5 minutes, particularly away from parenchymal arterioles. However, modeling of tissue oxygen delivery shows that cerebral metabolic rate of oxygen drops more than predicted by a purely supply-limited model, raising the possibility of a concurrent reduction in oxygen demand during spreading depression. Importantly, a subsequent spreading depression triggered within 15 minutes evokes a monophasic flow increase superimposed on the oligemic baseline, which markedly differs from the response to the preceding spreading depression triggered in naive cortex. Altogether, these data suggest that CSD is associated with long-lasting oxygen supply-demand mismatch linked to severe vasoconstriction in mice.

  15. Cortical peroxynitration of nerve growth factor in aged and cognitively impaired rats.

    PubMed

    Bruno, Martin A; Cuello, A Claudio

    2012-09-01

    Basal forebrain cholinergic neurons (BFCN), a system involved in learning and memory processes, are highly dependent on a continuous supply of biologically active nerve growth factor (NGF). Age-related cholinergic atrophy and cell loss in normal brains is apparently not complemented by reductions in the levels of NGF as could be expected. In the present work, cortical proNGF/NGF were immunoprecipitated from cortical brain homogenates from young and aged and behaviorally characterized rats and resolved with antinitrotyrosine antibodies to reveal nitration of tyrosine residues in proteins. Cortical proNGF in aged and cognitively impaired rats was found to be a target for peroxynitrite-mediated oxidative damage with correlative impact on decrease in choline acetyltransferase activity. These studies provide evidence for oxidative stress damage of NGF molecules in the cerebral cortex of cognitively impaired aged rats as previously shown in AD human brains. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  17. Visual Attention to Movement and Color in Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Cohen-Maitre, Stacey Ann; Haerich, Paul

    2005-01-01

    This study investigated the ability of color and motion to elicit and maintain visual attention in a sample of children with cortical visual impairment (CVI). It found that colorful and moving objects may be used to engage children with CVI, increase their motivation to use their residual vision, and promote visual learning.

  18. The Effects of Training on a Young Child with Cortical Visual Impairment: An Exploratory Study.

    ERIC Educational Resources Information Center

    Lueck, Amanda Hall; Dornbusch, Helen; Hart, Jeri

    1999-01-01

    This exploratory study investigated the effects of the components of visual environmental management, visual skills training, and visually dependent task training on the performance of visual behaviors of a toddler with multiple disabilities including cortical visual impairment. Training components were implemented by the mother during daily…

  19. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  20. Outcomes and Opportunities: A Study of Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Roman Lantzy, Christine A.; Lantzy, Alan

    2010-01-01

    Pediatric View is an evaluation project that began in 1999 and is located at Western Pennsylvania Hospital in Pittsburgh. The purpose of Pediatric View is to provide developmental and functional vision evaluations to children who have ocular or cortical visual impairments. The evaluations are generally two hours in length, and a detailed report…

  1. A Survey of Parents of Children with Cortical or Cerebral Visual Impairment

    ERIC Educational Resources Information Center

    Jackel, Bernadette; Wilson, Michelle; Hartmann, Elizabeth

    2010-01-01

    Cortical or cerebral visual impairment (CVI) can result when the visual pathways and visual processing areas of the brain have been damaged. Children with CVI may have difficulty finding an object among other objects, viewing in the distance, orienting themselves in space, going from grass to pavement or other changes in surface, and copying…

  2. Outcomes and Opportunities: A Study of Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Roman Lantzy, Christine A.; Lantzy, Alan

    2010-01-01

    Pediatric View is an evaluation project that began in 1999 and is located at Western Pennsylvania Hospital in Pittsburgh. The purpose of Pediatric View is to provide developmental and functional vision evaluations to children who have ocular or cortical visual impairments. The evaluations are generally two hours in length, and a detailed report…

  3. Diagnostic Significance of Cortical Superficial Siderosis for Alzheimer Disease in Patients with Cognitive Impairment.

    PubMed

    Inoue, Y; Nakajima, M; Uetani, H; Hirai, T; Ueda, M; Kitajima, M; Utsunomiya, D; Watanabe, M; Hashimoto, M; Ikeda, M; Yamashita, Y; Ando, Y

    2016-02-01

    Because the diagnostic significance of cortical superficial siderosis for Alzheimer disease and the association between cortical superficial siderosis and the topographic distribution of cerebral microbleeds have been unclear, we investigated the association between cortical superficial siderosis and clinicoradiologic characteristics of patients with cognitive impairment. We studied 347 patients (217 women, 130 men; mean age, 74 ± 9 years) who visited our memory clinic and underwent MR imaging (3T SWI). We analyzed the association between cortical superficial siderosis and the topographic distribution of cerebral microbleeds plus clinical characteristics including types of dementia. We used multivariate logistic regression analysis to determine the diagnostic significance of cortical superficial siderosis for Alzheimer disease. Twelve patients (3.5%) manifested cortical superficial siderosis. They were older (P = .026) and had strictly lobar cerebral microbleeds significantly more often than did patients without cortical superficial siderosis (50.0% versus 19.4%, P = .02); the occurrence of strictly deep and mixed cerebral microbleeds, however, did not differ in the 2 groups. Alzheimer disease was diagnosed in 162 (46.7%) patients. Of these, 8 patients (4.9%) had cortical superficial siderosis. In the multivariate logistic regression analysis for the diagnosis of Alzheimer disease, lacunar infarcts were negatively and independently associated with Alzheimer disease (P = .007). Although cortical superficial siderosis was associated with a strictly lobar cerebral microbleed location, it was not independently associated with Alzheimer disease in a memory clinic setting. Additional studies are required to investigate the temporal changes of these cerebral amyloid angiopathy-related MR imaging findings. © 2016 by American Journal of Neuroradiology.

  4. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia–Ischemia

    PubMed Central

    Jantzie, Lauren L.; Corbett, Christopher J.; Firl, Daniel J.; Robinson, Shenandoah

    2015-01-01

    Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia–ischemia (TSHI) in Sprague–Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants. PMID:24722771

  5. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia.

    PubMed

    Jantzie, Lauren L; Corbett, Christopher J; Firl, Daniel J; Robinson, Shenandoah

    2015-09-01

    Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) in Sprague-Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants.

  6. Methamphetamine abuse impairs motor cortical plasticity and function

    PubMed Central

    Huang, X; Chen, Y-Y; Shen, Y; Cao, X; Li, A; Liu, Q; Li, Z; Zhang, L-B; Dai, W; Tan, T; Arias-Carrion, O; Xue, Y-X; Su, H; Yuan, T-F

    2017-01-01

    Exposure to addictive drugs triggers synaptic plasticity in reward-related brain regions, such as the midbrain, nucleus accumbens and the prefrontal cortex. Effects of chronic drug exposure on other brain areas have not been fully investigated. Here, we characterize synaptic plasticity in motor cortex after methamphetamine self-administration in rats. We show that this causes a loss of corticostriatal plasticity in rat brain slices and impaired motor learning in the rotarod task. These findings are paralleled by the observation of a lack of transcranial magnetic stimulation-induced potentiation or depression of motor evoked potentials in human patients with addiction, along with poor performance in rotary pursuit task. Taken together, our results suggest that chronic methamphetamine use can affect behavioral performance via drug-evoked synaptic plasticity occluding physiological motor learning. PMID:28831198

  7. Methamphetamine abuse impairs motor cortical plasticity and function.

    PubMed

    Huang, X; Chen, Y-Y; Shen, Y; Cao, X; Li, A; Liu, Q; Li, Z; Zhang, L-B; Dai, W; Tan, T; Arias-Carrion, O; Xue, Y-X; Su, H; Yuan, T-F

    2017-09-01

    Exposure to addictive drugs triggers synaptic plasticity in reward-related brain regions, such as the midbrain, nucleus accumbens and the prefrontal cortex. Effects of chronic drug exposure on other brain areas have not been fully investigated. Here, we characterize synaptic plasticity in motor cortex after methamphetamine self-administration in rats. We show that this causes a loss of corticostriatal plasticity in rat brain slices and impaired motor learning in the rotarod task. These findings are paralleled by the observation of a lack of transcranial magnetic stimulation-induced potentiation or depression of motor evoked potentials in human patients with addiction, along with poor performance in rotary pursuit task. Taken together, our results suggest that chronic methamphetamine use can affect behavioral performance via drug-evoked synaptic plasticity occluding physiological motor learning.

  8. Impaired consciousness in temporal lobe seizures: role of cortical slow activity

    PubMed Central

    Englot, Dario J.; Yang, Li; Hamid, Hamada; Danielson, Nathan; Bai, Xiaoxiao; Marfeo, Anthony; Yu, Lissa; Gordon, Aliza; Purcaro, Michael J.; Motelow, Joshua E.; Agarwal, Ravi; Ellens, Damien J.; Golomb, Julie D.; Shamy, Michel C. F.; Zhang, Heping; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Vives, Kenneth; Spencer, Dennis D.; Spencer, Susan S.; Schevon, Catherine; Zaveri, Hitten P.

    2010-01-01

    Impaired consciousness requires altered cortical function. This can occur either directly from disorders that impair widespread bilateral regions of the cortex or indirectly through effects on subcortical arousal systems. It has therefore long been puzzling why focal temporal lobe seizures so often impair consciousness. Early work suggested that altered consciousness may occur with bilateral or dominant temporal lobe seizure involvement. However, other bilateral temporal lobe disorders do not impair consciousness. More recent work supports a ‘network inhibition hypothesis’ in which temporal lobe seizures disrupt brainstem–diencephalic arousal systems, leading indirectly to depressed cortical function and impaired consciousness. Indeed, prior studies show subcortical involvement in temporal lobe seizures and bilateral frontoparietal slow wave activity on intracranial electroencephalography. However, the relationships between frontoparietal slow waves and impaired consciousness and between cortical slowing and fast seizure activity have not been directly investigated. We analysed intracranial electroencephalography recordings during 63 partial seizures in 26 patients with surgically confirmed mesial temporal lobe epilepsy. Behavioural responsiveness was determined based on blinded review of video during seizures and classified as impaired (complex-partial seizures) or unimpaired (simple-partial seizures). We observed significantly increased delta-range 1–2 Hz slow wave activity in the bilateral frontal and parietal neocortices during complex-partial compared with simple-partial seizures. In addition, we confirmed prior work suggesting that propagation of unilateral mesial temporal fast seizure activity to the bilateral temporal lobes was significantly greater in complex-partial than in simple-partial seizures. Interestingly, we found that the signal power of frontoparietal slow wave activity was significantly correlated with the temporal lobe fast seizure

  9. Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment.

    PubMed

    Merabet, Lotfi B; Mayer, D Luisa; Bauer, Corinna M; Wright, Darick; Kran, Barry S

    2017-05-01

    Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. White matter integrity of cerebellar-cortical tracts in reading impaired children: A probabilistic tractography study

    PubMed Central

    Fernandez, Vindia G.; Juranek, Jenifer; Romanowska-Pawliczek, Anna; Stuebing, Karla; Williams, Victoria J.; Fletcher, Jack M.

    2016-01-01

    Little is known about the white matter integrity of cerebellar-cortical pathways in individuals with dyslexia. Building on previous findings of decreased volume in the anterior lobe of the cerebellum, we utilized novel cerebellar segmentation procedures and probabilistic tractography to examine tracts that connect the anterior lobe of the cerebellum and cortical regions typically associated with reading: the temporoparietal (TP), occipitotemporal (OT), and inferior frontal (IF) regions. The sample included 29 reading impaired children and 27 typical readers. We found greater fractional anisotropy (FA) for the poor readers in tracts connecting the cerebellum with TP and IF regions relative to typical readers. In the OT region, FA was greater for the older poor readers, but smaller for the younger ones. This study provides evidence for discrete, regionally-bound functions of the cerebellum and suggests that projections from the anterior cerebellum appear to have a regulatory effect on cortical pathways important for reading. PMID:26307492

  11. Pronounced impairment of everyday skills and self-care in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Yong, Keir X X; Foxe, David; Hodges, John; Crutch, Sebastian J

    2015-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visual dysfunction and parietal, occipital, and occipitotemporal atrophy. The aim of this study was to compare the impact of PCA and typical Alzheimer's disease (tAD) on everyday functional abilities and neuropsychiatric status. The Cambridge Behavioural Inventory-Revised was given to carers of 32 PCA and 71 tAD patients. PCA patients showed significantly greater impairment in everyday skills and self-care while the tAD group showed greater impairment in aspects of memory and orientation, and motivation. We suggest that PCA poses specific challenges for those caring for people affected by the condition.

  12. Cortical Amyloid β Deposition and Current Depressive Symptoms in Alzheimer Disease and Mild Cognitive Impairment.

    PubMed

    Chung, Jun Ku; Plitman, Eric; Nakajima, Shinichiro; Chakravarty, M Mallar; Caravaggio, Fernando; Gerretsen, Philip; Iwata, Yusuke; Graff-Guerrero, Ariel

    2016-05-01

    Depressive symptoms are frequently seen in patients with dementia and mild cognitive impairment (MCI). Evidence suggests that there may be a link between current depressive symptoms and Alzheimer disease (AD)-associated pathological changes, such as an increase in cortical amyloid-β (Aβ). However, limited in vivo studies have explored the relationship between current depressive symptoms and cortical Aβ in patients with MCI and AD. Our study, using a large sample of 455 patients with MCI and 153 patients with AD from the Alzheimer's disease Neuroimaging Initiatives, investigated whether current depressive symptoms are related to cortical Aβ deposition. Depressive symptoms were assessed using the Geriatric Depression Scale and Neuropsychiatric Inventory-depression/dysphoria. Cortical Aβ was quantified using positron emission tomography with the Aβ probe(18)F-florbetapir (AV-45).(18)F-florbetapir standardized uptake value ratio (AV-45 SUVR) from the frontal, cingulate, parietal, and temporal regions was estimated. A global AV-45 SUVR, defined as the average of frontal, cingulate, precuneus, and parietal cortex, was also used. We observed that current depressive symptoms were not related to cortical Aβ, after controlling for potential confounds, including history of major depression. We also observed that there was no difference in cortical Aβ between matched participants with high and low depressive symptoms, as well as no difference between matched participants with the presence and absence of depressive symptoms. The association between depression and cortical Aβ deposition does not exist, but the relationship is highly influenced by stressful events in the past, such as previous depressive episodes, and complex interactions of different pathways underlying both depression and dementia. © The Author(s) 2015.

  13. Improved Cardiorespiratory Fitness Is Associated with Increased Cortical Thickness in Mild Cognitive Impairment.

    PubMed

    Reiter, Katherine; Nielson, Kristy A; Smith, Theresa J; Weiss, Lauren R; Alfini, Alfonso J; Smith, J Carson

    2015-11-01

    Cortical atrophy is a biomarker of Alzheimer's disease (AD) that correlates with clinical symptoms. This study examined changes in cortical thickness from before to after an exercise intervention in mild cognitive impairment (MCI) and healthy elders. Thirty physically inactive older adults (14 MCI, 16 healthy controls) underwent MRI before and after participating in a 12-week moderate intensity walking intervention. Participants were between the ages of 61 and 88. Change in cardiorespiratory fitness was assessed using residualized scores of the peak rate of oxygen consumption (V̇O2peak) from pre- to post-intervention. Structural magnetic resonance images were processed using FreeSurfer v5.1.0. V̇O2peak increased an average of 8.49%, which was comparable between MCI and healthy elders. Overall, cortical thickness was stable except for a significant decrease in the right fusiform gyrus in both groups. However, improvement in cardiorespiratory fitness due to the intervention (V̇O2peak) was positively correlated with cortical thickness change in the bilateral insula, precentral gyri, precuneus, posterior cingulate, and inferior and superior frontal cortices. Moreover, MCI participants exhibited stronger positive correlations compared to healthy elders in the left insula and superior temporal gyrus. A 12-week moderate intensity walking intervention led to significantly improved fitness in both MCI and healthy elders. Improved V̇O2peak was associated with widespread increased cortical thickness, which was similar between MCI and healthy elders. Thus, regular exercise may be an especially beneficial intervention to counteract cortical atrophy in all risk groups, and may provide protection against future cognitive decline in both healthy elders and MCI.

  14. Cortical Amyloid β Deposition and Current Depressive Symptoms in Alzheimer Disease and Mild Cognitive Impairment

    PubMed Central

    Chung, Jun Ku; Plitman, Eric; Nakajima, Shinichiro; Chakravarty, M. Mallar; Caravaggio, Fernando; Gerretsen, Philip; Iwata, Yusuke; Graff-Guerrero, Ariel

    2016-01-01

    Depressive symptoms are frequently seen in patients with dementia and mild cognitive impairment (MCI). Evidence suggests that there may be a link between current depressive symptoms and Alzheimer disease (AD)-associated pathological changes, such as an increase in cortical amyloid-β (Aβ). However, limited in vivo studies have explored the relationship between current depressive symptoms and cortical Aβ in patients with MCI and AD. Our study, using a large sample of 455 patients with MCI and 153 patients with AD from the Alzheimer’s disease Neuroimaging Initiatives, investigated whether current depressive symptoms are related to cortical Aβ deposition. Depressive symptoms were assessed using the Geriatric Depression Scale and Neuropsychiatric Inventory-depression/dysphoria. Cortical Aβ was quantified using positron emission tomography with the Aβ probe 18F-florbetapir (AV-45). 18F-florbetapir standardized uptake value ratio (AV-45 SUVR) from the frontal, cingulate, parietal, and temporal regions was estimated. A global AV-45 SUVR, defined as the average of frontal, cingulate, precuneus, and parietal cortex, was also used. We observed that current depressive symptoms were not related to cortical Aβ, after controlling for potential confounds, including history of major depression. We also observed that there was no difference in cortical Aβ between matched participants with high and low depressive symptoms, as well as no difference between matched participants with the presence and absence of depressive symptoms. The association between depression and cortical Aβ deposition does not exist, but the relationship is highly influenced by stressful events in the past, such as previous depressive episodes, and complex interactions of different pathways underlying both depression and dementia. PMID:26400248

  15. Mild Cognitive Impairment Is Characterized by Deficient Brainstem and Cortical Representations of Speech.

    PubMed

    Bidelman, Gavin M; Lowther, Jill E; Tak, Sunghee H; Alain, Claude

    2017-03-29

    Mild cognitive impairment (MCI) is recognized as a transitional phase in the progression toward more severe forms of dementia and is an early precursor to Alzheimer's disease. Previous neuroimaging studies reveal that MCI is associated with aberrant sensory-perceptual processing in cortical brain regions subserving auditory and language function. However, whether the pathophysiology of MCI extends to speech processing before conscious awareness (brainstem) is unknown. Using a novel electrophysiological approach, we recorded both brainstem and cortical speech-evoked brain event-related potentials (ERPs) in older, hearing-matched human listeners who did and did not present with subtle cognitive impairment revealed through behavioral neuropsychological testing. We found that MCI was associated with changes in neural speech processing characterized as hypersensitivity (larger) brainstem and cortical speech encoding in MCI compared with controls in the absence of any perceptual speech deficits. Group differences also interacted with age differentially across the auditory pathway; brainstem responses became larger and cortical ERPs smaller with advancing age. Multivariate classification revealed that dual brainstem-cortical speech activity correctly identified MCI listeners with 80% accuracy, suggesting its application as a biomarker of early cognitive decline. Brainstem responses were also a more robust predictor of individuals' MCI severity than cortical activity. Our findings suggest that MCI is associated with poorer encoding and transfer of speech signals between functional levels of the auditory system and advance the pathophysiological understanding of cognitive aging by identifying subcortical deficits in auditory sensory processing mere milliseconds (<10 ms) after sound onset and before the emergence of perceptual speech deficits.SIGNIFICANCE STATEMENT Mild cognitive impairment (MCI) is a precursor to dementia marked by declines in communication skills. Whether

  16. Cortical GABAergic neurons are more severely impaired by alkalosis than acidosis

    PubMed Central

    2013-01-01

    Background Acid–base imbalance in various metabolic disturbances leads to human brain dysfunction. Compared with acidosis, the patients suffered from alkalosis demonstrate more severe neurological signs that are difficultly corrected. We hypothesize a causative process that the nerve cells in the brain are more vulnerable to alkalosis than acidosis. Methods The vulnerability of GABAergic neurons to alkalosis versus acidosis was compared by analyzing their functional changes in response to the extracellular high pH and low pH. The neuronal and synaptic functions were recorded by whole-cell recordings in the cortical slices. Results The elevation or attenuation of extracellular pH impaired these GABAergic neurons in terms of their capability to produce spikes, their responsiveness to excitatory synaptic inputs and their outputs via inhibitory synapses. Importantly, the dysfunction of these active properties appeared severer in alkalosis than acidosis. Conclusions The severer impairment of cortical GABAergic neurons in alkalosis patients leads to more critical neural excitotoxicity, so that alkalosis-induced brain dysfunction is difficultly corrected, compared to acidosis. The vulnerability of cortical GABAergic neurons to high pH is likely a basis of severe clinical outcomes in alkalosis versus acidosis. PMID:24314112

  17. Supraglottoplasty for sleep endoscopy diagnosed sleep dependent laryngomalacia.

    PubMed

    Mase, Caitlin A; Chen, Maida L; Horn, David L; Parikh, Sanjay R

    2015-04-01

    To evaluate the polysomnographic outcomes of supraglottoplasty (SGP) performed for sleep endoscopy diagnosed sleep dependent laryngomalacia as treatment for obstructive sleep apnea syndrome (OSAS). Nine subjects aged 6-55 months underwent supraglottoplasty for sleep dependent laryngomalacia. All subjects underwent both pre- and post-procedural polysomnograms. Supraglottoplasty for sleep dependent laryngomalacia resulted in improvement of OSAS as measured by collective improvements in 8 different primary polysomnogram parameters: apnea-hypopnea index (AHI), minimum (nadir) and mean oxygen saturation, mean and maximum carbon dioxide, total sleep time, sleep efficiency, arousal index, as well as improvement in weight for length percentiles. Subjects had a significant 80% decrease in percentage change in AHI (p<0.005), with decrease in mean AHI from 23.4 to 4.8 following supraglottoplasty. Seven of 9 subjects demonstrated improvement in nadir saturations, 6 of 9 subjects had improvement in sleep efficiency, and 7 of 8 subjects under 4 years of age had improvement in weight for length percentile. Supraglottoplasty for sleep dependent laryngomalacia is an effective treatment of OSAS, and can be readily diagnosed using sleep endoscopy. Further investigation is warranted to increase awareness and outcomes related to sleep dependent laryngomalacia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Progressive Cortical Neuronal Damage and Chronic Hemodynamic Impairment in Atherosclerotic Major Cerebral Artery Disease.

    PubMed

    Yamauchi, Hiroshi; Kagawa, Shinya; Kishibe, Yoshihiko; Takahashi, Masaaki; Higashi, Tatsuya

    2016-06-01

    Cross-sectional studies suggest that chronic hemodynamic impairment may cause selective cortical neuronal damage in patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease. The purpose of this longitudinal study was to determine whether the progression of cortical neuronal damage, evaluated as a decrease in central benzodiazepine receptors (BZRs), is associated with hemodynamic impairment at baseline or hemodynamic deterioration during follow-up. We evaluated the distribution of BZRs twice using positron emission tomography and (11)C-flumazenil over time in 80 medically treated patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease that had no ischemic episodes during follow-up. Using 3D stereotactic surface projections, we quantified abnormal decreases in the BZRs in the cerebral cortex within the middle cerebral artery distribution and correlated changes in the BZR index with the mean hemispheric values of hemodynamic parameters obtained from (15)O gas positron emission tomography. In the hemisphere affected by arterial disease, the BZR index in 40 patients (50%) was increased during follow-up (mean 26±20 months). In multivariable logistic regression analyses, increases in the BZR index were associated with the decreased cerebral blood flow at baseline and an increased oxygen extraction fraction during follow-up. Increases in the oxygen extraction fraction during follow-up were associated with a lack of statin use. In patients with atherosclerotic internal carotid artery or middle cerebral artery disease, the progression of cortical neuronal damage was associated with hemodynamic impairment at baseline and hemodynamic deterioration during follow-up. Statin use may be beneficial against hemodynamic deterioration and therefore neuroprotective. © 2016 American Heart Association, Inc.

  19. Prenatal Exposure to Arsenic Impairs Behavioral Flexibility and Cortical Structure in Mice

    PubMed Central

    Aung, Kyaw H.; Kyi-Tha-Thu, Chaw; Sano, Kazuhiro; Nakamura, Kazuaki; Tanoue, Akito; Nohara, Keiko; Kakeyama, Masaki; Tohyama, Chiharu; Tsukahara, Shinji; Maekawa, Fumihiko

    2016-01-01

    Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although, it has been demonstrated that exposure to sodium arsenite (NaAsO2) suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL), which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm) was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment. PMID:27064386

  20. The association of cognitive impairment with gray matter atrophy and cortical lesion load in clinically isolated syndrome.

    PubMed

    Diker, Sevda; Has, Arzu Ceylan; Kurne, Aslı; Göçmen, Rahşan; Oğuz, Kader Karlı; Karabudak, Rana

    2016-11-01

    Multiple sclerosis can impair cognition from the early stages and has been shown to be associated with gray matter damage in addition to white matter pathology. To investigate the profile of cognitive impairment in clinically isolated syndrome (CIS), and the contribution of cortical inflammation, cortical and deep gray matter atrophy, and white matter lesions to cognitive decline. Thirty patients with clinically isolated syndrome and twenty demographically- matched healthy controls underwent neuropsychologic assessment through the Rao Brief Repeatable Battery, and brain magnetic resonance imaging with double inversion recovery using a 3T scanner. Patients with clinically isolated syndrome performed significantly worse than healthy controls on tests that evaluated verbal memory, visuospatial learning and memory, and verbal fluency. Significant deep gray matter atrophy was found in the patients but cortical volume was not lower than the controls. Visual memory tests correlated with the volume of the hippocampus, cerebral white matter and deep gray matter structures and with cerebellar cortical atrophy. Cortical or white matter lesion load did not affect cognitive test results. In our patients with CIS, it was shown that cognitive impairment was mainly related to cerebral white matter, cerebellar cortical and deep gray matter atrophy, but not with cortical inflammation, at least in the early stage of disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Task-specific impairment of motor cortical excitation and inhibition in patients with writer's cramp.

    PubMed

    Tinazzi, Michele; Farina, Simona; Edwards, Mark; Moretto, Giuseppe; Restivo, Domenico; Fiaschi, Antonio; Berardelli, Alfredo

    2005-04-11

    Abnormalities in motor cortical excitation and inhibition have been reported in patients with writer's cramp, at rest and during muscle activation. We were interested in whether such abnormalities might be task-specific and depended on the type of movement task used to activate the dystonic hand. We therefore assessed motor-evoked potentials (facilitation/rest MEP amplitude ratio) and duration of the cortical silent period (CSP) from the right first dorsal interosseus (FDI) muscle to transcranial magnetic stimulation (TMS) in 10 patients with writer's cramp and in 10 healthy volunteers performing pincer and power gripping tasks. The mean facilitation/rest MEP amplitude ratio measured during the pincer grip task was significantly larger in dystonic subjects than in controls, but in the power grip condition was similar in the two groups. The CSP measured in the power grip condition was of similar length in normal controls and dystonic subjects, but in the pincer grip condition was significantly shorter in patients than in controls. These results indicate a task-specific impairment of motor cortical excitation and inhibition in writer's cramp.

  2. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice.

    PubMed

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-06-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis.

  3. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice

    PubMed Central

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-01-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis. PMID:26946128

  4. Parkinson's disease with mild cognitive impairment: severe cortical thinning antedates dementia.

    PubMed

    Gasca-Salas, Carmen; García-Lorenzo, Daniel; Garcia-Garcia, David; Clavero, Pedro; Obeso, José A; Lehericy, Stephane; Rodríguez-Oroz, María C

    2017-07-14

    Mild cognitive impairment (MCI) in Parkinson's disease (PD) is a risk factor for dementia and thus, it is of interest to elucidate if specific patterns of atrophy in PD-MCI patients are associated with a higher risk of developing dementia. We aim to define pattern(s) of regional atrophy in PD-MCI patients who developed dementia during 31 months of follow-up using cortical thickness analysis Twenty-three PD-MCI patients and 18 controls underwent brain MRI and completed a neuropsychological examination at baseline, PD-MCI patients were followed after a 31 month follow-up in order to assess their progression to dementia. At follow up, 8 PD-MCI patients had converted to dementia (PD-MCI converters) whereas 15 remained as PD-MCI (PD-MCI non-converters). All patients were at least 60 years old and suffered PD ≥ 10 years. There were no baseline differences between the two groups of patients in clinical and neuropsychological variables. The cortex of PD-MCI converters was thinner than that of PD-MCI non-converters, bilaterally in the frontal, insula and the left middle temporal areas, also displaying a more widespread pattern of cortical thinning relative to the controls. This study shows that aged and long-term PD patients with MCI who convert to dementia in the short-mid term suffer a thinning of the cortex in several areas (frontal cortex, and middle temporal lobe and insula), even when their cognitive impairment was similar to that of PD-MCI non-converters. Thus, MRI analysis of cortical thickness may represent a useful measure to identify PD-MCI patients at a higher risk of developing dementia.

  5. Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images.

    PubMed

    Guo, Shengwen; Lai, Chunren; Wu, Congling; Cen, Guiyin

    2017-01-01

    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI-cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI-NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI-NC comparison. The best performances obtained by the SVM classifier using the essential features were 5-40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its

  6. Lesions to Primary Sensory and Posterior Parietal Cortices Impair Recovery from Hand Paresis after Stroke

    PubMed Central

    Abela, Eugenio; Missimer, John; Wiest, Roland; Federspiel, Andrea; Hess, Christian; Sturzenegger, Matthias; Weder, Bruno

    2012-01-01

    Background Neuroanatomical determinants of motor skill recovery after stroke are still poorly understood. Although lesion load onto the corticospinal tract is known to affect recovery, less is known about the effect of lesions to cortical sensorimotor areas. Here, we test the hypothesis that lesions of somatosensory cortices interfere with the capacity to recover motor skills after stroke. Methods Standardized tests of motor skill and somatosensory functions were acquired longitudinally over nine months in 29 patients with stroke to the pre- and postcentral gyrus, including adjacent areas of the frontal, parietal and insular cortices. We derived the recovery trajectories of each patient for five motor subtest using least-squares curve fitting and objective model selection procedures for linear and exponential models. Patients were classified into subgroups based on their motor recovery models. Lesions were mapped onto diffusion weighted imaging scans and normalized into stereotaxic space using cost-function masking. To identify critical neuranatomical regions, voxel-wise subtractions were calculated between subgroup lesion maps. A probabilistic cytoarchitectonic atlas was used to quantify of lesion extent and location. Results Twenty-three patients with moderate to severe initial deficits showed exponential recovery trajectories for motor subtests that relied on precise distal movements. Those that retained a chronic motor deficit had lesions that extended to the center of the somatosensory cortex (area 2) and the intraparietal sulcus (areas hIP1, hIP2). Impaired recovery outcome correlated with lesion extent on this areas and somatosensory performance. The rate of recovery, however, depended on the lesion load onto the primary motor cortex (areas 4a, 4p). Conclusions Our findings support a critical role of uni-and multimodal somatosensory cortices in motor skill recovery. Whereas lesions to these areas influence recovery outcome, lesions to the primary motor

  7. Sleep-Dependent Learning and Motor-Skill Complexity

    ERIC Educational Resources Information Center

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics…

  8. Sleep-Dependent Learning and Motor-Skill Complexity

    ERIC Educational Resources Information Center

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics…

  9. Effects of experimental traumatic brain injury and impaired glutamate transport on cortical spreading depression.

    PubMed

    Hosseini-Zare, Mahshid Sadat; Gu, Feng; Abdulla, Ahmad; Powell, Simon; Žiburkus, Jokūbas

    2017-09-01

    Cortical spreading depression (CSD) is associated with traumatic brain injury (TBI), stroke, migraines, and seizures. Typically, following TBIs and other insults, neuronal excitability in and around the area of the injury is affected, with reported increases in local glutamate signaling. Astrocytic glutamate transporters are critical for precise regulation of the extracellular glutamate availability. However, it remains unclear how impaired astrocytic glutamate transport or an acute TBI affect characteristics of the CSD. We quantified the properties of CSD using whole-cell and extracellular electrophysiological recordings, and voltage-sensitive dye imaging (VSDI) in rat visual cortex in vitro. To model impaired astrocytic glutamate transport, we used astrocytic glutamate transporter blocker (2S, 3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA). In addition, an acute incision through the superficial cortical layers was used to model the effects of acute traumatic brain injury (TBI) on CSD characteristics. Both manipulations; impaired glutamate cycling and acute cut profoundly affected the physiological properties of cell firing, latency to CSD formation, and its frequency of occurrence. VSD imaging analysis revealed significant changes in spatiotemporal dynamics and propagation of the CSD, suggesting that the cut itself may not initiate CSD depolarizing waves, but rather attract them. Blockade of GLT-1 caused significant reduction in whole-cell sodium currents and changes in CSD wave spatiotemporal characteristics as well, slowing it or even 'trapping' its propagation. Our results reveal new information about CSD properties in these pathological conditions and demonstrate an important role of GLT-1 in regulation of CSD. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Chronic post-stroke oropharyngeal dysphagia is associated with impaired cortical activation to pharyngeal sensory inputs.

    PubMed

    Cabib, C; Ortega, O; Vilardell, N; Mundet, L; Clavé, P; Rofes, L

    2017-09-05

    The role of afferent sensory pathways in the pathophysiology of post-stroke oropharyngeal dysphagia is not known. We hypothesized that patients with chronic post-stroke dysphagia (PSD) would show impaired sensory cortical activation in the ipsilesional hemisphere. We studied 28 chronic unilateral post-stroke patients [17 PSD and 11 post-stroke non-dysphagic patients (PSnD)] and 11 age-matched healthy volunteers. Event-related sensory-evoked potentials to pharyngeal stimulation (pSEP) and sensory thresholds were assessed. We analyzed pSEP peak latency and amplitude (N1, P1, N2 and P2), and neurotopographic stroke characteristics from brain magnetic resonance imaging. Healthy volunteers presented a highly symmetric bihemispheric cortical pattern of brain activation at centroparietal areas (N1-P1 and N2-P2) to pharyngeal stimuli. In contrast, an asymmetric pattern of reduced ipsilesional activation was found in PSD (N2-P2; P = 0.026) but not in PSnD. PSD presented impaired safety of swallow (penetration-aspiration score: 4.3 ± 1.6), delayed laryngeal vestibule closure (360.0 ± 70.0 ms) and higher National Institute of Health Stroke Scale (7.0 ± 6.2 vs. 1.9 ± 1.4, P = 0.001) and Fazekas scores (3.0 ± 1.4 vs. 2.0 ± 1.1; P < 0.05) than PSnD. pSEP showed a unilateral delay at stroke site exclusively for PSD (peak-latency interhemispheric difference vs. PSnD: N1, 6.5 ± 6.7 vs. 1.1 ± 1.0 ms; N2, 32.0 ± 15.8 vs. 4.5 ± 4.9 ms; P < 0.05). Chronic post-stroke oropharyngeal dysphagia is associated with stroke severity and degree of leukoaraoisis. Impaired conduction and cortical integration of pharyngeal sensory inputs at stroke site are key features of chronic PSD. These findings highlight the role of sensory pathways in the pathophysiology of post-stroke oropharyngeal dysphagia and offer a potential target for future treatments. © 2017 EAN.

  11. Reactivity of cortical alpha rhythms to eye opening in mild cognitive impairment and Alzheimer's disease: an EEG study.

    PubMed

    Babiloni, Claudio; Lizio, Roberta; Vecchio, Fabrizio; Frisoni, Giovanni B; Pievani, Michela; Geroldi, Cristina; Claudia, Fracassi; Ferri, Raffaele; Lanuzza, Bartolo; Rossini, Paolo M

    2010-01-01

    Cortical sources of resting eyes-closed alpha rhythms are typically abnormal in mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects. Here we tested the hypothesis of a progressive impairment of cortical alpha reactivity to eye-opening across amnesic MCI and mild AD subjects, reflecting another aspect of the impairment of cortical neural synchronization. Resting electroencephalography (EEG) data were recorded in 36 normal elderly subjects (Nold), 91 amnesic MCI, and 31 mild AD subjects during eyes-closed and -open conditions. EEG sources were estimated by LORETA software. In the eye-closed condition, posterior alpha 1 (8-10.5 Hz) sources were lower in MCI and AD than Nold subjects. The opposite was true for occipital delta sources (2-4 Hz). Reactivity to the eyes-open condition showed posterior alpha 1 and alpha 2 (10.5-13 Hz) sources was high in the Nold, intermediate in the MCI, and low in the AD subjects. Furthermore, occipital alpha 1 reactivity across MCI and AD subjects was correlated to the cognitive impairment as revealed by Mini-Mental State Examination score. In conclusion, at least at group level, the continuum across amnesic MCI and mild AD status is related to an impaired reactivity of cortical neuronal synchronization to eyes opening at alpha rhythms.

  12. Mechanisms of cortical neural synchronization related to healthy and impaired consciousness: evidence by quantitative electroencephalographic studies.

    PubMed

    Babiloni, Claudio; Vecchio, Fabrizio; Buffo, Paola; Iacoboni, Marco; Pistoia, Francesca; Sacco, Simona; Sara, Marco; Rossini, Paolo Maria

    2014-01-01

    In this paper, we review the contribution of our research group to the study of human consciousness by quantitative electroencephalographic (EEG) techniques. We posit that EEG techniques can be extremely useful for a direct measurement of brain electrophysiological activity related to human consciousness for their unsurpassable high temporal resolution (milliseconds). This activity can be expressed in terms of event-related potentials as well as changes of EEG rhythms of interest, for example the dominant alpha rhythms (about 8-12 Hz). The results of our studies, and those of several independent groups, lead support to the hypothesis that these techniques provide important insights about the neurophysiologic mechanisms underlying cortical neural synchronization/desynchronization and the regulation of neuromodulatory systems (e.g. dopaminergic, noradrenergic, cholinergic, etc.) at the basis of brain arousal and consciousness in healthy subjects and in patients with impairment of the consciousness. A possible interaction of these mechanisms and the drugs administered to patients with consciousness disorders is discussed.

  13. Ultramicroscopy Reveals Axonal Transport Impairments in Cortical Motor Neurons at Prion Disease

    PubMed Central

    Ermolayev, Vladimir; Friedrich, Mike; Nozadze, Revaz; Cathomen, Toni; Klein, Michael A.; Harms, Gregory S.; Flechsig, Eckhard

    2009-01-01

    Abstract The functional imaging of neuronal circuits of the central nervous system is crucial for phenotype screenings or investigations of defects in neurodegenerative disorders. Current techniques yield either low penetration depth, yield poor resolution, or are restricted by the age of the animals. Here, we present a novel ultramicroscopy protocol for fluorescence imaging and three-dimensional reconstruction in the central nervous system of adult mice. In combination with tracing as a functional assay for axonal transport, retrogradely labeled descending motor neurons were visualized with >4 mm penetration depth. The analysis of the motor cortex shortly before the onset of clinical prion disease revealed that >80% neurons have functional impairments in axonal transport. Our study provides evidence that prion disease is associated with severe axonal transport defects in the cortical motor neurons and suggests a novel mechanism for prion-mediated neurodegeneration. PMID:19383482

  14. Boy with cortical visual impairment and unilateral hemiparesis in Jeff Huntington's "Slip" (2011).

    PubMed

    Bianucci, R; Perciaccante, A; Appenzeller, O

    2016-11-15

    Face recognition is strongly associated with the human face and face perception is an important part in identifying health qualities of a person and is an integral part of so called spot diagnosis in clinical neurology. Neurology depends in part on observation, description and interpretation of visual information. Similar skills are required in visual art. Here we report a case of eye cortical visual impairment (CVI) and unilateral facial weakness in a boy depicted by the painter Jeff Huntington (2011). The corollary of this is that art serves medical clinical exercise. Art interpretation helps neurology students to apply the same skills they will use in clinical experience and to develop their observational and interpretive skills in non-clinical settings. Furthermore, the development of an increased awareness of emotional and character expression in the human face may facilitate successful doctor-patient relationships.

  15. Olanzapine Treatment of Adolescent Rats Causes Enduring Specific Memory Impairments and Alters Cortical Development and Function

    PubMed Central

    Swanson, Thomas; Enos, Jennifer K.; Bailey, Aileen M.; Kolb, Bryan; Frost, Douglas O.

    2013-01-01

    Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug treatment. Most antipsychotic drugs are potent antagonists or partial agonists of dopamine D2 receptors; atypical antipsychotic drugs also antagonize type 2A serotonin receptors. Dopamine and serotonin regulate many neurodevelopmental processes. Thus, early life antipsychotic drug treatment can, potentially, perturb these processes, causing long-term behavioral- and neurobiological impairments. Here, we treated adolescent, male rats with olanzapine on post-natal days 28–49. As adults, they exhibited impaired working memory, but normal spatial memory, as compared to vehicle-treated control rats. They also showed a deficit in extinction of fear conditioning. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, parietal cortex, nucleus accumbens core and dentate gyrus, adolescent olanzapine treatment altered the developmental dynamics and mature values of dendritic spine density in a region-specific manner. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, D1 binding was reduced and binding of GABAA receptors with open Cl− channels was increased. In medial prefrontal cortex, D2 binding was also increased. The persistence of these changes underscores the importance of improved understanding of the enduring sequelae of pediatric APD treatment as a basis for weighing the benefits and risks of adolescent antipsychotic drug therapy, especially prophylactic treatment in high risk, asymptomatic patients. The long-term changes in neurotransmitter receptor binding and neural circuitry induced by adolescent APD treatment may also cause enduring changes in behavioral- and neurobiological responses to

  16. Prenatal Exposure to Benzo(a)pyrene Impairs Later-Life Cortical Neuronal Function

    PubMed Central

    McCallister, Monique M.; Maguire, Mark; Ramesh, Aramandla; Aimin, Qiao; Liu, Sheng; Khoshbouei, Habibeh; Aschner, Michael; Ebner, Ford F.; Hood, Darryl B.

    2009-01-01

    Prenatal exposure to environmental contaminants, such as Benzo(a)pyrene [B(a)P] has been shown to impair brain development. The overarching hypothesis of our work is that glutamate receptor subunit expression is crucial for cortical evoked responses and that prenatal B(a)P exposure modulates the temporal developmental expression of glutamatergic receptor subunits in the somatosensory cortex. To characterize prenatal B(a)P exposure on the development of cortical function, pregnant Long Evans rats were exposed to low-level B(a)P (300μg/kg BW) by oral gavage on gestational days 14 to 17. At this exposure dose, there was no significant effect of B(a)P on 1) the number of pups born per litter, 2) the pre-weaning growth curves and 3) initial and final brain to body weight ratios. Control and B(a)P-exposed offspring were profiled for B(a)P metabolites in plasma and whole brain during the pre-weaning period. No detectable levels of metabolites were found in the control offspring. However, a time-dependent decrease in total metabolite concentration was observed in B(a)P-exposed offspring. On PND100-120, cerebrocortical mRNA expression was determined for the glutamatergic NMDA receptor subunit (NR2B) in control and B(a)P-exposed offspring. Neural activity was also recorded from neurons in primary somatic sensory (barrel) cortex. Semiquantitative PCR from B(a)P-exposed offspring revealed a significant 50% reduction in NR2B mRNA expression in B(a)P-exposed offspring relative to controls. Recordings from B(a)P-exposed offspring revealed that N-methyl-D-aspartate (NMDA) receptor -dependent neuronal activity in barrel cortex evoked by whisker stimulation was also significantly reduced (70%) as compared to controls. Analysis showed that the greatest deficit in cortical neuronal responses occurred in the shorter latency epochs from 5-20ms post-stimulus. The results suggest that in utero exposure to benzo(a)pyrene results in diminished mRNA expression of the NMDA NR2B receptor

  17. Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults

    PubMed Central

    Van Dun, Bram; Kania, Anna; Dillon, Harvey

    2016-01-01

    Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds—/m/, /g/, and /t/—were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users. PMID:27587919

  18. Differential Effect of an Anticholinergic Antidepressant on Sleep-Dependent Memory Consolidation

    PubMed Central

    Goerke, Monique; Cohrs, Stefan; Rodenbeck, Andrea; Kunz, Dieter

    2014-01-01

    Study Objectives: Rapid eye movement (REM) sleep is considered critical to the consolidation of procedural memory – the memory of skills and habits. Many antidepressants strongly suppress REM sleep, however, and procedural memory consolidation has been shown to be impaired in depressed patients on antidepressant therapy. As a result, it is important to determine whether antidepressive therapy can lead to amnestic impairment. We thus investigated the effects of the anticholinergic antidepressant amitriptyline on sleep-dependent memory consolidation. Design: Double-blind, placebo-controlled, randomized, parallel-group study. Setting: Sleep laboratory. Participants: Twenty-five healthy men (mean age: 26.8 ± 5.6 y). Interventions: 75 mg amitriptyline versus placebo. Measurements/Results: To test memory consolidation, a visual discrimination task, a finger-tapping task, the Rey-Osterrieth Complex Figure Test, and the Rey Auditory-Verbal Learning Test were performed. Sleep was measured using polysomnography. Our findings show that amitriptyline profoundly suppressed REM sleep and impaired perceptual skill learning, but not motor skill or declarative learning. Conclusions: Our study is the first to demonstrate that an antidepressant can affect procedural memory consolidation in healthy subjects. Moreover, considering the results of a recent study, in which selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors were shown not to impair procedural memory consolidation, our findings suggest that procedural memory consolidation is not facilitated by the characteristics of REM sleep captured by visual sleep scoring, but rather by the high cholinergic tone associated with REM sleep. Our study contributes to the understanding of potentially undesirable behavioral effects of amitriptyline. Citation: Goerke M, Cohrs S, Rodenbeck A, Kunz D. Differential effect of an anticholinergic antidepressant on sleep-dependent memory consolidation. SLEEP

  19. Prefrontal cortical GABAergic dysfunction contributes to age-related working memory impairment.

    PubMed

    Bañuelos, Cristina; Beas, B Sofia; McQuail, Joseph A; Gilbert, Ryan J; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L

    2014-03-05

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions.

  20. Prefrontal Cortical GABAergic Dysfunction Contributes to Age-Related Working Memory Impairment

    PubMed Central

    Bañuelos, Cristina; Beas, B. Sofia; McQuail, Joseph A.; Gilbert, Ryan J.; Frazier, Charles J.; Setlow, Barry

    2014-01-01

    Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects. Results indicate that in aged medial prefrontal cortex (mPFC), expression of the vesicular GABA transporter VGAT was unchanged; however, there was a significant increase in expression of the GABA synthesizing enzyme GAD67, and a significant decrease in the primary neuronal GABA transporter GAT-1 and in both subunits of the GABA(B) receptor (GABA(B)R). Expression of VGAT, GAD67, and GAT-1 was not associated with working memory ability. In contrast, among aged rats, GABA(B)R expression was significantly and negatively associated with working memory performance, such that lower GABA(B)R expression predicted better working memory. Subsequent experiments showed that systemic administration of a GABA(B)R antagonist, CGP55845, dose-dependently enhanced working memory in aged rats. This enhancing effect of systemic CGP55845 was reproduced by direct intra-mPFC administration. Together, these data suggest that age-related dysregulation of GABAergic signaling in prefrontal cortex may play a causal role in impaired working memory and that targeting GABA(B)Rs may provide therapeutic benefit for age-related impairments in executive functions. PMID:24599447

  1. A Bird's Eye View of Sleep-Dependent Memory Consolidation.

    PubMed

    Brawn, Timothy P; Margoliash, Daniel

    2015-01-01

    How new experiences are solidified into long-lasting memories is a central question in the study of brain and behavior. One of the most intriguing discoveries in memory research is that brain activity during sleep helps to transform newly learned information and skills into robust memories. Though the first experimental work linking sleep and memory was conducted 90 years ago by Jenkins and Dallenbach, the case for sleep-dependent memory consolidation has only garnered strong support in the last decade. Recent studies in humans provide extensive behavioral, imaging, and polysomnographic data supporting sleep consolidation of a broad range of memory tasks. Likewise, studies in a few animal model systems have elucidated potential mechanisms contributing to sleep consolidation such as neural reactivation and synaptic homeostasis. Here, we present an overview of sleep-dependent memory consolidation, focusing on how investigations of sleep and learning in birds have complemented the progress made in mammalian systems by emphasizing a strong connection between behavior and physiology. We begin by describing the behavioral approach that has been utilized to demonstrate sleep consolidation in humans. We then address neural reactivation in the rodent hippocampal system as a putative mechanism of sleep consolidation. Next, we discuss the role of sleep in the learning and maintenance of song in zebra finches. We note that while both the rodent and zebra finch systems provide evidence for sleep-dependent memory changes in physiology and behavior, neither duplicates the pattern of changes most commonly observed in humans. Finally, we present a recently developed model of sleep consolidation involving auditory classification learning in European starlings , which has the potential to connect behavioral evidence of sleep consolidation as developed in humans with underlying neural mechanisms observable in animals.

  2. Auditory processing disorder in patients with language-learning impairment and correlation with malformation of cortical development.

    PubMed

    Boscariol, Mirela; Guimarães, Catarina Abraão; Hage, Simone R de Vasconcellos; Garcia, Vera Lucia; Schmutzler, Kátia M R; Cendes, Fernando; Guerreiro, Marilisa Mantovani

    2011-11-01

    Malformations of cortical development have been described in children and families with language-learning impairment. The objective of this study was to assess the auditory processing information in children with language-learning impairment in the presence or absence of a malformation of cortical development in the auditory processing areas. We selected 32 children (19 males), aged eight to 15 years, divided into three groups: Group I comprised 11 children with language-learning impairment and bilateral perisylvian polymicrogyria, Group II comprised 10 children with language-learning impairment and normal MRI, and Group III comprised 11 normal children. Behavioral auditory tests, such as the Random Gap Detection Test and Digits Dichotic Test were performed. Statistical analysis was performed using the Kruskal-Wallis test and Mann-Whitney test, with a level of significance of 0.05. The results revealed a statistically significant difference among the groups. Our data showed abnormalities in auditory processing of children in Groups I and II when compared with the control group, with children in Group I being more affected than children in Group II. Our data showed that the presence of a cortical malformation correlates with a worse performance in some tasks of auditory processing function.

  3. Early Visual Evoked Potential Acuity and Future Behavioral Acuity in Cortical Visual Impairment

    PubMed Central

    Watson, Tonya; Orel-Bixler, Deborah; Haegerstrom-Portnoy, Gunilla

    2014-01-01

    Purpose Cortical Visual Impairment (CVI) is bilateral visual impairment caused by damage to the posterior visual pathway. Both preferential looking (PL) and sweep visual evoked potential (VEP) can be used to measure visual acuity. The purpose of this study was to determine if an early VEP measure of acuity is related to a young patient’s future behavioral acuity. Methods The visual acuity of 33 patients with CVI was assessed using the sweep VEP and a behavioral measure on two occasions. The median age of the patients at the initial visit was 4.8 years (range: 1.3–19.2 years), and they were followed for an average of 6.9 years (SD: 3.5 years). Results The mean initial VEP acuity was 20/135 (0.735 logMAR), and the mean initial behavioral acuity was 20/475 (1.242 logMAR). The average difference between the two initial measures of acuity was 0.55 log unit, with the behavioral measure reporting a poorer visual acuity in all patients. However, the mean final behavioral acuity was 20/150 (0.741 logMAR), and the average difference between the initial VEP acuity and the final behavioral acuity was only 0.01 log unit. Therefore, the initial VEP measure was not statistically different from the final behavioral measure (t=0.11; df=32; p=0.45). Conclusions Even though the initial VEP measure was much better than the initial behavioral measure, the initial VEP measure was similar to the behavioral visual acuity measured approximately 7 years later. Sweep VEP testing can be used as a predictive tool for at least the lower limit of future behavioral acuity in young patients with CVI. PMID:20016393

  4. Impact of Depression, Fatigue, and Global Measure of Cortical Volume on Cognitive Impairment in Multiple Sclerosis

    PubMed Central

    De Cola, Maria Cristina; D'Aleo, Giangaetano; Sessa, Edoardo; Marino, Silvia

    2015-01-01

    Objective. To investigate the influence of demographic and clinical variables, such as depression, fatigue, and quantitative MRI marker on cognitive performances in a sample of patients affected by multiple sclerosis (MS). Methods. 60 MS patients (52 relapsing remitting and 8 primary progressive) underwent neuropsychological assessments using Rao's Brief Repeatable Battery of Neuropsychological Tests (BRB-N), the Beck Depression Inventory-second edition (BDI-II), and the Fatigue Severity Scale (FSS). We performed magnetic resonance imaging to all subjects using a 3 T scanner and obtained tissue-specific volumes (normalized brain volume and cortical brain volume). We used Student's t-test to compare depressed and nondepressed MS patients. Finally, we performed a multivariate regression analysis in order to assess possible predictors of patients' cognitive outcome among demographic and clinical variables. Results. 27.12% of the sample (16/59) was cognitively impaired, especially in tasks requiring attention and information processing speed. From between group comparison, we find that depressed patients had worse performances on BRB-N score, greater disability and disease duration, and brain volume decrease. According to multiple regression analysis, the BDI-II score was a significant predictor for most of the neuropsychological tests. Conclusions. Our findings suggest that the presence of depressive symptoms is an important determinant of cognitive performance in MS patients. PMID:25861633

  5. Herpes Simplex Virus-Type1 (HSV-1) Impairs DNA Repair in Cortical Neurons.

    PubMed

    De Chiara, Giovanna; Racaniello, Mauro; Mollinari, Cristiana; Marcocci, Maria Elena; Aversa, Giorgia; Cardinale, Alessio; Giovanetti, Anna; Garaci, Enrico; Palamara, Anna Teresa; Merlo, Daniela

    2016-01-01

    Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer's disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions.

  6. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    PubMed Central

    Razik, Daniel S.; Hawellek, David J.; Antkowiak, Bernd; Hentschke, Harald

    2013-01-01

    In the central nervous system, GABA transporters (GATs) very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM), reaching a level of 80% at 500–1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed toward an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists. PMID:24062646

  7. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition.

    PubMed

    Razik, Daniel S; Hawellek, David J; Antkowiak, Bernd; Hentschke, Harald

    2013-01-01

    In the central nervous system, GABA transporters (GATs) very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity--termed network bursts and silent periods--in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM), reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed toward an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  8. Herpes Simplex Virus-Type1 (HSV-1) Impairs DNA Repair in Cortical Neurons

    PubMed Central

    De Chiara, Giovanna; Racaniello, Mauro; Mollinari, Cristiana; Marcocci, Maria Elena; Aversa, Giorgia; Cardinale, Alessio; Giovanetti, Anna; Garaci, Enrico; Palamara, Anna Teresa; Merlo, Daniela

    2016-01-01

    Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer’s disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions. PMID:27803664

  9. Chronic cortical visual impairment in children: aetiology, prognosis, and associated neurological deficits

    PubMed Central

    Huo, R.; Burden, S.; Hoyt, C.; Good, W.

    1999-01-01

    BACKGROUND/AIMS—To evaluate prevalence, aetiology, prognosis, and associated neurological and ophthalmological problems in children with cortical visual impairment (CVI).
METHODS—The records of 7200 outpatients seen in the paediatric ophthalmology practice over the past 15 years were reviewed in order to compile data concerning CVI. In addition, the authors devised and applied a system for grading visual recovery in order to assess prognosis.
RESULTS—CVI occurred in 2.4% of all patients examined. The four most common causes of CVI were perinatal hypoxia (22%), cerebral vascular accident (14%), meningitis (12%), and acquired hypoxia (10%). Most children with CVI had associated neurological abnormalities. The most common were seizures (53%), cerebral palsy (26%) hemiparesis (12%), and hypotonia (5%). Associated ophthalmological problems were esotropia (19%), exotropia (18%), optic nerve atrophy (16%), ocular motor apraxia (15%), nystagmus (11%), and retinal disease (3%). On average, CVI patients improved by two levels as measured by the authors' scale.
CONCLUSION—The majority of children with CVI showed at least some recovery. In this group of children, CVI is often accompanied by additional ophthalmological problems and is nearly always associated with other, serious neurological abnormalities.

 PMID:10340973

  10. The impact of experienced stress on aged spatial discrimination: Cortical overreliance as a result of hippocampal impairment.

    PubMed

    Marshall, Amanda C; Cooper, Nicholas R; Geeraert, Nicolas

    2016-03-01

    A large body of neuroscientific work indicates that exposure to experienced stress causes damage to both cortical and hippocampal cells and results in impairments to cognitive abilities associated with these structures. Similarly, work within the domain of cognitive aging demonstrates that elderly participants who report experiencing greater amounts of stress show reduced levels of cognitive functioning. The present article attempted to combine both findings by collecting data from elderly and young participants who completed a spatial discrimination paradigm developed by Reagh and colleagues [Reagh et al. (2013) Hippocampus 24:303-314] to measure hippocampal-mediated cognitive processes. In order to investigate the effect of stress on the cortex and, indirectly, the hippocampus, it paired the paradigm with electroencephalographic recordings of the theta frequency band, which is thought to reflect cortical/hippocampal interactions. Findings revealed that elderly participants with high levels of experienced stress performed significantly worse on target recognition and lure discrimination and demonstrated heightened levels of cortical theta synchronization compared with young and elderly low stress counterparts. Results therefore provided further evidence for the adverse effect of stress on cognitive aging and indicate that impaired behavioral performance among high stress elderly may coincide with an overreliance on cortical cognitive processing strategies as a result of early damage to the hippocampus.

  11. Sleep-dependent consolidation of value-based learning.

    PubMed

    Baran, Bengi; Daniels, Dasha; Spencer, Rebecca M C

    2013-01-01

    It has been suggested that sleep selectively enhances memories with future relevance. Given that sleep's benefits can vary by item within a learning context, the present study investigated whether the amount of sleep-dependent consolidation may vary across items based on the value of the to-be-learned material. For this purpose, we used a value-based learning paradigm in which participants studied words paired with point values. There were two groups; participants either studied the words in the evening and were tested after a 12 hr interval containing a full night of sleep, or studied the words in the morning and were tested after 12 hr of continuous daytime wake. Free recall (F(1,36) = 19.35, p<.001) and recognition accuracy (F(1,36) = 7.59, p = .01) for words were better following sleep relative to wake. However there was no difference in the linear increase in the probability of delayed recall with increasing word value for sleep and wake groups (p = .74). Thus, while encoding may vary with the value of the to-be-learned item, sleep-dependent consolidation does not.

  12. Sleep-dependent directional coupling between human neocortex and hippocampus.

    PubMed

    Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen

    2010-02-01

    Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex. Copyright 2009 Elsevier Srl. All rights reserved.

  13. Sleep-Dependent Modulation of Metabolic Rate in Drosophila.

    PubMed

    Stahl, Bethany A; Slocumb, Melissa E; Chaitin, Hersh; DiAngelo, Justin R; Keene, Alex C

    2017-08-01

    Dysregulation of sleep is associated with metabolic diseases, and metabolic rate (MR) is acutely regulated by sleep-wake behavior. In humans and rodent models, sleep loss is associated with obesity, reduced metabolic rate, and negative energy balance, yet little is known about the neural mechanisms governing interactions between sleep and metabolism. We have developed a system to simultaneously measure sleep and MR in individual Drosophila, allowing for interrogation of neural systems governing interactions between sleep and metabolic rate. Like mammals, MR in flies is reduced during sleep and increased during sleep deprivation suggesting sleep-dependent regulation of MR is conserved across phyla. The reduction of MR during sleep is not simply a consequence of inactivity because MR is reduced ~30 minutes following the onset of sleep, raising the possibility that CO2 production provides a metric to distinguish different sleep states in the fruit fly. To examine the relationship between sleep and metabolism, we determined basal and sleep-dependent changes in MR is reduced in starved flies, suggesting that starvation inhibits normal sleep-associated effects on metabolic rate. Further, translin mutant flies that fail to suppress sleep during starvation demonstrate a lower basal metabolic rate, but this rate was further reduced in response to starvation, revealing that regulation of starvation-induced changes in MR and sleep duration are genetically distinct. Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly.

  14. Differential effect of an anticholinergic antidepressant on sleep-dependent memory consolidation.

    PubMed

    Goerke, Monique; Cohrs, Stefan; Rodenbeck, Andrea; Kunz, Dieter

    2014-05-01

    Rapid eye movement (REM) sleep is considered critical to the consolidation of procedural memory - the memory of skills and habits. Many antidepressants strongly suppress REM sleep, however, and procedural memory consolidation has been shown to be impaired in depressed patients on antidepressant therapy. As a result, it is important to determine whether antidepressive therapy can lead to amnestic impairment. We thus investigated the effects of the anticholinergic antidepressant amitriptyline on sleep-dependent memory consolidation. Double-blind, placebo-controlled, randomized, parallel-group study. Sleep laboratory. Twenty-five healthy men (mean age: 26.8 ± 5.6 y). 75 mg amitriptyline versus placebo. To test memory consolidation, a visual discrimination task, a finger-tapping task, the Rey-Osterrieth Complex Figure Test, and the Rey Auditory-Verbal Learning Test were performed. Sleep was measured using polysomnography. Our findings show that amitriptyline profoundly suppressed REM sleep and impaired perceptual skill learning, but not motor skill or declarative learning. Our study is the first to demonstrate that an antidepressant can affect procedural memory consolidation in healthy subjects. Moreover, considering the results of a recent study, in which selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors were shown not to impair procedural memory consolidation, our findings suggest that procedural memory consolidation is not facilitated by the characteristics of REM sleep captured by visual sleep scoring, but rather by the high cholinergic tone associated with REM sleep. Our study contributes to the understanding of potentially undesirable behavioral effects of amitriptyline.

  15. Dyslexia and language impairment associated genetic markers influence cortical thickness and white matter in typically developing children.

    PubMed

    Eicher, John D; Montgomery, Angela M; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Libiger, Ondrej; Schork, Nicholas J; Darst, Burcu F; Casey, B J; Chang, Linda; Ernst, Thomas; Frazier, Jean; Kaufmann, Walter E; Keating, Brian; Kenet, Tal; Kennedy, David; Mostofsky, Stewart; Murray, Sarah S; Sowell, Elizabeth R; Bartsch, Hauke; Kuperman, Joshua M; Brown, Timothy T; Hagler, Donald J; Dale, Anders M; Jernigan, Terry L; Gruen, Jeffrey R

    2016-03-01

    Dyslexia and language impairment (LI) are complex traits with substantial genetic components. We recently completed an association scan of the DYX2 locus, where we observed associations of markers in DCDC2, KIAA0319, ACOT13, and FAM65B with reading-, language-, and IQ-related traits. Additionally, the effects of reading-associated DYX3 markers were recently characterized using structural neuroimaging techniques. Here, we assessed the neuroimaging implications of associated DYX2 and DYX3 markers, using cortical volume, cortical thickness, and fractional anisotropy. To accomplish this, we examined eight DYX2 and three DYX3 markers in 332 subjects in the Pediatrics Imaging Neurocognition Genetics study. Imaging-genetic associations were examined by multiple linear regression, testing for influence of genotype on neuroimaging. Markers in DYX2 genes KIAA0319 and FAM65B were associated with cortical thickness in the left orbitofrontal region and global fractional anisotropy, respectively. KIAA0319 and ACOT13 were suggestively associated with overall fractional anisotropy and left pars opercularis cortical thickness, respectively. DYX3 markers showed suggestive associations with cortical thickness and volume measures in temporal regions. Notably, we did not replicate association of DYX3 markers with hippocampal measures. In summary, we performed a neuroimaging follow-up of reading-, language-, and IQ-associated DYX2 and DYX3 markers. DYX2 associations with cortical thickness may reflect variations in their role in neuronal migration. Furthermore, our findings complement gene expression and imaging studies implicating DYX3 markers in temporal regions. These studies offer insight into where and how DYX2 and DYX3 risk variants may influence neuroimaging traits. Future studies should further connect the pathways to risk variants associated with neuroimaging/neurocognitive outcomes.

  16. Instrumental learning: an animal model for sleep dependent memory enhancement.

    PubMed

    Leenaars, Cathalijn H C; Girardi, Carlos E N; Joosten, Ruud N J M A; Lako, Irene M; Ruimschotel, Emma; Hanegraaf, Maaike A J; Dematteis, Maurice; Feenstra, Matthijs G P; Van Someren, Eus J W

    2013-07-15

    The relationship between learning and sleep is multifaceted; learning influences subsequent sleep characteristics, which may in turn influence subsequent memory. Studies in humans indicate that sleep may not only prevent degradation of acquired memories, but even enhance performance without further practice. In a rodent instrumental learning task, individual differences occur in how fast rats learn to associate lever pressing with food reward. Rats habitually sleep between learning sessions, and may differ in this respect. The current study assessed if the instrumental leaning paradigm could serve as a model to study sleep-dependent memory enhancement. Male Wistar rats performed 2 sessions of instrumental learning per day for 1-3 days. Electroencephalography was recorded both before and after the sessions. Sleep deprivation (3 h) was applied between the first and second session in a subgroup of rats. Measurements comprised the number of lever presses in each session, slow wave sleep (SWS) duration, Rapid Eye Movement Sleep (REMS) duration and sleep spindles. Baseline sleep parameters were similar for fast and slow learning rats. Task-exposure increased REMS-duration. The increase in REMS-duration was observed specifically after sessions in which learning occurred, but not after a later session. Sleep deprivation during the 3h period between the initial two sessions interfered with performance enhancement, but did not prevent this in all rats. Our considered movement control protocol induced partial sleep deprivation and also interfered with performance enhancement. The classic instrumental learning task provides a practical model for animal studies on sleep-dependent memory enhancement.

  17. Cortical phase changes measured using 7-T MRI in subjects with subjective cognitive impairment, and their association with cognitive function.

    PubMed

    van Rooden, Sanneke; Buijs, Mathijs; van Vliet, Marjolein E; Versluis, Maarten J; Webb, Andrew G; Oleksik, Ania M; van de Wiel, Lotte; Middelkoop, Huub A M; Blauw, Gerard Jan; Weverling-Rynsburger, Annelies W E; Goos, Jeroen D C; van der Flier, Wiesje M; Koene, Ted; Scheltens, Philip; Barkhof, Frederik; van de Rest, Ondine; Slagboom, P Eline; van Buchem, Mark A; van der Grond, Jeroen

    2016-09-01

    Studies have suggested that, in subjects with subjective cognitive impairment (SCI), Alzheimer's disease (AD)-like changes may occur in the brain. Recently, an in vivo study has indicated the potential of ultra-high-field MRI to visualize amyloid-beta (Aβ)-associated changes in the cortex in patients with AD, manifested by a phase shift on T2 *-weighted MRI scans. The main aim of this study was to investigate whether cortical phase shifts on T2 *-weighted images at 7 T in subjects with SCI can be detected, possibly implicating the deposition of Aβ plaques and associated iron. Cognitive tests and T2 *-weighted scans using a 7-T MRI system were performed in 28 patients with AD, 18 subjects with SCI and 27 healthy controls (HCs). Cortical phase shifts were measured. Univariate general linear modeling and linear regression analysis were used to assess the association between diagnosis and cortical phase shift, and between cortical phase shift and the different neuropsychological tests, adjusted for age and gender. The phase shift (mean, 1.19; range, 1.00-1.35) of the entire cortex in AD was higher than in both SCI (mean, 0.85; range, 0.73-0.99; p < 0.001) and HC (mean, 0.94; range, 0.79-1.10; p < 0.001). No AD-like changes, e.g. increased cortical phase shifts, were found in subjects with SCI compared with HCs. In SCI, a significant association was found between memory function (Wechsler Memory Scale, WMS) and cortical phase shift (β = -0.544, p = 0.007). The major finding of this study is that, in subjects with SCI, an increased cortical phase shift measured at high field is associated with a poorer memory performance, although, as a group, subjects with SCI do not show an increased phase shift compared with HCs. This increased cortical phase shift related to memory performance may contribute to the understanding of SCI as it is still unclear whether SCI is a sign of pre-clinical AD. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014

  18. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine.

    PubMed

    Kantrowitz, Joshua T; Epstein, Michael L; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M; Revheim, Nadine; Lehrfeld, Nayla P; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C

    2016-12-01

    Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time-frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908 Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated

  19. Emotional bias of sleep-dependent processing shifts from negative to positive with aging.

    PubMed

    Jones, Bethany J; Schultz, Kurt S; Adams, Sydney; Baran, Bengi; Spencer, Rebecca M C

    2016-09-01

    Age-related memory decline has been proposed to result partially from impairments in memory consolidation over sleep. However, such decline may reflect a shift toward selective processing of positive information with age rather than impaired sleep-related mechanisms. In the present study, young and older adults viewed negative and neutral pictures or positive and neutral pictures and underwent a recognition test after sleep or wake. Subjective emotional reactivity and affect were also measured. Compared with waking, sleep preserved valence ratings and memory for positive but not negative pictures in older adults and negative but not positive pictures in young adults. In older adults, memory for positive pictures was associated with slow wave sleep. Furthermore, slow wave sleep predicted positive affect in older adults but was inversely related to positive affect in young adults. These relationships were strongest for older adults with high memory for positive pictures and young adults with high memory for negative pictures. Collectively, these results indicate preserved but selective sleep-dependent memory processing with healthy aging that may be biased to enhance emotional well-being.

  20. Emotional bias of sleep-dependent processing shifts from negative to positive with aging

    PubMed Central

    Adams, Sydney; Baran, Bengi; Spencer, Rebecca M. C.

    2016-01-01

    Age-related memory decline has been proposed to result partially from impairments in memory consolidation over sleep. However, such decline may reflect a shift toward selective processing of positive information with age rather than impaired sleep-related mechanisms. In the current study, young and older adults viewed negative and neutral pictures or positive and neutral pictures and underwent a recognition test after sleep or wake. Subjective emotional reactivity and affect were also measured. Compared to waking, sleep preserved valence ratings and memory for positive but not negative pictures in older adults and negative but not positive pictures in young adults. In older adults, memory for positive pictures was associated with slow wave sleep. Furthermore, slow wave sleep predicted positive affect in older adults but was inversely related to positive affect in young adults. These relationships were strongest for older adults with high memory for positive pictures and young adults with high memory for negative pictures. Collectively, these results indicate preserved but selective sleep-dependent memory processing with healthy aging that may be biased to enhance emotional well-being. PMID:27459938

  1. MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons.

    PubMed

    Li, Lei; Wei, Dan; Wang, Qiong; Pan, Jing; Liu, Rong; Zhang, Xu; Bao, Lan

    2012-09-12

    Neuronal migration is a fundamental process during the development of the cerebral cortex and is regulated by cytoskeletal components. Microtubule dynamics can be modulated by posttranslational modifications to tubulin subunits. Acetylation of α-tubulin at lysine 40 is important in regulating microtubule properties, and this process is controlled by acetyltransferase and deacetylase. MEC-17 is a newly discovered α-tubulin acetyltransferase that has been found to play a major role in the acetylation of α-tubulin in different species in vivo. However, the physiological function of MEC-17 during neural development is largely unknown. Here, we report that MEC-17 is critical for the migration of cortical neurons in the rat. MEC-17 was strongly expressed in the cerebral cortex during development. MEC-17 deficiency caused migratory defects in the cortical projection neurons and interneurons, and perturbed the transition of projection neurons from the multipolar stage to the unipolar/bipolar stage in the intermediate zone of the cortex. Furthermore, knockdown of α-tubulin deacetylase HDAC6 or overexpression of tubulin(K40Q) to mimic acetylated α-tubulin could reduce the migratory and morphological defects caused by MEC-17 deficiency in cortical projection neurons. Thus, MEC-17, which regulates the acetylation of α-tubulin, appears to control the migration and morphological transition of cortical neurons. This finding reveals the importance of MEC-17 and α-tubulin acetylation in cortical development.

  2. The Limited Capacity of Sleep-Dependent Memory Consolidation

    PubMed Central

    Feld, Gordon B.; Weis, Patrick P.; Born, Jan

    2016-01-01

    Sleep supports memory consolidation. However, the conceptually important influence of the amount of items encoded in a memory test on this effect has not been investigated. In two experiments, participants (n = 101) learned lists of word-pairs varying in length (40, 160, 320 word-pairs) in the evening before a night of sleep (sleep group) or of sleep deprivation (wake group). After 36 h (including a night allowing recovery sleep) retrieval was tested. Compared with wakefulness, post-learning sleep enhanced retention for the 160 word-pair condition (p < 0.01), importantly, this effect completely vanished for the 320 word-pair condition. This result indicates a limited capacity for sleep-dependent memory consolidation, which is consistent with an active system consolidation view on sleep’s role for memory, if it is complemented by processes of active forgetting and/or gist abstraction. Whereas the absolute benefit from sleep should have increased with increasing amounts of successfully encoded items, if sleep only passively protected memory from interference. Moreover, the finding that retention performance was significantly diminished for the 320 word-pair condition compared to the 160 word-pair condition in the sleep group, makes it tempting to speculate that with increasing loads of information encoded during wakefulness, sleep might favor processes of forgetting over consolidation. PMID:27679589

  3. Differential microstructural and morphological abnormalities in mild cognitive impairment and Alzheimer's disease: Evidence from cortical and deep gray matter.

    PubMed

    Gong, Nan-Jie; Chan, Chun-Chung; Leung, Lam-Ming; Wong, Chun-Sing; Dibb, Russell; Liu, Chunlei

    2017-05-01

    One aim of this study is to use non-Gaussian diffusion kurtosis imaging (DKI) for capturing microstructural abnormalities in gray matter of Alzheimer's disease (AD). The other aim is to compare DKI metrics against thickness of cortical gray matter and volume of deep gray matter, respectively. A cohort of 18 patients with AD, 18 patients with amnestic mild cognitive impairment (MCI), and 18 normal controls underwent morphological and DKI MR imaging. Images were investigated using regions-of-interest-based analyses for deep gray matter and vertex-wise analyses for cortical gray matter. In deep gray matter, more regions showed DKI parametric abnormalities than atrophies at the early MCI stage. Mean kurtosis (MK) exhibited the largest number of significant abnormalities among all DKI metrics. At the later AD stage, diffusional abnormalities were observed in fewer regions than atrophies. In cortical gray matter, abnormalities in thickness were mainly in the medial and lateral temporal lobes, which fit the locations of known early pathological changes. Microstructural abnormalities were predominantly in the parietal and even frontal lobes, which fit the locations of known late pathological changes. In conclusion, MK can complement conventional diffusion metrics for detecting microstructural changes, especially in deep gray matter. This study also provides evidence supporting the notion that microstructural changes predate morphological changes. Hum Brain Mapp 38:2495-2508, 2017. © 2017 Wiley Periodicals, Inc.

  4. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    PubMed Central

    Fu, Cen; Zhang, Xiaolin; Ye, Fei; Yang, Jianhong

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay) diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD), micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD), cortical volumetric BMD (vBMD) and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV), trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC), bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression. PMID:25872143

  5. High insulin levels in KK-Ay diabetic mice cause increased cortical bone mass and impaired trabecular micro-structure.

    PubMed

    Fu, Cen; Zhang, Xiaolin; Ye, Fei; Yang, Jianhong

    2015-04-13

    Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay) diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD), micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD), cortical volumetric BMD (vBMD) and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV), trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC), bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  6. Loss of cortical actin filaments in insulin-resistant skeletal muscle cells impairs GLUT4 vesicle trafficking and glucose transport

    PubMed Central

    McCarthy, Alicia M.; Spisak, Kristen O.; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2008-01-01

    Study has demonstrated an essential role of cortical filamentous actin (F-actin) in insulin-regulated glucose uptake by skeletal muscle. Here, we tested whether perturbations in F-actin contributed to impaired insulin responsiveness provoked by hyperinsulinemia. In L6 myo-tubes stably expressing GLUT4 that carries an exofacial myc-epitope tag, acute insulin stimulation (20 min, 100 nM) increased GLUT4myc translocation and glucose uptake by ~2-fold. In contrast, a hyperinsulinemic state, induced by inclusion of 5 nM insulin in the medium for 12 h decreased the ability of insulin to stimulate these processes. Defects in insulin signaling did not readily account for the observed disruption. In contrast, hyperinsulinemia reduced cortical F-actin. This occurred concomitant with a loss of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), a lipid involved in cytoskeletal regulation. Restoration of plasma membrane PIP2 in hyperinsulinemic cells restored F-actin and insulin responsiveness. Consistent with these in vitro observations suggesting that the hyperinsulinemic state negatively affects cortical F-actin structure, epitrochlearis skeletal muscle from insulin-resistant hyperinsulinemic Zucker fatty rats displayed a similar loss of F-actin structure compared with that in muscle from lean insulin-sensitive littermates. We propose that a component of insulin-induced insulin resistance in skeletal muscle involves defects in PIP2/F-actin structure essential for insulin-regulated glucose transport. PMID:16774991

  7. Loss of cortical actin filaments in insulin-resistant skeletal muscle cells impairs GLUT4 vesicle trafficking and glucose transport.

    PubMed

    McCarthy, Alicia M; Spisak, Kristen O; Brozinick, Joseph T; Elmendorf, Jeffrey S

    2006-11-01

    Study has demonstrated an essential role of cortical filamentous actin (F-actin) in insulin-regulated glucose uptake by skeletal muscle. Here, we tested whether perturbations in F-actin contributed to impaired insulin responsiveness provoked by hyperinsulinemia. In L6 myotubes stably expressing GLUT4 that carries an exofacial myc-epitope tag, acute insulin stimulation (20 min, 100 nM) increased GLUT4myc translocation and glucose uptake by approximately 2-fold. In contrast, a hyperinsulinemic state, induced by inclusion of 5 nM insulin in the medium for 12 h decreased the ability of insulin to stimulate these processes. Defects in insulin signaling did not readily account for the observed disruption. In contrast, hyperinsulinemia reduced cortical F-actin. This occurred concomitant with a loss of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)), a lipid involved in cytoskeletal regulation. Restoration of plasma membrane PIP(2) in hyperinsulinemic cells restored F-actin and insulin responsiveness. Consistent with these in vitro observations suggesting that the hyperinsulinemic state negatively affects cortical F-actin structure, epitrochlearis skeletal muscle from insulin-resistant hyperinsulinemic Zucker fatty rats displayed a similar loss of F-actin structure compared with that in muscle from lean insulin-sensitive littermates. We propose that a component of insulin-induced insulin resistance in skeletal muscle involves defects in PIP(2)/F-actin structure essential for insulin-regulated glucose transport.

  8. Anosognosia in mild cognitive impairment: Relationship to activation of cortical midline structures involved in self-appraisal

    PubMed Central

    Ries, Michele L.; Jabbar, Britta M.; Schmitz, Taylor W.; Trivedi, Mehul A.; Gleason, Carey E.; Carlsson, Cynthia M.; Rowley, Howard A.; Asthana, Sanjay; Johnson, Sterling C.

    2009-01-01

    Awareness of cognitive dysfunction shown by individuals with Mild Cognitive Impairment (MCI), a condition conferring risk for Alzheimer’s disease (AD), is variable. Anosognosia, or unawareness of loss of function, is beginning to be recognized as an important clinical symptom of MCI. However, little is known about the brain substrates underlying this symptom. We hypothesized that MCI participants’ activation of cortical midline structures (CMS) during self-appraisal would covary with level of insight into cognitive difficulties (indexed by a discrepancy score between patient and informant ratings of cognitive decline in each MCI participant). To address this hypothesis, we first compared 16 MCI participants and 16 age-matched controls, examining brain regions showing conjoint or differential BOLD response during self-appraisal. Second, we used regression to investigate the relationship between awareness of deficit in MCI and BOLD activity during self-appraisal, controlling for extent of memory impairment. Between-group comparisons indicated that MCI participants show subtly attenuated CMS activity during self-appraisal. Regression analysis revealed a highly-significant relationship between BOLD response during self-appraisal and self-awareness of deficit in MCI. This finding highlights the level of anosognosia in MCI as an important predictor of response to self-appraisal in cortical midline structures, brain regions vulnerable to changes in early AD. PMID:17445294

  9. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton

    PubMed Central

    Steinecke, André; Gampe, Christin; Nitzsche, Falk; Bolz, Jürgen

    2014-01-01

    Disrupted-in-Schizophrenia 1 (DISC1) is a risk gene for a spectrum of major mental disorders. It has been shown to regulate radial migration as well as dendritic arborization during neurodevelopment and corticogenesis. In a previous study we demonstrated through in vitro experiments that DISC1 also controls the tangential migration of cortical interneurons originating from the medial ganglionic eminence (MGE). Here we first show that DISC1 is necessary for the proper tangential migration of cortical interneurons in the intact brain. Expression of EGFP under the Lhx6 promotor allowed us to analyze exclusively interneurons transfected in the MGE after in utero electroporation. After 3 days in utero, DISC1 deficient interneurons displayed prolonged leading processes and, compared to control, fewer neurons reached the cortex. Time-lapse video microscopy of cortical feeder-layers revealed a decreased migration velocity due to a reduction of soma translocations. Immunostainings indicated that DISC1 is co-localized with F-actin in the growth cone-like structure of the leading process. DISC1 knockdown reduced F-actin levels whereas the overall actin level was not altered. Moreover, DISC1 knockdown also decreased levels of phosphorylated Girdin, which cross-links F-actin, as well as the Girdin-activator pAkt. In contrast, using time-lapse video microscopy of fluorescence-tagged tubulin and EB3 in fibroblasts, we found no effects on microtubule polymerization when DISC1 was reduced. However, DISC1 affected the acetylation of microtubules in the leading processes of MGE-derived cortical interneurons. Together, our results provide a mechanism how DISC1 might contribute to interneuron migration thereby explaining the reduced number of specific classes of cortical interneurons in some DISC1 mouse models. PMID:25071449

  10. Impaired Cognition in Rats with Cortical Dysplasia: Additional Impact of Early-Life Seizures

    ERIC Educational Resources Information Center

    Lucas, Marcella M.; Lenck-Santini, Pierre-Pascal; Holmes, Gregory L.; Scott, Rod C.

    2011-01-01

    One of the most common and serious co-morbidities in patients with epilepsy is cognitive impairment. While early-life seizures are considered a major cause for cognitive impairment, it is not known whether it is the seizures, the underlying neurological substrate or a combination that has the largest impact on eventual learning and memory. Teasing…

  11. Impaired Cognition in Rats with Cortical Dysplasia: Additional Impact of Early-Life Seizures

    ERIC Educational Resources Information Center

    Lucas, Marcella M.; Lenck-Santini, Pierre-Pascal; Holmes, Gregory L.; Scott, Rod C.

    2011-01-01

    One of the most common and serious co-morbidities in patients with epilepsy is cognitive impairment. While early-life seizures are considered a major cause for cognitive impairment, it is not known whether it is the seizures, the underlying neurological substrate or a combination that has the largest impact on eventual learning and memory. Teasing…

  12. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder

    PubMed Central

    Maski, Kiran; Holbrook, Hannah; Manoach, Dara; Hanson, Ellen; Kapur, Kush; Stickgold, Robert

    2015-01-01

    Study Objectives: Examine the role of sleep in the consolidation of declarative memory in children with autism spectrum disorder (ASD). Design: Case-control study. Setting: Home-based study with sleep and wake conditions. Participants: Twenty-two participants with ASD and 20 control participants between 9 and 16 y of age. Measurements and Results: Participants were trained to criterion on a spatial declarative memory task and then given a cued recall test. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with home-based polysomnography; Wake and Sleep conditions were counterbalanced. Children with ASD had poorer sleep efficiency than controls, but other sleep macroarchitectural and microarchitectural measures were comparable after controlling for age and medication use. Both groups demonstrated better memory consolidation across Sleep than Wake, although participants with ASD had poorer overall memory consolidation than controls. There was no interaction between group and condition. The change in performance across sleep, independent of medication and age, showed no significant relationships with any specific sleep parameters other than total sleep time and showed a trend toward less forgetting in the control group. Conclusion: This study shows that despite their more disturbed sleep quality, children with autism spectrum disorder (ASD) still demonstrate more stable memory consolidation across sleep than in wake conditions. The findings support the importance of sleep for stabilizing memory in children with and without neurodevelopmental disabilities. Our results suggest that improving sleep quality in children with ASD could have direct benefits to improving their overall cognitive functioning. Citation: Maski K, Holbrook H, Manoach D, Hanson E, Kapur K, Stickgold R. Sleep dependent memory consolidation in children with autism spectrum disorder. SLEEP 2015;38(12):1955–1963. PMID:26194566

  13. Targeted Memory Reactivation during Sleep Depends on Prior Learning

    PubMed Central

    Creery, Jessica D.; Oudiette, Delphine; Antony, James W.; Paller, Ken A.

    2015-01-01

    Study Objectives: When sounds associated with learning are presented again during slow-wave sleep, targeted memory reactivation (TMR) can produce improvements in subsequent location recall. Here we used TMR to investigate memory consolidation during an afternoon nap as a function of prior learning. Participants: Twenty healthy individuals (8 male, 19–23 y old). Measurements and Results: Participants learned to associate each of 50 common objects with a unique screen location. When each object appeared, its characteristic sound was played. After electroencephalography (EEG) electrodes were applied, location recall was assessed for each object, followed by a 90-min interval for sleep. During EEG-verified slow-wave sleep, half of the sounds were quietly presented over white noise. Recall was assessed 3 h after initial learning. A beneficial effect of TMR was found in the form of higher recall accuracy for cued objects compared to uncued objects when pre-sleep accuracy was used as an explanatory variable. An analysis of individual differences revealed that this benefit was greater for participants with higher pre-sleep recall accuracy. In an analysis for individual objects, cueing benefits were apparent as long as initial recall was not highly accurate. Sleep physiology analyses revealed that the cueing benefit correlated with delta power and fast spindle density. Conclusions: These findings substantiate the use of targeted memory reactivation (TMR) methods for manipulating consolidation during sleep. TMR can selectively strengthen memory storage for object-location associations learned prior to sleep, except for those near-perfectly memorized. Neural measures found in conjunction with TMR-induced strengthening provide additional evidence about mechanisms of sleep consolidation. Citation: Creery JD, Oudiette D, Antony JW, Paller KA. Targeted memory reactivation during sleep depends on prior learning. SLEEP 2015;38(5):755–763. PMID:25515103

  14. Regional Cortical Thickness and Subcortical Volume Changes Are Associated with Cognitive Impairments in the Drug-Naive Patients with Late-Onset Depression

    PubMed Central

    Lim, Hyun Kook; Jung, Won Sang; Ahn, Kook Jin; Won, Wang Youn; Hahn, Changtae; Lee, Seung Yup; Kim, InSeong; Lee, Chang Uk

    2012-01-01

    Previous studies have shown an association between late-onset depression (LOD) and cognitive impairment in older adults. However, the neural correlates of this relationship are not yet clear. The aim of this study was to investigate the differences in both cortical thickness and subcortical volumes between drug-naive LOD patients and healthy controls and explore the relationship between LOD and cognitive impairments. A total of 48 elderly, drug-naive patients with LOD and 47 group-matched healthy control subjects underwent 3T MRI scanning, and the cortical thickness was compared between the groups in multiple locations, across the continuous cortical surface. The subcortical volumes were also compared on a structure-by-structure basis. Subjects with LOD exhibited significantly decreased cortical thickness in the rostral anterior cingulate cortex, the medial orbitofrontal cortex, dorsolateral prefrontal cortex, the superior and middle temporal cortex, and the posterior cingulate cortex when compared with healthy subjects (all p<0.05, false discovery rate corrected). Reduced volumes of the right hippocampus was also observed in LOD patients when compared with healthy controls (p<0.001). There were significant correlations between memory functions and cortical thickness of medial temporal, isthmus cingulate, and precuneus (p<0.001). This study was the first study to explore the relationships between the cortical thickness/subcortical volumes and cognitive impairments of drug-naive patients with LOD. These structural changes might explain the neurobiological mechanism of LOD as a risk factor of dementia. PMID:22048467

  15. The association between intra- and juxta-cortical pathology and cognitive impairment in multiple sclerosis by quantitative T2* mapping at 7 T MRI.

    PubMed

    Louapre, Céline; Govindarajan, Sindhuja T; Giannì, Costanza; Madigan, Nancy; Nielsen, A Scott; Sloane, Jacob A; Kinkel, Revere P; Mainero, Caterina

    2016-01-01

    Using quantitative T2* at 7 Tesla (T) magnetic resonance imaging, we investigated whether impairment in selective cognitive functions in multiple sclerosis (MS) can be explained by pathology in specific areas and/or layers of the cortex. Thirty-one MS patients underwent neuropsychological evaluation, acquisition of 7 T multi-echo T2* gradient-echo sequences, and 3 T anatomical images for cortical surfaces reconstruction. Seventeen age-matched healthy subjects served as controls. Cortical T2* maps were sampled at various depths throughout the cortex and juxtacortex. Relation between T2*, neuropsychological scores and a cognitive index (CI), calculated from a principal component analysis on the whole battery, was tested by a general linear model. Cognitive impairment correlated with T2* increase, independently from white matter lesions and cortical thickness, in cortical areas highly relevant for cognition belonging to the default-mode network (p < 0.05 corrected). Dysfunction in different cognitive functions correlated with longer T2* in selective cortical regions, most of which showed longer T2* relative to controls. For most tests, this association was strongest in deeper cortical layers. Executive dysfunction, however, was mainly related with pathology in juxtameningeal cortex. T2* explained up to 20% of the variance of the CI, independently of conventional imaging metrics (adjusted-R(2): 52-67%, p < 5.10(- 4)). Location of pathology across the cortical width and mantle showed selective correlation with impairment in differing cognitive domains. These findings may guide studies at lower field strength designed to develop surrogate markers of cognitive impairment in MS.

  16. Sleep-Dependent Potentiation in the Visual System Is at Odds with the Synaptic Homeostasis Hypothesis.

    PubMed

    Durkin, Jaclyn; Aton, Sara J

    2016-01-01

    Two commentaries recently published in SLEEP came to very different conclusions regarding how data from a mouse model of sleep-dependent neural plasticity (orientation-specific response potentiation; OSRP) fit with the synaptic homeostasis hypothesis (SHY). To assess whether SHY offers an explanatory mechanism for OSRP, we present new data on how cortical neuron firing rates are modulated as a function of novel sensory experience and subsequent sleep in this model system. We carried out longitudinal extracellular recordings of single-neuron activity in the primary visual cortex across a period of novel visual experience and subsequent sleep or sleep deprivation. Spontaneous neuronal firing rates and visual responses were recorded from the same population of visual cortex neurons before control (blank screen) or novel (oriented grating) stimulus presentation, immediately after stimulus presentation, and after a period of subsequent ad lib sleep or sleep deprivation. Firing rate responses to visual stimuli were unchanged across waking experience, regardless of whether a blank screen or an oriented grating stimulus was presented. Firing rate responses to stimuli of the presented stimulus orientation were selectively enhanced across post-stimulus sleep, but these changes were blocked by sleep deprivation. Neuronal firing increased significantly across bouts of post-stimulus rapid eye movement (REM) sleep and slow wave sleep (SWS), but not across bouts of wake. The current data suggest that following novel visual experience, potentiation of a subset of V1 synapses occurs across periods of sleep. This finding cannot be explained parsimoniously by SHY. © 2016 Associated Professional Sleep Societies, LLC.

  17. Sleep-dependent consolidation of auditory discrimination learning in adult starlings

    PubMed Central

    Brawn, Timothy P.; Nusbaum, Howard C.; Margoliash, Daniel

    2010-01-01

    Memory consolidation is widely believed to benefit from sleep. Sleep-dependent memory consolidation has been established broadly in humans, appearing in declarative and procedural tasks. Animal studies have indicated a variety of mechanisms that could potentially serve as the neural basis of sleep-dependent consolidation, such as the offline replay of waking neural activity and the modulation of specific sleep parameters or synaptic strength during sleep. Memory consolidation, however, cannot be inferred from neuronal events alone, and the behavioral demonstration of sleep-dependent consolidation has been limited in animals. Here we investigated whether adult animals undergo sleep-dependent memory consolidation comparable to that of humans. European starlings (Sturnus vulgaris) were trained to discriminate between segments of novel starling song and retested after retention periods that included a regular night of sleep or consisted only of wakefulness. Auditory discrimination performance improved significantly after retention periods that included sleep but not after time spent awake, and the performance changes following sleep were significantly greater than after comparable periods of wakefulness. Thus, sleep produces a pattern of memory benefits in adult starlings that is fundamentally similar to the patterns of sleep-dependent consolidation observed in humans, suggesting a common sleep-dependent mechanism works across many vertebrate species to consolidate memories and establishing a robust animal model for this phenomenon. PMID:20071524

  18. Resting state cortical rhythms in mild cognitive impairment and Alzheimer's disease: electroencephalographic evidence.

    PubMed

    Babiloni, Claudio; Vecchio, Fabrizio; Lizio, Roberta; Ferri, Raffaele; Rodriguez, Guido; Marzano, Nicola; Frisoni, Giovanni B; Rossini, Paolo M

    2011-01-01

    Physiological brain aging is characterized by a combination of synaptic pruning, loss of cortico-cortical connections and neuronal apoptosis that provoke age-dependent decline of cognitive functions. Neural/synaptic redundancy and plastic remodeling of brain networking, also secondary to mental and physical training, promotes maintenance of brain activity in healthy elderly for everyday life and fully productive affective and intellectual capabilities. Unfortunately, in pathological situations, aging triggers neurodegenerative processes that impact on cognition, like Alzheimer's disease (AD). Oscillatory electromagnetic brain activity is a hallmark of neuronal network function in various brain regions. Modern neurophysiological techniques including digital electroencephalography (EEG) allow non-invasive analysis of cortico-cortical connectivity and neuronal synchronization of firing, and coherence of brain rhythmic oscillations at various frequencies. The present review of field EEG literature suggests that discrimination between physiological and pathological brain aging clearly emerges at the group level, with some promising result on the informative value of EEG markers at the individual level. Integrated approaches utilizing neurophysiological techniques together with biological markers and structural and functional imaging are promising for large-scale, low-cost, widely available on the territory and non-invasive screening of at-risk populations.

  19. Impaired ideomotor limb apraxia in cortical and subcortical dementia: a comparison of Alzheimer's and Huntington's disease.

    PubMed

    Holl, Anna K; Ille, Rottraut; Wilkinson, Leonora; Otti, Daniela V; Hödl, Elfriede; Herranhof, Brigitte; Reisinger, Karin M; Müller, Nicole; Painold, Annamaria; Holl, Etienne M; Letmaier, Martin; Bonelli, Raphael M

    2011-01-01

    Although ideomotor limb apraxia is often considered to occur only in dementia with cortical involvement like Alzheimer's disease (AD), it is also frequently seen in dementia with subcortical degeneration like Huntington's disease (HD). To assess the occurrence of ideomotor limb apraxia, 46 patients with HD (27 men) and 37 patients with AD (16 men), matched for cognitive performance, were assessed with an apraxia test battery containing tests of the imitation of meaningless hand and finger gestures, the performance of meaningful gestures and of pantomimic movements. There was a high frequency of ideomotor limb apraxia in both AD and HD patients. For the assessment of hands' imitation 13.5% of the AD patients and 41.3% of the HD patients were apraxic, for fingers' imitation 21.6% (AD) and 41.3% (HD) were apraxic, for gestures 27.0% (AD) and 32.6% (HD), and for the assessment of pantomimic movements 24.3% (AD) and 52.2% (HD) showed apraxia. In the AD patients, disease severity was related to the occurrence of apraxia. Ideomotor limb apraxia is a common sign in both groups of patients, occurring in a high percentage. For particular neuropsychological deficits, including ideomotor limb apraxia, a division of dementia in a subcortical and cortical subtype seems to be clinically not meaningful. Copyright © 2011 S. Karger AG, Basel.

  20. Subcortical atrophy is associated with cognitive impairment in mild Parkinson disease: a combined investigation of volumetric changes, cortical thickness, and vertex-based shape analysis.

    PubMed

    Mak, E; Bergsland, N; Dwyer, M G; Zivadinov, R; Kandiah, N

    2014-12-01

    The involvement of subcortical deep gray matter and cortical thinning associated with mild Parkinson disease remains poorly understood. We assessed cortical thickness and subcortical volumes in patients with Parkinson disease without dementia and evaluated their associations with cognitive dysfunction. The study included 90 patients with mild Parkinson disease without dementia. Neuropsychological assessments classified the sample into patients with mild cognitive impairment (n = 25) and patients without cognitive impairment (n = 65). Volumetric data for subcortical structures were obtained by using the FMRIB Integrated Registration and Segmentation Tool while whole-brain, gray and white matter volumes were estimated by using Structural Image Evaluation, with Normalization of Atrophy. Vertex-based shape analyses were performed to investigate shape differences in subcortical structures. Vertex-wise group differences in cortical thickness were also assessed. Volumetric comparisons between Parkinson disease with mild cognitive impairment and Parkinson disease with no cognitive impairment were performed by using ANCOVA. Associations of subcortical structures with both cognitive function and disease severity were assessed by using linear regression models. Compared with Parkinson disease with no cognitive impairment, Parkinson disease with mild cognitive impairment demonstrated reduced volumes of the thalamus (P = .03) and the nucleus accumbens (P = .04). Significant associations were found for the nucleus accumbens and putamen with performances on the attention/working memory domains (P < .05) and nucleus accumbens and language domains (P = .04). The 2 groups did not differ in measures of subcortical shape or in cortical thickness. Patients with Parkinson disease with mild cognitive impairment demonstrated reduced subcortical volumes, which were associated with cognitive deficits. The thalamus, nucleus accumbens, and putamen may serve as potential biomarkers for

  1. Colour identification and colour constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical lesions.

    PubMed

    Kennard, C; Lawden, M; Morland, A B; Ruddock, K H

    1995-05-22

    We have examined visual functions, including colour vision, in a patient with bilateral cortical lesions involving mainly the fusiform and lingual gyri, areas known to be involved in the central processing of chromatic stimuli. The patient has near normal (6/9) acuity, and his responses to tests of binocular function and spatial vision are normal, as are his discrimination of changes in target speed and surface lightness. He does, however, exhibit minor losses in the upper visual field, mild prosopagnosia and topographical agnosia, all conditions commonly associated with cerebral achromatopsia. Colour matches and spectral response data establish that his cone photoreceptors have normal spectral characteristics and his spectral sensitivity measured against a white background reveals normal postreceptoral chromatic function. The patient's colour discrimination for differences in wavelength, hue or saturation is, however, impaired and his colour naming is significantly disturbed, particularly for blues and greens. We have determined the areas of the chromaticity chart that correspond to his naming categories for surface colours, and show that changes in illuminant cause him to alter the names of surface colours in a manner consistent with the changes in their chromaticities. Other subjects with normal or congenital red-green deficient colour vision make many fewer name changes under changes in illuminant. We conclude that the patient's colour constancy is impaired as a consequence of abnormal central processing of colour vision.

  2. Persistent impairments in hippocampal, dorsal striatal, and prefrontal cortical function following repeated photoperiod shifts in rats.

    PubMed

    Zelinski, Erin L; Tyndall, Amanda V; Hong, Nancy S; McDonald, Robert J

    2013-01-01

    Cognitive impairments are observed when learned associations are being acquired or retrieved during a period of circadian disruption. However, the extent of the functional impacts on previously acquired associations following circadian rhythm re-entrainment is unknown. The impacts of repeated photoperiod shifts on learning and memory in male and female rats were examined. For these experiments, rats were trained on a spatial version of the Morris water task (MWT) and a visual discrimination task designed for the 8-arm radial maze. Following asymptotic performance on these tasks, rats experienced a repeating photoperiod shift procedure and were then re-entrained. Following circadian re-entrainment, retention of pre-photoperiod-shift-acquired associations was tested. In addition, an extra-dimensional set shift was performed using the 8-arm radial maze. Impaired retention of the MWT platform location was observed in photoperiod-shifted subjects relative to subjects with stable, unmanipulated photoperiods. Repeated photoperiod shifts negatively impacted retention in males and females compared with subjects with stable photoperiods. Retention and the ability to detect extra-dimensional shifts on the visual discrimination task were also impaired, though not consistently by sex or photoperiod condition. Running wheel availability was also included in the analyses to determine whether exercise influenced the effects of photoperiod shifting. The absence of a running wheel produced significant declines in memory retention on both MWT and the visual discrimination task, but only for male rats. The observed impairments indicate that multiple neural systems supporting different learning and memory functions are susceptible to circadian disruption, even if the association is acquired prior to rhythm fragmentation and tested following rhythm re-entrainment.

  3. Cortical afferent inhibition reflects cognitive impairment in obstructive sleep apnea syndrome: a TMS study.

    PubMed

    Nardone, Raffaele; Bergmann, Jürgen; Brigo, Francesco; Höller, Yvonne; Schwenker, Kerstin; Florea, Cristina; Kunz, Alexander B; Golaszewski, Stefan; Trinka, Eugen

    2016-08-01

    Patients with obstructive sleep apnea syndrome (OSAS) show neurocognitive impairment, but the exact mechanisms that cause cognitive dysfunctions remain unknown. The cholinergic system is known to play a key role in all attentional processes and cognitive functions. A transcranial magnetic stimulation (TMS) protocol may give direct information about the function of some cholinergic circuits in the human brain; this technique relies on short latency afferent inhibition (SAI) of the motor cortex. The objective of this exploratory study was to test the hypothesis that impaired cognitive performances in OSAS patients are associated with a dysfunction of the cholinergic system, as assessed by SAI. We applied SAI technique in a group of 13 patients with OSAS and compared the data with those from a group of 13 age-matched healthy subjects. All the patients underwent a sleep study, an extensive neuropsychological evaluation, and TMS examination. Mean SAI was significantly reduced in our OSAS patients when compared with controls. The neuropsychological evaluation showed impairments in most cognitive areas in the OSAS patients. SAI values were strongly correlated with the neuropsychological test scores. These findings suggest that the cognitive deficits in OSAS may be, at least in part, secondary to alterations in cholinergic neurotransmission, presumably caused by nocturnal hypoxemia. TMS studies may shed light on the pathophysiological mechanisms of the cognitive disturbances in OSAS patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Memory suppression trades prolonged fear and sleep-dependent fear plasticity for the avoidance of current fear

    NASA Astrophysics Data System (ADS)

    Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu

    2013-07-01

    Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology.

  5. Memory suppression trades prolonged fear and sleep-dependent fear plasticity for the avoidance of current fear

    PubMed Central

    Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu

    2013-01-01

    Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology. PMID:23863955

  6. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL.

  7. Minocycline mitigates motor impairments and cortical neuronal loss induced by focal ischemia in rats chronically exposed to ethanol during adolescence.

    PubMed

    Oliveira, Gedeão Batista; Fontes, Enéas de Andrade; de Carvalho, Sabrina; da Silva, Josiane Batista; Fernandes, Luanna Melo Pereira; Oliveira, Maria Cristina Souza Pereira; Prediger, Rui Daniel; Gomes-Leal, Walace; Lima, Rafael Rodrigues; Maia, Cristiane Socorro Ferraz

    2014-05-02

    Ethanol is an important risk factor for the occurrence of cerebral ischemia contributing to poor prognosis and inefficacy of drug treatments for stroke-related symptoms. Females have a higher lifetime risk for stroke than males. Moreover, female gender has been associated with increased ethanol consumption during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence may potentiate the motor impairments and cortical damage induced by focal ischemia in female rats. We also addressed whether these effects can be mitigated by minocycline, which has been shown to be neuroprotective against different insults in the CNS. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) for 55 days by gavage. Focal ischemia was induced by microinjections of endothelin-1 (ET-1) into the motor cortex. Animals of both groups were treated daily with minocycline (25-50 mg/kg, i.p.) or sterile saline (i.p.) for 5 days, and motor function was assessed using open field, inclined plane and rotarod tests. Chronic ethanol exposure exacerbated locomotor activity and motor coordination impairments induced by focal ischemia in rats. Moreover, histological analysis revealed that microinjections of ET-1 induced pyramidal neuron loss and microglial activation in the motor cortex. Minocycline reversed the observed motor impairments, microglial activation and pyramidal neuron loss in the motor cortex of ischemic rats even in those exposed to ethanol. These results suggest that minocycline induces neuroprotection and functional recovery in ischemic female rats intoxicated with ethanol during adolescence. Furthermore, the mechanism underlying this protective effect may be related to the modulation of neuroinflammation.

  8. Motor and premotor cortices in subcortical stroke: proton magnetic resonance spectroscopy measures and arm motor impairment.

    PubMed

    Craciunas, Sorin C; Brooks, William M; Nudo, Randolph J; Popescu, Elena A; Choi, In-Young; Lee, Phil; Yeh, Hung-Wen; Savage, Cary R; Cirstea, Carmen M

    2013-06-01

    Although functional imaging and neurophysiological approaches reveal alterations in motor and premotor areas after stroke, insights into neurobiological events underlying these alterations are limited in human studies. We tested whether cerebral metabolites related to neuronal and glial compartments are altered in the hand representation in bilateral motor and premotor areas and correlated with distal and proximal arm motor impairment in hemiparetic persons. In 20 participants at >6 months postonset of a subcortical ischemic stroke and 16 age- and sex-matched healthy controls, the concentrations of N-acetylaspartate and myo-inositol were quantified by proton magnetic resonance spectroscopy. Regions of interest identified by functional magnetic resonance imaging included primary (M1), dorsal premotor (PMd), and supplementary (SMA) motor areas. Relationships between metabolite concentrations and distal (hand) and proximal (shoulder/elbow) motor impairment using Fugl-Meyer Upper Extremity (FMUE) subscores were explored. N-Acetylaspartate was lower in M1 (P = .04) and SMA (P = .004) and myo-inositol was higher in M1 (P = .003) and PMd (P = .03) in the injured (ipsilesional) hemisphere after stroke compared with the left hemisphere in controls. N-Acetylaspartate in ipsilesional M1 was positively correlated with hand FMUE subscores (P = .04). Significant positive correlations were also found between N-acetylaspartate in ipsilesional M1, PMd, and SMA and in contralesional M1 and shoulder/elbow FMUE subscores (P = .02, .01, .02, and .02, respectively). Our preliminary results demonstrated that proton magnetic resonance spectroscopy is a sensitive method to quantify relevant neuronal changes in spared motor cortex after stroke and consequently increase our knowledge of the factors leading from these changes to arm motor impairment.

  9. Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome.

    PubMed

    Tai, Chao; Abe, Yasuyuki; Westenbroek, Ruth E; Scheuer, Todd; Catterall, William A

    2014-07-29

    Haploinsufficiency of the voltage-gated sodium channel NaV1.1 causes Dravet syndrome, an intractable developmental epilepsy syndrome with seizure onset in the first year of life. Specific heterozygous deletion of NaV1.1 in forebrain GABAergic-inhibitory neurons is sufficient to cause all the manifestations of Dravet syndrome in mice, but the physiological roles of specific subtypes of GABAergic interneurons in the cerebral cortex in this disease are unknown. Voltage-clamp studies of dissociated interneurons from cerebral cortex did not detect a significant effect of the Dravet syndrome mutation on sodium currents in cell bodies. However, current-clamp recordings of intact interneurons in layer V of neocortical slices from mice with haploinsufficiency in the gene encoding the NaV1.1 sodium channel, Scn1a, revealed substantial reduction of excitability in fast-spiking, parvalbumin-expressing interneurons and somatostatin-expressing interneurons. The threshold and rheobase for action potential generation were increased, the frequency of action potentials within trains was decreased, and action-potential firing within trains failed more frequently. Furthermore, the deficit in excitability of somatostatin-expressing interneurons caused significant reduction in frequency-dependent disynaptic inhibition between neighboring layer V pyramidal neurons mediated by somatostatin-expressing Martinotti cells, which would lead to substantial disinhibition of the output of cortical circuits. In contrast to these deficits in interneurons, pyramidal cells showed no differences in excitability. These results reveal that the two major subtypes of interneurons in layer V of the neocortex, parvalbumin-expressing and somatostatin-expressing, both have impaired excitability, resulting in disinhibition of the cortical network. These major functional deficits are likely to contribute synergistically to the pathophysiology of Dravet syndrome.

  10. Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment.

    PubMed

    Yushkevich, Paul A; Pluta, John B; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, Eske C; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R; Wolk, David A

    2015-01-01

    We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm(3) resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI [Yushkevich et al., 2010], our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic mild cognitive impairment (aMCI) and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797), and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest nonuniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. © 2014 Wiley Periodicals, Inc.

  11. Automated Volumetry and Regional Thickness Analysis of Hippocampal Subfields and Medial Temporal Cortical Structures in Mild Cognitive Impairment

    PubMed Central

    Yushkevich, Paul A.; Pluta, John B.; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, E. C.; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R.; Wolk, David A.

    2014-01-01

    We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe (MTL) in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm3 resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI (Yushkevich et al., 2010), our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic Mild Cognitive Impairment (aMCI), and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797) and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest non-uniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. PMID:25181316

  12. Increased Water Diffusion in the Parcellated Cortical Regions from the Patients with Amnestic Mild Cognitive Impairment and Alzheimer's Disease.

    PubMed

    Lin, Sung-Han; Hsu, Wen-Chuin; Ng, Shu-Hang; Cheng, Jur-Shan; Khegai, Oleksandr; Huang, Chin-Chang; Chen, Yao-Liang; Chen, Yi-Chun; Wang, Jiun-Jie

    2016-01-01

    Background: The loss of cortical neuron environment integrity is the hallmark of neurodegeneration diseases such as Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI). To reveal the microenvironment changes in cerebral cortex, the current study aimed to examine the changes of mean diffusivity (MD) in parcellated brain among AD, aMCI patients and normal controls (NC). Methods: Diffusion tensor imaging data with the whole brain coverage were acquired from 28 AD (aged 69.4 ± 8.2 year old), 41 aMCI patients (aged 68.2 ± 6.4 year old) and 40 NC subjects (aged 65.7 ± 6.4 year old). Subsequently, the MD values were parcellated according to the standard automatic anatomic labeling (AAL) template. Only the 90 regions located in the cerebral cortex were used in the final analysis. The mean values of MD from each brain region were extracted and compared among the participant groups. The integrity of the white matter tracts and gray matter atrophy was analyzed using the track-based spatial statistics and voxel-based morphometry approaches, respectively. Results: Significant differences of MD were noticed both in aMCI and AD patients, in terms of the affected regions and the amount of increase. The hippocampus, parahippocampal gyrus and cingulum were the most significantly affected regions in AD patients. From all the 90 cerebral cortex regions, significant increase of MD in the AD patients was found in 40 regions, compared to only one (fusiform gyrus on the right) in aMCI patients. In the disease affected regions, the MD from aMCI patients is in state between NC and AD patients. Conclusions: Increased MD in the specific regions of the brain shows the feasibility of MD as an indicator of the early stage cortical degeneration in aMCI and AD patients.

  13. Increased Water Diffusion in the Parcellated Cortical Regions from the Patients with Amnestic Mild Cognitive Impairment and Alzheimer's Disease

    PubMed Central

    Lin, Sung-Han; Hsu, Wen-Chuin; Ng, Shu-Hang; Cheng, Jur-Shan; Khegai, Oleksandr; Huang, Chin-Chang; Chen, Yao-Liang; Chen, Yi-Chun; Wang, Jiun-Jie

    2017-01-01

    Background: The loss of cortical neuron environment integrity is the hallmark of neurodegeneration diseases such as Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI). To reveal the microenvironment changes in cerebral cortex, the current study aimed to examine the changes of mean diffusivity (MD) in parcellated brain among AD, aMCI patients and normal controls (NC). Methods: Diffusion tensor imaging data with the whole brain coverage were acquired from 28 AD (aged 69.4 ± 8.2 year old), 41 aMCI patients (aged 68.2 ± 6.4 year old) and 40 NC subjects (aged 65.7 ± 6.4 year old). Subsequently, the MD values were parcellated according to the standard automatic anatomic labeling (AAL) template. Only the 90 regions located in the cerebral cortex were used in the final analysis. The mean values of MD from each brain region were extracted and compared among the participant groups. The integrity of the white matter tracts and gray matter atrophy was analyzed using the track-based spatial statistics and voxel-based morphometry approaches, respectively. Results: Significant differences of MD were noticed both in aMCI and AD patients, in terms of the affected regions and the amount of increase. The hippocampus, parahippocampal gyrus and cingulum were the most significantly affected regions in AD patients. From all the 90 cerebral cortex regions, significant increase of MD in the AD patients was found in 40 regions, compared to only one (fusiform gyrus on the right) in aMCI patients. In the disease affected regions, the MD from aMCI patients is in state between NC and AD patients. Conclusions: Increased MD in the specific regions of the brain shows the feasibility of MD as an indicator of the early stage cortical degeneration in aMCI and AD patients. PMID:28123367

  14. Plasticity of cortical inhibition in dystonia is impaired after motor learning and Paired-Associative Stimulation

    PubMed Central

    Meunier, Sabine; Russmann, Heike; Shamim, Ejaz; Lamy, Jean-Charles; Hallett, Mark

    2012-01-01

    Summary Artificial induction of plasticity by paired associative stimulation (PAS) in healthy subjects (HV) demonstrates Hebbian-like plasticity in selected inhibitory networks as well as excitatory ones. In a group of 17 patients with focal hand dystonia and a group of 19 HV, we evaluated how PAS and the learning of a simple motor task influence the circuits supporting long interval intracortical inhibition (LICI, reflecting activity of GABAB interneurons) and long latency afferent inhibition (LAI, reflecting activity of somatosensory inputs to the motor cortex). In HV, PAS and motor learning induced LTP-like plasticity of excitatory networks and a lasting decrease of LAI and LICI in the motor representation of the targeted or trained muscle. The better the motor performance, the larger was the decrease of LAI. Although motor performance in the patient group was similar to that of the control group, LAI did not decrease during the motor learning as it did in the control group. In contrast, LICI was normally modulated. In patients the results after PAS did not match those obtained after motor learning: LAI was paradoxically increased and LICI did not exhibit any change. In the normal situation, decreased excitability in inhibitory circuits after induction of LTP-like plasticity may help to shape the cortical maps according to the new sensorimotor task. In patients, the abnormal or absent modulation of afferent and intracortical long-interval inhibition might indicate maladaptive plasticity that possibly contributes to the difficulty that they have to learn a new sensorimotor task.“ PMID:22429246

  15. Cortical activation during word reading and picture naming in dyslexic and non-reading-impaired children.

    PubMed

    Trauzettel-Klosinski, Susanne; Dürrwächter, Ute; Klosinski, Gunther; Braun, Christoph

    2006-05-01

    In a recent study on picture naming and word reading in dyslexics and control children we found a combination of normal picture retrieval times and severe reading impairments in dyslexics. Therefore, we hypothesize that brain response patterns differ between patients and controls during word reading, but are similar in picture naming as a non-letter mediated task. Time course of brain activation was investigated by magnetoencephalography during word reading and picture naming in 9 dyslexic children and 13 age-matched controls (aged 9-10 years). We found 5 consecutive activations spreading from occipito-parietal to temporo-frontal sites. Group differences occurred only during reading: a delayed response in temporal superior and angular gyri at 235-285 ms and absence of activation in anterior temporal and inferior frontal regions at 430-530 ms for dyslexics. Problems in phonological processing are reflected in delay of early activity and absence of late activity in language related brain regions. From the lack of group differences during picture naming, we conclude the presence of two pathways: a phonological/orthographic one for word reading, which is disturbed in dyslexics, and a visual one for picture naming, which can be unaffected in dyslexics. Evidence is provided for different pathways for the processing of letter-mediated and visual-eidetic information. This knowledge may be important for dyslexics in the context of coping with everyday demands and for training of relevant skills.

  16. Association between olfaction and higher cortical functions in Alzheimer's disease, mild cognitive impairment, and healthy older adults.

    PubMed

    Ward, Amanda M; Calamia, Matthew; Thiemann, Erin; Dunlap, Jamie; Tranel, Daniel

    2017-09-01

    Neural regions important for smell are proximal and closely connected to cortical areas that have been strongly implicated in higher order functions of value-based decision making and emotional memory. The integrity of these neural regions are affected in aging and neurodegenerative conditions. Two specific predictions follow from these neuroanatomical arrangements-namely, that olfaction would be associated with value-based decision making and with emotional memory. To test these predictions, we measured these different capacities in participants with presumed varying degrees of integrity of the relevant brain structures: specifically, 13 patients with Alzheimer's disease, 8 patients with mild cognitive impairment, and 20 healthy older adults. The participants completed detailed tests of olfaction, value-based decision making, emotional memory, and general cognitive ability. Olfactory functioning was significantly associated with emotional and nonemotional memory. The association was especially strong and consistent for memory recall with olfaction, explaining as much as 10% additional variance over and above general cognition. Olfactory functioning was not strongly or consistently associated with decision making over and above general cognition. Olfaction is a strong predictor of memory recall. These findings may contribute to a better understanding of olfaction and specific cognitive domains known to be affected by aging and implicated in neurodegenerative disease.

  17. Diisopropylfluorophosphate Impairs the Transport of Membrane-Bound Organelles in Rat Cortical Axons.

    PubMed

    Gao, Jie; Naughton, Sean X; Wulff, Heike; Singh, Vikrant; Beck, Wayne D; Magrane, Jordi; Thomas, Bobby; Kaidery, Navneet Ammal; Hernandez, Caterina M; Terry, Alvin V

    2016-03-01

    The extensive use of organophosphates (OPs) is an ongoing environmental health concern due to multiple reports of OP-related neurologic abnormalities. The mechanism of the acute toxicity of OPs has been attributed to inhibition of acetylcholinesterase (AChE), but there is growing evidence that this may not account for all the long-term neurotoxic effects of OPs. In previous experiments (using ex vivo and in vitro model systems) we observed that the insecticide OP chlorpyrifos impaired the movements of vesicles and mitochondria in axons. Here, using a time-lapse imaging technique, we evaluated the OP-nerve agent diisopropylfluorophosphate (DFP) across a wide range of concentrations (subnanomolar to micromolar) for effects on fast axonal transport of membrane-bound organelles (MBOs) that contain the amyloid precursor protein (APP) tagged with the fluorescent marker Dendra2 (APPDendra2). Both 1 and 24 hours of exposure to DFP and a positive control compound, colchicine, resulted in a decrease in the velocity of anterograde and retrograde movements of MBOs and an increase in the number of stationary MBOs. These effects occurred at picomolar (100 pM) to low nanomolar (0.1 nM) concentrations that were not associated with compromised cell viability or cytoskeletal damage. Moreover, the effects of DFP on axonal transport occurred at concentrations that did not inhibit AChE activity, and they were not blocked by cholinergic receptor antagonists. Given the fundamental importance of axonal transport to neuronal function, these observations may explain some of the long-term neurologic deficits that have been observed in humans who have been exposed to OPs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Diisopropylfluorophosphate Impairs the Transport of Membrane-Bound Organelles in Rat Cortical Axons

    PubMed Central

    Gao, Jie; Naughton, Sean X.; Wulff, Heike; Singh, Vikrant; Beck, Wayne D.; Magrane, Jordi; Thomas, Bobby; Kaidery, Navneet Ammal; Hernandez, Caterina M.

    2016-01-01

    The extensive use of organophosphates (OPs) is an ongoing environmental health concern due to multiple reports of OP-related neurologic abnormalities. The mechanism of the acute toxicity of OPs has been attributed to inhibition of acetylcholinesterase (AChE), but there is growing evidence that this may not account for all the long-term neurotoxic effects of OPs. In previous experiments (using ex vivo and in vitro model systems) we observed that the insecticide OP chlorpyrifos impaired the movements of vesicles and mitochondria in axons. Here, using a time-lapse imaging technique, we evaluated the OP-nerve agent diisopropylfluorophosphate (DFP) across a wide range of concentrations (subnanomolar to micromolar) for effects on fast axonal transport of membrane-bound organelles (MBOs) that contain the amyloid precursor protein (APP) tagged with the fluorescent marker Dendra2 (APPDendra2). Both 1 and 24 hours of exposure to DFP and a positive control compound, colchicine, resulted in a decrease in the velocity of anterograde and retrograde movements of MBOs and an increase in the number of stationary MBOs. These effects occurred at picomolar (100 pM) to low nanomolar (0.1 nM) concentrations that were not associated with compromised cell viability or cytoskeletal damage. Moreover, the effects of DFP on axonal transport occurred at concentrations that did not inhibit AChE activity, and they were not blocked by cholinergic receptor antagonists. Given the fundamental importance of axonal transport to neuronal function, these observations may explain some of the long-term neurologic deficits that have been observed in humans who have been exposed to OPs. PMID:26718240

  19. Sleep-Dependent Consolidation of Rewarded Behavior Is Diminished in Children with Attention Deficit Hyperactivity Disorder and a Comorbid Disorder of Social Behavior

    PubMed Central

    Wiesner, Christian D.; Molzow, Ina; Prehn-Kristensen, Alexander; Baving, Lioba

    2017-01-01

    Children suffering from attention-deficit hyperactivity disorder (ADHD) often also display impaired learning and memory. Previous research has documented aberrant reward processing in ADHD as well as impaired sleep-dependent consolidation of declarative memory. We investigated whether sleep also fosters the consolidation of behavior learned by probabilistic reward and whether ADHD patients with a comorbid disorder of social behavior show deficits in this memory domain, too. A group of 17 ADHD patients with comorbid disorders of social behavior aged 8–12 years and healthy controls matched for age, IQ, and handedness took part in the experiment. During the encoding task, children worked on a probabilistic learning task acquiring behavioral preferences for stimuli rewarded most often. After a 12-hr retention interval of either sleep at night or wakefulness during the day, a reversal task was presented where the contingencies were reversed. Consolidation of rewarded behavior is indicated by greater resistance to reversal learning. We found that healthy children consolidate rewarded behavior better during a night of sleep than during a day awake and that the sleep-dependent consolidation of rewarded behavior by trend correlates with non-REM sleep but not with REM sleep. In contrast, children with ADHD and comorbid disorders of social behavior do not show sleep-dependent consolidation of rewarded behavior. Moreover, their consolidation of rewarded behavior does not correlate with sleep. The results indicate that dysfunctional sleep in children suffering from ADHD and disorders of social behavior might be a crucial factor in the consolidation of behavior learned by reward. PMID:28228742

  20. Sleep-Dependent Consolidation of Rewarded Behavior Is Diminished in Children with Attention Deficit Hyperactivity Disorder and a Comorbid Disorder of Social Behavior.

    PubMed

    Wiesner, Christian D; Molzow, Ina; Prehn-Kristensen, Alexander; Baving, Lioba

    2017-01-01

    Children suffering from attention-deficit hyperactivity disorder (ADHD) often also display impaired learning and memory. Previous research has documented aberrant reward processing in ADHD as well as impaired sleep-dependent consolidation of declarative memory. We investigated whether sleep also fosters the consolidation of behavior learned by probabilistic reward and whether ADHD patients with a comorbid disorder of social behavior show deficits in this memory domain, too. A group of 17 ADHD patients with comorbid disorders of social behavior aged 8-12 years and healthy controls matched for age, IQ, and handedness took part in the experiment. During the encoding task, children worked on a probabilistic learning task acquiring behavioral preferences for stimuli rewarded most often. After a 12-hr retention interval of either sleep at night or wakefulness during the day, a reversal task was presented where the contingencies were reversed. Consolidation of rewarded behavior is indicated by greater resistance to reversal learning. We found that healthy children consolidate rewarded behavior better during a night of sleep than during a day awake and that the sleep-dependent consolidation of rewarded behavior by trend correlates with non-REM sleep but not with REM sleep. In contrast, children with ADHD and comorbid disorders of social behavior do not show sleep-dependent consolidation of rewarded behavior. Moreover, their consolidation of rewarded behavior does not correlate with sleep. The results indicate that dysfunctional sleep in children suffering from ADHD and disorders of social behavior might be a crucial factor in the consolidation of behavior learned by reward.

  1. Does age worsen sleep-dependent memory consolidation?

    PubMed

    Cherdieu, Melaine; Reynaud, Emanuelle; Uhlrich, Josselin; Versace, Remy; Mazza, Stephanie

    2014-02-01

    Slow wave sleep (SWS) is known to favour episodic memory consolidation. Given that ageing is associated with a reduction in SWS and episodic memory impairment, our aim was to investigate whether memory continues to benefit from sleep in older adults. Episodic memory consolidation was tested in 20 young (22.1 ± 1.7 years) and 20 older volunteers (68.9 ± 5.3 years) who performed a visuospatial two-dimensional object-location task. Retention capacities were evaluated after 12 h of wakefulness or 12 h of sleep. Performances before and after the interval allowed us to calculate a forgetting rate. Sleep architecture was measured by polysomnography (older adults = 410 min; young adults: 467 min). Our results showed that the beneficial effect of sleep on memory consolidation was reduced in older adults compared to young adults. In older adults, sleep did not enhance memory consolidation significantly compared to wakefulness. Sleep prevented young adults from forgetting (-0.10% ± 2.1), while the forgetting rate in older adults was still important after a period of sleep (16.60% ± 4.2; P = 0.05). The sleep architecture of older adults was characterized by a decrease in sleep efficiency (-12%; P < 0.05), in total cycle time (-137 min; P < 0.05), in percentage of total cycle time (-21%; P < 0.05) and in rapid eye movement time (-41 min; P < 0.05) compared to young adults. However, no difference in slow wave sleep was observed (-1%; not significant) and no correlation was found with performance. Age-related changes in sleep parameters may have a negative impact on memory consolidation in older adults. © 2013 European Sleep Research Society.

  2. Decreased prefrontal cortical sensitivity to monetary reward is associated with impaired motivation and self-control in cocaine addiction

    PubMed Central

    Goldstein, Rita Z.; Alia-Klein, Nelly; Tomasi, Dardo; Zhang, Lei; Cottone, Lisa A.; Maloney, Thomas; Telang, Frank; Caparelli, Elisabeth C.; Chang, Linda; Ernst, Thomas; Samaras, Dimitris; Squires, Nancy K.; Volkow, Nora D.

    2008-01-01

    Objective To examine the brain’s sensitivity to monetary rewards of different magnitudes in cocaine abusers and to study its association with motivation and self-control. Method Sixteen cocaine abusers and 13 matched healthy comparison subjects performed a forced-choice task under three monetary value conditions while brain activation was measured with functional magnetic resonance imaging. Objective measures of state motivation were assessed by reaction time and accuracy, and subjective measures were assessed by self-reports of task engagement. Measures of trait motivation and self-control were assessed with the Multidimensional Personality Questionnaire. Results The cocaine abusers demonstrated an overall reduced regional brain responsivity to differences between the monetary value conditions. Also, in comparison subjects but not in cocaine abusers reward-induced improvements in performance were associated with self-reports of task engagement, and money-induced activations in the lateral prefrontal cortex were associated with activations in the orbitofrontal cortex. For cocaine subjects, prefrontal cortex sensitivity to money was instead associated with motivation and self-control. Conclusions These findings suggest that in cocaine addiction (1) activation of the corticolimbic reward circuit to gradations of money is altered; (2) lack of a correlation between objective and subjective measures of state motivation may be indicative of disrupted perception of motivational drive, which could contribute to impairments in self-control; and (3) the lateral prefrontal cortex modulates trait motivation and deficits in self-control, and a possible underlying mechanism may encompass a breakdown in prefrontal-orbitofrontal cortical communication. PMID:17202543

  3. Impairment of a cortical event-related desynchronisation during a bimanual load-lifting task in children with autistic disorder.

    PubMed

    Martineau, Joëlle; Schmitz, Christina; Assaiante, Christine; Blanc, Romuald; Barthélémy, Catherine

    2004-09-09

    In autism, the abilities of communication are affected, associated with abnormalities of cognitive, sensorial and motor development. In a previous study based on a load-lifting task, we showed impairment of anticipation in children with autism as evidenced by kinematics and eletromyographic recordings [Neurosci. Lett. 348 (2003) 17]. In the present study, we assessed the cortical counterparts of the use of anticipatory postural adjustments in a group of control children and in a group of children with autism. The tasks required maintaining a stable forearm position despite imposed or voluntary lifting of an object placed either on the controlateral forearm or on a support. We investigated the differences between the two groups of children on the Event-Related Desynchronisation (ERD) which precedes movement onset in adults [Electroencephalogr. Clin. Neurophysiol. 46 (1979) 138]. Electroencephalogram (EEG) power evolution of a 6-8-Hz frequency band was averaged before and after imposed or voluntary movement onset. EEG reactivity of control and autistic children did not differ during the imposed unloading condition, but significant differences appeared in the voluntary unloading situations. Before lifting the object, control children showed an ERD above the left motor areas. An ERD also occurred above the right motor areas when the object was placed on their forearm. This indicates that the ERD can also translate the use of anticipatory postural adjustments. By contrast, children with autism did not show an ERD in the two voluntary situations. This suggests a central deficit of anticipation in both postural and motor control in children with autism.

  4. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    PubMed Central

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  5. Selective depletion of cortical noradrenaline by anti-dopamine beta-hydroxylase–saporin impairs attentional function and enhances the effects of guanfacine in the rat

    PubMed Central

    2007-01-01

    Rationale Previous data indicate that depletion of cortical noradrenaline (NA) impairs performance of an attentional five-choice serial reaction time task (5CSRT) under certain conditions. This study employed a novel immunotoxin, anti-dopamine-beta hydroylase (DβH)–saporin, to make relatively selective lesions of the noradrenergic projections to the prefrontal cortex (PFC) in rats trained to perform the 5CSRT. Objectives The aim of this work is to examine (1) the effect of cortical noradrenaline depletion on sustained attentional performance in the 5CSRT under a variety of test conditions and (2) the effects of guanfacine, a selective α-2 adrenoceptor agonist on attentional performance in sham and NA-depleted rats. Materials and methods Animals received either intramedial prefrontal anti-DβH–saporin or vehicle and were tested on the baseline task with a variety of additional manipulations including (1) decreasing target duration, (2) increasing rate and (3) temporal unpredictability of target presentation and (4) systemic guanfacine. Results Anti-DβH-saporin infused into the PFC produced a substantial loss of DβH-positive fibers in that region and in other adjacent cortical areas. There was no significant depletion of DA or 5-HT. NA-depleted animals were not impaired on the baseline task, but were slower to respond correctly under high event rate conditions, and their discriminative accuracy was reduced when stimulus predictability decreased. Guanfacine significantly reduced discriminative accuracy in NA-depleted animals only. Conclusion Selective cortical NA depletion produced deficits on the 5CSRT test of sustained attention, especially when the attentional load was increased and in response to systemic guanfacine. These results are consistent with a role of coeruleo-cortical NA in the regulation of effortful attentional processes. PMID:17096085

  6. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins.

    PubMed

    Lau, D; Vega-Saenz de Miera, E C; Contreras, D; Ozaita, A; Harvey, M; Chow, A; Noebels, J L; Paylor, R; Morgan, J I; Leonard, C S; Rudy, B

    2000-12-15

    Voltage-gated K(+) channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to -10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 -/- mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.

  7. Cholinergic-associated loss of hnRNP-A/B in Alzheimer's disease impairs cortical splicing and cognitive function in mice

    PubMed Central

    Berson, Amit; Barbash, Shahar; Shaltiel, Galit; Goll, Yael; Hanin, Geula; Greenberg, David S; Ketzef, Maya; Becker, Albert J; Friedman, Alon; Soreq, Hermona

    2012-01-01

    Genetic studies link inherited errors in RNA metabolism to familial neurodegenerative disease. Here, we report such errors and the underlying mechanism in sporadic Alzheimer's disease (AD). AD entorhinal cortices presented globally impaired exon exclusions and selective loss of the hnRNP A/B splicing factors. Supporting functional relevance, hnRNP A/B knockdown induced alternative splicing impairments and dendrite loss in primary neurons, and memory and electrocorticographic impairments in mice. Transgenic mice with disease-associated mutations in APP or Tau displayed no alterations in hnRNP A/B suggesting that its loss in AD is independent of Aβ and Tau toxicity. However, cholinergic excitation increased hnRNP A/B levels while in vivo neurotoxin-mediated destruction of cholinergic neurons caused cortical AD-like decrease in hnRNP A/B and recapitulated the alternative splicing pattern of AD patients. Our findings present cholinergic-mediated hnRNP A/B loss and impaired RNA metabolism as important mechanisms involved in AD. PMID:22628224

  8. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    PubMed

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Resveratrol Attenuates Behavioral Impairments and Reduces Cortical and Hippocampal Loss in a Rat Controlled Cortical Impact Model of Traumatic Brain Injury

    PubMed Central

    Singleton, Richard H.; Yan, Hong Q.; Fellows-Mayle, Wendy

    2010-01-01

    Abstract Resveratrol (3,5,4′-trihydroxystilbene) is a plant-derived small molecule that is protective against multiple neurological and systemic insults. To date, no studies have explored the potential for resveratrol to provide behavioral protection in adult animals in the setting of traumatic brain injury (TBI). Using 50 male Sprague-Dawley rats, we employed the controlled cortical impact (CCI) model to ascertain whether post-injury administration of resveratrol would reduce the severity of the well-described cognitive and motor deficits associated with the model. Contusion volumes and hippocampal neuronal numbers were also measured to characterize the tissue and neuronal-sparing properties, respectively, of resveratrol. We found that 100 mg/kg, but not 10 mg/kg, of intraperitoneal resveratrol administered after injury provides significant behavioral protection in rats sustaining CCI. Specifically, rodents treated with 100 mg/kg of resveratrol showed improvements in motor performance (beam balance and beam walking) and testing of visuospatial memory (Morris water maze). Behavioral protection was correlated with significantly reduced contusion volumes, preservation of CA1 and CA3 hippocampal neurons, and protection from overt hippocampal loss as a result of incorporation into the overlying cortical contusion in resveratrol-treated animals. Although the mechanisms by which resveratrol mediates its neuroprotection is unclear, the current study adds to the growing literature identifying resveratrol as a potential therapy for human brain injury. PMID:20560755

  10. Disconnection of the Perirhinal and Postrhinal Cortices Impairs Recognition of Objects in Context But Not Contextual Fear Conditioning.

    PubMed

    Heimer-McGinn, Victoria R; Poeta, Devon L; Aghi, Krishan; Udawatta, Methma; Burwell, Rebecca D

    2017-05-03

    The perirhinal cortex (PER) is known to process object information, whereas the rodent postrhinal cortex (POR), homolog to the parahippocampal cortex in primates, is thought to process spatial information. A number of studies, however, provide evidence that both areas are involved in processing contextual information. In this study, we tested the hypothesis that the rat POR relies on object information received from the PER to form complex representations of context. Using three fear-conditioning (FC) paradigms (signaled, unsignaled, and renewal) and two context-guided object recognition tasks (with 3D and 2D objects), we examined the effects of crossed excitotoxic lesions to the POR and the contralateral PER. Performance of rats with crossed lesions was compared with that of rats with ipsilateral POR plus PER lesions and sham-operated rats. We found that rats with contralateral PER-POR lesions were impaired in object-context recognition but not in contextual FC. Therefore, interaction between the POR and PER is necessary for context-guided exploratory behavior but not for associating fear with context. Our results provide evidence for the hypothesis that the POR relies on object and pattern information from the PER to encode representations of context. The association of fear with a context, however, may be supported by alternate cortical and/or subcortical pathways when PER-POR interaction is not available. Our results suggest that contextual FC may represent a special case of context-guided behavior.SIGNIFICANCE STATEMENT Representations of context are important for perception, memory, decision making, and other cognitive processes. Moreover, there is extensive evidence that the use of contextual representations to guide appropriate behavior is disrupted in neuropsychiatric and neurological disorders including developmental disorders, schizophrenia, affective disorders, and Alzheimer's disease. Many of these disorders are accompanied by changes in

  11. Higher Education is Not Associated with Greater Cortical Thickness in Brain Areas Related to Literacy or Intelligence in Normal Aging or Mild Cognitive Impairment

    PubMed Central

    Pillai, Jagan A.; McEvoy, Linda K.; Hagler, Donald J.; Holland, Dominic; Dale, Anders M.; Salmon, David P.; Galasko, Douglas; Fennema-Notestine, Christine

    2012-01-01

    Education may reduce risk of dementia through passive reserve, by increasing neural substrate. We tested the hypotheses that education is associated with thicker cortex and reduced rates of atrophy in brain regions related to literacy and intellectual ability. Healthy older adults and those with mild cognitive impairment were categorized into High (≥18 yrs) and Low (≤13 yrs) education groups. Higher education was associated with thinner cortices in several areas, but one-year atrophy rates in these areas did not differ by education group. These results do not support a passive reserve model in which early life education protects against dementia by increasing cortical thickness. Connectivity and synaptic efficiency, or other lifestyle factors may more directly reflect cognitive reserve. PMID:22905705

  12. Higher education is not associated with greater cortical thickness in brain areas related to literacy or intelligence in normal aging or mild cognitive impairment.

    PubMed

    Pillai, Jagan A; McEvoy, Linda K; Hagler, Donald J; Holland, Dominic; Dale, Anders M; Salmon, David P; Galasko, Douglas; Fennema-Notestine, Christine

    2012-01-01

    Education may reduce risk of dementia through passive reserve, by increasing neural substrate. We tested the hypotheses that education is associated with thicker cortex and reduced rates of atrophy in brain regions related to literacy and intellectual ability. Healthy older adults and those with mild cognitive impairment were categorized into high (≥18 years) and low (≤13 years) education groups. Higher education was associated with thinner cortices in several areas, but one-year atrophy rates in these areas did not differ by education group. These results do not support a passive reserve model in which early-life education protects against dementia by increasing cortical thickness. Connectivity and synaptic efficiency or other lifestyle factors may more directly reflect cognitive reserve.

  13. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    PubMed

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Relationship between herpes simplex virus-1-specific antibody titers and cortical brain damage in Alzheimer’s disease and amnestic mild cognitive impairment

    PubMed Central

    Baglio, Francesca; Agostini, Simone; Agostini, Monia Cabinio; Laganà, Maria M.; Hernis, Ambra; Margaritella, Nicolò; Guerini, Franca R.; Zanzottera, Milena; Nemni, Raffaello; Clerici, Mario

    2014-01-01

    Alzheimer’s disease (AD) is a multifactorial disease with a still barely understood etiology. Herpes simplex virus 1 (HSV-1) has long been suspected to play a role in the pathogenesis of AD because of its neurotropism, high rate of infection in the general population, and life-long persistence in neuronal cells, particularly in the same brain regions that are usually altered in AD. The goal of this study was to evaluate HSV-1-specific humoral immune responses in patients with a diagnosis of either AD or amnestic mild cognitive impairment (aMCI), and to verify the possible relation between HSV-1-specific antibody (Ab) titers and cortical damage; results were compared to those obtained in a group of healthy controls (HC). HSV-1 serum IgG titers were measured in 225 subjects (83 AD, 68 aMCI, and 74 HC). HSV-specific Ab avidity and cortical gray matter volumes analyzed by magnetic resonance imaging (MRI) were evaluated as well in a subgroup of these individuals (44 AD, 23 aMCI, and 26 HC). Results showed that, whereas HSV-1 seroprevalence and IgG avidity were comparable in the three groups, increased Ab titers (p < 0.001) were detected in AD and aMCI compared to HC. Positive significant correlations were detected in AD patients alone between HSV-1 IgG titers and cortical volumes in orbitofrontal (region of interest, ROI1 RSp0.56; p = 0.0001) and bilateral temporal cortices (ROI2 RSp0.57; p < 0.0001; ROI3 RSp0.48; p = 0.001); no correlations could be detected between IgG avidity and MRI parameters. Results herein suggest that a strong HSV-1-specific humoral response could be protective toward AD-associated cortical damage. PMID:25360113

  15. Cortical selective neuronal loss, impaired behavior, and normal magnetic resonance imaging in a new rat model of true transient ischemic attacks.

    PubMed

    Ejaz, Sohail; Emmrich, Julius V; Sawiak, Stephen J; Williamson, David J; Baron, Jean-Claude

    2015-04-01

    New-definition transient ischemic attacks (TIAs) are frequent but difficult to diagnose because magnetic resonance imaging (MRI)-negative by definition. However, hidden underlying cell damage might be present and account for the reported long-lasting cognitive impairment after TIAs. Most prior rodent models of true TIA targeted the striatum or have not been fully characterized. Here we present the MRI, behavioral, and quantitative cell changes characterizing a new rodent model of true TIA targeting the more behaviorally relevant cerebral cortex. Fifteen-minute distal middle cerebral artery occlusion was performed in 29 spontaneously hypertensive rats allowed to survive for 7 to 60 days. Behavior was assessed serially using both global neurological and fine sensorimotor tests. Diffusion- and T2-weighted MRI was obtained 20 min postreperfusion and again 7 to 60 days later, and then changes in neurons and microglia were quantified across the middle cerebral artery territory using immunohistochemistry. No MRI changes or pan-necrosis were observed at any time point, but patchy cortical selective neuronal loss affected 28/29 rats, regardless of survival interval, together with topographically congruent microglial activation that gradually declined over time. The Neuroscore was unchanged, but there was marked contralateral sensorimotor impairment, still recovering by day 28. Our new rodent model mimicking true cortical TIA is characterized by normal MRI, but consistent cortical selective neuronal loss and microglial activation and long-lasting sensorimotor deficits. By causing selective neuronal loss, TIAs and silent microemboli might affect neuronal reserve, thereby increasing long-term cognitive impairment risk. Selective neuronal loss and microglial activation might represent novel therapeutic targets that could be detectable in vivo after TIAs using appropriate imaging tracers. © 2015 American Heart Association, Inc.

  16. Sleep as a window into early neural development: Shifts in sleep-dependent learning effects across early childhood

    PubMed Central

    Gómez, Rebecca L.; Edgin, Jamie O.

    2015-01-01

    Sleep is an important physiological state for the consolidation and generalization of new learning in children and adults. We review the literature on sleep-dependent memory consolidation and generalization in infants and preschool children and place the findings in the context of the development of the neural systems underlying memory (hippocampus and its connections to cortex). Based on the extended trajectory of hippocampal development, transitions in the nature of sleep-dependent learning are expected. The studies reviewed here show shifts in the nature of sleep-dependent learning across early childhood, with sleep facilitating generalization in infants but enhancing precise memory after 18–24 months of age. Future studies on sleep-dependent learning in infants and young children must take these transitions in early brain development into account. PMID:26557155

  17. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    PubMed

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    PubMed

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2017-10-05

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R(2)  = 0.36-0.46) and gait speed (R(2)  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Cortical thickness in de novo patients with Parkinson disease and mild cognitive impairment with consideration of clinical phenotype and motor laterality.

    PubMed

    Danti, S; Toschi, N; Diciotti, S; Tessa, C; Poletti, M; Del Dotto, P; Lucetti, C

    2015-12-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with motor and non-motor symptoms, including cognitive deficits. Several magnetic resonance imaging approaches have been applied to investigate brain atrophy in PD. The aim of this study was to detect early structural cortical and subcortical changes in de novo PD whilst distinguishing cognitive status, clinical phenotype and motor laterality. Eighteen de novo PD with mild cognitive impairment (PD-MCI), 18 de novo PD without MCI (PD-NC) and 18 healthy control subjects were evaluated. In the PD-MCI group, nine were tremor dominant and nine were postural instability gait disorder (PIGD) phenotype; 11 had right-sided symptom dominance and seven had left-sided symptom dominance. FreeSurfer was used to measure cortical thickness/folding, subcortical structures and to study group differences as well as the association with clinical and neuropsychological data. Parkinson's disease with MCI showed regional thinning in the right frontal, right middle temporal areas and left insula compared to PD-NC. A reduction of the volume of the left and right thalamus and left hippocampus was found in PD-MCI compared to PD-NC. PD-MCI PIGD showed regional thinning in the right inferior parietal area compared to healthy controls. A decreased volume of the left thalamus was reported in PD-MCI with right-sided symptom dominance compared to PD-NC and PD-MCI with left-sided symptom dominance. When MCI was present, PD patients showed a fronto-temporo-parietal pattern of cortical thinning. This cortical pattern does not appear to be influenced by motor laterality, although one-sided symptom dominance may contribute to volumetric reduction of specific subcortical structures. © 2015 EAN.

  20. Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study.

    PubMed

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-08-01

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.

  1. Learning impaired children exhibit timing deficits and training-related improvements in auditory cortical responses to speech in noise.

    PubMed

    Warrier, Catherine M; Johnson, Krista L; Hayes, Erin A; Nicol, Trent; Kraus, Nina

    2004-08-01

    The physiological mechanisms that contribute to abnormal encoding of speech in children with learning problems are yet to be well understood. Furthermore, speech perception problems appear to be particularly exacerbated by background noise in this population. This study compared speech-evoked cortical responses recorded in a noisy background to those recorded in quiet in normal children (NL) and children with learning problems (LP). Timing differences between responses recorded in quiet and in background noise were assessed by cross-correlating the responses with each other. Overall response magnitude was measured with root-mean-square (RMS) amplitude. Cross-correlation scores indicated that 23% of LP children exhibited cortical neural timing abnormalities such that their neurophysiological representation of speech sounds became distorted in the presence of background noise. The latency of the N2 response in noise was isolated as being the root of this distortion. RMS amplitudes in these children did not differ from NL children, indicating that this result was not due to a difference in response magnitude. LP children who participated in a commercial auditory training program and exhibited improved cortical timing also showed improvements in phonological perception. Consequently, auditory pathway timing deficits can be objectively observed in LP children, and auditory training can diminish these deficits.

  2. Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: evidence for dysfunctional network activity in frontal-posterior cortices.

    PubMed

    Sun, Limin; Grützner, Christine; Bölte, Sven; Wibral, Michael; Tozman, Tahmine; Schlitt, Sabine; Poustka, Fritz; Singer, Wolf; Freitag, Christine M; Uhlhaas, Peter J

    2012-07-11

    Current theories of the pathophysiology of autism spectrum disorders (ASD) have focused on abnormal temporal coordination of neural activity in cortical circuits as a core impairment of the disorder. In the current study, we examined the possibility that gamma-band activity may be crucially involved in aberrant brain functioning in ASD. Magneto-encephalographic (MEG) data were recorded from 13 adult human participants with ASD and 16 controls during the presentation of Mooney faces. MEG data were analyzed in the 25-150 Hz frequency range and a beamforming approach was used to identify the sources of spectral power. Participants with ASD showed elevated reaction times and reduced detection rates during the perception of upright Mooney faces, while responses to inverted stimuli were in the normal range. Impaired perceptual organization in the ASD group was accompanied by a reduction in both the amplitude and phase locking of gamma-band activity. A beamforming approach identified distinct networks during perceptual organization in controls and participants with ASD. In controls, perceptual organization of Mooney faces involved increased 60-120 Hz activity in a frontoparietal network, while in the ASD group stronger activation was found in visual regions. These findings highlight the contribution of impaired gamma-band activity toward complex visual processing in ASD, suggesting atypical modulation of high-frequency power in frontoposterior networks.

  3. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

    PubMed Central

    Gulberti, A.; Moll, C.K.E.; Hamel, W.; Buhmann, C.; Koeppen, J.A.; Boelmans, K.; Zittel, S.; Gerloff, C.; Westphal, M.; Schneider, T.R.; Engel, A.K.

    2015-01-01

    Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD) patients, rhythmic auditory stimulation (RAS) induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS) and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing. PMID:26594626

  4. Altered intracellular distribution of PrPC and impairment of proteasome activity in tau overexpressing cortical neurons.

    PubMed

    Canu, Nadia; Filesi, Ilaria; Pristerà, Andrea; Ciotti, Maria Teresa; Biocca, Silvia

    2011-01-01

    The microtubule associated protein tau plays a crucial role in Alzheimer's disease and in many neurodegenerative disorders collectively known as tauopathies. Recently, tau pathology has been also documented in prion diseases although the possible molecular events linking these two proteins are still unknown. We have investigated the fate of normal cellular prion protein (PrP(C)) in primary cortical neurons overexpressing tau protein. We found that overexpression of tau reduces PrP(C) expression at the cell surface and causes its accumulation and aggregation in the cell body but does not affect its maturation and glycosylation. Trapped PrP(C) forms detergent-insoluble aggregates, mainly composed of un-glycosylated and mono-glycosylated forms of prion protein. Interestingly, co-transfection of tau gene in cortical neurons with a proteasome activity reporter, consisting of a short peptide degron fused to the carboxyl-terminus of green fluorescent protein (GFP-CL1), results in down-regulation of the proteasome system, suggesting a possible mechanism that contributes to intracellular PrP(C) accumulation. These findings open a new perspective for the possible crosstalk between tau and prion proteins in the pathogenesis of tau induced-neurodegeneration.

  5. Linking Microcircuit Dysfunction to Cognitive Impairment: Effects of Disinhibition Associated with Schizophrenia in a Cortical Working Memory Model

    PubMed Central

    Murray, John D.; Anticevic, Alan; Gancsos, Mark; Ichinose, Megan; Corlett, Philip R.; Krystal, John H.; Wang, Xiao-Jing

    2014-01-01

    Excitation–inhibition balance (E/I balance) is a fundamental property of cortical microcircuitry. Disruption of E/I balance in prefrontal cortex is hypothesized to underlie cognitive deficits observed in neuropsychiatric illnesses such as schizophrenia. To elucidate the link between these phenomena, we incorporated synaptic disinhibition, via N-methyl-D-aspartate receptor perturbation on interneurons, into a network model of spatial working memory (WM). At the neural level, disinhibition broadens the tuning of WM-related, stimulus-selective persistent activity patterns. The model predicts that this change at the neural level leads to 2 primary behavioral deficits: 1) increased behavioral variability that degrades the precision of stored information and 2) decreased ability to filter out distractors during WM maintenance. We specifically tested the main model prediction, broadened WM representation under disinhibition, using behavioral data from human subjects performing a spatial WM task combined with ketamine infusion, a pharmacological model of schizophrenia hypothesized to induce disinhibition. Ketamine increased errors in a pattern predicted by the model. Finally, as proof-of-principle, we demonstrate that WM deteriorations in the model can be ameliorated by compensations that restore E/I balance. Our findings identify specific ways by which cortical disinhibition affects WM, suggesting new experimental designs for probing the brain mechanisms of WM deficits in schizophrenia. PMID:23203979

  6. Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model.

    PubMed

    Murray, John D; Anticevic, Alan; Gancsos, Mark; Ichinose, Megan; Corlett, Philip R; Krystal, John H; Wang, Xiao-Jing

    2014-04-01

    Excitation-inhibition balance (E/I balance) is a fundamental property of cortical microcircuitry. Disruption of E/I balance in prefrontal cortex is hypothesized to underlie cognitive deficits observed in neuropsychiatric illnesses such as schizophrenia. To elucidate the link between these phenomena, we incorporated synaptic disinhibition, via N-methyl-D-aspartate receptor perturbation on interneurons, into a network model of spatial working memory (WM). At the neural level, disinhibition broadens the tuning of WM-related, stimulus-selective persistent activity patterns. The model predicts that this change at the neural level leads to 2 primary behavioral deficits: 1) increased behavioral variability that degrades the precision of stored information and 2) decreased ability to filter out distractors during WM maintenance. We specifically tested the main model prediction, broadened WM representation under disinhibition, using behavioral data from human subjects performing a spatial WM task combined with ketamine infusion, a pharmacological model of schizophrenia hypothesized to induce disinhibition. Ketamine increased errors in a pattern predicted by the model. Finally, as proof-of-principle, we demonstrate that WM deteriorations in the model can be ameliorated by compensations that restore E/I balance. Our findings identify specific ways by which cortical disinhibition affects WM, suggesting new experimental designs for probing the brain mechanisms of WM deficits in schizophrenia.

  7. Repeated mild lateral fluid percussion brain injury in the rat causes cumulative long-term behavioral impairments, neuroinflammation, and cortical loss in an animal model of repeated concussion.

    PubMed

    Shultz, Sandy R; Bao, Feng; Omana, Vanessa; Chiu, Charlotte; Brown, Arthur; Cain, Donald Peter

    2012-01-20

    There is growing evidence that repeated brain concussion can result in cumulative and long-term behavioral symptoms, neuropathological changes, and neurodegeneration. Little is known about the factors and mechanisms that contribute to these effects. The current study addresses the need to investigate and better understand the effects of repeated concussion through the development of an animal model. Male Long-Evans rats received 1, 3, or 5 mild lateral fluid percussion injuries or sham injuries spaced 5 days apart. After the final injury, rats received either a short (24 h) or long (8 weeks) post-injury recovery period, followed by a detailed behavioral analysis consisting of tests for rodent anxiety-like behavior, cognition, social behavior, sensorimotor function, and depression-like behavior. Brains were examined immunohistochemically to assess neuroinflammation and cortical damage. Rats given 1, 3, or 5 mild percussion injuries displayed significant short-term cognitive impairments. Rats given repeated mild percussion injuries displayed significantly worse short- and long-term cognitive impairments. Rats given 5 mild percussion injuries also displayed increased anxiety- and depression-like behaviors. Neuropathological analysis revealed short-term neuroinflammation in 3-injury rats, and both short- and long-term neuroinflammation in 5-injury rats. There was also evidence that repeated injuries induced short- and long-term cortical damage. These cumulative and long-term changes are consistent with findings in human patients suffering repeated brain concussion, provide support for the use of repeated mild lateral fluid percussion injuries to study repeated concussion in the rat, and suggest that neuroinflammation may be important for understanding the cumulative and chronic effects of repeated concussion.

  8. Immature Cortical Responses to Auditory Stimuli in Specific Language Impairment: Evidence from ERPS to Rapid Tone Sequences

    ERIC Educational Resources Information Center

    Bishop, D. V. M.; McArthur, G. M.

    2004-01-01

    Event-related potentials (ERPs) to tone pairs and single tones were measured for 16 participants with specific language impairment (SLI) and 16 age-matched controls aged from 10 to 19 years. The tone pairs were separated by an inter-stimulus interval (ISI) of 20, 50 or 150 ms. The intraclass correlation (ICC) was computed for each participant…

  9. Immature Cortical Responses to Auditory Stimuli in Specific Language Impairment: Evidence from ERPS to Rapid Tone Sequences

    ERIC Educational Resources Information Center

    Bishop, D. V. M.; McArthur, G. M.

    2004-01-01

    Event-related potentials (ERPs) to tone pairs and single tones were measured for 16 participants with specific language impairment (SLI) and 16 age-matched controls aged from 10 to 19 years. The tone pairs were separated by an inter-stimulus interval (ISI) of 20, 50 or 150 ms. The intraclass correlation (ICC) was computed for each participant…

  10. Permanent impairment of birth and survival of cortical and hippocampal proliferating cells following excessive drinking during alcohol dependence

    PubMed Central

    Richardson, Heather N.; Chan, Stephanie H.; Crawford, Elena F.; Lee, Youn Kyung; Funk, Cindy K.; Koob, George F.; Mandyam, Chitra D.

    2009-01-01

    Experimenter-delivered alcohol decreases adult hippocampal neurogenesis, and hippocampal-dependent learning and memory. The present study used clinically relevant rodent models of nondependent limited access alcohol self-administration and excessive drinking during alcohol dependence (alcohol self-administration followed by intermittent exposure to alcohol vapors over several weeks) to compare alcohol-induced effects on cortical gliogenesis and hippocampal neurogenesis. Alcohol dependence, but not nondependent drinking, reduced proliferation and survival in the medial prefrontal cortex (mPFC). Apoptosis was reduced in both alcohol groups within the mPFC, which may reflect an initiation of a reparative environment following alcohol exposure as decreased proliferation was abolished after prolonged dependence. Reduced proliferation, differentiation, and neurogenesis was observed in the hippocampus of both alcohol groups, and prolonged dependence worsened the effects. Increased hippocampal apoptosis and neuronal degeneration following alcohol exposure suggests a loss in neuronal turnover and indicates that the hippocampal neurogenic niche is highly vulnerable to alcohol. PMID:19501165

  11. White Matter Damage Impairs Adaptive Recovery More than Cortical Damage in an in silico Model of Activity-Dependent Plasticity

    PubMed Central

    Follett, Pamela L.; Roth, Cassandra; Follett, David; Dammann, Olaf

    2013-01-01

    Little is understood of how damaged white matter interacts with developmental plasticity. We propose that computational neuroscience methods are underutilized in this problem. In this paper we present a non-deterministic, in silico model of activity-dependent plasticity. Using this model we compared the impact of neuronal cell loss or axonal dysfunction on the ability of the system to generate, maintain, and recover synapses. The results suggest the axonal dysfunction seen in white matter injury is a greater burden to adaptive plasticity and recovery than is the neuronal loss of cortical injury. Better understanding of the interaction between features of preterm brain injury and developmental plasticity is an essential component for improving recovery. PMID:19745092

  12. Impairments in brain-derived neurotrophic factor-induced glutamate release in cultured cortical neurons derived from rats with intrauterine growth retardation: possible involvement of suppression of TrkB/phospholipase C-γ activation.

    PubMed

    Numakawa, Tadahiro; Matsumoto, Tomoya; Ooshima, Yoshiko; Chiba, Shuichi; Furuta, Miyako; Izumi, Aiko; Ninomiya-Baba, Midori; Odaka, Haruki; Hashido, Kazuo; Adachi, Naoki; Kunugi, Hiroshi

    2014-04-01

    Low birth weight due to intrauterine growth retardation (IUGR) is suggested to be a risk factor for various psychiatric disorders such as schizophrenia. It has been reported that developmental cortical dysfunction and neurocognitive deficits are observed in individuals with IUGR, however, the underlying molecular mechanisms have yet to be elucidated. Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are associated with schizophrenia and play a role in cortical development. We previously demonstrated that BDNF induced glutamate release through activation of the TrkB/phospholipase C-γ (PLC-γ) pathway in developing cultured cortical neurons, and that, using a rat model for IUGR caused by maternal administration of thromboxane A2, cortical levels of TrkB were significantly reduced in IUGR rats at birth. These studies prompted us to hypothesize that TrkB reduction in IUGR cortex led to impairment of BDNF-dependent glutamatergic neurotransmission. In the present study, we found that BDNF-induced glutamate release was strongly impaired in cultured IUGR cortical neurons where TrkB reduction was maintained. Impairment of BDNF-induced glutamate release in IUGR neurons was ameliorated by transfection of human TrkB (hTrkB). Although BDNF-stimulated phosphorylation of TrkB and of PLC-γ was decreased in IUGR neurons, the hTrkB transfection recovered the deficits in their phosphorylation. These results suggest that TrkB reduction causes impairment of BDNF-stimulated glutamatergic function via suppression of TrkB/PLC-γ activation in IUGR cortical neurons. Our findings provide molecular insights into how IUGR links to downregulation of BDNF function in the cortex, which might be involved in the development of IUGR-related diseases such as schizophrenia.

  13. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation.

    PubMed

    Mantua, Janna; Mahan, Keenan M; Henry, Owen S; Spencer, Rebecca M C

    2015-01-01

    Individuals with a history of traumatic brain injury (TBI) often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations). Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-h later, following an interval awake or with overnight sleep. Young adult participants (18-22 years) were assigned to one of four experimental groups: TBI Sleep (n = 14), TBI Wake (n = 12), non-TBI Sleep (n = 15), non-TBI Wake (n = 15). Each TBI participant was >1 year post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-h intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation.

  14. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development.

    PubMed

    Ma, Lei; Yang, Feng; Zhao, Rui; Li, Li; Kang, Xiaogang; Xiao, Lan; Jiang, Wen

    2015-10-05

    Developmental delay, cognitive impairment, and refractory epilepsy are the most frequent consequences found in patients suffering from malformations of cortical development (MCD). However, therapeutic options for these psychiatric and neurological comorbidities are currently limited. The development of white matter undergoes dramatic changes during postnatal brain maturation, thus myelination deficits resulting from MCD contribute to its comorbid diseases. Consequently, drugs specifically targeting white matter are a promising therapeutic option for the treatment of MCD. We have used an in utero irradiation rat model of MCD to investigate the effects of postnatal quetiapine treatment on brain myelination as well as neuropsychological and cognitive performances and seizure susceptibility. Fatally irradiated rats were treated with quetiapine (10mg/kg, i.p.) or saline once daily from postnatal day 0 (P0) to P30. We found that postnatal administration of quetiapine attenuated object recognition memory impairment and improved long-term spatial memory in the irradiated rats. Quetiapine treatment also reduced the susceptibility and severity of pentylenetetrazol-induced seizures. Importantly, quetiapine treatment resulted in an inhibition of irradiation-induced myelin breakdown in the cerebral cortex and corpus callosum. These findings suggest that quetiapine may have beneficial, postnatal effects in the irradiated rats, strongly suggesting that improving MCD-derived white matter pathology is a possible underlying mechanism. Collectively, these results indicate that brain myelination represents an encouraging pharmacological target to improve the prognosis of patients with MCD.

  15. Sleep-Dependent Consolidation of Procedural Motor Memories in Children and Adults: The Pre-Sleep Level of Performance Matters

    ERIC Educational Resources Information Center

    Wilhelm, Ines; Metzkow-Meszaros, Maila; Knapp, Susanne; Born, Jan

    2012-01-01

    In striking contrast to adults, in children sleep following training a motor task did not induce the expected (offline) gain in motor skill performance in previous studies. Children normally perform at distinctly lower levels than adults. Moreover, evidence in adults suggests that sleep dependent offline gains in skill essentially depend on the…

  16. Sleep-Dependent Consolidation of Procedural Motor Memories in Children and Adults: The Pre-Sleep Level of Performance Matters

    ERIC Educational Resources Information Center

    Wilhelm, Ines; Metzkow-Meszaros, Maila; Knapp, Susanne; Born, Jan

    2012-01-01

    In striking contrast to adults, in children sleep following training a motor task did not induce the expected (offline) gain in motor skill performance in previous studies. Children normally perform at distinctly lower levels than adults. Moreover, evidence in adults suggests that sleep dependent offline gains in skill essentially depend on the…

  17. Ketamine alters cortical integration of GABAergic interneurons and induces long-term sex-dependent impairments in transgenic Gad67-GFP mice

    PubMed Central

    Aligny, C; Roux, C; Dourmap, N; Ramdani, Y; Do-Rego, J-C; Jégou, S; Leroux, P; Leroux-Nicollet, I; Marret, S; Gonzalez, B J

    2014-01-01

    Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) antagonist, widely used as an anesthetic in neonatal pediatrics, is also an illicit drug named Super K or KitKat consumed by teens and young adults. In the immature brain, despite several studies indicating that NMDA antagonists are neuroprotective against excitotoxic injuries, there is more and more evidence indicating that these molecules exert a deleterious effect by suppressing a trophic function of glutamate. In the present study, we show using Gad67-GFP mice that prenatal exposure to ketamine during a time-window in which GABAergic precursors are migrating results in (i) strong apoptotic death in the ganglionic eminences and along the migratory routes of GABAergic interneurons; (ii) long-term deficits in interneuron density, dendrite numbers and spine morphology; (iii) a sex-dependent deregulation of γ-aminobutyric acid (GABA) levels and GABA transporter expression; (iv) sex-dependent changes in the response to glutamate-induced calcium mobilization; and (v) the long-term sex-dependent behavioral impairment of locomotor activity. In conclusion, using a preclinical approach, the present study shows that ketamine exposure during cortical maturation durably affects the integration of GABAergic interneurons by reducing their survival and differentiation. The resulting molecular, morphological and functional modifications are associated with sex-specific behavioral deficits in adults. In light of the present data, it appears that in humans, ketamine could be deleterious for the development of the brain of preterm neonates and fetuses of addicted pregnant women. PMID:24991763

  18. Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment.

    PubMed

    Bauer, Corinna M; Heidary, Gena; Koo, Bang-Bon; Killiany, Ronald J; Bex, Peter; Merabet, Lotfi B

    2014-08-01

    Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients.

  19. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    PubMed

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.

  20. Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

    PubMed Central

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert

    2010-01-01

    Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102

  1. Time- but not sleep-dependent consolidation promotes the emergence of cross-modal conceptual representations.

    PubMed

    Hennies, Nora; Lewis, Penelope A; Durrant, Simon J; Cousins, James N; Ralph, Matthew A Lambon

    2014-10-01

    Conceptual knowledge about objects comprises a diverse set of multi-modal and generalisable information, which allows us to bring meaning to the stimuli in our environment. The formation of conceptual representations requires two key computational challenges: integrating information from different sensory modalities and abstracting statistical regularities across exemplars. Although these processes are thought to be facilitated by offline memory consolidation, investigations into how cross-modal concepts evolve offline, over time, rather than with continuous category exposure are still missing. Here, we aimed to mimic the formation of new conceptual representations by reducing this process to its two key computational challenges and exploring its evolution over an offline retention period. Participants learned to distinguish between members of two abstract categories based on a simple one-dimensional visual rule. Underlying the task was a more complex hidden indicator of category structure, which required the integration of information across two sensory modalities. In two experiments we investigated the impact of time- and sleep-dependent consolidation on category learning. Our results show that offline memory consolidation facilitated cross-modal category learning. Surprisingly, consolidation across wake, but not across sleep showed this beneficial effect. By demonstrating the importance of offline consolidation the current study provided further insights into the processes that underlie the formation of conceptual representations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Time- but Not Sleep-Dependent Consolidation of tDCS-Enhanced Visuomotor Skills

    PubMed Central

    Reis, Janine; Fischer, Jan Torben; Prichard, George; Weiller, Cornelius; Cohen, Leonardo G.; Fritsch, Brita

    2015-01-01

    Consolidation of motor skills after training can occur in a time- or sleep-dependent fashion. Recent studies revealed time-dependent consolidation as a common feature of visuomotor tasks. We have previously shown that anodal transcranial direct current stimulation (tDCS) in combination with repeated motor training benefits consolidation by the induction of offline skill gains in a complex visuomotor task, preventing the regular occurrence of skill loss between days. Here, we asked 2 questions: What is the time course of consolidation between days for this task and do exogenously induced offline gains develop as a function of time or overnight sleep? We found that both the development of offline skill loss in sham-stimulated subjects and offline skill gains induced by anodal tDCS critically depend on the passage of time after training, but not on overnight sleep. These findings support the view that tDCS interacts directly with the physiological consolidation process. However, in a control experiment, anodal tDCS applied after the training did not induce skill gains, implying that coapplication of tDCS and training is required to induce offline skill gains, pointing to the initiation of consolidation already during training. PMID:23960213

  3. Time- but not sleep-dependent consolidation promotes the emergence of cross-modal conceptual representations

    PubMed Central

    Hennies, Nora; Lewis, Penelope A.; Durrant, Simon J.; Cousins, James N.; Lambon Ralph, Matthew A.

    2014-01-01

    Conceptual knowledge about objects comprises a diverse set of multi-modal and generalisable information, which allows us to bring meaning to the stimuli in our environment. The formation of conceptual representations requires two key computational challenges: integrating information from different sensory modalities and abstracting statistical regularities across exemplars. Although these processes are thought to be facilitated by offline memory consolidation, investigations into how cross-modal concepts evolve offline, over time, rather than with continuous category exposure are still missing. Here, we aimed to mimic the formation of new conceptual representations by reducing this process to its two key computational challenges and exploring its evolution over an offline retention period. Participants learned to distinguish between members of two abstract categories based on a simple one-dimensional visual rule. Underlying the task was a more complex hidden indicator of category structure, which required the integration of information across two sensory modalities. In two experiments we investigated the impact of time- and sleep-dependent consolidation on category learning. Our results show that offline memory consolidation facilitated cross-modal category learning. Surprisingly, consolidation across wake, but not across sleep showed this beneficial effect. By demonstrating the importance of offline consolidation the current study provided further insights into the processes that underlie the formation of conceptual representations. PMID:25174663

  4. Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults

    PubMed Central

    Tchistiakova, Ekaterina; Anderson, Nicole D.; Greenwood, Carol E.; MacIntosh, Bradley J.

    2014-01-01

    Objective Type 2 diabetes mellitus is characterized by metabolic dysregulation in the form of hyperglycemia and insulin resistance and can have a profound impact on brain structure and vasculature. The primary aim of this study was to identify brain regions where the combined effects of type 2 diabetes and hypertension on brain health exceed those of hypertension alone. A secondary objective was to test whether vascular impairment and structural brain measures in this population are associated with cognitive function. Research design and methods We enrolled 18 diabetic participants with hypertension (HTN + T2DM, 7 women, 71.8 ± 5.6 years) and 22 participants with hypertension only (HTN, 12 women, 73.4 ± 6.2 years). Cerebrovascular reactivity (CVR) was assessed using blood oxygenation level dependent (BOLD) MRI during successive breath holds. Gray matter structure was evaluated using cortical thickness (CThk) measures estimated from T1-weighted images. Analyses of cognitive and blood data were also performed. Results Compared to HTN, HTN + T2DM had decreased CVR and CThk in a spatially overlapping region of the right occipital lobe (P < 0.025); CVR group differences were more expansive and included bilateral occipito-parietal areas (P < 0.025). Whereas CVR showed no significant associations with measures of cognitive function (P > 0.05), CThk in the right lingual gyrus ROI and regions resulting from a vertex-wise analysis (including posterior cingulate, precuneus, superior and middle frontal, and middle and inferior temporal regions (P < 0.025) were associated with executive function. Conclusions Individuals with T2DM and HTN showed decreased CVR and CThk compared to age-matched HTN controls. This study identifies brain regions that are impacted by the combined effects of comorbid T2DM and HTN conditions, with new evidence that the corresponding cortical thinning may contribute to cognitive decline. PMID:24967157

  5. Sleep-dependent consolidation benefits fast transfer of time interval training.

    PubMed

    Chen, Lihan; Guo, Lu; Bao, Ming

    2017-03-01

    Previous study has shown that short training (15 min) for explicitly discriminating temporal intervals between two paired auditory beeps, or between two paired tactile taps, can significantly improve observers' ability to classify the perceptual states of visual Ternus apparent motion while the training of task-irrelevant sensory properties did not help to improve visual timing (Chen and Zhou in Exp Brain Res 232(6):1855-1864, 2014). The present study examined the role of 'consolidation' after training of temporal task-irrelevant properties, or whether a pure delay (i.e., blank consolidation) following pretest of the target task would give rise to improved ability of visual interval timing, typified in visual Ternus display. A procedure of pretest-training-posttest was adopted, with the probe of discriminating Ternus apparent motion. The extended implicit training of timing in which the time intervals between paired auditory beeps or paired tactile taps were manipulated but the task was discrimination of the auditory pitches or tactile intensities, did not lead to the training benefits (Exps 1 and 3); however, a delay of 24 h after implicit training of timing, including solving 'Sudoku puzzles,' made the otherwise absent training benefits observable (Exps 2, 4, 5 and 6). The above improvements in performance were not due to a practice effect of Ternus motion (Exp 7). A general 'blank' consolidation period of 24 h also made improvements of visual timing observable (Exp 8). Taken together, the current findings indicated that sleep-dependent consolidation imposed a general effect, by potentially triggering and maintaining neuroplastic changes in the intrinsic (timing) network to enhance the ability of time perception.

  6. Nightmare sufferers show atypical emotional semantic associations and prolonged REM sleep-dependent emotional priming.

    PubMed

    Carr, Michelle; Blanchette-Carrière, Cloé; Marquis, Louis-Philippe; Ting, Cher Tieng; Nielsen, Tore

    2016-04-01

    The objective of this study was to investigate whether nightmare (NM) sufferers exhibit an abnormal network of emotional semantic associations as measured by a recently developed, rapid eye movement (REM) sleep-sensitive, associational breadth (AB) task. NM sufferers were compared to healthy controls (CTL) for their performance on an emotional AB task containing positive and negative cue words both before and after a nap with REM sleep. AB was assessed in both a priming condition, where cue words were explicitly memorized before sleep, and a non-priming condition, where cue words were not memorized. Performance was assessed again 1 week later. The study was conducted in a sleep laboratory with polysomnographic recording at the Hôpital du Sacré-Coeur de Montréal Twenty-eight participants between the ages of 18 and 35 years (Mage = 23.3 ± 3.4) were included in the study. The NM group scored higher than the CTL group on both positive and negative AB, with group differences persisting at the 1-week retest. However, the two groups did not differ as expected in the AB priming effect following REM sleep. Both groups showed decreased REM sleep-related AB priming for negative cue words and increased AB priming for positive cue words. However, the NM group maintained these effects 1 week later, whereas the CTL group did not. NM sufferers may access broader than normal emotional semantic networks in the wake state, a difference that may lead to this group being perceived as more creative. The fact that the AB priming effect is maintained at the 1-week retest for NM sufferers suggests that the presence of frequent NMs may alter REM sleep-dependent emotional processes over time. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Sleep-dependent improvement in visuomotor learning: a causal role for slow waves.

    PubMed

    Landsness, Eric C; Crupi, Domenica; Hulse, Brad K; Peterson, Michael J; Huber, Reto; Ansari, Hidayath; Coen, Michael; Cirelli, Chiara; Benca, Ruth M; Ghilardi, M Felice; Tononi, Giulio

    2009-10-01

    Sleep after learning often benefits memory consolidation, but the underlying mechanisms remain unclear. In previous studies, we found that learning a visuomotor task is followed by an increase in sleep slow wave activity (SWA, the electroencephalographic [EEG] power density between 0.5 and 4.5 Hz during non-rapid eye movement sleep) over the right parietal cortex. The SWA increase correlates with the postsleep improvement in visuomotor performance, suggesting that SWA may be causally responsible for the consolidation of visuomotor learning. Here, we tested this hypothesis by studying the effects of slow wave deprivation (SWD). After learning the task, subjects went to sleep, and acoustic stimuli were timed either to suppress slow waves (SWD) or to interfere as little as possible with spontaneous slow waves (control acoustic stimulation, CAS). Sound-attenuated research room. Healthy subjects (mean age 24.6 +/- 1.0 years; n = 9 for EEG analysis, n = 12 for behavior analysis; 3 women). Sleep time and efficiency were not affected, whereas SWA and the number of slow waves decreased in SWD relative to CAS. Relative to the night before, visuomotor performance significantly improved in the CAS condition (+5.93% +/- 0.88%) but not in the SWD condition (-0.77% +/- 1.16%), and the direct CAS vs SWD comparison showed a significant difference (P = 0.0007, n = 12, paired t test). Changes in visuomotor performance after SWD were correlated with SWA changes over right parietal cortex but not with the number of arousals identified using clinically established criteria, nor with any sign of "EEG lightening" identified using a novel automatic method based on event-related spectral perturbation analysis. These results support a causal role for sleep slow waves in sleep-dependent improvement of visuomotor performance.

  8. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats.

    PubMed

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and CNPase(+) and OLIG2(+) oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho(+) oligodendrocytes were detected in the corpus callosum at ≥0.1%. In the dentate gyrus, CPZ at ≥0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1(+) and GRIN2A(+) hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2(+) granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells.

  9. Novel Experience Induces Persistent Sleep-Dependent Plasticity in the Cortex but not in the Hippocampus

    PubMed Central

    Ribeiro, Sidarta; Shi, Xinwu; Engelhard, Matthew; Zhou, Yi; Zhang, Hao; Gervasoni, Damien; Lin, Shi-Chieh; Wada, Kazuhiro; Lemos, Nelson A.M.

    2007-01-01

    Episodic and spatial memories engage the hippocampus during acquisition but migrate to the cerebral cortex over time. We have recently proposed that the interplay between slow-wave (SWS) and rapid eye movement (REM) sleep propagates recent synaptic changes from the hippocampus to the cortex. To test this theory, we jointly assessed extracellular neuronal activity, local field potentials (LFP), and expression levels of plasticity-related immediate-early genes (IEG) arc and zif-268 in rats exposed to novel spatio-tactile experience. Post-experience firing rate increases were strongest in SWS and lasted much longer in the cortex (hours) than in the hippocampus (minutes). During REM sleep, firing rates showed strong temporal dependence across brain areas: cortical activation during experience predicted hippocampal activity in the first post-experience hour, while hippocampal activation during experience predicted cortical activity in the third post-experience hour. Four hours after experience, IEG expression was specifically upregulated during REM sleep in the cortex, but not in the hippocampus. Arc gene expression in the cortex was proportional to LFP amplitude in the spindle-range (10–14 Hz) but not to firing rates, as expected from signals more related to dendritic input than to somatic output. The results indicate that hippocampo-cortical activation during waking is followed by multiple waves of cortical plasticity as full sleep cycles recur. The absence of equivalent changes in the hippocampus may explain its mnemonic disengagement over time. PMID:18982118

  10. Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance.

    PubMed

    Gregory, Michael D; Agam, Yigal; Selvadurai, Chindhuri; Nagy, Amanda; Vangel, Mark; Tucker, Matthew; Robertson, Edwin M; Stickgold, Robert; Manoach, Dara S

    2014-11-15

    There is ongoing debate concerning the functions of resting-state brain activity. Prior work demonstrates that memory encoding enhances subsequent resting-state functional connectivity within task-relevant networks and that these changes predict better recognition. Here, we used functional connectivity MRI (fcMRI) to examine whether task-induced changes in resting-state connectivity correlate with performance improvement after sleep. In two separate sessions, resting-state scans were acquired before and after participants performed a motor task. In one session participants trained on the motor sequence task (MST), a well-established probe of sleep-dependent memory consolidation, and were tested the next day, after a night of sleep. In the other session they performed a motor control task (MCT) that minimized learning. In an accompanying behavioral control study, participants trained on the MST and were tested after either a night of sleep or an equivalent interval of daytime wake. Both the fcMRI and the sleep control groups showed significant improvement of MST performance, while the wake control group did not. In the fcMRI group, increased connectivity in bilateral motor cortex following MST training correlated with this next-day improvement. This increased connectivity did not appear to reflect initial learning since it did not correlate with learning during training and was not greater after MST training than MCT performance. Instead, we hypothesize that this increased connectivity processed the new memories for sleep-dependent consolidation. Our findings demonstrate that physiological processes immediately after learning correlate with sleep-dependent performance improvement and suggest that the wakeful resting brain prepares memories of recent experiences for later consolidation during sleep.

  11. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain

    PubMed Central

    Chao, Ming-Wei; Chen, Chie-Pein; Yang, Yu-Hsiu; Chuang, Yu-Chen; Chu, Tzu-Yun; Tseng, Chia-Yi

    2016-01-01

    Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development. PMID:27577752

  12. Sleep-Dependent Gene Expression in the Hippocampus and Prefrontal Cortex Following Long-Term Potentiation

    PubMed Central

    Romcy-Pereira, Rodrigo N.; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Ogawa, Sonoko; Mello, Claudio V.; Sibille, Etienne; Pavlides, Constantine

    2009-01-01

    The activity-dependent transcription factor zif268 is re-activated in sleep following hippocampal long-term potentiation (LTP). However, the activation of secondary genes, possibly involved in modifying local synaptic strengths and ultimately stabilizing memory traces during sleep, has not yet been studied. Here, we investigated changes in hippocampal and cortical gene expression at a time point subsequent to the previously reported initial zif268 re-activation during sleep. Rats underwent unilateral hippocampal LTP and were assigned to SLEEP or AWAKE groups. Eighty minutes after a long rapid-eye-movement sleep (REMS) episode (or an equivalent amount of time for awake group) animals had their hippocampi dissected and processed for gene microarray hybridization. Prefrontal and parietal cortices were also collected for qRT-PCR analysis. The microarray analysis identified 28 up-regulated genes in the hippocampus: 11 genes were enhanced in the LTPed hemisphere of sleep animals; 13 genes were enhanced after sleep, regardless of hemisphere; and 4 genes were enhanced in LTPed hemisphere, regardless of behavioral state. qRT-PCR analysis confirmed the upregulation of aif-1 and sc-65 during sleep. Moreover, we observed a down-regulation of the purinergic receptor, P2Y4R in the LTP hemisphere of awake animals and a trend for the protein kinase, CaMKI to be up-regulated in the LTP hemisphere of sleep animals. In the prefrontal cortex, we showed a significant LTP-dependent down-regulation of gluR1 and spinophilin specifically during sleep. Zif268 was downregulated in sleep regardless of the hemisphere. No changes in gene expression were observed in the parietal cortex. Our findings indicate that a set of synaptic plasticity-related genes have their expression modulated during sleep following LTP, which can reflect biochemical events associated with reshaping of synaptic connections in sleep following learning. PMID:19389414

  13. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation

    PubMed Central

    Ramanathan, Dhakshin S.; Gulati, Tanuj; Ganguly, Karunesh

    2015-01-01

    Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning. PMID:26382320

  14. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation.

    PubMed

    Ramanathan, Dhakshin S; Gulati, Tanuj; Ganguly, Karunesh

    2015-01-01

    Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.

  15. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    PubMed

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R G; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  16. Disconnection Mechanism and Regional Cortical Atrophy Contribute to Impaired Processing of Facial Expressions and Theory of Mind in Multiple Sclerosis: A Structural MRI Study

    PubMed Central

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R. G.; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others’ mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients. PMID:24349280

  17. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    PubMed

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  18. Sleep-dependent memory consolidation--what can be learnt from children?

    PubMed

    Wilhelm, I; Prehn-Kristensen, A; Born, J

    2012-08-01

    Extensive research has been accumulated demonstrating that sleep is essential for processes of memory consolidation in adults. In children and infants, a great capacity to learn and to memorize coincides with longer and more intense sleep. Here, we review the available data on the influence of sleep on memory consolidation in healthy children and infants, as well as in children with attention-deficit/hyperactivity disorder (ADHD) as a model of prefrontal impairment, and consider possible mechanisms underlying age-dependent differences. Findings indicate a major role of slow wave sleep (SWS) for processes of memory consolidation during early development. Importantly, longer and deeper SWS during childhood appears to produce a distinctly superior strengthening of hippocampus-dependent declarative memories, but concurrently prevents an immediate benefit from sleep for procedural memories, as typically observed in adults. Studies of ADHD children point toward an essential contribution of prefrontal cortex to the preferential consolidation of declarative memory during SWS. Developmental studies of sleep represent a particularly promising approach for characterizing the supra-ordinate control of memory consolidation during sleep by prefrontal-hippocampal circuitry underlying the encoding of declarative memory.

  19. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP.

    PubMed

    Ravassard, Pascal; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Fraize, Nicolas; Libourel, Paul-Antoine; Lebarillier, Léa; Arthaud, Sébastien; Meissirel, Claire; Touret, Monique; Malleret, Gaël; Salin, Paul-Antoine

    2016-04-01

    Prolonged rapid-eye-movement (REM) sleep deprivation has long been used to study the role of REM sleep in learning and memory processes. However, this method potentially induces stress and fatigue that may directly affect cognitive functions. Here, by using a short-term and nonstressful REM sleep deprivation (RSD) method we assessed in rats the bidirectional influence of reduced and increased REM sleep amount on hippocampal-dependent emotional memory and plasticity. Our results indicate that 4 h RSD impaired consolidation of contextual fear conditioning (CFC) and induction of long-term potentiation (LTP), while decreasing density of Egr1/Zif268-expressing neurons in the CA1 region of the dorsal hippocampus. LTP and Egr1 expression were not affected in ventral CA1. Conversely, an increase in REM sleep restores and further facilitates CFC consolidation and LTP induction, and also increases Egr1 expression in dorsal CA1. Moreover, CFC consolidation, Egr1 neuron density, and LTP amplitude in dorsal CA1 show a positive correlation with REM sleep amount. Altogether, these results indicate that mild changes in REM sleep amount bidirectionally affect memory and synaptic plasticity mechanisms occurring in the CA1 area of the dorsal hippocampus.

  20. [Posterior cortical atrophy].

    PubMed

    Solyga, Volker Moræus; Western, Elin; Solheim, Hanne; Hassel, Bjørnar; Kerty, Emilia

    2015-06-02

    Posterior cortical atrophy is a neurodegenerative condition with atrophy of posterior parts of the cerebral cortex, including the visual cortex and parts of the parietal and temporal cortices. It presents early, in the 50s or 60s, with nonspecific visual disturbances that are often misinterpreted as ophthalmological, which can delay the diagnosis. The purpose of this article is to present current knowledge about symptoms, diagnostics and treatment of this condition. The review is based on a selection of relevant articles in PubMed and on the authors' own experience with the patient group. Posterior cortical atrophy causes gradually increasing impairment in reading, distance judgement, and the ability to perceive complex images. Examination of higher visual functions, neuropsychological testing, and neuroimaging contribute to diagnosis. In the early stages, patients do not have problems with memory or insight, but cognitive impairment and dementia can develop. It is unclear whether the condition is a variant of Alzheimer's disease, or whether it is a separate disease entity. There is no established treatment, but practical measures such as the aid of social care workers, telephones with large keypads, computers with voice recognition software and audiobooks can be useful. Currently available treatment has very limited effect on the disease itself. Nevertheless it is important to identify and diagnose the condition in its early stages in order to be able to offer patients practical assistance in their daily lives.

  1. Impaired Memory and Evidence of Histopathology in CA1 Pyramidal Neurons through Injection of Aβ1-42 Peptides into the Frontal Cortices of Rat

    PubMed Central

    Eslamizade, Mohammad Javad; Madjd, Zahra; Rasoolijazi, Homa; Saffarzadeh, Fatemeh; Pirhajati, Vahid; Aligholi, Hadi; Janahmadi, Mahyar; Mehdizadeh, Mehdi

    2016-01-01

    Introduction: Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, which has much benefited from animal models to find the basics of its pathophysiology. In our previous work (Haghani, Shabani, Javan, Motamedi, & Janahmadi, 2012), a non-transgenic rat model of AD was used in electrophysiological studies. However, we did not investigate the histological aspects in the mentioned study. Methods: An AD model was developed through bilateral injection of amyloid-β peptides (Aβ) into the frontal cortices. Behavioral and histological methods were used to assess alterations in the memory and (ultra)structures. Furthermore, melatonin has been administered to assess its efficacy on this AD model. Results: Passive avoidance showed a progressive decline in the memory following Aβ injection. Furthermore, Nissl staining showed that Aβ neurotoxicity caused shrinkage of the CA1 pyramidal neurons. Neurodegeneration was clearly evident from Fluoro-jade labeled neurons in Aβ treated rats. Moreover, higher NF-κB immunoreactive CA1 pyramidal neurons were remarkably observed in Aβ treated rats. Ultrastructural analysis using electron microscopy also showed the evidence of subcellular abnormalities. Melatonin treatment in this model of AD prevented Aβ-induced increased NF-κB from immunoreaction and neurodegeneration. Discussion: This study suggests that injection of Aβ into the frontal cortices results in the memory decline and histochemical disturbances in CA1 pyramidal neurons. Furthermore, melatonin can prevent several histological changes induced by Aβ. PMID:27303597

  2. Untreated sleep-disordered breathing: links to aging-related decline in sleep-dependent memory consolidation.

    PubMed

    Djonlagic, Ina; Guo, Mengshuang; Matteis, Paul; Carusona, Andrea; Stickgold, Robert; Malhotra, Atul

    2014-01-01

    Increasing age is associated with a decline in cognition and motor skills, while at the same time exacerbating one's risk of developing obstructive sleep apnea (OSA). OSA-related cognitive deficits are highly prevalent and can affect various memory systems including overnight memory consolidation on a motor sequence task. Thus, the aim of our study was to examine the effect of aging on sleep-dependent motor memory consolidation in patients with and without OSA. We studied 44 patients (19-68 years) who had been referred by a physician for a baseline polysomnography (PSG) evaluation. Based on their PSG, patients were assigned either to the OSA group (AHI>5/h), or control (Non-OSA) group (AHI<5/h). All subjects performed the Psychomotor Vigilance Task (PVT) and the Motor Sequence Learning Task (MST) in the evening and again in the morning after their PSG. Despite similar learning in the evening, OSA subjects showed significantly less overnight improvement on the MST, both for immediate (OSA -2.7% ± 2.8% vs. controls 12.2% ± 3.5%; p = 0.002) and plateau improvement (OSA 4.9% ± 2.3% vs. controls 21.1%± 4.0%; p = 0.001). Within the OSA group, there was a significant negative correlation between overnight MST improvement and age (r(2) = 0.3; p = 0.01), an effect that was not observed in the Non-OSA group (r(2) = 0.08; p = 0.23). Consistent with previous research, healthy sleepers demonstrated a higher degree of sleep-dependent overnight improvement on the MST, an effect not mitigated by increasing age. However, the presence of untreated obstructive sleep apnea is associated with an aging-related cognitive deficit, otherwise not present in individuals without OSA. As other research has linked the presence of OSA to a higher likelihood of developing dementia, future studies are necessary to examine if the inhibition of memory consolidation is tied to the onset of neurodegenerative disease.

  3. Circadian and sleep-dependent regulation of hormone release in humans

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    rhythm sleep disorders, including the dyssomnia of shift work and visual impairment. Yet to be fully investigated are the interactions of these factors with age and gender. Characterization of the factors governing hormone secretion is critical to understanding the temporal regulation of endocrine systems and presents many exciting areas for future research.

  4. Altered patterns of heartbeat-evoked potentials in depersonalization/derealization disorder: neurophysiological evidence for impaired cortical representation of bodily signals.

    PubMed

    Schulz, André; Köster, Susann; Beutel, Manfred E; Schächinger, Hartmut; Vögele, Claus; Rost, Silke; Rauh, Manfred; Michal, Matthias

    2015-06-01

    Core features of depersonalization/derealization disorder (DPD) are emotional numbing and feelings of disembodiment. Although there are several neurophysiological findings supporting subjective emotional numbing, the psychobiology of disembodiment remains unclear. Heartbeat-evoked potentials (HEPs), which are considered psychophysiological indicators for the cortical representation of afferent signals originating from the cardiovascular system, were assessed in 23 patients with DPD and 24 healthy control individuals during rest and while performing a heartbeat perception task. Absolute HEP amplitudes did not differ between groups. Nevertheless, healthy individuals showed higher HEPs during the heartbeat perception task than during rest, whereas no such effect was found in patients with DPD (p = .031). Patients with DPD had higher total levels of salivary α-amylase than did healthy individuals (9626.6 [8200.0] versus 5344.3 [3745.8] kU min/l; p = .029), but there were no group differences in cardiovascular measures (heart rate = 76.2 [10.1] versus 74.3 [7.5] beats/min, p = .60; normalized low-frequency heart rate variability = 0.63 [0.15] versus 0.56 [0.15] normalized units, p = .099; low frequency/high frequency ratio = 249.3 [242.7] versus 164.8 [108.8], p = .10), salivary cortisol (57.5 [46.7] versus 55.1 [43.6] nmol min/l, p = .86), or cortisone levels (593.2 [260.3] versus 543.8 [257.1] nmol min/l, p = .52). These results suggest altered cortical representation of afferent signals originating from the cardiovascular system in patients with DPD, which may be associated with higher sympathetic tone. These findings may reflect difficulties of patients with DPD to attend to their actual bodily experiences.

  5. Sleep-dependent synaptic down-selection (I): modeling the benefits of sleep on memory consolidation and integration.

    PubMed

    Nere, Andrew; Hashmi, Atif; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Sleep can favor the consolidation of both procedural and declarative memories, promote gist extraction, help the integration of new with old memories, and desaturate the ability to learn. It is often assumed that such beneficial effects are due to the reactivation of neural circuits in sleep to further strengthen the synapses modified during wake or transfer memories to different parts of the brain. A different possibility is that sleep may benefit memory not by further strengthening synapses, but rather by renormalizing synaptic strength to restore cellular homeostasis after net synaptic potentiation in wake. In this way, the sleep-dependent reactivation of neural circuits could result in the competitive down-selection of synapses that are activated infrequently and fit less well with the overall organization of memories. By using computer simulations, we show here that synaptic down-selection is in principle sufficient to explain the beneficial effects of sleep on the consolidation of procedural and declarative memories, on gist extraction, and on the integration of new with old memories, thereby addressing the plasticity-stability dilemma.

  6. Sleep-Dependent Synaptic Down-Selection (I): Modeling the Benefits of Sleep on Memory Consolidation and Integration

    PubMed Central

    Nere, Andrew; Hashmi, Atif; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Sleep can favor the consolidation of both procedural and declarative memories, promote gist extraction, help the integration of new with old memories, and desaturate the ability to learn. It is often assumed that such beneficial effects are due to the reactivation of neural circuits in sleep to further strengthen the synapses modified during wake or transfer memories to different parts of the brain. A different possibility is that sleep may benefit memory not by further strengthening synapses, but rather by renormalizing synaptic strength to restore cellular homeostasis after net synaptic potentiation in wake. In this way, the sleep-dependent reactivation of neural circuits could result in the competitive down-selection of synapses that are activated infrequently and fit less well with the overall organization of memories. By using computer simulations, we show here that synaptic down-selection is in principle sufficient to explain the beneficial effects of sleep on the consolidation of procedural and declarative memories, on gist extraction, and on the integration of new with old memories, thereby addressing the plasticity-stability dilemma. PMID:24137153

  7. Negative reinforcement impairs overnight memory consolidation.

    PubMed

    Stamm, Andrew W; Nguyen, Nam D; Seicol, Benjamin J; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert; Wamsley, Erin J

    2014-11-01

    Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism.

  8. Cortical auditory disorders: clinical and psychoacoustic features.

    PubMed Central

    Mendez, M F; Geehan, G R

    1988-01-01

    The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and matching, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Images PMID:2450968

  9. Overexpressed neuroglobin raises threshold for nitric oxide-induced impairment of mitochondrial respiratory activities and stress signaling in primary cortical neurons

    PubMed Central

    Singh, Shilpee; Zhuo, Ming; Gorgun, Murat; Englander, Ella W.

    2013-01-01

    Surges of nitric oxide compromise mitochondrial respiration primarily by competitive inhibition of oxygen binding to cytochrome c oxidase (complex IV) and are particularly injurious in neurons, which rely on oxidative phosphorylation for all their energy needs. Here, we show that transgenic overexpression of the neuronal globin protein, neuroglobin, helps diminish protein nitration, preserve mitochondrial function and sustain ATP content of primary cortical neurons challenged by extended nitric oxide exposure. Specifically, in transgenic neurons, elevated neuroglobin curtailed nitric oxide-induced alterations in mitochondrial oxygen consumption rates, including baseline oxygen consumption, consumption coupled with ATP synthesis, proton leak and spare respiratory capacity. Concomitantly, activation of genes involved in sensing and responding to oxidative/nitrosative stress, including the early-immediate c-Fos gene and the phase II antioxidant enzyme, heme oxygenase-1, was diminished in neuroglobin-overexpressing compared to wild-type neurons. Taken together, these differences reflect a lesser insult produced by similar concentrations of nitric oxide in neuroglobin-overexpressing compared to wild-type neurons, suggesting that abundant neuroglobin buffers nitric oxide and raises the threshold of nitric oxide-mediated injury in neurons. PMID:23587847

  10. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions

    PubMed Central

    Leon, Julio; Sakumi, Kunihiko; Castillo, Erika; Sheng, Zijing; Oka, Sugako; Nakabeppu, Yusaku

    2016-01-01

    Oxidative stress and mitochondrial dysfunction are implicated in aging-related neurodegenerative disorders. 8-Oxoguanine (8-oxoG), a common oxidised base lesion, is often highly accumulated in brains from patients with neurodegenerative disorders. MTH1 hydrolyses 8-oxo-2′-deoxyguanosine triphosphate (8-oxo-dGTP) to 8-oxo-dGMP and pyrophosphate in nucleotide pools, while OGG1 excises 8-oxoG paired with cytosine in DNA, thereby minimising the accumulation of 8-oxoG in DNA. Mth1/Ogg1-double knockout (TO-DKO) mice are highly susceptible to neurodegeneration under oxidative conditions and show increased accumulation of 8-oxoG in mitochondrial DNA (mtDNA) in neurons, suggesting that 8-oxoG accumulation in mtDNA causes mitochondrial dysfunction. Here, we evaluated the contribution of MTH1 and OGG1 to the prevention of mitochondrial dysfunction during neuritogenesis in vitro. We isolated cortical neurons from adult wild-type and TO-DKO mice and maintained them with or without antioxidants for 2 to 5 days and then examined neuritogenesis. In the presence of antioxidants, both TO-DKO and wild-type neurons exhibited efficient neurite extension and arborisation. However, in the absence of antioxidants, the accumulation of 8-oxoG in mtDNA of TO-DKO neurons was increased resulting in mitochondrial dysfunction. Cells also exhibited poor neurite outgrowth with decreased complexity of neuritic arborisation, indicating that MTH1 and OGG1 are essential for neuritogenesis under oxidative conditions. PMID:26912170

  11. Sleep-Dependent Synaptic Down-Selection (II): Single-Neuron Level Benefits for Matching, Selectivity, and Specificity.

    PubMed

    Hashmi, Atif; Nere, Andrew; Tononi, Giulio

    2013-01-01

    In a companion paper (1), we used computer simulations to show that a strategy of activity-dependent, on-line net synaptic potentiation during wake, followed by off-line synaptic depression during sleep, can provide a parsimonious account for several memory benefits of sleep at the systems level, including the consolidation of procedural and declarative memories, gist extraction, and integration of new with old memories. In this paper, we consider the theoretical benefits of this two-step process at the single-neuron level and employ the theoretical notion of Matching between brain and environment to measure how this process increases the ability of the neuron to capture regularities in the environment and model them internally. We show that down-selection during sleep is beneficial for increasing or restoring Matching after learning, after integrating new with old memories, and after forgetting irrelevant material. By contrast, alternative schemes, such as additional potentiation in wake, potentiation in sleep, or synaptic renormalization in wake, decrease Matching. We also argue that, by selecting appropriate loops through the brain that tie feedforward synapses with feedback ones in the same dendritic domain, different subsets of neurons can learn to specialize for different contingencies and form sequences of nested perception-action loops. By potentiating such loops when interacting with the environment in wake, and depressing them when disconnected from the environment in sleep, neurons can learn to match the long-term statistical structure of the environment while avoiding spurious modes of functioning and catastrophic interference. Finally, such a two-step process has the additional benefit of desaturating the neuron's ability to learn and of maintaining cellular homeostasis. Thus, sleep-dependent synaptic renormalization offers a parsimonious account for both cellular and systems level effects of sleep on learning and memory.

  12. Age-related differences in sleep-dependent consolidation of motor skills in patients with narcolepsy type 1.

    PubMed

    Mazzetti, M; Bellucci, C; Cipolli, C; Pizza, F; Russo, P M; Tuozzi, G; Vandi, S; Plazzi, G

    2016-08-01

    The influence of post-training sleep on the consolidation process of procedural (ie, visual and motor) knowledge has shown to be less effective in patients with chronic sleep disorders compared with healthy subjects. To ascertain whether the influence of the altered architecture of sleep in patients with narcolepsy type 1 (ie, with cataplexy: NT1) also varies with age, we compared the performance values of 16 children (aged from nine to 14 years) and 16 adults (aged from 24 to 51 years) on finger tapping task (FTT) after daytime and nighttime periods of sleep in the 24 hours following training. All patients, who were drug-free and underwent continuous polysomnographic recordings, could take one or more naps after the training session (at 10 a.m.) until one hour before the first retrieval session (at 6 p.m.) and had an undisturbed period of nighttime sleep from about 10 p.m. to two hours before the second retrieval session (again at 10 a.m.). The pattern of sleep-dependent consolidation was significantly different in the two groups of patients: while performance accuracy was higher in adults compared with children at each session, performance speed improved after daytime sleep in children and after nighttime sleep in adults. The improvement in performance speed, although not related with any sleep parameters in both groups, was positively correlated with the daytime and nighttime total sleep time (TST) in children with greater consolidation gain. The interaction between time of day and age in the time course of consolidation of new motor skills discloses a different role of daytime sleep (active in children, simply protective from interferences in adults) in NT1 patients and suggests a flexible use of napping in the educational context. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning.

    PubMed

    Shirey, Jana K; Brady, Ashley E; Jones, Paulianda J; Davis, Albert A; Bridges, Thomas M; Kennedy, J Phillip; Jadhav, Satyawan B; Menon, Usha N; Xiang, Zixiu; Watson, Mona L; Christian, Edward P; Doherty, James J; Quirk, Michael C; Snyder, Dean H; Lah, James J; Levey, Allan I; Nicolle, Michelle M; Lindsley, Craig W; Conn, P Jeffrey

    2009-11-11

    M(1) muscarinic acetylcholine receptors (mAChRs) may represent a viable target for treatment of disorders involving impaired cognitive function. However, a major limitation to testing this hypothesis has been a lack of highly selective ligands for individual mAChR subtypes. We now report the rigorous molecular characterization of a novel compound, benzylquinolone carboxylic acid (BQCA), which acts as a potent, highly selective positive allosteric modulator (PAM) of the rat M(1) receptor. This compound does not directly activate the receptor, but acts at an allosteric site to increase functional responses to orthosteric agonists. Radioligand binding studies revealed that BQCA increases M(1) receptor affinity for acetylcholine. We found that activation of the M(1) receptor by BQCA induces a robust inward current and increases spontaneous EPSCs in medial prefrontal cortex (mPFC) pyramidal cells, effects which are absent in acute slices from M(1) receptor knock-out mice. Furthermore, to determine the effect of BQCA on intact and functioning brain circuits, multiple single-unit recordings were obtained from the mPFC of rats that showed BQCA increases firing of mPFC pyramidal cells in vivo. BQCA also restored discrimination reversal learning in a transgenic mouse model of Alzheimer's disease and was found to regulate non-amyloidogenic APP processing in vitro, suggesting that M(1) receptor PAMs have the potential to provide both symptomatic and disease modifying effects in Alzheimer's disease patients. Together, these studies provide compelling evidence that M(1) receptor activation induces a dramatic excitation of PFC neurons and suggest that selectively activating the M(1) mAChR subtype may ameliorate impairments in cognitive function.

  14. Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system

    PubMed Central

    Barros, Claudia S.; Calabrese, Barbara; Chamero, Pablo; Roberts, Amanda J.; Korzus, Ed; Lloyd, Kent; Stowers, Lisa; Mayford, Mark; Halpain, Shelley; Müller, Ulrich

    2009-01-01

    Neuregulin-1 (NRG1) and its ErbB2/B4 receptors are encoded by candidate susceptibility genes for schizophrenia, yet the essential functions of NRG1 signaling in the CNS are still unclear. Using CRE/LOX technology, we have inactivated ErbB2/B4-mediated NRG1 signaling specifically in the CNS. In contrast to expectations, cell layers in the cerebral cortex, hippocampus, and cerebellum develop normally in the mutant mice. Instead, loss of ErbB2/B4 impairs dendritic spine maturation and perturbs interactions of postsynaptic scaffold proteins with glutamate receptors. Conversely, increased NRG1 levels promote spine maturation. ErbB2/B4-deficient mice show increased aggression and reduced prepulse inhibition. Treatment with the antipsychotic drug clozapine reverses the behavioral and spine defects. We conclude that ErbB2/B4-mediated NRG1 signaling modulates dendritic spine maturation, and that defects at glutamatergic synapses likely contribute to the behavioral abnormalities in ErbB2/B4-deficient mice. PMID:19240213

  15. Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness

    PubMed Central

    Prehn, Christian; Krogias, Christos; Schneider, Ruth; Klein, Jan; Gold, Ralf; Lukas, Carsten

    2015-01-01

    to cognitive impairment, depression and daytime sleepiness, partly indicating involvement of complex neuronal networks. PMID:26114298

  16. Protein synthesis during sleep consolidates cortical plasticity in vivo

    PubMed Central

    Seibt, Julie; Dumoulin, Michelle C.; Aton, Sara J.; Coleman, Tammi; Watson, Adam; Naidoo, Nirinjini; Frank, Marcos G.

    2012-01-01

    SUMMARY Sleep consolidates experience-dependent brain plasticity, but the precise cellular mechanisms mediating this process are unknown [1]. De novo cortical protein synthesis is one possible mechanism. In support of this hypothesis, sleep is associated with increased brain protein synthesis [2, 3] and transcription of mRNAs involved in protein synthesis regulation [4, 5]. Protein synthesis in turn is critical for memory consolidation and persistent forms of plasticity in vitro and in vivo [6, 7]. However, it is unknown if cortical protein synthesis in sleep serves similar functions. We investigated the role of protein synthesis in the sleep-dependent consolidation of a classic form of cortical plasticity in vivo (ocular dominance plasticity: ODP [8, 9]) in the cat visual cortex. We show that intracortical inhibition of mammalian target of rapamycin (mTOR)-dependent protein synthesis during sleep abolishes consolidation, but has no effect on plasticity induced during wakefulness. Sleep also promotes phosphorylation of protein synthesis regulators (i.e. 4E-BP1 and eEF2) and the translation (but not transcription) of key plasticity-related mRNAs (ARC and BDNF). These findings show that sleep promotes cortical mRNA translation. Interruption of this process has functional consequences, as it abolishes the consolidation of experience in the cortex. PMID:22386312

  17. Reduced Cortical Thickness in Mental Retardation

    PubMed Central

    Wang, Chao; Wang, Jiaojian; Zhang, Yun; Yu, Chunshui; Jiang, Tianzi

    2011-01-01

    Mental retardation is a developmental disorder associated with impaired cognitive functioning and deficits in adaptive behaviors. Many studies have addressed white matter abnormalities in patients with mental retardation, while the changes of the cerebral cortex have been studied to a lesser extent. Quantitative analysis of cortical integrity using cortical thickness measurement may provide new insights into the gray matter pathology. In this study, cortical thickness was compared between 13 patients with mental retardation and 26 demographically matched healthy controls. We found that patients with mental retardation had significantly reduced cortical thickness in multiple brain regions compared with healthy controls. These regions include the bilateral lingual gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral temporal pole, the left inferior temporal gyrus, the right lateral orbitofrontal cortex and the right precentral gyrus. The observed cortical thickness reductions might be the anatomical substrates for the impaired cognitive functioning and deficits in adaptive behaviors in patients with mental retardation. Cortical thickness measurement might provide a sensitive prospective surrogate marker for clinical trials of neuroprotective medications. PMID:22216343

  18. Prenatal exposure to the CB1 receptor agonist WIN 55,212-2 causes learning disruption associated with impaired cortical NMDA receptor function and emotional reactivity changes in rat offspring.

    PubMed

    Antonelli, Tiziana; Tomasini, Maria Cristina; Tattoli, Maria; Cassano, Tommaso; Tanganelli, Sergio; Finetti, Simone; Mazzoni, Elisa; Trabace, Luigia; Steardo, Luca; Cuomo, Vincenzo; Ferraro, Luca

    2005-12-01

    The aim of this study was to investigate whether prenatal exposure to the cannabinoid CB1 receptor agonist WIN 55,212-2 (WIN) at a daily dose devoid of overt signs of toxicity and/or gross malformations (0.5 mg/kg, gestation days 5-20), influences cortical glutamatergic neurotransmission, learning and emotional reactivity in rat offspring. Basal and K+-evoked extracellular glutamate levels were significantly lower in cortical cell cultures obtained from pups exposed to WIN during gestation with respect to those measured in cultures obtained from neonates born from vehicle-treated dams. The addition of NMDA to cortical cell cultures from neonates born from vehicle-treated dams concentration-dependently increased glutamate levels, and this was absent in cell cultures obtained from WIN-exposed pups. WIN-exposed rats also revealed a poorer performance in homing (10-12 days of age) and active avoidance tests (80 days of age) as well as a decrease in the rate of separation-induced ultrasonic emission (10 days of age). Finally, prenatal exposure to WIN induced a reduction in the number of cortical neuronal population. These findings (i) provide evidence for a deficit in cortical glutamatergic neurotransmission and behaviour in the rat neonate following prenatal exposure to WIN; and (ii) suggest that the reduction in cortical glutamatergic neurotransmission, NMDA receptor activity and alterations in neuronal development might underlie, at least in part, the learning deficit and decreased emotional reactivity observed in the offspring.

  19. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    PubMed

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  20. Cortical Thickness Abnormalities in Late Adolescence with Online Gaming Addiction

    PubMed Central

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M.; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction. PMID:23326379

  1. Sleep-dependent consolidation of face recognition and its relationship to REM sleep duration, REM density and Stage 2 sleep spindles.

    PubMed

    Solomonova, Elizaveta; Stenstrom, Philippe; Schon, Emilie; Duquette, Alexandra; Dubé, Simon; O'Reilly, Christian; Nielsen, Tore

    2017-03-31

    Face recognition is a highly specialized capability that has implicit and explicit memory components. Studies show that learning tasks with facial components are dependent on rapid eye movement and non-rapid eye movement sleep features, including rapid eye movement sleep density and fast sleep spindles. This study aimed to investigate the relationship between sleep-dependent consolidation of memory for faces and partial rapid eye movement sleep deprivation, rapid eye movement density, and fast and slow non-rapid eye movement sleep spindles. Fourteen healthy participants spent 1 night each in the laboratory. Prior to bed they completed a virtual reality task in which they interacted with computer-generated characters. Half of the participants (REMD group) underwent a partial rapid eye movement sleep deprivation protocol and half (CTL group) had a normal amount of rapid eye movement sleep. Upon awakening, they completed a face recognition task that contained a mixture of previously encountered faces from the task and new faces. Rapid eye movement density and fast and slow sleep spindles were detected using in-house software. The REMD group performed worse than the CTL group on the face recognition task; however, rapid eye movement duration and rapid eye movement density were not related to task performance. Fast and slow sleep spindles showed differential relationships to task performance, with fast spindles being positively and slow spindles negatively correlated with face recognition. The results support the notion that rapid eye movement and non-rapid eye movement sleep characteristics play complementary roles in face memory consolidation. This study also raises the possibility that fast and slow spindles contribute in opposite ways to sleep-dependent memory consolidation.

  2. Decreased prefrontal cortical dopamine transmission in alcoholism.

    PubMed

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  3. Sleep Promotes Cortical Response Potentiation Following Visual Experience

    PubMed Central

    Aton, Sara J.; Suresh, Aneesha; Broussard, Christopher; Frank, Marcos G.

    2014-01-01

    Study Objectives: Sleep has been hypothesized to globally reduce synaptic strength. However, recent findings suggest that in the context of learning and memory consolidation, sleep may promote synaptic potentiation. We tested the requirement for sleep in a naturally occurring form of experience-dependent synaptic potentiation in the adult mouse visual cortex (V1), which is initiated by patterned visual experience. Design: Visual responses were recorded in individual V1 neurons before and after presentation of an oriented grating stimulus, and after subsequent sleep or sleep deprivation. Measurements and Results: We find that V1 response potentiation—associated with a shift in orientation preference in favor of the presented stimulus—occurs only after sleep and only during the entrained circadian sleep phase, and is blocked by sleep deprivation. Induction of plasticity following stimulus presentation is associated with an increase in principal neuron firing in V1, which is present in all behavioral states and occurs regardless of time of day. Sleep dependent potentiation is proportional to phase-locking of neuronal activity with thalamocortical spindle oscillations. Conclusions: Our results suggest that sleep can promote cortical synaptic potentiation in vivo, and that this potentiation may be mediated by slow wave sleep spindles. Citation: Aton SJ, Suresh A, Broussard C, Frank MG. Sleep promotes cortical response potentiation following visual experience. SLEEP 2014;37(7):1163-1170. PMID:25061244

  4. Cortical thinning in former professional soccer players.

    PubMed

    Koerte, Inga K; Mayinger, Michael; Muehlmann, Marc; Kaufmann, David; Lin, Alexander P; Steffinger, Denise; Fisch, Barbara; Rauchmann, Boris-Stephan; Immler, Stefanie; Karch, Susanne; Heinen, Florian R; Ertl-Wagner, Birgit; Reiser, Maximilian; Stern, Robert A; Zafonte, Ross; Shenton, Martha E

    2016-09-01

    Soccer is the most popular sport in the world. Soccer players are at high risk for repetitive subconcussive head impact when heading the ball. Whether this leads to long-term alterations of the brain's structure associated with cognitive decline remains unknown. The aim of this study was to evaluate cortical thickness in former professional soccer players using high-resolution structural MR imaging. Fifteen former male professional soccer players (mean age 49.3 [SD 5.1] years) underwent high-resolution structural 3 T MR imaging, as well as cognitive testing. Fifteen male, age-matched former professional non-contact sport athletes (mean age 49.6 [SD 6.4] years) served as controls. Group analyses of cortical thickness were performed using voxel-based statistics. Soccer players demonstrated greater cortical thinning with increasing age compared to controls in the right inferolateral-parietal, temporal, and occipital cortex. Cortical thinning was associated with lower cognitive performance as well as with estimated exposure to repetitive subconcussive head impact. Neurocognitive evaluation revealed decreased memory performance in the soccer players compared to controls. The association of cortical thinning and decreased cognitive performance, as well as exposure to repetitive subconcussive head impact, further supports the hypothesis that repetitive subconcussive head impact may play a role in early cognitive decline in soccer players. Future studies are needed to elucidate the time course of changes in cortical thickness as well as their association with impaired cognitive function and possible underlying neurodegenerative process.

  5. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  6. Oscillatory bands, neuronal synchrony and hippocampal function: implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation.

    PubMed

    Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2008-10-27

    Choline supplementation of the maternal diet has long-term facilitative effects on spatial and temporal memory processes in the offspring. To further delineate the impact of early nutritional status on brain and behavior, we examined effects of prenatal-choline availability on hippocampal oscillatory frequency bands in 12 month-old male and female rats. Adult offspring of time-pregnant dams that were given a deficient level of choline (DEF=0.0 g/kg), sufficient choline (CON=1.1 g/kg) or supplemental choline (SUP=3.5 g/kg) in their chow during embryonic days (ED) 12-17 were implanted with an electroencephalograph (EEG) electrode in the hippocampal dentate gyrus in combination with an electromyograph (EMG) electrode patch implanted in the nuchal muscle. Five consecutive 8-h recording sessions revealed differential patterns of EEG activity as a function of awake, slow-wave sleep (SWS) and rapid-eye movement (REM) sleep states and prenatal choline status. The main finding was that SUP rats displayed increased power levels of gamma (30-100 Hz) band oscillations during all phases of the sleep/wake cycle. These findings are discussed within the context of a general review of neuronal oscillations (e.g., delta, theta, and gamma bands) and synchronization across multiple brain regions in relation to sleep-dependent memory consolidation in the hippocampus.

  7. Evolution of cortical neurogenesis.

    PubMed

    Abdel-Mannan, Omar; Cheung, Amanda F P; Molnár, Zoltán

    2008-03-18

    The neurons of the mammalian neocortex are organised into six layers. By contrast, the reptilian and avian dorsal cortices only have three layers which are thought to be equivalent to layers I, V and VI of mammals. Increased repertoire of mammalian higher cognitive functions is likely a result of an expanded cortical surface area. The majority of cortical cell proliferation in mammals occurs in the ventricular zone (VZ) and subventricular zone (SVZ), with a small number of scattered divisions outside the germinal zone. Comparative developmental studies suggest that the appearance of SVZ coincides with the laminar expansion of the cortex to six layers, as well as the tangential expansion of the cortical sheet seen within mammals. In spite of great variation and further compartmentalisation in the mitotic compartments, the number of neurons in an arbitrary cortical column appears to be remarkably constant within mammals. The current challenge is to understand how the emergence and elaboration of the SVZ has contributed to increased cortical cell diversity, tangential expansion and gyrus formation of the mammalian neocortex. This review discusses neurogenic processes that are believed to underlie these major changes in cortical dimensions in vertebrates.

  8. Valproic acid but not D-cycloserine facilitates sleep-dependent offline learning of extinction and habituation of conditioned fear in humans.

    PubMed

    Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu

    2013-01-01

    The effectiveness of D-cycloserine (DCS), an N-methyl-D-aspartate glutamate receptor partial agonist, and valproic acid (VPA), a histone deacetylase inhibitor, in facilitating the extinction of fear-conditioned memory has been explored in humans and animals. Here, we confirmed whether DCS (100 mg) and VPA (400 mg) act in off-line learning processes during sleep or waking, for further clinical application to anxiety disorders and posttraumatic stress disorder (PTSD). We performed a randomized, blind, placebo-controlled clinical trial in 90 healthy adults. Visual cues and electric shocks were used as the conditioned stimulus (CS) and unconditioned stimulus (US), respectively. The extinction effect was observed not in simple recall after the extinction of coupled CS-US, but was observed in the post-re-exposure phase after unexpected re-exposure to reinstatement CS-US coupling. Newly acquired conditioned fear was also eliminated or habituated by DCS and VPA administration, in line with previous findings. Furthermore, VPA facilitated the off-line learning process of conditioned fear extinction and habituation during sleep, while DCS facilitated this process during waking. These novel findings suggest that DCS and VPA might enhance exposure-based cognitive therapy for anxiety disorders and PTSD by reducing the vulnerability to reinstatement and preventing relapses of fear-conditioned responses, and provide evidence for a peculiarity of the sleep-dependent off-line learning process for conditioned fear extinction. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Induction of bilateral plasticity in sensory cortical maps by small unilateral cortical infarcts in rats.

    PubMed

    Reinecke, S; Dinse, H R; Reinke, H; Witte, O W

    2003-02-01

    Behavioural impairments caused by brain lesions show a considerable, though often incomplete, recovery. It is hypothesized that cortical and subcortical plasticity of sensory representations contribute to this recovery. In the hindpaw representation of somatosensory cortex of adult rats we investigated the effects of focal unilateral cortical lesions on remote areas. Cortical lesions with a diameter of approximately 2 mm were induced in the parietal cortex by photothrombosis with the photosensitive dye Rose Bengal. Subsequently, animals were kept in standard cages for 7 days. On day seven, animals were anaesthetized and cutaneous receptive fields in the cortical hindpaw representations ipsi- and contralateral to the lesion were constructed from extracellular recordings of neurons in layer IV using glass microelectrodes. Receptive fields in the lesioned animals were compared to receptive fields measured in nonlesioned animals serving as controls. Quantitative analysis of receptive fields revealed a significant increase in size in the lesioned animals. This doubling in receptive field size was observed equally in the hemispheres ipsi- and contralateral to the lesion. The results indicate that the functional consequences of restricted cortical lesions are not limited to the area surrounding the lesion, but affect the cortical maps on the contralateral, nonlesioned hemisphere.

  10. Cortical Stimulation Concurrent With Skilled Motor Training Improves Forelimb Function and Enhances Motor Cortical Reorganization Following Controlled Cortical Impact.

    PubMed

    Jefferson, Stephanie C; Clayton, Elyse Renee; Donlan, Nicole A; Kozlowski, Dorothy Annette; Jones, Theresa A; Adkins, DeAnna Lynn

    2016-02-01

    Electrical and magnetic brain stimulation can improve motor function following stroke in humans, rats, and nonhuman primates, especially when paired with rehabilitative training (RT). Previously, we found in rodent stroke models that epidural electrical cortical stimulation (CS) of the ipsilesional motor cortex (MC) combined with motor RT enhances motor function and motor cortical plasticity. It was unknown whether CS following experimental traumatic brain injury (TBI) would have similar effects. To test the effects of CS combined with motor training after moderate/severe TBI on behavioral outcome and motor cortical organization. Following unilateral controlled cortical impact (CCI) over the caudal forelimb area of the MC in adult male rats, forelimb reach training was administered daily for 9 weeks concurrently with subthreshold, 100-Hz monopolar CS or no-stimulation control procedures. The rate and magnitude of behavioral improvements and changes in forelimb movement representations in the injured MC as revealed by intracortical microstimulation were measured. CCI resulted in severe motor impairments persisting throughout the 9 weeks of training in both groups, but CS-treated animals had significantly greater behavioral improvements. CS also increased wrist motor cortical representation, one of the main movements used in the training task, when compared with RT alone. However, the overall recovery level was modest, leaving animals still extremely impaired. These data suggest that CS may be useful for improving rehabilitation efficacy after TBI but also raise the possibility that the CS parameters that are highly effective following stroke are suboptimal after moderate/severe TBI. © The Author(s) 2015.

  11. Posterior neocortical (visual cortex) lesions in the rat impair matching-to-place navigation in a swimming pool: a reevaluation of cortical contributions to spatial behavior using a new assessment of spatial versus nonspatial behavior.

    PubMed

    Whishaw, Ian Q

    2004-11-05

    In the face of contradictory findings on the role of visual cortex contributions to spatial behavior, the present study evaluated the ability of rats with primary visual cortex (area 17) lesions to learn spatial problems in a swimming pool. Because the solution to any spatial learning problem consists of acquiring at least two primary elements of a task, task procedures and spatial learning, the study, in addition to assessing spatial ability on a place task, used two training/testing methods to identify the nature of the spatial impairment associated with visual cortex lesions. Non-spatial training consisted of learning to find a platform in the dark and spatial training consisted of a series of matching-to-place problems. The results confirmed that although rats with visual cortex lesions were impaired on place learning, the deficit was partially ameliorated by non-spatial training given following the lesion, and completely ameliorated by non-spatial training given before the lesion. Nevertheless, all visual cortex groups failed to show a quadrant preference on a probe trial and displayed a profound impairment in matching-to-place learning. This definitive demonstration that appropriate testing methods can reveal a failure in spatial behavior following visual cortex lesions is consistent with the idea that primary visual cortex is required in spatial navigation.

  12. Posterior neocortical (visual cortex) lesions in the rat impair matching-to-place navigation in a swimming pool: a reevaluation of cortical contributions to spatial behavior using a new assessment of spatial versus non-spatial behavior.

    PubMed

    Whishaw, Ian Q

    2004-12-06

    In the face of contradictory findings on the role of visual cortex contributions to spatial behavior, the present study evaluated the ability of rats with primary visual cortex (Area 17) lesions to learn spatial problems in a swimming pool. Because the solution to any spatial learning problem consists of acquiring at least two primary elements of a task, task procedures and spatial learning, the study, in addition to assessing spatial ability on a place task, used two training/testing methods to identify the nature of the spatial impairment associated with visual cortex lesions. Non-spatial training consisted of learning to find a platform in the dark and spatial training consisted of a series of matching-to-place problems. The results confirmed that although rats with visual cortex lesions were impaired on place learning, the deficit was partially ameliorated by non-spatial training given following the lesion, and completely ameliorated by non-spatial training given before the lesion. Nevertheless, all visual cortex groups failed to show a quadrant preference on a probe trial and displayed a profound impairment in matching-to-place learning. This definitive demonstration that appropriate testing methods can reveal a failure in spatial behavior following visual cortex lesions is consistent with the idea that primary visual cortex is required in spatial navigation.

  13. Reduced Regional Brain Cortical Thickness in Patients with Heart Failure

    PubMed Central

    Kumar, Rajesh; Yadav, Santosh K.; Palomares, Jose A.; Park, Bumhee; Joshi, Shantanu H.; Ogren, Jennifer A.; Macey, Paul M.; Fonarow, Gregg C.; Harper, Ronald M.; Woo, Mary A.

    2015-01-01

    Aims Autonomic, cognitive, and neuropsychologic deficits appear in heart failure (HF) subjects, and these compromised functions depend on cerebral cortex integrity in addition to that of subcortical and brainstem sites. Impaired autoregulation, low cardiac output, sleep-disordered-breathing, hypertension, and diabetic conditions in HF offer considerable potential to affect cortical areas by loss of neurons and glia, which would be expressed as reduced cortical thicknesses. However, except for gross descriptions of cortical volume loss/injury, regional cortical thickness integrity in HF is unknown. Our goal was to assess regional cortical thicknesses across the brain in HF, compared to control subjects. Methods and Results We examined localized cortical thicknesses in 35 HF and 61 control subjects with high-resolution T1-weighted images (3.0-Tesla MRI) using FreeSurfer software, and assessed group differences with analysis-of-covariance (covariates; age, gender; p<0.05; FDR). Significantly-reduced cortical thicknesses appeared in HF over controls in multiple areas, including the frontal, parietal, temporal, and occipital lobes, more markedly on the left side, within areas that control autonomic, cognitive, affective, language, and visual functions. Conclusion Heart failure subjects show reduced regional cortical thicknesses in sites that control autonomic, cognitive, affective, language, and visual functions that are deficient in the condition. The findings suggest chronic tissue alterations, with regional changes reflecting loss of neurons and glia, and presumably are related to earlier-described axonal changes. The pathological mechanisms contributing to reduced cortical thicknesses likely include hypoxia/ischemia, accompanying impaired cerebral perfusion from reduced cardiac output and sleep-disordered-breathing and other comorbidities in HF. PMID:25962164

  14. Impaired off-line consolidation of motor memories after combined blockade of cholinergic receptors during REM sleep-rich sleep.

    PubMed

    Rasch, Björn; Gais, Steffen; Born, Jan

    2009-06-01

    Rapid eye movement (REM) sleep has been considered important for the consolidation of memories, particularly of procedural skills. REM sleep, in contrast to slow-wave sleep (SWS), is hallmarked by the high, wake-like activity of the neurotransmitter acetylcholine (ACh), which promotes certain synaptic plastic processes underlying the formation of memories. Here, we show in healthy young men that off-line consolidation of a motor skill during a period of late sleep with high amounts of REM sleep depends essentially on high cholinergic activity. After a 3-h sleep period during the early night to satisfy the need for SWS, subjects learned a procedural finger sequence tapping task and a declarative word-pair learning task. After learning, they received either placebo or a combination of the muscarinic receptor antagonist scopolamine (4 microg/kg bodyweight, intravenously) and the nicotinic receptor antagonist mecamylamine (5 mg, orally), and then slept for another 3 h, ie, the late nocturnal sleep period, which is dominated by REM sleep. Retrieval was tested the following evening. Combined cholinergic receptor blockade significantly impaired motor skill consolidation, whereas word-pair memory remained unaffected. Additional data show that the impairing effect of cholinergic receptor blockade is specific to sleep-dependent consolidation of motor skill and does not occur during a wake-retention interval. Taken together, these results identify high cholinergic activity during late, REM sleep-rich sleep as an essential factor promoting sleep-dependent consolidation of motor skills.

  15. Cortical areas involved in Arabic number reading.

    PubMed

    Roux, F-E; Lubrano, V; Lauwers-Cances, V; Giussani, C; Démonet, J-F

    2008-01-15

    Distinct functional pathways for processing words and numbers have been hypothesized from the observation of dissociated impairments of these categories in brain-damaged patients. We aimed to identify the cortical areas involved in Arabic number reading process in patients operated on for various brain lesions. Direct cortical electrostimulation was prospectively used in 60 brain mappings. We used object naming and two reading tasks: alphabetic script (sentences and number words) and Arabic number reading. Cortical areas involved in Arabic number reading were identified according to location, type of interference, and distinctness from areas associated with other language tasks. Arabic number reading was sustained by small cortical areas, often extremely well localized (<1 cm(2)). Over 259 language sites detected, 43 (17%) were exclusively involved in Arabic number reading (no sentence or word number reading interference detected in these sites). Specific Arabic number reading interferences were mainly found in three regions: the Broca area (Brodmann area 45), the anterior part of the dominant supramarginal gyrus (Brodmann area 40; p < 0.0001), and the temporal-basal area (Brodmann area 37; p < 0.05). Diverse types of interferences were observed (reading arrest, phonemic or semantic paraphasia). Error patterns were fairly similar across temporal, parietal, and frontal stimulation sites, except for phonemic paraphasias, which were found only in supramarginal gyrus. Our findings strongly support the fact that the acquisition through education of specific symbolic entities, such as Arabic numbers, could result in the segregation and the specialization of anatomically distinct brain areas.

  16. Mechanisms of Hierarchical Cortical Maturation

    PubMed Central

    Chomiak, Taylor; Hu, Bin

    2017-01-01

    Cortical information processing is structurally and functionally organized into hierarchical pathways, with primary sensory cortical regions providing modality specific information and associative cortical regions playing a more integrative role. Historically, there has been debate as to whether primary cortical regions mature earlier than associative cortical regions, or whether both primary and associative cortical regions mature simultaneously. Identifying whether primary and associative cortical regions mature hierarchically or simultaneously will not only deepen our understanding of the mechanisms that regulate brain maturation, but it will also provide fundamental insight into aspects of adolescent behavior, learning, neurodevelopmental disorders and computational models of neural processing. This mini-review article summarizes the current evidence supporting the sequential and hierarchical nature of cortical maturation, and then proposes a new cellular model underlying this process. Finally, unresolved issues associated with hierarchical cortical maturation are also addressed. PMID:28959187

  17. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy

    PubMed Central

    Kaski, Diego; Yong, Keir X. X.; Paterson, Ross W.; Slattery, Catherine F.; Ryan, Natalie S.; Schott, Jonathan M.; Crutch, Sebastian J.

    2015-01-01

    saccadic intrusions whose frequency correlated significantly with generalized reductions in cortical thickness. Patients with both posterior cortical atrophy and typical Alzheimer’s disease showed lower gain in smooth pursuit compared to controls. The current study establishes that eye movement abnormalities are near-ubiquitous in posterior cortical atrophy, and highlights multiple aspects of saccadic performance which distinguish posterior cortical atrophy from typical Alzheimer’s disease. We suggest the posterior cortical atrophy oculomotor profile (e.g. exacerbation of the saccadic gap/overlap effect, preserved saccadic velocity) reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. This may indicate greater impairment of identification of oculomotor targets rather than generation of oculomotor movements. The results highlight the critical role of spatial attention and object identification but also precise stimulus localization in explaining the complex real world perception deficits observed in posterior cortical atrophy and many other patients with dementia-related visual impairment. PMID:25895507

  18. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    whose frequency correlated significantly with generalized reductions in cortical thickness. Patients with both posterior cortical atrophy and typical Alzheimer's disease showed lower gain in smooth pursuit compared to controls. The current study establishes that eye movement abnormalities are near-ubiquitous in posterior cortical atrophy, and highlights multiple aspects of saccadic performance which distinguish posterior cortical atrophy from typical Alzheimer's disease. We suggest the posterior cortical atrophy oculomotor profile (e.g. exacerbation of the saccadic gap/overlap effect, preserved saccadic velocity) reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. This may indicate greater impairment of identification of oculomotor targets rather than generation of oculomotor movements. The results highlight the critical role of spatial attention and object identification but also precise stimulus localization in explaining the complex real world perception deficits observed in posterior cortical atrophy and many other patients with dementia-related visual impairment.

  19. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion.

    PubMed

    Toussay, Xavier; Basu, Kaustuv; Lacoste, Baptiste; Hamel, Edith

    2013-02-20

    The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood-brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p < 0.05) or vasoactive intestinal polypeptide-containing interneurons (16%, p < 0.01). Concurrently, LC stimulation elicited larger ipsilateral compared with contralateral increases in cortical CBF (52 vs 31%, p < 0.01). These CBF responses were almost abolished (-70%, p < 0.001) by cortical NA denervation with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] and were significantly reduced by α- and β-adrenoceptor antagonists (-40%, p < 0.001 and -30%, p < 0.05, respectively). Blockade of glutamatergic or GABAergic neurotransmission with NMDA or GABA(A) receptor antagonists potently reduced the LC-induced hyperemic response (-56%, p < 0.001 or -47%, p < 0.05). Moreover, inhibition of astroglial metabolism (-35%, p < 0.01), vasoactive epoxyeicosatrienoic acids (EETs; -60%, p < 0.001) synthesis, large-conductance, calcium-operated (BK, -52%, p < 0.05), and inward-rectifier (Kir, -40%, p < 0.05) K+ channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K+ fluxes and EET signaling mediate a large part of the hemodynamic response.

  20. Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: Effects on cortical physiology.

    PubMed

    Furman, Moran; Zhan, Qiong; McCafferty, Cian; Lerner, Benjamin A; Motelow, Joshua E; Meng, Jin; Ma, Chanthia; Buchanan, Gordon F; Witten, Ilana B; Deisseroth, Karl; Cardin, Jessica A; Blumenfeld, Hal

    2015-12-01

    Focal temporal lobe seizures often cause impaired cortical function and loss of consciousness. Recent work suggests that the mechanism for depressed cortical function during focal seizures may depend on decreased subcortical cholinergic arousal, which leads to a sleep-like state of cortical slow-wave activity. To test this hypothesis, we sought to directly activate subcortical cholinergic neurons during focal limbic seizures to determine the effects on cortical function. Here we used an optogenetic approach to selectively stimulate cholinergic brainstem neurons in the pedunculopontine tegmental nucleus during focal limbic seizures induced in a lightly anesthetized rat model. We found an increase in cortical gamma activity and a decrease in delta activity in response to cholinergic stimulation. These findings support the mechanistic role of reduced subcortical cholinergic arousal in causing cortical dysfunction during seizures. Through further work, electrical or optogenetic stimulation of subcortical arousal networks may ultimately lead to new treatments aimed at preventing cortical dysfunction during seizures.

  1. Visual Dysfunction in Posterior Cortical Atrophy

    PubMed Central

    da Silva, Mari N. Maia; Millington, Rebecca S.; Bridge, Holly; James-Galton, Merle; Plant, Gordon T.

    2017-01-01

    Posterior cortical atrophy (PCA) is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical) visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions. PMID:28861031

  2. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    PubMed

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  3. Bidirectional plasticity of cortical pattern recognition and behavioral sensory acuity

    PubMed Central

    Chapuis, Julie; Wilson, Donald A.

    2011-01-01

    Learning to adapt to a complex and fluctuating environment requires the ability to adjust neural representations of sensory stimuli. Through pattern completion processes, cortical networks can reconstruct familiar patterns from degraded input patterns, while pattern separation processes allow discrimination of even highly overlapping inputs. Here we show that the balance between pattern separation and completion is experience-dependent. Rats given extensive training with overlapping complex odorant mixtures show improved behavioral discrimination ability and enhanced cortical ensemble pattern separation. In contrast, behavioral training to disregard normally detectable differences between overlapping mixtures results in impaired cortical ensemble pattern separation (enhanced pattern completion) and impaired discrimination. This bidirectional effect was not found in the olfactory bulb, and may be due to plasticity within olfactory cortex itself. Thus pattern recognition, and the balance between pattern separation and completion, is highly malleable based on task demands and occurs in concert with changes in perceptual performance. PMID:22101640

  4. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    PubMed Central

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  5. Working memory and left medial temporal cortical thickness.

    PubMed

    Pastura, Giuseppe; Kubo, Tadeu Takao Almodovar; Regalla, Maria Angélica; Mesquita, Cíntia Machado; Coutinho, Gabriel; Gasparetto, Emerson Leandro; Figueiredo, Otávio; Mattos, Paulo; Araújo, Alexandra Prüfer de Queiroz Campos

    2016-10-01

    To perform a pilot study to investigate the association between working memory and cortical thickness in a sample of attention deficit/hyperactivity disorder (ADHD) children. Seventeen children aged 7-10 years diagnosed with ADHD and 16 healthy children underwent a magnetic resonance scan for cortical thickness measurements. Data was correlated with working memory performance using the Backwards Digit Span subtest of the Wechsler Intelligence Scale for Children. Working memory impairment, evidenced by lower scores on the Backwards Digit Span, was observed in patients with ADHD compared to healthy controls. There was a direct correlation between working memory and cortical thickness of the left medial temporal lobe (Spearman's correlation coefficient: 0.499; p < 0.005). Our data suggests, for the first time, a correlation between working memory, evaluated by the Backwards Digit Span, and left medial temporal cortical thickness.

  6. Cortical Development and Neuroplasticity in Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Sharma, Anu; Cardon, Garrett

    2015-01-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. PMID:26070426

  7. Visualization of Cortical Dynamics

    NASA Astrophysics Data System (ADS)

    Grinvald, Amiram

    2003-03-01

    Recent progress in studies of cortical dynamics will be reviewed including the combination of real time optical imaging based on voltage sensitive dyes, single and multi- unit recordings, LFP, intracellular recordings and microstimulation. To image the flow of neuronal activity from one cortical site to the next, in real time, we have used optical imaging based on newly designed voltage sensitive dyes and a Fuji 128x 128 fast camera which we modified. A factor of 20-40 fold improvement in the signal to noise ratio was obtained with the new dye during in vivo imaging experiments. This improvements has facilitates the exploration of cortical dynamics without signal averaging in the millisecond time domain. We confirmed that the voltage sensitive dye signal indeed reflects membrane potential changes in populations of neurons by showing that the time course of the intracellular activity recorded intracellularly from a single neuron was highly correlated in many cases with the optical signal from a small patch of cortex recorded nearby. We showed that the firing of single cortical neurons is not a random process but occurs when the on-going pattern of million of neurons is similar to the functional architecture map which correspond to the tuning properties of that neuron. Chronic optical imaging, combined with electrical recordings and microstimulation, over a long period of times of more than a year, was successfully applied also to the study of higher brain functions in the behaving macaque monkey.

  8. Disability, atrophy and cortical reorganization following spinal cord injury.

    PubMed

    Freund, Patrick; Weiskopf, Nikolaus; Ward, Nick S; Hutton, Chloe; Gall, Angela; Ciccarelli, Olga; Craggs, Michael; Friston, Karl; Thompson, Alan J

    2011-06-01

    The impact of traumatic spinal cord injury on structural integrity, cortical reorganization and ensuing disability is variable and may depend on a dynamic interaction between the severity of local damage and the capacity of the brain for plastic reorganization. We investigated trauma-induced anatomical changes in the spinal cord and brain, and explored their relationship to functional changes in sensorimotor cortex. Structural changes were assessed using cross-sectional cord area, voxel-based morphometry and voxel-based cortical thickness of T1-weighted images in 10 subjects with cervical spinal cord injury and 16 controls. Cortical activation in response to right-sided (i) handgrip; and (ii) median and tibial nerve stimulation were assessed using functional magnetic resonance imaging. Regression analyses explored associations between cord area, grey and white matter volume, cortical activations and thickness, and disability. Subjects with spinal cord injury had impaired upper and lower limb function bilaterally, a 30% reduced cord area, smaller white matter volume in the pyramids and left cerebellar peduncle, and smaller grey matter volume and cortical thinning in the leg area of the primary motor and sensory cortex compared with controls. Functional magnetic resonance imaging revealed increased activation in the left primary motor cortex leg area during handgrip and the left primary sensory cortex face area during median nerve stimulation in subjects with spinal cord injury compared with controls, but no increased activation following tibial nerve stimulation. A smaller cervical cord area was associated with impaired upper limb function and increased activations with handgrip and median nerve stimulation, but reduced activations with tibial nerve stimulation. Increased sensory deficits were associated with increased activations in the left primary sensory cortex face area due to median nerve stimulation. In conclusion, spinal cord injury leads to cord atrophy

  9. Functional Significance of Atypical Cortical Organization in Spina Bifida Myelomeningocele: Relations of Cortical Thickness and Gyrification with IQ and Fine Motor Dexterity

    PubMed Central

    Treble, Amery; Juranek, Jenifer; Stuebing, Karla K.; Dennis, Maureen; Fletcher, Jack M.

    2013-01-01

    The cortex in spina bifida myelomeningocele (SBM) is atypically organized, but it is not known how specific features of atypical cortical organization promote or disrupt cognitive and motor function. Relations of deviant cortical thickness and gyrification with IQ and fine motor dexterity were investigated in 64 individuals with SBM and 26 typically developing (TD) individuals, aged 8–28 years. Cortical thickness and 3D local gyrification index (LGI) were quantified from 33 cortical regions per hemisphere using FreeSurfer. Results replicated previous findings, showing regions of higher and lower cortical thickness and LGI in SBM relative to the TD comparison individuals. Cortical thickness and LGI were negatively associated in most cortical regions, though less consistently in the TD group. Whereas cortical thickness and LGI tended to be negatively associated with IQ and fine motor outcomes in regions that were thicker or more gyrified in SBM, associations tended to be positive in regions that were thinner or less gyrified in SBM. The more deviant the levels of cortical thickness and LGI—whether higher or lower relative to the TD group—the more impaired the IQ and fine motor outcomes, suggesting that these cortical atypicalities in SBM are functionally maladaptive, rather than adaptive. PMID:22875857

  10. Impaired Consciousness in Epilepsy

    PubMed Central

    Blumenfeld, Hal

    2013-01-01

    Consciousness is essential to normal human life. In epileptic seizures consciousness is often transiently lost making it impossible for the individual to experience or respond. This has huge consequences for safety, productivity, emotional health and quality of life. To prevent impaired consciousness in epilepsy it is necessary to understand the mechanisms leading to brain dysfunction during seizures. Normally the “consciousness system”—a specialized set of cortical-subcortical structures—maintains alertness, attention and awareness. Recent advances in neuroimaging, electrophysiology and prospective behavioral testing have shed new light on how epileptic seizures disrupt the consciousness system. Diverse seizure types including absence, generalized tonic-clonic and complex partial seizures converge on the same set of anatomical structures through different mechanisms to disrupt consciousness. Understanding these mechanisms may lead to improved treatment strategies to prevent impaired consciousness and improve quality of life in people with epilepsy. PMID:22898735

  11. Sparse and powerful cortical spikes.

    PubMed

    Wolfe, Jason; Houweling, Arthur R; Brecht, Michael

    2010-06-01

    Activity in cortical networks is heterogeneous, sparse and often precisely timed. The functional significance of sparseness and precise spike timing is debated, but our understanding of the developmental and synaptic mechanisms that shape neuronal discharge patterns has improved. Evidence for highly specialized, selective and abstract cortical response properties is accumulating. Singe-cell stimulation experiments demonstrate a high sensitivity of cortical networks to the action potentials of some, but not all, single neurons. It is unclear how this sensitivity of cortical networks to small perturbations comes about and whether it is a generic property of cortex. The unforeseen sensitivity to cortical spikes puts serious constraints on the nature of neural coding schemes.

  12. Trait- and state-dependent cortical inhibitory deficits in bipolar disorder.

    PubMed

    Ruiz-Veguilla, Miguel; Martín-Rodríguez, Juan Francisco; Palomar, Francisco J; Porcacchia, Paolo; Álvarez de Toledo, Paloma; Perona-Garcelán, Salvador; Rodríguez-Testal, Juan Francisco; Huertas-Fernández, Ismael; Mir, Pablo

    2016-05-01

    Euthymic patients with bipolar disorder (BD) have deficits in cortical inhibition. However, whether cortical inhibitory deficits are trait- or state-dependent impairments is not yet known and their relationship with psychiatric symptoms is not yet understood. In the present study, we examined trait- and state-dependent cortical inhibitory deficits and evaluated the potential clinical significance of these deficits. Nineteen patients with bipolar I disorder were evaluated using the paired-pulse transcranial stimulation protocol, which assessed cortical inhibition during an acute manic episode. Cortical inhibition measures were compared with those obtained in 28 demographically matched healthy controls. A follow-up assessment was performed in 15 of these patients three months later, when there was remission from their mood and psychotic symptoms. The association between cortical inhibitory measures and severity of psychiatric symptoms was also studied. During mania, patients showed decreased short-interval intracortical and transcallosal inhibition, as well as a normal cortical silent period and long-interval cortical inhibition. These findings were the same during euthymia. Symptoms associated with motor hyperactivity were correlated negatively with the degree of cortical inhibition. These correlations were not significant when a Bonferroni correction was applied. The present longitudinal study showed cortical inhibitory deficits in patients with BD, and supports the hypothesis that cortical inhibitory deficits in BD are trait dependent. Further research is necessary to confirm the clinical significance of these deficits. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Patterns of cortical thinning in nondemented Parkinson's disease patients

    PubMed Central

    Uribe, Carme; Segura, Barbara; Baggio, Hugo Cesar; Abos, Alexandra; Marti, Maria Jose; Valldeoriola, Francesc; Compta, Yaroslau; Bargallo, Nuria

    2016-01-01

    ABSTRACT Background Clinical variability in the Parkinson's disease phenotype suggests the existence of disease subtypes. We investigated whether distinct anatomical patterns of atrophy can be identified in Parkinson's disease using a hypothesis‐free, data‐driven approach based on cortical thickness data. Methods T1‐weighted 3‐tesla MRI and a comprehensive neuropsychological assessment were performed in a sample of 88 nondemented Parkinson's disease patients and 31 healthy controls. We performed a hierarchical cluster analysis of imaging data using Ward's linkage method. A general linear model with cortical thickness data was used to compare clustering groups. Results We observed 3 patterns of cortical thinning in patients when compared with healthy controls. Pattern 1 (n = 30, 34.09%) consisted of cortical atrophy in bilateral precentral gyrus, inferior and superior parietal lobules, cuneus, posterior cingulate, and parahippocampal gyrus. These patients showed worse cognitive performance when compared with controls and the other 2 patterns. Pattern 2 (n = 29, 32.95%) consisted of cortical atrophy involving occipital and frontal as well as superior parietal areas and included patients with younger age at onset. Finally, in pattern 3 (n = 29, 32.95%), there was no detectable cortical thinning. Patients in the 3 patterns did not differ in disease duration, motor severity, dopaminergic medication doses, or presence of mild cognitive impairment. Conclusions Three cortical atrophy subtypes were identified in nondemented Parkinson's disease patients: (1) parieto‐temporal pattern of atrophy with worse cognitive performance, (2) occipital and frontal cortical atrophy and younger disease onset, and (3) patients without detectable cortical atrophy. These findings may help identify prognosis markers in Parkinson's disease. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement

  14. Purely Cortical Anaplastic Ependymoma

    PubMed Central

    Romero, Flávio Ramalho; Zanini, Marco Antônio; Ducati, Luis Gustavo; Vital, Roberto Bezerra; de Lima Neto, Newton Moreira; Gabarra, Roberto Colichio

    2012-01-01

    Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma. PMID:23119204

  15. Prefrontal cortical dopamine transmission is decreased in alcoholism

    PubMed Central

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L.; Douaihy, Antoine B.; Frankle, W. Gordon

    2014-01-01

    Objective Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such working memory, attention, inhibitory control and risk/reward decisions--all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies in alcoholics that have demonstrated less dopamine in the striatum, we hypothesized decreased dopamine transmission in the prefrontal cortex in alcoholism. To test this hypothesis, we used amphetamine and [11C]FLB 457 positron emission tomography (PET) to measure cortical dopamine transmission in a group of 21 recently abstinent alcoholics and matched healthy controls. Methods [11C]FLB 457 binding potential (BPND) was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg−1 of d-amphetamine. Results Amphetamine-induced displacement of [11C]FLB 457 binding potential (Δ BPND) was significantly smaller in the cortical regions in alcoholics compared to healthy controls. Cortical regions that demonstrated lower dopamine transmission in alcoholics included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex and medial temporal lobe. Conclusions The results of this study for the first time unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism. PMID:24874293

  16. Subthalamic stimulation influences postmovement cortical somatosensory processing in Parkinson's disease.

    PubMed

    Devos, D; Labyt, E; Cassim, F; Bourriez, J L; Reyns, N; Touzet, G; Blond, S; Guieu, J D; Derambure, P; Destée, A; Defebvre, L

    2003-10-01

    In Parkinson's disease, poor motor performance (resulting primarily from abnormal cortical activation during movement preparation and execution) may also be due to impaired sensorimotor integration and defective cortical activity termination of the ongoing movement, thus delaying preparation of the following one. Reduced movement-related synchronization of the beta rhythm in Parkinson's disease compared to controls has been put forward as evidence for impaired postmovement cortical deactivation. We assessed the effects of subthalamic deep brain stimulation and l-dopa on beta rhythm synchronization over the premotor and primary sensorimotor cortex. Ten advanced patients performed self-paced wrist flexion in four conditions according to the presence or not of stimulation and l-dopa. Compared to without treatment, the motor score improved by approximately 60%; the beta synchronization was present over the contralateral frontocentral region and increased significantly over the contralateral central region under stimulation and under l-dopa, with a maximal effect when both treatments were associated. Our advanced patients displayed very focused and attenuated beta rhythm synchronization which, under stimulation, increased over the contralateral premotor and primary sensorimotor cortex. Stimulation and l-dopa both partly restored postmovement cortical deactivation in advanced Parkinson's disease, although the respective mechanisms probably differ. They may improve bradykinesia and cortical deactivation by reestablishing movement-related somatosensory processing at the end of the movement through the basal ganglia into the cortex.

  17. Posterior Cortical Atrophy

    PubMed Central

    Crutch, Sebastian J; Lehmann, Manja; Schott, Jonathan M; Rabinovici, Gil D; Rossor, Martin N; Fox, Nick C

    2013-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome that is characterized by a progressive decline in visuospatial, visuoperceptual, literacy and praxic skills. The progressive neurodegeneration affecting parietal, occipital and occipito-temporal cortices which underlies PCA is attributable to Alzheimer's disease (AD) in the majority of patients. However, alternative underlying aetiologies including Dementia with Lewy Bodies (DLB), corticobasal degeneration (CBD) and prion disease have also been identified, and not all PCA patients have atrophy on clinical imaging. This heterogeneity has led to diagnostic and terminological inconsistencies, caused difficulty comparing studies from different centres, and limited the generalizability of clinical trials and investigations of factors driving phenotypic variability. Significant challenges remain in identifying the factors associated with both the selective vulnerability of posterior cortical regions and the young age of onset seen in PCA. Greater awareness of the syndrome and agreement over the correspondence between syndrome-and disease-level classifications are required in order to improve diagnostic accuracy, research study design and clinical management. PMID:22265212

  18. Adult Visual Cortical Plasticity

    PubMed Central

    Gilbert, Charles D.; Li, Wu

    2012-01-01

    The visual cortex has the capacity for experience dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate level vision - contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex. PMID:22841310

  19. Visual cortical activity reflects faster accumulation of information from cortically blind fields

    PubMed Central

    Martin, Tim; Das, Anasuya; Huxlin, Krystel R.

    2012-01-01

    Brain responses (from functional magnetic resonance imaging) and components of information processing were investigated in nine cortically blind observers performing a global direction discrimination task. Three of these subjects had responses in perilesional cortex in response to blind field stimulation, whereas the others did not. We used the EZ-diffusion model of decision making to understand how cortically blind subjects make a perceptual decision on stimuli presented within their blind field. We found that these subjects had slower accumulation of information in their blind fields as compared with their good fields and to intact controls. Within cortically blind subjects, activity in perilesional tissue, V3A and hMT+ was associated with a faster accumulation of information for deciding direction of motion of stimuli presented in the blind field. This result suggests that the rate of information accumulation is a critical factor in the degree of impairment in cortical blindness and varies greatly among affected individuals. Retraining paradigms that seek to restore visual functions might benefit from focusing on increasing the rate of information accumulation. PMID:23169923

  20. Cortical deactivation induced by subcortical network dysfunction in limbic seizures

    PubMed Central

    Englot, Dario J.; Modi, Badri; Mishra, Asht M.; DeSalvo, Matthew; Hyder, Fahmeed; Blumenfeld, Hal

    2009-01-01

    Normal human consciousness may be impaired by two possible routes: direct reduced function in widespread cortical regions, or indirect disruption of subcortical activating systems. The route through which temporal lobe limbic seizures impair consciousness is not known. We recently developed an animal model which, like human limbic seizures, exhibits neocortical deactivation including cortical slow waves and reduced cortical cerebral blood flow (CBF). We now find through functional MRI (fMRI) that electrically-stimulated hippocampal seizures in rats cause increased activity in subcortical structures including the septal area and mediodorsal thalamus, along with reduced activity in frontal, cingulate, and retrosplenial cortex. Direct recordings from the hippocampus, septum, and medial thalamus demonstrated fast poly-spike activity associated with increased neuronal firing and CBF, while frontal cortex showed slow oscillations with decreased neuronal firing and CBF. Stimulation of septal area, but not hippocampus or medial thalamus, in the absence of a seizure resulted in cortical deactivation with slow oscillations and behavioral arrest, resembling changes seen during limbic seizures. Transecting the fornix, the major route from hippocampus to subcortical structures, abolished the negative cortical and behavioral effects of seizures. Cortical slow oscillations and behavioral arrest could be reconstituted in fornix-lesioned animals by inducing synchronous activity in the hippocampus and septal area, implying involvement of a downstream region converged upon by both structures. These findings suggest that limbic seizures may cause neocortical deactivation indirectly, through impaired subcortical function. If confirmed, subcortical networks may represent a target for therapies aimed at preserving consciousness in human temporal lobe seizures. PMID:19828814

  1. Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states.

    PubMed

    Greenberg, Anastasia; Whitten, Tara A; Dickson, Clayton T

    2016-06-01

    Slow-wave states are characterized by the most global physiological phenomenon in the mammalian brain, the large-amplitude slow oscillation (SO; ~1Hz) composed of alternating states of activity (ON/UP states) and silence (OFF/DOWN states) at the network and single cell levels. The SO is cortically generated and appears as a traveling wave that can propagate across the cortical surface and can invade the hippocampus. This cortical rhythm is thought to be imperative for sleep-dependent memory consolidation, potentially through increased interactions with the hippocampus. The SO is correlated with learning and its presumed enhancement via slow rhythmic electrical field stimulation improves subsequent mnemonic performance. However, the mechanism by which such field stimulation influences the dynamics of ongoing cortico-hippocampal communication is unknown. Here we show - using multi-site recordings in urethane-anesthetized rats - that sinusoidal electrical field stimulation applied to the frontal region of the cerebral cortex creates a platform for improved cortico-hippocampal communication. Moderate-intensity field stimulation entrained hippocampal slow activity (likely by way of the temporoammonic pathway) and also increased sharp-wave ripples, the signature memory replay events of the hippocampus, and further increased cortical spindles. Following cessation of high-intensity stimulation, SO interactions in the cortical-to-hippocampal direction were reduced, while the reversed hippocampal-to-cortical communication at both SO and gamma bandwidths was enhanced. Taken together, these findings suggest that cortical field stimulation may function to boost memory consolidation by strengthening cortico-hippocampal and hippocampo-cortical interplay at multiple nested frequencies in an intensity-dependent fashion.

  2. Posterior cortical atrophy: an atypical variant of Alzheimer disease.

    PubMed

    Suárez-González, Aida; Henley, Susie M; Walton, Jill; Crutch, Sebastian J

    2015-06-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by striking progressive visual impairment and a pattern of atrophy mainly involving posterior cortices. PCA is the most frequent atypical presentation of Alzheimer disease. The purpose of this article is to provide a summary of PCA's neuropsychiatric manifestations. Emotional and psychotic symptoms are discussed in the context of signal characteristic features of the PCA syndrome (the early onset, focal loss of visual perception, focal posterior brain atrophy) and the underlying cause of the disease. The authors' experience with psychotherapeutic intervention and PCA support groups is shared in detail.

  3. Cortical Clefts and Cortical Bumps: A Continuous Spectrum

    PubMed Central

    Furruqh, Farha; Thirunavukarasu, Suresh; Vivekandan, Ravichandran

    2016-01-01

    Cortical ‘clefts’ (schizencephaly) and cortical ‘bumps’ (polymicrogyria) are malformations arising due to defects in postmigrational development of neurons. They are frequently encountered together, with schizencephalic clefts being lined by polymicrogyria. We present the case of an eight-year-old boy who presented with seizures. Imaging revealed closed lip schizencephaly, polymicrogyria and a deep ‘incomplete’ cleft lined by polymicrogyria not communicating with the lateral ventricle. We speculate that hypoperfusion or ischaemic cortical injury during neuronal development may lead to a spectrum of malformations ranging from polymicrogyria to incomplete cortical clefts to schizencephaly. PMID:27630923

  4. Grammatical Impairments in PPA

    PubMed Central

    Thompson, Cynthia K.; Mack, Jennifer E.

    2015-01-01

    Background Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. Aims We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. Main Contribution PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Conclusions Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real

  5. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    PubMed Central

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  6. Cortical commands in active touch.

    PubMed

    Brecht, Michael

    2006-01-01

    The neocortex is an enormous network of extensively interconnected neurons. It has become clear that the computations performed by individual cortical neurons will critically depend on the quantitative composition of cortical activity. Here we discuss quantitative aspects of cortical activity and modes of cortical processing in the context of rodent active touch. Through in vivo whole-cell recordings one observes widespread subthreshold and very sparse evoked action potential (AP) activity in the somatosensory cortex both for passive whisker deflection in anaesthetized animals and during active whisker movements in awake animals. Neurons of the somatosensory cortex become either suppressed during whisking or activated by an efference copy of whisker movement signal that depolarize cells at certain phases of the whisking cycle. To probe the read out of cortical motor commands we applied intracellular stimulation in rat whisker motor cortex. We find that APs in individual cortical neurons can evoke long sequences of small whisker movements. The capacity of an individual neuron to evoke movements is most astonishing given the large number of neurons in whisker motor cortex. Thus, few cortical APs may suffice to control motor behaviour and such APs can be translated into action with the utmost precision. We conclude that there is very widespread subthreshold cortical activity and very sparse, highly specific cortical AP activity.

  7. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    PubMed

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  8. Cortical-Cortical Interactions And Sensory Information Processing in Autism

    DTIC Science & Technology

    2008-04-30

    Additionally, these cortical areas have been implicated from significantly elevated TOJ thresholds (worse performance) in subjects with dyslexia [5...of the fact that above-average TOJ thresholds occur in subjects with known damage to these same cortical areas ( dyslexia [5], dystonia [6-8], and

  9. Bilateral cortical blindness after lumbar spine surgery. A case report.

    PubMed

    Huber, J F; Grob, D

    1998-08-15

    A report of the unusual perioperative complication of bilateral cortical blindness after lumbar spine surgery. The hypothetical causes that can lead to this syndrome in spine surgery and the precautions are discussed. The circumstances surrounding the occurrence of perioperative cortical blindness, the explanation of possible mechanisms, and the patients at risk are evaluated. There have been no similar reports. Case report with description of the syndrome of cortical blindness, the diagnostic tools, and the different pathophysiologic causes. The severe impairment of visual capacities remained unchanged; some color discrimination and the differentiation between dark and daylight were possible. In obese patients (body mass index > 30) puncture of the subclavian vein and rotating and positioning of the patient in one step should be performed carefully.

  10. Familial influences on cortical evoked potentials in migraine.

    PubMed

    Sándor, P S; Afra, J; Proietti-Cecchini, A; Albert, A; Schoenen, J

    1999-04-26

    Cortical information processing in migraine patients is impaired between attacks, showing deficient habituation of pattern-reversal visual evoked potentials (VEP), and strong intensity dependence of auditory cortical evoked potentials (IDAP). This could be a genetic trait as certain genetic patterns are known for evoked potentials in healthy subjects. We investigated VEP habituation and IDAP in 20 pairs of migraineurs made up of parents and their children. Using a Monte-Carlo statistical method, we selectively assessed vertical familial influences. VEP habituation and IDAP were abnormal in both parents and children. However, similarity was far more pronounced between related pairs than between unrelated pairs. Familial influences are highly significant in determinants of cortical information processing in migraineurs, hence supporting the important role of genetic factors.

  11. Cortical Parvalbumin Interneurons and Cognitive Dysfunction in Schizophrenia

    PubMed Central

    Lewis, David A.; Curley, Allison A.; Glausier, Jill; Volk, David W.

    2011-01-01

    Deficits in cognitive control, a core disturbance of schizophrenia, appear to emerge from impaired prefrontal gamma oscillations. Cortical gamma oscillations require strong inhibitory inputs to pyramidal neurons from the parvalbumin basket cell (PVBC) class of GABAergic neurons. Recent findings indicate that schizophrenia is associated with multiple pre- and post-synaptic abnormalities in PVBCs, each of which weakens their inhibitory control of pyramidal cells. These findings suggest a new model of cortical dysfunction in schizophrenia in which PVBC inhibition is decreased to compensate for an upstream deficit in pyramidal cell excitation. This compensation is thought to re-balance cortical excitation and inhibition, but at a level insufficient to generate the gamma oscillation power required for high levels of cognitive control. PMID:22154068

  12. Impact of prenatal environmental stress on cortical development

    PubMed Central

    Ishii, Seiji; Hashimoto-Torii, Kazue

    2015-01-01

    Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS) cells to demonstrate: (1) molecular mechanisms shared by various types of environmental stressors, (2) the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and (3) interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders. PMID:26074774

  13. Cortical Control of Zona Incerta

    PubMed Central

    Barthó, Péter; Slézia, Andrea; Varga, Viktor; Bokor, Hajnalka; Pinault, Didier; Buzsáki, György; Acsády, László

    2009-01-01

    The zona incerta (ZI) is at the crossroad of almost all major ascending and descending fiber tracts and targets numerous brain centers from the thalamus to the spinal cord. Effective ascending drive of ZI cells has been described, but the role of descending cortical signals in patterning ZI activity is unknown. Cortical control over ZI function was examined during slow cortical waves (1-3 Hz), paroxysmal high-voltage spindles (HVSs), and 5-9 Hz oscillations in anesthetized rats. In all conditions, rhythmic cortical activity significantly altered the firing pattern of ZI neurons recorded extracellularly and labeled with the juxtacellular method. During slow oscillations, the majority of ZI neurons became synchronized to the depth-negative phase (“up state”) of the cortical waves to a degree comparable to thalamocortical neurons. During HVSs, ZI cells displayed highly rhythmic activity in tight synchrony with the cortical oscillations. ZI neurons responded to short epochs of cortical 5-9 Hz oscillations, with a change in the interspike interval distribution and with an increase in spectral density in the 5-9 Hz band as measured by wavelet analysis. Morphological reconstruction revealed that most ZI cells have mediolaterally extensive dendritic trees and very long dendritic segments. Cortical terminals established asymmetrical synapses on ZI cells with very long active zones. These data suggest efficient integration of widespread cortical signals by single ZI neurons and strong cortical drive. We propose that the efferent GABAergic signal of ZI neurons patterned by the cortical activity can play a critical role in synchronizing thalamocortical and brainstem rhythms. PMID:17301175

  14. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons

    PubMed Central

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew CN; Swindale, Nicholas V; Murphy, Timothy H

    2017-01-01

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI: http://dx.doi.org/10.7554/eLife.19976.001 PMID:28160463

  15. Cortical trajectories during adolescence in preterm born teenagers with very low birthweight.

    PubMed

    Rimol, Lars M; Bjuland, Knut J; Løhaugen, Gro C C; Martinussen, Marit; Evensen, Kari Anne I; Indredavik, Marit S; Brubakk, Ann-Mari; Eikenes, Live; Håberg, Asta K; Skranes, Jon

    2016-02-01

    While cross-sectional neuroimaging studies on cortical development predict reductions in cortical volume (surface area and thickness) during adolescence, this is the first study to undertake a longitudinal assessment of cortical surface area changes across the continuous cortical surface during this period. We studied the developmental dynamics of cortical surface area and thickness in adolescents and young adults (aged 15-20) born with very low birth weight (VLBW; <1500 g) as well as in term-born controls. Previous studies have demonstrated brain structural abnormalities in cortical morphology, as well as long-term motor, cognitive and behavioral impairments, in adolescents and young adults with VLBW, but the developmental dynamics throughout adolescence have not been fully explored. T1-weighted MRI scans from 51 VLBW (27 scanned twice) and 79 term-born adolescents (37 scanned twice) were used to reconstruct the cortical surface and produce longitudinal estimates of cortical surface area and cortical thickness. Linear mixed model analyses were performed, and the main effects of time and group, as well as time × group interaction effects, were investigated. In both groups, cortical surface area decreased up to 5% in some regions, and cortical thickness up to 8%, over the five-year period. The most affected regions were located on the lateral aspect of the hemispheres, in posterior temporal, parietal and to some extent frontal regions. There was no significant interaction between time and group for either morphometry variable. In conclusion, cortical thickness decreases from 15 to 20 years of age, in a similar fashion in the clinical and control groups. Moreover, we show for the first time that developmental trajectories of cortical surface area in preterm and term-born adolescents do not diverge during adolescence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    PubMed Central

    Ma, Yizhou; Koyama, Maki S.; Milham, Michael P.; Castellanos, F. Xavier; Quinn, Brian T.; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2014-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status. PMID:25610779

  17. Cortical thickness abnormalities associated with dyslexia, independent of remediation status.

    PubMed

    Ma, Yizhou; Koyama, Maki S; Milham, Michael P; Castellanos, F Xavier; Quinn, Brian T; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2015-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the "reading network." Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same "double hit" of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status.

  18. Cortico-cortical communication dynamics

    PubMed Central

    Roland, Per E.; Hilgetag, Claus C.; Deco, Gustavo

    2014-01-01

    In principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG), and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review. PMID:24847217

  19. Evaluating mandibular cortical index quantitatively.

    PubMed

    Yasar, Fusun; Akgunlu, Faruk

    2008-10-01

    The aim was to assess whether Fractal Dimension and Lacunarity analysis can discriminate patients having different mandibular cortical shape. Panoramic radiographs of 52 patients were evaluated for mandibular cortical index. Weighted Kappa between the observations were varying between 0.718-0.805. These radiographs were scanned and converted to binary images. Fractal Dimension and Lacunarity were calculated from the regions where best represents the cortical morphology. It was found that there were statistically significant difference between the Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 1 and Cl 2 (Fractal Dimension P:0.000; Lacunarity P:0.003); and Cl 1 and Cl 3 cortical morphology (Fractal Dimension P:0.008; Lacunarity P:0.001); but there was no statistically significant difference between Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 2 and Cl 3 cortical morphology (Fractal Dimension P:1.000; Lacunarity P:0.758). FD and L can differentiate Cl 1 mandibular cortical shape from both Cl 2 and Cl 3 mandibular cortical shape but cannot differentiate Cl 2 from Cl 3 mandibular cortical shape on panoramic radiographs.

  20. Evaluating Mandibular Cortical Index Quantitatively

    PubMed Central

    Yasar, Fusun; Akgunlu, Faruk

    2008-01-01

    Objectives The aim was to assess whether Fractal Dimension and Lacunarity analysis can discriminate patients having different mandibular cortical shape. Methods Panoramic radiographs of 52 patients were evaluated for mandibular cortical index. Weighted Kappa between the observations were varying between 0.718–0.805. These radiographs were scanned and converted to binary images. Fractal Dimension and Lacunarity were calculated from the regions where best represents the cortical morphology. Results It was found that there were statistically significant difference between the Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 1 and Cl 2 (Fractal Dimension P:0.000; Lacunarity P:0.003); and Cl 1 and Cl 3 cortical morphology (Fractal Dimension P:0.008; Lacunarity P:0.001); but there was no statistically significant difference between Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 2 and Cl 3 cortical morphology (Fractal Dimension P:1.000; Lacunarity P:0.758). Conclusions FD and L can differentiate Cl 1 mandibular cortical shape from both Cl 2 and Cl 3 mandibular cortical shape but cannot differentiate Cl 2 from Cl 3 mandibular cortical shape on panoramic radiographs. PMID:19212535

  1. fMRI and sleep correlates of the age-related impairment in motor memory consolidation.

    PubMed

    Fogel, Stuart M; Albouy, Genevieve; Vien, Catherine; Popovicci, Romana; King, Bradley R; Hoge, Rick; Jbabdi, Saad; Benali, Habib; Karni, Avi; Maquet, Pierre; Carrier, Julie; Doyon, Julien

    2014-08-01

    Behavioral studies indicate that older adults exhibit normal motor sequence learning (MSL), but paradoxically, show impaired consolidation of the new memory trace. However, the neural and physiological mechanisms underlying this impairment are entirely unknown. Here, we sought to identify, through functional magnetic resonance imaging during MSL and electroencephalographic (EEG) recordings during daytime sleep, the functional correlates and physiological characteristics of this age-related motor memory deficit. As predicted, older subjects did not exhibit sleep-dependent gains in performance (i.e., behavioral changes that reflect consolidation) and had reduced sleep spindles compared with young subjects. Brain imaging analyses also revealed that changes in activity across the retention interval in the putamen and related brain regions were associated with sleep spindles. This change in striatal activity was increased in young subjects, but reduced by comparison in older subjects. These findings suggest that the deficit in sleep-dependent motor memory consolidation in elderly individuals is related to a reduction in sleep spindle oscillations and to an associated decrease of activity in the cortico-striatal network.

  2. Modeling cortical circuits.

    SciTech Connect

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  3. "Apperceptive" alexia in posterior cortical atrophy.

    PubMed

    Mendez, Mario F; Shapira, Jill S; Clark, David G

    2007-02-01

    The most common presenting complaint in posterior cortical atrophy (PCA) is reading difficulty. Although often described as an alexia without agraphia, alexia in PCA may have multiple causes, including a primary visuoperceptual etiology, attentional alexia, and central reading difficulty. This study evaluated 14 patients with early PCA and disturbances in reading ability in comparison to 14 normal controls. All 14 patients had a progressive disorder of complex visual functions and neuroimaging evidence of occipitoparietal dysfunction. They underwent a task requiring identification of single letters with and without flanking distractors. They also read single words consisting of regular English spelling or irregular grapheme-phoneme correspondence (irregular words) and pronounceable nonsense words (pseudowords). The PCA patients made errors in letter identification when letters were flanked by visually similar letters or numbers. They could read most single regular and irregular words but made visual errors and had particular trouble with pseudowords. They could not use a letter-by-letter reading strategy effectively. The PCA patients had similar difficulties on other visuoperceptual tests. These findings are consistent with an alexia manifested by perceptual and attentional difficulty on attempting serial visual processing of letters in the context of other letters. This "apperceptive alexia" results when the configuration of letters into words is impaired during letter-by-letter reading. Disproportionate difficulty reading pseudowords suggests an additional impairment in phonological processing. PCA patients have variable neuropathology and individual patients may have other contributions to their reading impairment.

  4. Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability.

    PubMed

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2014-02-07

    The purpose of this study was to compare cortical inhibition in the hand region of the primary motor cortex between subjects with focal hand dystonia (FHD), adductor spasmodic dysphonia (AdSD), and healthy controls. Data from 28 subjects were analyzed (FHD n=11, 53.25 ± 8.74 y; AdSD: n=8, 56.38 ± 7.5 y; and healthy controls: n=941.67 ± 10.85 y). All subjects received single pulse TMS to the left motor cortex to measure cortical silent period (CSP) in the right first dorsal interosseus (FDI) muscle. Duration of the CSP was measured and compared across groups. A one-way ANCOVA with age as a covariate revealed a significant group effect (p<0.001). Post hoc analysis revealed significantly longer CSP duration in the healthy group vs. AdSD group (p<0.001) and FHD group (p<0.001). These results suggest impaired intracortical inhibition is a neurophysiologic characteristic of FHD and AdSD. In addition, the shortened CSP in AdSD provides evidence to support a widespread decrease in cortical inhibition in areas of the motor cortex that represent an asymptomatic region of the body. These findings may inform future investigations of differential diagnosis as well as alternative treatments for focal dystonias.

  5. Decoding of Covert Vowel Articulation Using Electroencephalography Cortical Currents

    PubMed Central

    Yoshimura, Natsue; Nishimoto, Atsushi; Belkacem, Abdelkader Nasreddine; Shin, Duk; Kambara, Hiroyuki; Hanakawa, Takashi; Koike, Yasuharu

    2016-01-01

    With the goal of providing assistive technology for the communication impaired, we proposed electroencephalography (EEG) cortical currents as a new approach for EEG-based brain-computer interface spellers. EEG cortical currents were estimated with a variational Bayesian method that uses functional magnetic resonance imaging (fMRI) data as a hierarchical prior. EEG and fMRI data were recorded from ten healthy participants during covert articulation of Japanese vowels /a/ and /i/, as well as during a no-imagery control task. Applying a sparse logistic regression (SLR) method to classify the three tasks, mean classification accuracy using EEG cortical currents was significantly higher than that using EEG sensor signals and was also comparable to accuracies in previous studies using electrocorticography. SLR weight analysis revealed vertices of EEG cortical currents that were highly contributive to classification for each participant, and the vertices showed discriminative time series signals according to the three tasks. Furthermore, functional connectivity analysis focusing on the highly contributive vertices revealed positive and negative correlations among areas related to speech processing. As the same findings were not observed using EEG sensor signals, our results demonstrate the potential utility of EEG cortical currents not only for engineering purposes such as brain-computer interfaces but also for neuroscientific purposes such as the identification of neural signaling related to language processing. PMID:27199638

  6. Cortical Thickness and Local Gyrification in Children with Developmental Dyslexia.

    PubMed

    Williams, Victoria J; Juranek, Jenifer; Cirino, Paul; Fletcher, Jack M

    2017-01-19

    Developmental dyslexia is frequently associated with atypical brain structure and function within regions of the left hemisphere reading network. To date, few studies have employed surface-based techniques to evaluate cortical thickness and local gyrification in dyslexia. Of the existing cortical thickness studies in children, many are limited by small sample size, variability in dyslexia identification, and the recruitment of prereaders who may or may not develop reading impairment. Further, no known study has assessed local gyrification index (LGI) in dyslexia, which may serve as a sensitive indicator of atypical neurodevelopment. In this study, children with dyslexia (n = 31) and typically decoding peers (n = 45) underwent structural magnetic resonance imaging to assess whole-brain vertex-wise cortical thickness and LGI. Children with dyslexia demonstrated reduced cortical thickness compared with controls within previously identified reading areas including bilateral occipitotemporal and occipitoparietal regions. Compared with controls, children with dyslexia also showed increased gyrification in left occipitotemporal and right superior frontal cortices. The convergence of thinner and more gyrified cortex within the left occipitotemporal region among children with dyslexia may reflect its early temporal role in processing word forms, and highlights the importance of the ventral stream for successful word reading.

  7. Decoding of Covert Vowel Articulation Using Electroencephalography Cortical Currents.

    PubMed

    Yoshimura, Natsue; Nishimoto, Atsushi; Belkacem, Abdelkader Nasreddine; Shin, Duk; Kambara, Hiroyuki; Hanakawa, Takashi; Koike, Yasuharu

    2016-01-01

    With the goal of providing assistive technology for the communication impaired, we proposed electroencephalography (EEG) cortical currents as a new approach for EEG-based brain-computer interface spellers. EEG cortical currents were estimated with a variational Bayesian method that uses functional magnetic resonance imaging (fMRI) data as a hierarchical prior. EEG and fMRI data were recorded from ten healthy participants during covert articulation of Japanese vowels /a/ and /i/, as well as during a no-imagery control task. Applying a sparse logistic regression (SLR) method to classify the three tasks, mean classification accuracy using EEG cortical currents was significantly higher than that using EEG sensor signals and was also comparable to accuracies in previous studies using electrocorticography. SLR weight analysis revealed vertices of EEG cortical currents that were highly contributive to classification for each participant, and the vertices showed discriminative time series signals according to the three tasks. Furthermore, functional connectivity analysis focusing on the highly contributive vertices revealed positive and negative correlations among areas related to speech processing. As the same findings were not observed using EEG sensor signals, our results demonstrate the potential utility of EEG cortical currents not only for engineering purposes such as brain-computer interfaces but also for neuroscientific purposes such as the identification of neural signaling related to language processing.

  8. Muscle synergy patterns as physiological markers of motor cortical damage

    PubMed Central

    Cheung, Vincent C. K.; Turolla, Andrea; Agostini, Michela; Silvoni, Stefano; Bennis, Caoimhe; Kasi, Patrick; Paganoni, Sabrina; Bonato, Paolo; Bizzi, Emilio

    2012-01-01

    The experimental findings herein reported are aimed at gaining a perspective on the complex neural events that follow lesions of the motor cortical areas. Cortical damage, whether by trauma or stroke, interferes with the flow of descending signals to the modular interneuronal structures of the spinal cord. These spinal modules subserve normal motor behaviors by activating groups of muscles as individual units (muscle synergies). Damage to the motor cortical areas disrupts the orchestration of the modules, resulting in abnormal movements. To gain insights into this complex process, we recorded myoelectric signals from multiple upper-limb muscles in subjects with cortical lesions. We used a factorization algorithm to identify the muscle synergies. Our factorization analysis revealed, in a quantitative way, three distinct patterns of muscle coordination—including preservation, merging, and fractionation of muscle synergies—that reflect the multiple neural responses that occur after cortical damage. These patterns varied as a function of both the severity of functional impairment and the temporal distance from stroke onset. We think these muscle-synergy patterns can be used as physiological markers of the status of any patient with stroke or trauma, thereby guiding the development of different rehabilitation approaches, as well as future physiological experiments for a further understanding of postinjury mechanisms of motor control and recovery. PMID:22908288

  9. Paroxysmal kinesigenic dyskinesia: cortical or non-cortical origin.

    PubMed

    van Strien, Teun W; van Rootselaar, Anne-Fleur; Hilgevoord, Anthony A J; Linssen, Wim H J P; Groffen, Alexander J A; Tijssen, Marina A J

    2012-06-01

    Paroxysmal kinesigenic dyskinesia (PKD) is characterized by involuntary dystonia and/or chorea triggered by a sudden movement. Cases are usually familial with an autosomal dominant inheritance. Hypotheses regarding the pathogenesis of PKD focus on the controversy whether PKD has a cortical or non-cortical origin. A combined familial trait of PKD and benign familial infantile seizures has been reported as the infantile convulsions and paroxysmal choreoathetosis (ICCA) syndrome. Here, we report a family diagnosed with ICCA syndrome with an Arg217STOP mutation. The index patient showed interictal EEG focal changes compatible with paroxysmal dystonic movements of his contralateral leg. This might support cortical involvement in PKD.

  10. Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes.

    PubMed

    Cheeseman, Liam P; Boulanger, Jérôme; Bond, Lisa M; Schuh, Melina

    2016-12-19

    An egg must be fertilized by a single sperm only. To prevent polyspermy, the zona pellucida, a structure that surrounds mammalian eggs, becomes impermeable upon fertilization, preventing the entry of further sperm. The structural changes in the zona upon fertilization are driven by the exocytosis of cortical granules. These translocate from the oocyte's centre to the plasma membrane during meiosis. However, very little is known about the mechanism of cortical granule translocation. Here we investigate cortical granule transport and dynamics in live mammalian oocytes by using Rab27a as a marker. We show that two separate mechanisms drive their transport: myosin Va-dependent movement along actin filaments, and an unexpected vesicle hitchhiking mechanism by which cortical granules bind to Rab11a vesicles powered by myosin Vb. Inhibiting cortical granule translocation severely impaired the block to sperm entry, suggesting that translocation defects could contribute to miscarriages that are caused by polyspermy.

  11. Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes

    PubMed Central

    Cheeseman, Liam P.; Boulanger, Jérôme; Bond, Lisa M.; Schuh, Melina

    2016-01-01

    An egg must be fertilized by a single sperm only. To prevent polyspermy, the zona pellucida, a structure that surrounds mammalian eggs, becomes impermeable upon fertilization, preventing the entry of further sperm. The structural changes in the zona upon fertilization are driven by the exocytosis of cortical granules. These translocate from the oocyte's centre to the plasma membrane during meiosis. However, very little is known about the mechanism of cortical granule translocation. Here we investigate cortical granule transport and dynamics in live mammalian oocytes by using Rab27a as a marker. We show that two separate mechanisms drive their transport: myosin Va-dependent movement along actin filaments, and an unexpected vesicle hitchhiking mechanism by which cortical granules bind to Rab11a vesicles powered by myosin Vb. Inhibiting cortical granule translocation severely impaired the block to sperm entry, suggesting that translocation defects could contribute to miscarriages that are caused by polyspermy. PMID:27991490

  12. Abnormal cortical processing of the syllable rate of speech in poor readers

    PubMed Central

    Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina

    2009-01-01

    Children with reading impairments have long been associated with impaired perception for rapidly presented acoustic stimuli and recently have shown deficits for slower features. It is not known whether impairments for low-frequency acoustic features negatively impact processing of speech in reading impaired individuals. Here we provide neurophysiological evidence that poor readers have impaired representation of the speech envelope, the acoustical cue that provides syllable pattern information in speech. We measured cortical-evoked potentials in response to sentence stimuli and found that good readers indicated consistent right-hemisphere dominance in auditory cortex for all measures of speech envelope representation, including the precision, timing and magnitude of cortical responses. Poor readers showed abnormal patterns of cerebral asymmetry for all measures of speech envelope representation. Moreover, cortical measures of speech envelope representation predicted up to 44% of the variability in standardized reading scores and 50% in measures of phonological processing across a wide range of abilities. Findings strongly support a relationship between acoustic-level processing and higher-level language abilities, and are the first to link reading ability with cortical processing of low-frequency acoustic features in the speech signal. Results also support the hypothesis that asymmetric routing between cerebral hemispheres represents an important mechanism for temporal encoding in the human auditory system, and the need for an expansion of the temporal processing hypothesis for reading-disabilities to encompass impairments for a wider range of speech features than previously acknowledged. PMID:19535580

  13. Cortical signatures of noun and verb production

    PubMed Central

    Shapiro, Kevin A.; Moo, Lauren R.; Caramazza, Alfonso

    2006-01-01

    Categories like “noun” and “verb” represent the basic units of grammar in all human languages, and the retrieval of categorical information associated with words is an essential step in the production of grammatical speech. Studies of brain-damaged patients suggest that knowledge of nouns and verbs can be spared or impaired selectively; however, the neuroanatomical correlates of this dissociation are not well understood. We used event-related functional MRI to identify cortical regions that were active when English-speaking subjects produced nouns or verbs in the context of short phrases. Two regions, in the left prefrontal cortex and left superior parietal lobule, were selectively activated for verb trials compared with noun trials; one region in the left inferior temporal lobe was more active during noun production than verb production. We propose that these regions are involved in representing core conceptual properties of nouns and verbs. PMID:16432232

  14. Cortical signatures of noun and verb production.

    PubMed

    Shapiro, Kevin A; Moo, Lauren R; Caramazza, Alfonso

    2006-01-31

    Categories like "noun" and "verb" represent the basic units of grammar in all human languages, and the retrieval of categorical information associated with words is an essential step in the production of grammatical speech. Studies of brain-damaged patients suggest that knowledge of nouns and verbs can be spared or impaired selectively; however, the neuroanatomical correlates of this dissociation are not well understood. We used event-related functional MRI to identify cortical regions that were active when English-speaking subjects produced nouns or verbs in the context of short phrases. Two regions, in the left prefrontal cortex and left superior parietal lobule, were selectively activated for verb trials compared with noun trials; one region in the left inferior temporal lobe was more active during noun production than verb production. We propose that these regions are involved in representing core conceptual properties of nouns and verbs.

  15. Cognitive Plasticity and Cortical Modules.

    PubMed

    Mercado, Eduardo

    2009-06-01

    Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements.

  16. Cognitive Plasticity and Cortical Modules

    PubMed Central

    Mercado, Eduardo

    2009-01-01

    Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements. PMID:19750239

  17. Sleep-Dependent Declarative Memory Consolidation—Unaffected after Blocking NMDA or AMPA Receptors but Enhanced by NMDA Coagonist D-Cycloserine

    PubMed Central

    Feld, Gordon B; Lange, Tanja; Gais, Steffen; Born, Jan

    2013-01-01

    Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors. PMID:23887151

  18. Sleep-dependent declarative memory consolidation--unaffected after blocking NMDA or AMPA receptors but enhanced by NMDA coagonist D-cycloserine.

    PubMed

    Feld, Gordon B; Lange, Tanja; Gais, Steffen; Born, Jan

    2013-12-01

    Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors.

  19. Taste - impaired

    MedlinePlus

    ... longer. Causes of impaired taste include: Bell's palsy Common cold Flu and other viral infections Nasal infection, nasal ... your diet. For taste problems due to the common cold or flu, normal taste should return when the ...

  20. Impaired Driving

    MedlinePlus

    Impaired driving is dangerous. It's the cause of more than half of all car crashes. It means operating a ... texting Having a medical condition which affects your driving For your safety and the safety of others, ...

  1. Impaired Driving

    MedlinePlus

    ... people were killed in alcohol-impaired driving crashes, accounting for nearly one-third (31%) of all traffic- ... promotion efforts into practice that influence economic, organizational, policy, and school/community action. 13,14 Using community- ...

  2. Sleep modulates cortical connectivity and excitability in humans: Direct evidence from neural activity induced by single-pulse electrical stimulation.

    PubMed

    Usami, Kiyohide; Matsumoto, Riki; Kobayashi, Katsuya; Hitomi, Takefumi; Shimotake, Akihiro; Kikuchi, Takayuki; Matsuhashi, Masao; Kunieda, Takeharu; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2015-11-01

    Sleep-induced changes in human brain connectivity/excitability and their physiologic basis remain unclear, especially in the frontal lobe. We investigated sleep-induced connectivity and excitability changes in 11 patients who underwent chronic implantation of subdural electrodes for epilepsy surgery. Single-pulse electrical stimuli were directly injected to a part of the cortices, and cortico-cortical evoked potentials (CCEPs) and CCEP-related high-gamma activities (HGA: 100-200 Hz) were recorded from adjacent and remote cortices as proxies of effective connectivity and induced neuronal activity, respectively. HGA power during the initial CCEP component (N1) correlated with the N1 size itself across all states investigated. The degree of cortical connectivity and excitability changed during sleep depending on sleep stage, approximately showing dichotomy of awake vs. non-rapid eye movement (REM) [NREM] sleep. On the other hand, REM sleep partly had properties of both awake and NREM sleep, placing itself in the intermediate state between them. Compared with the awake state, single-pulse stimulation especially during NREM sleep induced increased connectivity (N1 size) and neuronal excitability (HGA increase at N1), which was immediately followed by intense inhibition (HGA decrease). The HGA decrease was temporally followed by the N2 peak (the second CCEP component), and then by HGA re-increase during sleep across all lobes. This HGA rebound or re-increase of neuronal synchrony was largest in the frontal lobe compared with the other lobes. These properties of sleep-induced changes of the cortex may be related to unconsciousness during sleep and frequent nocturnal seizures in frontal lobe epilepsy.

  3. Analysis of Cortical Flow Models In Vivo

    PubMed Central

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  4. Cognitive impairment in multiple system atrophy

    PubMed Central

    Stankovic, Iva; Krismer, Florian; Jesic, Aleksandar; Antonini, Angelo; Benke, Thomas; Brown, Richard G.; Burn, David J.; Holton, Janice L.; Kaufmann, Horacio; Kostic, Vladimir S.; Ling, Helen; Meissner, Wassilios G.; Poewe, Werner; Semnic, Marija; Seppi, Klaus; Takeda, Atsushi; Weintraub, Daniel; Wenning, Gregor K.

    2014-01-01

    Consensus diagnostic criteria for multiple system atrophy consider dementia as a non-supporting feature, despite emerging evidence demonstrating that cognitive impairments are an integral part of the disease. Cognitive disturbances in multiple system atrophy occur across a wide spectrum from mild single domain deficits to impairments in multiple domains and even to frank dementia in some cases. Frontal-executive dysfunction is the most common presentation, while memory and visuospatial functions may also be impaired. Imaging and neuropathological findings support the concept that cognitive impairments in MSA originate from striatofrontal deafferentation with additional contributions from intrinsic cortical degeneration and cerebellar pathology. Based on a comprehensive evidence-based review we here propose future avenues of research that may ultimately lead to diagnostic criteria for cognitive impairment and dementia associated with multiple system atrophy. PMID:24753321

  5. Cortical spreading depolarization increases adult neurogenesis, and alters behavior and hippocampus-dependent memory in mice.

    PubMed

    Urbach, Anja; Baum, Eileen; Braun, Falko; Witte, Otto W

    2017-05-01

    Cortical spreading depolarizations are an epiphenomenon of human brain pathologies and associated with extensive but transient changes in ion homeostasis, metabolism, and blood flow. Previously, we have shown that cortical spreading depolarization have long-lasting consequences on the brains transcriptome and structure. In particular, we found that cortical spreading depolarization stimulate hippocampal cell proliferation resulting in a sustained increase in adult neurogenesis. Since the hippocampus is responsible for explicit memory and adult-born dentate granule neurons contribute to this function, cortical spreading depolarization might influence hippocampus-dependent cognition. To address this question, we induced cortical spreading depolarization in C57Bl/6 J mice by epidural application of 1.5 mol/L KCl and evaluated neurogenesis and behavior at two, four, or six weeks thereafter. Congruent with our previous findings in rats, we found that cortical spreading depolarization increases numbers of newborn dentate granule neurons. Moreover, exploratory behavior and object location memory were consistently enhanced. Reference memory in the water maze was virtually unaffected, whereas memory formation in the Barnes maze was impaired with a delay of two weeks and facilitated after four weeks. These data show that cortical spreading depolarization produces lasting changes in psychomotor behavior and complex, delay- and task-dependent changes in spatial memory, and suggest that cortical spreading depolarization-like events affect the emotional and cognitive outcomes of associated brain pathologies.

  6. Cortical thickness mediates the effect of β-amyloid on episodic memory

    PubMed Central

    Reed, Bruce R.; Wirth, Miranka; Haase, Claudia M.; Madison, Cindee M.; Ayakta, Nagehan; Mack, Wendy; Mungas, Dan; Chui, Helena C.; DeCarli, Charles; Weiner, Michael W.; Jagust, William J.

    2014-01-01

    Objective: To investigate the associations among β-amyloid (Aβ), cortical thickness, and episodic memory in a cohort of cognitively normal to mildly impaired individuals at increased risk of vascular disease. Methods: In 67 subjects specifically recruited to span a continuum of cognitive function and vascular risk, we measured brain Aβ deposition using [11C] Pittsburgh compound B–PET imaging and cortical thickness using MRI. Episodic memory was tested using a standardized composite score of verbal memory, and vascular risk was quantified using the Framingham Coronary Risk Profile index. Results: Increased Aβ was associated with cortical thinning, notably in frontoparietal regions. This relationship was strongest in persons with high Aβ deposition. Increased Aβ was also associated with lower episodic memory performance. Cortical thickness was found to mediate the relationship between Aβ and memory performance. While age had a marginal effect on these associations, the relationship between Aβ and cortical thickness was eliminated after controlling for vascular risk except when examined in only Pittsburgh compound B–positive subjects, in whom Aβ remained associated with thinner cortex in precuneus and occipital lobe. In addition, only the precuneus was found to mediate the relationship between Aβ and memory after controlling for vascular risk. Conclusion: These results suggest strong links among Aβ, cortical thickness, and memory. They highlight that, in individuals without dementia, vascular risk also contributes to cortical thickness and influences the relationships among Aβ, cortical thickness, and memory. PMID:24489134

  7. Cortical reorganization in patients with cervical spondylotic myelopathy

    PubMed Central

    Holly, Langston T.; Dong, Yun; Albistegui-DuBois, Richard; Marehbian, Jonathan; Dobkin, Bruce

    2014-01-01

    Object Recent investigations have demonstrated that the cerebral cortex can reorganize as a result of spinal cord injury and may play a role in preserving neurological function. Reorganization of cortical representational maps in patients with cervical spondylotic myelopathy (CSM) has not been previously described. The authors sought to determine the feasibility of using functional magnetic resonance (fMR) imaging in patients with CSM to investigate changes in the cortical representation of the wrist and ankle before and after surgical intervention. Methods Four patients with clinical and imaging evidence of CSM were prospectively enrolled in this study. The patients underwent preoperative neurological examination, functional assessment, cervical imaging, and brain fMR imaging. The fMR imaging activation task undertaken was either wrist extension or ankle dorsiflexion, depending on whether the patient's primary impairment was hand dysfunction or gait difficulty. The cohort then underwent further evaluations at 6 weeks and 3 and 6 months postoperatively. In addition, five healthy volunteers underwent fMR imaging at two different time points and served as controls. In the healthy volunteers fMR imaging demonstrated areas of focal cortical activation limited to the contralateral primary motor area for the assigned motor tasks; the activation patterns were stable throughout repeated imaging. In comparison, in patients with CSM fMR imaging demonstrated expansion of the cortical representation of the affected extremity. Surgical decompression resulted in improvements in neurological function and reorganization of the representational map. Conclusions The findings of this preliminary study demonstrate the potential of fMR imaging to assess changes in cortical representation before and after surgical intervention in patients with CSM. A future study involving a larger cohort of patients as well as the stratification of patients with CSM, based on the aforementioned factors

  8. Risk Factors and Consequences of Cortical Thickness in an Asian Population.

    PubMed

    Hilal, Saima; Xin, Xu; Ang, Seow Li; Tan, Chuen Seng; Venketasubramanian, Narayanaswamy; Niessen, Wiro J; Vrooman, Henri; Wong, Tien Yin; Chen, Christopher; Ikram, Mohammad Kamran

    2015-06-01

    Cortical thickness has been suggested to be one of the most important markers of cortical atrophy. In this study, we examined potential risk factors of cortical thickness and its association with cognition in an elderly Asian population from Singapore. This is a cross-sectional study among 572 Chinese and Malay patients from the ongoing Epidemiology of Dementia in Singapore (EDIS) Study, who underwent comprehensive examinations including neuropsychological testing and brain magnetic resonance imaging (MRI). Cortical thickness (in micrometers) was measured using a model-based automated procedure. Cognitive function was expressed as composite and domain-specific Z-scores. Cognitive impairment was categorized into cognitive impairment no dementia (CIND)-mild, CIND-moderate, and dementia in accordance with accepted criteria. Linear regression models were used to examine the association between various risk factors and cortical thickness. With respect to cognition as outcome, both linear (for Z-scores) and logistic (for CIND/dementia) regression models were constructed. Initial adjustments were made for age, sex, and education, and subsequently for other cardiovascular risk factors and MRI markers. Out of 572 included patients, 171 (29.9%) were diagnosed with CIND-mild, 197 (34.4%) with CIND-moderate, and 28 (4.9%) with dementia. Risk factors related to a smaller cortical thickness were increased age, male sex, Malay ethnicity, higher blood glucose, and body mass index levels and presence of lacunar infarcts on MRI. Smaller cortical thickness was associated with CIND moderate/dementia [odds ratio (OR) per standard deviation (SD) decrease: 1.70; 95% confidence interval (CI): 1.19-2.44, P = 0.004] and with composite Z-score reflecting global cognitive functioning [mean difference per SD decrease: -0.094; 95% CI: -0.159; -0.030, P = 0.004]. In particular, smaller cortical thicknesses in the occipital and temporal lobes were related to cognitive impairment. Finally

  9. Cortical auditory evoked potential (P1): a potential objective indicator for auditory rehabilitation outcome.

    PubMed

    Thabet, Mirahan T; Said, Nithreen M

    2012-12-01

    Cortical auditory evoked potentials are a non-invasive tool that can provide objective information on maturation of the auditory pathways. This work was designed to study the role of cortical auditory evoked potential (P1) in assessment of the benefits of amplification and aural rehabilitation in hearing impaired children. The study consisted of 31 children classified into 2 groups. Study group included 18 hearing impaired children ranging in age 4-14 years old and classified into two subgroups according to adequacy of aural rehabilitation. A control group consisted of 13 normal hearing children ranging in age from 5 to 13 years. All children were subjected to history taking, basic audiological evaluation, intelligence quotient and language assessment. Cortical auditory evoked potential (P1) was measured using synthesized speech syllable /da/ as a recording stimulus that was presented binaurally via a loudspeaker. P1 was recorded in all children with significantly prolonged latencies in hearing impaired children with inadequate rehabilitation. P1 latency was correlated to hearing loss duration in hearing impaired children with inadequate aural rehabilitation. Auditory experience was correlated with P1 latency in hearing impaired children with adequate aural rehabilitation. Cortical auditory evoked potential (P1) might provide a clinical tool to monitor aural rehabilitation outcome and to guide intervention choices. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Logopenic syndrome in posterior cortical atrophy.

    PubMed

    Magnin, Eloi; Sylvestre, Geraldine; Lenoir, Flora; Dariel, Elfried; Bonnet, Louise; Chopard, Gilles; Tio, Gregory; Hidalgo, Julie; Ferreira, Sabrina; Mertz, Catherine; Binetruy, Mikael; Chamard, Ludivine; Haffen, Sophie; Ryff, Ilham; Laurent, Eric; Moulin, Thierry; Vandel, Pierre; Rumbach, Lucien

    2013-02-01

    Few language disorders have been reported in posterior cortical atrophy (PCA). Furthermore, no study has focused on screening for them and described these language deficits. The goal of this work was to describe linguistic examination of PCA patients and the impact of language disorders on neuropsychological performances compared to patients with other neurodegenerative syndromes and control groups. Linguistic examination of 9 PCA patients was carried out. The neuropsychological performance of the PCA group (16 patients) in the RAPID battery tests was compared with performances of patients with a logopenic variant of primary progressive aphasia (LPPA), patients with Alzheimer's disease and patients with amnestic mild cognitive impairment, as well as the control group. A "logopenic syndrome" with anomia, fluency impairment, and length-dependent deficit was found in 8/9 PCA patients. A comparison with other neurodegenerative syndromes showed that not only visual disorders but also language and verbal short-term memory disorders, such as those found in LPPA, can explain neuropsychological performances. A "logopenic syndrome" is frequently found in PCA and may be associated with poor performance on other verbally mediated neuropsychological tasks (e.g., verbal memory). Specific logopedic rehabilitation should be offered to these patients.

  11. Physical Impairment

    NASA Astrophysics Data System (ADS)

    Trewin, Shari

    Many health conditions can lead to physical impairments that impact computer and Web access. Musculoskeletal conditions such as arthritis and cumulative trauma disorders can make movement stiff and painful. Movement disorders such as tremor, Parkinsonism and dystonia affect the ability to control movement, or to prevent unwanted movements. Often, the same underlying health condition also has sensory or cognitive effects. People with dexterity impairments may use a standard keyboard and mouse, or any of a wide range of alternative input mechanisms. Examples are given of the diverse ways that specific dexterity impairments and input mechanisms affect the fundamental actions of Web browsing. As the Web becomes increasingly sophisticated, and physically demanding, new access features at the Web browser and page level will be necessary.

  12. Naive coadaptive cortical control.

    PubMed

    Gage, Gregory J; Ludwig, Kip A; Otto, Kevin J; Ionides, Edward L; Kipke, Daryl R

    2005-06-01

    The ability to control a prosthetic device directly from the neocortex has been demonstrated in rats, monkeys and humans. Here we investigate whether neural control can be accomplished in situations where (1) subjects have not received prior motor training to control the device (naive user) and (2) the neural encoding of movement parameters in the cortex is unknown to the prosthetic device (naive controller). By adopting a decoding strategy that identifies and focuses on units whose firing rate properties are best suited for control, we show that naive subjects mutually adapt to learn control of a neural prosthetic system. Six untrained Long-Evans rats, implanted with silicon micro-electrodes in the motor cortex, learned cortical control of an auditory device without prior motor characterization of the recorded neural ensemble. Single- and multi-unit activities were decoded using a Kalman filter to represent an audio "cursor" (90 ms tone pips ranging from 250 Hz to 16 kHz) which subjects controlled to match a given target frequency. After each trial, a novel adaptive algorithm trained the decoding filter based on correlations of the firing patterns with expected cursor movement. Each behavioral session consisted of 100 trials and began with randomized decoding weights. Within 7 +/- 1.4 (mean +/- SD) sessions, all subjects were able to significantly score above chance (P < 0.05, randomization method) in a fixed target paradigm. Training lasted 24 sessions in which both the behavioral performance and signal to noise ratio of the peri-event histograms increased significantly (P < 0.01, ANOVA). Two rats continued training on a more complex task using a bilateral, two-target control paradigm. Both subjects were able to significantly discriminate the target tones (P < 0.05, Z-test), while one subject demonstrated control above chance (P < 0.05, Z-test) after 12 sessions and continued improvement with many sessions achieving over 90% correct targets. Dynamic analysis of

  13. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions

    PubMed Central

    Nam, Kie Woo; Castellanos, Nazareth; Simmons, Andrew; Froudist-Walsh, Seán; Allin, Matthew P.; Walshe, Muriel; Murray, Robin M.; Evans, Alan; Muehlboeck, J-Sebastian; Nosarti, Chiara

    2015-01-01

    Very preterm birth (gestational age < 33 weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15 years) and beginning of adulthood (mean age 20 years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing. PMID:25871628

  14. A circuit for motor cortical modulation of auditory cortical activity.

    PubMed

    Nelson, Anders; Schneider, David M; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-09-04

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity.

  15. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  16. The cortical motor system of the marmoset monkey (Callithrix jacchus).

    PubMed

    Bakola, Sophia; Burman, Kathleen J; Rosa, Marcello G P

    2015-04-01

    Precise descriptions of the anatomical pathways that link different areas of the cerebral cortex are essential to the understanding of the sensorimotor and association processes that underlie human actions, and their impairment in pathological situations. Many years of research in macaque monkeys have critically shaped how we currently think about cortical motor function in humans. However, it is important to obtain additional understanding about the homologies between cortical areas in human and various non-human primates, and in particular how evolutionary changes in connectivity within specific neural circuits impact on the capacity for different behaviors. Current research has converged on the New World marmoset monkey as an important animal model for cortical function and dysfunction, emphasizing advantages unique to this species. However, the motor repertoire of the marmoset differs from that of the macaque in many ways, including the capacity for skilled use of the hands. Here, we review current knowledge about the cortical frontal areas in marmosets, which are key to the generation and control of motor behaviors, with focus on comparative analyses. We note significant parallels with the macaque monkey, as well as a few potentially important differences, which suggest future directions for work involving architectonic and functional analyses.

  17. Components of vestibular cortical function.

    PubMed

    Klingner, Carsten M; Volk, Gerd F; Flatz, Claudia; Brodoehl, Stefan; Dieterich, Marianne; Witte, Otto W; Guntinas-Lichius, Orlando

    2013-01-01

    It is known that the functional response (e.g., nystagmus) to caloric vestibular stimulation is delayed and prolonged compared with the stimulus-response timing of other sensory systems. Imaging studies have used different models to predict cortical responses and to determine the areas of the brain that are involved. These studies have revealed a widespread network of vestibular brain regions. However, there is some disagreement regarding the brain areas involved, which may partly be caused by differences in the models used. This disagreement indicates the possible existence of multiple cortical components with different temporal characteristics that underlie cortical vestibular processing. However, data-driven methods have yet to be used to analyze the underlying hemodynamic components during and after vestibular stimulation. We performed functional magnetic resonance imaging (fMRI) on 12 healthy subjects during caloric stimulation and analyzed these data using a model-free analysis method (ICA). We found seven independent stimulus-induced components that outline a robust pattern of cortical activation and deactivation. These independent components demonstrated significant differences in their time courses. No single-modeled response function was able to cover the entire range of these independent components. The response functions determined in the present study should improve model-based studies investigating vestibular cortical processing.

  18. Sleep-related hippocampo-cortical interplay during emotional memory recollection.

    PubMed

    Sterpenich, Virginie; Albouy, Geneviève; Boly, Mélanie; Vandewalle, Gilles; Darsaud, Annabelle; Balteau, Evelyne; Dang-Vu, Thien Thanh; Desseilles, Martin; D'Argembeau, Arnaud; Gais, Steffen; Rauchs, Géraldine; Schabus, Manuel; Degueldre, Christian; Luxen, André; Collette, Fabienne; Maquet, Pierre

    2007-10-23

    Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative memory. We examined the impact of sleep and lack of sleep on the consolidation of emotional (negative and positive) memories at the macroscopic systems level. Using functional MRI (fMRI), we compared the neural correlates of successful recollection by humans of emotional and neutral stimuli, 72 h after encoding, with or without total sleep deprivation during the first post-encoding night. In contrast to recollection of neutral and positive stimuli, which was deteriorated by sleep deprivation, similar recollection levels were achieved for negative stimuli in both groups. Successful recollection of emotional stimuli elicited larger responses in the hippocampus and various cortical areas, including the medial prefrontal cortex, in the sleep group than in the sleep deprived group. This effect was consistent across subjects for negative items but depended linearly on individual memory performance for positive items. In addition, the hippocampus and medial prefrontal cortex were functionally more connected during recollection of either negative or positive than neutral items, and more so in sleeping than in sleep-deprived subjects. In the sleep-deprived group, recollection of negative items elicited larger responses in the amygdala and an occipital area than in the sleep group. In contrast, no such difference in brain responses between groups was associated with recollection of positive stimuli. The results suggest that the emotional significance of memories influences their sleep-dependent systems-level consolidation. The recruitment of hippocampo-neocortical networks during recollection is enhanced after sleep and is hindered by sleep deprivation. After sleep deprivation, recollection of negative, potentially dangerous, memories recruits an alternate amygdalo-cortical

  19. Hearing Impairment

    MedlinePlus

    ... may include inserting an object such as a cotton swab too far into the ear, a sudden explosion or other loud noise, a sudden change in air pressure, a head injury, or repeated ear infections. Sensorineural hearing impairment results from problems with or damage ...

  20. Cortical transients preceding voluntary movement.

    PubMed

    Hartwell, J W

    2009-12-01

    The process of initiating a voluntary muscular movement evidently involves a focusing of diffuse brain activity onto a highly specific location in the primary motor cortex. Even the very simple stereotypic movements used to study the 'contingent negative variation' and the 'readiness potential' begin with EEG indicative of widely distributed brain activity. In natural settings the involvement of diffuse cortical networks is undoubtedly even more important. Eventually, however, activity must coalesce onto specific neurons for the intended movement to ensue. Here we examine that focusing process from a mathematical point of view. Using a digital simulation, we solve the global equations for cortical dynamics and model the flow from diffuse onset to localized spike. From this perspective the interplay between global and local effects is seen as a necessary consequence of a basic cortical architecture which supports wave propagation. Watching the process evolve over time allows us to estimate some characteristic amplitudes and delays.

  1. Cortical myoclonus in Huntington's disease.

    PubMed

    Thompson, P D; Bhatia, K P; Brown, P; Davis, M B; Pires, M; Quinn, N P; Luthert, P; Honovar, M; O'Brien, M D; Marsden, C D

    1994-11-01

    We describe three patients with Huntington's disease, from two families, in whom myoclonus was the predominant clinical feature. The diagnosis was confirmed at autopsy in two cases and by DNA analysis in all three. These patients all presented before the age of 30 years and were the offspring of affected fathers. Neurophysiological studies documented generalised and multifocal action myoclonus of cortical origin that was strikingly stimulus sensitive, without enlargement of the cortical somatosensory evoked potential. The myoclonus improved with piracetam therapy in one patient and a combination of sodium valproate and clonazepam in the other two. Cortical reflex myoclonus is a rare but disabling component of the complex movement disorder of Huntington's disease, which may lead to substantial diagnostic difficulties.

  2. Effects of cortical damage on binocular depth perception.

    PubMed

    Bridge, Holly

    2016-06-19

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy.This article is part of the themed issue 'Vision in our three-dimensional world'.

  3. Emerging roles of Axin in cerebral cortical development

    PubMed Central

    Ye, Tao; Fu, Amy K. Y.; Ip, Nancy Y.

    2015-01-01

    Proper functioning of the cerebral cortex depends on the appropriate production and positioning of neurons, establishment of axon–dendrite polarity, and formation of proper neuronal connectivity. Deficits in any of these processes greatly impair neural functions and are associated with various human neurodevelopmental disorders including microcephaly, cortical heterotopias, and autism. The application of in vivo manipulation techniques such as in utero electroporation has resulted in significant advances in our understanding of the cellular and molecular mechanisms that underlie neural development in vivo. Axin is a scaffold protein that regulates neuronal differentiation and morphogenesis in vitro. Recent studies provide novel insights into the emerging roles of Axin in gene expression and cytoskeletal regulation during neurogenesis, neuronal polarization, and axon formation. This review summarizes current knowledge on Axin as a key molecular controller of cerebral cortical development. PMID:26106297

  4. Effects of cortical damage on binocular depth perception

    PubMed Central

    2016-01-01

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269597

  5. Degradation of Cortical Representations during Encoding following Sleep Deprivation.

    PubMed

    Poh, Jia-Hou; Chee, Michael W L

    2017-02-01

    A night of total sleep deprivation (TSD) reduces task-related activation of fronto-parietal and higher visual cortical areas. As this reduction in activation corresponds to impaired attention and perceptual processing, it might also be associated with poorer memory encoding. Related animal work has established that cortical columns stochastically enter an 'off' state in sleep deprivation, leading to predictions that neural representations are less stable and distinctive following TSD. To test these predictions participants incidentally encoded scene images while undergoing fMRI, either during rested wakefulness (RW) or after TSD. In scene-selective PPA, TSD reduced stability of neural representations across repetition. This was accompanied by poorer subsequent memory. Greater representational stability benefitted subsequent memory in RW but not TSD. Even for items subsequently recognized, representational distinctiveness was lower in TSD, suggesting that quality of encoding is degraded. Reduced representational stability and distinctiveness are two novel mechanisms by which TSD can contribute to poorer memory formation.

  6. Evaluating long-latency auditory evoked potentials in the diagnosis of cortical hearing loss in children

    PubMed Central

    Lopez-Soto, Teresa; Postigo-Madueno, Amparo; Nunez-Abades, Pedro

    2016-01-01

    In centrally related hearing loss, there is no apparent damage in the auditory system, but the patient is unable to hear sounds. In patients with cortical hearing loss (and in the absence of communication deficit, either total or partial, as in agnosia or aphasia), some attention-related or language-based disorders may lead to a wrong diagnosis of hearing impairment. The authors present two patients (8 and 11 years old) with no anatomical damage to the ear, the absence of neurological damage or trauma, but immature cortical auditory evoked potentials. Both patients presented a clinical history of multiple diagnoses over several years. Because the most visible symptom was moderate hearing loss, the patients were recurrently referred to audiological testing, with no improvement. This report describes the use of long-latency evoked potentials to determine cases of cortical hearing loss, where hearing impairment is a consequence of underdevelopment at the central nervous system. PMID:27006780

  7. Apraxia in a patient with lesion located in right sub-cortical area. Analysis of errors.

    PubMed

    Mozaz, M; Marti, J F; Carrera, E; De la Puente, E

    1990-12-01

    This report describes a case of apraxia caused by a right sided sub-cortical lesion. Performance on test for apraxia was impaired. A new type of error which involved demonstrating the use of objects on one's own body is reported. Some theoretical interpretations of the findings are discussed.

  8. Effects of Age and Symptomatology on Cortical Thickness in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Doyle-Thomas, Krissy A. R.; Duerden, Emma G.; Taylor, Margot J.; Lerch, Jason P.; Soorya, Latha V.; Wang, A. Ting; Fan, Jin; Hollander, Eric; Anagnostou, Evdokia

    2013-01-01

    Several brain regions show structural and functional abnormalities in individuals with autism spectrum disorders (ASD), but the developmental trajectory of abnormalities in these structures and how they may relate to social and communicative impairments are still unclear. We assessed the effects of age on cortical thickness in individuals with…

  9. Fronto-striatal dysfunction in type 3 familial cortical myoclonic tremor epilepsy occurring during aging.

    PubMed

    Magnin, Eloi; Vidailhet, Marie; Ryff, Ilham; Ferreira, Sabrina; Labauge, Pierre; Rumbach, Lucien

    2012-12-01

    The aim of this work is to study the cognition, progressive gait impairment, and neuroimaging findings in two patients over 65 years old of the previously described type 3 familial cortical myoclonic tremor with epilepsy (FCMTE3). We report investigations in two of these five FCMTE3 subjects over 65 and showing progressive gait disorders. They both had a pseudo-Parkinson's way of walking and visual intolerance to bright light and brightness contrast without EEG abnormalities exacerbating cortical myoclonus or triggering seizure. Case 1 had moderate gait impairment and a severe frontal syndrome. Case 2 had severe gait impairment and diffuse cognitive disorders. Both cases had cortical hypoperfusion (predominantly in the left frontal lobe) and no cerebellar abnormality on cerebral perfusion SPECT. DAT-SPECT showed dopaminergic depletion. These data indicate fronto-striatal dysfunction associated with gait impairment and cognitive disorders appearing after several decades of disease progression. This gives clues to understanding the pathogenesis and evolution of FCMTE3. Permanent myoclonic discharges or long-term valproate treatment may cause significant toxic effects on neurons (dopaminergic and frontal neurons). Further functional and molecular analyses are required in order to better understand this pathology and the consequences of chronic cortical myoclonus.

  10. Correlation of hippocampal morphological changes and morris water maze performance after cortical contusion injury in rats.

    PubMed

    Clausen, Fredrik; Lewén, Anders; Marklund, Niklas; Olsson, Yngve; McArthur, David L; Hillered, Lars

    2005-07-01

    The hippocampus is essential to the processing and formation of memory. This study analyzed the relationship among memory dysfunction as revealed by Morris water maze (MWM) trial, cortical lesion volume, and regional hippocampal morphological changes after controlled cortical contusion (CCC). We also analyzed the influence of pretreatment with the nitrone radical scavenger alpha-phenyl-N-tert-butyl-nitrone (PBN). Rats were subjected to CCC. We used two levels of CCC (mild, 1.5 mm and severe, 2.5 mm) and pretreated some severely injured animals with PBN. The animals were killed 15 days postinjury. We evaluated morphological changes to the hippocampus semiquantitatively by scoring sections immunohistochemically stained for microtubule-associated protein 2 with a four-point scale for the cornu ammonis (CA) 1, CA2, CA3, and hilus of the dentate gyrus (HDG). The cortical lesion volume was quantified. Rats subjected to severe, but not mild, CCC demonstrated impaired spatial learning ability in the MWM, but this impairment was attenuated with pretreatment with the radical scavenger PBN. We documented bilateral morphological changes in CA1, CA3, and HDG and an ipsilateral neocortical cavitation in severely injured rats. PBN treatment attenuated (P < 0.05) the morphological characteristics of abnormality in the ipsilateral CA1, CA2, HDG, and the contralateral HDG and reduced the cortical lesion volume. Mild injury led to minor ipsilateral hippocampal and cortical damage but no MWM deficiency. Hippocampal morphological scores and total mean latencies in the MWM task were strongly correlated (r = 0.69; P < 0.001). The correlation between the cortical lesion volume and MWM latency was weaker (r = 0.48; P = 0.02). Severe CCC causes bilateral morphological changes in the hippocampus and ipsilateral neocortical cavitation, which correlate to impairment in a spatial learning task (MWM). PBN protected the structure of the CA2 ipsilaterally and HDG bilaterally and reduced the

  11. Association between age of disease-onset, cognitive performance and cortical thickness in bipolar disorders.

    PubMed

    Oertel-Knöchel, Viola; Reuter, Johanna; Reinke, Britta; Marbach, Katharina; Feddern, Richard; Alves, Gilberto; Prvulovic, David; Linden, David E J; Knöchel, Christian

    2015-03-15

    Neuroimaging studies in patients with bipolar disorder (BD) have indicated a number of structural brain changes, including reduced cortical thickness. However, the effects of the course of illness, clinical and cognitive variables on cortical thickness in BD patients have not yet been evaluated. A total of 67 individuals (32 patients with euthymic BD and 35 healthy and age-matched controls) underwent 3D-anatomical magnetic resonance imaging (MRI). Whole-brain cortical thickness and group differences were assessed using the Freesurfer software. Course of disease variables, clinical and cognitive parameters were correlated with cortical thickness measures. We found reduced cortical thickness in BD patients compared with controls in the frontal and temporal lobes and in several limbic areas. We also report significant associations between cortical thickness and age of disease-onset, speed of cognitive processing, executive function and depression severity in BD patients. Cortical thickness reduction across frontal and limbic areas is a structural correlate of affective symptom severity and cognitive impairments in BD as well of age of disease-onset. We may assume that frontal lobe structural abnormalities are present in bipolar disorder, and might lead to dysfunctional cognitive functioning. The causality and functional relevance beyond mere correlation, however, is yet to be established. Our findings encourage further longitudinal studies in BD patients and in healthy at-risk subjects in order to discern the temporal order and development of morphological changes and clinical symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals

    PubMed Central

    Toda, Tomohisa; Shinmyo, Yohei; Dinh Duong, Tung Anh; Masuda, Kosuke; Kawasaki, Hiroshi

    2016-01-01

    Because folding of the cerebral cortex in the mammalian brain is believed to be crucial for higher brain functions, the mechanisms underlying its formation during development and evolution are of great interest. Although it has been proposed that increased neural progenitors in the subventricular zone (SVZ) are responsible for making cortical folds, their roles in cortical folding are still largely unclear, mainly because genetic methods for gyrencephalic mammals had been poorly available. Here, by taking an advantage of our newly developed in utero electroporation technique for the gyrencephalic brain of ferrets, we investigated the role of SVZ progenitors in cortical folding. We found regional differences in the abundance of SVZ progenitors in the developing ferret brain even before cortical folds began to be formed. When Tbr2 transcription factor was inhibited, intermediate progenitor cells were markedly reduced in the ferret cerebral cortex. Interestingly, outer radial glial cells were also reduced by inhibiting Tbr2. We uncovered that reduced numbers of SVZ progenitors resulted in impaired cortical folding. When Tbr2 was inhibited, upper cortical layers were preferentially reduced in gyri compared to those in sulci. Our findings indicate the biological importance of SVZ progenitors in cortical folding in the gyrencephalic brain. PMID:27403992

  13. Biomechanics of Single Cortical Neurons

    PubMed Central

    Bernick, Kristin B.; Prevost, Thibault P.; Suresh, Subra; Socrate, Simona

    2011-01-01

    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude – 10, 1, and 0.1 μm/s. Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper-) elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented into a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. PMID:20971217

  14. The Dynamics of Cortical and Hippocampal Atrophy in Alzheimer Disease

    PubMed Central

    Sabuncu, Mert R.; Desikan, Rahul S.; Sepulcre, Jorge; Yeo, Boon Thye T.; Liu, Hesheng; Schmansky, Nicholas J.; Reuter, Martin; Weiner, Michael W.; Buckner, Randy L.; Sperling, Reisa A.; Fischl, Bruce

    2011-01-01

    Objective To characterize rates of regional Alzheimer disease (AD)–specific brain atrophy across the presymptomatic, mild cognitive impairment, and dementia stages. Design Multicenter case-control study of neuroimaging, cerebrospinal fluid, and cognitive test score data from the Alzheimer’s Disease Neuroimaging Initiative. Setting Research centers across the United States and Canada. Patients We examined a total of 317 participants with base-line cerebrospinal fluid biomarker measurements and 3T1-weighted magnetic resonance images obtained within 1 year. Main Outcome Measures We used automated tools to compute annual longitudinal atrophy in the hippocampus and cortical regions targeted in AD. We used Mini-Mental State Examination scores as a measure of cognitive performance. We performed a cross-subject analysis of atrophy rates and acceleration on individuals with an AD-like cerebrospinal fluid molecular profile. Results In presymptomatic individuals harboring indicators of AD, baseline thickness in AD-vulnerable cortical regions was significantly reduced compared with that of healthy control individuals, but baseline hippocampal volume was not. Across the clinical spectrum, rates of AD-specific cortical thinning increased with decreasing cognitive performance before peaking at approximately the Mini-Mental State Examination score of 21, beyond which rates of thinning started to decline. Annual rates of hippocampal volume loss showed a continuously increasing pattern with decreasing cognitive performance as low as the Mini-Mental State Examination score of 15. Analysis of the second derivative of imaging measurements revealed that AD-specific cortical thinning exhibited early acceleration followed by deceleration. Conversely, hippocampal volume loss exhibited positive acceleration across all study participants. Conclusions Alzheimer disease–specific cortical thinning and hippocampal volume loss are consistent with a sigmoidal pattern, with an acceleration

  15. Cortical evoked response to acoustic change within a syllable.

    PubMed

    Ostroff, J M; Martin, B A; Boothroyd, A

    1998-08-01

    To investigate whether the evoked potential to a complex naturally produced speech syllable could be decomposed to reflect the contributions of the acoustic events contained in the constituent phonemes. Auditory cortical evoked potentials N1 and P2 were obtained in eight adults with normal hearing. Three naturally produced speech stimuli were used: 1) the syllable [sei]; 2) the sibilant [s], extracted from the syllable; 3) the vowel [ei] extracted from the syllable. The isolated sibilant and vowel preserved the same time relationships to the sampling window as they did in the complete syllable. Evoked potentials were collected at Fz, Cz, Pz, A1, and A2, referenced to the nose. In the group mean waveforms, clear responses were observed to both the sibilant and the isolated vowel. Although the response to the [s] was weaker than that to [ei], both had N1 and P2 components with latencies, in relation to sound onset, appropriate to cortical onset potentials. The vowel onset response was preserved in the response to the complete syllable, though with reduced amplitude. This pattern was observable in six of the eight waveforms from individual subjects. It seems likely that the response to [ei] within the complete syllable reflects changes of cortical activation caused by amplitude or spectral change at the transition from consonant to vowel. The change from aperiodic to periodic stimulation may also produce changes in cortical activation that contribute to the observed response. Whatever the mechanism, the important conclusion is that the auditory cortical evoked potential to complex, time-varying speech waveforms can reflect features of the underlying acoustic patterns. Such potentials may have value in the evaluation of speech perception capacity in young hearing-impaired children.

  16. Early detection of AD using cortical thickness measurements

    NASA Astrophysics Data System (ADS)

    Spjuth, M.; Gravesen, F.; Eskildsen, S. F.; Østergaard, L. R.

    2007-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that causes cortical atrophy and impaired cognitive functions. The diagnosis is difficult to make and is often made over a longer period of time using a combination of neuropsychological tests, and structural and functional imaging. Due to the impact of early intervention the challenge of distinguishing early AD from normal ageing has received increasing attention. This study uses cortical thickness measurements to characterize the atrophy in nine mild AD patients (mean MMSE-score 23.3 (std: 2.6)) compared to five healthy middle-aged subjects. A fully automated method based on deformable models is used for delineation of the inner and outer boundaries of the cerebral cortex from Magnetic Resonance Images. This allows observer independent high-resolution quantification of the cortical thickness. The cortex analysis facilitates detection of alterations throughout the entire cortical mantle. To perform inter-subject thickness comparison in which the spatial information is retained, a feature-based registration algorithm is developed which uses local cortical curvature, normal vector, and a distance measure. A comparison of the two study groups reveals that the lateral side of the hemispheres shows diffuse thinner areas in the mild AD group but especially the medial side shows a pronounced thinner area which can be explained by early limbic changes in AD. For classification principal component analysis is applied to reduce the high number of thickness measurements (>200,000) into fewer features. All mild AD and healthy middle-aged subjects are classified correctly (sensitivity and specificity 100%).

  17. Sleep-Dependent Consolidation of Statistical Learning

    ERIC Educational Resources Information Center

    Durrant, Simon J.; Taylor, Charlotte; Cairney, Scott; Lewis, Penelope A.

    2011-01-01

    The importance of sleep for memory consolidation has been firmly established over the past decade. Recent work has extended this by suggesting that sleep is also critical for the integration of disparate fragments of information into a unified schema, and for the abstraction of underlying rules. The question of which aspects of sleep play a…

  18. Sleep-Dependent Consolidation of Statistical Learning

    ERIC Educational Resources Information Center

    Durrant, Simon J.; Taylor, Charlotte; Cairney, Scott; Lewis, Penelope A.

    2011-01-01

    The importance of sleep for memory consolidation has been firmly established over the past decade. Recent work has extended this by suggesting that sleep is also critical for the integration of disparate fragments of information into a unified schema, and for the abstraction of underlying rules. The question of which aspects of sleep play a…

  19. Sleep-Dependent Memory Consolidation and Reconsolidation

    PubMed Central

    Stickgold, Robert; Walker, Matthew P.

    2009-01-01

    Molecular, cellular, and systems-level processes convert initial, labile memory representations into more permanent ones, available for continued reactivation and recall over extended periods of time. These processes of memory consolidation and reconsolidation are not all-or-none phenomena, but rather a continuing series of biological adjustments that enhance both the efficiency and utility of stored memories over time. In this chapter, we review the role of sleep in supporting these disparate but related processes. PMID:17470412

  20. Pitch-Responsive Cortical Regions in Congenital Amusia.

    PubMed

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  1. All Vision Impairment

    MedlinePlus

    ... USAJobs Home > Statistics and Data > All Vision Impairment All Vision Impairment Vision Impairment Defined Vision impairment is ... being blind by the U.S. definition.) The category “All Vision Impairment” includes both low vision and blindness. ...

  2. The language profile of Posterior Cortical Atrophy

    PubMed Central

    Crutch, Sebastian J.; Lehmann, Manja; Warren, Jason D.; Rohrer, Jonathan D.

    2015-01-01

    Background Posterior Cortical Atrophy (PCA) is typically considered to be a visual syndrome, primarily characterised by progressive impairment of visuoperceptual and visuospatial skills. However patients commonly describe early difficulties with word retrieval. This paper details the first systematic analysis of linguistic function in PCA. Characterising and quantifying the aphasia associated with PCA is important for clarifying diagnostic and selection criteria for clinical and research studies. Methods Fifteen patients with PCA, 7 patients with logopenic/phonological aphasia (LPA) and 18 age-matched healthy participants completed a detailed battery of linguistic tests evaluating auditory input processing, repetition and working memory, lexical and grammatical comprehension, single word retrieval and fluency, and spontaneous speech. Results Relative to healthy controls, PCA patients exhibited language impairments across all the domains examined, but with anomia, reduced phonemic fluency and slowed speech rate the most prominent deficits. PCA performance most closely resembled that of LPA patients on tests of auditory input processing, repetition and digit span, but was relatively stronger on tasks of comprehension and spontaneous speech. Conclusions The study demonstrates that in addition to the well-reported degradation of vision, literacy and numeracy, PCA is characterised by a progressive oral language dysfunction with prominent word retrieval difficulties. Overlap in the linguistic profiles of PCA and LPA, which are both most commonly caused by Alzheimer’s disease, further emphasises the notion of a phenotypic continuum between typical and atypical manifestations of the disease. Clarifying the boundaries between AD phenotypes has important implications for diagnosis, clinical trial recruitment and investigations into biological factors driving phenotypic heterogeneity in AD. Rehabilitation strategies to ameliorate the phonological deficit in PCA are required

  3. Motor cortical thresholds and cortical silent periods in epilepsy.

    PubMed

    Tataroglu, Cengiz; Ozkiziltan, Safa; Baklan, Baris

    2004-10-01

    We studied motor cortical thresholds (TIs) and cortical silent periods (SPs) evoked by transcranial magnetic stimulation (TMS) in 110 epileptic patients. Sixty-two had primary generalised, 48 had partial type seizures. Fifteen out 110 patients were analysed both before and after anticonvulsant medication. Our aims were to evaluate the TI levels and the duration of SPs in patients with epilepsy and to determine the reliability of TMS in patients with epilepsy. There was no negative effect of TMS on the clinical status and EEG findings in patients with epilepsy. TIs obtained from patients with partial epilepsy were higher than those obtained from both controls and primary epileptics. The duration of SP in patients with primary epileptics was more prolonged than those obtained from controls. There was no correlation between EEG lateralisation and both SP duration and TI values. In de novo patient group, SP duration was significantly prolonged after anticonvulsant medication. We concluded that TMS is a reliable electrophysiological investigation in patients with epilepsy. The analysis of SP duration may be an appropriate investigation in monitoring the effect of anticonvulsant medication on the cortical inhibitory activity.

  4. Topographic pattern of cortical thinning with consideration of motor laterality in Parkinson disease.

    PubMed

    Kim, Ji Sun; Yang, Jin-Ju; Lee, Jong-Min; Youn, Jinyoung; Kim, Ju-Min; Cho, Jin Whan

    2014-11-01

    The asymmetry of Parkinson's disease (PD) may contribute to the unilateral appearance of parkinsonism, as well as its cerebral morphological changes. However, previous studies have not considered that cerebral involvement would probably be asymmetric. Our study aimed to identify whether one-sided symptom dominance has an influence on cortical thinning patterns in early-stage, non-demented PD patients from cortical thickness analyses and cortical thinning patterns are associated with motor functions. We used cortical thickness analysis in 64 non-demented right-handed subjects: 21 PD patients with left-sided disease onset (LPD), 21 PD patients with right-sided disease onset (RPD) and 22 control subjects. We modeled local cortical thickness as a linear association with each motor symptom. We identified three clusters exhibiting significant cortical thinning (p < 0.01 RFT corrected) in the LPD group compared with the control group: a cluster including the right primary sensory, motor cortex and paracentral lobule, as well as another two clusters in bilateral parahippocampal gyri. In the RPD group, there was only one cluster that exhibited significant cortical thinning compared with the control group, located in the left lingual gyrus. There were no significant correlations between cortical thinning clusters and motor severity, any of the motor subscales including tremor, rigidity, bradykinesia and axial impairment. Our right-handed PD population revealed that significant thinning of motor-related cortical areas in contralateral hemisphere to symptomatic side in LPD, but not in RPD group. Our results support that neuroprotective effect of enhanced physical activity by handedness on contralateral motor cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology

    PubMed Central

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-01-01

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252

  6. The cognitive profile of posterior cortical atrophy.

    PubMed

    McMonagle, Paul; Deering, Fiona; Berliner, Yaniv; Kertesz, Andrew

    2006-02-14

    Posterior cortical atrophy (PCA) is a progressive dementia characterized by prominent disorders of higher visual processing, affecting both dorsal and ventral streams to cause Balint's syndrome, alexia, and visual agnosia. To define the cognitive profile of PCA and compare to the typical, primary amnestic dementia of the Alzheimer's type (DAT). The authors used standard cognitive tests and a novel battery designed to reflect dysfunction in both ventral (Object, Face & Color Agnosia Screen [OFCAS]) and dorsal (complex pictures and compound stimuli) visual streams. The authors identified 19 patients with PCA and compared their performance to a matched group of patients with DAT and normal controls. Patients with PCA were younger with marked impairment in visuospatial tasks, reading, and writing but relative preservation of memory compared to DAT using standard tests. Dorsal stream signs were most prevalent among the patients with PCA with no pure ventral stream syndromes found. All novel tests distinguished reliably between subjects with complex picture descriptions and processing of compound stimuli showing the most significant differences compared to DAT. PCA is predominantly a dorsal stream syndrome, distinct from typical DAT, which involves occipitotemporal regions over time.

  7. Cortical cholinergic dysfunction after human head injury.

    PubMed

    Murdoch, I; Perry, E K; Court, J A; Graham, D I; Dewar, D

    1998-05-01

    Loss of cholinergic neurotransmission is implicated in memory impairment and cognitive dysfunction after head injury. The aim of the present study was to investigate presynaptic markers, particularly in relation to cholinergic neurotransmission in human postmortem brain from patients who died following a head injury and age-matched controls. Choline acetyltransferase activity and high-affinity nicotinic receptor binding sites were assayed in the inferior temporal gyrus, cingulate gyrus, and superior parietal cortex of 16 head-injured patients and 8 controls. Synaptophysin immunoreactivity was determined in the left cingulate gyrus from the same patient groups. In the head-injured group, choline acetyltransferase activity was consistently reduced in each cortical region compared to control subjects. The presence of a subdural haematoma and a prolonged survival period after head injury tended to be associated with lower choline acetyltransferase activity. In contrast to the marked reduction in choline acetyltransferase activity, nicotine receptor binding was unchanged in head-injured compared to control patients. Synaptophysin immunoreactivity in the cingulate gyrus was reduced by approximately 30% (p < 0.05) in the head-injured group compared to controls. Correlation of choline acetyltransferase activity with synaptophysin immunoreactivity indicated there is a deficit of cholinergic presynaptic terminals in postmortem human brain following head injury.

  8. Laminar cortical necrosis in mitochondrial disorders.

    PubMed

    Finsterer, Josef

    2009-10-01

    Laminar cortical necrosis, defined as focal or diffuse necrosis of one or more cortical lamina, represents an increasingly recognized neuropathological endpoint of vascular, endocrine, immunologic, metabolic, or toxic conditions, of which mitochondrial disorders (MIDs) are the third most frequent after cerebral ischemia and hypoxia. To investigate the prevalence of laminar cortical necrosis in MIDs, types of MIDs associated with laminar cortical necrosis, and the morphological characteristics on imaging and autopsy. Medline literature review for the terms "laminar cortical necrosis", "cortical signal change", "mitochondrial" and all acronyms of syndromatic MIDs. Among 139 hits for "laminar cortical necrosis", 10 articles fulfilled the inclusion criteria (7%). Among the ten hits five were case series and the other five single case reports. The syndromic MID most frequently associated with laminar cortical necrosis is the MELAS syndrome, but was also described in a single patient each with Leigh syndrome, mitochondrial depletion syndrome, and mitochondrial spinocerebellar ataxia. The morphological and pathohistological features of laminar cortical necrosis in MIDs were not at variance from those in non-mitochondrial disorders. In MIDs laminar cortical necrosis represents the histopathological and imaging endpoint of a stroke-like lesion. Though laminar cortical necrosis may have a wide pathophysiological background the histological and imaging characteristics do not vary between the different underlying conditions.

  9. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat

    PubMed Central

    Ego-Stengel, Valérie; Wilson, Matthew A.

    2009-01-01

    The hippocampus plays a key role in the acquisition of new memories for places and events. Evidence suggests that the consolidation of these memories is enhanced during sleep. At the neuronal level, reactivation of awake experience in the hippocampus during sharp-wave ripple events, characteristic of slow-wave sleep, has been proposed as a neural mechanism for sleep-dependent memory consolidation. However, a causal relation between sleep reactivation and memory consolidation has not been established. Here we show that disrupting neuronal activity during ripple events impairs spatial learning. We trained rats daily in two identical spatial navigation tasks followed each by a one-hour rest period. After one of the tasks, stimulation of hippocampal afferents selectively disrupted neuronal activity associated with ripple events without changing the sleep-wake structure. Rats learned the control task significantly faster than the task followed by rest stimulation, indicating that interfering with hippocampal processing during sleep led to decreased learning. PMID:19816984

  10. Striatal and cortical β-amyloidopathy and cognition in Parkinson disease

    PubMed Central

    Shah, Neha; Frey, Kirk A; Müller, Martijn L.T.M; Petrou, Myria; Kotagal, Vikas; Koeppe, Robert A; Scott, Peter J.H.; Albin, Roger L.; Bohnen, Nicolaas I.

    2015-01-01

    Background Although most prior cognitive studies of β-amyloidopathy in Parkinson disease (PD) focused on cortical plaque deposition, recent post-mortem studies point to an important role of striatal β-amyloid plaque deposition. Objective To investigate the relative contributions of striatal and cortical β-amyloidopathy to cognitive impairment in PD. Methods Patients with PD (n=62; age 68.9±6.4 years, Hoehn and Yahr stage 2.7±0.5, Montreal Cognitive Assessment score 25.2±3.0) underwent [11C]Pittsburgh compound B β-amyloid, [11C]dihydrotetrabenazine monoaminergic and [11C]methyl-4-piperidinyl propionate acetylcholinesterase brain positron emission tomography imaging and neuropsychological assessment. [11C]Pittsburgh compound B β-amyloid data from young to middle-aged healthy subjects were used to define elevated [11C]Pittsburgh compound B binding in the patients. Results Elevated cortical and striatal β-amyloid deposition were present in 38% and 16%, respectively, of this predominantly non-demented cohort of patients with PD. Increased striatal β-amyloid deposition occurred in half of all subjects with increased cortical β-amyloid deposition. In contrast, increased striatal β-amyloid deposition did not occur in the absence of increased cortical β-amyloid deposition. Analysis of covariance using global composite cognitive z-scores as the outcome parameter showed significant regressor effects for combined striatal and cortical β-amyloidopathy (F=4.18, P=0.02) after adjusting for covariate effects of cortical cholinergic activity (F=5.67, P=0.02), caudate nucleus monoaminergic binding, duration of disease and age (total model: F=3.55, P=0.0048). Post-hoc analysis showed significantly lower cognitive z-score for combined striatal and cortical β-amyloidopathy compared to cortical-only β-amyloidopathy and non-β-amyloidopathy subgroups. Conclusions The combined presence of striatal and cortical β-amyloidopathy is associated with greater cognitive

  11. Nonlinear mechanisms of cortical oscillations.

    PubMed

    Kowalik, Z J

    2000-01-01

    Not only theoretical consideration but also analyses of MEG or EEG recordings prove the nonlinear character of cortical dynamics. For instance, an averaged local Lyapunov Exponents (ILE) have positive value that is characteristic for chaotic dynamics. Also a test for nonlinearity (or determinism)--so called surrogate data test distinguishes between original- and randomized-phase time-series proving that recorded signals are nonlinear. These facts are a very strong experimental evidence to support the hypothesis that brain oscillators are governed by the deterministic, nonlinear, low-dimensional dynamics. The experimental manifestations of nonlinear cortical oscillations in the healthy and pathologically altered human brain and their deterministic character seems to be an important step in the understanding brain dynamics in the language of nonlinear systems theory. Clinical application may use nonlinear measures (especially ILE, and PD2i) for classification of pathologies and rough localization of the functional disturbance in the brain.

  12. Imprinting and recalling cortical ensembles.

    PubMed

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  13. Extrathalamic Modulation of Cortical Function

    DTIC Science & Technology

    1990-07-27

    and c7rtico-cortical systems. For example, we have shown that primate LC-NA neurons are more acti during waking than sleep and exhibit bursts of...infusion needle. Infusion of the alpha-adrenergic agonist clonidine (CLON), in concentrations ranging from 5-20 uM (67-270pg/50 nl injection...ind hippocampal EEG (HEEG) typically exhibit activity similar to that of a lightly sleeping animal. However, periods of "waking" EEG are sometimes

  14. Slower postnatal growth is associated with delayed cerebral cortical maturation in preterm newborns.

    PubMed

    Vinall, Jillian; Grunau, Ruth E; Brant, Rollin; Chau, Vann; Poskitt, Kenneth J; Synnes, Anne R; Miller, Steven P

    2013-01-16

    Slower postnatal growth is an important predictor of adverse neurodevelopmental outcomes in infants born preterm. However, the relationship between postnatal growth and cortical development remains largely unknown. Therefore, we examined the association between neonatal growth and diffusion tensor imaging measures of microstructural cortical development in infants born very preterm. Participants were 95 neonates born between 24 and 32 weeks gestational age studied twice with diffusion tensor imaging: scan 1 at a median of 32.1 weeks (interquartile range, 30.4 to 33.6) and scan 2 at a median of 40.3 weeks (interquartile range, 38.7 to 42.7). Fractional anisotropy and eigenvalues were recorded from 15 anatomically defined cortical regions. Weight, head circumference, and length were recorded at birth and at the time of each scan. Growth between scans was examined in relation to diffusion tensor imaging measures at scans 1 and 2, accounting for gestational age, birth weight, sex, postmenstrual age, known brain injury (white matter injury, intraventricular hemorrhage, and cerebellar hemorrhage), and neonatal illness (patent ductus arteriosus, days intubated, infection, and necrotizing enterocolitis). Impaired weight, length, and head growth were associated with delayed microstructural development of the cortical gray matter (fractional anisotropy: P < 0.001), but not white matter (fractional anisotropy: P = 0.529), after accounting for prenatal growth, neonatal illness, and brain injury. Avoiding growth impairment during neonatal care may allow cortical development to proceed optimally and, ultimately, may provide an opportunity to reduce neurological disabilities related to preterm birth.

  15. Disrupted cross-laminar cortical processing in β amyloid pathology precedes cell death.

    PubMed

    Lison, H; Happel, M F K; Schneider, F; Baldauf, K; Kerbstat, S; Seelbinder, B; Schneeberg, J; Zappe, M; Goldschmidt, J; Budinger, E; Schröder, U H; Ohl, F W; Schilling, S; Demuth, H-U; Scheich, H; Reymann, K G; Rönicke, R

    2014-03-01

    Disruption of neuronal networks in the Alzheimer-afflicted brain is increasingly recognized as a key correlate of cognitive and memory decline in Alzheimer patients. We hypothesized that functional synaptic disconnections within cortical columnar microcircuits by pathological β-amyloid accumulation, rather than cell death, initially causes the cognitive impairments. During development of cortical β-amyloidosis with still few plaques in the transgenic 5xFAD mouse model single cell resolution mapping of neuronal thallium uptake revealed that electrical activity of pyramidal cells breaks down throughout infragranular cortical layer V long before cell death occurs. Treatment of 5xFAD mice with the glutaminyl cyclase inhibitor, PQ 529, partially prevented the decline of pyramidal cell activity, indicating pyroglutamate-modified forms, potentially mixed oligomers of Aβ are contributing to neuronal impairment. Laminar investigation of cortical circuit dysfunction with current source density analysis identified an early loss of excitatory synaptic input in infragranular layers, linked to pathological recurrent activations in supragranular layers. This specific disruption of normal cross-laminar cortical processing coincided with a decline of contextual fear learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. [Infantile cortical hyperostosis: Case report].

    PubMed

    Rodríguez, Mónica; Martínez, Luz Elena; Cortés, José; de Uña, Armando; Vega, Valentina; Acosta, Mario

    Infantile Cortical Hyperostosis, or Caffey-Silverman disease, is a rare condition characterised by generalised bone proliferation mediated by an acute inflammatory process. Diagnosis can be made through clinical evaluation and X-ray studies. The course is generally self-limiting and prognosis is excellent. To present the case of a 4-month child with clinical and radiological symptoms compatible with Infantile Cortical Hyperostosis. A 4-month old male who presented with crying and irritability associated with swelling of the face, arms and legs was admitted to the Emergency Room of National Institute of Pediatrics. Bilateral mandibular swelling extending to periauricular region was observed, with no signs of inflammation. X-ray studies showed a periosteal reaction in the jaw, left femur and tibia, and radius bilateral. Clinical observation combined with analgesics and antipyretics was the only medical intervention. Four to six months after discharge from hospital, the symptoms disappeared, confirming the good prognosis of this condition. Infantile cortical hyperostosis is a collagenopathy, which must be considered as a differential diagnosis in acute bone inflammatory processes, irritability and fever. It is important to understand and identify this disease and clinical-radiological correlation is remarkable. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. [Parietal Cortices and Body Information].

    PubMed

    Naito, Eiichi; Amemiya, Kaoru; Morita, Tomoyo

    2016-11-01

    Proprioceptive signals originating from skeletal muscles and joints contribute to the formation of both the human body schema and the body image. In this chapter, we introduce various types of bodily illusions that are elicited by proprioceptive inputs, and we discuss distinct functions implemented by different parietal cortices. First, we illustrate the primary importance of the motor network in the processing of proprioceptive (kinesthetic) signals originating from muscle spindles. Next, we argue that the right inferior parietal cortex, in concert with the inferior frontal cortex (both regions connected by the inferior branch of the superior longitudinal fasciculus-SLF III), may be involved in the conscious experience of body image. Further, we hypothesize other functions of distinct parietal regions: the association between internal hand motor representation with external object representation in the left inferior parietal cortex, visuo-kinesthetic processing in the bilateral posterior parietal cortices, and the integration of somatic signals from different body parts in the higher-order somatosensory parietal cortices. Our results indicate that a distinct parietal region, in concert with its anatomically and functionally connected frontal regions, probably plays specialized roles in the processing of body-related information.

  18. Regional cortical thinning and cerebrospinal biomarkers predict worsening daily functioning across the Alzheimer disease spectrum

    PubMed Central

    Marshall, Gad A.; Lorius, Natacha; Locascio, Joseph J.; Hyman, Bradley T.; Rentz, Dorene M.; Johnson, Keith A.; Sperling, Reisa A.

    2014-01-01

    Background Impairment in instrumental activities of daily living (IADL) heralds the transition from mild cognitive impairment (MCI) to dementia and is a major source of burden for both the patient and caregiver. Objective To investigate the relationship between IADL and regional cortical thinning and cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers cross-sectionally and longitudinally in clinically normal (CN) elderly, MCI, and mild AD dementia subjects. Methods Two hundred and twenty nine CN, 395 MCI, and 188 AD dementia subjects participating in the Alzheimer's Disease Neuroimaging Initiative underwent baseline magnetic resonance imaging, baseline lumbar puncture, and clinical assessments, including the Functional Activities Questionnaire used to measure IADL, every 6 to 12 months up to 3 years. General linear regression and mixed effects models were employed. Results IADL impairment was associated with the interactions between lower inferior temporal cortical thickness and diagnosis (p<0.0001), greater lateral occipital cortical thickness and diagnosis (p<0.0001), and greater amyloid-beta 1-42 (Aβ1-42) and diagnosis (p=0.0002) at baseline (driven by AD dementia). Lower baseline supramarginal (p=0.02) and inferior temporal (p=0.05) cortical thickness, lower Aβ1-42 (p<0.0001), and greater total tau (t-tau) (p=0.02) were associated with greater rate of IADL impairment over time. Conclusions Temporal atrophy is associated with IADL impairment in mild AD dementia at baseline, while baseline parietal and temporal atrophy, lower CSF Aβ1-42, and greater t-tau predict worsening IADL impairment over time across the AD spectrum. These results emphasize the importance of assessing IADL at the stage of MCI and even at the transition from CN to MCI. PMID:24685624

  19. Cortical networks of procedural learning: evidence from cerebellar damage.

    PubMed

    Torriero, Sara; Oliveri, Massimiliano; Koch, Giacomo; Lo Gerfo, Emanuele; Salerno, Silvia; Petrosini, Laura; Caltagirone, Carlo

    2007-03-25

    The lateral cerebellum plays a critical role in procedural learning that goes beyond the strict motor control functions attributed to it. Patients with cerebellar damage show marked impairment in the acquisition of procedures, as revealed by their performance on the serial reaction time task (SRTT). Here we present the case of a patient affected by ischemic damage involving the left cerebellum who showed a selective deficit in procedural learning while performing the SRTT with the left hand. The deficit recovered when the cortical excitability of an extensive network involving both cerebellar hemispheres and the dorsolateral prefrontal cortex (DLPFC) was decreased by low-frequency repetitive transcranial magnetic stimulation (rTMS). Although inhibition of the right DLPFC or a control fronto-parietal region did not modify the patient's performance, inhibition of the right (unaffected) cerebellum and the left DLPFC markedly improved task performance. These findings could be explained by the modulation of a set of inhibitory and excitatory connections between the lateral cerebellum and the contralateral prefrontal area induced by rTMS. The presence of left cerebellar damage is likely associated with a reduced excitatory drive from sub-cortical left cerebellar nuclei towards the right DLPFC, causing reduced excitability of the right DLPFC and, conversely, unbalanced activation of the left DLPFC. Inhibition of the left DLPFC would reduce the unbalancing of cortical activation, thus explaining the observed selective recovery of procedural memory.

  20. Motor features in posterior cortical atrophy and their imaging correlates☆

    PubMed Central

    Ryan, Natalie S.; Shakespeare, Timothy J.; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M.; Leung, Kelvin K.; Fox, Nick C.; Crutch, Sebastian J.

    2014-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839

  1. Hearing Loss Severity: Impaired Processing of Formant Transition Duration

    ERIC Educational Resources Information Center

    Coez, A.; Belin, P.; Bizaguet, E.; Ferrary, E.; Zilbovicius, M.; Samson, Y.

    2010-01-01

    Normal hearing listeners exploit the formant transition (FT) detection to identify place of articulation for stop consonants. Neuro-imaging studies revealed that short FT induced less cortical activation than long FT. To determine the ability of hearing impaired listeners to distinguish short and long formant transitions (FT) from vowels of the…

  2. Injury to the Premature Cerebellum: Outcome is Related to Remote Cortical Development

    PubMed Central

    Limperopoulos, Catherine; Chilingaryan, Gevorg; Sullivan, Nancy; Guizard, Nicolas; Robertson, Richard L.; du Plessis, Adré J.

    2014-01-01

    Cerebellar injury is an important complication of preterm birth with far-reaching neuropsychiatric sequelae. We have previously shown a significant association between isolated injury to the premature cerebellum and subsequent impairment of regional volumetric growth in the contralateral cerebrum. In the current study, we examine the relationship between these remote regional impairments of cerebral volumetric growth and domain-specific functional deficits in these children. In 40 ex-preterm infants with isolated cerebellar injury, we performed neurodevelopmental evaluations and quantitative magnetic resonance imaging (MRI) studies at a mean age of 34 months. We measured cortical gray matter volumes in 8 parcellated regions of each cerebral hemisphere, as well as right and left cerebellar volumes. We show highly significant associations between early signs of autism and dorsolateral prefrontal cortex volume (P < 0.001); gross motor scores and sensorimotor cortical volumes (P < 0.001); and cognitive and expressive language scores and premotor and mid-temporal cortical volumes (P < 0.001). By multivariate analyses, each unit increase in the corresponding regional cerebral volume was associated with lower odds of abnormal outcome score, adjusted for age at MRI and contralateral cerebellar volume. This is the first report linking secondary impairment of remote cerebral cortical growth and functional disabilities in survivors of prematurity-related cerebellar brain injury. PMID:23146968

  3. Perceptual and cognitive visual functions of parietal and temporal cortices in the cat.

    PubMed

    Lomber, S G; Payne, B R; Cornwell, P; Long, K D

    1996-01-01

    We used reversible cooling deactivation to compare the functions of cortices lining the middle suprasylvian (MS) sulcus and forming the ventral portion of the posterior suprasylvian (vPS) gyrus. A battery of attentional, motion and mnemonic processing tasks were used and performance was examined during deactivation of each region. The results show a clear dissociation of functions. Deactivation of MS cortex resulted in profound deficits on a visual orienting task and on the discrimination of direction of motion, whereas deactivation of vPS cortex severely impaired both retention and learning of novel and overlearned object discriminations. In addition, deactivation of either MS or vPS cortex impaired discrimination of learned patterns when components of the patterns were in motion, whereas only deactivation of vPS cortex impaired the discrimination when all components were static. Together, these results show that a region of parietal cortex contributes to the processing of visual motion and to attentional processes, whereas a region of temporal cortex contributes to the learning and recognition of three-dimensional objects and two-dimensional patterns. This functional dissociation is linked to differences in underlying visual pathways, which have many features in common with the parietal and temporal visual processing streams previously identified in monkeys and humans. Furthermore, the broad similarity in neural operations carried out in parietal and temporal cortices of cats, monkeys and humans suggests the existence of a common plan for cortical processing machinery within mammals with well developed cerebral cortices.

  4. Oculomotor Impairments in Developmental Dyspraxia.

    PubMed

    Gaymard, B; Giannitelli, M; Challes, G; Rivaud-Péchoux, S; Bonnot, O; Cohen, D; Xavier, J

    2017-04-01

    Children with developmental dyspraxia (DD) express impairments in the acquisition of various motor skills and in the development of their social cognition abilities. Although the neural bases of this condition are not fully understood, they are thought to involve frontal cortical areas, subcortical structures, and the cerebellum. Although cerebellar dysfunction is typically difficult to assess and quantify using traditional neurophysiological methods, oculomotor analysis may provide insight into specific cerebellar patterns. The aim of the present study was to investigate, in dyspraxic and typically developing subjects, various oculomotor saccade tasks specifically designed to reveal frontal and cerebellar dysfunction. In addition to evidence supporting prefrontal dysfunction, our results revealed increased variability of saccade accuracy consistent with cerebellar impairments. Furthermore, we found that dyspraxic patients showed decreased velocities of non-visually guided saccades. A closer analysis revealed significant differences in saccade velocity profiles with slightly decreased maximum saccade velocities but markedly prolonged deceleration phases. We show that this pattern was not related to a decreased state of alertness but was suggestive of cerebellar dysfunction. However, the clear predominance of this pattern in non-visually guided saccades warrants alternative hypotheses. In light of previous experimental and anatomical studies, we propose that this unusual pattern may be a consequence of impaired connections between frontal areas and cerebellar oculomotor structures.

  5. Cortical thickness in relation to clinical symptom onset in preclinical AD.

    PubMed

    Pettigrew, Corinne; Soldan, Anja; Zhu, Yuxin; Wang, Mei-Cheng; Moghekar, Abhay; Brown, Timothy; Miller, Michael; Albert, Marilyn

    2016-01-01

    Mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia are preceded by a phase of disease, referred to as 'preclinical AD', during which cognitively normal individuals have evidence of AD pathology in the absence of clinical impairment. This study examined whether a magnetic resonance imaging (MRI) measure of cortical thickness in brain regions, collectively known as 'AD vulnerable' regions, predicted the time to onset of clinical symptoms associated with MCI and whether cortical thickness was similarly predictive of clinical symptom onset within 7 years post baseline versus progression at a later point in time. These analyses included 240 participants from the BIOCARD study, a cohort of longitudinally followed individuals who were cognitively normal at the time of their MRI (mean age = 56 years). Participants have been followed for up to 18 years (M follow-up = 11.8 years) and 50 participants with MRIs at baseline have developed MCI or dementia over time (mean time to clinical symptom onset = 7 years). Cortical thickness in AD vulnerable regions was based on the mean thickness of eight cortical regions. Using Cox regression models, we found that lower mean cortical thickness was associated with an increased risk of progression from normal cognition to clinical symptom onset within 7 years of baseline (p = 0.03), but not with progression > 7 years from baseline (p = 0.30). Lower cortical thickness was also associated with higher levels of phosphorylated tau, measured in cerebrospinal fluid at baseline. These results suggest that cortical thinning in AD vulnerable regions is detectable in cognitively normal individuals several years prior to the onset of clinical symptoms that are a harbinger of a diagnosis of MCI, and that the changes are more likely to be evident in the years proximal to clinical symptom onset, consistent with hypothetical AD biomarker models.

  6. Should Individuals Who Do Not Fit the Definition of "Visual Impairment" Be Excluded from Visual Impairment Services?

    ERIC Educational Resources Information Center

    Morse, Mary T.

    2017-01-01

    Cerebral or cortical visual impairment (CVI) is not the unknown condition it was 50 years ago. Although research had been conducted and papers published, it was not until the 1980s that it really became an issue of concern and much debate for educators. This interest was primarily sparked by the increasing numbers of children who had been…

  7. Neuroimaging of focal cortical dysplasia: neuropathological correlations.

    PubMed

    Colombo, Nadia; Citterio, Alberto; Galli, Carlo; Tassi, Laura; Lo Russo, Giorgio; Scialfa, G; Spreafico, Roberto

    2003-09-01

    Focal cortical dysplasia is a well-known cause of intractable epilepsy with early onset of seizures, and is potentially amenable to surgical therapy. It was first described by Taylor in 1971 as a peculiar malformative disorganisation of the neocortex characterised at histology by loss of cortical lamination and accompanied by giant, dysmorphic neurones and, most frequently, by "balloon cells" littered throughout the cortex and sub-cortical white matter. While in the past decades the term "cortical dysplasia" has referred to various malformations of cortical development, such as agyria, pachygyria, polymicrogyria, heterotopia and hemimegalencephaly, it is now widely accepted that the entity identified by Taylor should be considered separately, from both histological and neuroimaging standpoints. More recently, the recognition of various histological subtypes of focal cortical dysplasia characterised by different degrees of cortical disruption with or without cytological abnormalities has generated several classifications that are still unsatisfactory. With better magnetic resonance capability, subtle and very small focal cortical dysplasias may now be visualised and the differential magnetic resonance aspects of the histological subgroups can be established. We will discuss the problem of histopathological classification and magnetic resonance imaging differentiation of the various subtypes of focal cortical dysplasia in the light of personal data collected from a large series of epileptic patients who underwent surgery and had a histological diagnosis of focal cortical dysplasia. Copyright John Libbey Eurotext 2003.

  8. Cortical Inhibition, Excitation, and Connectivity in Schizophrenia: A Review of Insights From Transcranial Magnetic Stimulation

    PubMed Central

    Rogasch, Nigel C.

    2014-01-01

    Schizophrenia (SCZ) is a debilitating mental illness with an elusive pathophysiology. Over the last decade, theories emphasizing cortical dysfunction have received increasing attention to explain the heterogeneous symptoms experienced in SCZ. Transcranial magnetic stimulation (TMS) is a noninvasive form of brain stimulation that is particularly suited to probing the fidelity of specific excitatory and inhibitory neuronal populations in conscious humans. In this study, we review the contribution of TMS in assessing inhibitory and excitatory neuronal populations and their long-range connections in SCZ. In addition, we discuss insights from combined TMS and electroencephalography into the functional consequences of impaired excitation/inhibition on cortical oscillations in SCZ. PMID:23722199

  9. LRP12 silencing during brain development results in cortical dyslamination and seizure sensitization.

    PubMed

    Grote, Alexander; Robens, Barbara K; Blümcke, Ingmar; Becker, Albert J; Schoch, Susanne; Gembé, Eva

    2016-02-01

    Correct positioning and differentiation of neurons during brain development is a key precondition for proper function. Focal cortical dysplasias (FCDs) are increasingly recognized as causes of therapy refractory epilepsies. Neuropathological analyses of respective surgical specimens from neurosurgery for seizure control often reveal aberrant cortical architecture and/or aberrantly shaped neurons in FCDs. However, the molecular pathogenesis particularly of FCDs with aberrant lamination (so-called FCD type I) is largely unresolved. Lipoproteins and particularly low-density lipoprotein receptor-related protein 12 (LRP12) are involved in brain development. Here, we have examined a potential role of LRP12 in the pathogenesis of FCDs. In vitro knockdown of LRP12 in primary neurons results in impaired neuronal arborization. In vivo ablation of LRP12 by intraventricularly in utero electroporated shRNAs elicits cortical maldevelopment, i.e. aberrant lamination by malpositioning of upper cortical layer neurons. Subsequent epilepsy phenotyping revealed pentylenetetrazol (PTZ)-induced seizures to be aggravated in cortical LRP12-silenced mice. Our data demonstrates IUE mediated cortical gene silencing as an excellent approach to study the role of distinct molecules for epilepsy associated focal brain lesions and suggests LRP12 and lipoprotein homeostasis as potential molecular target structures for the emergence of epilepsy-associated FCDs. Copyright © 2015. Published by Elsevier Inc.

  10. Cortical signatures of cognition and their relationship to Alzheimer's disease.

    PubMed

    Gross, Alden L; Manly, Jennifer J; Pa, Judy; Johnson, Julene K; Park, Lovingly Quitania; Mitchell, Meghan B; Melrose, Rebecca J; Inouye, Sharon K; McLaren, Donald G

    2012-12-01

    Recent changes in diagnostic criteria for Alzheimer's disease (AD) state that biomarkers can enhance certainty in a diagnosis of AD. In the present study, we combined cognitive function and brain morphology, a potential imaging biomarker, to predict conversion from mild cognitive impairment to AD. We identified four biomarkers, or cortical signatures of cognition (CSC), from regressions of cortical thickness on neuropsychological factors representing memory, executive function/processing speed, language, and visuospatial function among participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Neuropsychological factor scores were created from a previously validated multidimensional factor structure of the neuropsychological battery in ADNI. Mean thickness of each CSC at the baseline study visit was used to evaluate risk of conversion to clinical AD among participants with mild cognitive impairment (MCI) and rate of decline on the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) score. Of 307 MCI participants, 119 converted to AD. For all domain-specific CSC, a one standard deviation thinner cortical thickness was associated with an approximately 50% higher hazard of conversion and an increase of approximately 0.30 points annually on the CDR-SB. In combined models with a domain-specific CSC and neuropsychological factor score, both CSC and factor scores predicted conversion to AD and increasing clinical severity. The present study indicated that factor scores and CSCs for memory and language both significantly predicted risk of conversion to AD and accelerated deterioration in dementia severity. We conclude that predictive models are best when they utilize both neuropsychological measures and imaging biomarkers.

  11. Differential impact of partial cortical blindness on gaze strategies when sitting and walking - an immersive virtual reality study.

    PubMed

    Iorizzo, Dana B; Riley, Meghan E; Hayhoe, Mary; Huxlin, Krystel R

    2011-05-25

    The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ∼80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ∼90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Differential impact of partial cortical blindness on gaze strategies when sitting and walking - an immersive virtual reality study

    PubMed Central

    Iorizzo, Dana B.; Riley, Meghan E.; Hayhoe, Mary; Huxlin, Krystel R.

    2011-01-01

    The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ~80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ~90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. PMID:21414339

  13. Molecular imaging of serotonin degeneration in mild cognitive impairment.

    PubMed

    Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I

    2017-09-01

    Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic

  14. Cognitive Impairment in Multiple Sclerosis

    PubMed Central

    Lovera, Jesus; Kovner, Blake

    2012-01-01

    Cognitive Impairment (CI) is a serious complication of MS, and the domains affected are well established but new affected domains such as theory of mind are still being identified. The evidence that some disease modifying therapies (DMTs) may improve and prevent the development of CI in MS is not solid. Recent studies on the prevalence CI in MS, although not as solid as studies completed prior to DMT introduction, suggest that CI remains a problem even among people on DMTs and even at the very earliest stages of MS. Functional MRI studies and studies using diffusion tractography show that the impact of lesions on cognition depends on the particular cortical networks affected and their plasticity. Cognitive rehabilitation and L-amphetamine appear promising treatments, cholinesterase inhibitors and memantine have failed, and data on Ginkgo and exercise are limited. We need more work to understand and develop treatment for CI in MS. PMID:22791241

  15. Hamilton-Jacobi skeleton on cortical surfaces.

    PubMed

    Shi, Y; Thompson, P M; Dinov, I; Toga, A W

    2008-05-01

    In this paper, we propose a new method to construct graphical representations of cortical folding patterns by computing skeletons on triangulated cortical surfaces. In our approach, a cortical surface is first partitioned into sulcal and gyral regions via the solution of a variational problem using graph cuts, which can guarantee global optimality. After that, we extend the method of Hamilton-Jacobi skeleton [1] to subsets of triangulated surfaces, together with a geometrically intuitive pruning process that can trade off between skeleton complexity and the completeness of representing folding patterns. Compared with previous work that uses skeletons of 3-D volumes to represent sulcal patterns, the skeletons on cortical surfaces can be easily decomposed into branches and provide a simpler way to construct graphical representations of cortical morphometry. In our experiments, we demonstrate our method on two different cortical surface models, its ability of capturing major sulcal patterns and its application to compute skeletons of gyral regions.

  16. Circadian regulation of human cortical excitability

    PubMed Central

    Ly, Julien Q. M.; Gaggioni, Giulia; Chellappa, Sarah L.; Papachilleos, Soterios; Brzozowski, Alexandre; Borsu, Chloé; Rosanova, Mario; Sarasso, Simone; Middleton, Benita; Luxen, André; Archer, Simon N.; Phillips, Christophe; Dijk, Derk-Jan; Maquet, Pierre; Massimini, Marcello; Vandewalle, Gilles

    2016-01-01

    Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation. PMID:27339884

  17. Disorders of cortical formation: MR imaging features.

    PubMed

    Abdel Razek, A A K; Kandell, A Y; Elsorogy, L G; Elmongy, A; Basett, A A

    2009-01-01

    The purpose of this article was to review the embryologic stages of the cerebral cortex, illustrate the classification of disorders of cortical formation, and finally describe the main MR imaging features of these disorders. Disorders of cortical formation are classified according to the embryologic stage of the cerebral cortex at which the abnormality occurred. MR imaging shows diminished cortical thickness and sulcation in microcephaly, enlarged dysplastic cortex in hemimegalencephaly, and ipsilateral focal cortical thickening with radial hyperintense bands in focal cortical dysplasia. MR imaging detects smooth brain in classic lissencephaly, the nodular cortex with cobblestone cortex with congenital muscular dystrophy, and the ectopic position of the gray matter with heterotopias. MR imaging can detect polymicrogyria and related syndromes as well as the types of schizencephaly. We concluded that MR imaging is essential to demonstrate the morphology, distribution, and extent of different disorders of cortical formation as well as the associated anomalies and related syndromes.

  18. Inhibitory Circuits in Cortical Layer 5

    PubMed Central

    Naka, Alexander; Adesnik, Hillel

    2016-01-01

    Inhibitory neurons play a fundamental role in cortical computation and behavior. Recent technological advances, such as two photon imaging, targeted in vivo recording, and molecular profiling, have improved our understanding of the function and diversity of cortical interneurons, but for technical reasons most work has been directed towards inhibitory neurons in the superficial cortical layers. Here we review current knowledge specifically on layer 5 (L5) inhibitory microcircuits, which play a critical role in controlling cortical output. We focus on recent work from the well-studied rodent barrel cortex, but also draw on evidence from studies in primary visual cortex and other cortical areas. The diversity of both deep inhibitory neurons and their pyramidal cell targets make this a challenging but essential area of study in cortical computation and sensory processing. PMID:27199675

  19. Cortical microtubule rearrangements and cell wall patterning

    PubMed Central

    Oda, Yoshihisa

    2015-01-01

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning. PMID:25904930

  20. MR appearance of distal femoral cortical irregularity (cortical desmoid)

    SciTech Connect

    Suh, Jin-Suck; Cho, Jae-Hyun; Shin, Kyoo-Ho

    1996-03-01

    Our goal was to describe the MR appearance of distal femoral cortical irregularity (DFCI). With plain radiographs and MR images of 100 knees, the presence of DFCIs was determined, and the shapes of DFCIs were classified into three subgroups: concave, convex, and divergent cortical shapes. Radiographic and MR shapes of DFCIs were compared. DFCIs were shown in various shapes on both the radiographs and the MR images. Forty-four DFCIs were found both on radiograph and by MR image. An additional 14 DFCIs were identifiable only on MR images. However, the majority of DFCIs showed an association between radiographic and MR shapes. MRI revealed that all 58 DFCIs were located at the attachment site of the media gastrocnemius muscle. DFCIs were enhanced in three of the four patients who underwent postcontrast MR study. A good understanding of radiographic and MR findings of the DFCI may be of great help in the differential diagnosis of distal femoral lesions. 16 refs., 6 figs., 1 tab.

  1. Posttraumatic cortical defect of femur.

    PubMed

    Nadarajah, Jeyaseelan; Srivastava, Deep N; Malhotra, Rajesh; Palaniswamy, Aravindh

    2013-01-01

    Posttraumatic cortical defect of bone is a rare entity which occurs in a maturing skeleton following green stick or torus fracture. Most of the cases are asymptomatic and they are detected incidentally on radiograph. These lesions usually require no treatment. However, the appearance of these lesions can mimic various pathological conditions affecting bone. Knowledge about this entity is important as it avoids unnecessary investigations. We present this case as the occurrence of this entity in femur is very rare and the child was symptomatic.

  2. Cortical rewiring and information storage

    NASA Astrophysics Data System (ADS)

    Chklovskii, D. B.; Mel, B. W.; Svoboda, K.

    2004-10-01

    Current thinking about long-term memory in the cortex is focused on changes in the strengths of connections between neurons. But ongoing structural plasticity in the adult brain, including synapse formation/elimination and remodelling of axons and dendrites, suggests that memory could also depend on learning-induced changes in the cortical `wiring diagram'. Given that the cortex is sparsely connected, wiring plasticity could provide a substantial boost in storage capacity, although at a cost of more elaborate biological machinery and slower learning.

  3. Imprinting and Recalling Cortical Ensembles

    PubMed Central

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S.; Yuste, Rafael

    2017-01-01

    Neuronal ensembles are coactive groups of neurons that may represent emergent building blocks of neural circuits. They could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations in visual cortex of awake mice generates artificially induced ensembles which recur spontaneously after being imprinted and do not disrupt preexistent ones. Moreover, imprinted ensembles can be recalled by single cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. PMID:27516599

  4. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy

    PubMed Central

    Gelinas, Jennifer N.; Khodagholy, Dion; Thesen, Thomas; Devinsky, Orrin; Buzsáki, György

    2016-01-01

    Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy. PMID:27111281

  5. Communication and wiring in the cortical connectome

    PubMed Central

    Budd, Julian M. L.; Kisvárday, Zoltán F.

    2012-01-01

    In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns

  6. [Posterior cortical atrophy (Benson-syndrome)].

    PubMed

    Rózsa, Anikó; Szilvássy, Ildikó; Kovács, Krisztina; Boór, Krisztina; Gács, Gyula

    2010-01-30

    We present the characteristics of posterior cortical atrophy--a very rare cortical dementia--in a 69 year old woman's case. Our patient's symptoms began with a visual problem which was initially explained by ophthalmological disorder. After neurological exam visual agnosia was diagnosed apart from other cognitive disorder (alexia without agraphia, acalculia, prosopagnosia, constructional disorder, clock-time recognition disorder, dressing apraxia, visuospatial disorientation). The brain MRI showed bilateral asymmetric parieto-occipital atrophy which is characteristic of posterior cortical atrophy.

  7. Cortical Tremor (CT) with coincident orthostatic movements.

    PubMed

    Termsarasab, Pichet; Frucht, Steven J

    2015-01-01

    Cortical tremor (CT) is a form of cortical reflex myoclonus that can mimic essential tremor (ET). Clinical features that are helpful in distinguishing CT from ET are the irregular and jerky appearance of the movements. We report two patients with CT with coexisting orthostatic movements, either orthostatic tremor (OT) or myoclonus, who experienced functional improvement in both cortical myoclonus and orthostatic movements when treated with levetiracetam.

  8. The effect of blur on cortical responses to global form and motion

    PubMed Central

    Burton, Eliza A.; Wattam-Bell, John; Rubin, Gary S.; Atkinson, Janette; Braddick, Oliver; Nardini, Marko

    2015-01-01

    Global form and motion sensitivity undergo long development in childhood with motion sensitivity rather than form being impaired in a number of childhood disorders and both impaired in adult clinical populations. This suggests extended development and vulnerability of extrastriate cortical areas associated with global processing. However, in some developmental and clinical populations, it remains unclear to what extent impairments might reflect deficits at earlier stages of visual processing, such as reduced visual acuity and contrast sensitivity. To address this, we investigated the impact of degraded spatial vision on cortical global form and motion processing in healthy adults. Loss of high spatial frequencies was simulated using a diffuser to blur the stimuli. Participants completed behavioral and EEG tests of global form and motion perception under three levels of blur. For the behavioral tests, participants' form and motion coherence thresholds were measured using a two-alternative, forced-choice procedure. Steady-state visual evoked potentials were used to measure cortical responses to changes in the coherence of global form and motion stimuli. Both global form and global motion perception were impaired with increasing blur as measured by elevated behavioral thresholds and reduced cortical responses. However, form thresholds showed greater impairment in both behavioral and EEG measures than motion thresholds at the highest levels of blur. The results suggest that high spatial frequencies play an important role in the perception of both global form and motion but are especially significant for global form. Overall, the results reveal complex interactions between low-level factors and global visual processing, highlighting the importance of taking these factors into account when investigating extrastriate function in low vision populations. PMID:26605841

  9. Large-scale cortical networks and cognition.

    PubMed

    Bressler, S L

    1995-03-01

    The well-known parcellation of the mammalian cerebral cortex into a large number of functionally distinct cytoarchitectonic areas presents a problem for understanding the complex cortical integrative functions that underlie cognition. How do cortical areas having unique individual functional properties cooperate to accomplish these complex operations? Do neurons distributed throughout the cerebral cortex act together in large-scale functional assemblages? This review examines the substantial body of evidence supporting the view that complex integrative functions are carried out by large-scale networks of cortical areas. Pathway tracing studies in non-human primates have revealed widely distributed networks of interconnected cortical areas, providing an anatomical substrate for large-scale parallel processing of information in the cerebral cortex. Functional coactivation of multiple cortical areas has been demonstrated by neurophysiological studies in non-human primates and several different cognitive functions have been shown to depend on multiple distributed areas by human neuropsychological studies. Electrophysiological studies on interareal synchronization have provided evidence that active neurons in different cortical areas may become not only coactive, but also functionally interdependent. The computational advantages of synchronization between cortical areas in large-scale networks have been elucidated by studies using artificial neural network models. Recent observations of time-varying multi-areal cortical synchronization suggest that the functional topology of a large-scale cortical network is dynamically reorganized during visuomotor behavior.

  10. Dual Cortical Plasticity After Spinal Cord Injury.

    PubMed

    Humanes-Valera, Desire; Foffani, Guglielmo; Alonso-Calviño, Elena; Fernández-López, Elena; Aguilar, Juan

    2017-05-01

    During cortical development, plasticity reflects the dynamic equilibrium between increasing and decreasing functional connectivity subserved by synaptic sprouting and pruning. After adult cortical deafferentation, plasticity seems to be dominated by increased functional connectivity, leading to the classical expansive reorganization from the intact to the deafferented cortex. In contrast, here we show a striking "decrease" in the fast cortical responses to high-intensity forepaw stimulation 1-3 months after complete thoracic spinal cord transection, as evident in both local field potentials and intracellular in vivo recordings. Importantly, this decrease in fast cortical responses co-exists with an "increase" in cortical activation over slower post-stimulus timescales, as measured by an increased forepaw-to-hindpaw propagation of stimulus-triggered cortical up-states, as well as by the enhanced slow sustained depolarization evoked by high-frequency forepaw stimuli in the deafferented hindpaw cortex. This coincidence of diminished fast cortical responses and enhanced slow cortical activation offers a dual perspective of adult cortical plasticity after spinal cord injury. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Gyrification from constrained cortical expansion

    PubMed Central

    Tallinen, Tuomas; Chung, Jun Young; Biggins, John S.; Mahadevan, L.

    2014-01-01

    The exterior of the mammalian brain—the cerebral cortex—has a conserved layered structure whose thickness varies little across species. However, selection pressures over evolutionary time scales have led to cortices that have a large surface area to volume ratio in some organisms, with the result that the brain is strongly convoluted into sulci and gyri. Here we show that the gyrification can arise as a nonlinear consequence of a simple mechanical instability driven by tangential expansion of the gray matter constrained by the white matter. A physical mimic of the process using a layered swelling gel captures the essence of the mechanism, and numerical simulations of the brain treated as a soft solid lead to the formation of cusped sulci and smooth gyri similar to those in the brain. The resulting gyrification patterns are a function of relative cortical expansion and relative thickness (compared with brain size), and are consistent with observations of a wide range of brains, ranging from smooth to highly convoluted. Furthermore, this dependence on two simple geometric parameters that characterize the brain also allows us to qualitatively explain how variations in these parameters lead to anatomical anomalies in such situations as polymicrogyria, pachygyria, and lissencephalia. PMID:25136099

  12. Pusher syndrome: its cortical correlate.

    PubMed

    Baier, Bernhard; Janzen, Jelena; Müller-Forell, Wibke; Fechir, Marcel; Müller, Notger; Dieterich, Marianne

    2012-02-01

    Unilateral stroke can lead to a disorder of postural balance that manifests as a pushing away toward the contralesional side. It is called "pusher syndrome" (PS). The aims of this study were first to assess the anatomical cortical regions that induce PS and second to clarify whether tilt of the subjective visual vertical (SVV)--a sign of vestibular otolith dysfunction--is associated with PS. Sixty-six patients with acute unilateral strokes (28 left-sided lesions, 38 right-sided lesions) were tested for PS, for tilts of the SVV, for hemineglect and for the anatomical lesion site by magnetic resonance imaging (MRI)-based voxelwise lesion-behavior mapping analysis. Our data indicated no significant voxels; however, there was a trend towards an association between lesions of the posterior part of the insula, the operculum and the superior temporal gyrus--key areas of the multisensory vestibular cortical network--and the extent of pushing in patients with right-sided lesions, whereas the rather anterior part of the insula, the operculum as well as the internal capsule reaching to the lateral thalamus seemed to be involved in PS in left-sided lesion patients. These data might point toward a link between the systems responsible for postural control and for processing vestibular otolith information. These findings indicate that vestibular information might be fundamental in right-sided lesion patients for maintaining body posture in space.

  13. Cortical control of facial expression.

    PubMed

    Müri, René M

    2016-06-01

    The present Review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human nonverbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be either voluntarily or emotionally controlled. Recent studies in nonhuman primates and humans have revealed that the motor control of facial expressions has a distributed neural representation. At least five cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and the rostral and caudal cingulate cortex. The results of studies in humans and nonhuman primates suggest that the innervation of the face is bilaterally controlled for the upper part and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, because they receive input from different structures of the limbic system.

  14. Cortical Specializations Underlying Fast Computations.

    PubMed

    Volgushev, Maxim

    2016-04-01

    The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints.

  15. Cortical thickness in untreated transsexuals.

    PubMed

    Zubiaurre-Elorza, Leire; Junque, Carme; Gómez-Gil, Esther; Segovia, Santiago; Carrillo, Beatriz; Rametti, Giuseppina; Guillamon, Antonio

    2013-12-01

    Sex differences in cortical thickness (CTh) have been extensively investigated but as yet there are no reports on CTh in transsexuals. Our aim was to determine whether the CTh pattern in transsexuals before hormonal treatment follows their biological sex or their gender identity. We performed brain magnetic resonance imaging on 94 subjects: 24 untreated female-to-male transsexuals (FtMs), 18 untreated male-to-female transsexuals (MtFs), and 29 male and 23 female controls in a 3-T TIM-TRIO Siemens scanner. T1-weighted images were analyzed to obtain CTh and volumetric subcortical measurements with FreeSurfer software. CTh maps showed control females have thicker cortex than control males in the frontal and parietal regions. In contrast, males have greater right putamen volume. FtMs had a similar CTh to control females and greater CTh than males in the parietal and temporal cortices. FtMs had larger right putamen than females but did not differ from males. MtFs did not differ in CTh from female controls but had greater CTh than control males in the orbitofrontal, insular, and medial occipital regions. In conclusion, FtMs showed evidence of subcortical gray matter masculinization, while MtFs showed evidence of CTh feminization. In both types of transsexuals, the differences with respect to their biological sex are located in the right hemisphere.

  16. Atypical coordination of cortical oscillations in response to speech in autism

    PubMed Central

    Jochaut, Delphine; Lehongre, Katia; Saitovitch, Ana; Devauchelle, Anne-Dominique; Olasagasti, Itsaso; Chabane, Nadia; Zilbovicius, Monica; Giraud, Anne-Lise

    2015-01-01

    Subjects with autism often show language difficulties, but it is unclear how they relate to neurophysiological anomalies of cortical speech processing. We used combined EEG and fMRI in 13 subjects with autism and 13 control participants and show that in autism, gamma and theta cortical activity do not engage synergistically in response to speech. Theta activity in left auditory cortex fails to track speech modulations, and to down-regulate gamma oscillations in the group with autism. This deficit predicts the severity of both verbal impairment and autism symptoms in the affected sample. Finally, we found that oscillation-based connectivity between auditory and other language cortices is altered in autism. These results suggest that the verbal disorder in autism could be associated with an altered balance of slow and fast auditory oscillations, and that this anomaly could compromise the mapping between sensory input and higher-level cognitive representations. PMID:25870556

  17. Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin.

    PubMed

    Tomatis, Vanesa M; Papadopulos, Andreas; Malintan, Nancy T; Martin, Sally; Wallis, Tristan; Gormal, Rachel S; Kendrick-Jones, John; Buss, Folma; Meunier, Frédéric A

    2013-02-04

    Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca(2+)-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI-specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane.

  18. A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment

    PubMed Central

    Dash, Suryadeep; Lomber, Stephen G.

    2016-01-01

    Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades. PMID:27509130

  19. Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin

    PubMed Central

    Tomatis, Vanesa M.; Papadopulos, Andreas; Malintan, Nancy T.; Martin, Sally; Wallis, Tristan; Gormal, Rachel S.; Kendrick-Jones, John; Buss, Folma

    2013-01-01

    Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca2+-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI–specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane. PMID:23382463

  20. Family History of Alzheimer's Disease and Cortical Thickness in Patients With Dementia.

    PubMed

    Ganske, Steffi; Haussmann, Robert; Gruschwitz, Antonia; Werner, Annett; Osterrath, Antje; Baumgaertel, Johanna; Lange, Jan; Donix, Katharina L; Linn, Jennifer; Donix, Markus

    2016-08-01

    A first-degree family history of Alzheimer's disease reflects genetic risks for the neurodegenerative disorder. Recent imaging data suggest localized effects of genetic risks on brain structure in healthy people. It is unknown whether this association can also be found in patients who already have dementia. Our aim was to investigate whether family history risk modulates regional medial temporal lobe cortical thickness in patients with Alzheimer's disease. We performed high-resolution magnetic resonance imaging and cortical unfolding data analysis on 54 patients and 53 nondemented individuals. A first-degree family history of Alzheimer's disease was associated with left hemispheric cortical thinning in the subiculum among patients and controls. The contribution of Alzheimer's disease family history to regional brain anatomy changes independent of cognitive impairment may reflect genetic risks that modulate onset and clinical course of the disease.

  1. Cortical thickness gradients in structural hierarchies

    PubMed Central

    Wagstyl, Konrad; Ronan, Lisa; Goodyer, Ian M.; Fletcher, Paul C.

    2015-01-01

    MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used—the thickness of the cortex—shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants. We therefore sought to determine whether patterns of cortical thickness mirror a key motif of the cortex, specifically its structural hierarchical organisation. We delineated three sensory hierarchies (visual, somatosensory and auditory) in two species—macaque and human—and explored whether cortical thickness was correlated with specific cytoarchitectural characteristics. Importantly, we controlled for cortical folding which impacts upon thickness and may obscure regional differences. Our results suggest that an easily measurable macroscopic brain parameter, namely, cortical thickness, is systematically related to cytoarchitecture and to the structural hierarchical organisation of the cortex. We argue that the measurement of cortical thickness gradients may become an important way to develop our understanding of brain structure–function relationships. The identification of alterations in such gradients may complement the observation of regionally localised cortical thickness changes in our understanding of normal development and neuropsychiatric illnesses. PMID:25725468

  2. Multisensory dysfunction accompanies crossmodal plasticity following adult hearing impairment.

    PubMed

    Meredith, M A; Keniston, L P; Allman, B L

    2012-07-12

    Until now, cortical crossmodal plasticity has largely been regarded as the effect of early and complete sensory loss. Recently, massive crossmodal cortical reorganization was demonstrated to result from profound hearing loss in adult ferrets (Allman et al., 2009a). Moderate adult hearing loss, on the other hand, induced not just crossmodal reorganization, but also merged new crossmodal inputs with residual auditory function to generate multisensory neurons. Because multisensory convergence can lead to dramatic levels of response integration when stimuli from more than one modality are present (and thereby potentially interfere with residual auditory processing), the present investigation sought to evaluate the multisensory properties of auditory cortical neurons in partially deafened adult ferrets. When compared with hearing controls, partially-deaf animals revealed elevated spontaneous levels and a dramatic increase (∼2 times) in the proportion of multisensory cortical neurons, but few of which showed multisensory integration. Moreover, a large proportion (68%) of neurons with somatosensory and/or visual inputs was vigorously active in core auditory cortex in the absence of auditory stimulation. Collectively, these results not only demonstrate multisensory dysfunction in core auditory cortical neurons from hearing impaired adults but also reveal a potential cortical substrate for maladaptive perceptual effects such as tinnitus.

  3. Cholinesterase inhibitors affect brain potentials in amnestic mild cognitive impairment

    PubMed Central

    Irimajiri, Rie; Michalewski, Henry J; Golob, Edward J; Starr, Arnold

    2007-01-01

    Amnestic mild cognitive impairment (MCI) is an isolated episodic memory disorder that has a high likelihood of progressing to Alzheimer’s disease. Auditory sensory cortical responses (P50, N100) have been shown to be increased in amplitude in MCI compared to older controls. We tested whether (1) cortical potentials to other sensory modalities (somatosensory and visual) were also affected in MCI and (2) cholinesterase inhibitors (ChEIs), one of the therapies used in this disorder, modulated sensory cortical potentials in MCI. Somatosensory cortical potentials to median nerve stimulation and visual cortical potentials to reversing checkerboard stimulation were recorded from 15 older controls and 15 amnestic MCI subjects (single domain). Results were analyzed as a function of diagnosis (Control, MCI) and ChEIs treatment (Treated MCI, Untreated MCI). Somatosensory and visual potentials did not differ significantly in amplitude in MCI subjects compared to controls. When ChEIs use was considered, somatosensory potentials (N20, P50) but not visual potentials (N70, P100, N150) were of larger amplitude in untreated MCI subjects compared to treated MCI subjects. Three individual MCI subjects showed increased N20 amplitude while off ChEIs compared to while on ChEIs. An enhancement of N20 somatosensory cortical activity occurs in amnestic single domain MCI and is sensitive to modulation by ChEIs. PMID:17320833

  4. A pilot study for investigating cortical binocularity in humans using fMRI adaptation.

    PubMed

    Jurcoane, Alina; Choubey, Bhaskar; Muckli, Lars; Sireteanu, Ruxandra

    2007-01-01

    Disrupted stereovision is a feature that accompanies strabismus. This study uses an fMRI adaptation paradigm to assess the amount of cortical binocularity in subjects with normal or impaired stereopsis. We present data from a pilot study of two normally-sighted and one stereodeficient subject with alternating fixation. We adapted one eye to diagonally oriented sinusoidal gratings and tested either the same (monocular test) or the other eye (interocular transfer), using either the same or an orthogonal orientation. In normally-sighted subjects, we observed monocular adaptation but only weak interocular transfer in the striate cortex, whereas in the extrastriate cortex we found strong monocular as well as interocular adaptation. In the stereodeficient subject, monocular adaptation but no interocular transfer was obtained in the extrastriate cortex. These results suggest that impaired stereopsis is related to reduced interocular transfer of adaptation at higher levels of the cortical visual pathway.

  5. Neuroperceptual differences in consonant and vowel discrimination: as revealed by direct cortical electrical interference.

    PubMed

    Boatman, D; Hall, C; Goldstein, M H; Lesser, R; Gordon, B

    1997-03-01

    The effects of direct cortical electrical interference on consonant and vowel discrimination were investigated in five patients with implanted subdural electrode arrays. Without electrical interference, patients performance discriminating consonants and vowels was intact. With electrical interference, consonant discrimination was impaired at one electrode site in each patient on the superior temporal gyrus of the lateral left perisylvian cortex. Conversely, vowel and tone discrimination remained relatively intact when tested with electrical interference at the same site. Analysis of patients' consonant discrimination errors revealed that neither differences in acoustic temporal structure nor syllable position fully account for the consonant-vowel perceptual dissociations elicited. Our data suggest that at the cortical level consonant and vowel perception are intrinsically distinct perceptual phenomena. The selective impairment of consonant, but not vowel, discrimination further suggests that consonant and vowel perception are distinguished by differences in relative dependence on the functional--perhaps integrative--resources of the left lateral superior temporal gyrus.

  6. Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson's disease.

    PubMed

    Eggers, Carsten; Fink, Gereon R; Nowak, Dennis A

    2010-10-01

    The purpose of this study was to investigate whether a period of continuous theta burst stimulation (cTBS) induces cortical plasticity and thus improves bradykinesia of the upper limb in Parkinson's disease. In eight patients with Parkinson's disease (two females; mean age: 68.5 ± 5 years; disease duration: 4 ± 3 years) electrophysiological (motor evoked potentials, contralateral and ipsilateral silent period) and behavioural (Purdue pegboard test, UPDRS motor subscore) parameters were evaluated before (baseline condition) and after a 40-s period of (1) real or (2) sham continuous theta burst stimulation over the primary motor cortex contralateral to the more affected body side off dopaminergic drugs. Compared to baseline, cTBS did change neither measures of cortical excitability nor behavioural measures. cTBS over the primary motor cortex does not impact on cortical excitability or motor function of the upper limb in Parkinson's disease. We interpret these data to reflect impaired cortical plasticity in Parkinson's disease. This study is an important contribution to the knowledge about impaired plasticity in Parkinson's disease.

  7. Sleep-dependent surges in growth hormone do not contribute to sleep-dependent memory consolidation.

    PubMed

    Gais, Steffen; Hüllemann, Philipp; Hallschmid, Manfred; Born, Jan

    2006-07-01

    In the search for the mechanisms that mediate the effects of sleep on the consolidation of memories, growth hormone (GH) recently became of interest, because in humans it is released mainly during slow-wave sleep (SWS), a period of enhanced declarative memory consolidation. In addition, recent studies showed that GH is involved in proper memory function in GH deficient and elderly humans and this effect has been linked to regulatory influences of GH on hippocampal NMDA receptors. Here, we blocked GH secretion by intravenous infusion of somatostatin in healthy young subjects during the first 3 h of sleep, which contain mainly SWS. Declarative and procedural memory consolidation was tested across this period, using a word pair association task and a mirror tracing task, respectively. Although GH was effectively suppressed, memory performance as well as sleep were entirely unaffected by this suppression. Whereas GH may in the long run generally support brain systems required for maintaining proper memory function, our data exclude a necessary contribution of the nocturnal surge in pituitary GH secretion to the acute processing and formation of specific memories during sleep.

  8. Cortical Odor Processing in Health and Disease

    PubMed Central

    Wilson, Donald A.; Xu, Wenjin; Sadrian, Benjamin; Courtiol, Emmanuelle; Cohen, Yaniv; Barnes, Dylan C.

    2014-01-01

    The olfactory system has a rich cortical representation, including a large archicortical component present in most vertebrates, and in mammals neocortical components including the entorhinal and orbitofrontal cortices. Together, these cortical components contribute to normal odor perception and memory. They help transform the physicochemical features of volatile molecules inhaled or exhaled through the nose into the perception of odor objects with rich associative and hedonic aspects. This chapter focuses on how olfactory cortical areas contribute to odor perception and begins to explore why odor perception is so sensitive to disease and pathology. Odor perception is disrupted by a wide range of disorders including Alzheimer’s disease, Parkinson’s disease, schizophrenia, depression, autism, and early life exposure to toxins. This olfactory deficit often occurs despite maintained functioning in other sensory systems. Does the unusual network of olfactory cortical structures contribute to this sensitivity? PMID:24767487

  9. Cortical cartography and Caret software.

    PubMed

    Van Essen, David C

    2012-08-15

    Caret software is widely used for analyzing and visualizing many types of fMRI data, often in conjunction with experimental data from other modalities. This article places Caret's development in a historical context that spans three decades of brain mapping--from the early days of manually generated flat maps to the nascent field of human connectomics. It also highlights some of Caret's distinctive capabilities. This includes the ease of visualizing data on surfaces and/or volumes and on atlases as well as individual subjects. Caret can display many types of experimental data using various combinations of overlays (e.g., fMRI activation maps, cortical parcellations, areal boundaries), and it has other features that facilitate the analysis and visualization of complex neuroimaging datasets. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Gyrification from constrained cortical expansion

    NASA Astrophysics Data System (ADS)

    Tallinen, Tuomas

    The convolutions of the human brain are a symbol of its functional complexity. But how does the outer surface of the brain, the layered cortex of neuronal gray matter get its folds? In this talk, we ask to which extent folding of the brain can be explained as a purely mechanical consequence of unpatterned growth of the cortical layer relative to the sublayers. Modeling the growing brain as a soft layered solid leads to elastic instabilities and the formation of cusped sulci and smooth gyri consistent with observations across species in both normal and pathological situations. Furthermore, we apply initial geometries obtained from fetal brain MRI to address the question of how the brain geometry and folding patterns may be coupled via mechanics.

  11. Cortical Cartography and Caret Software

    PubMed Central

    Van Essen, David C.

    2011-01-01

    Caret software is widely used for analyzing and visualizing many types of fMRI data, often in conjunction with experimental data from other modalities. This article places Caret’s development in a historical context that spans three decades of brain mapping – from the early days of manually generated flat maps to the nascent field of human connectomics. It also highlights some of Caret’s distinctive capabilities. This includes the ease of visualizing data on surfaces and/or volumes and on atlases as well as individual subjects. Caret can display many types of experimental data using various combinations of overlays (e.g., fMRI activation maps, cortical parcellations, areal boundaries), and it has other features that facilitate the analysis and visualization of complex neuroimaging datasets. PMID:22062192

  12. Oro-facial impairment in stroke patients.

    PubMed

    Schimmel, M; Ono, T; Lam, O L T; Müller, F

    2017-01-27

    Stroke is considered one of the leading causes of death and acquired disability with a peak prevalence over the age of 80 years. Stroke may cause debilitating neurological deficiencies that frequently result in sensory deficits, motor impairment, muscular atrophy, cognitive deficits and psychosocial impairment. Oro-facial impairment may occur due to the frequent involvement of the cranial nerves' cortical representation areas, central nervous system pathways or motoneuron pools. The aim of this narrative, non-systematic review was to discuss the implications of stroke on oro-facial functions and oral health-related quality of life (OHRQoL). Stroke patients demonstrate an impaired masticatory performance, possibly due to reduced tongue forces and disturbed oral sensitivity. Furthermore, facial asymmetry is common, but mostly discrete and lip restraining forces are reduced. Bite force is not different between the ipsi- and contra-lesional side. In contrast, the contra-lesional handgrip strength and tongue-palate contact during swallowing are significantly impaired. OHRQoL is significantly reduced mainly because of the functional impairment. It can be concluded that impaired chewing efficiency, dysphagia, facial asymmetry, reduced lip force and OHRQoL are quantifiable symptoms of oro-facial impairment following a stroke. In the absence of functional rehabilitation, these symptoms seem not to improve. Furthermore, stroke affects the upper limb and the masseter muscle differently, both, at a functional and a morphological level. The rehabilitation of stroke survivors should, therefore, also seek to improve the strength and co-ordination of the oro-facial musculature. This would in turn help improve OHRQoL and the masticatory function, subsequently preventing weight loss and malnutrition.

  13. Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task.

    PubMed

    Dalley, J W; McGaughy, J; O'Connell, M T; Cardinal, R N; Levita, L; Robbins, T W

    2001-07-01

    Optimization of cognitive processing may depend on specific and distinct functions of the cortical cholinergic and noradrenergic systems. This investigation dissociates functions of cortical acetylcholine (ACh) and noradrenaline (NA) in arousal and visual attention by simultaneously measuring ACh and NA efflux in the rat prefrontal cortex during sustained attentional performance. The five-choice serial reaction time task was used to provide a continuous assessment of visuospatial attention. Previous studies using this task have established a critical role for the cortical cholinergic system in the detection of visual targets. However, selective lesions of the locus coeruleus noradrenergic system impair performance only when additional attentional demands are placed on the subject by distractors or temporally unpredictable targets. To test the hypothesis that the cortical noradrenergic system is particularly sensitive to novel task contingencies, we also assessed NA and ACh efflux in rats that been trained previously on the task but for whom the instrumental contingency coupling responding with stimulus detection and reward was abolished. Cortical ACh efflux showed a robust and task-related increase during established contingent performance. This response was significantly attenuated in noncontingent subjects, although it still exceeded pretask values. In contrast, NA efflux only increased transiently in contingent subjects after task onset but showed sustained elevations in noncontingent subjects on the first day when contingencies were changed. These data also implicate cortical ACh in aspects of attentional functioning but highlight a specific involvement of the cortical noradrenergic system in detecting shifts in the predictive relationship between instrumental action and reinforcement.

  14. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers.

    PubMed

    Eskildsen, Simon F; Østergaard, Lasse R; Rodell, Anders B; Østergaard, Leif; Nielsen, Jørgen E; Isaacs, Adrian M; Johannsen, Peter

    2009-04-15

    Frontotemporal dementia constitutes the third most prevalent neurodegenerative disease with dementia. We compared cortical structural changes in nine presymptomatic CHMP2B frontotemporal dementia mutation positive individuals with seven mutation negative family members. Using serial MRI scans with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy rates in the presymptomatic CHMP2B mutation carriers were statistically significant, though of a lower magnitude than those previously reported in patients of other types of frontotemporal dementia. Cortical thickness measurements revealed cortical thinning in mutation carriers bilaterally in the frontal and occipital lobes, and in the left temporal lobe. Results indicated that cortical thickness has a higher sensitivity for detecting small changes than whole-brain volumetric measures. Comparing mutation carriers with non-carriers revealed increased atrophy rates in mutation carriers bilaterally in the inferio-temporal cortex, the superior frontal cortex, and the insular cortex. These findings indicated impairment of regions involved in both behaviour and language. The symptoms previously reported in clinical CHMP2B frontotemporal dementia patients are associated with the anatomically affected regions here found in the presymptomatic mutation carriers.

  15. Unsupervised fetal cortical surface parcellation

    PubMed Central

    Dahdouh, Sonia; Limperopoulos, Catherine

    2016-01-01

    At the core of many neuro-imaging studies, atlas-based brain parcellations are used for example to study normal brain evolution across the lifespan. These atlases rely on the assumption that the same anatomical features are present on all subjects to be studied and that these features are stable enough to allow meaningful comparisons between different brain surfaces and structures These methods, however, often fail when applied to fetal MRI data, due to the lack of consistent anatomical features present across gestation. This paper presents a novel surface-based fetal cortical parcellation framework which attempts to circumvent the lack of consistent anatomical features by proposing a brain parcellation scheme that is based solely on learned geometrical features. A mesh signature incorporating both extrinsic and intrinsic geometrical features is proposed and used in a clustering scheme to define a parcellation of the fetal brain. This parcellation is then learned using a Random Forest (RF) based learning approach and then further refined in an alpha-expansion graph-cut scheme. Based on the votes obtained by the RF inference procedure, a probability map is computed and used as a data term in the graph-cut procedure. The smoothness term is defined by learning a transition matrix based on the dihedral angles of the faces. Qualitative and quantitative results on a cohort of both healthy and high-risk fetuses are presented. Both visual and quantitative assessments show good results demonstrating a reliable method for fetal brain data and the possibility of obtaining a parcellation of the fetal cortical surfaces using only geometrical features. PMID:27413248

  16. Unsupervised fetal cortical surface parcellation

    NASA Astrophysics Data System (ADS)

    Dahdouh, Sonia; Limperopoulos, Catherine

    2016-03-01

    At the core of many neuro-imaging studies, atlas-based brain parcellations are used for example to study normal brain evolution across the lifespan. These atlases rely on the assumption that the same anatomical features are present on all subjects to be studied and that these features are stable enough to allow meaningful comparisons between different brain surfaces and structures These methods, however, often fail when applied to fetal MRI data, due to the lack of consistent anatomical features present across gestation. This paper presents a novel surface-based fetal cortical parcellation framework which attempts to circumvent the lack of consistent anatomical features by proposing a brain parcellation scheme that is based solely on learned geometrical features. A mesh signature incorporating both extrinsic and intrinsic geometrical features is proposed and used in a clustering scheme to define a parcellation of the fetal brain. This parcellation is then learned using a Random Forest (RF) based learning approach and then further refined in an alpha-expansion graph-cut scheme. Based on the votes obtained by the RF inference procedure, a probability map is computed and used as a data term in the graph-cut procedure. The smoothness term is defined by learning a transition matrix based on the dihedral angles of the faces. Qualitative and quantitative results on a cohort of both healthy and high-risk fetuses are presented. Both visual and quantitative assessments show good results demonstrating a reliable method for fetal brain data and the possibility of obtaining a parcellation of the fetal cortical surfaces using only geometrical features.

  17. Cortical spreading depression: An enigma

    NASA Astrophysics Data System (ADS)

    Miura, R. M.; Huang, H.; Wylie, J. J.

    2007-08-01

    The brain is a complex organ with active components composed largely of neurons, glial cells, and blood vessels. There exists an enormous experimental and theoretical literature on the mechanisms involved in the functioning of the brain, but we still do not have a good understanding of how it works on a gross mechanistic level. In general, the brain maintains a homeostatic state with relatively small ion concentration changes, the major ions being sodium, potassium, and chloride. Calcium ions are present in smaller quantities but still play an important role in many phenomena. Cortical spreading depression (CSD for short) was discovered over 60 years ago by A.A.P. Leão, a Brazilian physiologist doing his doctoral research on epilepsy at Harvard University, “Spreading depression of activity in the cerebral cortex," J. Neurophysiol., 7 (1944), pp. 359-390. Cortical spreading depression is characterized by massive changes in ionic concentrations and slow nonlinear chemical waves, with speeds on the order of mm/min, in the cortex of different brain structures in various experimental animals. In humans, CSD is associated with migraine with aura, where a light scintillation in the visual field propagates, then disappears, and is followed by a sustained headache. To date, CSD remains an enigma, and further detailed experimental and theoretical investigations are needed to develop a comprehensive picture of the diverse mechanisms involved in producing CSD. A number of mechanisms have been hypothesized to be important for CSD wave propagation. In this paper, we briefly describe several characteristics of CSD wave propagation, and examine some of the mechanisms that are believed to be important, including ion diffusion, membrane ionic currents, osmotic effects, spatial buffering, neurotransmitter substances, gap junctions, metabolic pumps, and synaptic connections. Continuum models of CSD, consisting of coupled nonlinear diffusion equations for the ion concentrations, and

  18. Presymptomatic cortical thinning in familial Alzheimer disease

    PubMed Central

    Nicholas, Jennifer M.; Lehmann, Manja; Ryan, Natalie S.; Liang, Yuying; Macpherson, Kirsty; Modat, Marc; Rossor, Martin N.; Schott, Jonathan M.; Ourselin, Sebastien; Fox, Nick C.

    2016-01-01

    Objective: To identify a cortical signature pattern of cortical thinning in familial Alzheimer disease (FAD) and assess its utility in detecting and tracking presymptomatic neurodegeneration. Methods: We recruited 43 FAD mutation carriers—36 PSEN1, 7 APP (20 symptomatic, 23 presymptomatic)—and 42 healthy controls to a longitudinal clinical and MRI study. T1-weighted MRI scans were acquired at baseline in all participants; 55 individuals (33 mutation carriers; 22 controls) had multiple (mean 2.9) follow-up scans approximately annually. Cortical thickness was measured using FreeSurfer. A cortical thinning signature was identified from symptomatic FAD participants. We then examined cortical thickness changes in this signature region in presymptomatic carriers and assessed associations with cognitive performance. Results: The cortical signature included 6 regions: entorhinal cortex, inferior parietal cortex, precuneus, superior parietal cortex, superior frontal cortex, and supramarginal gyrus. There were significant differences in mean cortical signature thickness between mutation carriers and controls 3 years before predicted symptom onset. The earliest significant difference in a single region, detectable 4 years preonset, was in the precuneus. Rate of change in cortical thickness became significantly different in the cortical signature at 5 years before predicted onset, and in the precuneus at 8 years preonset. Baseline mean signature thickness predicted rate of subsequent thinning and correlated with presymptomatic cognitive change. Conclusions: The FAD cortical signature appears to be similar to that described for sporadic AD. All component regions showed significant presymptomatic thinning. A composite signature may provide more robust results than a single region and have utility as an outcome measure in presymptomatic trials. PMID:27733562

  19. PKCδ regulates cortical radial migration by stabilizing the Cdk5 activator p35

    PubMed Central

    Zhao, Chun-tao; Li, Kun; Li, Jun-tao; Zheng, Wang; Liang, Xu-jun; Geng, An-qi; Li, Ning; Yuan, Xiao-bing

    2009-01-01

    Cyclin-dependent kinase 5 (Cdk5) and its activator p35 are critical for radial migration and lamination of cortical neurons. However, how this kinase is regulated by extracellular and intracellular signals during cortical morphogenesis remains unclear. Here, we show that PKCδ, a member of novel PKC expressing in cortical neurons, could stabilize p35 by direct phosphorylation. PKCδ attenuated the degradation of p35 but not its mutant derivative, which could not be phosphorylated by PKCδ. Down-regulation of PKCδ by in utero electroporation of specific small interference RNA (siRNA) severely impaired the radial migration of cortical neurons. This migration defect was similar to that caused by down-regulation of p35 and could be prevented by cotransfection with the wild-type but not the mutant p35. Furthermore, PKCδ could be activated by the promigratory factor brain-derived neurotrophic factor (BDNF) and was required for the activation of Cdk5 by BDNF. Both PKCδ and p35 were required for the promigratory effect of BDNF on cultured newborn neurons. Thus, PKCδ may promote cortical radial migration through maintaining the proper level of p35 in newborn neurons. PMID:19965374

  20. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation

    PubMed Central

    Carmo-Silva, Sara; Botelho, Mariana; de Almeida, Luís Pereira; Cavadas, Cláudia

    2016-01-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  1. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    PubMed Central

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  2. N-Methyl D-Aspartate Receptor Antagonist Kynurenic Acid Affects Human Cortical Development

    PubMed Central

    Bagasrawala, Inseyah; Zecevic, Nada; Radonjić, Nevena V.

    2016-01-01

    Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan degradation, acts as an endogenous N-methyl-D-aspartate receptor (NMDAR) antagonist. Elevated levels of KYNA have been observed in pregnant women after viral infections and are considered to play a role in neurodevelopmental disorders. However, the consequences of KYNA-induced NMDAR blockade in human cortical development still remain elusive. To study the potential impact of KYNA on human neurodevelopment, we used an in vitro system of multipotent cortical progenitors, i.e., radial glia cells (RGCs), enriched from human cerebral cortex at mid-gestation (16–19 gestational weeks). KYNA treatment significantly decreased RGCs proliferation and survival by antagonizing NMDAR. This alteration resulted in a reduced number of cortical progenitors and neurons while number and activation of astrocytes increased. KYNA treatment reduced differentiation of RGCs into GABAergic neurons, while differentiation into glutamatergic neurons was relatively spared. Furthermore, in mixed cortical cultures KYNA triggered an inflammatory response as evidenced by increased levels of the pro-inflammatory cytokine IL-6. In conclusion, elevated levels of KYNA play a significant role in human RGC fate determination by antagonizing NMDARs and by activating an inflammatory response. The altered cell composition observed in cell culture following exposure to elevated KYNA levels suggests a mechanism for impairment of cortical circuitry formation in the fetal brain after viral infection, as seen in neurodevelopmental disorders such as schizophrenia. PMID:27746712

  3. Regional Brain Differences in Cortical Thickness, Surface Area and Subcortical Volume in Individuals with Williams Syndrome

    PubMed Central

    Meda, Shashwath A.; Pryweller, Jennifer R.; Thornton-Wells, Tricia A.

    2012-01-01

    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex

  4. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    PubMed

    Meda, Shashwath A; Pryweller, Jennifer R; Thornton-Wells, Tricia A

    2012-01-01

    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex

  5. Trabecular and cortical microstructure and fragility of the distal radius in women.

    PubMed

    Bala, Yohann; Bui, Quang Minh; Wang, Xiao-Fang; Iuliano, Sandra; Wang, Qingju; Ghasem-Zadeh, Ali; Rozental, Tamara D; Bouxsein, Mary L; Zebaze, Roger M D; Seeman, Ego

    2015-04-01

    Fragility fractures commonly involve metaphyses. The distal radius is assembled with a thin cortex formed by fusion (corticalization) of trabeculae arising from the periphery of the growth plate. Centrally positioned trabeculae reinforce the thin cortex and transfer loads from the joint to the proximal thicker cortical bone. We hypothesized that growth- and age-related deficits in trabecular bone disrupt this frugally assembled microarchitecture, producing bone fragility. The microarchitecture of the distal radius was measured using high-resolution peripheral quantitative computed tomography in 135 females with distal radial fractures, including 32 girls (aged 7 to 18 years), 35 premenopausal women (aged 18 to 44 years), and 68 postmenopausal women (aged 50 to 76 years). We also studied 240 fracture-free controls of comparable age and 47 healthy fracture-free premenopausal mother-daughter pairs (aged 30 to 55 and 7 to 20 years, respectively). In fracture-free girls and pre- and postmenopausal women, fewer or thinner trabeculae were associated with a smaller and more porous cortical area (r = 0.25 to 0.71 after age, height, and weight adjustment, all p < 0.05). Fewer and thinner trabeculae in daughters were associated with higher cortical porosity in their mothers (r = 0.30 to 0.47, all p < 0.05). Girls and premenopausal and postmenopausal women with forearm fractures had 0.3 to 0.7 standard deviations (SD) fewer or thinner trabeculae and higher cortical porosity than controls in one or more compartment; one SD trait difference conferred odds ratio (95% confidence interval) for fracture ranging from 1.56 (1.01-2.44) to 4.76 (2.86-7.69). Impaired trabecular corticalization during growth, and cortical and trabecular fragmentation during aging, may contribute to the fragility of the distal radius.

  6. A mathematical model of dysfunction of the thalamo-cortical loop in schizophrenia.

    PubMed

    Rosjat, Nils; Popovych, Svitlana; Daun-Gruhn, Silvia

    2014-10-18

    Recent experimental results suggest that impairment of auditory information processing in the thalamo-cortical loop is crucially related to schizophrenia. Large differences between schizophrenia patients and healthy controls were found in the cortical EEG signals. We derive a phenomenological mathematical model, based on coupled phase oscillators with continuously distributed frequencies to describe the neural activity of the thalamo-cortical loop. We examine the influence of the bidirectional coupling strengths between the thalamic and the cortical area with regard to the phase-locking effects observed in the experiments. We extend this approach to a model consisting of a thalamic area coupled to two cortical areas, each comprising a set of nonidentical phase oscillators. In the investigations of our model, we applied the Ott-Antonsen theory and the Pikovsky-Rosenblum reduction methods to the original system. The results derived from our mathematical model satisfactorily reproduce the experimental data obtained by EEG measurements. Furthermore, they show that modifying the coupling strength from the thalamic region to a cortical region affects the duration of phase synchronization, while a change in the feedback to the thalamus affects the strength of synchronization in the cortex. In addition, our model provides an explanation in terms of nonlinear dynamics as to why brain waves desynchronize after a given phase reset. Our model can explain functional differences seen between EEG records of healthy subjects and schizophrenia patients on a system theoretic basis. Because of this and its predictive character, the model may be considered to pave the way towards an early and reliable clinical detection of schizophrenia that is dependent on the interconnections between the thalamic and cortical regions. In particular, the model parameter that describes the strength of this connection can be used for a diagnostic classification of schizophrenia patients.

  7. Cortical thickness, volume and surface area in patients with bipolar disorder types I and II

    PubMed Central

    Abé, Christoph; Ekman, Carl-Johan; Sellgren, Carl; Petrovic, Predrag; Ingvar, Martin; Landén, Mikael

    2016-01-01

    Background Bipolar disorder (BD) is a common chronic psychiatric disorder mainly characterized by episodes of mania, hypomania and depression. The disorder is associated with cognitive impairments and structural brain abnormalities, such as lower cortical volumes in primarily frontal brain regions than healthy controls. Although bipolar disorder types I (BDI) and II (BDII) exhibit different symptoms and severity, previous studies have focused on BDI. Furthermore, the most frequently investigated measure in this population is cortical volume. The aim of our study was to investigate abnormalities in patients with BDI and BDII by simultaneously analyzing cortical volume, thickness and surface area, which yields more information about disease- and symptom-related neurobiology. Methods We used MRI to measure cortical volume, thickness and area in patients with BDI and BDII as well as in healthy controls. The large study cohort enabled us to adjust for important confounding factors. Results We included 81 patients with BDI, 59 with BDII and 85 controls in our analyses. Cortical volume, thickness and surface area abnormalities were present in frontal, temporal and medial occipital regions in patients with BD. Lithium and antiepileptic drug use had an effect on the observed differences in medial occipital regions. Patients with the subtypes BDI and BDII displayed common cortical abnormalities, such as lower volume, thickness and surface area than healthy controls in frontal brain regions but differed in temporal and medial prefrontal regions, where only those with BDI had abnormally low cortical volume and thickness. Limitations The group differences can be explained by progressive changes, but also by premorbid conditions. They could also have been influenced by unknown factors, such as social, environmental or genetic factors. Conclusion Our findings suggest diagnosis-related neurobiological differences between the BD subtypes, which could explain distinct symptoms and

  8. Reduced modulation of scanpaths in response to task demands in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Pertzov, Yoni; Yong, Keir X X; Nicholas, Jennifer; Crutch, Sebastian J

    2015-02-01

    A difficulty in perceiving visual scenes is one of the most striking impairments experienced by patients with the clinico-radiological syndrome posterior cortical atrophy (PCA). However whilst a number of studies have investigated perception of relatively simple experimental stimuli in these individuals, little is known about multiple object and complex scene perception and the role of eye movements in posterior cortical atrophy. We embrace the distinction between high-level (top-down) and low-level (bottom-up) influences upon scanning eye movements when looking at scenes. This distinction was inspired by Yarbus (1967), who demonstrated how the location of our fixations is affected by task instructions and not only the stimulus' low level properties. We therefore examined how scanning patterns are influenced by task instructions and low-level visual properties in 7 patients with posterior cortical atrophy, 8 patients with typical Alzheimer's disease, and 19 healthy age-matched controls. Each participant viewed 10 scenes under four task conditions (encoding, recognition, search and description) whilst eye movements were recorded. The results reveal significant differences between groups in the impact of test instructions upon scanpaths. Across tasks without a search component, posterior cortical atrophy patients were significantly less consistent than typical Alzheimer's disease patients and controls in where they were looking. By contrast, when comparing search and non-search tasks, it was controls who exhibited lowest between-task similarity ratings, suggesting they were better able than posterior cortical atrophy or typical Alzheimer's disease patients to respond appropriately to high-level needs by looking at task-relevant regions of a scene. Posterior cortical atrophy patients had a significant tendency to fixate upon more low-level salient parts of the scenes than controls irrespective of the viewing task. The study provides a detailed characterisation of

  9. Using principles of learning to inform language therapy design for children with specific language impairment.

    PubMed

    Alt, Mary; Meyers, Christina; Ancharski, Alexandra

    2012-01-01

    Language treatment for children with specific language impairment (SLI) often takes months to achieve moderate results. Interventions often do not incorporate the principles that are known to affect learning in unimpaired learners. To outline some key findings about learning in typical populations and to suggest a model of how they might be applied to language treatment design as a catalyst for further research and discussion. Three main principles of implicit learning are reviewed: variability, complexity and sleep-dependent consolidation. After explaining these principles, evidence is provided as to how they influence learning tasks in unimpaired learners. Information is reviewed on principles of learning as they apply to impaired populations, current treatment designs are also reviewed that conform to the principles, and ways in which principles of learning might be incorporated into language treatment design are demonstrated. This paper provides an outline for how theoretical knowledge might be applied to clinical practice in an effort to promote discussion. Although the authors look forward to more specific details on how the principles of learning relate to impaired populations, there is ample evidence to suggest that these principles should be considered during treatment design. © 2012 Royal College of Speech and Language Therapists.

  10. Aetiology of cognitive impairment in children with frontal lobe epilepsy.

    PubMed

    Braakman, H M H; Vaessen, M J; Jansen, J F A; Debeij-van Hall, M H J A; de Louw, A; Hofman, P A M; Vles, J S H; Aldenkamp, A P; Backes, W H

    2015-01-01

    Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE), but its aetiology is unknown. MRI scans often reveal no structural brain abnormalities that could explain the cognitive impairment. This does not exclude more subtle morphological abnormalities that can only be detected by automated morphometric techniques. With these techniques, we investigate the relationship between cortical brain morphology and cognitive functioning in a cohort of children with FLE and healthy controls. Thirty-four children aged 8-13 years with FLE of unknown cause and 41 healthy age-matched controls underwent neuropsychological assessment and structural brain MRI. Patients were grouped as cognitively impaired or unimpaired. Intracranial volume, white matter volume, lobular cortical volume, cortical thickness and volumes of cortex structures were compared between patients and controls, and potential correlations with cognitive status were determined. The group of cognitively impaired children with FLE had significantly smaller left temporal cortex volumes, specifically middle temporal grey matter volume and entorhinal cortex thickness. In addition, cognitively impaired children with FLE had smaller volumes of structures in the left and right frontal cortex, right temporal cortex and the left subcortical area. Cognitively impaired children with FLE have smaller volumes of various cortex structures within the frontal lobes and in extra-frontal regions, most notably temporal cortex volumes. These findings might well explain the broad scale of cognitive domains affected in children with FLE complicated by cognitive impairment and highlight that FLE impacts on areas beyond the frontal lobe. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity

    PubMed Central

    Guan, Sudong; Zhu, Yan; Wang, Jin-Hui

    2015-01-01

    Background Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury. Results Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons. Conclusion Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously. PMID:26474076

  12. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity.

    PubMed

    Huang, Li; Zhao, Shidi; Lu, Wei; Guan, Sudong; Zhu, Yan; Wang, Jin-Hui

    2015-01-01

    Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury. Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons. Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously.

  13. Effects of age and symptomatology on cortical thickness in autism spectrum disorders

    PubMed Central

    Doyle-Thomas, Krissy A.R.; Duerden, Emma G.; Taylor, Margot J.; Lerch, Jason P.; Soorya, Latha V.; Wang, A. Ting; Fan, Jin; Hollander, Eric; Anagnostou, Evdokia

    2013-01-01

    Several brain regions show structural and functional abnormalities in individuals with autism spectrum disorders (ASD), but the developmental trajectory of abnormalities in these structures and how they may relate to social and communicative impairments are still unclear. We assessed the effects of age on cortical thickness in individuals with ASD, between the ages of 7 and 39 years in comparison to typically developing controls. Additionally, we examined differences in cortical thickness in relation to symptomatology in the ASD group, and their association with age. Analyses were conducted using a general linear model, controlling for sex. Social and communication scores from the Autism Diagnostic Interview-Revised (ADI-R) were correlated with the thickness of regions implicated in those functions. Controls showed widespread cortical thinning relative to the ASD group. Within regions-of-interest, increased thickness in the rostral anterior cingulate cortex was associated with poorer social scores. Additionally, a significant interaction between age and social impairment was found in the orbitofrontal cortex, with more impaired younger children having decreased thickness in this region. These results suggest that differential neurodevelopmental trajectories are present in individuals with ASD and some differences are associated with diagnostic behaviours. PMID:23678367

  14. Deep brain and cortical stimulation for epilepsy.

    PubMed

    Sprengers, Mathieu; Vonck, Kristl; Carrette, Evelien; Marson, Anthony G; Boon, Paul

    2017-07-18

    Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. Since the 1970s interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). This is an updated version of a previous Cochrane review published in 2014. To assess the efficacy, safety and tolerability of DBS and cortical stimulation for refractory epilepsy based on randomized controlled trials (RCTs). We searched the Cochrane Epilepsy Group Specialized Register on 29 September 2015, but it was not necessary to update this search, because records in the Specialized Register are included in CENTRAL. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 11, 5 November 2016), PubMed (5 November 2016), ClinicalTrials.gov (5 November 2016), the WHO International Clinical Trials Registry Platform ICTRP (5 November 2016) and reference lists of retrieved articles. We also contacted device manufacturers and other researchers in the field. No language restrictions were imposed. RCTs comparing deep brain or cortical stimulation versus sham stimulation, resective surgery, further treatment with antiepileptic drugs or other neurostimulation treatments (including vagus nerve stimulation). Four review authors independently selected trials for inclusion. Two review authors independently extracted the relevant data and assessed trial quality and overall quality of evidence. The outcomes investigated were seizure freedom, responder rate, percentage seizure frequency reduction, adverse events, neuropsychological outcome and quality of life. If additional data were needed, the study investigators were contacted. Results were analysed and reported separately for different intracranial targets for reasons of clinical heterogeneity

  15. Deep brain and cortical stimulation for epilepsy.

    PubMed

    Sprengers, Mathieu; Vonck, Kristl; Carrette, Evelien; Marson, Anthony G; Boon, Paul

    2014-06-17

    Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. In the last decades, interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). To assess the efficacy, safety and tolerability of deep brain and cortical stimulation for refractory epilepsy based on randomized controlled trials. We searched PubMed (6 August 2013), the Cochrane Epilepsy Group Specialized Register (31 August 2013), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 7 of 12) and reference lists of retrieved articles. We also contacted device manufacturers and other researchers in the field. No language restrictions were imposed. Randomized controlled trials (RCTs) comparing deep brain or cortical stimulation to sham stimulation, resective surgery or further treatment with antiepileptic drugs. Four review authors independently selected trials for inclusion. Two review authors independently extracted the relevant data and assessed trial quality and overall quality of evidence. The outcomes investigated were seizure freedom, responder rate, percentage seizure frequency reduction, adverse events, neuropsychological outcome and quality of life. If additional data were needed, the study investigators were contacted. Results were analysed and reported separately for different intracranial targets for reasons of clinical heterogeneity. Ten RCTs comparing one to three months of intracranial neurostimulation to sham stimulation were identified. One trial was on anterior thalamic DBS (n = 109; 109 treatment periods); two trials on centromedian thalamic DBS (n = 20; 40 treatment periods), but only one of the trials (n = 7; 14 treatment periods) reported sufficient information for inclusion in the quantitative meta

  16. Acute Cortical Transhemispheric Diaschisis after Unilateral Traumatic Brain Injury.

    PubMed

    Le Prieult, Florie; Thal, Serge C; Engelhard, Kristin; Imbrosci, Barbara; Mittmann, Thomas

    2017-03-01

    Focal neocortical brain injuries lead to functional alterations, which can spread beyond lesion-neighboring brain areas. The undamaged hemisphere and its associated disturbances after a unilateral lesion, so-called transhemispheric diaschisis, have been progressively disclosed over the last decades; they are strongly involved in the pathophysiology and, potentially, recovery of brain injuries. Understanding the temporal dynamics of these transhemispheric functional changes is crucial to decipher the role of the undamaged cortex in the processes of functional reorganization at different stages post-lesion. In this regard, little is known about the acute-subacute processes after 24-48 h in the brain hemisphere contralateral to injury. In the present study, we performed a controlled cortical impact to produce a unilateral traumatic brain injury (TBI) in the motor and somatosensory cortex of mice. In vitro extracellular multi-unit recordings from large neuronal populations, together with single-cell patch-clamp recordings in the cortical network contralateral to the lesion, revealed a strong, but transient, neuronal hyperactivity as early as 24-48 h post-TBI. This abnormal excitable state in the intact hemisphere was not accompanied by alterations in neuronal intrinsic properties, but it was associated with an impairment of the phasic gamma aminobutyric acid (GABA)ergic transmission and an increased expression of GABAA receptor subunits related to tonic inhibition exclusively in the contralateral hemisphere. These data unravel a series of early transhemispheric functional alterations after diffuse unilateral cortical injury, which may compensate and stabilize the disrupted brain functions. Therefore, our findings support the hypothesis that the undamaged hemisphere could play a significant role in early functional reorganization processes after a TBI.

  17. Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke.

    PubMed

    Vlaar, Martijn P; Solis-Escalante, Teodoro; Dewald, Julius P A; van Wegen, Erwin E H; Schouten, Alfred C; Kwakkel, Gert; van der Helm, Frans C T

    2017-04-17

    Cortical damage after stroke can drastically impair sensory and motor function of the upper limb, affecting the execution of activities of daily living and quality of life. Motor impairment after stroke has been thoroughly studied, however sensory impairment and its relation to movement control has received less attention. Integrity of the somatosensory system is essential for feedback control of human movement, and compromised integrity due to stroke has been linked to sensory impairment. The goal of this study is to assess the integrity of the somatosensory system in individuals with chronic hemiparetic stroke with different levels of sensory impairment, through a combination of robotic joint manipulation and high-density electroencephalogram (EEG). A robotic wrist manipulator applied continuous periodic disturbances to the affected limb, providing somatosensory (proprioceptive and tactile) stimulation while challenging task execution. The integrity of the somatosensory system was evaluated during passive and active tasks, defined as 'relaxed wrist' and 'maintaining 20% maximum wrist flexion', respectively. The evoked cortical responses in the EEG were quantified using the power in the averaged responses and their signal-to-noise ratio. Thirty individuals with chronic hemiparetic stroke and ten unimpaired individuals without stroke participated in this study. Participants with stroke were classified as having severe, mild, or no sensory impairment, based on the Erasmus modification of the Nottingham Sensory Assessment. Under passive conditions, wrist manipulation resulted in contralateral cortical responses in unimpaired and chronic stroke participants with mild and no sensory impairment. In participants with severe sensory impairment the cortical responses were strongly reduced in amplitude, which related to anatomical damage. Under active conditions, participants with mild sensory impairment showed reduced responses compared to the passive condition, whereas

  18. Cortical Feedback Control of Olfactory Bulb Circuits

    PubMed Central

    Boyd, Alison M.; Sturgill, James F.; Poo, Cindy; Isaacson, Jeffry S.

    2013-01-01

    SUMMARY Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  19. Cortical Alterations in Medication-Overuse Headache.

    PubMed

    Riederer, Franz; Schaer, Marie; Gantenbein, Andreas R; Luechinger, Roger; Michels, Lars; Kaya, Marihan; Kollias, Spyridon; Sándor, Peter S

    2017-02-01

    Using surface-based morphometry we aimed to provide a detailed examination of cortical alterations in medication-overuse headache (MOH), by disentangling between altered cortical thickness and gyrification (folding). In MOH, pain modulation is probably dysfunctional at the cortical and subcortical level, resulting in a disequilibrium between pain inhibition and facilitation. Both increased and decreased cortical volumes have been reported in individuals with MOH. There is however no detailed examination to date that distinguishes between altered cortical thickness and gyrification. Such distinction would help to identify the nature and timing of neurodevelopmental mechanisms at play in affected individuals. We investigated cortical thickness and gyrification in 29 patients with MOH according to International Headache Society criteria and 29 age- and gender-matched controls, using high-resolution structural MRIs of the brain analyzed with FreeSurfer. This is a secondary analysis of data from a previously published voxel-based morphometry study. In patients with MOH compared to controls, reduced cortical thickness was observed in the left prefrontal cortex. We also observed higher local gyrification in one cluster extending from the fusiform cortex to adjacent medial temporal regions, and in another cluster in the right occipital pole. Higher gyrification in the right occipital pole predicted poor response after detoxification. Corroborating previous volumetric results, our study adds information on the putative neurobiological mechanisms involved in MOH, suggesting neurodevelopmental changes in MOH. © 2016 American Headache Society.

  20. A Turing Reaction-Diffusion Model for Human Cortical Folding Patterns and Cortical Pattern Malformations

    NASA Astrophysics Data System (ADS)

    Hurdal, Monica K.; Striegel, Deborah A.

    2011-11-01

    Modeling and understanding cortical folding pattern formation is important for quantifying cortical development. We present a biomathematical model for cortical folding pattern formation in the human brain and apply this model to study diseases involving cortical pattern malformations associated with neural migration disorders. Polymicrogyria is a cortical malformation disease resulting in an excessive number of small gyri. Our mathematical model uses a Turing reaction-diffusion system to model cortical folding. The lateral ventricle (LV) and ventricular zone (VZ) of the brain are critical components in the formation of cortical patterning. In early cortical development the shape of the LV can be modeled with a prolate spheroid and the VZ with a prolate spheroid surface. We use our model to study how global cortex characteristics, such as size and shape of the LV, affect cortical pattern formation. We demonstrate increasing domain scale can increase the number of gyri and sulci formed. Changes in LV shape can account for sulcus directionality. By incorporating LV size and shape, our model is able to elucidate which parameters can lead to excessive cortical folding.

  1. Synaptic unreliability facilitates information transmission in balanced cortical populations

    NASA Astrophysics Data System (ADS)

    Gatys, Leon A.; Ecker, Alexander S.; Tchumatchenko, Tatjana; Bethge, Matthias

    2015-06-01

    Synaptic unreliability is one of the major sources of biophysical noise in the brain. In the context of neural information processing, it is a central question how neural systems can afford this unreliability. Here we examine how synaptic noise affects signal transmission in cortical circuits, where excitation and inhibition are thought to be tightly balanced. Surprisingly, we find that in this balanced state synaptic response variability actually facilitates information transmission, rather than impairing it. In particular, the transmission of fast-varying signals benefits from synaptic noise, as it instantaneously increases the amount of information shared between presynaptic signal and postsynaptic current. Furthermore we show that the beneficial effect of noise is based on a very general mechanism which contrary to stochastic resonance does not reach an optimum at a finite noise level.

  2. Alteration of Electro-Cortical Activity in Microgravity

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Brummer, Vera; Carnahan, Heather; Askew, Christopher D.; Guardiera, Simon; Struder, Heiko K.

    2008-06-01

    There is growing interest in the effects of weightlessness on central nervous system (CNS) activity. Due to technical and logistical limitations it presently seems impossible to apply imaging techniques as fMRI or PET in weightless environments e.g. on ISS or during parabolic flights. Within this study we evaluated changes in brain cortical activity using low resolution brain electromagnetic tomography (LORETA) during parabolic flights. Results showed a distinct inhibition of right frontal area activity >12Hz during phases of microgravity compared to normal gravity. We conclude that the inhibition of high frequency frontal activity during microgravity may serve as a marker of emotional anxiety and/or indisposition associated with weightlessness. This puts a new light on the debate as to whether cognitive and sensorimotor impairments are attributable to primary physiological effects or secondary psychological effects of a weightless environment.

  3. Degraded attentional modulation of cortical neural populations in strabismic amblyopia

    PubMed Central

    Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti

    2016-01-01

    Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI–informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye. PMID:26885628

  4. Unfolded Maps for Quantitative Analysis of Cortical Lesion Location and Extent after Traumatic Brain Injury.

    PubMed

    Ekolle Ndode-Ekane, Xavier; Kharatishvili, Irina; Pitkänen, Asla

    2017-01-15

    We aimed to generate two-dimensional (2D) unfolded cortical maps from magnetic resonance (MR) images to delineate the location of traumatic brain injury (TBI)-induced cortical damage in functionally diverse cytoarchitectonic areas of the cerebral cortex, and to predict the severity of functional impairment after TBI based on the lesion location and extent. Lateral fluid-percussion injury was induced in adult rats and T2 maps were acquired with magnetic resonance imaging (MRI) at 3 days post-TBI. Somatomotor deficits were assessed based on the composite neuroscore and beam balance test, and spatial learning was assessed in the Morris water maze. Animals were perfused for histology at 13 days post-injury. A 2D template was generated by unfolding the cerebral cortex from 26 sections of the rat brain atlas, covering the lesion extent. Next, 2D unfolded maps were generated from T2 maps and thionin-stained histological sections from the same animals. Unfolding of the T2 maps revealed the lesion core in the auditory, somatosensory, and visual cortices. The unfolded histological lesion at 13 days post-injury was 12% greater than the MRI lesion at 3 days post-TBI, as the lesion area increased laterally and caudally; the larger the MRI lesion area, the larger the histological lesion area. Further, the larger the MRI lesion area in the barrel field of the primary somatosensory cortex (S1BF), upper lip of the primary somatosensory cortex (S1ULp), secondary somatosensory division (S2), and ectorhinal (Ect) and perirhinal (PRh) cortices, the more impaired the performance in the beam balance and Morris water maze tests. Subsequent receiver operating characteristic analysis indicated that severity of the MRI lesion in S1ULp and S2 was a sensitive and specific predictor of poor performance in the beam balance test. Moreover, MRI lesions in the S1ULp, S2, S1BF, and Ect and PRh cortices predicted poor performance in the Morris water maze test. Our findings indicate that 2D

  5. Movement, confusion, and orienting in frontal cortices.

    PubMed

    Brecht, Michael

    2011-10-20

    In this issue, two studies, by Ehrlich et al. and Hill et al., address the role of the frontal motor cortices in behavior of the rat and suggest a potential role for this structure in high-level control of diverse behaviors. Hill et al. show that motor cortical neurons predict whisker movements even without sensory feedback and that their activity reflects efferent control. Surprisingly, Ehrlich et al. report the participation of this same cortical region in the preparation and execution of orienting behaviors.

  6. Osmosis in Cortical Collecting Tubules

    PubMed Central

    Schafer, James A.; Patlak, Clifford S.; Andreoli, Thomas E.

    1974-01-01

    This paper reports a theoretical analysis of osmotic transients and an experimental evaluation both of rapid time resolution of lumen to bath osmosis and of bidirectional steady-state osmosis in isolated rabbit cortical collecting tubules exposed to antidiuretic hormone (ADH). For the case of a membrane in series with unstirred layers, there may be considerable differences between initial and steady-state osmotic flows (i.e., the osmotic transient phenomenon), because the solute concentrations at the interfaces between membrane and unstirred layers may vary with time. A numerical solution of the equation of continuity provided a means for computing these time-dependent values, and, accordingly, the variation of osmotic flow with time for a given set of parameters including: Pf (cm s–1), the osmotic water permeability coefficient, the bulk phase solute concentrations, the unstirred layer thickness on either side of the membrane, and the fractional areas available for volume flow in the unstirred layers. The analyses provide a quantitative frame of reference for evaluating osmotic transients observed in epithelia in series with asymmetrical unstirred layers and indicate that, for such epithelia, Pf determinations from steady-state osmotic flows may result in gross underestimates of osmotic water permeability. In earlier studies, we suggested that the discrepancy between the ADH-dependent values of Pf and PDDw (cm s–1, diffusional water permeability coefficient) was the consequence of cellular constraints to diffusion. In the present experiments, no transients were detectable 20–30 s after initiating ADH-dependent lumen to bath osmosis; and steady-state ADH-dependent osmotic flows from bath to lumen and lumen to bath were linear and symmetrical. An evaluation of these data in terms of the analytical model indicates: First, cellular constraints to diffusion in cortical collecting tubules could be rationalized in terms of a 25-fold reduction in the area of the

  7. [Preoperative direct cortical and sub-cortical electric stimulation during cerebral surgery in functional areas].

    PubMed

    Duffau, H; Capelle, L; Sichez, J P; Bitar, A; Faillot, T; Arthuis, F; Van Effenterre, R; Fohanno, D

    1999-09-01

    Indications of surgical treatment for lesions in functional cerebral areas depend on the ratio between the definitive neurological deficit and the beneficial effect of resection. Detection of eloquent cortex is difficult because of important individual variability. Peroperative direct cortical and subcortical electrical stimulations (DCS) provide the most precise and reliable method currently available allowing identification and preservation of neurons essential for motricity, sensitivity++ and language. We report our preliminary experience with DCS in surgery of intracerebral infiltrative tumors with a consecutive series of 15 patients operated from November 96 through September 97 in our institution. Presenting symptoms in the 15 patients (8 males, 7 females, mean age 43 years) were seizures in 11 cases (73%) and neurological deficit in 4 cases (27%). Clinical examination was normal in 11 patients and revealed hemiparesia in 4. Magnetic resonance imaging (MRI) with three-dimensional reconstruction showed a precentral tumor in 10 cases, central lesion in one patient, postcentral lesion in two cases, right insular tumor (non-dominant hemisphere) in one case. All patients underwent surgical resection using DCS with detection in 13 cases of motor cortex and subcortical pathways under genera anesthesia, in one case of somatosensory area under local anesthesia, and in one case of language areas also under local anesthesia. The tumor was recurrent in two patients had been operated earlier but without DCS. Resection, verified by postoperative MRI, was total in 12 cases (80%) and estimated at 80% in 3 patients. Histological examination revealed an infiltrative glioma in 12 cases (8 low grade astrocytomas, 3 low grade oligodendrogliomas, and one anaplastic oligodendroglioma), and metastases in 3 cases. Eight patients had no postoperative deficit, while the other 7 patients were impaired, with, in all cases except one, complete recovery in 15 days to 2 months. Direct

  8. Chromatic Discrimination in a Cortically Colour Blind Observer.

    PubMed

    Heywood, C. A.; Cowey, A.; Newcombe, F.

    1991-01-01

    We tested the ability of a subject with cerebral achromatopsia to discriminate between colours and to detect chromatic borders. He was unable to identify colours or to arrange them in an orderly series or choose the odd colour out of an array or even to pick out a colour embedded in an array of greys. Nevertheless, he could select the odd colour when the colours were contiguous, even when they were isoluminant, and could discriminate an ordered from a disordered chromatic series as long as the colours in each row abutted one other. His verbal replies showed that he did so by detecting an edge between two stimuli that were, to him, perceptually identical. Introducing a narrow isoluminant grey stripe between adjacent colours abolished or greatly impaired this ability. As long as isoluminant colours were contiguous the patient could identify the orientation of the chromatic borders. Photopic spectral sensitivity showed evidence both for activity of three cone channels and for chromatic opponent processing, indicating that postreceptoral chromatic processing is occurring despite the absence of any conscious awareness of colour. The results indicate that both parvocellular colour opponent and magnoc