Sample records for impairs sleep-dependent cortical

  1. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    PubMed

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  2. Spatiotemporal characteristics of sleep spindles depend on cortical location.

    PubMed

    Piantoni, Giovanni; Halgren, Eric; Cash, Sydney S

    2017-02-01

    Since their discovery almost one century ago, sleep spindles, 0.5-2s long bursts of oscillatory activity at 9-16Hz during NREM sleep, have been thought to be global and relatively uniform throughout the cortex. Recent work, however, has brought this concept into question but it remains unclear to what degree spindles are global or local and if their properties are uniform or location-dependent. We addressed this question by recording sleep in eight patients undergoing evaluation for epilepsy with intracranial electrocorticography, which combines high spatial resolution with extensive cortical coverage. We find that spindle characteristics are not uniform but are strongly influenced by the underlying cortical regions, particularly for spindle density and fundamental frequency. We observe both highly isolated and spatially distributed spindles, but in highly skewed proportions: while most spindles are restricted to one or very few recording channels at any given time, there are spindles that occur over widespread areas, often involving lateral prefrontal cortices and superior temporal gyri. Their co-occurrence is affected by a subtle but significant propagation of spindles from the superior prefrontal regions and the temporal cortices towards the orbitofrontal cortex. This work provides a brain-wide characterization of sleep spindles as mostly local graphoelements with heterogeneous characteristics that depend on the underlying cortical area. We propose that the combination of local characteristics and global organization reflects the dual properties of the thalamo-cortical generators and provides a flexible framework to support the many functions ascribed to sleep in general and spindles specifically. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Neuronal Oscillations Indicate Sleep-dependent Changes in the Cortical Memory Trace.

    PubMed

    Köster, Moritz; Finger, Holger; Kater, Maren-Jo; Schenk, Christoph; Gruber, Thomas

    2017-04-01

    Sleep promotes the consolidation of newly acquired associative memories. Here we used neuronal oscillations in the human EEG to investigate sleep-dependent changes in the cortical memory trace. The retrieval activity for object-color associations was assessed immediately after encoding and after 3 hr of sleep or wakefulness. Sleep had beneficial effects on memory performance and led to reduced event-related theta and gamma power during the retrieval of associative memories. Furthermore, event-related alpha suppression was attenuated in the wake group for memorized and novel stimuli. There were no sleep-dependent changes in retrieval activity for missed items or items retrieved without color. Thus, the sleep-dependent reduction in theta and gamma oscillations was specific for the retrieval of associative memories. In line with theoretical accounts on sleep-dependent memory consolidation, decreased theta may indicate reduced mediotemporal activity because of a transfer of information into neocortical networks during sleep, whereas reduced parietal gamma may reflect effects of synaptic downscaling. Changes in alpha suppression in the wake group possibly index reduced attentional resources that may also contribute to a lower memory performance in this group. These findings indicate that the consolidation of associative memories during sleep is associated with profound changes in the cortical memory trace and relies on multiple neuronal processes working in concert.

  4. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice

    PubMed Central

    Fisher, Simon P.; Cui, Nanyi; Peirson, Stuart N.; Foster, Russell G.

    2018-01-01

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  5. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice.

    PubMed

    McKillop, Laura E; Fisher, Simon P; Cui, Nanyi; Peirson, Stuart N; Foster, Russell G; Wafford, Keith A; Vyazovskiy, Vladyslav V

    2018-04-18

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  6. Top-down cortical input during NREM sleep consolidates perceptual memory.

    PubMed

    Miyamoto, D; Hirai, D; Fung, C C A; Inutsuka, A; Odagawa, M; Suzuki, T; Boehringer, R; Adaikkan, C; Matsubara, C; Matsuki, N; Fukai, T; McHugh, T J; Yamanaka, A; Murayama, M

    2016-06-10

    During tactile perception, long-range intracortical top-down axonal projections are essential for processing sensory information. Whether these projections regulate sleep-dependent long-term memory consolidation is unknown. We altered top-down inputs from higher-order cortex to sensory cortex during sleep and examined the consolidation of memories acquired earlier during awake texture perception. Mice learned novel textures and consolidated them during sleep. Within the first hour of non-rapid eye movement (NREM) sleep, optogenetic inhibition of top-down projecting axons from secondary motor cortex (M2) to primary somatosensory cortex (S1) impaired sleep-dependent reactivation of S1 neurons and memory consolidation. In NREM sleep and sleep-deprivation states, closed-loop asynchronous or synchronous M2-S1 coactivation, respectively, reduced or prolonged memory retention. Top-down cortical information flow in NREM sleep is thus required for perceptual memory consolidation. Copyright © 2016, American Association for the Advancement of Science.

  7. Sleep/wake dependent changes in cortical glucose concentrations.

    PubMed

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  8. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning.

    PubMed

    Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R

    2012-09-26

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.

  9. Antidepressant Suppression of Non-REM Sleep Spindles and REM Sleep Impairs Hippocampus-Dependent Learning While Augmenting Striatum-Dependent Learning

    PubMed Central

    Watts, Alain; Gritton, Howard J.; Sweigart, Jamie

    2012-01-01

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State–performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS. PMID:23015432

  10. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.

    PubMed

    Latchoumane, Charles-Francois V; Ngo, Hong-Viet V; Born, Jan; Shin, Hee-Sup

    2017-07-19

    While the interaction of the cardinal rhythms of non-rapid-eye-movement (NREM) sleep-the thalamo-cortical spindles, hippocampal ripples, and the cortical slow oscillations-is thought to be critical for memory consolidation during sleep, the role spindles play in this interaction is elusive. Combining optogenetics with a closed-loop stimulation approach in mice, we show here that only thalamic spindles induced in-phase with cortical slow oscillation up-states, but not out-of-phase-induced spindles, improve consolidation of hippocampus-dependent memory during sleep. Whereas optogenetically stimulated spindles were as efficient as spontaneous spindles in nesting hippocampal ripples within their excitable troughs, stimulation in-phase with the slow oscillation up-state increased spindle co-occurrence and frontal spindle-ripple co-occurrence, eventually resulting in increased triple coupling of slow oscillation-spindle-ripple events. In-phase optogenetic suppression of thalamic spindles impaired hippocampus-dependent memory. Our results suggest a causal role for thalamic sleep spindles in hippocampus-dependent memory consolidation, conveyed through triple coupling of slow oscillations, spindles, and ripples. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation

    PubMed Central

    Lee, Michael L.; Katsuyama, Ângela M.; Duge, Leanne S.; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J.; de la Iglesia, Horacio O.

    2016-01-01

    Study Objectives: Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. Methods: We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. Results: When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Conclusions: Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. Citation: Lee ML, Katsuyama AM, Duge LS, Sriram C, Krushelnytskyy M, Kim JJ, de la Iglesia HO. Fragmentation of rapid eye movement

  12. Insufficient sleep is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation.

    PubMed

    Bain, Anthony R; Weil, Brian R; Diehl, Kyle J; Greiner, Jared J; Stauffer, Brian L; DeSouza, Christopher A

    2017-10-01

    Habitual short nightly sleep duration is associated with increased atherosclerotic cardiovascular disease risk and morbidity. Vascular endothelial dysfunction represents an important mechanism that may underlie this heightened cardiovascular risk. Impaired endothelium-dependent vasodilation, particularly NO-mediated vasodilation, contributes to the development and progression of atherosclerotic vascular disease and acute vascular events. We tested the hypothesis that chronic insufficient sleep is associated with impaired NO-mediated endothelium-dependent vasodilation in middle-aged adults. Thirty adult men were studied: 15 with normal nightly sleep duration (age: 58 ± 2 y; sleep duration: 7.7 ± 0.2 h/night) and 15 with short nightly sleep duration (55 ± 2 y; 6.1 ± 0.2 h/night). Forearm blood flow (FBF) responses to intra-arterial infusion of acetylcholine, in the absence and presence of the endothelial NO synthase inhibitor N G -monomethyl-L-arginine (L-NMMA), as well as responses to sodium nitroprusside, were determined by strain-gauge venous occlusion plethysmography. The FBF response to acetylcholine was lower (∼20%; p<0.05) in the short sleep duration group (from 4.6 ± 0.3 to 11.7 ± 1.0 ml/100 ml tissue/min) compared with normal sleep duration group (from 4.4 ± 0.3 to 14.5 ± 0.5 ml/100 ml tissue/min). L-NMMA significantly reduced the FBF response to acetylcholine in the normal sleep duration group (∼40%), but not the short sleep duration group. There were no group differences in the vasodilator response to sodium nitroprusside. These data indicate that short nightly sleep duration is associated with endothelial-dependent vasodilator dysfunction due, in part, to diminished NO bioavailability. Impaired NO-mediated endothelium-dependent vasodilation may contribute to the increased cardiovascular risk with insufficient sleep. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation.

    PubMed

    Lee, Michael L; Katsuyama, Ângela M; Duge, Leanne S; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J; de la Iglesia, Horacio O

    2016-11-01

    Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. © 2016 Associated Professional Sleep Societies, LLC.

  14. Localized Cortical Thinning in Patients with Obstructive Sleep Apnea Syndrome

    PubMed Central

    Joo, Eun Yeon; Jeon, Seun; Kim, Sung Tae; Lee, Jong-Min; Hong, Seung Bong

    2013-01-01

    Study Objectives: To investigate differences in cortical thickness in patients with obstructive sleep apnea (OSA) syndrome and healthy controls. Design: Cortical thickness was measured using a three-dimensional surface-based method that enabled more accurate measurement in deep sulci and localized regional mapping. Setting: University hospital. Patients: Thirty-eight male patients with severe OSA (mean apnea-hypopnea index > 30/h) and 36 age-matched male healthy controls were enrolled. Interventions: Cortical thickness was obtained at 81,924 vertices across the entire brain by reconstructing inner and outer cortical surfaces using an automated anatomical pipeline. Measurements: Group difference in cortical thickness and correlation between patients' data and thickness were analyzed by a general linear model. Results: Localized cortical thinning in patients was found in the orbitorectal gyri, dorsolateral/ventromedial prefrontal regions, pericentral gyri, anterior cingulate, insula, inferior parietal lobule, uncus, and basolateral temporal regions at corrected P < 0.05. Patients with OSA showed impaired attention and learning difficulty in memory tests compared to healthy controls. Higher number of respiratory arousals was related to cortical thinning of the anterior cingulate and inferior parietal lobule. A significant correlation was observed between the longer apnea maximum duration and the cortical thinning of the dorsolateral prefrontal regions, pericentral gyri, and insula. Retention scores in visual memory tests were associated with cortical thickness of parahippocampal gyrus and uncus. Conclusions: Brain regions with cortical thinning may provide elucidations for prefrontal cognitive dysfunction, upper airway sensorimotor dysregulation, and cardiovascular disturbances in OSA patients, that experience sleep disruption including sleep fragmentation and oxygen desaturation. Citation: Joo EY; Jeon S; Kim ST; Lee JM; Hong SB. Localized cortical thinning in

  15. Is there a chronic sleep stage-dependent linear and nonlinear cardiac autonomic impairment in obstructive sleep apnea?

    PubMed

    Trimer, R; Mendes, R G; Costa, F S M; Sampaio, L M M; Delfino, A; Arena, R; Aletti, F; Ferrario, M; Borghi-Silva, A

    2014-05-01

    Obstructive sleep apnea (OSA) is a respiratory disorder that has the potential to negatively impact heart rate variability (HRV) during the sleep cycle. However, it is uncertain whether there is a chronic sleep stage-dependent linear and nonlinear cardiac autonomic impairment in OSA. The aim of this study was to perform HRV analysis in apnea-free samples as well as during stage 2 and rapid eye movement (REM) sleep in mild and moderate OSA (MiOSA and MOSA, respectively) subjects as well as health controls (NonOSA). This study included 20 MiOSA (37 ± 14 years), 20 MOSA (39 ± 8 years), and 18 NonOSA (36 ± 8 years) subjects. Subjects underwent in-laboratory overnight polysomnography with electrocardiography recording. HRV indices were obtained by analyzing the R-R intervals (RRis) in 5-min apnea-free samples by the linear frequency domain [low frequency (LF), high frequency (HF) and LF/HF], Poincaré plot [standard deviation (SD1) and (SD2)], recurrence plot [mean line length (Lmean)], recurrence rate (REC), determinism (DET), and Shannon entropy (ShanEn). The MOSA group presented with higher LF, LF/HF, and DET indices compared to NonOSA as well as a lower parasympathetic index (HF), suggesting sympathetic hyperactivity in MOSA subjects. Interestingly, MiOSA subjects failed to show the expected linear HRV difference between sleep stages, as observed in NonOSA, which may represent an early onset of autonomic impairment at this stage of OSA. In OSA patients, there is a chronic sleep stage-dependent impairment of linear and nonlinear cardiac autonomic modulation. Interestingly, this impairment may be identifiable during the early stages of the disease.

  16. Association of sleep impairments and gastrointestinal disorders in the context of the visceral theory of sleep.

    PubMed

    Pigarev, Ivan N; Pigareva, Marina L

    2017-01-01

    It was noticed long ago that sleep disorders or interruptions to the normal sleep pattern were associated with various gastrointestinal disorders. We review the studies which established the causal link between these disorders and sleep impairment. However, the mechanism of interactions between the quality of sleep and gastrointestinal pathophysiology remained unclear. Recently, the visceral theory of sleep was formulated. This theory proposes that the same brain structures, and particularly the same cortical sensory areas, which in wakefulness are involved in processing of the exteroceptive information, switch during sleep to the processing of information coming from various visceral systems. We review the studies which demonstrated that neurons of the various cortical areas (occipital, parietal, frontal) during sleep began to fire in response to activation coming from the stomach and small intestine. These data demonstrate that, during sleep, the computational power of the central nervous system, including all cortical areas, is engaged in restoration of visceral systems. Thus, the general mechanism of the interaction between quality of sleep and health became clear.

  17. Transient synchronization of hippocampo-striato-thalamo-cortical networks during sleep spindle oscillations induces motor memory consolidation.

    PubMed

    Boutin, Arnaud; Pinsard, Basile; Boré, Arnaud; Carrier, Julie; Fogel, Stuart M; Doyon, Julien

    2018-04-01

    Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis.

    PubMed

    Tudor, Jennifer C; Davis, Emily J; Peixoto, Lucia; Wimmer, Mathieu E; van Tilborg, Erik; Park, Alan J; Poplawski, Shane G; Chung, Caroline W; Havekes, Robbert; Huang, Jiayan; Gatti, Evelina; Pierre, Philippe; Abel, Ted

    2016-04-26

    Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation. Copyright © 2016, American Association for the Advancement of Science.

  19. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation.

    PubMed

    Elvsåshagen, Torbjørn; Zak, Nathalia; Norbom, Linn B; Pedersen, Per Ø; Quraishi, Sophia H; Bjørnerud, Atle; Alnæs, Dag; Doan, Nhat Trung; Malt, Ulrik F; Groote, Inge R; Westlye, Lars T

    2017-08-01

    Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with

  20. Cortical firing and sleep homeostasis.

    PubMed

    Vyazovskiy, Vladyslav V; Olcese, Umberto; Lazimy, Yaniv M; Faraguna, Ugo; Esser, Steve K; Williams, Justin C; Cirelli, Chiara; Tononi, Giulio

    2009-09-24

    The need to sleep grows with the duration of wakefulness and dissipates with time spent asleep, a process called sleep homeostasis. What are the consequences of staying awake on brain cells, and why is sleep needed? Surprisingly, we do not know whether the firing of cortical neurons is affected by how long an animal has been awake or asleep. Here, we found that after sustained wakefulness cortical neurons fire at higher frequencies in all behavioral states. During early NREM sleep after sustained wakefulness, periods of population activity (ON) are short, frequent, and associated with synchronous firing, while periods of neuronal silence are long and frequent. After sustained sleep, firing rates and synchrony decrease, while the duration of ON periods increases. Changes in firing patterns in NREM sleep correlate with changes in slow-wave activity, a marker of sleep homeostasis. Thus, the systematic increase of firing during wakefulness is counterbalanced by staying asleep.

  1. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment.

    PubMed

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2015-01-01

    Sleep quality and architecture as well as sleep's homeostatic and circadian controls change with healthy aging. Changes include reductions in slow-wave sleep's (SWS) percent and spectral power in the sleep electroencephalogram (EEG), number and amplitude of sleep spindles, rapid eye movement (REM) density and the amplitude of circadian rhythms, as well as a phase advance (moved earlier in time) of the brain's circadian clock. With mild cognitive impairment (MCI) there are further reductions of sleep quality, SWS, spindles, and percent REM, all of which further diminish, along with a profound disruption of circadian rhythmicity, with the conversion to Alzheimer's disease (AD). Sleep disorders may represent risk factors for dementias (e.g., REM Behavior Disorder presages Parkinson's disease) and sleep disorders are themselves extremely prevalent in neurodegenerative diseases. Working memory , formation of new episodic memories, and processing speed all decline with healthy aging whereas semantic, recognition, and emotional declarative memory are spared. In MCI, episodic and working memory further decline along with declines in semantic memory. In young adults, sleep-dependent memory consolidation (SDC) is widely observed for both declarative and procedural memory tasks. However, with healthy aging, although SDC for declarative memory is preserved, certain procedural tasks, such as motor-sequence learning, do not show SDC. In younger adults, fragmentation of sleep can reduce SDC, and a normative increase in sleep fragmentation may account for reduced SDC with healthy aging. Whereas sleep disorders such as insomnia, obstructive sleep apnea, and narcolepsy can impair SDC in the absence of neurodegenerative changes, the incidence of sleep disorders increases both with normal aging and, further, with neurodegenerative disease. Specific features of sleep architecture, such as sleep spindles and SWS are strongly linked to SDC. Diminution of these features with healthy aging

  2. Sleep-dependent memory consolidation in patients with sleep disorders.

    PubMed

    Cipolli, Carlo; Mazzetti, Michela; Plazzi, Giuseppe

    2013-04-01

    Sleep can improve the off-line memory consolidation of new items of declarative and non-declarative information in healthy subjects, whereas acute sleep loss, as well as sleep restriction and fragmentation, impair consolidation. This suggests that, by modifying the amount and/or architecture of sleep, chronic sleep disorders may also lead to a lower gain in off-line consolidation, which in turn may be responsible for the varying levels of impaired performance at memory tasks usually observed in sleep-disordered patients. The experimental studies conducted to date have shown specific impairments of sleep-dependent consolidation overall for verbal and visual declarative information in patients with primary insomnia, for verbal declarative information in patients with obstructive sleep apnoeas, and for visual procedural skills in patients with narcolepsy-cataplexy. These findings corroborate the hypothesis that impaired consolidation is a consequence of the chronically altered organization of sleep. Moreover, they raise several novel questions as to: a) the reversibility of consolidation impairment in the case of effective treatment, b) the possible negative influence of altered prior sleep also on the encoding of new information, and c) the relationships between altered sleep and memory impairment in patients with other (medical, psychiatric or neurological) diseases associated with quantitative and/or qualitative changes of sleep architecture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Cortical Drive to Breathe during Wakefulness in Patients with Obstructive Sleep Apnea Syndrome.

    PubMed

    Launois, Claire; Attali, Valérie; Georges, Marjolaine; Raux, Mathieu; Morawiec, Elise; Rivals, Isabelle; Arnulf, Isabelle; Similowski, Thomas

    2015-11-01

    The obstructive sleep apnea syndrome (OSAS) involves recurrent sleep-related upper airways (UA) collapse. UA mechanical properties and neural control are altered, imposing a mechanical load on inspiration. UA collapse does not occur during wakefulness, hence arousal-dependent compensation. Experimental inspiratory loading in normal subjects elicits respiratory-related cortical activity. The objective of this study was to test whether awake OSAS patients would exhibit a similar cortical activity. Descriptive physiology study. Sleep laboratory in a large university affiliated tertiary hospital. 26 patients with moderate OSAS according to polysomnography (5 < apnea-hypopnea index [AHI] ≤ 30, n = 14) or severe OSAS (AHI > 30, n = 12); 13 non-OSAS patients for comparison. None. Respiratory time-locked electroencephalographic segments ensemble averaged and analyzed for slow premotor potentials preceding inspiration ("pre-inspiratory potentials" [PIPs]). PIPs were present in 1/13 controls and 11/26 patients (P = 0.0336; 4/14 "moderate" and 7/12 "severe" patients). Awake OSAS patients therefore exhibit respiratory-related cortical activity during quiet breathing significantly more frequently than non-OSAS individuals. The corresponding PIPs resemble those observed during prepared voluntary inspirations and in response to experimental inspiratory loads in normal subjects, which involve a cortical network comprising the supplementary motor area. A respiratory-related cortical activity could contribute to the increased neural drive to upper airway and to inspiratory muscles that has previously been described in obstructive sleep apnea, and could therefore contribute to the arousal-dependent compensation of upper airway abnormalities. Whether or not such cortical compensatory mechanisms have cognitive consequences remains to be determined. © 2015 Associated Professional Sleep Societies, LLC.

  4. Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning

    PubMed Central

    Quercia, Angelica; Zappasodi, Filippo; Committeri, Giorgia; Ferrara, Michele

    2018-01-01

    Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in

  5. Sleep affects cortical source modularity in temporal lobe epilepsy: A high-density EEG study.

    PubMed

    Del Felice, Alessandra; Storti, Silvia Francesca; Manganotti, Paolo

    2015-09-01

    Interictal epileptiform discharges (IEDs) constitute a perturbation of ongoing cerebral rhythms, usually more frequent during sleep. The aim of the study was to determine whether sleep influences the spread of IEDs over the scalp and whether their distribution depends on vigilance-related modifications in cortical interactions. Wake and sleep 256-channel electroencephalography (EEG) data were recorded in 12 subjects with right temporal lobe epilepsy (TLE) differentiated by whether they had mesial or neocortical TLE. Spikes were selected during wake and sleep. The averaged waking signal was subtracted from the sleep signal and projected on a bidimensional scalp map; sleep and wake spike distributions were compared by using a t-test. The superimposed signal of sleep and wake traces was obtained; the rising phase of the spike, the peak, and the deflections following the spike were identified, and their cortical generator was calculated using low-resolution brain electromagnetic tomography (LORETA) for each group. A mean of 21 IEDs in wake and 39 in sleep per subject were selected. As compared to wake, a larger IED scalp projection was detected during sleep in both mesial and neocortical TLE (p<0.05). A series of EEG deflections followed the spike, the cortical sources of which displayed alternating activations of different cortical areas in wake, substituted by isolated, stationary activations in sleep in mesial TLE and a silencing in neocortical TLE. During sleep, the IED scalp region increases, while cortical interaction decreases. The interaction of cortical modules in sleep and wake in TLE may influence the appearance of IEDs on scalp EEG; in addition, IEDs could be proxies for cerebral oscillation perturbation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    PubMed Central

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  7. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle

    PubMed Central

    Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara; Serra, Pier Andrea

    2016-01-01

    Study Objectives: The activity of the noradrenergic system of the locus coeruleus (LC) is high in wake and low in sleep. LC promotes arousal and EEG activation, as well as attention, working memory, and cognitive flexibility. These functions rely on prefrontal cortex and are impaired by sleep deprivation, but the extent to which LC activity changes during wake remains unclear. Moreover, it is unknown whether noradrenergic neurons can sustain elevated firing during extended wake. Recent studies show that relative to LC neurons targeting primary motor cortex (M1), those projecting to medial prefrontal cortex (mPFC) have higher spontaneous firing rates and are more excitable. These results suggest that noradrenaline (NA) levels should be higher in mPFC than M1, and that during prolonged wake LC cells targeting mPFC may fatigue more, but direct evidence is lacking. Methods: We performed in vivo microdialysis experiments in adult (9–10 weeks old) C57BL/6 mice implanted for chronic electroencephalographic recordings. Cortical NA levels were measured during spontaneous sleep and wake (n = 8 mice), and in the course of sleep deprivation (n = 6). Results: We found that absolute NA levels are higher in mPFC than in M1. Moreover, in both areas they decline during sleep and increase during wake, but these changes are faster in M1 than mPFC. Finally, by the end of sleep deprivation NA levels decline only in mPFC. Conclusions: Locus coeruleus (LC) neurons targeting prefrontal cortex may fatigue more markedly, or earlier, than other LC cells, suggesting one of the mechanisms underlying the cognitive impairment and the increased sleep presure associated with sleep deprivation. Commentary: A commentary on this article appears in this issue on page 11. Citation: Bellesi M, Tononi G, Cirelli C, Serra PA. Region-specific dissociation between cortical noradrenaline levels and the sleep/wake cycle. SLEEP 2016;39(1):143–154. PMID:26237776

  8. Retinoic Acid Signaling Affects Cortical Synchrony During Sleep

    NASA Astrophysics Data System (ADS)

    Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi

    2005-10-01

    Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

  9. Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder.

    PubMed

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Génier Marchand, Daphné; Escudier, Frédérique; Gaubert, Malo; Bourgouin, Pierre-Alexandre; Carrier, Julie; Monchi, Oury; Joubert, Sven; Blanc, Frédéric; Gagnon, Jean-François

    2018-05-15

    To investigate cortical and subcortical gray matter abnormalities underlying cognitive impairment in patients with REM sleep behavior disorder (RBD) with or without mild cognitive impairment (MCI). Fifty-two patients with RBD, including 17 patients with MCI, were recruited and compared to 41 controls. All participants underwent extensive clinical assessments, neuropsychological examination, and 3-tesla MRI acquisition of T1 anatomical images. Vertex-based cortical analyses of volume, thickness, and surface area were performed to investigate cortical abnormalities between groups, whereas vertex-based shape analysis was performed to investigate subcortical structure surfaces. Correlations were performed to investigate associations between cortical and subcortical metrics, cognitive domains, and other markers of neurodegeneration (color discrimination, olfaction, and autonomic measures). Patients with MCI had cortical thinning in the frontal, cingulate, temporal, and occipital cortices, and abnormal surface contraction in the lenticular nucleus and thalamus. Patients without MCI had cortical thinning restricted to the frontal cortex. Lower patient performance in cognitive domains was associated with cortical and subcortical abnormalities. Moreover, impaired performance on olfaction, color discrimination, and autonomic measures was associated with thinning in the occipital lobe. Cortical and subcortical gray matter abnormalities are associated with cognitive status in patients with RBD, with more extensive patterns in patients with MCI. Our results highlight the importance of distinguishing between subgroups of patients with RBD according to cognitive status in order to better understand the neurodegenerative process in this population. © 2018 American Academy of Neurology.

  10. Cortical evoked responses associated with arousal from sleep.

    PubMed

    Phillips, Derrick J; Schei, Jennifer L; Meighan, Peter C; Rector, David M

    2011-01-01

    To determine if low-level intermittent auditory stimuli have the potential to disrupt sleep during 24-h recordings, we assessed arousal occurrence to varying stimulus intensities. Additionally, if stimulus-generated evoked response potential (ERP) components provide a metric of underlying cortical state, then a particular ERP structure may precede an arousal. Physiological electrodes measuring EEG, EKG, and EMG were implanted into 5 adult female Sprague-Dawley rats. We delivered auditory stimuli of varying intensities (50-75 dBa sound pressure level SPL) at random intervals of 6-12 s over a 24-hour period. Recordings were divided into 2-s epochs and scored for sleep/wake state. Following each stimulus, we identified whether the animal stayed asleep or woke. We then sorted the stimuli depending on prior and post-stimulus state, and measured ERP components. Auditory stimuli did not produce a significant increase in the number of arousals compared to silent control periods. Overall, arousal from REM sleep occurred more often compared to quiet sleep. ERPs preceding an arousal had decreased mean area and shorter N1 latency. Low level auditory stimuli did not fragment animal sleep since we observed no significant change in arousal occurrence. Arousals that occurred within 4 s of a stimulus exhibited an ERP mean area and latency had features similar to ERPs generated during wake, indicating that the underlying cortical tissue state may contribute to physiological conditions required for arousal.

  11. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    PubMed

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Stimulation of the brain with radiofrequency electromagnetic field pulses affects sleep-dependent performance improvement.

    PubMed

    Lustenberger, Caroline; Murbach, Manuel; Dürr, Roland; Schmid, Marc Ralph; Kuster, Niels; Achermann, Peter; Huber, Reto

    2013-09-01

    Sleep-dependent performance improvements seem to be closely related to sleep spindles (12-15 Hz) and sleep slow-wave activity (SWA, 0.75-4.5 Hz). Pulse-modulated radiofrequency electromagnetic fields (RF EMF, carrier frequency 900 MHz) are capable to modulate these electroencephalographic (EEG) characteristics of sleep. The aim of our study was to explore possible mechanisms how RF EMF affect cortical activity during sleep and to test whether such effects on cortical activity during sleep interact with sleep-dependent performance changes. Sixteen male subjects underwent 2 experimental nights, one of them with all-night 0.25-0.8 Hz pulsed RF EMF exposure. All-night EEG was recorded. To investigate RF EMF induced changes in overnight performance improvement, subjects were trained for both nights on a motor task in the evening and the morning. We obtained good sleep quality in all subjects under both conditions (mean sleep efficiency > 90%). After pulsed RF EMF we found increased SWA during exposure to pulse-modulated RF EMF compared to sham exposure (P < 0.05) toward the end of the sleep period. Spindle activity was not affected. Moreover, subjects showed an increased RF EMF burst-related response in the SWA range, indicated by an increase in event-related EEG spectral power and phase changes in the SWA range. Notably, during exposure, sleep-dependent performance improvement in the motor sequence task was reduced compared to the sham condition (-20.1%, P = 0.03). The changes in the time course of SWA during the exposure night may reflect an interaction of RF EMF with the renormalization of cortical excitability during sleep, with a negative impact on sleep-dependent performance improvement. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.

    PubMed

    Funk, Chadd M; Peelman, Kayla; Bellesi, Michele; Marshall, William; Cirelli, Chiara; Tononi, Giulio

    2017-09-20

    During non-rapid eye-movement (NREM) sleep, cortical and thalamic neurons oscillate every second or so between ON periods, characterized by membrane depolarization and wake-like tonic firing, and OFF periods, characterized by membrane hyperpolarization and neuronal silence. Cortical slow waves, the hallmark of NREM sleep, reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer I and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving male mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation during ON periods of NREM sleep triggers long OFF periods. Next, we show that chemogenetic activation of SOM+ cells increases slow-wave activity (SWA), slope of individual slow waves, and NREM sleep duration; whereas their chemogenetic inhibition decreases SWA and slow-wave incidence without changing time spent in NREM sleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing, triggers short OFF periods in NREM sleep, and increases NREM sleep duration. Thus SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated. SIGNIFICANCE STATEMENT Cortical slow waves are a defining feature of non-rapid eye-movement (NREM) sleep and are thought to be important for many of its restorative benefits. Yet, the mechanism by which cortical neurons abruptly and synchronously cease firing, the

  14. The independent and combined effects of respiratory events and cortical arousals on the autonomic nervous system across sleep stages.

    PubMed

    Liang, Jiuxing; Zhang, Xiangmin; He, Xiaomin; Ling, Li; Zeng, Chunyao; Luo, Yuxi

    2018-05-10

    During sleep, respiratory events readily modulate the autonomic nervous system (ANS). Whether such modulation is caused by the respiratory event itself or the cortical arousal that follows and whether these influences differ across sleep stages are not clear. Thus, we aimed to study the independent and combined effects of respiratory events and cortical arousals on the ANS across sleep stages. We recruited 22 male patients with sleep apnea-hypopnea syndrome (SAHS) and analyzed the differences in the indices of heart rate variability among normal respiration (NR), pathological respiratory events without cortical arousals (PR), cortical arousals without respiratory events (CA), and the coexistence of PR and CA (PR&CA), by sleep stage. Compared with NR, four indices of variation of the beat-to-beat interval demonstrated consistent results in all sleep stages generally: PR&CA showed the biggest difference, followed by PR and followed by CA, which exhibited the least difference. Thus, the respiratory event itself affects ANS modulation, but the cortical arousal that follows generally enhances this effect. For low-frequency power and low-frequency/high-frequency power ratio (LF/HF), PR&CA had the greatest impact. For mean beat-to-beat interval and high-frequency power (HFP), the influence of PR, CA, and PR&CA depended on sleep depth. However, PR&CA had a different influence on HFP in N2 stage vs. REM stage. Sleep stage also has an effect on this neuromodulatory mechanism. These findings may help clarify the relationship between SAHS and cardiovascular disease.

  15. Mild Traumatic Brain Injury Chronically Impairs Sleep- and Wake-Dependent Emotional Processing.

    PubMed

    Mantua, Janna; Henry, Owen S; Garskovas, Nolan F; Spencer, Rebecca M C

    2017-06-01

    A single traumatic brain injury (TBI), even when mild (ie, concussion), can cause lasting consequences. Individuals with a history of chronic (>1-year prior) mild TBI have an increased risk of mood disturbances (eg, depression, suicide). This population also has lingering sleep alterations, including poor sleep quality and changes in sleep stage proportions. Given these sleep deficits, we aimed to test whether sleep-dependent emotional memory consolidation is reduced in this population. We utilized a mild TBI group (3.7 ± 2.9 years post injury) and an uninjured (non-TBI) population. Participants viewed negative and neutral images both before and after a 12-hour period containing sleep ("Sleep" group) or an equivalent period of time spent awake ("Wake" group). Participants rated images for valence/arousal at both sessions, and memory recognition was tested at session two. The TBI group had less rapid eye movement (REM), longer REM latency, and more sleep complaints. Sleep-dependent memory consolidation of nonemotional images was present in all participants. However, consolidation of negative images was only present in the non-TBI group. A lack of differentiation between the TBI Sleep and Wake groups was due to poor performance in the sleep group and, unexpectedly, enhanced performance in the wake group. Additionally, although the non-TBI participants habituated to negative images over a waking period, the TBI participants did not. We propose disrupted sleep- and wake-dependent emotional processing contributes to poor emotional outcomes following chronic, mild TBI. This work has broad implications, as roughly one-third of the US population will sustain a mild TBI during their lifetime. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache

    PubMed Central

    Melo-Carrillo, Agustin; Strassman, Andrew M.

    2017-01-01

    Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel in vivo method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min. A temporal mismatch between the constriction or dilation of the blood vessel lumen and the closure of the PVS suggests that this closure is not likely to result from changes in vessel diameter. We also show that CSD impairs glymphatic flow, as indicated by the reduced rate at which intraparenchymally injected dye was cleared from the cortex to the PVS. This is the first observation of a PVS closure in connection with an abnormal cortical event that underlies a neurological disorder. More specifically, the findings demonstrate a link between the glymphatic system and migraine, and suggest a novel mechanism for regulation of glymphatic flow. SIGNIFICANCE STATEMENT Impairment of brain solute clearance through the recently described glymphatic system has been linked with traumatic brain injury, prolonged wakefulness, and aging. This paper shows that cortical spreading depression, the neural correlate of migraine aura, closes the paravascular space and impairs glymphatic flow. This closure holds the potential to define a novel mechanism for regulation of glymphatic flow. It also implicates the glymphatic system in the altered cortical and endothelial functioning of the migraine brain. PMID:28193695

  17. Perceptual impairment in face identification with poor sleep

    PubMed Central

    Beattie, Louise; Walsh, Darragh; McLaren, Jessica; Biello, Stephany M.

    2016-01-01

    Previous studies have shown impaired memory for faces following restricted sleep. However, it is not known whether lack of sleep impairs performance on face identification tasks that do not rely on recognition memory, despite these tasks being more prevalent in security and forensic professions—for example, in photo-ID checks at national borders. Here we tested whether poor sleep affects accuracy on a standard test of face-matching ability that does not place demands on memory: the Glasgow Face-Matching Task (GFMT). In Experiment 1, participants who reported sleep disturbance consistent with insomnia disorder show impaired accuracy on the GFMT when compared with participants reporting normal sleep behaviour. In Experiment 2, we then used a sleep diary method to compare GFMT accuracy in a control group to participants reporting poor sleep on three consecutive nights—and again found lower accuracy scores in the short sleep group. In both experiments, reduced face-matching accuracy in those with poorer sleep was not associated with lower confidence in their decisions, carrying implications for occupational settings where identification errors made with high confidence can have serious outcomes. These results suggest that sleep-related impairments in face memory reflect difficulties in perceptual encoding of identity, and point towards metacognitive impairment in face matching following poor sleep. PMID:27853547

  18. Promoting Sleep Oscillations and Their Functional Coupling by Transcranial Stimulation Enhances Memory Consolidation in Mild Cognitive Impairment.

    PubMed

    Ladenbauer, Julia; Ladenbauer, Josef; Külzow, Nadine; de Boor, Rebecca; Avramova, Elena; Grittner, Ulrike; Flöel, Agnes

    2017-07-26

    Alzheimer's disease (AD) not only involves loss of memory functions, but also prominent deterioration of sleep physiology, which is already evident at the stage of mild cognitive impairment (MCI). Cortical slow oscillations (SO; 0.5-1 Hz) and thalamocortical spindle activity (12-15 Hz) during sleep, and their temporal coordination, are considered critical for memory formation. We investigated the potential of slow oscillatory transcranial direct current stimulation (so-tDCS), applied during a daytime nap in a sleep-state-dependent manner, to modulate these activity patterns and sleep-related memory consolidation in nine male and seven female human patients with MCI. Stimulation significantly increased overall SO and spindle power, amplified spindle power during SO up-phases, and led to stronger synchronization between SO and spindle power fluctuations in EEG recordings. Moreover, visual declarative memory was improved by so-tDCS compared with sham stimulation and was associated with stronger synchronization. These findings indicate a well-tolerated therapeutic approach for disordered sleep physiology and memory deficits in MCI patients and advance our understanding of offline memory consolidation. SIGNIFICANCE STATEMENT In the light of increasing evidence that sleep disruption is crucially involved in the progression of Alzheimer's disease (AD), sleep appears as a promising treatment target in this pathology, particularly to counteract memory decline. This study demonstrates the potential of a noninvasive brain stimulation method during sleep in patients with mild cognitive impairment (MCI), a precursor of AD, and advances our understanding of its mechanism. We provide first time evidence that slow oscillatory transcranial stimulation amplifies the functional cross-frequency coupling between memory-relevant brain oscillations and improves visual memory consolidation in patients with MCI. Copyright © 2017 the authors 0270-6474/17/377111-14$15.00/0.

  19. Mild Traumatic Brain Injury Chronically Impairs Sleep- and Wake-Dependent Emotional Processing

    PubMed Central

    Mantua, Janna; Henry, Owen S.; Garskovas, Nolan F.

    2017-01-01

    Abstract Study Objectives: A single traumatic brain injury (TBI), even when mild (ie, concussion), can cause lasting consequences. Individuals with a history of chronic (>1-year prior) mild TBI have an increased risk of mood disturbances (eg, depression, suicide). This population also has lingering sleep alterations, including poor sleep quality and changes in sleep stage proportions. Given these sleep deficits, we aimed to test whether sleep-dependent emotional memory consolidation is reduced in this population. We utilized a mild TBI group (3.7 ± 2.9 years post injury) and an uninjured (non-TBI) population. Methods: Participants viewed negative and neutral images both before and after a 12-hour period containing sleep (“Sleep” group) or an equivalent period of time spent awake (“Wake” group). Participants rated images for valence/arousal at both sessions, and memory recognition was tested at session two. Results: The TBI group had less rapid eye movement (REM), longer REM latency, and more sleep complaints. Sleep-dependent memory consolidation of nonemotional images was present in all participants. However, consolidation of negative images was only present in the non-TBI group. A lack of differentiation between the TBI Sleep and Wake groups was due to poor performance in the sleep group and, unexpectedly, enhanced performance in the wake group. Additionally, although the non-TBI participants habituated to negative images over a waking period, the TBI participants did not. Conclusions: We propose disrupted sleep- and wake-dependent emotional processing contributes to poor emotional outcomes following chronic, mild TBI. This work has broad implications, as roughly one-third of the US population will sustain a mild TBI during their lifetime. PMID:28460124

  20. On-call work: To sleep or not to sleep? It depends.

    PubMed

    Ferguson, Sally A; Paterson, Jessica L; Hall, Sarah J; Jay, Sarah M; Aisbett, Brad

    On-call working time arrangements are increasingly common, involve work only in the event of an unpredictable incident and exist primarily outside of standard hours. Like other non-standard working time arrangements, on-call work disrupts sleep and can therefore have negative effects on health, safety and performance. Unlike other non-standard working time arrangements, on-call work often allows sleep opportunities between calls. Any sleep obtained during on-call periods will be beneficial for waking performance. However, there is evidence that sleep while on call may be of substantially reduced restorative value because of the expectation of receiving the call and apprehension about missing the call. In turn, waking from sleep to respond to a call may be associated with temporary increases in performance impairment. This is dependent on characteristics of both the preceding sleep, the tasks required upon waking and the availability and utility of any countermeasures to support the transition from sleep to wake. In this paper, we critically evaluate the evidence both for and against sleeping during on-call periods and conclude that some sleep, even if it is of reduced quality and broken by repeated calls, is a good strategy. We also note, however, that organisations utilising on-call working time arrangements need to systematically manage the likelihood that on-call sleep can be associated with temporary performance impairments upon waking. Given that the majority of work in this area has been laboratory-based, there is a significant need for field-based investigations of the magnitude of sleep inertia, in addition to the utility of sleep inertia countermeasures. Field studies should include working with subject matter experts to identify the real-world impacts of changes in performance associated with sleeping, or not sleeping, whilst on call.

  1. Influence of cued-fear conditioning and its impairment on NREM sleep.

    PubMed

    Kumar, Tankesh; Jha, Sushil K

    2017-10-01

    Many studies suggest that fear conditioning influences sleep. It is, however, not known if the changes in sleep architecture after fear conditioning are essentially associated with the consolidation of fearful memory or with fear itself. Here, we have observed that within sleep, NREM sleep consistently remained augmented after the consolidation of cued fear-conditioned memory. But a similar change did not occur after impairing memory consolidation by blocking new protein synthesis and glutamate transmission between glial-neuronal loop in the lateral amygdala (LA). Anisomycin (a protein synthesis inhibitor) and DL-α-amino-adipic acid (DL- α -AA) (a glial glutamine synthetase enzyme inhibitor) were microinjected into the LA soon after cued fear-conditioning to induce memory impairment. On the post-conditioning day, animals in both the groups exhibited significantly less freezing. In memory-consolidated groups (vehicle groups), NREM sleep significantly increased during 2nd to 5th hours after training compared to their baseline days. However, in memory impaired groups (anisomycin and DL- α -AA microinjected groups), similar changes were not observed. Our results thus suggest that changes in sleep architecture after cued fear-conditioning are indeed a consolidation dependent event. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Amyloid burden and sleep blood pressure in amnestic mild cognitive impairment

    PubMed Central

    Tarumi, Takashi; Harris, Thomas S.; Hill, Candace; German, Zohre; Riley, Jonathan; Turner, Marcel; Womack, Kyle B.; Kerwin, Diana R.; Monson, Nancy L.; Stowe, Ann M.; Mathews, Dana; Cullum, C. Munro

    2015-01-01

    Objective: To determine whether cortical β-amyloid (Aβ) deposition is associated with circadian blood pressure (BP) profiles and dynamic cerebral blood flow (CBF) regulation in patients with amnestic mild cognitive impairment (aMCI). Methods: Forty participants with aMCI were included in this study. Cortical Aβ depositions were measured by 18F-florbetapir PET and expressed as the standardized uptake value ratio (SUVR) relative to the cerebellum. Circadian BP profiles were measured by 24-hour ambulatory monitoring during awake and sleep periods. The dipping status of sleep BP (i.e., the percent changes from the awake BP) was calculated and dichotomized into the dipper (≥10%) and nondipper (<10%) groups. Dynamic CBF regulation was assessed by a transfer function analysis between beat-to-beat changes in BP and CBF velocity measured from the middle cerebral artery during a repeated sit-stand maneuver. Results: Age was positively correlated with a greater Aβ deposition in the posterior cingulate, precuneus, and mean cortex. Accounting for the age effect, attenuated reductions in sleep systolic BP were associated with higher levels of posterior cingulate SUVR. Consistently, the nondippers exhibited a higher SUVR in the posterior cingulate than the dippers. Transfer function gain between changes in BP and CBF velocity was diminished in the nondippers, and moreover those individuals with a lower gain exhibited a higher SUVR in the posterior cingulate. Conclusions: Attenuated reductions in sleep BP are associated with a greater Aβ burden in the posterior cingulate and altered dynamic CBF regulation in patients with aMCI. PMID:26537049

  3. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory

    PubMed Central

    Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted

    2014-01-01

    Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found that 3 hours of sleep deprivation significantly impaired memory when deprivation began 1 hour after training. In contrast, 3 hours of deprivation beginning immediately post-training did not impair spatial memory. Furthermore, a 3-hour sleep deprivation beginning 1 hour after training impaired hippocampal long-term potentiation (LTP), whereas sleep deprivation immediately after training did not affect LTP. Together, our findings define a specific 3-hour critical period, extending from 1 to 4 hours after training, during which sleep deprivation impairs hippocampal function. PMID:24380868

  4. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  5. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep

    PubMed Central

    Rodriguez, Alexander V.; Funk, Chadd M.; Vyazovskiy, Vladyslav V.; Nir, Yuval; Tononi, Giulio

    2016-01-01

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal “fatigue”: high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. SIGNIFICANCE STATEMENT A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the “fatigue” accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced

  6. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.

    PubMed

    Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara

    2016-12-07

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire

  7. Trait- and state-dependent cortical inhibitory deficits in bipolar disorder.

    PubMed

    Ruiz-Veguilla, Miguel; Martín-Rodríguez, Juan Francisco; Palomar, Francisco J; Porcacchia, Paolo; Álvarez de Toledo, Paloma; Perona-Garcelán, Salvador; Rodríguez-Testal, Juan Francisco; Huertas-Fernández, Ismael; Mir, Pablo

    2016-05-01

    Euthymic patients with bipolar disorder (BD) have deficits in cortical inhibition. However, whether cortical inhibitory deficits are trait- or state-dependent impairments is not yet known and their relationship with psychiatric symptoms is not yet understood. In the present study, we examined trait- and state-dependent cortical inhibitory deficits and evaluated the potential clinical significance of these deficits. Nineteen patients with bipolar I disorder were evaluated using the paired-pulse transcranial stimulation protocol, which assessed cortical inhibition during an acute manic episode. Cortical inhibition measures were compared with those obtained in 28 demographically matched healthy controls. A follow-up assessment was performed in 15 of these patients three months later, when there was remission from their mood and psychotic symptoms. The association between cortical inhibitory measures and severity of psychiatric symptoms was also studied. During mania, patients showed decreased short-interval intracortical and transcallosal inhibition, as well as a normal cortical silent period and long-interval cortical inhibition. These findings were the same during euthymia. Symptoms associated with motor hyperactivity were correlated negatively with the degree of cortical inhibition. These correlations were not significant when a Bonferroni correction was applied. The present longitudinal study showed cortical inhibitory deficits in patients with BD, and supports the hypothesis that cortical inhibitory deficits in BD are trait dependent. Further research is necessary to confirm the clinical significance of these deficits. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation.

    PubMed

    Mander, Bryce A; Zhu, Alyssa H; Lindquist, John R; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P

    2017-11-29

    Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of

  9. White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation

    PubMed Central

    Zhu, Alyssa H.; Lindquist, John R.; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Ancoli-Israel, Sonia

    2017-01-01

    Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical–cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of

  10. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache.

    PubMed

    Schain, Aaron J; Melo-Carrillo, Agustin; Strassman, Andrew M; Burstein, Rami

    2017-03-15

    Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel in vivo method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min. A temporal mismatch between the constriction or dilation of the blood vessel lumen and the closure of the PVS suggests that this closure is not likely to result from changes in vessel diameter. We also show that CSD impairs glymphatic flow, as indicated by the reduced rate at which intraparenchymally injected dye was cleared from the cortex to the PVS. This is the first observation of a PVS closure in connection with an abnormal cortical event that underlies a neurological disorder. More specifically, the findings demonstrate a link between the glymphatic system and migraine, and suggest a novel mechanism for regulation of glymphatic flow. SIGNIFICANCE STATEMENT Impairment of brain solute clearance through the recently described glymphatic system has been linked with traumatic brain injury, prolonged wakefulness, and aging. This paper shows that cortical spreading depression, the neural correlate of migraine aura, closes the paravascular space and impairs glymphatic flow. This closure holds the potential to define a novel mechanism for regulation of glymphatic flow. It also implicates the glymphatic system in the altered cortical and endothelial functioning of the migraine brain. Copyright © 2017

  11. Burden of impaired sleep quality on work productivity in functional dyspepsia.

    PubMed

    Matsuzaki, Juntaro; Suzuki, Hidekazu; Togawa, Koji; Yamane, Tsuyoshi; Mori, Hideki; Komori, Takahiro; Masaoka, Tatsuhiro; Kanai, Takanori

    2018-04-01

    Impaired sleep quality is common, and can reduce work productivity in patients with functional dyspepsia (FD). The objective of this article is to evaluate whether there is a direct association between the presence of FD and the severity of impaired sleep quality, and to calculate the economic loss due to the decreased work productivity associated with sleep quality. In Study 1, using a web-based survey completed by workers with and without FD, we evaluated impaired sleep quality, work and daily productivity, and the severity of reflux and bowel symptoms. In Study 2, the association between the presence of FD and the severity of impaired sleep quality was validated in a hospital-based cohort. In both Study 1 and 2, although impaired sleep quality was more frequent in participants with FD than in those without FD, the independent association between the presence of FD and the severity of impaired sleep quality was not observed after adjustment for the severity of reflux and bowel symptoms. FD participants with impaired sleep quality reported additional economic loss of 53,500 Japanese yen/month. Although the association between impaired sleep quality and FD was indirect, concomitant impaired sleep quality could worsen economic loss.

  12. Development and Validation of the PROMIS Pediatric Sleep Disturbance and Sleep-Related Impairment Item Banks.

    PubMed

    Forrest, Christopher B; Meltzer, Lisa J; Marcus, Carole L; de la Motte, Anna; Kratchman, Amy; Buysse, Daniel J; Pilkonis, Paul A; Becker, Brandon D; Bevans, Katherine B

    2018-03-13

    To develop and evaluate the measurement properties of child-report and parent-proxy versions of the PROMIS ® Pediatric Sleep Disturbance and Sleep-Related Impairment item banks. A national sample of 1,104 children (8-17 years-old) and 1,477 parents of children 5-17 years-old was recruited from an internet panel to evaluate the psychometric properties of 43 sleep health items. A convenience sample of children and parents recruited from a pediatric sleep clinic was obtained to provide evidence of the measures' validity; polysomnography data were collected from a subgroup of these children. Factor analyses suggested two dimensions: sleep disturbance and daytime sleep-related impairment. The final item banks included 15 items for Sleep Disturbance and 13 for Sleep-Related Impairment. Items were calibrated using the graded response model from item response theory. Of the 28 items, 16 are included in the parallel PROMIS adult sleep health measures. Reliability of the measures exceeded 0.90. Validity was supported by correlations with existing measures of pediatric sleep health and higher sleep disturbance and sleep-related impairment scores for children with sleep problems and those with chronic and neurodevelopmental disorders. The sleep health measures were not correlated with results from polysomnography. The PROMIS Pediatric Sleep Disturbance and Sleep-Related Impairment item banks provide subjective assessments of a child's difficulties falling and staying asleep as well as daytime sleepiness and its impact on functioning. They may prove useful in the future for clinical research and practice. Future research should evaluate their responsiveness to clinical change in diverse patient populations.

  13. Sleep, Torpor and Memory Impairment

    NASA Astrophysics Data System (ADS)

    Palchykova, S.; Tobler, I.

    It is now well known that daily torpor induces a sleep deficit. Djungarian hamsters emerging from this hypometabolic state spend most of the time in sleep. This sleep is characterized by high initial values of EEG slow-wave activity (SWA) that monotonically decline during recovery sleep. These features resemble the changes seen in numerous species during recovery after prolonged wakefulness or sleep deprivation (SD). When hamsters are totally or partially sleep deprived immediately after emerging from torpor, an additional increase in SWA can be induced. It has been therefore postulated, that these slow- waves are homeostatically regulated, as predicted by the two-process model of sleep regulation, and that during daily torpor a sleep deficit is accumulated as it is during prolonged waking. The predominance of SWA in the frontal EEG observed both after SD and daily torpor provides further evidence for the similarity of these conditions. It has been shown in several animal and human studies that sleep can enhance memory consolidation, and that SD leads to memory impairment. Preliminary data obtained in the Djungarian hamster showed that both SD and daily torpor result in object recognition deficits. Thus, animals subjected to SD immediately after learning, or if they underwent an episode of daily torpor between learning and retention, displayed impaired recognition memory for complex object scenes. The investigation of daily torpor can reveal mechanisms that could have important implications for hypometabolic state induction in other mammalian species, including humans.

  14. Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment.

    PubMed

    Brayet, Pauline; Petit, Dominique; Frauscher, Birgit; Gagnon, Jean-François; Gosselin, Nadia; Gagnon, Katia; Rouleau, Isabelle; Montplaisir, Jacques

    2016-04-01

    The basal forebrain cholinergic system, which is impaired in early Alzheimer's disease, is more crucial for the activation of rapid-eye-movement (REM) sleep electroencephalogram (EEG) than it is for wakefulness. Quantitative EEG from REM sleep might thus provide an earlier and more accurate marker of the development of Alzheimer's disease in subjects with mild cognitive impairment (MCI) subjects than that from wakefulness. To assess the superiority of the REM sleep EEG as a screening tool for preclinical Alzheimer's disease, 22 subjects with amnestic MCI (a-MCI; 63.9±7.7 years), 10 subjects with nonamnestic MCI (na-MCI; 64.1±4.5 years) and 32 controls (63.7±6.6 years) participated in the study. Spectral analyses of the waking EEG and REM sleep EEG were performed and the [(delta+theta)/(alpha+beta)] ratio was used to assess between-group differences in EEG slowing. The a-MCI subgroup showed EEG slowing in frontal lateral regions compared to both na-MCI and control groups. This EEG slowing was present in wakefulness (compared to controls) but was much more prominent in REM sleep. Moreover, the comparison between amnestic and nonamnestic subjects was found significant only for the REM sleep EEG. There was no difference in EEG power ratio between na-MCI and controls for any of the 7 cortical regions studied. These findings demonstrate the superiority of the REM sleep EEG in the discrimination between a-MCI and both na-MCI and control subjects. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  15. Differential effect of an anticholinergic antidepressant on sleep-dependent memory consolidation.

    PubMed

    Goerke, Monique; Cohrs, Stefan; Rodenbeck, Andrea; Kunz, Dieter

    2014-05-01

    Rapid eye movement (REM) sleep is considered critical to the consolidation of procedural memory - the memory of skills and habits. Many antidepressants strongly suppress REM sleep, however, and procedural memory consolidation has been shown to be impaired in depressed patients on antidepressant therapy. As a result, it is important to determine whether antidepressive therapy can lead to amnestic impairment. We thus investigated the effects of the anticholinergic antidepressant amitriptyline on sleep-dependent memory consolidation. Double-blind, placebo-controlled, randomized, parallel-group study. Sleep laboratory. Twenty-five healthy men (mean age: 26.8 ± 5.6 y). 75 mg amitriptyline versus placebo. To test memory consolidation, a visual discrimination task, a finger-tapping task, the Rey-Osterrieth Complex Figure Test, and the Rey Auditory-Verbal Learning Test were performed. Sleep was measured using polysomnography. Our findings show that amitriptyline profoundly suppressed REM sleep and impaired perceptual skill learning, but not motor skill or declarative learning. Our study is the first to demonstrate that an antidepressant can affect procedural memory consolidation in healthy subjects. Moreover, considering the results of a recent study, in which selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors were shown not to impair procedural memory consolidation, our findings suggest that procedural memory consolidation is not facilitated by the characteristics of REM sleep captured by visual sleep scoring, but rather by the high cholinergic tone associated with REM sleep. Our study contributes to the understanding of potentially undesirable behavioral effects of amitriptyline.

  16. Sleep-dependent memory consolidation and accelerated forgetting

    PubMed Central

    Atherton, Kathryn E.; Nobre, Anna C.; Zeman, Adam Z.; Butler, Christopher R.

    2014-01-01

    Accelerated long-term forgetting (ALF) is a form of memory impairment in which learning and initial retention of information appear normal but subsequent forgetting is excessively rapid. ALF is most commonly associated with epilepsy and, in particular, a form of late-onset epilepsy called transient epileptic amnesia (TEA). ALF provides a novel opportunity to investigate post-encoding memory processes, such as consolidation. Sleep is implicated in the consolidation of memory in healthy people and a deficit in sleep-dependent memory consolidation has been proposed as an explanation for ALF. If this proposal were correct, then sleep would not benefit memory retention in people with ALF as much as in healthy people, and ALF might only be apparent when the retention interval contains sleep. To test this theory, we compared performance on a sleep-sensitive memory task over a night of sleep and a day of wakefulness. We found, contrary to the hypothesis, that sleep benefits memory retention in TEA patients with ALF and that this benefit is no smaller in magnitude than that seen in healthy controls. Indeed, the patients performed significantly more poorly than the controls only in the wake condition and not the sleep condition. Patients were matched to controls on learning rate, initial retention, and the effect of time of day on cognitive performance. These results indicate that ALF is not caused by a disruption of sleep-dependent memory consolidation. Instead, ALF may be due to an encoding abnormality that goes undetected on behavioural assessments of learning, or by a deficit in memory consolidation processes that are not sleep-dependent. PMID:24657478

  17. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy

    PubMed Central

    Gelinas, Jennifer N.; Khodagholy, Dion; Thesen, Thomas; Devinsky, Orrin; Buzsáki, György

    2016-01-01

    Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy. PMID:27111281

  18. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    PubMed

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  19. A single night of sleep loss impairs objective but not subjective working memory performance in a sex-dependent manner.

    PubMed

    Rångtell, Frida H; Karamchedu, Swathy; Andersson, Peter; Liethof, Lisanne; Olaya Búcaro, Marcela; Lampola, Lauri; Schiöth, Helgi B; Cedernaes, Jonathan; Benedict, Christian

    2018-01-31

    Acute sleep deprivation can lead to judgement errors and thereby increases the risk of accidents, possibly due to an impaired working memory. However, whether the adverse effects of acute sleep loss on working memory are modulated by auditory distraction in women and men are not known. Additionally, it is unknown whether sleep loss alters the way in which men and women perceive their working memory performance. Thus, 24 young adults (12 women using oral contraceptives at the time of investigation) participated in two experimental conditions: nocturnal sleep (scheduled between 22:30 and 06:30 hours) versus one night of total sleep loss. Participants were administered a digital working memory test in which eight-digit sequences were learned and retrieved in the morning after each condition. Learning of digital sequences was accompanied by either silence or auditory distraction (equal distribution among trials). After sequence retrieval, each trial ended with a question regarding how certain participants were of the correctness of their response, as a self-estimate of working memory performance. We found that sleep loss impaired objective but not self-estimated working memory performance in women. In contrast, both measures remained unaffected by sleep loss in men. Auditory distraction impaired working memory performance, without modulation by sleep loss or sex. Being unaware of cognitive limitations when sleep-deprived, as seen in our study, could lead to undesirable consequences in, for example, an occupational context. Our findings suggest that sleep-deprived young women are at particular risk for overestimating their working memory performance. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  20. Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia

    PubMed Central

    Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y.; Ievins, Aiva; McLean, Merritt A.; Niell, Cristopher M.; Chau, Vann; Wong, Peter K. H.; Glass, Hannah C.; Sullivan, Joseph

    2015-01-01

    Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a “precritical period” of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic–ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia–ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral

  1. Daily Routines and Sleep Disorders in Visually Impaired Children.

    ERIC Educational Resources Information Center

    Troster, Heinrich; And Others

    1996-01-01

    Assessed sleep disorders in 265 visually impaired and 67 non-disabled 10- to 72-month olds. Found that infants with visual impairments had more difficulties in falling asleep and in sleeping through the night than nonhandicapped children. Also found a relationship between sleep disorders and the regularity of children's daily routine and…

  2. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms

    PubMed Central

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Study Objectives: Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). Methods: The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Results: Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Conclusion: Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. Citation: Suh S, Kim H, Dang-Vu TT, Joo E, Shin C. Cortical thinning and altered cortico-cortical structural covariance of the default mode network in patients with

  3. Sleep Impairment and Prognosis of Acute Myocardial Infarction: A Prospective Cohort Study

    PubMed Central

    Clark, Alice; Lange, Theis; Hallqvist, Johan; Jennum, Poul; Rod, Naja Hulvej

    2014-01-01

    Study Objectives: Impaired sleep is an established risk factor for the development of cardiovascular disease, whereas less is known about how impaired sleep affects cardiovascular prognosis. The aim of this study is to determine how different aspects of impaired sleep affect the risk of case fatality and subsequent cardiovascular events following first-time acute myocardial infarction (AMI). Design: Prospective cohort study. Setting: The Stockholm Heart Epidemiology Program, Sweden. Participants: There were 2,246 first-time AMI cases. Measurements and Results: Sleep impairment was assessed by the Karolina Sleep Questionnaire, which covers various indices of impaired sleep: disturbed sleep, impaired awakening, daytime sleepiness, and nightmares. Case fatality, defined as death within 28 days of initial AMI, and new cardiovascular events within up to 10 y of follow-up were identified through national registries. In women, disturbed sleep showed a consistently higher risk of long-term cardiovascular events: AMI (hazard ratio [HR] = 1.69; 95% confidence interval [CI] 0.95–3.00), stroke (HR = 2.61; 95% CI: 1.19–5.76), and heart failure (HR = 2.43; 95% CI: 1.18–4.97), whereas no clear effect of impaired sleep on case fatality was found in women. In men, a strong effect on case fatality (odds ratio = 3.27; 95% CI: 1.76–6.06) was observed in regard to impaired awakening; however, no consistent effect of impaired sleep was seen on long-term cardiovascular prognosis. Conclusion: Results suggest sex-specific effects of impaired sleep that differ by short- and long-term prognosis. Sleep complaints are frequent, easily recognizable, and potentially manageable. Evaluation of sleep complaints may, even if they represent prognostic markers rather than risk factors, provide additional information in clinical risk assessment that could benefit secondary cardiovascular prevention. Citation: Clark A, Lange T, Hallqvist J, Jennum P, Rod NH. Sleep impairment and prognosis of

  4. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.

    PubMed

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5-4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.

  5. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation

    PubMed Central

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep. PMID:29213231

  6. Exploratory behavior, cortical BDNF expression, and sleep homeostasis.

    PubMed

    Huber, Reto; Tononi, Giulio; Cirelli, Chiara

    2007-02-01

    Slow-wave activity (SWA; 0.5-4.0 Hz) during non-rapid eye movement (NREM) sleep is a reliable indicator of sleep need, as it increases with the duration of prior wakefulness and decreases during sleep. However, which biologic process occurring during wakefulness is responsible for the increase of sleep SWA remains unknown. The aim of the study was to determine whether neuronal plasticity underlies the link between waking activities and the SWA response. We manipulated, in rats, the amount of exploratory activity while maintaining the total duration of waking constant. We then measured the extent to which exploration increases cortical expression of plasticity-related genes (BDNF, Arc, Homer, NGFI-A), and the SWA response once the animals were allowed to sleep. Basic neurophysiology and molecular laboratory. Male Wistar Kyoto rats (250-300 g; 2-3 month old). None. We found that, within the same animal, the amount of exploratory behavior during wakefulness could predict the extent to which BDNF was induced, as well as the extent of the homeostatic SWA response during subsequent sleep. This study suggests a direct link between the synaptic plasticity triggered by waking activities and the homeostatic sleep response and identifies BDNF as a major mediator of this link at the molecular level.

  7. Sleep Impairment and Reduced Interneuron Excitability in a Mouse Model of Dravet Syndrome

    PubMed Central

    Kalume, Franck; Oakley, John C.; Westenbroek, Ruth E.; Gile, Jennifer; de la Iglesia, Horacio O.; Scheuer, Todd; Catterall, William A.

    2015-01-01

    Dravet Syndrome (DS) is caused by heterozygous loss-of-function mutations in voltage-gated sodium channel NaV1.1. Our genetic mouse model of DS recapitulates its severe seizures and premature death. Sleep disturbance is common in DS, but its mechanism is unknown. Electroencephalographic studies revealed abnormal sleep in DS mice, including reduced delta wave power, reduced sleep spindles, increased brief wakes, and numerous interictal spikes in Non-Rapid-Eye-Movement sleep. Theta power was reduced in Rapid-Eye-Movement sleep. Mice with NaV1.1 deleted specifically in forebrain interneurons exhibited similar sleep pathology to DS mice, but without changes in circadian rhythm. Sleep architecture depends on oscillatory activity in the thalamocortical network generated by excitatory neurons in the ventrobasal nucleus (VBN) of the thalamus and inhibitory GABAergic neurons in the reticular nucleus of the thalamus (RNT). Whole-cell NaV current was reduced in GABAergic RNT neurons but not in VBN neurons. Rebound firing of action potentials following hyperpolarization, the signature firing pattern of RNT neurons during sleep, was also reduced. These results demonstrate imbalance of excitatory vs. inhibitory neurons in this circuit. As predicted from this functional impairment, we found substantial deficit in homeostatic rebound of slow wave activity following sleep deprivation. Although sleep disorders in epilepsies have been attributed to anti-epileptic drugs, our results show that sleep disorder in DS mice arises from loss of NaV1.1 channels in forebrain GABAergic interneurons without drug treatment. Impairment of NaV currents and excitability of GABAergic RNT neurons are correlated with impaired sleep quality and homeostasis in these mice. PMID:25766678

  8. Sleep, consciousness and the spontaneous and evoked electrical activity of the brain. Is there a cortical integrating mechanism?

    PubMed

    Evans, B M

    2003-02-01

    The physiological mechanisms that underlie consciousness and unconsciousness are the sleep/wake mechanisms. Deep sleep is a state of physiological reversible unconsciousness. The change from that state to wakefulness is mediated by the reticular activating mechanism. The reverse change from wakefulness to sleep is also an active process effected by an arousal inhibitory mechanism based on a partial blockade of the thalamus and upper brain stem, associated with thalamic sleep spindles and also with cortical sub-delta activity (<1 Hz). The deactivation of the thalamus has been demonstrated both electrically and by positron emission tomography during deep sleep. Normally, wakefulness is associated with instant awareness (defined as the ability to integrate all sensory information from the external environment and the internal environment of the body). Awareness may be a function of the thalamo-cortical network in the cerebral hemispheres, which forms the final path of the sleep/wake mechanism. Anatomical and physiological studies suggest that there may be a double thalamo-cortical network; one relating to cortical and thalamic areas with specific functions and the other global, involving all cortical areas and so-called 'non-specific' thalamic nuclei. The global system might function as a cortical integrating mechanism permitting the spread of information between the specific cortical areas and thus underlying awareness. The global system may also be responsible for much of the spontaneous and evoked electrical activity of the brain. The cognitive change between sleep and wakefulness is accompanied by changes in the autonomic system, the cerebral blood flow and cerebral metabolism. Awareness is an essential component of total consciousness (defined as continuous awareness of the external and internal environment, both past and present, together with the emotions arising from it). In addition to awareness, full consciousness requires short-term and explicit memory and

  9. Memory Reactivation during Rapid Eye Movement Sleep Promotes Its Generalization and Integration in Cortical Stores

    PubMed Central

    Sterpenich, Virginie; Schmidt, Christina; Albouy, Geneviève; Matarazzo, Luca; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Degueldre, Christian; Leclercq, Yves; Balteau, Evelyne; Collette, Fabienne; Luxen, André; Phillips, Christophe; Maquet, Pierre

    2014-01-01

    Study Objectives: Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. Participants: Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. Methods and Results: Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. Conclusions: These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information. Citation: Sterpenich V, Schmidt C, Albouy G, Matarazzo L, Vanhaudenhuyse A, Boveroux P, Degueldre C, Leclercq Y, Balteau E, Collette F, Luxen A, Phillips C, Maquet P. Memory reactivation during rapid eye movement sleep promotes its generalization and integration in cortical stores. SLEEP 2014;37(6):1061-1075. PMID:24882901

  10. Sleep Duration and Subsequent Cortical Thinning in Cognitively Normal Older Adults.

    PubMed

    Spira, Adam P; Gonzalez, Christopher E; Venkatraman, Vijay K; Wu, Mark N; Pacheco, Jennifer; Simonsick, Eleanor M; Ferrucci, Luigi; Resnick, Susan M

    2016-05-01

    To determine the association between self-reported sleep duration and cortical thinning among older adults. We studied 122 cognitively normal participants in the Baltimore Longitudinal Study of Aging with a mean age = 66.6 y (range, 51-84) at baseline sleep assessment and 69.5 y (range, 56-86) at initial magnetic resonance imaging (MRI) scan. Participants reported average sleep duration and completed a mean of 7.6 1.5-T MRI scans (range, 3-11), with mean follow-up from initial scan of 8.0 y (range, 2.0-11.8). In analyses adjusted for age, sex, education, race, and interval between sleep assessment and initial MRI scan, participants reporting > 7 h sleep at baseline had thinner cortex in the inferior occipital gyrus and sulcus of the left hemisphere at initial MRI scan than those reporting 7 h (cluster P < 0.05). In adjusted longitudinal analyses, compared to those reporting 7 h of sleep, participants reporting < 7 h exhibited higher rates of subsequent thinning in the superior temporal sulcus and gyrus, inferior and middle frontal gyrus, and superior frontal sulcus of the left hemisphere, and in the superior frontal gyrus of the right hemisphere; those reporting > 7 h of sleep had higher rates of thinning in the superior frontal and middle frontal gyrus of the left hemisphere (cluster P < 0.05 for all). In sensitivity analyses, adjustment for apolipoprotein E (APOE) e4 genotype reduced or eliminated some effects but revealed others. When reports of < 7 h of sleep were compared to reports of 7 or 8 h combined, there were no significant associations with cortical thinning. Among cognitively normal older adults, sleep durations of < 7 h and > 7 h may increase the rate of subsequent frontotemporal gray matter atrophy. Additional studies, including those that use objective sleep measures and investigate mechanisms linking sleep duration to gray matter loss, are needed. © 2016 Associated Professional Sleep Societies, LLC.

  11. PROMIS Sleep Disturbance and Sleep-Related Impairment in Adolescents: Examining Psychometrics Using Self-Report and Actigraphy.

    PubMed

    Hanish, Alyson E; Lin-Dyken, Deborah C; Han, Joan C

    The National Institutes of Health Patient-Reported Outcomes Measurement Information System (PROMIS) has self-reported health measures available for both pediatric and adult populations, but no pediatric measures are available currently in the sleep domains. The purpose of this observational study was to perform preliminary validation studies on age-appropriate, self-reported sleep measures in healthy adolescents. This study examined 25 healthy adolescents' self-reported daytime sleepiness, sleep disturbance, sleep-related impairment, and sleep patterns. Healthy adolescents completed a physical exam at the National Institutes of Health Clinical Center (Bethesda, MD), had no chronic medical conditions, and were not taking any chronic medications. The Cleveland Adolescent Sleepiness Questionnaire (CASQ), PROMIS Sleep Disturbance (v. 1.0; 8a), and PROMIS Sleep-Related Impairment (v. 1.0; 8b) questionnaires were completed, and sleep patterns were assessed using actigraphy. Total scores on the three sleep questionnaires were correlated (all Spearman's r > .70, p < .001). Total sleep time determined by actigraphy was negatively correlated with the CASQ (p = .01), PROMIS Sleep Disturbance (p = .02), and PROMIS Sleep-Related Impairment (p = .02). The field of pediatric sleep is rapidly expanding, and researchers and clinicians will benefit from well-designed, psychometrically sound sleep questionnaires. Findings suggest the potential research and clinical utility of adult versions of PROMIS sleep measures in adolescents. Future studies should include larger, more diverse samples and explore additional psychometric properties of PROMIS sleep measures to provide age-appropriate, validated, and reliable measures of sleep in adolescents.

  12. Novel Experience Induces Persistent Sleep-Dependent Plasticity in the Cortex but not in the Hippocampus

    PubMed Central

    Ribeiro, Sidarta; Shi, Xinwu; Engelhard, Matthew; Zhou, Yi; Zhang, Hao; Gervasoni, Damien; Lin, Shi-Chieh; Wada, Kazuhiro; Lemos, Nelson A.M.

    2007-01-01

    Episodic and spatial memories engage the hippocampus during acquisition but migrate to the cerebral cortex over time. We have recently proposed that the interplay between slow-wave (SWS) and rapid eye movement (REM) sleep propagates recent synaptic changes from the hippocampus to the cortex. To test this theory, we jointly assessed extracellular neuronal activity, local field potentials (LFP), and expression levels of plasticity-related immediate-early genes (IEG) arc and zif-268 in rats exposed to novel spatio-tactile experience. Post-experience firing rate increases were strongest in SWS and lasted much longer in the cortex (hours) than in the hippocampus (minutes). During REM sleep, firing rates showed strong temporal dependence across brain areas: cortical activation during experience predicted hippocampal activity in the first post-experience hour, while hippocampal activation during experience predicted cortical activity in the third post-experience hour. Four hours after experience, IEG expression was specifically upregulated during REM sleep in the cortex, but not in the hippocampus. Arc gene expression in the cortex was proportional to LFP amplitude in the spindle-range (10–14 Hz) but not to firing rates, as expected from signals more related to dendritic input than to somatic output. The results indicate that hippocampo-cortical activation during waking is followed by multiple waves of cortical plasticity as full sleep cycles recur. The absence of equivalent changes in the hippocampus may explain its mnemonic disengagement over time. PMID:18982118

  13. [Clinical characteristics in Parkinson's disease patients with cognitive impairment and effects of cognitive impairment on sleep].

    PubMed

    Gong, Yan; Xiong, Kang-ping; Mao, Cheng-jie; Huang, Juan-ying; Hu, Wei-dong; Han, Fei; Chen, Rui; Liu, Chun-feng

    2013-09-03

    To analyze the clinical characteristics, correlation factors and clinical heterogeneities in Parkinson's disease (PD) patients with cognitive impairment and identify whether cognitive impairment could influence the aspect of sleep. A total of 130 PD outpatients and inpatients of sleep center at our hospital were eligible for participation. According to Montreal cognitive assessment (MOCA), they were divided into cognitive normal group (MOCA ≥ 26) (n = 51) and cognitive impairment group (MOCA < 26) (n = 79). Their clinical characteristics were mainly evaluated by unified Parkinson's disease rating scale (UPDRS) , Hoehn-Yahr (H-Y) stage, Hamilton depression scale (HAMD-24 item) and Epworth sleepiness scale (ESS). And all of them underwent video-polysomnography (PSG). The proportion of cognitive impairment (MOCA < 26) was 60.76%. Compared to those without cognitive impairment, the PD patients with cognitive impairment had significantly higher score of HAMD (10 ± 7 vs 7 ± 4), increased incidence of hallucinations (40.50% vs 19.60%) and REM behavior disorders (RBD) (63.29% vs 39.21%), significantly higher H-Y stage [2.5(2.0-3.0) vs 2.0 (2.0-2.5)] , United Kingdom Parkinson Disease Society (UPDRS) part III (22 ± 10 vs 19 ± 10) and levodopa-equivalent daily dose (LED) (511 ± 302vs 380 ± 272) (all P < 0.05). However, no significant differences existed in the subscores of MOCA between PD patients with different sides of onset and motor subtypes of onset (all P > 0.05). Non-conditional Logistic regression analysis showed that PD duration, score of HAMD and H-Y stage were the major influencing factors of cognition. On PSG, significantly decreased sleep efficiency (57% ± 21% vs 66% ± 17%), higher percentage of non-REM sleep stage 1 (NREMS1) (37% ± 21% vs 27% ± 13%), lower percentage of NREMS2 (40% ± 17% vs 46% ± 13%) and REM sleep (39% ± 28% vs 54% ± 36%) were found for PD patients with cognitive impairment (all P < 0.05). The PD patients with cognitive

  14. Sleep: A novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer's disease?

    PubMed Central

    Mander, Bryce A.; Winer, Joseph R.; Jagust, William J.; Walker, Matthew P.

    2016-01-01

    Sleep disruption appears to be a core component of Alzheimer's disease (AD) and its pathophysiology. Signature abnormalities of sleep emerge before clinical onset of AD. Moreover, insufficient sleep facilitates accumulation of amyloid-β (Aβ), potentially triggering earlier cognitive decline and conversion to AD. Building on such findings, this review has four goals, evaluating: (i) associations and plausible mechanisms linking NREM sleep disruption, Aβ, and AD, (ii) a role for NREM sleep disruption as a novel factor linking cortical Aβ to impaired hippocampus-dependent memory consolidation, (iii) the potential diagnostic utility of NREM sleep disruption as a new biomarker of AD, and (iv) the possibility of sleep as a new treatment target in aging, affording preventative and therapeutic benefits. PMID:27325209

  15. Sleep: A Novel Mechanistic Pathway, Biomarker, and Treatment Target in the Pathology of Alzheimer's Disease?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mander, Bryce A.; Winer, Joseph R.; Jagust, William J.

    Sleep disruption appears to be a major component of Alzheimer's disease (AD) and its pathophysiology. Signature abnormalities of sleep emerge before clinical onset of AD. Moreover, insufficient sleep facilitates accumulation of amyloid-β (Aβ), potentially triggering earlier cognitive decline and conversion to AD. Building on such findings, this review has four goals: evaluating (i) associations and plausible mechanisms linking non-rapid-eye-movement (NREM) sleep disruption, Aβ, and AD; (ii) a role for NREM sleep disruption as a novel factor linking cortical Aβ to impaired hippocampus-dependent memory consolidation; (iii) the potential diagnostic utility of NREM sleep disruption as a new biomarker of AD; andmore » (iv) the possibility of sleep as a new treatment target in aging, affording preventative and therapeutic benefits.« less

  16. D1 Receptor Activation in the Mushroom Bodies Rescues Sleep Loss Induced Learning Impairments in Drosophila

    PubMed Central

    Seugnet, Laurent; Suzuki, Yasuko; Vine, Lucy; Gottschalk, Laura; Shaw, Paul J

    2008-01-01

    Background Extended wakefulness disrupts acquisition of short term memories in mammals. However, the underlying molecular mechanisms triggered by extended waking and restored by sleep are unknown. Moreover, the neuronal circuits that depend on sleep for optimal learning remain unidentified. Results Learning was evaluated using Aversive Phototaxic Suppression (APS). In this task, flies learn to avoid light that is paired with an aversive stimulus (quinine /humidity). We demonstrate extensive homology in sleep deprivation induced learning impairment between flies and humans. Both 6 h and 12 h of sleep deprivation are sufficient to impair learning in Canton-S (Cs) flies. Moreover, learning is impaired at the end of the normal waking-day in direct correlation with time spent awake. Mechanistic studies indicate that this task requires intact mushroom bodies (MBs) and requires the Dopamine D1-like receptor (dDA1). Importantly, sleep deprivation induced learning impairments could be rescued by targeted gene expression of the dDA1 receptor to the MBs. Conclusion These data provide direct evidence that extended wakefulness disrupts learning in Drosophila. These results demonstrate that it is possible to prevent the effects of sleep deprivation by targeting a single neuronal structure and identify cellular and molecular targets adversely affected by extended waking in a genetically tractable model organism. PMID:18674913

  17. The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss.

    PubMed

    Thimgan, Matthew S; Suzuki, Yasuko; Seugnet, Laurent; Gottschalk, Laura; Shaw, Paul J

    2010-08-31

    Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm) and Lipid storage droplet 2 (Lsd2), have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.

  18. Cortical Thickness and Episodic Memory Impairment in Systemic Lupus Erythematosus.

    PubMed

    Bizzo, Bernardo Canedo; Sanchez, Tiago Arruda; Tukamoto, Gustavo; Zimmermann, Nicolle; Netto, Tania Maria; Gasparetto, Emerson Leandro

    2017-01-01

    The purpose of this study was to investigate differences in brain cortical thickness of systemic lupus erythematosus (SLE) patients with and without episodic memory impairment and healthy controls. We studied 51 patients divided in 2 groups (SLE with episodic memory deficit, n = 17; SLE without episodic memory deficit, n = 34) by the Rey Auditory Verbal Learning Test and 34 healthy controls. Groups were paired based on sex, age, education, Mini-Mental State Examination score, and accumulation of disease burden. Cortical thickness from magnetic resonance imaging scans was determined using the FreeSurfer software package. SLE patients with episodic memory deficits presented reduced cortical thickness in the left supramarginal cortex and superior temporal gyrus when compared to the control group and in the right superior frontal, caudal, and rostral middle frontal and precentral gyri when compared to the SLE group without episodic memory impairment considering time since diagnosis of SLE as covaried. There were no significant differences in the cortical thickness between the SLE without episodic memory and control groups. Different memory-related cortical regions thinning were found in the episodic memory deficit group when individually compared to the groups of patients without memory impairment and healthy controls. Copyright © 2016 by the American Society of Neuroimaging.

  19. Memory reactivation during rapid eye movement sleep promotes its generalization and integration in cortical stores.

    PubMed

    Sterpenich, Virginie; Schmidt, Christina; Albouy, Geneviève; Matarazzo, Luca; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Degueldre, Christian; Leclercq, Yves; Balteau, Evelyne; Collette, Fabienne; Luxen, André; Phillips, Christophe; Maquet, Pierre

    2014-06-01

    Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information.

  20. Up-regulated neuronal COX-2 expression after cortical spreading depression is involved in non-REM sleep induction in rats.

    PubMed

    Cui, Yilong; Kataoka, Yosky; Inui, Takashi; Mochizuki, Takatoshi; Onoe, Hirotaka; Matsumura, Kiyoshi; Urade, Yoshihiro; Yamada, Hisao; Watanabe, Yasuyoshi

    2008-03-01

    Cortical spreading depression is an excitatory wave of depolarization spreading throughout cerebral cortex at a rate of 2-5 mm/min and has been implicated in various neurological disorders, such as epilepsy, migraine aura, and trauma. Although sleepiness or sleep is often induced by these neurological disorders, the cellular and molecular mechanism has remained unclear. To investigate whether and how the sleep-wake behavior is altered by such aberrant brain activity, we induced cortical spreading depression in freely moving rats, monitoring REM and non-REM (NREM) sleep and sleep-associated changes in cyclooxygenase (COX)-2 and prostaglandins (PGs). In such a model for aberrant neuronal excitation in the cerebral cortex, the amount of NREM sleep, but not of REM sleep, increased subsequently for several hours, with an up-regulated expression of COX-2 in cortical neurons and considerable production of PGs. A specific inhibitor of COX-2 completely arrested the increase in NREM sleep. These results indicate that up-regulated neuronal COX-2 would be involved in aberrant brain excitation-induced NREM sleep via production of PGs. (c) 2007 Wiley-Liss, Inc.

  1. Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults.

    PubMed

    Sexton, Claire E; Storsve, Andreas B; Walhovd, Kristine B; Johansen-Berg, Heidi; Fjell, Anders M

    2014-09-09

    To examine the relationship between sleep quality and cortical and hippocampal volume and atrophy within a community-based sample, explore the influence of age on results, and assess the possible confounding effects of physical activity levels, body mass index (BMI), and blood pressure. In 147 community-dwelling adults (92 female; age 53.9 ± 15.5 years), sleep quality was measured using the Pittsburgh Sleep Quality Index and correlated with cross-sectional measures of volume and longitudinal measures of atrophy derived from MRI scans separated by an average of 3.5 years. Exploratory post hoc analysis compared correlations between different age groups and included physical activity, BMI, and blood pressure as additional covariates. Poor sleep quality was associated with reduced volume within the right superior frontal cortex in cross-sectional analyses, and an increased rate of atrophy within widespread frontal, temporal, and parietal regions in longitudinal analyses. Results were largely driven by correlations within adults over the age of 60, and could not be explained by variation in physical activity, BMI, or blood pressure. Sleep quality was not associated with hippocampal volume or atrophy. We found that longitudinal measures of cortical atrophy were widely correlated with sleep quality. Poor sleep quality may be a cause or a consequence of brain atrophy, and future studies examining the effect of interventions that improve sleep quality on rates of atrophy may hold key insights into the direction of this relationship. © 2014 American Academy of Neurology.

  2. A preliminary investigation of sleep quality in functional neurological disorders: Poor sleep appears common, and is associated with functional impairment.

    PubMed

    Graham, Christopher D; Kyle, Simon D

    2017-07-15

    Functional neurological disorders (FND) are disabling conditions for which there are few empirically-supported treatments. Disturbed sleep appears to be part of the FND context; however, the clinical importance of sleep disturbance (extent, characteristics and impact) remains largely unknown. We described sleep quality in two samples, and investigated the relationship between sleep and FND-related functional impairment. We included a sample recruited online via patient charities (N=205) and a consecutive clinical sample (N=20). Participants completed validated measures of sleep quality and sleep characteristics (e.g. total sleep time, sleep efficiency), mood, and FND-related functional impairment. Poor sleep was common in both samples (89% in the clinical range), which was characterised by low sleep efficiency (M=65.40%) and low total sleep time (M=6.05h). In regression analysis, sleep quality was negatively associated with FND-related functional impairment, accounting for 16% of the variance and remaining significant after the introduction of mood variables. These preliminary analyses suggest that subjective sleep disturbance (low efficiency, short sleep) is common in FND. Sleep quality was negatively associated with the functional impairment attributed to FND, independent of depression. Therefore, sleep disturbance may be a clinically important feature of FND. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A continuous mapping of sleep states through association of EEG with a mesoscale cortical model.

    PubMed

    Lopour, Beth A; Tasoglu, Savas; Kirsch, Heidi E; Sleigh, James W; Szeri, Andrew J

    2011-04-01

    Here we show that a mathematical model of the human sleep cycle can be used to obtain a detailed description of electroencephalogram (EEG) sleep stages, and we discuss how this analysis may aid in the prediction and prevention of seizures during sleep. The association between EEG data and the cortical model is found via locally linear embedding (LLE), a method of dimensionality reduction. We first show that LLE can distinguish between traditional sleep stages when applied to EEG data. It reliably separates REM and non-REM sleep and maps the EEG data to a low-dimensional output space where the sleep state changes smoothly over time. We also incorporate the concept of strongly connected components and use this as a method of automatic outlier rejection for EEG data. Then, by using LLE on a hybrid data set containing both sleep EEG and signals generated from the mesoscale cortical model, we quantify the relationship between the data and the mathematical model. This enables us to take any sample of sleep EEG data and associate it with a position among the continuous range of sleep states provided by the model; we can thus infer a trajectory of states as the subject sleeps. Lastly, we show that this method gives consistent results for various subjects over a full night of sleep and can be done in real time.

  4. Impaired quality and efficiency of sleep impairs cognitive functioning in Addison's disease.

    PubMed

    Henry, Michelle; Ross, Ian Louis; Wolf, Pedro Sofio Abril; Thomas, Kevin Garth Flusk

    2017-04-01

    Standard replacement therapy for Addison's disease (AD) does not restore a normal circadian rhythm. Periods of sub- and supra- physiological cortisol levels experienced by patients with AD likely induce disrupted sleep. Given that healthy sleep plays an important role in memory consolidation, the novelty of the current study was to characterise, using objective measures, the relationship between sleep and memory in patients with AD, and to examine the hypothesis that poor sleep is a biological mechanism underlying memory impairment in those patients. We used a within-subjects design. Ten patients with AD and 10 matched healthy controls completed standardised neuropsychological tests assessing declarative memory (Rey Auditory Verbal Learning Test) and procedural memory (Finger Tapping Task) before and after a period of actigraphy-measured sleep, and before and after a period of waking. Relative to healthy controls, patients with AD experienced disrupted sleep characterised by poorer sleep efficiency and more time spent awake. Patients also showed impaired verbal learning and memory relative to healthy controls (p=0.007). Furthermore, whereas healthy controls' declarative memory performance benefited from a period of sleep compared to waking (p=0.032), patients with AD derived no such benefit from sleep (p=0.448). Regarding the procedural memory task, analyses detected no significant between-group differences (all p's<0.065), and neither group showed significant sleep-enhanced performance. We demonstrated, using actigraphy and standardized measures of memory performance, an association between sleep disturbances and cognitive deficits in patients with AD. These results suggest that, in patients with AD, the source of memory deficits is, at least to some extent, disrupted sleep patterns that interfere with optimal consolidation of previously-learned declarative information. Hence, treating the sleep disturbances that are frequently experienced by patients with AD may

  5. Daily impaired detachment and short-term effects of impaired sleep quality on next-day commuting near-accidents - an ambulatory diary study.

    PubMed

    Pereira, Diana; Bucher, Sarah; Elfering, Achim

    2016-08-01

    This study investigated the short-term effects of daily recovery, that is, impaired psychological detachment from work and various actigraphical indicators of sleep quality, on near-accidents when commuting to work the next morning. Furthermore, the mediating effect of actigraphically assessed sleep quality on the relationship between impaired psychological detachment from work and near-accidents when commuting to work was analysed. Fifty-six full-time employees of a Swiss assurance company participated in the one-week study. Multilevel analyses revealed that impaired detachment was highly related to a decrease in sleep duration. Furthermore, impaired daily recovery processes, such as impaired psychological detachment from work and disturbed sleep quality, were related to commuting near-accidents. Impaired sleep quality mediated the effect of impaired psychological detachment from work on these near-accidents. Our results show that occupational safety interventions should address both impaired psychological detachment from work and sleep quality in order to prevent near accidents when commuting to work. Practitioner Summary: Commuting accidents occur frequently and have detrimental effects on employees, organisations and society. This study shows that daily lack of recovery, that is, impaired psychological detachment and impaired sleep quality, is related to near-accidents when commuting to work the next morning. Primary prevention of commuting accidents should therefore address daily lack of recovery.

  6. Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory

    NASA Astrophysics Data System (ADS)

    Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.

    2004-10-01

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  7. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory.

    PubMed

    Birnbaum, S G; Yuan, P X; Wang, M; Vijayraghavan, S; Bloom, A K; Davis, D J; Gobeske, K T; Sweatt, J D; Manji, H K; Arnsten, A F T

    2004-10-29

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  8. The Effects of Training on a Young Child with Cortical Visual Impairment: An Exploratory Study.

    ERIC Educational Resources Information Center

    Lueck, Amanda Hall; Dornbusch, Helen; Hart, Jeri

    1999-01-01

    This exploratory study investigated the effects of the components of visual environmental management, visual skills training, and visually dependent task training on the performance of visual behaviors of a toddler with multiple disabilities including cortical visual impairment. Training components were implemented by the mother during daily…

  9. A time-frequency analysis of the dynamics of cortical networks of sleep spindles from MEG-EEG recordings

    PubMed Central

    Zerouali, Younes; Lina, Jean-Marc; Sekerovic, Zoran; Godbout, Jonathan; Dube, Jonathan; Jolicoeur, Pierre; Carrier, Julie

    2014-01-01

    Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a wavelet-based approach aimed at imaging the synchronous oscillatory cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles on the EEG and extracted the corresponding frequency-locked MEG activity under the form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013). Secondly, we performed source reconstruction of the ridge signal within the Maximum Entropy on the Mean framework (Amblard et al., 2004), yielding a robust estimate of the cortical sources producing observed oscillations. Lastly, we quantified functional connectivity among cortical sources using phase-locking values. The main innovations of this methodology are (1) to reveal the dynamic behavior of functional networks resolved in the time-frequency plane and (2) to characterize functional connectivity among MEG sources through phase interactions. We showed, for the first time, that the switch from fast to slow oscillatory mode during sleep spindles is required for the emergence of specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles was associated with mainly intra-hemispheric connectivity whereas later synchrony was associated with global long-range connectivity. We propose that our methodology can be a valuable tool for studying the connectivity underlying neural processes involving sleep spindles, such as memory, plasticity or aging. PMID:25389381

  10. Variations in sleep characteristics and sleep-related impairment in at-risk college drinkers: a latent profile analysis.

    PubMed

    DeMartini, Kelly S; Fucito, Lisa M

    2014-10-01

    Sleep disturbance and heavy drinking increase risk of negative consequences in college students. Limited research exists on how they act synergistically, and the overall nature of sleep and sleep-related impairment in college student drinkers is poorly understood. A latent profile analysis was conducted on the sleep characteristics and daytime sleep-related consequences of college student drinkers who were at-risk based on Alcohol Use Disorders Identification Test-Consumption scores. Participants (N = 312, mean age = 18.90 (0.97) years) consumed a mean (SD) of 20.93 (13.04) drinks per week. Scores on the 10 items of the Sleep/Wake Behavior Problems Scale (SWPS) were the class indicators. Four classes best described the sleep and sleep-related consequences of at-risk college drinkers. Classes represented different gradients and types of sleep patterns and sleep-related impairment; nearly half the sample reported late bedtimes and daytime consequences of insufficient sleep. Subsequent validation analyses indicated that these classes were directly correspondent with severity of alcohol consumption, alcohol-related consequences illicit substance use, and perceived health. These findings indicate the presence of significant heterogeneity in college drinkers' sleep patterns and experiences of sleep-related impairment. Class differences significantly impact the level of alcohol and drug use and the consequences members experience. Greater alcohol use and sleep/wake problems are associated with increased risk for negative consequences for certain classes. These results suggest that college drinking interventions could benefit from the incorporation of sleep-related content and the value in adding brief alcohol assessments and interventions to other college health treatments.

  11. Neurological impairments and sleep-wake behaviour among the mentally retarded.

    PubMed

    Lindblom, N; Heiskala, H; Kaski, M; Leinonen, L; Nevanlinna, A; Iivanainen, M; Laakso, M L

    2001-12-01

    The objective of the present study was to evaluate the relationship between the sleep-wake behaviour and neurological impairments among mentally retarded people. The sleep-wake behaviour of 293 mentally retarded subjects living in a rehabilitation center was studied by a standardized observation protocol carried out by trained staff members. The protocol consisted of brief check-ups of the subjects' sleep-wake status at 20-min intervals for five randomly chosen 24-h periods during 4 months. From the raw data five sleep-wake behaviour variables were formed. The data concerning the subject characteristics (age, body mass index (BMI), gender, degree of mental retardation, presence of locomotor disability, that of epilepsy, blindness or deafness and the usage of psychotropic medications) were collected from the medical records. Two main findings emerged: (1) severe locomotor disability, blindness and active epilepsy were found to be independent predictors of increased daytime sleep and increased number of wake-sleep transitions and (2) the subjects with a combination of two or all three of these impairments had a significantly more fragmented and abnormally distributed sleep than those with none or milder forms of these impairments. Age, BMI, degree of mental retardation and the studied medications played a minor role in the sleep disturbances of the study population. Finally, deafness was not found to be associated with any of the measured sleep-wake variables.

  12. Sleep and its associations with perceived and objective cognitive impairment in individuals with multiple sclerosis.

    PubMed

    Hughes, Abbey J; Parmenter, Brett A; Haselkorn, Jodie K; Lovera, Jesus F; Bourdette, Dennis; Boudreau, Eilis; Cameron, Michelle H; Turner, Aaron P

    2017-08-01

    Problems with sleep and cognitive impairment are common among people with multiple sclerosis (MS). The present study examined the relationship between self-reported sleep and both objective and perceived cognitive impairment in MS. Data were obtained from the baseline assessment of a multi-centre intervention trial (NCT00841321). Participants were 121 individuals with MS. Nearly half (49%) of participants met the criteria for objective cognitive impairment; however, cognitively impaired and unimpaired participants did not differ on any self-reported sleep measures. Nearly two-thirds (65%) of participants met the criteria for 'poor' sleep, and poorer sleep was significantly associated with greater levels of perceived cognitive impairment. Moreover, the relationships between self-reported sleep and perceived cognitive impairment were significant beyond the influence of clinical and demographic factors known to influence sleep and cognitive functioning (e.g. age, sex, education level, disability severity, type of MS, disease duration, depression and fatigue). However, self-reported sleep was not associated with any measures of objective cognitive impairment. Among different types of perceived cognitive impairment, poor self-reported sleep was most commonly related to worse perceived executive function (e.g. planning/organization) and prospective memory. Results from the present study emphasize that self-reported sleep is significantly and independently related to perceived cognitive impairment in MS. In terms of clinical implications, interventions focused on improving sleep may help improve perceived cognitive function and quality of life in this population; however, the impact of improved sleep on objective cognitive function requires further investigation. © 2017 European Sleep Research Society.

  13. Heterogeneous Origins of Human Sleep Spindles in Different Cortical Layers.

    PubMed

    Hagler, Donald J; Ulbert, István; Wittner, Lucia; Erőss, Loránd; Madsen, Joseph R; Devinsky, Orrin; Doyle, Werner; Fabó, Dániel; Cash, Sydney S; Halgren, Eric

    2018-03-21

    Sleep spindles are a cardinal feature in human NREM sleep and may be important for memory consolidation. We studied the intracortical organization of spindles in men and women by recording spontaneous sleep spindles from different cortical layers using linear microelectrode arrays. Two patterns of spindle generation were identified using visual inspection, and confirmed with factor analysis. Spindles (10-16 Hz) were largest and most common in upper and middle channels, with limited involvement of deep channels. Many spindles were observed in only upper or only middle channels, but approximately half occurred in both. In spindles involving both middle and upper channels, the spindle envelope onset in middle channels led upper by ∼25-50 ms on average. The phase relationship between spindle waves in upper and middle channels varied dynamically within spindle epochs, and across individuals. Current source density analysis demonstrated that upper and middle channel spindles were both generated by an excitatory supragranular current sink while an additional deep source was present for middle channel spindles only. Only middle channel spindles were accompanied by deep low (25-50 Hz) and high (70-170 Hz) gamma activity. These results suggest that upper channel spindles are generated by supragranular pyramids, and middle channel by infragranular. Possibly, middle channel spindles are generated by core thalamocortical afferents, and upper channel by matrix. The concurrence of these patterns could reflect engagement of cortical circuits in the integration of more focal (core) and distributed (matrix) aspects of memory. These results demonstrate that at least two distinct intracortical systems generate human sleep spindles. SIGNIFICANCE STATEMENT Bursts of ∼14 Hz oscillations, lasting ∼1 s, have been recognized for over 80 years as cardinal features of mammalian sleep. Recent findings suggest that they play a key role in organizing cortical activity during memory

  14. Mutual Information Analysis of EEG Signals Indicates Age-Related Changes in Cortical Interdependence during Sleep in Middle-aged vs. Elderly Women

    PubMed Central

    Ramanand, Pravitha; Bruce, Margaret C.; Bruce, Eugene N.

    2010-01-01

    Elderly subjects exhibit declining sleep efficiency parameters with longer time spent awake at night and greater sleep fragmentation. In this paper, we report on the changes in cortical interdependence during sleep stages between 15 middle aged (range: 42-50 years) and 15 elderly (range: 71-86 years) women subjects. Cortical interdependence assessed from EEG signals typically exhibits increasing levels of correlation as human subjects progress from wake to deeper stages of sleep. EEG signals acquired from previously existing polysomnogram data sets were subjected to mutual information (MI) analysis to detect changes in information transmission associated with change in sleep stage and to understand how age affects the interdependence values. We observed a significant reduction in the interdependence between central EEG signals of elderly subjects in NREM and REM stage sleep in comparison to middle-aged subjects (age group effect: elderly vs. middle aged p<0.001, sleep stage effect: p<0.001, interaction effect between age group and sleep stage: p=0.007). A narrow band analysis revealed that the reduction in MI was present in delta, theta and sigma frequencies. These findings suggest that the lowered cortical interdependence in sleep of elderly subjects may indicate independently evolving dynamic neural activities at multiple cortical sites. The loss of synchronization between neural activities during sleep in the elderly may make these women more susceptible to localized disturbances that could lead to frequent arousals. PMID:20634711

  15. Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo.

    PubMed

    González-Rueda, Ana; Pedrosa, Victor; Feord, Rachael C; Clopath, Claudia; Paulsen, Ole

    2018-03-21

    Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Effects of Aquatic Exercise on Sleep in Older Adults with Mild Sleep Impairment: a Randomized Controlled Trial.

    PubMed

    Chen, Li-Jung; Fox, Kenneth R; Ku, Po-Wen; Chang, Yi-Wen

    2016-08-01

    Exercise has been found to be associated with improved sleep quality. However, most of the evidence is based on resistance exercise, walking, or gym-based aerobic activity. This study aimed to examine the effects of an 8-week aquatic exercise program on objectively measured sleep parameters among older adults with mild sleep impairment. A total of 67 eligible older adults with sleep impairment were selected and randomized to exercise and control groups, and 63 participants completed the study. The program involved 2 × 60-min sessions of aquatic exercise for 8 weeks. Participants wore wrist actigraphs to assess seven parameters of sleep for 1 week before and after the intervention. Mixed-design analysis of variance (ANOVA) was used to assess the differences between groups in each of the sleep parameters. No significant group differences on demographic variables, life satisfaction, percentage of body fat, fitness, seated blood pressure, and any parameter of sleep were found at baseline. Significant group × time interaction effects were found in sleep onset latency, F(1,58) = 6.921, p = .011, partial eta squared = .011, and in sleep efficiency, F(1, 61) = 16.909, p < 0.001, partial eta squared = .217. The exercise group reported significantly less time on sleep onset latency (mean difference = 7.9 min) and greater sleep efficiency (mean difference = 5.9 %) than the control group at posttest. There was no significant difference between groups in change of total sleep time, wake after sleep onset, activity counts, or number and length of awakenings. An 8-week aquatic exercise has significant benefits on some sleep parameters, including less time for sleep onset latency and better sleep efficiency in older adults with mild sleep impairment.

  17. Onset of Impaired Sleep and Cardiovascular Disease Risk Factors: A Longitudinal Study

    PubMed Central

    Clark, Alice Jessie; Salo, Paula; Lange, Theis; Jennum, Poul; Virtanen, Marianna; Pentti, Jaana; Kivimäki, Mika; Rod, Naja Hulvej; Vahtera, Jussi

    2016-01-01

    Study Objectives: Impaired sleep has been linked to increased risk of cardiovascular disease (CVD), but the underlying mechanisms are still unsettled. We sought to determine how onset of impaired sleep affects the risk of established physiological CVD risk factors (i.e., hypertension, diabetes, and dyslipidemia). Methods: In a longitudinal cohort study with 3 survey waves (2000, 2004, 2008) from the Finnish Public Sector study we used repeated information on sleep duration and disturbances to determine onset of impaired sleep. Information on development of CVD risk factors, as indicated by initiation of medication for hypertension, diabetes, and dyslipidemia was derived from electronic medical records within 8 years of follow-up. Data on 45,647 participants was structured as two data-cycles to examine the effect of change in sleep (between two waves) on incident CVD events. We applied strict inclusion and exclusion criteria to determine temporality between changes in sleep and the outcomes. Results: While we did not find consistent effects of onset of short or long sleep, we found onset of disturbed sleep to predict subsequent risk of hypertension (hazard ratio = 1.22, 95% CI: 1.04–1.44) and dyslipidemia (HR = 1.17, 95% CI: 1.07–1.29) in fully adjusted analyses. Conclusions: Results suggest that onset of sleep disturbances rather than short or long sleep mark an increase in physiological risk factors, which may partly explain the higher risk of CVD observed among impaired sleepers. Commentary: A commentary on this paper appears in this issue on page 1629. Citation: Clark AJ, Salo P, Lange T, Jennum P, Virtanen M, Pentti J, Kivimäki M, Rod NH, Vahtera J. Onset of impaired sleep and cardiovascular disease risk factors: a longitudinal study. SLEEP 2016;39(9):1709–1718. PMID:27397560

  18. Sleep, Cognitive impairment, and Alzheimer's disease: A Systematic Review and Meta-Analysis.

    PubMed

    Bubu, Omonigho M; Brannick, Michael; Mortimer, James; Umasabor-Bubu, Ogie; Sebastião, Yuri V; Wen, Yi; Schwartz, Skai; Borenstein, Amy R; Wu, Yougui; Morgan, David; Anderson, William M

    2017-01-01

    Mounting evidence implicates disturbed sleep or lack of sleep as one of the risk factors for Alzheimer's disease (AD), but the extent of the risk is uncertain. We conducted a broad systematic review and meta-analysis to quantify the effect of sleep problems/disorders on cognitive impairment and AD. Original published literature assessing any association of sleep problems or disorders with cognitive impairment or AD was identified by searching PubMed, Embase, Web of Science, and the Cochrane library. Effect estimates of individual studies were pooled and relative risks (RR) and 95% confidence intervals (CI) were calculated using random effects models. We also estimated the population attributable risk. Twenty-seven observational studies (n = 69216 participants) that provided 52 RR estimates were included in the meta-analysis. Individuals with sleep problems had a 1.55 (95% CI: 1.25-1.93), 1.65 (95% CI: 1.45-1.86), and 3.78 (95% CI: 2.27-6.30) times higher risk of AD, cognitive impairment, and preclinical AD than individuals without sleep problems, respectively. The overall meta-analysis revealed that individuals with sleep problems had a 1.68 (95% CI: 1.51-1.87) times higher risk for the combined outcome of cognitive impairment and/or AD. Approximately 15% of AD in the population may be attributed to sleep problems. This meta-analysis confirmed the association between sleep and cognitive impairment or AD and, for the first time, consolidated the evidence to provide an "average" magnitude of effect. As sleep problems are of a growing concern in the population, these findings are of interest for potential prevention of AD. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  19. Emotional bias of sleep-dependent processing shifts from negative to positive with aging.

    PubMed

    Jones, Bethany J; Schultz, Kurt S; Adams, Sydney; Baran, Bengi; Spencer, Rebecca M C

    2016-09-01

    Age-related memory decline has been proposed to result partially from impairments in memory consolidation over sleep. However, such decline may reflect a shift toward selective processing of positive information with age rather than impaired sleep-related mechanisms. In the present study, young and older adults viewed negative and neutral pictures or positive and neutral pictures and underwent a recognition test after sleep or wake. Subjective emotional reactivity and affect were also measured. Compared with waking, sleep preserved valence ratings and memory for positive but not negative pictures in older adults and negative but not positive pictures in young adults. In older adults, memory for positive pictures was associated with slow wave sleep. Furthermore, slow wave sleep predicted positive affect in older adults but was inversely related to positive affect in young adults. These relationships were strongest for older adults with high memory for positive pictures and young adults with high memory for negative pictures. Collectively, these results indicate preserved but selective sleep-dependent memory processing with healthy aging that may be biased to enhance emotional well-being. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation.

    PubMed

    Alzoubi, Karem H; Rababa'h, Abeer M; Owaisi, Amani; Khabour, Omar F

    2017-05-01

    Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (P<0.05), whereas L-carnitine treatment protected against this effect. Furthermore, L-carnitine normalized chronic REM-sleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. When Thinking Impairs Sleep: Trait, Daytime and Nighttime Repetitive Thinking in Insomnia.

    PubMed

    Lancee, Jaap; Eisma, Maarten C; van Zanten, Kristopher B; Topper, Maurice

    2017-01-01

    We performed two studies in individuals with sleep problems to investigate trait, daytime, and nighttime repetitive thinking as risk factors for insomnia. In Study 1, 139 participants completed questionnaires on worry, rumination, insomnia, anxiety, depression, and a sleep diary. Trait rumination and trait worry were not associated with sleep impairment. In Study 2, 64 participants completed similar measures and a daytime and nighttime sleep-related worry diary. Only nighttime sleep-related worry was consistently associated with sleep impairment. Overall, results indicate that nighttime sleep-related worry is important in the maintenance of insomnia, whereas effects of trait and daytime repetitive thinking are more benign. Treatment for insomnia can potentially be improved by focusing more on nighttime sleep-related worry.

  2. Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state

    PubMed Central

    Kelemen, Eduard; Bahrendt, Marie; Born, Jan; Inostroza, Marion

    2014-01-01

    We studied the interaction between glucocorticoid (GC) level and sleep/wake state during memory consolidation. Recent research has accumulated evidence that sleep supports memory consolidation in a unique physiological process, qualitatively distinct from consolidation occurring during wakefulness. This appears particularly true for memories that rely on the hippocampus, a region with abundant expression of GC receptors. Against this backdrop we hypothesized that GC effects on consolidation depend on the brain state, i.e., sleep and wakefulness. Following exploration of two objects in an open field, during 80 min retention periods rats received an intrahippocampal infusion of corticosterone (10 ng) or vehicle while asleep or awake. Then the memory was tested in the hippocampus-dependent object-place recognition paradigm. GCs impaired memory consolidation when administered during sleep but improved consolidation during the wake retention interval. Intrahippocampal infusion of GC or sleep/wake manipulations did not alter novel-object recognition performance that does not require the hippocampus. This work corroborates the notion of distinct consolidation processes occurring in sleep and wakefulnesss, and identifies GCs as a key player controlling distinct hippocampal memory consolidation processes in sleep and wake conditions. © 2014 Wiley Periodicals, Inc. PMID:24596244

  3. "Circadian cortical compensation": a longitudinal study of brain function during technical and cognitive skills in acutely sleep-deprived surgical residents.

    PubMed

    Leff, Daniel Richard; Orihuela-Espina, Felipe; Athanasiou, Thanos; Karimyan, Vahe; Elwell, Clare; Wong, John; Yang, Guang-Zhong; Darzi, Ara W

    2010-12-01

    To test the hypothesis that fatigue-induced performance decline in surgical residents is associated with changes in brain function as detected by functional near-infrared spectroscopy. Surgical residents (n = 7) participated in a prospective study involving 2-hourly objective measurements of neurocognitive skill (arithmetic calculations using Nintendo "brain training"), technical performance (surgical knot tying on a trainer, and monitoring time taken, path length and number of movements), and introspective fatigue (questionnaire-based) across 10 hours of acute sleep deprivation (10:00 PM to 8:00 PM. Simultaneously, changes in cortical oxyhemoglobin (HbO₂), deoxyhemoglobin (HHb), and total hemoglobin (HbT), inferring prefrontal function, were recorded by using functional near-infrared spectroscopy. Arithmetic performance remained stable despite increasing levels of subject fatigue (time: P = 0.07, errors: P = 0.70, efficiency: P = 0.58). Technical skill improved between the first (10:00 PM and the second (12:00 AM sessions (P < 0.05) and stabilized thereafter (12:00 AM to 8:00 AM. Greater activation was required to complete cognitive versus technical drills. Stimulus type (0: cognitive, 1: technical) was found to be an independent predictor of changes in cortical excitation (HbO₂: P < 0.01, HHb: P < 0.05, HbT: P < 0.01). Cortical responses to the cognitive task increased over the course of the simulated night shift. In addition, "time interval" was observed to be an independent predictor of cortical hemodynamic change (HbO₂: P < 0.01, HbT: P < 0.01). Neurocognitive tasks may tax the sleep-deprived resident more than well-learned technical skills. Performing cognitive skills at night, such as decision making, may depend upon enhanced prefrontal recruitment indicative of a focused attentional strategy and/or compensation to sleep deprivation. Further work should focus on determining whether errors in performance are associated with attentional lapses and

  4. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.

    PubMed

    Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E

    2017-09-25

    How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.

  5. Sleep deprivation impairs the accurate recognition of human emotions.

    PubMed

    van der Helm, Els; Gujar, Ninad; Walker, Matthew P

    2010-03-01

    Investigate the impact of sleep deprivation on the ability to recognize the intensity of human facial emotions. Randomized total sleep-deprivation or sleep-rested conditions, involving between-group and within-group repeated measures analysis. Experimental laboratory study. Thirty-seven healthy participants, (21 females) aged 18-25 y, were randomly assigned to the sleep control (SC: n = 17) or total sleep deprivation group (TSD: n = 20). Participants performed an emotional face recognition task, in which they evaluated 3 different affective face categories: Sad, Happy, and Angry, each ranging in a gradient from neutral to increasingly emotional. In the TSD group, the task was performed once under conditions of sleep deprivation, and twice under sleep-rested conditions following different durations of sleep recovery. In the SC group, the task was performed twice under sleep-rested conditions, controlling for repeatability. In the TSD group, when sleep-deprived, there was a marked and significant blunting in the recognition of Angry and Happy affective expressions in the moderate (but not extreme) emotional intensity range; differences that were most reliable and significant in female participants. No change in the recognition of Sad expressions was observed. These recognition deficits were, however, ameliorated following one night of recovery sleep. No changes in task performance were observed in the SC group. Sleep deprivation selectively impairs the accurate judgment of human facial emotions, especially threat relevant (Anger) and reward relevant (Happy) categories, an effect observed most significantly in females. Such findings suggest that sleep loss impairs discrete affective neural systems, disrupting the identification of salient affective social cues.

  6. Lithium Prevents REM Sleep Deprivation-Induced Impairments on Memory Consolidation

    PubMed Central

    Ota, Simone M.; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M.; Tiba, Paula A.

    2013-01-01

    Background: Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. Objective: To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Design: Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Subjects: Wistar male rats weighing 300-400 g. Results: Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Conclusion: Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained. Citation: Ota SM; Moreira KDM; Suchecki D; Oliveira MGM; Tiba PA. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation. SLEEP 2013;36(11):1677-1684. PMID:24179301

  7. Sleep deprivation impairs inhibitory control during wakefulness in adult sleepwalkers.

    PubMed

    Labelle, Marc-Antoine; Dang-Vu, Thien Thanh; Petit, Dominique; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2015-12-01

    Sleepwalkers often complain of excessive daytime somnolence. Although excessive daytime somnolence has been associated with cognitive impairment in several sleep disorders, very few data exist concerning sleepwalking. This study aimed to investigate daytime cognitive functioning in adults diagnosed with idiopathic sleepwalking. Fifteen sleepwalkers and 15 matched controls were administered the Continuous Performance Test and Stroop Colour-Word Test in the morning after an overnight polysomnographic assessment. Participants were tested a week later on the same neuropsychological battery, but after 25 h of sleep deprivation, a procedure known to precipitate sleepwalking episodes during subsequent recovery sleep. There were no significant differences between sleepwalkers and controls on any of the cognitive tests administered under normal waking conditions. Testing following sleep deprivation revealed significant impairment in sleepwalkers' executive functions related to inhibitory control, as they made more errors than controls on the Stroop Colour-Word Test and more commission errors on the Continuous Performance Test. Sleepwalkers' scores on measures of executive functions were not associated with self-reported sleepiness or indices of sleep fragmentation from baseline polysomnographic recordings. The results support the idea that sleepwalking involves daytime consequences and suggest that these may also include cognitive impairments in the form of disrupted inhibitory control following sleep deprivation. These disruptions may represent a daytime expression of sleepwalking's pathophysiological mechanisms. © 2015 European Sleep Research Society.

  8. [Sleep disorders and impaired sleep as adverse drug reactions of psychotropic drugs: an evaluation of data of summaries of product characteristics].

    PubMed

    Gahr, Maximilian; Connemann, Bernhard J; Zeiss, René; Fröhlich, Albrecht

    2018-03-02

     Psychopharmacotherapy is essential in the treatment of many mental disorders. Adverse drug reactions (ADR) have impact on compliance and tolerability. Sleep disorders or impaired sleep may occur as ADRs of psychopharmacotherapy. Sleep disorders are associated with an increased risk for physical and mental illness and may impair cognition, impulse control, emotion regulation and mood. Objective of the following study was the systematic presentation of type and risk of sleep disorders/impairments of sleep of frequently prescribed psychotropic drugs.  Psychotropic agents that are most frequently prescribed in Germany were identified by using the Arzneiverordnungs-Report 2016. Summaries of product characteristics (SmPC) of corresponding original products were analyzed regarding presence and frequency of sleep disorders/impairments of sleep according to the International Classification of Sleep Disorders 3 (ICSD-3).  N = 64 SmPCs were analyzed. In most of the analyzed SmPCs, at least one sleep disorder (50/64; 78 %) was listed. At least one SmPC with a corresponding ADR was found in the categories insomnia (52 %), parasomnias (33 %), and sleep-related movement disorders (20 %); sleep-related breathing disorders (6 %) and central disorders of hypersomnolence (5 %) were rarely listed; circadian rhythm sleep-wake disorder was not found. The SmPCs of the four most frequently prescribed agents (citalopram > venlafaxine > mirtazapine > sertraline) listed insomnia as an ADR. Nearly all analysed hypnotics (except chloral hydrate) were associated with nightmares.  Most of the psychotropic agents frequently prescribed in Germany may induce sleep disorders/impairments of sleep. The four most frequently prescribed agents were antidepressants and all of the corresponding SmPCs listed insomnia as a possible ADR. Sleep disorders should be taken seriously as possible ADRs of psychopharmacotherapy. © Georg Thieme Verlag KG Stuttgart · New York.

  9. M30. Cortical Thickness Patterns of Cognitive Impairment in Schizophrenia

    PubMed Central

    Pinnock, Farena; Hanford, Lindsay; Heinrichs, R. Walter

    2017-01-01

    Abstract Background: Schizophrenia is characterized by both psychotic illness and cognitive impairment, but it is unclear whether they represent related yet distinct disease processes. There is evidence to suggest dissociation. For example, cognitive impairment occurs in schizophrenia patients during both active psychosis and symptom remission. However, the shared or nonshared neural underpinnings of cognition and psychotic psychopathology are also unclear despite findings of multi-focal cortical thinning in the illness. Accordingly, this study sampled patients and controls with a broad range of cognitive ability to examine relations between cortical thickness and cognitive performance with and without the presence of psychotic illness. Our basic questions were: do regional thickness values primarily index the psychotic disease process or cognitive performance and to what extent do disease and performance interact? Methods: Cognitive functioning of patients diagnosed with schizophrenia or schizoaffective disorder (n = 61) and healthy controls (n = 40) were assessed with the MATRICS Consensus Cognitive Battery (MCCB). Neuroimaging data were obtained with a 3T General Electric System MRI scanner, and cortical thickness was calculated using Freesurfer. General linear models were conducted to examine relations and interactions between cortical thickness, diagnosis, and cognition. Results: Cortical thickness and cognitive performance on MCCB subscales and overall composite score were positively correlated in 34 brain regions, predominantly in the frontal, parietal, and temporal brain areas, irrespective of diagnostic status. Patients showed the same cortical thickness-cognitive performance relationship as controls, but had significantly reduced thickness in 27/34 of these regions despite similar behavioral performance. An interaction of diagnosis, cognition, and cortical thickness was found in the parahippocampal and left caudal middle frontal gyri only. Lastly

  10. Insufficient sleep impairs driving performance and cognitive function.

    PubMed

    Miyata, Seiko; Noda, Akiko; Ozaki, Norio; Hara, Yuki; Minoshima, Makoto; Iwamoto, Kunihiro; Takahashi, Masahiro; Iidaka, Tetsuya; Koike, Yasuo

    2010-01-22

    Cumulative sleep deprivation may increase the risk of psychiatric disorders, other disorders, and accidents. We examined the effect of insufficient sleep on cognitive function, driving performance, and cerebral blood flow in 19 healthy adults (mean age 29.2 years). All participants were in bed for 8h (sufficient sleep), and for <4h (insufficient sleep). The oxyhaemoglobin (oxyHb) level by a word fluency task was measured with a near-infrared spectroscopy recorder on the morning following sufficient and insufficient sleep periods. Wisconsin card sorting test, continuous performance test, N-back test, and driving performance were evaluated on the same days. The peak oxyHb level was significantly lower, in the left and right frontal lobes after insufficient sleep than after sufficient sleep (left: 0.25+/-0.13 vs. 0.74+/-0.33 mmol, P<0.001; right: 0.25+/-0.09 vs. 0.69+/-0.44 mmol, P<0.01). The percentage of correct responses on CPT after insufficient sleep was significantly lower than that after sufficient sleep (96.1+/-4.5 vs. 86.6+/-9.8%, P<0.05). The brake reaction time in a harsh-braking test was significantly longer after insufficient sleep than after sufficient sleep (546.2+/-23.0 vs. 478.0+/-51.2 ms, P<0.05). Whereas there were no significant correlations between decrease in oxyHb and the changes of cognitive function or driving performance between insufficient sleep and sufficient sleep. One night of insufficient sleep affects daytime cognitive function and driving performance and this was accompanied by the changes of cortical oxygenation response. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Impaired cortical mitochondrial function following TBI precedes behavioral changes

    PubMed Central

    Watson, William D.; Buonora, John E.; Yarnell, Angela M.; Lucky, Jessica J.; D’Acchille, Michaela I.; McMullen, David C.; Boston, Andrew G.; Kuczmarski, Andrew V.; Kean, William S.; Verma, Ajay; Grunberg, Neil E.; Cole, Jeffrey T.

    2014-01-01

    Traumatic brain injury (TBI) pathophysiology can be attributed to either the immediate, primary physical injury, or the delayed, secondary injury which begins minutes to hours after the initial injury and can persist for several months or longer. Because these secondary cascades are delayed and last for a significant time period post-TBI, they are primary research targets for new therapeutics. To investigate changes in mitochondrial function after a brain injury, both the cortical impact site and ipsilateral hippocampus of adult male rats 7 and 17 days after a controlled cortical impact (CCI) injury were examined. State 3, state 4, and uncoupler-stimulated rates of oxygen consumption, respiratory control ratios (RCRs) were measured and membrane potential quantified, and all were significantly decreased in 7 day post-TBI cortical mitochondria. By contrast, hippocampal mitochondria at 7 days showed only non-significant decreases in rates of oxygen consumption and membrane potential. NADH oxidase activities measured in disrupted mitochondria were normal in both injured cortex and hippocampus at 7 days post-CCI. Respiratory and phosphorylation capacities at 17 days post-CCI were comparable to naïve animals for both cortical and hippocampus mitochondria. However, unlike oxidative phosphorylation, membrane potential of mitochondria in the cortical lining of the impact site did not recover at 17 days, suggesting that while diminished cortical membrane potential at 17 days does not adversely affect mitochondrial capacity to synthesize ATP, it may negatively impact other membrane potential-sensitive mitochondrial functions. Memory status, as assessed by a passive avoidance paradigm, was not significantly impaired until 17 days after injury. These results indicate pronounced disturbances in cortical mitochondrial function 7 days after CCI which precede the behavioral impairment observed at 17 days. PMID:24550822

  12. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    PubMed Central

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  13. Evidence that impaired sleep recovery may complicate burnout improvement independently of depressive mood.

    PubMed

    Sonnenschein, Mieke; Sorbi, Marjolijn J; van Doornen, Lorenz J P; Schaufeli, Wilmar B; Maas, Cora J M

    2007-04-01

    This article examines recovery through sleep in relation to sleep quality, exhaustion, and depression in clinical burnout. We focus on actual recovery per night, given its relevance to burnout improvement. Sixty clinically burned-out participants and 40 healthy controls recorded symptoms with an electronic diary for 2 weeks at random times per day. Recovery through sleep was defined as the difference in fatigue between late evening and the next morning. In clinical burnout, sleep quality and recovery are impaired, and depression is elevated. Poor recovery through sleep is associated with poor same-night sleep quality, clarifying the mechanisms underlying poor recovery. Individual differences in recovery though sleep were related to differences in refreshed awakening, but not to other sleep problems. Impaired recovery was also related to severity of exhaustion, but not to severity of depressive mood, indicating that, in burnout, nonprofit from sleep is a symptom of energy depletion, not a sign of depression. Impaired recovery through sleep may hamper recovery from burnout independently of the influence of depression.

  14. Effects of aniracetam on impaired sleep patterns in stroke-prone spontaneously hypertensive rats.

    PubMed

    Kimura, M; Okano, S; Inoué, S

    2000-06-01

    The aim of the present study was to determine the pattern of sleep disturbances and the effects on sleep of aniracetam, a cognitive enhancer, in stroke-prone spontaneously hypertensive rats (SHRSP). Compared with normotensive control rats, SHRSP exhibited an impaired sleep pattern characterized by suppressed diurnal rapid eye movement (REM) sleep and excessive nocturnal non-REM sleep. At a dose of 30 mg/kg per day p.o., aniracetam increased REM sleep in the light period after administration for 5 consecutive days. Consequently, suppressed REM sleep in SHRSP was restored by repeated treatment with aniracetam. Aniracetam could be useful in improving REM sleep impairment associated with vascular dementia.

  15. Effects of sleep deprivation on cognition.

    PubMed

    Killgore, William D S

    2010-01-01

    Sleep deprivation is commonplace in modern society, but its far-reaching effects on cognitive performance are only beginning to be understood from a scientific perspective. While there is broad consensus that insufficient sleep leads to a general slowing of response speed and increased variability in performance, particularly for simple measures of alertness, attention and vigilance, there is much less agreement about the effects of sleep deprivation on many higher level cognitive capacities, including perception, memory and executive functions. Central to this debate has been the question of whether sleep deprivation affects nearly all cognitive capacities in a global manner through degraded alertness and attention, or whether sleep loss specifically impairs some aspects of cognition more than others. Neuroimaging evidence has implicated the prefrontal cortex as a brain region that may be particularly susceptible to the effects of sleep loss, but perplexingly, executive function tasks that putatively measure prefrontal functioning have yielded inconsistent findings within the context of sleep deprivation. Whereas many convergent and rule-based reasoning, decision making and planning tasks are relatively unaffected by sleep loss, more creative, divergent and innovative aspects of cognition do appear to be degraded by lack of sleep. Emerging evidence suggests that some aspects of higher level cognitive capacities remain degraded by sleep deprivation despite restoration of alertness and vigilance with stimulant countermeasures, suggesting that sleep loss may affect specific cognitive systems above and beyond the effects produced by global cognitive declines or impaired attentional processes. Finally, the role of emotion as a critical facet of cognition has received increasing attention in recent years and mounting evidence suggests that sleep deprivation may particularly affect cognitive systems that rely on emotional data. Thus, the extent to which sleep deprivation

  16. Sleep Restriction Impairs Vocabulary Learning when Adolescents Cram for Exams: The Need for Sleep Study

    PubMed Central

    Huang, Sha; Deshpande, Aadya; Yeo, Sing-Chen; Lo, June C.; Chee, Michael W.L.; Gooley, Joshua J.

    2016-01-01

    Study Objectives: The ability to recall facts is improved when learning takes place at spaced intervals, or when sleep follows shortly after learning. However, many students cram for exams and trade sleep for other activities. The aim of this study was to examine the interaction of study spacing and time in bed (TIB) for sleep on vocabulary learning in adolescents. Methods: In the Need for Sleep Study, which used a parallel-group design, 56 adolescents aged 15–19 years were randomly assigned to a week of either 5 h or 9 h of TIB for sleep each night as part of a 14-day protocol conducted at a boarding school. During the sleep manipulation period, participants studied 40 Graduate Record Examination (GRE)-type English words using digital flashcards. Word pairs were presented over 4 consecutive days (spaced items), or all at once during single study sessions (massed items), with total study time kept constant across conditions. Recall performance was examined 0 h, 24 h, and 120 h after all items were studied. Results: For all retention intervals examined, recall of massed items was impaired by a greater amount in adolescents exposed to sleep restriction. In contrast, cued recall performance on spaced items was similar between sleep groups. Conclusions: Spaced learning conferred strong protection against the effects of sleep restriction on recall performance, whereas students who had insufficient sleep were more likely to forget items studied over short time intervals. These findings in adolescents demonstrate the importance of combining good study habits and good sleep habits to optimize learning outcomes. Citation: Huang S, Deshpande A, Yeo SC, Lo JC, Chee MW, Gooley JJ. Sleep restriction impairs vocabulary learning when adolescents cram for exams: the Need for Sleep Study. SLEEP 2016;39(9):1681–1690. PMID:27253768

  17. Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults.

    PubMed

    Furtado, Fabianne; Gonçalves, Bruno da Silva B; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia; Forner-Cordero, Arturo

    2016-01-01

    The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation.

  18. Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults

    PubMed Central

    Gonçalves, Bruno da Silva B.; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia

    2016-01-01

    The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation. PMID:27732604

  19. Polysomnographic measures of sleep in cocaine dependence and alcohol dependence: Implications for age‐related loss of slow wave, stage 3 sleep

    PubMed Central

    Bjurstrom, Martin F.; Olmstead, Richard

    2016-01-01

    Abstract Background and aims Sleep disturbance is a prominent complaint in cocaine and alcohol dependence. This controlled study evaluated differences of polysomnographic (PSG) sleep in cocaine‐ and alcohol‐dependent subjects, and examined whether substance dependence interacts with age to alter slow wave sleep and rapid eye movement (REM) sleep. Design Cross‐sectional comparison. Setting Los Angeles and San Diego, CA, USA. Participants Abstinent cocaine‐dependent subjects (n = 32), abstinent alcohol‐dependent subjects (n = 73) and controls (n = 108); mean age 40.3 years recruited 2005–12. Measurements PSG measures of sleep continuity and sleep architecture primary outcomes of Stage 3 sleep and REM sleep. Covariates included age, ethnicity, education, smoking, body mass index and depressive symptoms. Findings Compared with controls, both groups of substance dependent subjects showed loss of Stage 3 sleep (P < 0.001). A substance dependence × age interaction was found in which both cocaine‐ and alcohol‐dependent groups showed loss of Stage 3 sleep at an earlier age than controls (P < 0.05 for all), and cocaine‐dependent subjects showed loss of Stage 3 sleep at an earlier age than alcoholics (P < 0.05). Compared with controls, REM sleep was increased in both substance‐dependent groups (P < 0.001), and cocaine and alcohol dependence were associated with earlier age‐related increase in REM sleep (P < 0.05 for all). Conclusions Cocaine and alcohol dependence appear to be associated with marked disturbances of sleep architecture, including increased rapid eye movement sleep and accelerated age‐related loss of slow wave, Stage 3 sleep. PMID:26749502

  20. Night Sleep Duration and Risk of Cognitive Impairment in a Chinese Population: A Cross-sectional Study.

    PubMed

    Song, Qiao Feng; Liu, Xiao Xue; Hu, Wan Ning; Han, Xiao Chen; Zhou, Wen Hua; Lu, Ai Dong; Wang, Xi Zhu; Wu, Shou Ling

    2017-10-01

    Although sleep is one of the most important health-related behavioral factors, the association between night sleep duration and cognitive impairment has not been fully understood. A cross-sectional study was conducted with a random sample of 2,514 participants (⋝ 40 years of age; 46.6% women) in China to examine the association between night sleep duration and cognitive impairment. Night sleep duration was categorized as ⋜ 5, 6, 7, 8, or ⋝ 9 h per night. Cognitive function was measured using the Mini-Mental State Examination. A multivariate regression analysis was used to analyze the association of night sleep duration with cognitive impairment. A total of 122 participants were diagnosed with cognitive impairment. A U-shaped association between night sleep duration and cognitive impairment was found. The odds ratios (95% confidence intervals) of cognitive impairment (with 7 h of daily sleep being considered as the reference) for individuals reporting ⋜ 5, 6, 8, and ⋝ 9 h were 2.14 (1.20-3.83), 1.13 (0.67-1.89), 1.51 (0.82-2.79), and 5.37 (1.62-17.80), respectively (P ⋜ 0.01). Short or long night sleep duration was an important sleep-related factor independently associated with cognitive impairment and may be a useful marker for increased risk of cognitive impairment.. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Augmenting CPT to Improve Sleep Impairment in PTSD: A Randomized Clinical Trial

    PubMed Central

    Galovski, Tara E.; Mott, Juliette; Blain, Leah M.; Elwood, Lisa; Gloth, Chelsea; Fletcher, Thomas

    2015-01-01

    Objective Despite the success of empirically supported treatments for posttraumatic stress disorder (PTSD), sleep impairment frequently remains refractory following treatment for PTSD. This single-site, randomized controlled trial examined the effectiveness of sleep-directed hypnosis as a complement to an empirically supported psychotherapy for PTSD (cognitive processing therapy; CPT). Method Participants completed either 3 weeks of hypnosis (n = 52) or a symptom monitoring control condition (n = 56) before beginning standard CPT. Multilevel modeling was used to investigate differential patterns of change to determine whether hypnosis resulted in improvements in sleep, PTSD, and depression. An intervening variable approach was then used to determine whether improvements in sleep achieved during hypnosis augmented change in PTSD and depression during CPT. Results After the initial phase of treatment (hypnosis or symptom monitoring), the hypnosis condition showed significantly greater improvement than the control condition in sleep and depression, but not PTSD. After CPT, both conditions demonstrated significant improvement in sleep and PTSD; however, the hypnosis condition demonstrated greater improvement in depressive symptoms. As sleep improved, there were corresponding improvements in PTSD and depression, with a stronger relationship between sleep and PTSD. Conclusion Hypnosis was effective in improving sleep impairment, but those improvements did not augment gains in PTSD recovery during the trauma-focused intervention. Public Health Significance: This study suggests that hypnosis may be a viable treatment option in a stepped-care approach for treating sleep impairment in individuals suffering from PTSD. PMID:26689303

  2. Acute Kynurenine Challenge Disrupts Sleep-Wake Architecture and Impairs Contextual Memory in Adult Rats.

    PubMed

    Pocivavsek, Ana; Baratta, Annalisa M; Mong, Jessica A; Viechweg, Shaun S

    2017-11-01

    Tryptophan metabolism via the kynurenine pathway may represent a key molecular link between sleep loss and cognitive dysfunction. Modest increases in the kynurenine pathway metabolite kynurenic acid (KYNA), which acts as an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors in the brain, result in cognitive impairments. As glutamatergic and cholinergic neurotransmissions are critically involved in modulation of sleep, our current experiments tested the hypothesis that elevated KYNA adversely impacts sleep quality. Adult male Wistar rats were treated with vehicle (saline) and kynurenine (25, 50, 100, and 250 mg/kg), the direct bioprecursor of KYNA, intraperitoneally at zeitgeber time (ZT) 0 to rapidly increase brain KYNA. Levels of KYNA in the brainstem, cortex, and hippocampus were determined at ZT 0, ZT 2, and ZT 4, respectively. Analyses of vigilance state-related parameters categorized as wake, rapid eye movement (REM), and non-REM (NREM) as well as spectra power analysis during NREM and REM were assessed during the light phase. Separate animals were tested in the passive avoidance paradigm, testing contextual memory. When KYNA levels were elevated in the brain, total REM duration was reduced and total wake duration was increased. REM and wake architecture, assessed as number of vigilance state bouts and average duration of each bout, and theta power during REM were significantly impacted. Kynurenine challenge impaired performance in the hippocampal-dependent contextual memory task. Our results introduce kynurenine pathway metabolism and formation of KYNA as a novel molecular target contributing to sleep disruptions and cognitive impairments. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Pulse Wave Amplitude Drops during Sleep are Reliable Surrogate Markers of Changes in Cortical Activity

    PubMed Central

    Delessert, Alexandre; Espa, Fabrice; Rossetti, Andrea; Lavigne, Gilles; Tafti, Mehdi; Heinzer, Raphael

    2010-01-01

    Background: During sleep, sudden drops in pulse wave amplitude (PWA) measured by pulse oximetry are commonly associated with simultaneous arousals and are thought to result from autonomic vasoconstriction. In the present study, we determine whether PWA drops were associated with changes in cortical activity as determined by EEG spectral analysis. Methods: A 20% decrease in PWA was chosen as a minimum for a drop. A total of 1085 PWA drops from 10 consecutive sleep recordings were analyzed. EEG spectral analysis was performed over 5 consecutive epochs of 5 seconds: 2 before, 1 during, and 2 after the PWA drop. EEG spectral analysis was performed over delta, theta, alpha, sigma, and beta frequency bands. Within each frequency band, power density was compared across the five 5-sec epochs. Presence or absence of visually scored EEG arousals were adjudicated by an investigator blinded to the PWA signal and considered associated with PWA drop if concomitant. Results: A significant increase in EEG power density in all EEG frequency bands was found during PWA drops (P < 0.001) compared to before and after drop. Even in the absence of visually scored arousals, PWA drops were associated with a significant increase in EEG power density (P < 0.001) in most frequency bands. Conclusions: Drops in PWA are associated with a significant increase in EEG power density, suggesting that these events can be used as a surrogate for changes in cortical activity during sleep. This approach may prove of value in scoring respiratory events on limited-channel (type III) portable monitors. Citation: Delessert A; Espa F; Rossetti A; Lavigne G; Tafti M; Heinzer R. Pulse wave amplitude drops during sleep are reliable surrogate markers of changes in cortical activity. SLEEP 2010;33(12):1687-1692. PMID:21120131

  4. Sleep EEG Provides Evidence that Cortical Changes Persist into Late Adolescence

    PubMed Central

    Tarokh, Leila; Van Reen, Eliza; LeBourgeois, Monique; Seifer, Ronald; Carskadon, Mary A.

    2011-01-01

    Study Objectives: To examine developmental changes in the human sleep electroencephalogram (EEG) during late adolescence. Setting: A 4-bed sleep laboratory. Participants: Fourteen adolescents (5 boys) were studied at ages 15 or 16 (initial) and again at ages 17 to 19 (follow-up). Interventions: N/A Measurements and Results: All-night polysomnography was recorded at each assessment and scored according to the criteria of Rechtschaffen and Kales. A 27% decline in duration of slow wave sleep, and a 22% increase of stage 2 sleep was observed from the initial to the follow-up session. All-night spectral analysis of 2 central and 2 occipital leads revealed a significant decline of NREM and REM sleep EEG power with increasing age across frequencies in both states. Time-frequency analysis revealed that the decline in power was consistent across the night for all bands except the delta band. The decreases in power were most pronounced over the left central (C3/A2) and right occipital (O2/A1) derivations. Conclusions: Using longitudinal data, we show that the developmental changes to the sleeping EEG that begin in early adolescence continue into late adolescence. As with early adolescents, we observed hemispheric asymmetry in the decline of sleep EEG power. This decline was state and frequency nonspecific, suggesting that it may be due to the pruning of synapses known to occur during adolescence. Citation: Tarokh L; Van Reen E; LeBourgeois M; Seifer R; Carskadon MA. Sleep EEG provides evidence that cortical changes persist into late adolescence. SLEEP 2011;34(10):1385–1393. PMID:21966070

  5. The Microstructure of Active and Quiet Sleep as Cortical Delta Activity Emerges in Infant Rats

    PubMed Central

    Seelke, Adele M. H.; Blumberg, Mark S.

    2008-01-01

    Study objectives: Previous investigators have suggested that quiet sleep (QS) in rats develops rapidly upon the emergence of cortical delta activity around postnatal day (P)11 and that the presence of “half-activated” active sleep (AS) suggests that infant sleep is initially disorganized. To address these issues, we examined the temporal organization of sleep states during the second postnatal week in rats as delta activity emerges. Design: Subjects were P9, P11, and P13 Sprague-Dawley rats. Electroencephalogram and nuchal electromyogram electrodes were implanted, and data were recorded at thermoneutrality for 2 hours. Results: At all ages, using electromyogram and behavioral criteria, QS (defined as nuchal atonia and behavioral quiescence) dominated the first third of each sleep period, whereas AS (defined as nuchal atonia accompanied by myoclonic twitching) dominated the last third. When delta activity, which was first detected at P11, could be added to the definition of QS, gross assessments of sleep-state organization were not altered, although it was now possible to identify brief periods of QS interposed between periods of AS. No evidence of “half-activated” AS was found. Finally, “slow activity transients” were detected and were primarily associated with QS; their rate of occurrence declined as delta activity emerged. Conclusions: When delta activity emerges at P11, it integrates smoothly with periods of QS, as defined using electromyogram and behavioral criteria alone. Delta activity helps to refine estimates of QS duration but does not reflect a significant alteration of sleep-state organization. Rather, this organization is expressed much earlier in ontogeny as fluctuations in muscle tone and associated phasic motor activity. Citation: Seelke AMH; Blumberg MS. The microstructure of active and quiet sleep as cortical delta activity emerges in infant rats. SLEEP 2008;31(5):691–699. PMID:18517038

  6. Sensitivity and validity of psychometric tests for assessing driving impairment: effects of sleep deprivation.

    PubMed

    Jongen, Stefan; Perrier, Joy; Vuurman, Eric F; Ramaekers, Johannes G; Vermeeren, Annemiek

    2015-01-01

    To assess drug induced driving impairment, initial screening is needed. However, no consensus has been reached about which initial screening tools have to be used. The present study aims to determine the ability of a battery of psychometric tests to detect performance impairing effects of clinically relevant levels of drowsiness as induced by one night of sleep deprivation. Twenty four healthy volunteers participated in a 2-period crossover study in which the highway driving test was conducted twice: once after normal sleep and once after one night of sleep deprivation. The psychometric tests were conducted on 4 occasions: once after normal sleep (at 11 am) and three times during a single night of sleep deprivation (at 1 am, 5 am, and 11 am). On-the-road driving performance was significantly impaired after sleep deprivation, as measured by an increase in Standard Deviation of Lateral Position (SDLP) of 3.1 cm compared to performance after a normal night of sleep. At 5 am, performance in most psychometric tests showed significant impairment. As expected, largest effect sizes were found on performance in the Psychomotor Vigilance Test (PVT). Large effects sizes were also found in the Divided Attention Test (DAT), the Attention Network Test (ANT), and the test for Useful Field of View (UFOV) at 5 and 11 am during sleep deprivation. Effects of sleep deprivation on SDLP correlated significantly with performance changes in the PVT and the DAT, but not with performance changes in the UFOV. From the psychometric tests used in this study, the PVT and DAT seem most promising for initial evaluation of drug impairment based on sensitivity and correlations with driving impairment. Further studies are needed to assess the sensitivity and validity of these psychometric tests after benchmark sedative drug use.

  7. Sensitivity and Validity of Psychometric Tests for Assessing Driving Impairment: Effects of Sleep Deprivation

    PubMed Central

    Jongen, Stefan; Perrier, Joy; Vuurman, Eric F.; Ramaekers, Johannes G.; Vermeeren, Annemiek

    2015-01-01

    Objective To assess drug induced driving impairment, initial screening is needed. However, no consensus has been reached about which initial screening tools have to be used. The present study aims to determine the ability of a battery of psychometric tests to detect performance impairing effects of clinically relevant levels of drowsiness as induced by one night of sleep deprivation. Methods Twenty four healthy volunteers participated in a 2-period crossover study in which the highway driving test was conducted twice: once after normal sleep and once after one night of sleep deprivation. The psychometric tests were conducted on 4 occasions: once after normal sleep (at 11 am) and three times during a single night of sleep deprivation (at 1 am, 5 am, and 11 am). Results On-the-road driving performance was significantly impaired after sleep deprivation, as measured by an increase in Standard Deviation of Lateral Position (SDLP) of 3.1 cm compared to performance after a normal night of sleep. At 5 am, performance in most psychometric tests showed significant impairment. As expected, largest effect sizes were found on performance in the Psychomotor Vigilance Test (PVT). Large effects sizes were also found in the Divided Attention Test (DAT), the Attention Network Test (ANT), and the test for Useful Field of View (UFOV) at 5 and 11 am during sleep deprivation. Effects of sleep deprivation on SDLP correlated significantly with performance changes in the PVT and the DAT, but not with performance changes in the UFOV. Conclusion From the psychometric tests used in this study, the PVT and DAT seem most promising for initial evaluation of drug impairment based on sensitivity and correlations with driving impairment. Further studies are needed to assess the sensitivity and validity of these psychometric tests after benchmark sedative drug use. PMID:25668292

  8. Work stressors and impaired sleep: rumination as a mediator.

    PubMed

    Berset, Martial; Elfering, Achim; Lüthy, Stefan; Lüthi, Simon; Semmer, Norbert K

    2011-04-01

    An association between stress at work and impaired sleep is theoretically plausible and supported by empirical evidence. The current study's main aim was to investigate how the influence of stressors is carried over into the evening and the night. We assume that this relationship is mediated by perseverative cognitions. We tested this assumption in two cross-sectional samples with structural equation modeling, using bootstrapped standard errors to test for significance. Effort–reward imbalance and time pressure were used as stressors, and rumination as a measure for perseverative cognitions. Results show that the stressors are related to perseverative cognitions, and these are related to impaired sleep in both samples. Indirect effects are significant in both samples. With rumination controlled, direct effects of stressors on sleep are only significant in one out of four cases. Thus, there is full mediation in three out of four cases, and partial mediation in the fourth one. Our results underscore the notion that perseverative cognitions are crucial for transferring negative effects of work stressors into private life, including sleep, thus hindering individuals to successfully recover.

  9. [Poststroke cognitive, emotional impairment and sleep quality: efficience of treatment with melaxen].

    PubMed

    Kulesh, A A; Shestakov, V V

    2014-01-01

    To study melatonin secretion and its correlations with poststroke cognitive, emotional impairment and sleep quality in the acute period of stroke and to assess treatment efficacy of melaxen. We studied 96 patients with acute stroke. A battery of tests and scales for assessment of neurological deficit, neuropsychological status and emotional impairment was used. The night urinary level of 6-sulfatoxymelatonin was assessed. The relationship between 6-sulfatoxymelatonin and cognitive, emotional status and sleep parameters was analyzed. The level of 6-sulfatoxymelatonin was decreased in the night urine. Patients with dysexecutive poststroke cognitive impairment had higher level of 6-sulfatoxymelatonin and patients with dysmnestic and mixed cognitive impairment had lower level of 6-sulfatoxymelatonin in comparison with patients with normal cognitive functions. Melaxen improved cognitive function and sleep parameters, reduced the level of anxiety in the early recovery period of stroke. A role of chronobiological processes in the development of clinical signs of stroke in the aspect of cognitive impairment is discussed.

  10. Prefrontal atrophy, disrupted NREM slow waves, and impaired hippocampal-dependent memory in aging

    PubMed Central

    Mander, Bryce A.; Rao, Vikram; Lu, Brandon; Saletin, Jared M.; Lindquist, John R.; Ancoli-Israel, Sonia; Jagust, William; Walker, Matthew P.

    2014-01-01

    Aging has independently been associated with regional brain atrophy, reduced non-rapid eye movement (NREM) slow-wave activity (SWA), and impaired long-term retention of episodic memories. However, that the interaction of these factors represents a neuropatholgical pathway associated with cognitive decline in later life remains unknown. Here, we show that age-related medial prefrontal cortex (mPFC) grey-matter atrophy is associated with reduced NREM SWA activity in older adults, the extent to which statistically mediates the impairment of overnight sleep-dependent memory retention. Moreover, this memory impairment was further associated with persistent hippocampal activation and reduced task-related hippocampal-prefrontal cortex connectivity, potentially representing impoverished hippocampal-neocortical memory transformation. Together, these data support a model in which age-related mPFC atrophy diminishes SWA, the functional consequence of which is impaired long-term memory. Such findings suggest that sleep disruption in the elderly, mediated by structural brain changes, represent a novel contributing factor to age-related cognitive decline in later life. PMID:23354332

  11. The maturation of cortical sleep rhythms and networks over early development

    PubMed Central

    Chu, CJ; Leahy, J; Pathmanathan, J; Kramer, MA; Cash, SS

    2014-01-01

    Objective Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. Results We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Conclusion Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. Significance This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. PMID:24418219

  12. Association between Visual Impairment and Low Vision and Sleep Duration and Quality among Older Adults in South Africa.

    PubMed

    Peltzer, Karl; Phaswana-Mafuya, Nancy

    2017-07-19

    This study aims to estimate the association between visual impairment and low vision and sleep duration and poor sleep quality in a national sample of older adults in South Africa. A national population-based cross-sectional Study of Global Ageing and Adults Health (SAGE) wave 1 was conducted in 2008 with a sample of 3840 individuals aged 50 years or older in South Africa. The interviewer-administered questionnaire assessed socio-demographic characteristics, health variables, sleep duration, quality, visual impairment, and vision. Results indicate that 10.0% of the sample reported short sleep duration (≤5 h), 46.6% long sleep (≥9 h), 9.3% poor sleep quality, 8.4% self-reported and visual impairment (near and/or far vision); and 43.2% measured low vision (near and/or far vision) (0.01-0.25 decimal) and 7.5% low vision (0.01-0.125 decimal). In fully adjusted logistic regression models, self-reported visual impairment was associated with short sleep duration and poor sleep quality, separately and together. Low vision was only associated with long sleep duration and poor sleep quality in unadjusted models. Self-reported visual impairment was related to both short sleep duration and poor sleep quality. Population data on sleep patterns may want to include visual impairment measures.

  13. Rehabilitation of cortical blindness secondary to stroke.

    PubMed

    Gaber, Tarek A-Z K

    2010-01-01

    Cortical blindness is a rare complication of posterior circulation stroke. However, its complex presentation with sensory, physical, cognitive and behavioural impairments makes it one of the most challenging. Appropriate approach from a rehabilitation standpoint was never reported. Our study aims to discuss the rehabilitation methods and outcomes of a cohort of patients with cortical blindness. The notes of all patients with cortical blindness referred to a local NHS rehabilitation service in the last 6~years were examined. Patients' demographics, presenting symptoms, scan findings, rehabilitation programmes and outcomes were documented. Seven patients presented to our service, six of them were males. The mean age was 63. Patients 1, 2 and 3 had total blindness with severe cognitive and behavioural impairments, wandering and akathisia. All of them failed to respond to any rehabilitation effort and the focus was on damage limitation. Pharmacological interventions had a modest impact on behaviour and sleep pattern. The 3 patients were discharged to a nursing facility. Patients 4, 5, 6 and 7 had partial blindness with variable severity. All of them suffered from significant memory impairment. However, none suffered from any behavioural, physical or other cognitive impairment. Rehabilitation efforts on 3 patients were carried out collaboratively between brain injury occupational therapists and sensory disability officers. All patients experienced significant improvement in handicap and they all maintained community placements. This small cohort of patients suggests that the rehabilitation philosophy and outcomes of these 2 distinct groups of either total or partial cortical blindness differ significantly.

  14. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    PubMed

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  15. Experimental Sleep Restriction Facilitates Pain and Electrically Induced Cortical Responses

    PubMed Central

    Matre, Dagfinn; Hu, Li; Viken, Leif A.; Hjelle, Ingri B.; Wigemyr, Monica; Knardahl, Stein; Sand, Trond; Nilsen, Kristian Bernhard

    2015-01-01

    Study Objectives: Sleep restriction (SR) has been hypothesized to sensitize the pain system. The current study determined whether experimental sleep restriction had an effect on experimentally induced pain and pain-elicited electroencephalographic (EEG) responses. Design: A paired crossover study. Intervention: Pain testing was performed after 2 nights of 50% SR and after 2 nights with habitual sleep (HS). Setting: Laboratory experiment at research center. Participants: Self-reported healthy volunteers (n = 21, age range: 18–31 y). Measurements and Results: Brief high-density electrical stimuli to the forearm skin produced pinprick-like pain. Subjective pain ratings increased after SR, but only in response to the highest stimulus intensity (P = 0.018). SR increased the magnitude of the pain-elicited EEG response analyzed in the time-frequency domain (P = 0.021). Habituation across blocks did not differ between HS and SR. Event-related desynchronization (ERD) was reduced after SR (P = 0.039). Pressure pain threshold of the trapezius muscle region also decreased after SR (P = 0.017). Conclusion: Sleep restriction (SR) increased the sensitivity to pressure pain and to electrically induced pain of moderate, but not low, intensity. The increased electrical pain could not be explained by a difference in habituation. Increased response magnitude is possibly related to reduced processing within the somatosensory cortex after partial SR. Citation: Matre D, Hu L, Viken LA, Hjelle IB, Wigemyr M, Knardahl S, Sand T, Nilsen KB. Experimental sleep restriction facilitates pain and electrically induced cortical responses. SLEEP 2015;38(10):1607–1617. PMID:26194577

  16. Postnatal Ablation of Synaptic Retinoic Acid Signaling Impairs Cortical Information Processing and Sensory Discrimination in Mice.

    PubMed

    Park, Esther; Tjia, Michelle; Zuo, Yi; Chen, Lu

    2018-06-06

    Retinoic acid (RA) and its receptors (RARs) are well established essential transcriptional regulators during embryonic development. Recent findings in cultured neurons identified an independent and critical post-transcriptional role of RA and RARα in the homeostatic regulation of excitatory and inhibitory synaptic transmission in mature neurons. However, the functional relevance of synaptic RA signaling in vivo has not been established. Here, using somatosensory cortex as a model system and the RARα conditional knock-out mouse as a tool, we applied multiple genetic manipulations to delete RARα postnatally in specific populations of cortical neurons, and asked whether synaptic RA signaling observed in cultured neurons is involved in cortical information processing in vivo Indeed, conditional ablation of RARα in mice via a CaMKIIα-Cre or a layer 5-Cre driver line or via somatosensory cortex-specific viral expression of Cre-recombinase impaired whisker-dependent texture discrimination, suggesting a critical requirement of RARα expression in L5 pyramidal neurons of somatosensory cortex for normal tactile sensory processing. Transcranial two-photon imaging revealed a significant increase in dendritic spine elimination on apical dendrites of somatosensory cortical layer 5 pyramidal neurons in these mice. Interestingly, the enhancement of spine elimination is whisker experience-dependent as whisker trimming rescued the spine elimination phenotype. Additionally, experiencing an enriched environment improved texture discrimination in RARα-deficient mice and reduced excessive spine pruning. Thus, RA signaling is essential for normal experience-dependent cortical circuit remodeling and sensory processing. SIGNIFICANCE STATEMENT The importance of synaptic RA signaling has been demonstrated in in vitro studies. However, whether RA signaling mediated by RARα contributes to neural circuit functions in vivo remains largely unknown. In this study, using a RARα conditional

  17. Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks

    PubMed Central

    Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.

    2014-01-01

    Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert

  18. Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment.

    PubMed

    Merabet, Lotfi B; Mayer, D Luisa; Bauer, Corinna M; Wright, Darick; Kran, Barry S

    2017-05-01

    Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Pilot study to investigate sleep disorders in the blind and persons with relevant visual impairment].

    PubMed

    Dirks, C; Grünewald, D; Young, P; Heidbreder, A

    2018-05-22

    Sleep disorders are associated with serious health problems in blind and visually impaired persons. Loss of light perception may result in a shift of sleep-wake pattern, which may lead to significant impairments in daily life--the so-called non-24-hour sleep-wake disorder. To date, epidemiologic data on non-24 only exist for the USA. This pilot study was conducted to provide first epidemiologic data for the prevalence of non-24 and other sleep disorders among blind and visually impaired persons in Germany. Recruited were 111 blind and visually impaired subjects (36 subjects without light perception; male [m] = 56, 27-85 years, average [Mx] = 59.53, standard deviation [SD] = 14.69) and 111 sighted controls (m = 41, 27-88 years, Mx = 58.32, SD = 14.21), who answered a set of validated questionnaires referring to general health status (SF-36), sleep characteristics (PSQI), and daytime sleepiness (ESS). In addition, a questionnaire to predict non-24-hour sleep-wake disorder, which is not yet validated in German, was provided. The prevalence of 72.2% for the non-24-hour sleep-wake disorder in blind people is in accordance with results from the USA. In contrast, our results indicated non-24 in only 21.3% of the subjects with residual light perception. Furthermore, other sleep disorders like problems falling asleep (100% vs. 79.9%), maintaining sleep (90% vs. 88.1%), sleep-disordered breathing (19.4% vs. 32%), or sleep-related movement disorders (28.1% vs. 32.9%) were also common in the group of blind or visually impaired persons. The non-24-hour sleep-wake disorder is a frequent problem among people with no light perception, associated with problems falling asleep, maintaining sleep, and daytime sleepiness. The perception of light as an external cue for our circadian rhythm plays a key role. However, sleep disruption is not fully explained by non-24, making a detailed sleep history essential.

  20. Bombesin administration impairs memory and does not reverse memory deficit caused by sleep deprivation.

    PubMed

    Ferreira, L B T; Oliveira, S L B; Raya, J; Esumi, L A; Hipolide, D C

    2017-07-28

    Sleep deprivation impairs performance in emotional memory tasks, however this effect on memory is not completely understood. Possible mechanisms may involve an alteration in neurotransmission systems, as shown by the fact that many drugs that modulate neural pathways can prevent memory impairment by sleep loss. Gastrin releasing peptide (GRP) is a neuropeptide that emerged as a regulatory molecule of emotional memory through the modulation of other neurotransmission systems. Thus, the present study addressed the effect of intraperitoneal (IP) administration of bombesin (BB) (2.5, 5.0 and 10.0μg/kg), a GRP agonist, on the performance of Wistar rats in a multiple trail inhibitory avoidance (MTIA) task, after sleep deprivation, using the modified multiple platforms method (MMPM). Sleep deprived animals exhibited acquisition and retention impairment that was not prevented by BB injection. In addition, non-sleep deprived animals treated with BB before and after the training session, but not before the test, have shown a retention deficit. In summary, BB did not improve the memory impairment by sleep loss and, under normal conditions, produced a memory consolidation deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The 2007 AASM Recommendations for EEG Electrode Placement in Polysomnography: Impact on Sleep and Cortical Arousal Scoring

    PubMed Central

    Ruehland, Warren R.; O'Donoghue, Fergal J.; Pierce, Robert J.; Thornton, Andrew T.; Singh, Parmjit; Copland, Janet M.; Stevens, Bronwyn; Rochford, Peter D.

    2011-01-01

    Study Objective: To examine the impact of using American Academy of Sleep Medicine (AASM) recommended EEG derivations (F4/M1, C4/M1, O2/M1) vs. a single derivation (C4/M1) in polysomnography (PSG) on the measurement of sleep and cortical arousals, including inter- and intra-observer variability. Design: Prospective, non-blinded, randomized comparison. Setting: Three Australian tertiary-care hospital clinical sleep laboratories. Patients or Participants: 30 PSGs from consecutive patients investigated for obstructive sleep apnea (OSA) during December 2007 and January 2008. Interventions: N/A Measurements and Results: To examine the impact of EEG derivations on PSG summary statistics, 3 scorers from different Australian clinical sleep laboratories each scored separate sets of 10 PSGs twice, once using 3 EEG derivations and once using 1 EEG derivation. To examine the impact on inter- and intra-scorer reliability, all 3 scorers scored a subset of 10 PSGs 4 times, twice using each method. All PSGs were de-identified and scored in random order according to the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Using 3 referential EEG derivations during PSG, as recommended in the AASM manual, instead of a single central EEG derivation, as originally suggested by Rechtschaffen and Kales (1968), resulted in a mean ± SE decrease in N1 sleep of 9.6 ± 3.9 min (P = 0.018) and an increase in N3 sleep of 10.6 ± 2.8 min (P = 0.001). No significant differences were observed for any other sleep or arousal scoring summary statistics; nor were any differences observed in inter-scorer or intra-scorer reliability for scoring sleep or cortical arousals. Conclusion: This study provides information for those changing practice to comply with the 2007 AASM recommendations for EEG placement in PSG, for those using portable devices that are unable to comply with the recommendations due to limited channel options, and for the development of future standards for PSG scoring and

  2. Neuroligin-1 links neuronal activity to sleep-wake regulation.

    PubMed

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G; Franken, Paul; Mongrain, Valérie

    2013-06-11

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.

  3. Neuroligin-1 links neuronal activity to sleep-wake regulation

    PubMed Central

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G.; Franken, Paul; Mongrain, Valérie

    2013-01-01

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation. PMID:23716671

  4. Effects of Sleep Deprivation on Brain Bioenergetics, Sleep, and Cognitive Performance in Cocaine-Dependent Individuals

    PubMed Central

    Trksak, George H.; Bracken, Bethany K.; Jensen, J. Eric; Plante, David T.; Penetar, David M.; Tartarini, Wendy L.; Maywalt, Melissa A.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.

    2013-01-01

    In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent [31]P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, [31]P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate), α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse. PMID:24250276

  5. Impaired Sleep Predicts Cognitive Decline in Old People: Findings from the Prospective KORA Age Study.

    PubMed

    Johar, Hamimatunnisa; Kawan, Rasmila; Emeny, Rebecca Thwing; Ladwig, Karl-Heinz

    2016-01-01

    To investigate the association between sleep-related characteristics and cognitive change over 3 years of follow up in an aged population. Sleep characteristics and covariates were assessed at baseline in a standardized interview and clinical examination of the population-based KORA Age Study (n = 740, mean age = 75 years). Cognitive score (determined by telephone interview for cognitive status, TICS-m) was recorded at baseline and 3 years later. At baseline, 82.83% (n = 613) of participants had normal cognitive status, 13.51% (n = 100) were classified with mild cognitive impairment (MCI), and 3.64% (n = 27) with probable dementia. The effect of three distinct patterns of poor sleep (difficulties initiating [DIS] or maintaining sleep [DMS], daytime sleepiness [DS] or sleep duration) were considered on a change in cognitive score with adjustments for potential confounders in generalized linear regression models. Cognitive decline was more pronounced in individuals with DMS compared to those with no DMS (β = 1.33, 95% CI = 0.41-2.24, P < 0.001). However, the predictive power of DMS was only significant in individuals with normal cognition and not impaired subjects at baseline. Prolonged sleep duration increased the risk for cognitive decline in cognitively impaired elderly (β = 1.86, 95% CI = 0.15-3.57, P = 0.03). Other sleep characteristics (DIS and DS) were not significantly associated with cognitive decline. DMS and long sleep duration were associated with cognitive decline in normal and cognitively impaired elderly, respectively. The identification of impaired sleep quality may offer intervention strategies to deter cognitive decline in the elderly with normal cognitive function. © 2016 Associated Professional Sleep Societies, LLC.

  6. The maturation of cortical sleep rhythms and networks over early development.

    PubMed

    Chu, C J; Leahy, J; Pathmanathan, J; Kramer, M A; Cash, S S

    2014-07-01

    Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Sleep Restriction Impairs Blood–Brain Barrier Function

    PubMed Central

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping

    2014-01-01

    The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222

  8. Arousal from sleep: implications for obstructive sleep apnea pathogenesis and treatment.

    PubMed

    Eckert, Danny J; Younes, Magdy K

    2014-02-01

    Historically, brief awakenings from sleep (cortical arousals) have been assumed to be vitally important in restoring airflow and blood-gas disturbances at the end of obstructive sleep apnea (OSA) breathing events. Indeed, in patients with blunted chemical drive (e.g., obesity hypoventilation syndrome) and in instances when other defensive mechanisms fail, cortical arousal likely serves an important protective role. However, recent insight into the pathogenesis of OSA indicates that a substantial proportion of respiratory events do not terminate with a cortical arousal from sleep. In many cases, cortical arousals may actually perpetuate blood-gas disturbances, breathing instability, and subsequent upper airway closure during sleep. This brief review summarizes the current understanding of the mechanisms mediating respiratory-induced cortical arousal, the physiological factors that influence the propensity for cortical arousal, and the potential dual roles that cortical arousal may play in OSA pathogenesis. Finally, the extent to which existing sedative agents decrease the propensity for cortical arousal and their potential to be therapeutically beneficial for certain OSA patients are highlighted.

  9. Transient decoupling of cortical EEGs following arousals during NREM sleep in middle-aged and elderly women.

    PubMed

    Ramanand, Pravitha; Bruce, Margaret C; Bruce, Eugene N

    2010-08-01

    Spontaneous cortical arousals in non-REM sleep increase with age and contribute to sleep fragmentation in the elderly. EEG spectral power in the faster frequencies exhibits well-described shifts during arousals. On the other hand, EEG activities also exhibit correlations, which are interpreted as an index of interdependence between distant cortical neural activities. The possibility of changes to the interdependence between cortical regions due to an arousal has not been considered. In this work, using previously recorded C3A2 and C4A1 EEG signals from two groups of adults, middle-aged (42-50 years) and elderly (71-86 years) women, we examined the effects of spontaneous arousals in NREM sleep on cortical interdependence. We quantified the auto- and cross-correlations in these signals using mutual information and characterized these correlations in periods before the onset and following the end of arousals. The pre-arousal period exhibited significantly higher interdependence between central regions than that following the arousal in both age groups (middle-aged: p=0.004, elderly: p<0.0001). Also, for both EEG signals the auto mutual information had a faster rate of decay, implying lower signal predictability, following the arousal than prior to it (both age groups, p<0.0001). These results indicate that the state of the cortex is different after, compared to before, the arousal even when the spectral power changes characteristic of an arousal are no longer visible. The findings suggest that the state following an arousal characterized by lower interdependence may resemble a more vigilant period during which the system may be vulnerable to more arousals. Copyright 2010 Elsevier B.V. All rights reserved.

  10. A Sleep Questionnaire for Children with Severe Psychomotor Impairment (SNAKE)-Concordance with a Global Rating of Sleep Quality.

    PubMed

    Dreier, Larissa Alice; Zernikow, Boris; Blankenburg, Markus; Wager, Julia

    2018-02-01

    Sleep problems are a common and serious issue in children with life-limiting conditions (LLCs) and severe psychomotor impairment (SPMI). The "Sleep Questionnaire for Children with Severe Psychomotor Impairment" (Schlaffragebogen für Kinder mit Neurologischen und Anderen Komplexen Erkrankungen, SNAKE) was developed for this unique patient group. In a proxy rating, the SNAKE assesses five different dimensions of sleep(-associated) problems (disturbances going to sleep, disturbances remaining asleep, arousal and breathing disorders, daytime sleepiness, and daytime behavior disorders). It has been tested with respect to construct validity and some aspects of criterion validity. The present study examined whether the five SNAKE scales are consistent with parents' or other caregivers' global ratings of a child's sleep quality. Data from a comprehensive dataset of children and adolescents with LLCs and SPMI were analyzed through correlation coefficients and Mann-Whitney U testing. The results confirmed the consistency of both sources of information. The highest levels of agreements with the global rating were achieved for disturbances in terms of going to sleep and disturbances with respect to remaining asleep. The results demonstrate that the scales and therefore the SNAKE itself is well-suited for gathering information on different sleep(-associated) problems in this vulnerable population.

  11. REM sleep Behaviour Disorder.

    PubMed

    Ferini-Strambi, Luigi; Rinaldi, Fabrizio; Giora, Enrico; Marelli, Sara; Galbiati, Andrea

    2016-01-01

    Rapid Eye Movement (REM) sleep Behaviour Disorder (RBD) is a REM sleep parasomnia characterized by loss of the muscle atonia that typically occurs during REM sleep, therefore allowing patients to act out their dreams. RBD manifests itself clinically as a violent behaviour occurring during the night, and is detected at the polysomnography by phasic and/or tonic muscle activity on the electromyography channel. In absence of neurological signs or central nervous system lesions, RBD is defined as idiopathic. Nevertheless, in a large number of cases the development of neurodegenerative diseases in RBD patients has been described, with the duration of the follow-up representing a fundamental aspect. A growing number of clinical, neurophysiologic and neuropsychological studies aimed to detect early markers of neurodegenerative dysfunction in RBD patients. Anyway, the evidence of impaired cortical activity, subtle neurocognitive dysfunction, olfactory and autonomic impairment and neuroimaging brain changes in RBD patients is challenging the concept of an idiopathic form of RBD, supporting the idea of RBD as an early manifestation of a more complex neurodegenerative process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sleep Disturbances among Persons Who Are Visually Impaired: Survey of Dog Guide Users.

    ERIC Educational Resources Information Center

    Fouladi, Massoud K.; Moseley, Merrick J.; Jones, Helen S.; Tobin, Michael J.

    1998-01-01

    A survey completed by 1237 adults with severe visual impairments found that 20% described the quality of their sleep as poor or very poor. Exercise was associated with better sleep and depression with poorer sleep. However, visual acuity did not predict sleep quality, casting doubt on the idea that restricted visual input (light) causes sleep…

  13. Genetic Evidence for a Role for Protein Kinase A in the Maintenance of Sleep and Thalamocortical Oscillations

    PubMed Central

    Hellman, Kevin; Hernandez, Pepe; Park, Alice; Abel, Ted

    2010-01-01

    Study Objectives: Genetic manipulation of cAMP-dependent protein kinase A (PKA) in Drosophila has implicated an important role for PKA in sleep/wake state regulation. Here, we characterize the role of this signaling pathway in the regulation of sleep using electroencephalographic (EEG) and electromyographic (EMG) recordings in R(AB) transgenic mice that express a dominant negative form of the regulatory subunit of PKA in neurons within cortex and hippocampus. Previous studies have revealed that these mutant mice have reduced PKA activity that results in the impairment of hippocampus-dependent long-term memory and long-lasting forms of hippocampal synaptic plasticity. Design: PKA assays, in situ hybridization, immunoblots, and sleep studies were performed in R(AB) transgenic mice and wild-type control mice. Measurements and Results: We have found that R(AB) transgenic mice have reduced PKA activity within cortex and reduced Ser845 phosphorylation of the glutamate receptor subunit GluR1. R(AB) transgenic mice exhibit non-rapid eye movement (NREM) sleep fragmentation and increased amounts of rapid eye movement (REM) sleep relative to wild-type mice. Further, R(AB) transgenic mice have more delta power but less sigma power during NREM sleep relative to wild-type mice. After sleep deprivation, the amounts of NREM and REM sleep were comparable between wild-type and R(AB) transgenic mice. However, the homeostatic rebound of sigma power in R(AB) transgenic mice was reduced. Conclusions: Alterations in cortical synaptic receptors, impairments in sleep continuity, and alterations in sleep oscillations in R(AB) mice imply that PKA is involved not only in synaptic plasticity and memory storage but also in the regulation of sleep/wake states. Citation: Hellman K; Hernandez P; Park A; Abel T. Genetic evidence for a role for protein kinase a in the maintenance of sleep and thalamocortical oscillations. SLEEP 2010;33(1):19-28. PMID:20120617

  14. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation

    PubMed Central

    Hefti, Katharina; Saberi-Moghadam, Sohrab; Buck, Alfred; Ametamey, Simon M; Scheidegger, Milan; Franken, Paul; Henning, Anke; Seifritz, Erich

    2017-01-01

    Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep. PMID:28980941

  15. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation.

    PubMed

    Holst, Sebastian C; Sousek, Alexandra; Hefti, Katharina; Saberi-Moghadam, Sohrab; Buck, Alfred; Ametamey, Simon M; Scheidegger, Milan; Franken, Paul; Henning, Anke; Seifritz, Erich; Tafti, Mehdi; Landolt, Hans-Peter

    2017-10-05

    Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep.

  16. Associations of Subjective Sleep Quality and Daytime Sleepiness With Cognitive Impairment in Adults and Elders With Heart Failure.

    PubMed

    Byun, Eeeseung; Kim, Jinyoung; Riegel, Barbara

    2017-01-01

    This study examined the association of subjective nighttime sleep quality and daytime sleepiness with cognitive impairment in 105 adults (< 60 years old) and 167 elders (≥ 60 years old) with heart failure. Nighttime sleep quality and daytime sleepiness were measured by the Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale. Cognitive impairment was assessed using a neuropsychological battery measuring attention, memory, and processing speed. Multivariate logistic regression was used. In adults, daytime sleepiness was associated with cognitive impairment, whereas poor nighttime sleep quality was associated with cognitive impairment in elders. Age may play an important role in how sleep impacts cognition in persons with heart failure. Improving nighttime sleep quality and daytime sleepiness in this population may improve cognition.

  17. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback

    PubMed Central

    Whitney, Paul; Hinson, John M.; Jackson, Melinda L.; Van Dongen, Hans P.A.

    2015-01-01

    Study Objectives: To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Design: Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Setting: Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Subjects: Twenty-six subjects (22–40 y of age; 10 women). Interventions: Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Results: Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Conclusions: Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback

  18. Sleep restriction impairs blood-brain barrier function.

    PubMed

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.

  19. Oculomotor impairment during chronic partial sleep deprivation.

    PubMed

    Russo, M; Thomas, M; Thorne, D; Sing, H; Redmond, D; Rowland, L; Johnson, D; Hall, S; Krichmar, J; Balkin, T

    2003-04-01

    The effects of chronic partial sleep (sleep deprivation) and extended sleep (sleep augmentation) followed by recovery sleep on oculomotor function were evaluated in normal subjects to explore the usefulness of oculomotor assessment for alertness monitoring in fitness-for-duty testing. Sixty-six commercial drivers (24-62 years, 50m/16f) participated in a 15 day study composed of 3 training days with 8h time in bed per night, 7 experimental days with subjects randomly assigned to either 3, 5, 7, or 9h time in bed, and 3 recovery nights with 8h time in bed. Data from 57 subjects were used. Saccadic velocity (SV), initial pupil diameter (IPD), latency to pupil constriction (CL), and amplitude of pupil constriction (CA) were assessed and correlated with the sleep latency test (SLT), the Stanford sleepiness scale (SSS), and simulated driving performance. Regression analyses showed that SV slowed significantly in the 3 and 5h groups, IPD decreased significantly in the 9h group, and CL increased significantly in the 3h group. SLT and SSS significantly correlated with SV, IPD, CL, and driving accidents for the 3h group, and with CL for the 5h group. Analyses also showed a significant negative correlation between decreasing SV and increasing driving accidents in the 3h group and a significant negative correlation between IPD and driving accidents for the 7h group. The results demonstrate a sensitivity primarily of SV to sleepiness, and a correlation of SV and IPD to impaired simulated driving performance, providing evidence for the potential utility of oculomotor indicators in the detection of excessive sleepiness and deterioration of complex motor performance with chronic partial sleep restriction. This paper shows a relationship between sleep deprivation and oculomotor measures, and suggests a potential utility for oculometrics in assessing operational performance readiness under sleep restricted conditions.

  20. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    PubMed

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  1. Impaired sleep and allostatic load: cross-sectional results from the Danish Copenhagen Aging and Midlife Biobank.

    PubMed

    Clark, Alice Jessie; Dich, Nadya; Lange, Theis; Jennum, Poul; Hansen, Ase Marie; Lund, Rikke; Rod, Naja Hulvej

    2014-12-01

    Understanding the mechanisms linking sleep impairment to morbidity and mortality is important for future prevention, but these mechanisms are far from elucidated. We aimed to determine the relation between impaired sleep, both in terms of duration and disturbed sleep, and allostatic load (AL), which is a measure of systemic wear and tear of multiple body systems, as well as with individual risk markers within the cardiac, metabolic, anthropometric, and immune system. A cross-sectional population-based study of 5226 men and women from the Danish Copenhagen Aging and Midlife Biobank with comprehensive information on sleep duration, disturbed sleep, objective measures of an extensive range of biological risk markers, and physical conditions. Long sleep (mean difference 0.23; 95% confidence interval, 0.13, 0.32) and disturbed sleep (0.14; 0.06, 0.22) were associated with higher AL as well as with high-risk levels of risk markers from the anthropometric, metabolic, and immune system. Sub-analyses suggested that the association between disturbed sleep and AL might be explained by underlying disorders. Whereas there was no association between short sleep and AL, the combination of short and disturbed sleep was associated with higher AL (0.19; 0.08, 0.30) and high-risk levels of immune system markers. Our study suggests small but significant differences in the distribution of allostatic load, a pre-clinical indicator of disease risk and premature death, for people with impaired relative to normal sleep. Impaired sleep may be a risk factor for developing disease and be a risk marker for underlying illness or sleep disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations

    PubMed Central

    Wei, Yina; Krishnan, Giri P.

    2016-01-01

    Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2–1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep. SIGNIFICANCE STATEMENT Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events. PMID

  3. Commonly used stimulants: Sleep problems, dependence and psychological distress.

    PubMed

    Ogeil, Rowan P; Phillips, James G

    2015-08-01

    Caffeine and nicotine are commonly used stimulants that enhance alertness and mood. Discontinuation of both stimulants is associated with withdrawal symptoms including sleep and mood disturbances, which may differ in males and females. The present study examines changes in sleep quality, daytime sleepiness and psychological distress associated with use and dependence on caffeine and nicotine. An online survey comprising validated tools to assess sleep quality, excessive daytime sleepiness and psychological distress was completed by 166 participants (74 males, 96 females) with a mean age of 28 years. Participants completed the study in their own time, and were not offered any inducements to participate. Sleep quality was poorer in those dependent upon caffeine or nicotine, and there were also significant interaction effects with gender whereby females reported poorer sleep despite males reporting higher use of both stimulants. Caffeine dependence was associated with poorer sleep quality, increased daytime dysfunction, and increased levels of night time disturbance, while nicotine dependence was associated with poorer sleep quality and increased use of sleep medication and sleep disturbances. There were strong links between poor sleep and diminished affect, with psychological distress found to co-occur in the context of disturbed sleep. Stimulants are widely used to promote vigilance and mood; however, dependence on commonly used drugs including caffeine and nicotine is associated with decrements in sleep quality and increased psychological distress, which may be compounded in female dependent users. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Changes of cortical excitability as markers of antidepressant response in bipolar depression: preliminary data obtained by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG).

    PubMed

    Canali, Paola; Sferrazza Papa, Giovanna; Casali, Adenauer G; Schiena, Giandomenico; Fecchio, Matteo; Pigorini, Andrea; Smeraldi, Enrico; Colombo, Cristina; Benedetti, Francesco

    2014-12-01

    It is still unclear which biological changes are needed to recover from a major depressive episode. Current perspectives focus on cortical synaptic neuroplasticity. Measures of cortical responses evoked by transcranial magnetic stimulation (TMS) change with sleep homeostasic pressure in humans and approximate measures of synaptic strength in animal models. Using repeated total sleep deprivation as a model of antidepressant treatment, we aimed to correlate recovery from depression with these measures of cortical excitability. We recorded electroencephalographic responses to TMS in the prefrontal cortex of 21 depressed inpatients with bipolar disorder treated with repeated sleep deprivation combined with light therapy. We performed seven TMS/electroencephalography sessions during one week and calculated three measures of cortical excitability. Cortical excitability progressively increased during the antidepressant treatment and as a function of time awake. Higher values differentiated responders from non-responders at baseline and during and after treatment on all measures. Changes in measures of cortical excitability parallel and predict antidepressant response to combined sleep deprivation and light therapy. Data suggest that promoting cortical plasticity in bipolar depression could be a major effect of successful antidepressant treatments, and that patients not responding could suffer a persistent impairment in their neuroplasticity mechanisms. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Sleep-Dependent Consolidation of Rewarded Behavior Is Diminished in Children with Attention Deficit Hyperactivity Disorder and a Comorbid Disorder of Social Behavior

    PubMed Central

    Wiesner, Christian D.; Molzow, Ina; Prehn-Kristensen, Alexander; Baving, Lioba

    2017-01-01

    Children suffering from attention-deficit hyperactivity disorder (ADHD) often also display impaired learning and memory. Previous research has documented aberrant reward processing in ADHD as well as impaired sleep-dependent consolidation of declarative memory. We investigated whether sleep also fosters the consolidation of behavior learned by probabilistic reward and whether ADHD patients with a comorbid disorder of social behavior show deficits in this memory domain, too. A group of 17 ADHD patients with comorbid disorders of social behavior aged 8–12 years and healthy controls matched for age, IQ, and handedness took part in the experiment. During the encoding task, children worked on a probabilistic learning task acquiring behavioral preferences for stimuli rewarded most often. After a 12-hr retention interval of either sleep at night or wakefulness during the day, a reversal task was presented where the contingencies were reversed. Consolidation of rewarded behavior is indicated by greater resistance to reversal learning. We found that healthy children consolidate rewarded behavior better during a night of sleep than during a day awake and that the sleep-dependent consolidation of rewarded behavior by trend correlates with non-REM sleep but not with REM sleep. In contrast, children with ADHD and comorbid disorders of social behavior do not show sleep-dependent consolidation of rewarded behavior. Moreover, their consolidation of rewarded behavior does not correlate with sleep. The results indicate that dysfunctional sleep in children suffering from ADHD and disorders of social behavior might be a crucial factor in the consolidation of behavior learned by reward. PMID:28228742

  6. Cortical GABAergic neurons are more severely impaired by alkalosis than acidosis

    PubMed Central

    2013-01-01

    Background Acid–base imbalance in various metabolic disturbances leads to human brain dysfunction. Compared with acidosis, the patients suffered from alkalosis demonstrate more severe neurological signs that are difficultly corrected. We hypothesize a causative process that the nerve cells in the brain are more vulnerable to alkalosis than acidosis. Methods The vulnerability of GABAergic neurons to alkalosis versus acidosis was compared by analyzing their functional changes in response to the extracellular high pH and low pH. The neuronal and synaptic functions were recorded by whole-cell recordings in the cortical slices. Results The elevation or attenuation of extracellular pH impaired these GABAergic neurons in terms of their capability to produce spikes, their responsiveness to excitatory synaptic inputs and their outputs via inhibitory synapses. Importantly, the dysfunction of these active properties appeared severer in alkalosis than acidosis. Conclusions The severer impairment of cortical GABAergic neurons in alkalosis patients leads to more critical neural excitotoxicity, so that alkalosis-induced brain dysfunction is difficultly corrected, compared to acidosis. The vulnerability of cortical GABAergic neurons to high pH is likely a basis of severe clinical outcomes in alkalosis versus acidosis. PMID:24314112

  7. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia–Ischemia

    PubMed Central

    Jantzie, Lauren L.; Corbett, Christopher J.; Firl, Daniel J.; Robinson, Shenandoah

    2015-01-01

    Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia–ischemia (TSHI) in Sprague–Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants. PMID:24722771

  8. Association between visual impairment and sleep duration: analysis of the 2009 National Health Interview Survey (NHIS).

    PubMed

    Ramos, Alberto R; Wallace, Douglas M; Williams, Natasha J; Spence, David Warren; Pandi-Perumal, Seithikurippu Ratnas; Zizi, Ferdinand; Jean-Louis, Girardin

    2014-10-01

    Visual impairment (VI) is associated with increased mortality and health factors such as depression and cardiovascular disease. Epidemiologic studies consistently show associations between sleep duration with adverse health outcomes, but these have not systematically considered the influence of VI. The aim of this study was to ascertain the independent association between VI and sleep duration using the National Health Interview Survey (NHIS) data. We also examined whether race/ethnicity influenced these associations independently of sociodemographic and medical characteristics. Our analysis was based on the 2009 NHIS, providing valid sleep and vision data for 29,815 participants. The NHIS is a cross-sectional household interview survey utilizing a multistage area probability design. Trained personnel from the US census bureau gathered data during face-to-face interview and obtained socio-demographic, self-reported habitual sleep duration and physician-diagnosed chronic conditions. The mean age of the sample was 48 years and 56% were female. Short sleep and long sleep durations were reported by 49% and 23% of the participants, respectively. Visual impairment was observed in 10%. Multivariate-adjusted logistic regression models showed significant associations between VI and short sleep (OR = 1.6, 95% CI = 1.5-1.9 and long sleep durations (OR = 1.6, 95% CI = 1.3-1.9). These associations persisted in multivariate models stratified by race-ethnic groups. Visual impairment was associated with both short and long sleep durations. Analysis of epidemiologic sleep data should consider visual impairment as an important factor likely to influence the amount of sleep experienced habitually.

  9. Memory suppression trades prolonged fear and sleep-dependent fear plasticity for the avoidance of current fear

    NASA Astrophysics Data System (ADS)

    Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu

    2013-07-01

    Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology.

  10. Voluntary exercise impact on cognitive impairments in sleep-deprived intact female rats.

    PubMed

    Rajizadeh, Mohammad Amin; Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Bejeshk, Mohammad Abbas; Shabani, Mohammad; Nakhaee, Nouzar; Ranjbar, Mohammad Pour; Borzadaran, Fatemeh Mohtashami; Sheibani, Vahid

    2018-05-01

    Sleep loss is a common problem in modern societies affecting different aspects of individuals' lives. Many studies have reported that sleep deprivation (SD) leads to impairments in various types of learning and memory. Physical exercise has been suggested to attenuate the cognitive impairments induced by sleep deprivation in male rats. Our previous studies have shown that forced exercise by treadmill improved learning and memory impairments following SD. The aim of the current study was to investigate the effects of voluntary exercise by running wheel on cognitive, motor and anxiety-like behavior functions of female rats following 72 h SD. Intact female rats were used in the present study. The multiple platform method was applied for the induction of 72 h SD. The exercise protocol was 4 weeks of running wheel and the cognitive function was evaluated using Morris water maze (MWM), passive avoidance and novel object recognition tests. Open field test and measurement of plasma corticosterone level were performed for evaluation of anxiety-like behaviors. Motor balance evaluation was surveyed by rotarod test. In this study, remarkable learning and long-term memory impairments were observed in sleep deprived rats in comparison to the other groups. Running wheel exercise ameliorated the SD-induced learning and memory impairments. Voluntary and mandatory locomotion and balance situation were not statistically significant among the different groups. Our study confirmed the negative effects of SD on cognitive function and approved protective effects of voluntary exercise on these negative effects. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Insomnia with Objective Short Sleep Duration: the Most Biologically Severe Phenotype of the Disorder

    PubMed Central

    Vgontzas, Alexandros N.; Fernandez-Mendoza, Julio; Liao, Duanping; Bixler, Edward O.

    2013-01-01

    Summary Until recently, the association of chronic insomnia with significant medical morbidity was not established and its diagnosis was based solely on subjective complaints. We present evidence that insomnia with objective short sleep duration is the most biologically severe phenotype of the disorder, as it is associated with cognitive-emotional and cortical arousal, activation of both limbs of the stress system, and a higher risk for hypertension, impaired heart rate variability, diabetes, neurocognitive impairment, and mortality. Also, it appears that objective short sleep duration is a biological marker of genetic predisposition to chronic insomnia. In contrast, insomnia with objective normal sleep duration is associated with cognitive-emotional and cortical arousal and sleep misperception but not with signs of activation of both limbs of the stress system or medical complications. Furthermore, the first phenotype is associated with unremitting course, whereas the latter is more likely to remit. We propose that short sleep duration in insomnia is a reliable marker of the biological severity and medical impact of the disorder. Objective measures of sleep obtained in the home environment of the patient would become part of the routine assessment of insomnia patients in a clinician’s office setting. We speculate that insomnia with objective short sleep duration has primarily biological roots and may respond better to biological treatments, whereas insomnia with objective normal sleep duration has primarily psychological roots and may respond better to psychological interventions alone. PMID:23419741

  12. Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder.

    PubMed

    Vgontzas, Alexandros N; Fernandez-Mendoza, Julio; Liao, Duanping; Bixler, Edward O

    2013-08-01

    Until recently, the association of chronic insomnia with significant medical morbidity was not established and its diagnosis was based solely on subjective complaints. We present evidence that insomnia with objective short sleep duration is the most biologically severe phenotype of the disorder, as it is associated with cognitive-emotional and cortical arousal, activation of both limbs of the stress system, and a higher risk for hypertension, impaired heart rate variability, diabetes, neurocognitive impairment, and mortality. Also, it appears that objective short sleep duration is a biological marker of genetic predisposition to chronic insomnia. In contrast, insomnia with objective normal sleep duration is associated with cognitive-emotional and cortical arousal and sleep misperception but not with signs of activation of both limbs of the stress system or medical complications. Furthermore, the first phenotype is associated with unremitting course, whereas the latter is more likely to remit. We propose that short sleep duration in insomnia is a reliable marker of the biological severity and medical impact of the disorder. Objective measures of sleep obtained in the home environment of the patient would become part of the routine assessment of insomnia patients in a clinician's office setting. We speculate that insomnia with objective short sleep duration has primarily biological roots and may respond better to biological treatments, whereas insomnia with objective normal sleep duration has primarily psychological roots and may respond better to psychological interventions alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Cortical Gamma-Aminobutyric Acid and Glutamate in Posttraumatic Stress Disorder and Their Relationships to Self-Reported Sleep Quality

    PubMed Central

    Meyerhoff, Dieter J.; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C.

    2014-01-01

    Study Objectives: To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Design: Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. Setting: VA Medical Center Research Service, Psychiatry and Radiology. Patients or Participants: Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD−), recruited from United States Army reservists, Army National Guard, and mental health clinics. Interventions: None. Measurements and Results: 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD−. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Conclusions: Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches. Citation: Meyerhoff DJ, Mon A, Metzler T, Neylan TC. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and

  14. Perceptual Learning: Use-Dependent Cortical Plasticity.

    PubMed

    Li, Wu

    2016-10-14

    Our perceptual abilities significantly improve with practice. This phenomenon, known as perceptual learning, offers an ideal window for understanding use-dependent changes in the adult brain. Different experimental approaches have revealed a diversity of behavioral and cortical changes associated with perceptual learning, and different interpretations have been given with respect to the cortical loci and neural processes responsible for the learning. Accumulated evidence has begun to put together a coherent picture of the neural substrates underlying perceptual learning. The emerging view is that perceptual learning results from a complex interplay between bottom-up and top-down processes, causing a global reorganization across cortical areas specialized for sensory processing, engaged in top-down attentional control, and involved in perceptual decision making. Future studies should focus on the interactions among cortical areas for a better understanding of the general rules and mechanisms underlying various forms of skill learning.

  15. The effect of preinjury sleep difficulties on neurocognitive impairment and symptoms after sport-related concussion.

    PubMed

    Sufrinko, Alicia; Pearce, Kelly; Elbin, R J; Covassin, Tracey; Johnson, Eric; Collins, Michael; Kontos, Anthony P

    2015-04-01

    Researchers have reported that sleep duration is positively related to baseline neurocognitive performance. However, researchers have yet to examine the effect of preinjury sleep difficulties on postconcussion impairments. To compare neurocognitive impairment and symptoms of athletes with preinjury sleep difficulties to those without after a sport-related concussion (SRC). Cohort study; Level of evidence, 3. The sample included 348 adolescent and adult athletes (age, mean ± SD, 17.43 ± 2.34 years) with a diagnosed SRC. The sample was divided into 2 groups: (1) 34 (10%) participants with preinjury sleep difficulties (sleeping less as well as having trouble falling asleep; SLEEP SX) and (2) 231 (66%) participants without preinjury sleep difficulties (CONTROL). The remaining 84 (24%) participants with minimal sleep difficulties (1 symptom) were excluded. Participants completed the Immediate Postconcussion Assessment and Cognitive Test (ImPACT) and Postconcussion Symptom Scale (PCSS) at baseline and 3 postinjury intervals (2, 5-7, and 10-14 days after injury). A series of repeated-measures analyses of covariance with Bonferroni correction, controlling for baseline non-sleep-related symptoms, were conducted to compare postinjury neurocognitive performance between groups. Follow-up exploratory t tests examined between-group differences at each time interval. A series of analyses of variance were used to examine total PCSS score, sleep-related, and non-sleep-related symptoms across time intervals between groups. Groups differed significantly in PCSS scores across postinjury intervals for reaction time (P < .001), with the preinjury SLEEP SX group performing worse than controls at 5-7 days (mean ± SD, 0.70 ± 0.32 [SLEEP SX], 0.60 ± 0.14 [CONTROL]) and 10-14 days (0.61 ± 0.17 [SLEEP SX]; 0.57 ± 0.10 [CONTROL]) after injury. Groups also differed significantly on verbal memory performance (P = .04), with the SLEEP SX (68.21 ± 18.64) group performing worse than the

  16. REM Sleep Behavior Disorder and Cognitive Impairment in Parkinson's Disease.

    PubMed

    Jozwiak, Natalia; Postuma, Ronald B; Montplaisir, Jacques; Latreille, Véronique; Panisset, Michel; Chouinard, Sylvain; Bourgouin, Pierre-Alexandre; Gagnon, Jean-François

    2017-08-01

    REM sleep behavior disorder (RBD) is a parasomnia affecting 33% to 46% of patients with Parkinson's disease (PD). The existence of a unique and specific impaired cognitive profile in PD patients with RBD is still controversial. We extensively assessed cognitive functions to identify whether RBD is associated with more severe cognitive deficits in nondemented patients with PD. One hundred sixty-two participants, including 53 PD patients with RBD, 40 PD patients without RBD, and 69 healthy subjects, underwent polysomnography, a neurological assessment and an extensive neuropsychological exam to assess attention, executive functions, episodic learning and memory, visuospatial abilities, and language. PD patients with RBD had poorer and clinically impaired performance in several cognitive tests compared to PD patients without RBD and healthy subjects. These two latter groups were similar on all cognitive measures. Mild cognitive impairment (MCI) diagnosis frequency was almost threefold higher in PD patients with RBD compared to PD patients without RBD (66% vs. 23%, p < .001). Moreover, subjective cognitive decline was reported in 89% of PD patients with RBD compared to 58% of PD patients without RBD (p = .024). RBD in PD is associated with a more impaired cognitive profile and higher MCI diagnosis frequency, suggesting more severe and widespread neurodegeneration. This patient subgroup and their caregivers should receive targeted medical attention to better detect and monitor impairment and to enable the development of management interventions for cognitive decline and its consequences. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  17. The association of cognitive impairment with gray matter atrophy and cortical lesion load in clinically isolated syndrome.

    PubMed

    Diker, Sevda; Has, Arzu Ceylan; Kurne, Aslı; Göçmen, Rahşan; Oğuz, Kader Karlı; Karabudak, Rana

    2016-11-01

    Multiple sclerosis can impair cognition from the early stages and has been shown to be associated with gray matter damage in addition to white matter pathology. To investigate the profile of cognitive impairment in clinically isolated syndrome (CIS), and the contribution of cortical inflammation, cortical and deep gray matter atrophy, and white matter lesions to cognitive decline. Thirty patients with clinically isolated syndrome and twenty demographically- matched healthy controls underwent neuropsychologic assessment through the Rao Brief Repeatable Battery, and brain magnetic resonance imaging with double inversion recovery using a 3T scanner. Patients with clinically isolated syndrome performed significantly worse than healthy controls on tests that evaluated verbal memory, visuospatial learning and memory, and verbal fluency. Significant deep gray matter atrophy was found in the patients but cortical volume was not lower than the controls. Visual memory tests correlated with the volume of the hippocampus, cerebral white matter and deep gray matter structures and with cerebellar cortical atrophy. Cortical or white matter lesion load did not affect cognitive test results. In our patients with CIS, it was shown that cognitive impairment was mainly related to cerebral white matter, cerebellar cortical and deep gray matter atrophy, but not with cortical inflammation, at least in the early stage of disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    PubMed

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  19. Circadian regulation of slow waves in human sleep: Topographical aspects

    PubMed Central

    Lazar, Alpar S.; Lazar, Zsolt I.; Dijk, Derk-Jan

    2015-01-01

    Slow waves (SWs, 0.5–4 Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. PMID:25979664

  20. Different Functional and Microstructural Changes Depending on Duration of Mild Cognitive Impairment in Parkinson Disease.

    PubMed

    Shin, N-Y; Shin, Y S; Lee, P H; Yoon, U; Han, S; Kim, D J; Lee, S-K

    2016-05-01

    The higher cortical burden of Lewy body and Alzheimer disease-type pathology has been reported to be associated with a faster onset of cognitive impairment of Parkinson disease. So far, there has been a few studies only about the changes of gray matter volume depending on duration of cognitive impairment in Parkinson disease. Therefore, our aim was to evaluate the different patterns of structural and functional changes in Parkinson disease with mild cognitive impairment according to the duration of parkinsonism before mild cognitive impairment. Fifty-nine patients with Parkinson disease with mild cognitive impairment were classified into 2 groups on the basis of shorter (<1 year, n = 16) and longer (≥1 year, n = 43) durations of parkinsonism before mild cognitive impairment. Fifteen drug-naïve patients with de novo Parkinson disease with intact cognition were included for comparison. Cortical thickness, Tract-Based Spatial Statistics, and seed-based resting-state functional connectivity analyses were performed. Age, sex, years of education, age at onset of parkinsonism, and levodopa-equivalent dose were included as covariates. The group with shorter duration of parkinsonism before mild cognitive impairment showed decreased fractional anisotropy and increased mean and radial diffusivity values in the frontal areas compared with the group with longer duration of parkinsonism before mild cognitive impairment (corrected P < .05). The group with shorter duration of parkinsonism before mild cognitive impairment showed decreased resting-state functional connectivity in the default mode network area when the left or right posterior cingulate was used as a seed, and in the dorsolateral prefrontal areas when the left or right caudate was used as a seed (corrected P < .05). The group with longer duration of parkinsonism before mild cognitive impairment showed decreased resting-state functional connectivity mainly in the medial prefrontal cortex when the left or right

  1. Neurocognitive Consequences of Sleep Deprivation

    PubMed Central

    Goel, Namni; Rao, Hengyi; Durmer, Jeffrey S.; Dinges, David F.

    2012-01-01

    Sleep deprivation is associated with considerable social, financial, and health-related costs, in large measure because it produces impaired cognitive performance due to increasing sleep propensity and instability of waking neurobehavioral functions. Cognitive functions particularly affected by sleep loss include psychomotor and cognitive speed, vigilant and executive attention, working memory, and higher cognitive abilities. Chronic sleep-restriction experiments—which model the kind of sleep loss experienced by many individuals with sleep fragmentation and premature sleep curtailment due to disorders and lifestyle—demonstrate that cognitive deficits accumulate to severe levels over time without full awareness by the affected individual. Functional neuroimaging has revealed that frequent and progressively longer cognitive lapses, which are a hallmark of sleep deprivation, involve distributed changes in brain regions including frontal and parietal control areas, secondary sensory processing areas, and thalamic areas. There are robust differences among individuals in the degree of their cognitive vulnerability to sleep loss that may involve differences in prefrontal and parietal cortices, and that may have a basis in genes regulating sleep homeostasis and circadian rhythms. Thus, cognitive deficits believed to be a function of the severity of clinical sleep disturbance may be a product of genetic alleles associated with differential cognitive vulnerability to sleep loss. PMID:19742409

  2. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback.

    PubMed

    Whitney, Paul; Hinson, John M; Jackson, Melinda L; Van Dongen, Hans P A

    2015-05-01

    To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Twenty-six subjects (22-40 y of age; 10 women). Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback or because the feedback is not cognitively bound with the choice. This has important

  3. Disentangling How the Brain is “Wired” in Cortical/Cerebral Visual Impairment (CVI)

    PubMed Central

    Merabet, Lotfi B.; Mayer, D. Luisa; Bauer, Corinna M.; Wright, Darick; Kran, Barry S.

    2017-01-01

    Cortical/cerebral visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment/blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher order visual processing and attention. Together, these visual impairments can dramatically impact upon a child’s development and well-being. Given the complex neurological underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. PMID:28941531

  4. Impaired inhibitory control of cortical synchronization in fragile X syndrome.

    PubMed

    Paluszkiewicz, Scott M; Olmos-Serrano, Jose Luis; Corbin, Joshua G; Huntsman, Molly M

    2011-11-01

    Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by severe cognitive impairments, sensory hypersensitivity, and comorbidities with autism and epilepsy. Fmr1 knockout (KO) mouse models of FXS exhibit alterations in excitatory and inhibitory neurotransmission, but it is largely unknown how aberrant function of specific neuronal subtypes contributes to these deficits. In this study we show specific inhibitory circuit dysfunction in layer II/III of somatosensory cortex of Fmr1 KO mice. We demonstrate reduced activation of somatostatin-expressing low-threshold-spiking (LTS) interneurons in response to the group I metabotropic glutamate receptor (mGluR) agonist 3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice, resulting in impaired synaptic inhibition. Paired recordings from pyramidal neurons revealed reductions in synchronized synaptic inhibition and coordinated spike synchrony in response to DHPG, indicating a weakened LTS interneuron network in Fmr1 KO mice. Together, these findings reveal a functional defect in a single subtype of cortical interneuron in Fmr1 KO mice. This defect is linked to altered activity of the cortical network in line with the FXS phenotype.

  5. Sleep Restriction Impairs Vocabulary Learning when Adolescents Cram for Exams: The Need for Sleep Study.

    PubMed

    Huang, Sha; Deshpande, Aadya; Yeo, Sing-Chen; Lo, June C; Chee, Michael W L; Gooley, Joshua J

    2016-09-01

    The ability to recall facts is improved when learning takes place at spaced intervals, or when sleep follows shortly after learning. However, many students cram for exams and trade sleep for other activities. The aim of this study was to examine the interaction of study spacing and time in bed (TIB) for sleep on vocabulary learning in adolescents. In the Need for Sleep Study, which used a parallel-group design, 56 adolescents aged 15-19 years were randomly assigned to a week of either 5 h or 9 h of TIB for sleep each night as part of a 14-day protocol conducted at a boarding school. During the sleep manipulation period, participants studied 40 Graduate Record Examination (GRE)-type English words using digital flashcards. Word pairs were presented over 4 consecutive days (spaced items), or all at once during single study sessions (massed items), with total study time kept constant across conditions. Recall performance was examined 0 h, 24 h, and 120 h after all items were studied. For all retention intervals examined, recall of massed items was impaired by a greater amount in adolescents exposed to sleep restriction. In contrast, cued recall performance on spaced items was similar between sleep groups. Spaced learning conferred strong protection against the effects of sleep restriction on recall performance, whereas students who had insufficient sleep were more likely to forget items studied over short time intervals. These findings in adolescents demonstrate the importance of combining good study habits and good sleep habits to optimize learning outcomes. © 2016 Associated Professional Sleep Societies, LLC.

  6. Neural Correlates of Wakefulness, Sleep, and General Anesthesia: An Experimental Study in Rat.

    PubMed

    Pal, Dinesh; Silverstein, Brian H; Lee, Heonsoo; Mashour, George A

    2016-11-01

    Significant advances have been made in our understanding of subcortical processes related to anesthetic- and sleep-induced unconsciousness, but the associated changes in cortical connectivity and cortical neurochemistry have yet to be fully clarified. Male Sprague-Dawley rats were instrumented for simultaneous measurement of cortical acetylcholine and electroencephalographic indices of corticocortical connectivity-coherence and symbolic transfer entropy-before, during, and after general anesthesia (propofol, n = 11; sevoflurane, n = 13). In another group of rats (n = 7), these electroencephalographic indices were analyzed during wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Compared to wakefulness, anesthetic-induced unconsciousness was characterized by a significant decrease in cortical acetylcholine that recovered to preanesthesia levels during recovery wakefulness. Corticocortical coherence and frontal-parietal symbolic transfer entropy in high γ band (85 to 155 Hz) were decreased during anesthetic-induced unconsciousness and returned to preanesthesia levels during recovery wakefulness. Sleep-wake states showed a state-dependent change in coherence and transfer entropy in high γ bandwidth, which correlated with behavioral arousal: high during wakefulness, low during SWS, and lowest during REM sleep. By contrast, frontal-parietal θ connectivity during sleep-wake states was not correlated with behavioral arousal but showed an association with well-established changes in cortical acetylcholine: high during wakefulness and REM sleep and low during SWS. Corticocortical coherence and frontal-parietal connectivity in high γ bandwidth correlates with behavioral arousal and is not mediated by cholinergic mechanisms, while θ connectivity correlates with cortical acetylcholine levels.

  7. Shorter sleep duration is associated with social impairment and comorbidities in ASD.

    PubMed

    Veatch, Olivia J; Sutcliffe, James S; Warren, Zachary E; Keenan, Brendan T; Potter, Melissa H; Malow, Beth A

    2017-07-01

    Sleep disturbance, particularly insomnia, is common in children with autism spectrum disorders (ASD). Furthermore, disturbed sleep affects core symptoms and other related comorbidities. Understanding the causes and consequences of sleep disturbances in children with ASD is an important step toward mitigating these symptoms. To better understand the connection between sleep duration and ASD severity, we analyzed ASD-related symptoms using the Autism Diagnostic Interview-Revised (ADI-R), Autism Diagnostic Observation Schedule (ADOS), IQ scores, and parent reports of the average amount of time slept per night that were available in the medical histories of 2,714 children with ASD in the Simons Simplex Collection (SSC). The mean (SD) sleep duration was 555 minutes. Sleep duration and severity of core ASD symptoms were negatively correlated, and sleep duration and IQ scores were positively correlated. Regression results indicated that more severe social impairment, primarily a failure to develop peer relationships, is the core symptom most strongly associated with short sleep duration. Furthermore, increased severity for numerous maladaptive behaviors assessed on the Child Behavior Checklist, as well as reports of attention deficit disorder, depressive disorder, and obsessive compulsive disorder were associated with short sleep duration. Severity scores for social/communication impairment and restricted and repetitive behaviors (RRB) were increased, and IQ scores were decreased, for children reported to sleep ≤420 minutes per night (lower 5th percentile) compared to children sleeping ≥660 minutes (upper 95th percentile). Our results indicate that reduced amounts of sleep are related to more severe symptoms in children with ASD. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1221-1238. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism

  8. Perceived stress, disturbed sleep, and cognitive impairments in patients with work-related stress complaints: a longitudinal study.

    PubMed

    Eskildsen, Anita; Fentz, Hanne Nørr; Andersen, Lars Peter; Pedersen, Anders Degn; Kristensen, Simon Bang; Andersen, Johan Hviid

    2017-07-01

    Patients on sick leave due to work-related stress often present with cognitive impairments as well as sleep disturbances. The aim of this longitudinal study was to examine the role of perceived stress and sleep disturbances in the longitudinal development in cognitive impairments in a group of patients with prolonged work-related stress (N = 60) during a period of 12 months following initial professional care-seeking. Objective cognitive impairments (neuropsychological tests) were measured on two occasions - at initial professional care-seeking and at 12-month follow-up. Questionnaires on perceived stress, sleep disturbances, and cognitive complaints were completed seven times during the 12 months which facilitated multilevel analysis with segregation of within-person (change) and between-person (baseline level) components of the time-varying predictors (perceived stress and sleep disturbances). Change in perceived stress was associated with concurrent and subsequent change in self-reported cognitive complaints over the period of 12 months and to a lesser extent the change in performance on neuropsychological tests of processing speed from baseline to 12-month follow-up. Change in sleep disturbances was also associated with concurrent and subsequent change in self-reported cognitive complaints over the 12 months but not with change on neuropsychological test performance. Although the mechanism behind the improvement in cognitive impairments in patients with work-related stress should be further explored in future studies, the results could suggest that improvement in cognitive impairments is partly mediated by decreasing levels of perceived stress and, to a lesser extent, decreasing levels of sleep disturbances. Lay summary This study examines the role of perceived stress and sleep disturbances in respect to the development of cognitive impairments (e.g. memory and concentration) in a group of patients with work-related stress. We found that change in

  9. The 2007 AASM recommendations for EEG electrode placement in polysomnography: impact on sleep and cortical arousal scoring.

    PubMed

    Ruehland, Warren R; O'Donoghue, Fergal J; Pierce, Robert J; Thornton, Andrew T; Singh, Parmjit; Copland, Janet M; Stevens, Bronwyn; Rochford, Peter D

    2011-01-01

    To examine the impact of using American Academy of Sleep Medicine (AASM) recommended EEG derivations (F4/M1, C4/M1, O2/M1) vs. a single derivation (C4/M1) in polysomnography (PSG) on the measurement of sleep and cortical arousals, including inter- and intra-observer variability. Prospective, non-blinded, randomized comparison. Three Australian tertiary-care hospital clinical sleep laboratories. 30 PSGs from consecutive patients investigated for obstructive sleep apnea (OSA) during December 2007 and January 2008. N/A. To examine the impact of EEG derivations on PSG summary statistics, 3 scorers from different Australian clinical sleep laboratories each scored separate sets of 10 PSGs twice, once using 3 EEG derivations and once using 1 EEG derivation. To examine the impact on inter- and intra-scorer reliability, all 3 scorers scored a subset of 10 PSGs 4 times, twice using each method. All PSGs were de-identified and scored in random order according to the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Using 3 referential EEG derivations during PSG, as recommended in the AASM manual, instead of a single central EEG derivation, as originally suggested by Rechtschaffen and Kales (1968), resulted in a mean ± SE decrease in N1 sleep of 9.6 ± 3.9 min (P = 0.018) and an increase in N3 sleep of 10.6 ± 2.8 min (P = 0.001). No significant differences were observed for any other sleep or arousal scoring summary statistics; nor were any differences observed in inter-scorer or intra-scorer reliability for scoring sleep or cortical arousals. This study provides information for those changing practice to comply with the 2007 AASM recommendations for EEG placement in PSG, for those using portable devices that are unable to comply with the recommendations due to limited channel options, and for the development of future standards for PSG scoring and recording. As the use of multiple EEG derivations only led to small changes in the distribution of derived sleep

  10. Sleep patterns and sleep-impairing factors of persons providing informal care for people with cancer: a critical review of the literature.

    PubMed

    Kotronoulas, Grigorios; Wengstrom, Yvonne; Kearney, Nora

    2013-01-01

    Sleep is increasingly recognized as an area of functioning that may be greatly affected in persons who are practically and emotionally involved in the care of patients with cancer. Clinician awareness is required to ensure that effective care for informal caregivers with sleep problems is provided. A 2-fold critical review of the published literature was conducted, which aimed at summarizing and critically analyzing evidence regarding sleep patterns of informal caregivers of adults with cancer and contributing factors to sleep-wake disturbances. Using a wide range of key terms and synonyms, 3 electronic databases (MEDLINE, CINAHL, EMBASE) were systematically searched for the period between January 1990 and July 2011. Based on prespecified selection criteria, 44 articles were pooled to provide evidence on sleep-impairing factors in the context of informal caregiving, 17 of which specifically addressed sleep patterns of caregivers of people with cancer. At least 4 of 10 caregivers may report at least 1 sleep problem. Short sleep duration, nocturnal awakenings, wakefulness after sleep onset, and daytime dysfunction seem to be the areas most affected irrespective of stage or type of disease, yet circadian activity remains understudied. In addition, despite a wide spectrum of potential sleep-impairing factors, underlying causal pathways are yet to be explored. More longitudinal, mixed-methods, and comparison studies are warranted to explore caregiver sleep disorders in relation to the gravity of the caregiving situation in the context of diverse types of cancer and disease severity.

  11. Mindfulness Meditation and Improvement in Sleep Quality and Daytime Impairment Among Older Adults With Sleep Disturbances

    PubMed Central

    Black, David S.; O’Reilly, Gillian A.; Olmstead, Richard; Breen, Elizabeth C.; Irwin, Michael R.

    2015-01-01

    IMPORTANCE Sleep disturbances are most prevalent among older adults and often go untreated. Treatment options for sleep disturbances remain limited, and there is a need for community-accessible programs that can improve sleep. OBJECTIVE To determine the efficacy of a mind-body medicine intervention, called mindfulness meditation, to promote sleep quality in older adults with moderate sleep disturbances. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial with 2 parallel groups conducted from January 1 to December 31, 2012, at a medical research center among an older adult sample (mean [SD] age, 66.3 [7.4] years) with moderate sleep disturbances (Pittsburgh Sleep Quality Index [PSQI] >5). INTERVENTIONS A standardized mindful awareness practices (MAPs) intervention (n = 24) or a sleep hygiene education (SHE) intervention (n = 25) was randomized to participants, who received a 6-week intervention (2 hours per week) with assigned homework. MAIN OUTCOMES AND MEASURES The study was powered to detect between-group differences in moderate sleep disturbance measured via the PSQI at postintervention. Secondary outcomes pertained to sleep-related daytime impairment and included validated measures of insomnia symptoms, depression, anxiety, stress, and fatigue, as well as inflammatory signaling via nuclear factor (NF)–κB. RESULTS Using an intent-to-treat analysis, participants in the MAPs group showed significant improvement relative to those in the SHE group on the PSQI. With the MAPs intervention, the mean (SD) PSQIs were 10.2 (1.7) at baseline and 7.4 (1.9) at postintervention. With the SHE intervention, the mean (SD) PSQIs were 10.2 (1.8) at baseline and 9.1 (2.0) at postintervention. The between-group mean difference was 1.8 (95%CI, 0.6–2.9), with an effect size of 0.89. The MAPs group showed significant improvement relative to the SHE group on secondary health outcomes of insomnia symptoms, depression symptoms, fatigue interference, and fatigue severity (P

  12. Sleep Deprivation Impairs and Caffeine Enhances My Performance, but Not Always Our Performance

    PubMed Central

    Faber, Nadira S.; Häusser, Jan A.; Kerr, Norbert L.

    2016-01-01

    What effects do factors that impair or enhance performance in individuals have when these individuals act in groups? We provide a framework, called the GIE ("Effects of Grouping on Impairments and Enhancements”) framework, for investigating this question. As prominent examples for individual-level impairments and enhancements, we discuss sleep deprivation and caffeine. Based on previous research, we derive hypotheses on how they influence performance in groups, specifically process gains and losses in motivation, individual capability, and coordination. We conclude that the effect an impairment or enhancement has on individual-level performance is not necessarily mirrored in group performance: grouping can help or hurt. We provide recommendations on how to estimate empirically the effects individual-level performance impairments and enhancements have in groups. By comparing sleep deprivation to stress and caffeine to pharmacological cognitive enhancement, we illustrate that we cannot readily generalize from group results on one impairment or enhancement to another, even if they have similar effects on individual-level performance. PMID:26468077

  13. Sleep Deprivation Impairs and Caffeine Enhances My Performance, but Not Always Our Performance.

    PubMed

    Faber, Nadira S; Häusser, Jan A; Kerr, Norbert L

    2017-02-01

    What effects do factors that impair or enhance performance in individuals have when these individuals act in groups? We provide a framework, called the GIE ("Effects of Grouping on Impairments and Enhancements") framework, for investigating this question. As prominent examples for individual-level impairments and enhancements, we discuss sleep deprivation and caffeine. Based on previous research, we derive hypotheses on how they influence performance in groups, specifically process gains and losses in motivation, individual capability, and coordination. We conclude that the effect an impairment or enhancement has on individual-level performance is not necessarily mirrored in group performance: grouping can help or hurt. We provide recommendations on how to estimate empirically the effects individual-level performance impairments and enhancements have in groups. By comparing sleep deprivation to stress and caffeine to pharmacological cognitive enhancement, we illustrate that we cannot readily generalize from group results on one impairment or enhancement to another, even if they have similar effects on individual-level performance.

  14. Augmenting cognitive processing therapy to improve sleep impairment in PTSD: A randomized controlled trial.

    PubMed

    Galovski, Tara E; Harik, Juliette M; Blain, Leah M; Elwood, Lisa; Gloth, Chelsea; Fletcher, Thomas D

    2016-02-01

    Despite the success of empirically supported treatments for posttraumatic stress disorder (PTSD), sleep impairment frequently remains refractory after treatment. This single-site, randomized controlled trial examined the effectiveness of sleep-directed hypnosis as a complement to an empirically supported psychotherapy for PTSD (cognitive processing therapy [CPT]). Participants completed either 3 weeks of hypnosis (n = 52) or a symptom monitoring control condition (n = 56) before beginning standard CPT. Multilevel modeling was used to investigate differential patterns of change to determine whether hypnosis resulted in improvements in sleep, PTSD, and depression. An intervening variable approach was then used to determine whether improvements in sleep achieved during hypnosis augmented change in PTSD and depression during CPT. After the initial phase of treatment (hypnosis or symptom monitoring), the hypnosis condition showed significantly greater improvement than the control condition in sleep and depression, but not PTSD. After CPT, both conditions demonstrated significant improvement in sleep and PTSD; however, the hypnosis condition demonstrated greater improvement in depressive symptoms. As sleep improved, there were corresponding improvements in PTSD and depression, with a stronger relationship between sleep and PTSD. Hypnosis was effective in improving sleep impairment, but those improvements did not augment gains in PTSD recovery during the trauma-focused intervention. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Impact of sleep loss before learning on cortical dynamics during memory retrieval.

    PubMed

    Alberca-Reina, E; Cantero, J L; Atienza, M

    2015-12-01

    Evidence shows that sleep loss before learning decreases activation of the hippocampus during encoding and promotes forgetting. But it remains to be determined which neural systems are functionally affected during memory retrieval after one night of recovery sleep. To investigate this issue, we evaluated memory for pairs of famous people's faces with the same or different profession (i.e., semantically congruent or incongruent faces) after one night of undisturbed sleep in subjects who either underwent 4hours of acute sleep restriction (ASR, N=20) or who slept 8hours the pre-training night (controls, N=20). EEG recordings were collected during the recognition memory task in both groups, and the cortical sources generating this activity localized by applying a spatial beamforming filter in the frequency domain. Even though sleep restriction did not affect accuracy of memory performance, controls showed a much larger decrease of alpha power relative to a baseline period when compared to sleep-deprived subjects. These group differences affected a widespread frontotemporoparietal network involved in retrieval of episodic/semantic memories. Regression analyses further revealed that associative memory in the ASR group was negatively correlated with alpha power in the occipital regions, whereas the benefit of congruency in the same group was positively correlated with delta power in the left lateral prefrontal cortex. Retrieval-related decreases of alpha power have been associated with the reactivation of material-specific memory representations, whereas increases of delta power have been related to inhibition of interferences that may affect the performance of the task. We can therefore draw the conclusion that a few hours of sleep loss in the pre-training night, though insufficient to change the memory performance, is sufficient to alter the processes involved in retrieving and manipulating episodic and semantic information. Copyright © 2015 Elsevier Inc. All rights

  16. Ketamine alters cortical integration of GABAergic interneurons and induces long-term sex-dependent impairments in transgenic Gad67-GFP mice.

    PubMed

    Aligny, C; Roux, C; Dourmap, N; Ramdani, Y; Do-Rego, J-C; Jégou, S; Leroux, P; Leroux-Nicollet, I; Marret, S; Gonzalez, B J

    2014-07-03

    Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) antagonist, widely used as an anesthetic in neonatal pediatrics, is also an illicit drug named Super K or KitKat consumed by teens and young adults. In the immature brain, despite several studies indicating that NMDA antagonists are neuroprotective against excitotoxic injuries, there is more and more evidence indicating that these molecules exert a deleterious effect by suppressing a trophic function of glutamate. In the present study, we show using Gad67-GFP mice that prenatal exposure to ketamine during a time-window in which GABAergic precursors are migrating results in (i) strong apoptotic death in the ganglionic eminences and along the migratory routes of GABAergic interneurons; (ii) long-term deficits in interneuron density, dendrite numbers and spine morphology; (iii) a sex-dependent deregulation of γ-aminobutyric acid (GABA) levels and GABA transporter expression; (iv) sex-dependent changes in the response to glutamate-induced calcium mobilization; and (v) the long-term sex-dependent behavioral impairment of locomotor activity. In conclusion, using a preclinical approach, the present study shows that ketamine exposure during cortical maturation durably affects the integration of GABAergic interneurons by reducing their survival and differentiation. The resulting molecular, morphological and functional modifications are associated with sex-specific behavioral deficits in adults. In light of the present data, it appears that in humans, ketamine could be deleterious for the development of the brain of preterm neonates and fetuses of addicted pregnant women.

  17. The Effects of Caffeine on Sleep and Maturational Markers in the Rat

    PubMed Central

    Olini, Nadja; Kurth, Salomé; Huber, Reto

    2013-01-01

    Adolescence is a critical period for brain maturation during which a massive reorganization of cortical connectivity takes place. In humans, slow wave activity (<4.5 Hz) during NREM sleep was proposed to reflect cortical maturation which relies on use-dependent processes. A stimulant like caffeine, whose consumption has recently increased especially in adolescents, is known to affect sleep wake regulation. The goal of this study was to establish a rat model allowing to assess the relationship between cortical maturation and sleep and to further investigate how these parameters are affected by caffeine consumption. To do so, we assessed sleep and markers of maturation by electrophysiological recordings, behavioral and structural readouts in the juvenile rat. Our results show that sleep slow wave activity follows a similar inverted U-shape trajectory as already known in humans. Caffeine treatment exerted short-term stimulating effects and altered the trajectory of slow wave activity. Moreover, caffeine affected behavioral and structural markers of maturation. Thus, caffeine consumption during a critical developmental period shows long lasting effects on sleep and brain maturation. PMID:24023748

  18. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder

    PubMed Central

    Munz, Manuel T.; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba

    2015-01-01

    Background: Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective:By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: Fourteen boys (10–14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD. PMID:26321911

  19. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder.

    PubMed

    Munz, Manuel T; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba

    2015-01-01

    Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Fourteen boys (10-14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  20. Effects of cortisol suppression on sleep-associated consolidation of neutral and emotional memory.

    PubMed

    Wagner, Ullrich; Degirmenci, Metin; Drosopoulos, Spyridon; Perras, Boris; Born, Jan

    2005-12-01

    Previous research indicates that hippocampus-dependent declarative memory benefits from early nocturnal sleep, when slow-wave sleep (SWS) prevails and cortisol release is minimal, whereas amygdala-dependent emotional memory is enhanced through late sleep, when rapid eye movement (REM) sleep predominates. The role of the strong cortisol rise accompanying late sleep for emotional memory consolidation has not yet been investigated. Effects of the cortisol synthesis inhibitor metyrapone on sleep-associated consolidation of memory for neutral and emotional texts were investigated in a randomized, double-blind, placebo-controlled study in 14 healthy men. Learning took place immediately before treatment, which was followed by 8 hours of sleep. Retrieval was tested at 11 am the next morning. Metyrapone suppressed cortisol during sleep and blocked particularly the late-night rise in cortisol. It reduced SWS and concomitantly impaired the consolidation of neutral texts. Emotional texts were spared from this impairing influence, however. Metyrapone even amplified emotional enhancement in text recall indicating amygdala-dependent memory. Cortisol blockade during sleep impairs hippocampus-dependent declarative memory formation but enhances amygdala-dependent emotional memory formation. The natural cortisol rise during late sleep may thus protect from overshooting emotional memory formation, a mechanism possibly pertinent to the development of posttraumatic stress disorder.

  1. Sleep-Dependent Modulation of Metabolic Rate in Drosophila.

    PubMed

    Stahl, Bethany A; Slocumb, Melissa E; Chaitin, Hersh; DiAngelo, Justin R; Keene, Alex C

    2017-08-01

    Dysregulation of sleep is associated with metabolic diseases, and metabolic rate (MR) is acutely regulated by sleep-wake behavior. In humans and rodent models, sleep loss is associated with obesity, reduced metabolic rate, and negative energy balance, yet little is known about the neural mechanisms governing interactions between sleep and metabolism. We have developed a system to simultaneously measure sleep and MR in individual Drosophila, allowing for interrogation of neural systems governing interactions between sleep and metabolic rate. Like mammals, MR in flies is reduced during sleep and increased during sleep deprivation suggesting sleep-dependent regulation of MR is conserved across phyla. The reduction of MR during sleep is not simply a consequence of inactivity because MR is reduced ~30 minutes following the onset of sleep, raising the possibility that CO2 production provides a metric to distinguish different sleep states in the fruit fly. To examine the relationship between sleep and metabolism, we determined basal and sleep-dependent changes in MR is reduced in starved flies, suggesting that starvation inhibits normal sleep-associated effects on metabolic rate. Further, translin mutant flies that fail to suppress sleep during starvation demonstrate a lower basal metabolic rate, but this rate was further reduced in response to starvation, revealing that regulation of starvation-induced changes in MR and sleep duration are genetically distinct. Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Neurobehavioral Performance Impairment in Insomnia: Relationships with Self-Reported Sleep and Daytime Functioning

    PubMed Central

    Shekleton, Julia A.; Flynn-Evans, Erin E.; Miller, Belinda; Epstein, Lawrence J.; Kirsch, Douglas; Brogna, Lauren A.; Burke, Liza M.; Bremer, Erin; Murray, Jade M.; Gehrman, Philip; Lockley, Steven W.; Rajaratnam, Shantha M. W.

    2014-01-01

    Study Objectives: Despite the high prevalence of insomnia, daytime consequences of the disorder are poorly characterized. This study aimed to identify neurobehavioral impairments associated with insomnia, and to investigate relationships between these impairments and subjective ratings of sleep and daytime dysfunction. Design: Cross-sectional, multicenter study. Setting: Three sleep laboratories in the USA and Australia. Patients: Seventy-six individuals who met the Research Diagnostic Criteria (RDC) for Primary Insomnia, Psychophysiological Insomnia, Paradoxical Insomnia, and/or Idiopathic Childhood Insomnia (44F, 35.8 ± 12.0 years [mean ± SD]) and 20 healthy controls (14F, 34.8 ± 12.1 years). Interventions: N/A. Measurements and Results: Participants completed a 7-day sleep-wake diary, questionnaires assessing daytime dysfunction, and a neurobehavioral test battery every 60-180 minutes during an afternoon/evening sleep laboratory visit. Included were tasks assessing sustained and switching attention, working memory, subjective sleepiness, and effort. Switching attention and working memory were significantly worse in insomnia patients than controls, while no differences were found for simple or complex sustained attention tasks. Poorer sustained attention in the control, but not the insomnia group, was significantly associated with increased subjective sleepiness. In insomnia patients, poorer sustained attention performance was associated with reduced health-related quality of life and increased insomnia severity. Conclusions: We found that insomnia patients exhibit deficits in higher level neurobehavioral functioning, but not in basic attention. The findings indicate that neurobehavioral deficits in insomnia are due to neurobiological alterations, rather than sleepiness resulting from chronic sleep deficiency. Citation: Shekleton JA; Flynn-Evans EE; Miller B; Epstein LJ; Kirsch D; Brogna LA; Burke LM; Cremer E; Murray JM; Gehrman P; Lockley SW; Rajaratnam SMW

  3. Discontinuity of cortical gradients reflects sensory impairment

    PubMed Central

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-01-01

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations—patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion—enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  4. A Nationwide Cross-Sectional Survey of Sleep-Related Problems in Japanese Visually Impaired Patients: Prevalence and Association with Health-Related Quality of Life.

    PubMed

    Tamura, Norihisa; Sasai-Sakuma, Taeko; Morita, Yuko; Okawa, Masako; Inoue, Shigeru; Inoue, Yuichi

    2016-12-15

    This questionnaire-based cross-sectional study was conducted (1) to estimate the prevalence of sleep-related problems, and (2) to explore factors associated with lower physical/mental quality of life (QOL), particularly addressing sleep-related problems among Japanese visually impaired people. This nationwide questionnaire-based survey was administered to visually impaired individuals through the Japan Federation of the Blind. Visually impaired individuals without light perception (LP) (n = 311), those with LP (n = 287), and age-matched and gender-matched controls (n = 615) were eligible for this study. Study questionnaires elicited demographic information, and information about visual impairment status, sleep-related problems, and health-related quality of life. Visually impaired individuals with and without LP showed higher prevalence rates of irregular sleep-wake patterns and difficulty maintaining sleep than controls (34.7% and 29.4% vs. 15.8%, 60.1% and 46.7% vs. 26.8%, respectively; p < 0.001). These sleep-related problems were observed more frequently in visually impaired individuals without LP than in those with LP. Non-restorative sleep or excessive daytime sleepiness was associated with lower mental/physical QOL in visually impaired individuals with LP and in control subjects. However, visually impaired individuals without LP showed irregular sleep-wake pattern or difficulty waking up at the desired time, which was associated with lower mental/physical QOL. Sleep-related problems were observed more frequently in visually impaired individuals than in controls. Moreover, the rates of difficulties were higher among subjects without LP. Sleep-related problems, especially circadian rhythm-related ones, can be associated with lower mental/physical QOL in visually impaired individuals without LP. © 2016 American Academy of Sleep Medicine

  5. Outcomes and Opportunities: A Study of Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Roman Lantzy, Christine A.; Lantzy, Alan

    2010-01-01

    Pediatric View is an evaluation project that began in 1999 and is located at Western Pennsylvania Hospital in Pittsburgh. The purpose of Pediatric View is to provide developmental and functional vision evaluations to children who have ocular or cortical visual impairments. The evaluations are generally two hours in length, and a detailed report…

  6. The Reliability of the CVI Range: A Functional Vision Assessment for Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Newcomb, Sandra

    2010-01-01

    Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…

  7. Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice.

    PubMed

    Zhao, Hongyi; Wu, Huijuan; He, Jialin; Zhuang, Jianhua; Liu, Zhenyu; Yang, Yang; Huang, Liuqing; Zhao, Zhongxin

    2016-08-17

    Mitochondrial dysfunction induced by mitochondria-related β-amyloid (Aβ) accumulation is increasingly being considered a novel risk factor for sporadic Alzheimer's disease pathophysiology. The close relationship between chronic sleep restriction (CSR) and cortical Aβ elevation was confirmed recently. By assessing frontal cortical mitochondrial function (electron microscopy manifestation, cytochrome C oxidase concentration, ATP level, and mitochondrial membrane potential) and the levels of mitochondria-related Aβ in 9-month-old adult male C57BL/6J mice subjected to CSR and as an environmental control (CO) group, we aimed to evaluate the association of CSR with mitochondrial dysfunction and mitochondria-related Aβ accumulation. In this study, frontal cortical mitochondrial dysfunction was significantly more severe in CSR mice compared with CO animals. Furthermore, CSR mice showed higher mitochondria-associated Aβ, total Aβ, and mitochondria-related β-amyloid protein precursor (AβPP) levels compared with CO mice. In the CSR model, mouse frontal cortical mitochondrial dysfunction was correlated with mitochondria-associated Aβ and mitochondria-related AβPP levels. However, frontal cortical mitochondria-associated Aβ levels showed no significant association with cortical total Aβ and mitochondrial AβPP concentrations. These findings indicated that CSR-induced frontal cortical mitochondrial dysfunction and mitochondria-related Aβ accumulation, which was closely related to mitochondrial dysfunction under CSR.

  8. Decreased prefrontal cortical dopamine transmission in alcoholism.

    PubMed

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  9. Regional reduction in cortical blood flow among cognitively impaired adults with relapsing-remitting multiple sclerosis patients

    PubMed Central

    Hojjat, Seyed-Parsa; Cantrell, Charles Grady; Vitorino, Rita; Feinstein, Anthony; Shirzadi, Zahra; MacIntosh, Bradley J.; Crane, David E.; Zhang, Lying; Morrow, Sarah A; Lee, Liesly; O’Connor, Paul; Carroll, Timothy J.; Aviv, Richard I.

    2015-01-01

    Purpose Detection of cortical abnormalities in relapsing-remitting multiple sclerosis (RRMS) remains elusive. Structural MRI measures of cortical integrity are limited, although functional techniques such as pseudocontinuous Arterial Spin Labeling (pCASL) show promise as a surrogate marker of disease severity. We sought to determine the utility of pCASL to assess cortical cerebral blood flow (CBF) in RRMS patients with (RRMS-I) and without (RRMS-NI) cognitive impairment. Methods 19 age-matched healthy controls and 39 RRMS patients were prospectively recruited. Cognition was assessed using the MACFIMS battery. Cortical CBF was compared between groups using a mass univariate voxel-based morphometric analysis accounting for demographic and structural variable covariates. Results Cognitive impairment was present in 51.3% of patients. Significant CBF reduction was present in the RRMS-I compared to other groups in left frontal and right superior frontal cortex. Compared to healthy controls, RRMS-I displayed reduced CBF in the frontal, limbic, parietal and temporal cortex and putamen/thalamus. RRMS-I demonstrated reduced left superior frontal lobe cortical CBF compared to RRMS-NI. No significant cortical CBF differences were present between healthy controls and RRMS-NI. Conclusion Significant cortical CBF reduction occurs in RRMS-I compared to healthy controls and RRMS-NI in anatomically significant regions after controlling for structural and demographic differences. PMID:26754799

  10. Sleep-dependent facilitation of episodic memory details.

    PubMed

    van der Helm, Els; Gujar, Ninad; Nishida, Masaki; Walker, Matthew P

    2011-01-01

    While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements) and context- (contextual details associated with those elements) learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep). These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent) aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation.

  11. A randomized, placebo-controlled trial of controlled release melatonin treatment of delayed sleep phase syndrome and impaired sleep maintenance in children with neurodevelopmental disabilities.

    PubMed

    Wasdell, Michael B; Jan, James E; Bomben, Melissa M; Freeman, Roger D; Rietveld, Wop J; Tai, Joseph; Hamilton, Donald; Weiss, Margaret D

    2008-01-01

    The purpose of this study was to determine the efficacy of controlled-release (CR) melatonin in the treatment of delayed sleep phase syndrome and impaired sleep maintenance of children with neurodevelopmental disabilities including autistic spectrum disorders. A randomized double-blind, placebo-controlled crossover trial of CR melatonin (5 mg) followed by a 3-month open-label study was conducted during which the dose was gradually increased until the therapy showed optimal beneficial effects. Sleep characteristics were measured by caregiver who completed somnologs and wrist actigraphs. Clinician rating of severity of the sleep disorder and improvement from baseline, along with caregiver ratings of global functioning and family stress were also obtained. Fifty-one children (age range 2-18 years) who did not respond to sleep hygiene intervention were enrolled. Fifty patients completed the crossover trial and 47 completed the open-label phase. Recordings of total night-time sleep and sleep latency showed significant improvement of approximately 30 min. Similarly, significant improvement was observed in clinician and parent ratings. There was additional improvement in the open-label somnolog measures of sleep efficiency and the longest sleep episode in the open-label phase. Overall, the therapy improved the sleep of 47 children and was effective in reducing family stress. Children with neurodevelopmental disabilities, who had treatment resistant chronic delayed sleep phase syndrome and impaired sleep maintenance, showed improvement in melatonin therapy.

  12. A Nationwide Cross-Sectional Survey of Sleep-Related Problems in Japanese Visually Impaired Patients: Prevalence and Association with Health-Related Quality of Life

    PubMed Central

    Tamura, Norihisa; Sasai-Sakuma, Taeko; Morita, Yuko; Okawa, Masako; Inoue, Shigeru; Inoue, Yuichi

    2016-01-01

    Study Objectives: This questionnaire-based cross-sectional study was conducted (1) to estimate the prevalence of sleep-related problems, and (2) to explore factors associated with lower physical/mental quality of life (QOL), particularly addressing sleep-related problems among Japanese visually impaired people. Methods: This nationwide questionnaire-based survey was administered to visually impaired individuals through the Japan Federation of the Blind. Visually impaired individuals without light perception (LP) (n = 311), those with LP (n = 287), and age-matched and gender-matched controls (n = 615) were eligible for this study. Study questionnaires elicited demographic information, and information about visual impairment status, sleep-related problems, and health-related quality of life. Results: Visually impaired individuals with and without LP showed higher prevalence rates of irregular sleep-wake patterns and difficulty maintaining sleep than controls (34.7% and 29.4% vs. 15.8%, 60.1% and 46.7% vs. 26.8%, respectively; p < 0.001). These sleep-related problems were observed more frequently in visually impaired individuals without LP than in those with LP. Non-restorative sleep or excessive daytime sleepiness was associated with lower mental/physical QOL in visually impaired individuals with LP and in control subjects. However, visually impaired individuals without LP showed irregular sleep-wake pattern or difficulty waking up at the desired time, which was associated with lower mental/physical QOL. Conclusions: Sleep-related problems were observed more frequently in visually impaired individuals than in controls. Moreover, the rates of difficulties were higher among subjects without LP. Sleep-related problems, especially circadian rhythm-related ones, can be associated with lower mental/physical QOL in visually impaired individuals without LP. Citation: Tamura N, Sasai-Sakuma T, Morita Y, Okawa M, Inoue S, Inoue Y. A nationwide cross-sectional survey of sleep

  13. Chronic Sleep Restriction Induces Cognitive Deficits and Cortical Beta-Amyloid Deposition in Mice via BACE1-Antisense Activation.

    PubMed

    Zhao, Hong-Yi; Wu, Hui-Juan; He, Jia-Lin; Zhuang, Jian-Hua; Liu, Zhen-Yu; Huang, Liu-Qing; Zhao, Zhong-Xin

    2017-03-01

    To clarify the correlation between chronic sleep restriction (CSR) and sporadic Alzheimer disease (AD), we determined in wild-type mice the impact of CSR, on cognitive performance, beta-amyloid (Aβ) peptides, and its feed-forward regulators regarding AD pathogenesis. Sixteen nine-month-old C57BL/6 male mice were equally divided into the CSR and control groups. CSR was achieved by application of a slowly rotating drum for 2 months. The Morris water maze test was used to assess cognitive impairment. The concentrations of Aβ peptides, amyloid precursor protein (APP) and β-secretase 1 (BACE1), and the mRNA levels of BACE1 and BACE1-antisense (BACE1-AS) were measured. Following CSR, impairments of spatial learning and memory consolidation were observed in the mice, accompanied by Aβ plaque deposition and an increased Aβ concentration in the prefrontal and temporal lobe cortex. CSR also upregulated the β-secretase-induced cleavage of APP by increasing the protein and mRNA levels of BACE1, particularly the BACE1-AS. This study shows that a CSR accelerates AD pathogenesis in wild-type mice. An upregulation of the BACE1 pathway appears to participate in both cortical Aβ plaque deposition and memory impairment caused by CSR. BACE1-AS is likely activated to initiate a cascade of events that lead to AD pathogenesis. Our study provides, therefore, a molecular mechanism that links CSR to sporadic AD. © 2017 John Wiley & Sons Ltd.

  14. Role of adenosine and wake-promoting basal forebrain in insomnia and associated sleep disruptions caused by ethanol dependence.

    PubMed

    Sharma, Rishi; Engemann, Samuel; Sahota, Pradeep; Thakkar, Mahesh M

    2010-11-01

    Insomnia is a severe symptom of alcohol withdrawal; however, the underlying neuronal mechanism is yet unknown. We hypothesized that chronic ethanol exposure will impair basal forebrain (BF) adenosinergic mechanism resulting in insomnia-like symptoms. We performed a series of experiments in Sprague-Dawley rats to test our hypothesis. We used Majchrowicz's chronic binge ethanol protocol to induce ethanol dependency. Our first experiment verified the effects of ethanol withdrawal on sleep-wakefulness. Significant increase in wakefulness was observed during ethanol withdrawal. Next, we examined c-Fos expression (marker of neuronal activation) in BF wake-promoting neurons during ethanol withdrawal. There was a significant increase in the number of BF wake-promoting neurons with c-Fos immunoreactivity. Our third experiment examined the effects of ethanol withdrawal on sleep deprivation induced increase in BF adenosine levels. Sleep deprivation did not increase BF adenosine levels in ethanol dependent rats. Our last experiment examined the effects of ethanol withdrawal on equilibrative nucleoside transporter 1 and A1 receptor expression in the BF. There was a significant reduction in A1 receptor and equilibrative nucleoside transporter 1 expression in the BF of ethanol dependent rats. Based on these results, we suggest that insomnia observed during ethanol withdrawal is caused because of impaired adenosinergic mechanism in the BF. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  15. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  16. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    PubMed

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  17. Sleep in lonely heroin-dependent patients receiving methadone maintenance treatment: longer sleep latency, shorter sleep duration, lower sleep efficiency, and poorer sleep quality.

    PubMed

    Li, Hong-Jie; Zhong, Bao-Liang; Xu, Yan-Min; Zhu, Jun-Hong; Lu, Jin

    2017-10-24

    Given the socially isolated status of Chinese heroin-dependent patients (HDPs) and the significant association between loneliness and sleep problem in the general population, the impact of loneliness on sleep of HDPs is potentially substantial. The study aimed to test whether loneliness is associated with poor sleep in terms of quantity and quality in a consecutive sample of Chinese HDPs receiving methadone maintenance treatment (MMT). The study participants were 603 HDPs of three MMT clinics in Wuhan, China. Data on socio-demographic and clinical characteristics were collected by a standardized self-administered questionnaire. Sleep outcomes included sleep latency, sleep duration, sleep efficiency, and sleep quality. We measured depressive symptoms, loneliness, and sleep quality by using Zung's Self-rating Depression Scale, the single-item self-report of loneliness, and the Pittsburgh Sleep Quality Index, respectively. Multiple linear regression was used to examine whether loneliness is independently associated with sleep measures. After controlling for the confounding effects of potential socio-demographic and clinical variables, loneliness was significantly associated with longer sleep latency, shorter sleep duration, lower sleep efficiency, and poorer sleep quality. Loneliness may exacerbate sleep disturbance in Chinese HDPs of MMT clinics. Psychosocial interventions aimed at reducing loneliness in MMT clinics would improve the sleep of HDPs.

  18. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila.

    PubMed

    Seugnet, Laurent; Suzuki, Yasuko; Merlin, Gabriel; Gottschalk, Laura; Duntley, Stephen P; Shaw, Paul J

    2011-05-24

    The role of the transmembrane receptor Notch in the adult brain is poorly understood. Here, we provide evidence that bunched, a negative regulator of Notch, is involved in sleep homeostasis. Genetic evidence indicates that interfering with bunched activity in the mushroom bodies (MBs) abolishes sleep homeostasis. Combining bunched and Delta loss-of-function mutations rescues normal homeostasis, suggesting that Notch signaling may be involved in regulating sensitivity to sleep loss. Preventing the downregulation of Delta by overexpressing a wild-type transgene in MBs reduces sleep homeostasis and, importantly, prevents learning impairments induced by sleep deprivation. Similar resistance to sleep loss is observed with Notch(spl-1) gain-of-function mutants. Immunohistochemistry reveals that the Notch receptor is expressed in glia, whereas Delta is localized in neurons. Importantly, the expression in glia of the intracellular domain of Notch, a dominant activated form of the receptor, is sufficient to prevent learning deficits after sleep deprivation. Together, these results identify a novel neuron-glia signaling pathway dependent on Notch and regulated by bunched. These data highlight the emerging role of neuron-glia interactions in regulating both sleep and learning impairments associated with sleep loss. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia.

    PubMed

    Ferrarelli, Fabio; Tononi, Giulio

    2017-02-01

    Sleep disturbances have been reliably reported in patients with schizophrenia, thus suggesting that abnormal sleep may represent a core feature of this disorder. Traditional electroencephalographic studies investigating sleep architecture have found reduced deep non-rapid eye movement (NREM) sleep, or slow wave sleep (SWS), and increased REM density. However, these findings have been inconsistently observed, and have not survived meta-analysis. By contrast, several recent EEG studies exploring brain activity during sleep have established marked deficits in sleep spindles in schizophrenia, including first-episode and early-onset patients, compared to both healthy and psychiatric comparison subjects. Spindles are waxing and waning, 12-16Hz NREM sleep oscillations that are generated within the thalamus by the thalamic reticular nucleus (TRN), and are then synchronized and sustained in the cortex. While the functional role of sleep spindles still needs to be fully established, increasing evidence has shown that sleep spindles are implicated in learning and memory, including sleep dependent memory consolidation, and spindle parameters have been associated to general cognitive ability and IQ. In this article we will review the EEG studies demonstrating sleep spindle deficits in patients with schizophrenia, and show that spindle deficits can predict their reduced cognitive performance. We will then present data indicating that spindle impairments point to a TRN-MD thalamus-prefrontal cortex circuit deficit, and discuss about the possible molecular mechanisms underlying thalamo-cortical sleep spindle abnormalities in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat

    PubMed Central

    Goldstein-Piekarski, Andrea N.; Greer, Stephanie M.; Saletin, Jared M.

    2015-01-01

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the “embodied” reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive. PMID:26180190

  1. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat.

    PubMed

    Goldstein-Piekarski, Andrea N; Greer, Stephanie M; Saletin, Jared M; Walker, Matthew P

    2015-07-15

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the "embodied" reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive. Copyright © 2015 the authors 0270-6474/15/3510135-11$15.00/0.

  2. Cortical Visual Impairment in Children: Presentation Intervention, and Prognosis in Educational Settings

    ERIC Educational Resources Information Center

    Swift, Suzanne H.; Davidson, Roseanna C.; Weems, Linda J.

    2008-01-01

    Children with cortical visual impairment (CVI) exhibit distinct visual behaviors which are often misinterpreted. As the incidence of CVI is on the rise, this has subsequently caused an increased need for identification and intervention with these children from teaching and therapy service providers. Distinguishing children with CVI from children…

  3. TNFα G308A polymorphism is associated with resilience to sleep deprivation-induced psychomotor vigilance performance impairment in healthy young adults.

    PubMed

    Satterfield, Brieann C; Wisor, Jonathan P; Field, Stephanie A; Schmidt, Michelle A; Van Dongen, Hans P A

    2015-07-01

    Cytokines such as TNFα play an integral role in sleep/wake regulation and have recently been hypothesized to be involved in cognitive impairment due to sleep deprivation. We examined the effect of a guanine to adenine substitution at position 308 in the TNFα gene (TNFα G308A) on psychomotor vigilance performance impairment during total sleep deprivation. A total of 88 healthy women and men (ages 22-40) participated in one of five laboratory total sleep deprivation experiments. Performance on a psychomotor vigilance test (PVT) was measured every 2-3h. The TNFα 308A allele, which is less common than the 308G allele, was associated with greater resilience to psychomotor vigilance performance impairment during total sleep deprivation (regardless of time of day), and also provided a small performance benefit at baseline. The effect of genotype on resilience persisted when controlling for between-subjects differences in age, gender, race/ethnicity, and baseline sleep duration. The TNFα G308A polymorphism predicted less than 10% of the overall between-subjects variance in performance impairment during sleep deprivation. Nonetheless, the differential effect of the polymorphism at the peak of performance impairment was more than 50% of median performance impairment at that time, which is sizeable compared to the effects of other genotypes reported in the literature. Our findings provided evidence for a role of TNFα in the effects of sleep deprivation on psychomotor vigilance performance. Furthermore, the TNFα G308A polymorphism may have predictive potential in a biomarker panel for the assessment of resilience to psychomotor vigilance performance impairment due to sleep deprivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Amphetamine Dependence and Co-Morbid Alcohol Abuse: Associations to Brain Cortical Thickness

    PubMed Central

    2010-01-01

    Background Long-term amphetamine and methamphetamine dependence has been linked to cerebral blood perfusion, metabolic, and white matter abnormalities. Several studies have linked methamphetamine abuse to cortical grey matter reduction, though with divergent findings. Few publications investigate unmethylated amphetamine's potential effects on cortical grey matter. This work investigated if amphetamine dependent patients showed reduced cortical grey matter thickness. Subjects were 40 amphetamine dependent subjects and 40 healthy controls. While all subjects were recruited to be free of alcohol dependence, structured clinical interviews revealed significant patterns of alcohol use in the patients. Structural magnetic resonance brain images were obtained from the subjects using a 1.5 Tesla GE Signa machine. Brain cortical thickness was measured with submillimeter precision at multiple finely spaced cortical locations using semi-automated post-processing (FreeSurfer). Contrast analysis of a general linear model was used to test for differences between the two groups at each cortical location. In addition to contrasting patients with controls, a number of analyses sought to identify possible confounding effects from alcohol. Results No significant cortical thickness differences were observed between the full patient group and controls, nor between non-drinking patients and controls. Patients with a history of co-morbid heavy alcohol use (n = 29) showed reductions in the superior-frontal right hemisphere and pre-central left hemisphere when compared to healthy controls (n = 40). Conclusions Amphetamine usage was associated with reduced cortical thickness only in patients co-morbid for heavy alcohol use. Since cortical thickness is but one measure of brain structure and does not capture brain function, further studies of brain structure and function in amphetamine dependence are warranted. PMID:20487539

  5. Nicotine dependence and sleep quality in young adults.

    PubMed

    Dugas, E N; Sylvestre, M P; O'Loughlin, E K; Brunet, J; Kakinami, L; Constantin, E; O'Loughlin, J

    2017-02-01

    More cigarette smokers report poor sleep quality than non-smokers, but the association between nicotine dependence (ND) and sleep quality has not been well-characterized. The objective of this study was to describe the associations among frequency and intensity of cigarette smoking, ND symptoms, and sleep quality in young adults. Data on past-year smoking frequency, number of cigarettes smoked in the past month, five ND indicators (i.e., withdrawal, craving, self-medication symptoms, mFTQ, ICD-10 criteria for tobacco dependence), and sleep quality (measured with the Pittsburgh Sleep Quality Index (PSQI)) were collected in 2011-12 in self-report questionnaires completed by 405 young adult smokers (mean age 24 (0.6) years; 45% male; 45% daily smokers) participating in a longitudinal investigation of the natural course of ND. Associations between indicators of cigarette smoking, ND symptoms, and sleep quality were examined in multivariable logistic regression analyses controlling for age, sex, mother's education, and alcohol use. Thirty-six percent of participants reported poor sleep quality (PSQI>5). Higher cigarette consumption (OR(95% CI), 1.03(1.001-1.05)) but not frequency of past-year smoking, more frequent withdrawal symptoms (1.05(1.004-1.10)), more frequent cravings (1.05(1.004-1.10)), higher mFTQ scores (1.14(1.02-1.27)), and endorsing more ICD-10 criteria for tobacco dependence (1.19(1.04-1.36)) were also associated with poor sleep quality. Cigarette smoking and ND symptoms are associated with poor sleep quality in young adult smokers. Advice from practitioners to cut back on number of cigarettes smoked per day and treatment of ND symptoms may improve sleep quality in young adult smokers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    PubMed

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  7. Affective brain areas and sleep disordered breathing

    PubMed Central

    Harper, Ronald M.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Ogren, Jennifer A.

    2014-01-01

    The neural damage accompanying the hypoxia, reduced perfusion, and other consequences of sleep-disordered breathing found in obstructive sleep apnea, heart failure (HF), and congenital central hypoventilation syndrome (CCHS), appears in areas that serve multiple functions, including emotional drives to breathe, and involve systems that serve affective, cardiovascular, and breathing roles. The damage, assessed with structural magnetic resonance imaging (MRI) procedures, shows tissue loss or water content and diffusion changes indicative of injury, and impaired axonal integrity between structures; damage is preferentially unilateral. Functional MRI responses in affected areas also are time- or amplitude- distorted to ventilatory or autonomic challenges. Among the structures injured are the insular, cingulate, and ventral medial prefrontal cortices, as well as cerebellar deep nuclei and cortex, anterior hypothalamus, raphé, ventrolateral medulla, basal ganglia and, in CCHS, the locus coeruleus. Raphé and locus coeruleus injury may modify serotonergic and adrenergic modulation of upper airway and arousal characteristics. Since both axons and gray matter show injury, the consequences to function, especially to autonomic, cognitive, and mood regulation, are major. Several affected rostral sites, including the insular and cingulate cortices and hippocampus, mediate aspects of dyspnea, especially in CCHS, while others, including the anterior cingulate and thalamus, participate in initiation of inspiration after central breathing pauses, and the medullary injury can impair baroreflex and breathing control. The ancillary injury associated with sleep-disordered breathing to central structures can elicit multiple other distortions in cardiovascular, cognitive, and emotional functions in addition to effects on breathing regulation. PMID:24746053

  8. The sleep slow oscillation as a traveling wave.

    PubMed

    Massimini, Marcello; Huber, Reto; Ferrarelli, Fabio; Hill, Sean; Tononi, Giulio

    2004-08-04

    During much of sleep, virtually all cortical neurons undergo a slow oscillation (<1 Hz) in membrane potential, cycling from a hyperpolarized state of silence to a depolarized state of intense firing. This slow oscillation is the fundamental cellular phenomenon that organizes other sleep rhythms such as spindles and slow waves. Using high-density electroencephalogram recordings in humans, we show here that each cycle of the slow oscillation is a traveling wave. Each wave originates at a definite site and travels over the scalp at an estimated speed of 1.2-7.0 m/sec. Waves originate more frequently in prefrontal-orbitofrontal regions and propagate in an anteroposterior direction. Their rate of occurrence increases progressively reaching almost once per second as sleep deepens. The pattern of origin and propagation of sleep slow oscillations is reproducible across nights and subjects and provides a blueprint of cortical excitability and connectivity. The orderly propagation of correlated activity along connected pathways may play a role in spike timing-dependent synaptic plasticity during sleep.

  9. Functional Anatomy of Non-REM Sleep

    PubMed Central

    de Andrés, Isabel; Garzón, Miguel; Reinoso-Suárez, Fernando

    2011-01-01

    The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3–4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3–4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis

  10. Classifying performance impairment in response to sleep loss using pattern recognition algorithms on single session testing

    PubMed Central

    St. Hilaire, Melissa A.; Sullivan, Jason P.; Anderson, Clare; Cohen, Daniel A.; Barger, Laura K.; Lockley, Steven W.; Klerman, Elizabeth B.

    2012-01-01

    There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep loss. We utilized pattern recognition algorithms to determine which features of data collected under controlled laboratory conditions could most reliably identify cognitive performance impairment in response to sleep loss using data from only one testing session, such as would occur in the “real world” or field conditions. A training set for testing the pattern recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify performance impairment with a single testing session in individuals studied under laboratory conditions using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high as 82%. When this algorithm was tested on data collected under real-world conditions from individuals whose data were not in the training set, accuracy of predictions for individuals categorized with low performance impairment were as high as 98%. Predictions for medium and severe performance impairment were less accurate. We conclude that pattern recognition algorithms may be a promising method for identifying performance impairment in individuals using only current information about the individual’s behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory setting may not be the best indicators of performance impairment under real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used in conjunction with other assessments of sleepiness in real-world conditions to quantify performance impairment in

  11. Altered resting-state hippocampal and caudate functional networks in patients with obstructive sleep apnea.

    PubMed

    Song, Xiaopeng; Roy, Bhaswati; Kang, Daniel W; Aysola, Ravi S; Macey, Paul M; Woo, Mary A; Yan-Go, Frisca L; Harper, Ronald M; Kumar, Rajesh

    2018-05-10

    Brain structural injury and metabolic deficits in the hippocampus and caudate nuclei may contribute to cognitive and emotional deficits found in obstructive sleep apnea (OSA) patients. If such contributions exist, resting-state interactions of these subcortical sites with cortical areas mediating affective symptoms and cognition should be disturbed. Our aim was to examine resting-state functional connectivity (FC) of the hippocampus and caudate to other brain areas in OSA relative to control subjects, and to relate these changes to mood and neuropsychological scores. We acquired resting-state functional magnetic resonance imaging (fMRI) data from 70 OSA and 89 healthy controls using a 3.0-Tesla magnetic resonance imaging scanner, and assessed psychological and behavioral functions, as well as sleep issues. After standard fMRI data preprocessing, FC maps were generated for bilateral hippocampi and caudate nuclei, and compared between groups (ANCOVA; covariates, age and gender). Obstructive sleep apnea subjects showed significantly higher levels of anxiety and depressive symptoms over healthy controls. In OSA subjects, the hippocampus showed disrupted FC with the thalamus, para-hippocampal gyrus, medial and superior temporal gyrus, insula, and posterior cingulate cortex. Left and right caudate nuclei showed impaired FC with the bilateral inferior frontal gyrus and right angular gyrus. In addition, altered limbic-striatal-cortical FC in OSA showed relationships with behavioral and neuropsychological variables. The compromised hippocampal-cortical FC in OSA may underlie depression and anxious mood levels in OSA, while impaired caudate-cortical FC may indicate deficits in reward processing and cognition. These findings provide insights into the neural mechanisms underlying the comorbidity of mood and cognitive deficits in OSA. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  12. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment

    PubMed Central

    Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

    2015-01-01

    Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1+ microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU+/DCX+ cells. Minocycline reduced Iba1+ cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666

  13. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation

    PubMed Central

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun

    2017-01-01

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862

  14. Stimulus Dependence of Correlated Variability across Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex

  15. Visual Attention to Movement and Color in Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Cohen-Maitre, Stacey Ann; Haerich, Paul

    2005-01-01

    This study investigated the ability of color and motion to elicit and maintain visual attention in a sample of children with cortical visual impairment (CVI). It found that colorful and moving objects may be used to engage children with CVI, increase their motivation to use their residual vision, and promote visual learning.

  16. Sleep enhances false memories depending on general memory performance.

    PubMed

    Diekelmann, Susanne; Born, Jan; Wagner, Ullrich

    2010-04-02

    Memory is subject to dynamic changes, sometimes giving rise to the formation of false memories due to biased processes of consolidation or retrieval. Sleep is known to benefit memory consolidation through an active reorganization of representations whereas acute sleep deprivation impairs retrieval functions. Here, we investigated whether sleep after learning and sleep deprivation at retrieval enhance the generation of false memories in a free recall test. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal", etc.), lacking the strongest common associate or theme word (here: "black"). Free recall was tested after 9h following a night of sleep, a night of wakefulness (sleep deprivation) or daytime wakefulness. Compared with memory performance after a retention period of daytime wakefulness, both post-learning nocturnal sleep as well as acute sleep deprivation at retrieval significantly enhanced false recall of theme words. However, these effects were only observed in subjects with low general memory performance. These data point to two different ways in which sleep affects false memory generation through semantic generalization: one acts during consolidation on the memory trace per se, presumably by active reorganization of the trace in the post-learning sleep period. The other is related to the recovery function of sleep and affects cognitive control processes of retrieval. Both effects are unmasked when the material is relatively weakly encoded. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  17. Prenatal Exposure to Arsenic Impairs Behavioral Flexibility and Cortical Structure in Mice

    PubMed Central

    Aung, Kyaw H.; Kyi-Tha-Thu, Chaw; Sano, Kazuhiro; Nakamura, Kazuaki; Tanoue, Akito; Nohara, Keiko; Kakeyama, Masaki; Tohyama, Chiharu; Tsukahara, Shinji; Maekawa, Fumihiko

    2016-01-01

    Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although, it has been demonstrated that exposure to sodium arsenite (NaAsO2) suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL), which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm) was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment. PMID:27064386

  18. A Survey of Parents of Children with Cortical or Cerebral Visual Impairment

    ERIC Educational Resources Information Center

    Jackel, Bernadette; Wilson, Michelle; Hartmann, Elizabeth

    2010-01-01

    Cortical or cerebral visual impairment (CVI) can result when the visual pathways and visual processing areas of the brain have been damaged. Children with CVI may have difficulty finding an object among other objects, viewing in the distance, orienting themselves in space, going from grass to pavement or other changes in surface, and copying…

  19. Mice Lacking Alternatively Activated (M2) Macrophages Show Impairments in Restorative Sleep after Sleep Loss and in Cold Environment.

    PubMed

    Massie, Ashley; Boland, Erin; Kapás, Levente; Szentirmai, Éva

    2018-06-05

    The relationship between sleep, metabolism and immune functions has been described, but the cellular components of the interaction are incompletely identified. We previously reported that systemic macrophage depletion results in sleep impairment after sleep loss and in cold environment. These findings point to the role of macrophage-derived signals in maintaining normal sleep. Macrophages exist either in resting form, classically activated, pro-inflammatory (M1) or alternatively activated, anti-inflammatory (M2) phenotypes. In the present study we determined the contribution of M2 macrophages to sleep signaling by using IL-4 receptor α-chain-deficient [IL-4Rα knockout (KO)] mice, which are unable to produce M2 macrophages. Sleep deprivation induced robust increases in non-rapid-eye-movement sleep (NREMS) and slow-wave activity in wild-type (WT) animals. NREMS rebound after sleep deprivation was ~50% less in IL-4Rα KO mice. Cold exposure induced reductions in rapid-eye-movement sleep (REMS) and NREMS in both WT and KO mice. These differences were augmented in IL-4Rα KO mice, which lost ~100% more NREMS and ~25% more REMS compared to WTs. Our finding that M2 macrophage-deficient mice have the same sleep phenotype as mice with global macrophage depletion reconfirms the significance of macrophages in sleep regulation and suggests that the main contributors are the alternatively activated M2 cells.

  20. Sleep-Dependent Learning and Motor-Skill Complexity

    ERIC Educational Resources Information Center

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics…

  1. Insomnia is Associated with Cortical Hyperarousal as Early as Adolescence

    PubMed Central

    Fernandez-Mendoza, Julio; Li, Yun; Vgontzas, Alexandros N.; Fang, Jidong; Gaines, Jordan; Calhoun, Susan L.; Liao, Duanping; Bixler, Edward O.

    2016-01-01

    Study Objectives: To examine whether insomnia is associated with spectral electroencephalographic (EEG) dynamics in the beta (15–35Hz) range during sleep in an adolescent general population sample. Methods: A case-control sample of 44 adolescents from the Penn State Child Cohort underwent a 9-h polysomnography, clinical history and physical examination. We examined low-beta (15–25 Hz) and high-beta (25–35 Hz) relative power at central EEG derivations during sleep onset latency (SOL), sleep onset (SO), non-rapid eye movement (NREM) sleep, and wake after sleep onset (WASO). Results: Compared to controls (n = 21), individuals with insomnia (n = 23) showed increased SOL and WASO and decreased sleep duration and efficiency, while no differences in sleep architecture were found. Insomniacs showed increased low-beta and high-beta relative power during SOL, SO, and NREM sleep as compared to controls. High-beta relative power was greater during all sleep and wake states in insomniacs with short sleep duration as compared to individuals with insomnia with normal sleep duration. Conclusions: Adolescent insomnia is associated with increased beta EEG power during sleep, which suggests that cortical hyperarousal is present in individuals with insomnia as early as adolescence. Interestingly, cortical hyperarousal is greatest in individuals with insomnia with short sleep duration and may explain the sleep complaints of those with normal sleep duration. Disturbed cortical networks may be a shared mechanism putting individuals with insomnia at risk of psychiatric disorders. Citation: Fernandez-Mendoza J, Li Y, Vgontzas AN, Fang J, Gaines J, Calhoun SL, Liao D, Bixler EO. Insomnia is associated with cortical hyperarousal as early as adolescence. SLEEP 2016;39(5):1029–1036. PMID:26951400

  2. Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory

    PubMed Central

    2014-01-01

    Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay. PMID:24719093

  3. The up and down states of cortical networks

    NASA Astrophysics Data System (ADS)

    Ghorbani, Maryam; Levine, Alex J.; Mehta, Mayank; Bruinsma, Robijn

    2011-03-01

    The cortical networks show a collective activity of alternating active and silent states known as up and down states during slow wave sleep or anesthesia. The mechanism of this spontaneous activity as well as the anesthesia or sleep are still not clear. Here, using a mean field approach, we present a simple model to study the spontaneous activity of a homogenous cortical network of excitatory and inhibitory neurons that are recurrently connected. A key new ingredient in this model is that the activity-dependant synaptic depression is considered only for the excitatory neurons. We find depending on the strength of the synaptic depression and synaptic efficacies, the phase space contains strange attractors or stable fixed points at active or quiescent regimes. At the strange attractor phase, we can have oscillations similar to up and down states with flat and noisy up states. Moreover, we show that by increasing the synaptic efficacy corresponding to the connections between the excitatory neurons, the characteristics of the up and down states change in agreement with the changes that we observe in the intracellular recordings of the membrane potential from the entorhinal cortex by varying the depth of anesthesia. Thus, we propose that by measuring the value of this synaptic efficacy, one can quantify the depth of anesthesia which is clinically very important. These findings provide a simple, analytical understanding of the spontaneous cortical dynamics.

  4. delta(9)-Tetrahydrocannabinol-dependent mice undergoing withdrawal display impaired spatial memory.

    PubMed

    Wise, Laura E; Varvel, Stephen A; Selley, Dana E; Wiebelhaus, Jason M; Long, Kelly A; Middleton, Lisa S; Sim-Selley, Laura J; Lichtman, Aron H

    2011-10-01

    Cannabis users display a constellation of withdrawal symptoms upon drug discontinuation, including sleep disturbances, irritability, and possibly memory deficits. In cannabinoid-dependent rodents, the CB(1) antagonist rimonabant precipitates somatic withdrawal and enhances forskolin-stimulated adenylyl cyclase activity in cerebellum, an effect opposite that of acutely administered ∆(9)-tetrahydrocannabinol (THC), the primary constituent in cannabis. Here, we tested whether THC-dependent mice undergoing rimonabant-precipitated withdrawal display short-term spatial memory deficits, as assessed in the Morris water maze. We also evaluated whether rimonabant would precipitate adenylyl cyclase superactivation in hippocampal and cerebellar tissue from THC-dependent mice. Rimonabant significantly impaired spatial memory of THC-dependent mice at lower doses than those necessary to precipitate somatic withdrawal behavior. In contrast, maze performance was near perfect in the cued task, suggesting sensorimotor function and motivational factors were unperturbed by the withdrawal state. Finally, rimonabant increased adenylyl cyclase activity in cerebellar, but not in hippocampal, membranes. The memory disruptive effects of THC undergo tolerance following repeated dosing, while the withdrawal state leads to a rebound deficit in memory. These results establish spatial memory impairment as a particularly sensitive component of cannabinoid withdrawal, an effect that may be mediated through compensatory changes in the cerebellum.

  5. One night of sleep loss impairs innovative thinking and flexible decision making.

    PubMed

    Harrison, Y; Horne, J A

    1999-05-01

    Recent findings with clinically oriented neuropsychological tests suggest that one night without sleep causes particular impairment to tasks requiring flexible thinking and the updating of plans in the light of new information. This relatively little investigated field of sleep deprivation research has real-world implications for decision makers having lost a night's sleep. To explore this latter perspective further, we adapted a dynamic and realistic marketing decision making "game" embodying the need for these skills, and whereby such performance could be measured. As the task relied on the comprehension of a large amount of written information, a critical reasoning test was also administered to ascertain whether any failure at the marketing game might lie with information acquisition rather than with failures in decision making. Ten healthy highly motivated and trained participants underwent two counterbalanced 36 h trials, sleep vs no sleep. The critical reasoning task was unaffected by sleep loss, whereas performance at the game significantly deteri orated after 32-36 h of sleep loss, when sleep deprivation led to more rigid thinking, increased perseverative errors, and marked difficulty in appreciating an updated situation. At this point, and despite the sleep-deprived participants' best efforts to do well, their play collapsed, unlike that of the nonsleep-deprived participants. Copyright 1999 Academic Press.

  6. Sleep inertia, sleep homeostatic, and circadian influences on higher-order cognitive functions

    PubMed Central

    Ronda, Joseph M.; Czeisler, Charles A.; Wright, Kenneth P.

    2016-01-01

    Summary Sleep inertia, sleep homeostatic, and circadian processes modulate cognition, including reaction time, memory, mood, and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-daylong study that included two 14-daylong 28h forced desynchrony protocols, to examine separate and interacting influences of sleep inertia, sleep homeostasis, and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved over the first ~2-4h of wakefulness (sleep inertia); worsened thereafter until scheduled bedtime (sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~9AM and ~9PM respectively, in individuals with a habitual waketime of 7AM). The relative influences of sleep inertia, sleep homeostasis, and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation, and/or upon awakening from sleep. PMID:25773686

  7. Sleep pattern and locomotor activity are impaired by doxorubicin in non-tumor-bearing rats.

    PubMed

    Lira, Fabio Santos; Esteves, Andrea Maculano; Pimentel, Gustavo Duarte; Rosa, José Cesar; Frank, Miriam Kannebley; Mariano, Melise Oliveira; Budni, Josiane; Quevedo, João; Santos, Ronaldo Vagner Dos; de Mello, Marco Túlio

    2016-01-01

    We sought explore the effects of doxorubicin on sleep patterns and locomotor activity. To investigate these effects, two groups were formed: a control group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control or DOXO groups. The sleep patterns were examined by polysomnographic recording and locomotor activity was evaluated in an open-field test. In the light period, the total sleep time and slow wave sleep were decreased, while the wake after sleep onset and arousal were increased in the DOXO group compared with the control group (p<0.05). In the dark period, the total sleep time, arousal, and slow wave sleep were increased, while the wake after sleep onset was decreased in the DOXO group compared with the control group (p<0.05). Moreover, DOXO induced a decrease of crossing and rearing numbers when compared control group (p<0.05). Therefore, our results suggest that doxorubicin induces sleep pattern impairments and reduction of locomotor activity.

  8. Mindfulness meditation and improvement in sleep quality and daytime impairment among older adults with sleep disturbances: a randomized clinical trial.

    PubMed

    Black, David S; O'Reilly, Gillian A; Olmstead, Richard; Breen, Elizabeth C; Irwin, Michael R

    2015-04-01

    Sleep disturbances are most prevalent among older adults and often go untreated. Treatment options for sleep disturbances remain limited, and there is a need for community-accessible programs that can improve sleep. To determine the efficacy of a mind-body medicine intervention, called mindfulness meditation, to promote sleep quality in older adults with moderate sleep disturbances. Randomized clinical trial with 2 parallel groups conducted from January 1 to December 31, 2012, at a medical research center among an older adult sample (mean [SD] age, 66.3 [7.4] years) with moderate sleep disturbances (Pittsburgh Sleep Quality Index [PSQI] >5). A standardized mindful awareness practices (MAPs) intervention (n = 24) or a sleep hygiene education (SHE) intervention (n = 25) was randomized to participants, who received a 6-week intervention (2 hours per week) with assigned homework. The study was powered to detect between-group differences in moderate sleep disturbance measured via the PSQI at postintervention. Secondary outcomes pertained to sleep-related daytime impairment and included validated measures of insomnia symptoms, depression, anxiety, stress, and fatigue, as well as inflammatory signaling via nuclear factor (NF)-κB. Using an intent-to-treat analysis, participants in the MAPs group showed significant improvement relative to those in the SHE group on the PSQI. With the MAPs intervention, the mean (SD) PSQIs were 10.2 (1.7) at baseline and 7.4 (1.9) at postintervention. With the SHE intervention, the mean (SD) PSQIs were 10.2 (1.8) at baseline and 9.1 (2.0) at postintervention. The between-group mean difference was 1.8 (95% CI, 0.6-2.9), with an effect size of 0.89. The MAPs group showed significant improvement relative to the SHE group on secondary health outcomes of insomnia symptoms, depression symptoms, fatigue interference, and fatigue severity (P < .05 for all). Between-group differences were not observed for anxiety, stress, or NF-κB, although NF

  9. Parkinson's disease with mild cognitive impairment: severe cortical thinning antedates dementia.

    PubMed

    Gasca-Salas, Carmen; García-Lorenzo, Daniel; Garcia-Garcia, David; Clavero, Pedro; Obeso, José A; Lehericy, Stephane; Rodríguez-Oroz, María C

    2017-07-14

    Mild cognitive impairment (MCI) in Parkinson's disease (PD) is a risk factor for dementia and thus, it is of interest to elucidate if specific patterns of atrophy in PD-MCI patients are associated with a higher risk of developing dementia. We aim to define pattern(s) of regional atrophy in PD-MCI patients who developed dementia during 31 months of follow-up using cortical thickness analysis Twenty-three PD-MCI patients and 18 controls underwent brain MRI and completed a neuropsychological examination at baseline, PD-MCI patients were followed after a 31 month follow-up in order to assess their progression to dementia. At follow up, 8 PD-MCI patients had converted to dementia (PD-MCI converters) whereas 15 remained as PD-MCI (PD-MCI non-converters). All patients were at least 60 years old and suffered PD ≥ 10 years. There were no baseline differences between the two groups of patients in clinical and neuropsychological variables. The cortex of PD-MCI converters was thinner than that of PD-MCI non-converters, bilaterally in the frontal, insula and the left middle temporal areas, also displaying a more widespread pattern of cortical thinning relative to the controls. This study shows that aged and long-term PD patients with MCI who convert to dementia in the short-mid term suffer a thinning of the cortex in several areas (frontal cortex, and middle temporal lobe and insula), even when their cognitive impairment was similar to that of PD-MCI non-converters. Thus, MRI analysis of cortical thickness may represent a useful measure to identify PD-MCI patients at a higher risk of developing dementia.

  10. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    PubMed

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  11. Implications of the bedform phase diagram for size-dependent changes of ooid cortical fabric

    NASA Astrophysics Data System (ADS)

    Anderson, N. T.; Cowan, C. A.

    2017-12-01

    Preliminary petrographic and electron microprobe analyses of well-preserved concentric and radial-concentric ooids in Late Cambrian carbonates of the Port au Port Group, western Newfoundland, Canada, show no Sr enrichment indicative of an aragonite precursor for ooid cortices. Dissolution features such as elephantine ooids, spalled cortices, and dropped nuclei reported by other authors in these and equivalent carbonates elsewhere were not analyzed in this study. It is likely that the pristine concentric and radial-concentric ooids studied here were originally calcite and may exhibit a "banded-radial" fabric (sensu Medwedeff and Wilkinson 1983). Thus, the change in petrographic fabric does not correspond to a change in mineralogy in these ooids. Furthermore, ooids in these rocks and in previous studies of similar rocks exhibit a change from radial to concentric fabric at locally consistent diameters. These two observations suggest that hydrodynamic conditions are the causal mechanism for shifts in ooid cortical fabric. Previous workers have taken this size-dependent shift in cortical fabric to represent increased abrasion that occurs with the transition from suspended load to bedload transport, but disregard bedform stability. We note that at a given flow velocity and depth, ooid growth can trigger a shift from the ripple stability field to the dune stability field. Observations of the rate of migration of modern meter-scale ooid tidal dunes in the Bahamas can be used to constrain ooid transport, and suggest that ooids in these settings may be transported for only minutes to hours twice per year. Therefore, the duration of ooid "sleep" (the time spent buried within the dune) may be 105 greater in dunes compared to ripples. This prolonged subsurface residence time may be a heretofore unconsidered control on the development of ooid cortices. It may dictate radial vs. concentric fabric; drastically diminish abrasion; sequester ooids chemically (and biochemically) from

  12. Interaction of sleep quality and sleep duration on impaired fasting glucose: a population-based cross-sectional survey in China.

    PubMed

    Lou, Peian; Chen, Peipei; Zhang, Lei; Zhang, Pan; Chang, Guiqiu; Zhang, Ning; Li, Ting; Qiao, Cheng

    2014-03-13

    To explore the interactions of sleep quality and sleep duration and their effects on impaired fasting glucose (IFG) in Chinese adults. Cross-sectional survey. Community-based investigation in Xuzhou, China. 15 145 Chinese men and women aged 18-75 years old who fulfilled the inclusion criteria. The Pittsburgh Sleep Quality Index was used to produce sleep quality categories of good, common and poor. Fasting blood glucose levels were assessed for IFG. Sleep duration was measured by average hours of sleep per night, with categories of <6, 6-8 and >8 h. The products of sleep and family history of diabetes, obesity and age were added to the logistic regression model to evaluate the addictive interaction and relative excess risk of interaction (RERI) on IFG. The attributable proportion (AP) of the interaction and the synergy index (S) were applied to evaluate the additive interaction of two factors. Bootstrap measures were used to calculate 95% CI of RERI, AP and S. The prevalence of IFG was greatest in those with poor sleep quality and short sleep duration (OR 6.37, 95% CI 4.66 to 8.67; p<0.001) compared with those who had good sleep quality and 6-8 h sleep duration, after adjusting for confounders. After adjusting for potential confounders RERI, AP and S values (and their 95% CI) were 1.69 (0.31 to 3.76), 0.42 (0.15 to 0.61) and 2.85 (2.14 to 3.92), respectively, for the interaction between poor sleep quality and short sleep duration, and 0.78 (0.12 to 1.43), 0.61 (0.26 to 0.87) and -65 (-0.94 to -0.27) for the interaction between good sleep quality and long sleep duration. The results suggest that there are additive interactions between poor sleep quality and short sleep duration.

  13. Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Li, Chuanming; Wang, Jian; Gui, Li; Zheng, Jian; Liu, Chen; Du, Hanjian

    2011-01-01

    Gray matter volume and density of several brain regions, determined by magnetic resonance imaging (MRI), are decreased in Alzheimer's disease (AD). Animal studies have indicated that changes in cortical area size is relevant to thinking and behavior, but alterations of cortical area and thickness in the brains of individuals with AD or its likely precursor, mild cognitive impairment (MCI), have not been reported. In this study, 25 MCI subjects, 30 AD subjects, and 30 age-matched normal controls were recruited for brain MRI scans and Functional Activities Questionnaire (FAQ) assessments. Based on the model using FreeSurfer software, two brain lobes were divided into various regions according to the Desikan-Killiany atlas and the cortical area and thickness of every region was compared and analyzed. We found a significant increase in cortical area of several regions in the frontal and temporal cortices, which correlated negatively with MMSE scores, and a significant decrease in cortical area of several regions in the parietal cortex and the cingulate gyrus in AD subjects. Increased cortical area was also seen in some regions of the frontal and temporal cortices in MCI subjects, whereas the cortical thickness of the same regions was decreased. Our observations suggest characteristic differences of the cortical area and thickness in MCI, AD, and normal control subjects, and these changes may help diagnose both MCI and AD.

  14. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    PubMed

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.

  15. Arousal from sleep pathways are affected by the prone sleeping position and preterm birth: preterm birth, prone sleeping and arousal from sleep.

    PubMed

    Richardson, Heidi L; Horne, Rosemary S C

    2013-09-01

    Preterm infants exhibit depressed arousability from sleep when compared with term infants. As the final cortical element of the arousal process may be the most critical for survival, we hypothesized that the increased vulnerability of preterm infants to the Sudden Infant Death Syndrome (SIDS) could be explained by depressed cortical arousal (CA) responses. We evaluated the effects of preterm birth on stimulus-induced arousal processes in both the prone and supine sleeping positions. 10 healthy preterm infants were studied with daytime polysomnography, in both supine and prone sleeping positions, at 36 weeks gestational age, 2-4 weeks, 2-3 months and 5-6 months post-term corrected age. Sub-cortical activations and cortical arousals (CA) were expressed as proportions of total arousal responses. Preterm data were compared with data from 13 healthy term infants studied at the same corrected ages. In preterm infants increased CAs were observed in the prone position at all ages studied. Compared to term infants, preterm infants had significantly fewer CAs in QS when prone at 2-3 months of age and more CAs when prone at 2-4 weeks in AS. There were no differences in either sleep state when infants slept supine. Prone sleeping promoted CA responses in healthy preterm infants throughout the first six months of post-term age. We have previously suggested that in term infants enhanced CA represents a critical protection against a potentially harmful situation; we speculate that for preterm-born infants the need for this protection is greater than in term infants. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei

    PubMed Central

    Feng, Li; Motelow, Joshua E.; Ma, Chanthia; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro

    2017-01-01

    The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal

  17. Neurobehavioral performance impairment in insomnia: relationships with self-reported sleep and daytime functioning.

    PubMed

    Shekleton, Julia A; Flynn-Evans, Erin E; Miller, Belinda; Epstein, Lawrence J; Kirsch, Douglas; Brogna, Lauren A; Burke, Liza M; Bremer, Erin; Murray, Jade M; Gehrman, Philip; Lockley, Steven W; Rajaratnam, Shantha M W

    2014-01-01

    Despite the high prevalence of insomnia, daytime consequences of the disorder are poorly characterized. This study aimed to identify neurobehavioral impairments associated with insomnia, and to investigate relationships between these impairments and subjective ratings of sleep and daytime dysfunction. Cross-sectional, multicenter study. Three sleep laboratories in the USA and Australia. Seventy-six individuals who met the Research Diagnostic Criteria (RDC) for Primary Insomnia, Psychophysiological Insomnia, Paradoxical Insomnia, and/or Idiopathic Childhood Insomnia (44F, 35.8 ± 12.0 years [mean ± SD]) and 20 healthy controls (14F, 34.8 ± 12.1 years). N/A. Participants completed a 7-day sleep-wake diary, questionnaires assessing daytime dysfunction, and a neurobehavioral test battery every 60-180 minutes during an afternoon/evening sleep laboratory visit. Included were tasks assessing sustained and switching attention, working memory, subjective sleepiness, and effort. Switching attention and working memory were significantly worse in insomnia patients than controls, while no differences were found for simple or complex sustained attention tasks. Poorer sustained attention in the control, but not the insomnia group, was significantly associated with increased subjective sleepiness. In insomnia patients, poorer sustained attention performance was associated with reduced health-related quality of life and increased insomnia severity. We found that insomnia patients exhibit deficits in higher level neurobehavioral functioning, but not in basic attention. The findings indicate that neurobehavioral deficits in insomnia are due to neurobiological alterations, rather than sleepiness resulting from chronic sleep deficiency.

  18. Pronounced impairment of everyday skills and self-care in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Yong, Keir X X; Foxe, David; Hodges, John; Crutch, Sebastian J

    2015-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visual dysfunction and parietal, occipital, and occipitotemporal atrophy. The aim of this study was to compare the impact of PCA and typical Alzheimer's disease (tAD) on everyday functional abilities and neuropsychiatric status. The Cambridge Behavioural Inventory-Revised was given to carers of 32 PCA and 71 tAD patients. PCA patients showed significantly greater impairment in everyday skills and self-care while the tAD group showed greater impairment in aspects of memory and orientation, and motivation. We suggest that PCA poses specific challenges for those caring for people affected by the condition.

  19. Sleep-dependent directional coupling between human neocortex and hippocampus.

    PubMed

    Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen

    2010-02-01

    Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex. Copyright 2009 Elsevier Srl. All rights reserved.

  20. Functional imaging correlates of impaired distractor suppression following sleep deprivation.

    PubMed

    Kong, Danyang; Soon, Chun Siong; Chee, Michael W L

    2012-05-15

    Sleep deprivation (SD) has been shown to affect selective attention but it is not known how two of its component processes: target enhancement and distractor suppression, are affected. To investigate, young volunteers either attended to houses or were obliged to ignore them (when attending to faces) while viewing superimposed face-house pictures. MR signal enhancement and suppression in the parahippocampal place area (PPA) were determined relative to a passive viewing control condition. Sleep deprivation was associated with lower PPA activation across conditions. Critically SD specifically impaired distractor suppression in selective attention, leaving target enhancement relatively preserved. These findings parallel some observations in cognitive aging. Additionally, following SD, attended houses were not significantly better recognized than ignored houses in a post-experiment test of recognition memory contrasting with the finding of superior recognition of attended houses in the well-rested state. These results provide evidence for co-encoding of distracting information with targets into memory when one is sleep deprived. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Sleep-dependent learning and motor-skill complexity

    PubMed Central

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics are varied across several degrees of difficulty, and whether this improvement differentially enhances individual transitions of the motor-sequence pattern being learned. We report that subjects show similar overnight improvements in speed whether learning a five-element unimanual sequence (17.7% improvement), a nine-element unimanual sequence (20.2%), or a five-element bimanual sequence (17.5%), but show markedly increased overnight improvement (28.9%) with a nine-element bimanual sequence. In addition, individual transitions within the motor-sequence pattern that appeared most difficult at the end of training showed a significant 17.8% increase in speed overnight, whereas those transitions that were performed most rapidly at the end of training showed only a non-significant 1.4% improvement. Together, these findings suggest that the sleep-dependent learning process selectively provides maximum benefit to motor-skill procedures that proved to be most difficult prior to sleep. PMID:15576888

  2. Insomnia is Associated with Cortical Hyperarousal as Early as Adolescence.

    PubMed

    Fernandez-Mendoza, Julio; Li, Yun; Vgontzas, Alexandros N; Fang, Jidong; Gaines, Jordan; Calhoun, Susan L; Liao, Duanping; Bixler, Edward O

    2016-05-01

    To examine whether insomnia is associated with spectral electroencephalographic (EEG) dynamics in the beta (15-35Hz) range during sleep in an adolescent general population sample. A case-control sample of 44 adolescents from the Penn State Child Cohort underwent a 9-h polysomnography, clinical history and physical examination. We examined low-beta (15-25 Hz) and high-beta (25-35 Hz) relative power at central EEG derivations during sleep onset latency (SOL), sleep onset (SO), non-rapid eye movement (NREM) sleep, and wake after sleep onset (WASO). Compared to controls (n = 21), individuals with insomnia (n = 23) showed increased SOL and WASO and decreased sleep duration and efficiency, while no differences in sleep architecture were found. Insomniacs showed increased low-beta and high-beta relative power during SOL, SO, and NREM sleep as compared to controls. High-beta relative power was greater during all sleep and wake states in insomniacs with short sleep duration as compared to individuals with insomnia with normal sleep duration. Adolescent insomnia is associated with increased beta EEG power during sleep, which suggests that cortical hyperarousal is present in individuals with insomnia as early as adolescence. Interestingly, cortical hyperarousal is greatest in individuals with insomnia with short sleep duration and may explain the sleep complaints of those with normal sleep duration. Disturbed cortical networks may be a shared mechanism putting individuals with insomnia at risk of psychiatric disorders. © 2016 Associated Professional Sleep Societies, LLC.

  3. Hippocampal Substructural Vulnerability to Sleep Disturbance and Cognitive Impairment in Patients with Chronic Primary Insomnia: Magnetic Resonance Imaging Morphometry

    PubMed Central

    Joo, Eun Yeon; Kim, Hosung; Suh, Sooyeon; Hong, Seung Bong

    2014-01-01

    Study Objectives: Despite compelling evidence from animal studies indicating hippocampal subfield-specific vulnerability to poor sleep quality and related cognitive impairment, there have been no human magnetic resonance imaging (MRI) studies investigating the relationship between hippocampal subfield volume and sleep disturbance. Our aim was to investigate the pattern of volume changes across hippocampal subfields in patients with primary insomnia relative to controls. Design: Pointwise morphometry allowed for volume measurements of hippocampal regions on T1-weighted MRI. Setting: University hospital. Patients: Twenty-seven unmedicated patients (age: 51.2 ± 9.6 y) and 30 good sleepers as controls (50.4 ± 7.1 y). Interventions: N/A. Measurements: We compared hippocampal subfield volumes between patients and controls and correlated volume with clinical and neuropsychological features in patients. Results: Patients exhibited bilateral atrophy across all hippocampal subfields (P < 0.05 corrected). Cornu ammonis (CA) 1 subfield atrophy was associated with worse sleep quality (higher Pittsburgh Sleep Quality Index and higher arousal index of polysomnography) (r < -0.45, P < 0.005). The volume of the combined region, including the dentate gyrus (DG) and CA3-4, negatively correlated with verbal memory, verbal information processing, and verbal fluency in patients (|r| > 0.45, P < 0.05). Hemispheric volume asymmetry of this region (left smaller than right) was associated with impaired verbal domain functions (r = 0.50, P < 0.005). Conclusion: Hippocampal subfield atrophy in chronic insomnia suggests reduced neurogenesis in the dentate gyrus (DG) and neuronal loss in the cornu ammonis (CA) subfields in conditions of sleep fragmentation and related chronic stress condition. Atrophy in the CA3-4-DG region was associated with impaired cognitive functions in patients. These observations may provide insight into pathophysiological mechanisms that make patients with chronic

  4. Network-dependent modulation of brain activity during sleep.

    PubMed

    Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki

    2014-09-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Diagnostic Significance of Cortical Superficial Siderosis for Alzheimer Disease in Patients with Cognitive Impairment.

    PubMed

    Inoue, Y; Nakajima, M; Uetani, H; Hirai, T; Ueda, M; Kitajima, M; Utsunomiya, D; Watanabe, M; Hashimoto, M; Ikeda, M; Yamashita, Y; Ando, Y

    2016-02-01

    Because the diagnostic significance of cortical superficial siderosis for Alzheimer disease and the association between cortical superficial siderosis and the topographic distribution of cerebral microbleeds have been unclear, we investigated the association between cortical superficial siderosis and clinicoradiologic characteristics of patients with cognitive impairment. We studied 347 patients (217 women, 130 men; mean age, 74 ± 9 years) who visited our memory clinic and underwent MR imaging (3T SWI). We analyzed the association between cortical superficial siderosis and the topographic distribution of cerebral microbleeds plus clinical characteristics including types of dementia. We used multivariate logistic regression analysis to determine the diagnostic significance of cortical superficial siderosis for Alzheimer disease. Twelve patients (3.5%) manifested cortical superficial siderosis. They were older (P = .026) and had strictly lobar cerebral microbleeds significantly more often than did patients without cortical superficial siderosis (50.0% versus 19.4%, P = .02); the occurrence of strictly deep and mixed cerebral microbleeds, however, did not differ in the 2 groups. Alzheimer disease was diagnosed in 162 (46.7%) patients. Of these, 8 patients (4.9%) had cortical superficial siderosis. In the multivariate logistic regression analysis for the diagnosis of Alzheimer disease, lacunar infarcts were negatively and independently associated with Alzheimer disease (P = .007). Although cortical superficial siderosis was associated with a strictly lobar cerebral microbleed location, it was not independently associated with Alzheimer disease in a memory clinic setting. Additional studies are required to investigate the temporal changes of these cerebral amyloid angiopathy-related MR imaging findings. © 2016 by American Journal of Neuroradiology.

  6. Inter-Individual Differences in Neurobehavioural Impairment following Sleep Restriction Are Associated with Circadian Rhythm Phase

    PubMed Central

    Sletten, Tracey L.; Segal, Ahuva Y.; Flynn-Evans, Erin E.; Lockley, Steven W.; Rajaratnam, Shantha M. W.

    2015-01-01

    Although sleep restriction is associated with decrements in daytime alertness and neurobehavioural performance, there are considerable inter-individual differences in the degree of impairment. This study examined the effects of short-term sleep restriction on neurobehavioural performance and sleepiness, and the associations between individual differences in impairments and circadian rhythm phase. Healthy adults (n = 43; 22 M) aged 22.5 ± 3.1 (mean ± SD) years maintained a regular 8:16 h sleep:wake routine for at least three weeks prior to laboratory admission. Sleep opportunity was restricted to 5 hours time-in-bed at home the night before admission and 3 hours time-in-bed in the laboratory, aligned by wake time. Hourly saliva samples were collected from 5.5 h before until 5 h after the pre-laboratory scheduled bedtime to assess dim light melatonin onset (DLMO) as a marker of circadian phase. Participants completed a 10-min auditory Psychomotor Vigilance Task (PVT), the Karolinska Sleepiness Scale (KSS) and had slow eye movements (SEM) measured by electrooculography two hours after waking. We observed substantial inter-individual variability in neurobehavioural performance, particularly in the number of PVT lapses. Increased PVT lapses (r = -0.468, p < 0.01), greater sleepiness (r = 0.510, p < 0.0001), and more slow eye movements (r = 0.375, p = 0.022) were significantly associated with later DLMO, consistent with participants waking at an earlier circadian phase. When the difference between DLMO and sleep onset was less than 2 hours, individuals were significantly more likely to have at least three attentional lapses the following morning. This study demonstrates that the phase of an individual’s circadian system is an important variable in predicting the degree of neurobehavioural performance impairment in the hours after waking following sleep restriction, and confirms that other factors influencing performance decrements require further investigation. PMID

  7. Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex.

    PubMed

    Dash, Michael B; Tononi, Giulio; Cirelli, Chiara

    2012-07-01

    It is well established that brain metabolism is higher during wake and rapid eye movement (REM) sleep than in nonrapid eye movement (NREM) sleep. Most of the brain's energy is used to maintain neuronal firing and glutamatergic transmission. Recent evidence shows that cortical firing rates, extracellular glutamate levels, and markers of excitatory synaptic strength increase with time spent awake and decline throughout NREM sleep. These data imply that the metabolic cost of each behavioral state is not fixed but may reflect sleep-wake history, a possibility that is investigated in the current report. Chronic (4d) electroencephalographic (EEG) recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of oxygen ([oxy]) and lactate ([lac]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to sleep deprivation. Basic sleep research laboratory. Wistar Kyoto (WKY) adult male rats. N/A. Within 30-60 sec [lac] and [oxy] progressively increased during wake and REM sleep and declined during NREM sleep (n = 10 rats/metabolite), but with several differences. [Oxy], but not [lac], increased more during wake with high motor activity and/or elevated EEG high-frequency power. Meanwhile, only the NREM decline of [lac] reflected sleep pressure as measured by slow-wave activity, mirroring previous results for cortical glutamate. The observed state-dependent changes in cortical [lac] and [oxy] are consistent with higher brain metabolism during waking and REM sleep in comparison with NREM sleep. Moreover, these data suggest that glycolytic activity, most likely through its link with glutamatergic transmission, reflects sleep homeostasis.

  8. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.

    PubMed

    Richardson, Andrew G; Fetz, Eberhard E

    2012-11-01

    Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.

  9. Interaction of sleep quality and sleep duration on impaired fasting glucose: a population-based cross-sectional survey in China

    PubMed Central

    Lou, Peian; Chen, Peipei; Zhang, Lei; Zhang, Pan; Chang, Guiqiu; Zhang, Ning; Li, Ting; Qiao, Cheng

    2014-01-01

    Objectives To explore the interactions of sleep quality and sleep duration and their effects on impaired fasting glucose (IFG) in Chinese adults. Design Cross-sectional survey. Setting Community-based investigation in Xuzhou, China. Participants 15 145 Chinese men and women aged 18–75 years old who fulfilled the inclusion criteria. Primary and secondary outcome measures The Pittsburgh Sleep Quality Index was used to produce sleep quality categories of good, common and poor. Fasting blood glucose levels were assessed for IFG. Sleep duration was measured by average hours of sleep per night, with categories of <6, 6–8 and >8 h. The products of sleep and family history of diabetes, obesity and age were added to the logistic regression model to evaluate the addictive interaction and relative excess risk of interaction (RERI) on IFG. The attributable proportion (AP) of the interaction and the synergy index (S) were applied to evaluate the additive interaction of two factors. Bootstrap measures were used to calculate 95% CI of RERI, AP and S. Results The prevalence of IFG was greatest in those with poor sleep quality and short sleep duration (OR 6.37, 95% CI 4.66 to 8.67; p<0.001) compared with those who had good sleep quality and 6–8 h sleep duration, after adjusting for confounders. After adjusting for potential confounders RERI, AP and S values (and their 95% CI) were 1.69 (0.31 to 3.76), 0.42 (0.15 to 0.61) and 2.85 (2.14 to 3.92), respectively, for the interaction between poor sleep quality and short sleep duration, and 0.78 (0.12 to 1.43), 0.61 (0.26 to 0.87) and −65 (−0.94 to −0.27) for the interaction between good sleep quality and long sleep duration. Conclusions The results suggest that there are additive interactions between poor sleep quality and short sleep duration. PMID:24625639

  10. Boy with cortical visual impairment and unilateral hemiparesis in Jeff Huntington's "Slip" (2011).

    PubMed

    Bianucci, R; Perciaccante, A; Appenzeller, O

    2016-11-15

    Face recognition is strongly associated with the human face and face perception is an important part in identifying health qualities of a person and is an integral part of so called spot diagnosis in clinical neurology. Neurology depends in part on observation, description and interpretation of visual information. Similar skills are required in visual art. Here we report a case of eye cortical visual impairment (CVI) and unilateral facial weakness in a boy depicted by the painter Jeff Huntington (2011). The corollary of this is that art serves medical clinical exercise. Art interpretation helps neurology students to apply the same skills they will use in clinical experience and to develop their observational and interpretive skills in non-clinical settings. Furthermore, the development of an increased awareness of emotional and character expression in the human face may facilitate successful doctor-patient relationships. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Progressive Cortical Neuronal Damage and Chronic Hemodynamic Impairment in Atherosclerotic Major Cerebral Artery Disease.

    PubMed

    Yamauchi, Hiroshi; Kagawa, Shinya; Kishibe, Yoshihiko; Takahashi, Masaaki; Higashi, Tatsuya

    2016-06-01

    Cross-sectional studies suggest that chronic hemodynamic impairment may cause selective cortical neuronal damage in patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease. The purpose of this longitudinal study was to determine whether the progression of cortical neuronal damage, evaluated as a decrease in central benzodiazepine receptors (BZRs), is associated with hemodynamic impairment at baseline or hemodynamic deterioration during follow-up. We evaluated the distribution of BZRs twice using positron emission tomography and (11)C-flumazenil over time in 80 medically treated patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease that had no ischemic episodes during follow-up. Using 3D stereotactic surface projections, we quantified abnormal decreases in the BZRs in the cerebral cortex within the middle cerebral artery distribution and correlated changes in the BZR index with the mean hemispheric values of hemodynamic parameters obtained from (15)O gas positron emission tomography. In the hemisphere affected by arterial disease, the BZR index in 40 patients (50%) was increased during follow-up (mean 26±20 months). In multivariable logistic regression analyses, increases in the BZR index were associated with the decreased cerebral blood flow at baseline and an increased oxygen extraction fraction during follow-up. Increases in the oxygen extraction fraction during follow-up were associated with a lack of statin use. In patients with atherosclerotic internal carotid artery or middle cerebral artery disease, the progression of cortical neuronal damage was associated with hemodynamic impairment at baseline and hemodynamic deterioration during follow-up. Statin use may be beneficial against hemodynamic deterioration and therefore neuroprotective. © 2016 American Heart Association, Inc.

  12. Sleeping of a Complex Brain Networks with Hierarchical Organization

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Yue; Yang, Qiu-Ying; Chen, Tian-Lun

    2009-01-01

    The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.

  13. Impaired memory consolidation in children with obstructive sleep disordered breathing

    PubMed Central

    Katz, Eliot S.; Kapur, Kush; Stickgold, Robert

    2017-01-01

    .76(3.5), z = 2.03, P = 0.04]. NREM slow oscillation power did not correlate with memory consolidation. All results retained significance after controlling for age and BMI. In sum, participants with mild OSA had impaired memory consolidation and results were mediated by N2 sigma power. These results suggest that N2 sigma power could serve as biomarker of risk for cognitive dysfunction in children with sleep disordered breathing. PMID:29095855

  14. Impaired memory consolidation in children with obstructive sleep disordered breathing.

    PubMed

    Maski, Kiran; Steinhart, Erin; Holbrook, Hannah; Katz, Eliot S; Kapur, Kush; Stickgold, Robert

    2017-01-01

    .03, P = 0.04]. NREM slow oscillation power did not correlate with memory consolidation. All results retained significance after controlling for age and BMI. In sum, participants with mild OSA had impaired memory consolidation and results were mediated by N2 sigma power. These results suggest that N2 sigma power could serve as biomarker of risk for cognitive dysfunction in children with sleep disordered breathing.

  15. Do Older Adults Need Sleep? A Review of Neuroimaging, Sleep, and Aging Studies.

    PubMed

    Scullin, Michael K

    2017-09-01

    Sleep habits, sleep physiology, and sleep disorders change with increasing age. However, there is a longstanding debate regarding whether older adults need sleep to maintain health and daily functioning (reduced-sleep-need view). An alternative possibility is that all older adults need sleep, but that many older adults have lost the ability to obtain restorative sleep (reduced-sleep-ability view). Prior research using behavioral and polysomnography outcomes has not definitively disentangled the reduced-sleep-need and reduced-sleep-ability views. Therefore, this review examines the neuroimaging literature to determine whether age-related changes in sleep cause-or are caused by-age-related changes in brain structure, function, and pathology. In middle-aged and older adults, poorer sleep quality, greater nighttime hypoxia, and shorter sleep duration related to cortical thinning in frontal regions implicated in slow wave generation, in frontoparietal networks implicated in cognitive control, and in hippocampal regions implicated in memory consolidation. Furthermore, poor sleep quality was associated with higher amyloid burden and decreased connectivity in the default mode network, a network that is disrupted in the pathway to Alzheimer's disease. All adults need sleep, but cortical thinning and amyloidal deposition with advancing age may weaken the brain's ability to produce restorative sleep. Therefore, sleep in older adults may not always support identical functions for physical, mental, and cognitive health as in young adults.

  16. Low levels of alcohol impair driving simulator performance and reduce perception of crash risk in partially sleep deprived subjects.

    PubMed

    Banks, Siobhan; Catcheside, Peter; Lack, Leon; Grunstein, Ron R; McEvoy, R Doug

    2004-09-15

    Partial sleep deprivation and alcohol consumption are a common combination, particularly among young drivers. We hypothesized that while low blood alcohol concentration (<0.05 g/dL) may not significantly increase crash risk, the combination of partial sleep deprivation and low blood alcohol concentration would cause significant performance impairment. Experimental Sleep Disorders Unit Laboratory 20 healthy volunteers (mean age 22.8 years; 9 men). Subjects underwent driving simulator testing at 1 am on 2 nights a week apart. On the night preceding simulator testing, subjects were partially sleep deprived (5 hours in bed). Alcohol consumption (2-3 standard alcohol drinks over 2 hours) was randomized to 1 of the 2 test nights, and blood alcohol concentrations were estimated using a calibrated Breathalyzer. During the driving task subjects were monitored continuously with electroencephalography for sleep episodes and were prompted every 4.5 minutes for answers to 2 perception scales-performance and crash risk. Mean blood alcohol concentration on the alcohol night was 0.035 +/- 0.015 g/dL. Compared with conditions during partial sleep deprivation alone, subjects had more microsleeps, impaired driving simulator performance, and poorer ability to predict crash risk in the combined partial sleep deprivation and alcohol condition. Women predicted crash risk more accurately than did men in the partial sleep deprivation condition, but neither men nor women predicted the risk accurately in the sleep deprivation plus alcohol condition. Alcohol at legal blood alcohol concentrations appears to increase sleepiness and impair performance and the detection of crash risk following partial sleep deprivation. When partially sleep deprived, women appear to be either more perceptive of increased crash risk or more willing to admit to their driving limitations than are men. Alcohol eliminated this behavioral difference.

  17. The effect of ice skating on psychological well-being and sleep quality of children with visual or hearing impairment.

    PubMed

    Dursun, Onur Burak; Erhan, Süleyman Erim; Ibiş, Esra Özhan; Esin, Ibrahim Selcuk; Keleş, Sadullah; Şirinkan, Ahmet; Yörük, Özgür; Acar, Ethem; Beyhun, Nazim Ercument

    2015-01-01

    Physical exercise and sports have a key role in preventing physical and psychiatric problems in children. However, children with a disability often experience difficulty participating in physical activity due to a lack of suitable opportunities. Participation in an accessible sport is particularly important for these children, but studies examining which sports are beneficial for which disability groups are rare. In this study, we assessed the effects of ice skating on the psychological well-being, self-concept, and sleep quality of children with hearing or visual impairment. Forty students (20 visually impaired and 20 hearing impaired) aged 8-16 were included in a regular ice skating programme for three months. We examined the sleep quality, self-concept, and behavioural and emotional states of the children before and after participating in the programme. There was a significant improvement in self-concept, behavioural and emotional problems, and sleep quality (p < 0.05 for each) of the children with hearing impairment. Although the sleep quality (p = 0.019) and emotional problem scores (p = 0.000) of the visually impaired children improved; self-concept, peer relations and hyperactivity scores of these children worsened (p < 0.05 for each). Ice skating is one of the popular sport alternatives that gives children the opportunity to exercise and have fun together. The results of this study revealed that regular ice skating programmes may have positive effects on the psychological well-being of children with hearing impairment. Despite some positive effects, caution must be use when including visually impaired children in ice skating programmes. Generalization of the study's outcomes is limited as the study group were residential students enrolled in special education institutions for children who are blind or deaf. Ice skating is a community-based sport and a popular leisure activity that can also have benefits for people with disabilities. Ice

  18. The tongue and its control by sleep state-dependent modulators.

    PubMed

    Horner, R L

    2011-12-01

    The neural networks controlling vital functions such as breathing are embedded in the brain, the neural and chemical environment of which changes with state, i.e., wakefulness, non-rapid eye movement (non-REM) sleep and REM sleep, and with commonly administered drugs such as anaesthetics, sedatives and ethanol. One particular output from the state-dependent chemical brain is the focus of attention in this paper; the motor output to the muscles of the tongue, specifically the actions of state-dependent modulators acting at the hypoglossal motor pool. Determining the mechanisms underlying the modulation of the hypoglossal motor output during sleep is relevant to understanding the spectrum of increased upper airway resistance, airflow limitation, hypoventilation and airway obstructions that occur during natural and drug-influenced sleep in humans. Understanding the mechanisms underlying upper airway dysfunction in sleep-disordered breathing is also important given the large and growing prevalence of obstructive sleep apnea syndrome which constitutes a major public health problem with serious clinical, social and economic consequences.

  19. Sleep loss impairs short and novel language tasks having a prefrontal focus.

    PubMed

    Harrison, Y; Horne, J A

    1998-06-01

    Most cognitive tests administered during sleep loss are well rehearsed to remove practice effects. This can introduce tedium and a loss of novelty, which may be the key to the test's subsequent sensitivity to sleep loss, and why it may need only a few minutes administration before sleep loss effects are apparent. There is little evidence to show that any of these tests are actually affected by sleep loss is given de novo, without practice, but using a non-sleep deprived control group. Although the sleep deprivation literature advocates that short, novel and stimulating tests would not be expected to be sensitive to sleep loss, recent sleep loss findings using neuropsychological tests focussing on the prefrontal cortex, indicate that such tests may challenge this maxim. Twenty healthy young adults were randomly assigned to two groups: nil sleep deprivation (control). and 36h continuous sleep deprivation (SD). Two, novel, interesting and short (6 min) language tests, known (by brain imaging) to have predominantly a PFC focus, were given, once, towards the end of SD: (i) the Haylings test--which measures the capacity to inhibit strong associations in favour of novel responses, and (ii) a variant of the word fluency test--innovation in a verb-to-noun association. Subjects were exhorted to do their best. Compared with control subjects both tasks were significantly impaired by SD. As a check on the effects on the Haylings test, a repeat study was undertaken with 30 more subjects randomly divided as before. The outcome was similar. Linguistically, sleep loss appears to interfere with novel responses and the ability to suppress routine answers.

  20. Sleep physiology and sleep disorders in childhood

    PubMed Central

    El Shakankiry, Hanan M

    2011-01-01

    Sleep has long been considered as a passive phenomenon, but it is now clear that it is a period of intense brain activity involving higher cortical functions. Overall, sleep affects every aspect of a child’s development, particularly higher cognitive functions. Sleep concerns are ranked as the fifth leading concern of parents. Close to one third of all children suffer from sleep disorders, the prevalence of which is increased in certain pediatric populations, such as children with special needs, children with psychiatric or medical diagnoses and children with autism or pervasive developmental disorders. The paper reviews sleep physiology and the impact, classification, and management of sleep disorders in the pediatric age group. PMID:23616721

  1. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice.

    PubMed

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-06-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis. © The Author 2016. Published by Oxford University Press.

  2. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry.

    PubMed

    Joo, Eun Yeon; Kim, Hosung; Suh, Sooyeon; Hong, Seung Bong

    2014-07-01

    Despite compelling evidence from animal studies indicating hippocampal subfield-specific vulnerability to poor sleep quality and related cognitive impairment, there have been no human magnetic resonance imaging (MRI) studies investigating the relationship between hippocampal subfield volume and sleep disturbance. Our aim was to investigate the pattern of volume changes across hippocampal subfields in patients with primary insomnia relative to controls. Pointwise morphometry allowed for volume measurements of hippocampal regions on T1-weighted MRI. University hospital. Twenty-seven unmedicated patients (age: 51.2 ± 9.6 y) and 30 good sleepers as controls (50.4 ± 7.1 y). N/A. We compared hippocampal subfield volumes between patients and controls and correlated volume with clinical and neuropsychological features in patients. Patients exhibited bilateral atrophy across all hippocampal subfields (P < 0.05 corrected). Cornu ammonis (CA) 1 subfield atrophy was associated with worse sleep quality (higher Pittsburgh Sleep Quality Index and higher arousal index of polysomnography) (r < -0.45, P < 0.005). The volume of the combined region, including the dentate gyrus (DG) and CA3-4, negatively correlated with verbal memory, verbal information processing, and verbal fluency in patients (|r| > 0.45, P < 0.05). Hemispheric volume asymmetry of this region (left smaller than right) was associated with impaired verbal domain functions (r = 0.50, P < 0.005). Hippocampal subfield atrophy in chronic insomnia suggests reduced neurogenesis in the dentate gyrus (DG) and neuronal loss in the cornu ammonis (CA) subfields in conditions of sleep fragmentation and related chronic stress condition. Atrophy in the CA3-4-DG region was associated with impaired cognitive functions in patients. These observations may provide insight into pathophysiological mechanisms that make patients with chronic sleep disturbance vulnerable to cognitive impairment. Joo EY, Kim H, Suh S, Hong SB. Hippocampal

  3. Tumor Necrosis Factor Antagonism Normalizes Rapid Eye Movement Sleep in Alcohol Dependence

    PubMed Central

    Irwin, Michael R.; Olmstead, Richard; Valladares, Edwin M.; Breen, Elizabeth Crabb; Ehlers, Cindy L.

    2009-01-01

    Background In alcohol dependence, markers of inflammation are associated with increases in rapid eye movement (REM) sleep, which is thought to be a prognostic indicator of alcohol relapse. This study was undertaken to test whether blockade of biologically active tumor necrosis factor-α (TNF-α) normalizes REM sleep in alcohol-dependent adults. Methods In a randomized, placebo-controlled, double-blind, crossover trial, 18 abstinent alcohol-dependent male adults received a single dose of etanercept (25 mg) versus placebo in a counterbalanced order. Polysomnographic sleep was measured at baseline and for 3 nights after the acute dose of etanercept or placebo. Results Compared with placebo, administration of etanercept produced significant decreases in the amount and percentage of REM sleep. Decreases in REM sleep were robust and approached low levels typically found in age-comparable control subjects. Individual differences in biologically active drug as indexed by circulating levels of soluble tumor necrosis factor receptor II negatively correlated with the percentage of REM sleep. Conclusions Pharmacologic neutralization of TNF-α activity is associated with significant reductions in REM sleep in abstinent alcohol-dependent patients. These data suggest that circulating levels of TNF-α may have a physiologic role in the regulation of REM sleep in humans. PMID:19185287

  4. Dose-Dependent Cannabis Use, Depressive Symptoms, and FAAH Genotype Predict Sleep Quality in Emerging Adults: A Pilot Study

    PubMed Central

    Maple, Kristin E.; McDaniel, Kymberly A.; Shollenbarger, Skyler G.; Lisdahl, Krista M.

    2017-01-01

    Background Cannabis has been shown to affect sleep in humans. Findings from animal studies indicate that higher endocannabinoid levels promote sleep, suggesting that chronic use of cannabis, which downregulates endocannabinoid activity, may disrupt sleep. Objectives This study sought to determine if past year cannabis use and genes that regulate endocannabinoid signaling, FAAH rs324420 and CNR1 rs2180619, predicted sleep quality. As depression has been previously associated with both cannabis and sleep, the secondary aim was to determine if depressive symptoms moderated or mediated these relationships. Methods Data were collected from 41 emerging adult (ages 18–25) cannabis users. Exclusion criteria included Axis I disorders (besides SUD) and medical and neurologic disorders. Relationships were tested using multiple regressions, controlling for demographic variables, past year substance use, and length of cannabis abstinence. Results Greater past year cannabis use and FAAH C/C genotype were associated with poorer sleep quality. CNR1 genotype did not significantly predict sleep quality. Depressive symptoms moderated the relationship between cannabis use and sleep at a non-significant trend level, such that participants with the greatest cannabis use and most depressive symptoms reported the most impaired sleep. Depressive symptoms mediated the relationship between FAAH genotype and sleep quality. Conclusions This study demonstrates a dose-dependent relationship between chronic cannabis use and reported sleep quality, independent of abstinence length. Furthermore, it provides novel evidence that depressive symptoms mediate the relationship between FAAH genotype and sleep quality in humans. These findings suggest potential targets to impact sleep disruptions in cannabis users. PMID:27074158

  5. Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks

    PubMed Central

    Vanvinckenroye, Amaury; Vandewalle, Gilles; Chellappa, Sarah L.

    2016-01-01

    Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states. Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits. Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale, brain function also depends on prior sleep-wake history and circadian processes. However, much remains to be established on how the brain operates at the neuronal level in humans during sleep and wakefulness. A key limitation of human neuroscience is the difficulty in isolating neuronal excitation/inhibition drive in vivo. Therefore, computational models are noninvasive approaches of choice to indirectly access hidden neuronal states. In this review, we present a physiologically driven in silico approach, Dynamic Causal Modelling (DCM), as a means to comprehend brain function under different experimental paradigms. Importantly, DCM has allowed for the understanding of how brain dynamics underscore brain plasticity, cognition, and different states of consciousness. In a broader perspective, noninvasive computational approaches, such as DCM, may help to puzzle out the spatial and temporal dynamics of human brain function at different behavioural states. PMID:26885400

  6. Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss

    PubMed Central

    Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Ferri, Sarah L.; Baumann, Arnd; Meerlo, Peter

    2014-01-01

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object–location task. Five hours of total sleep deprivation directly following training impaired the formation of object–location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. PMID:25411499

  7. Adults with Specific Language Impairment fail to consolidate speech sounds during sleep.

    PubMed

    Earle, F Sayako; Landi, Nicole; Myers, Emily B

    2018-02-14

    Specific Language Impairment (SLI) is a common learning disability that is associated with poor speech sound representations. These differences in representational quality are thought to impose a burden on spoken language processing. The underlying mechanism to account for impoverished speech sound representations remains in debate. Previous findings that implicate sleep as important for building speech representations, combined with reports of atypical sleep in SLI, motivate the current investigation into a potential consolidation mechanism as a source of impoverished representations in SLI. In the current study, we trained individuals with SLI on a new (nonnative) set of speech sounds, and tracked their perceptual accuracy and neural responses to these sounds over two days. Adults with SLI achieved comparable performance to typical controls during training, however demonstrated a distinct lack of overnight gains on the next day. We propose that those with SLI may be impaired in the consolidation of acoustic-phonetic information. Published by Elsevier B.V.

  8. Cognitive flexibility: A distinct element of performance impairment due to sleep deprivation.

    PubMed

    Honn, K A; Hinson, J M; Whitney, P; Van Dongen, H P A

    2018-03-14

    In around-the-clock operations, reduced alertness due to circadian misalignment and sleep loss causes performance impairment, which can lead to catastrophic errors and accidents. There is mounting evidence that performance on different tasks is differentially affected, but the general principles underlying this differentiation are not well understood. One factor that may be particularly relevant is the degree to which tasks require executive control, that is, control over the initiation, monitoring, and termination of actions in order to achieve goals. A key aspect of this is cognitive flexibility, i.e., the deployment of cognitive control resources to adapt to changes in events. Loss of cognitive flexibility due to sleep deprivation has been attributed to "feedback blunting," meaning that feedback on behavioral outcomes has reduced salience - and that feedback is therefore less effective at driving behavior modification under changing circumstances. The cognitive mechanisms underlying feedback blunting are as yet unknown. Here we present data from an experiment that investigated the effects of sleep deprivation on performance after an unexpected reversal of stimulus-response mappings, requiring cognitive flexibility to maintain good performance. Nineteen healthy young adults completed a 4-day in-laboratory study. Subjects were randomized to either a total sleep deprivation condition (n = 11) or a control condition (n = 8). Athree-phase reversal learning decision task was administered at baseline, and again after 30.5 h of sleep deprivation, or matching well-rested control. The task was based on a go/no go task paradigm, in which stimuli were assigned to either a go (response) set or a no go (no response) set. Each phase of the task included four stimuli (two in the go set and two in the no go set). After each stimulus presentation, subjects could make a response within 750 ms or withhold their response. They were then shown feedback on the accuracy of

  9. Coordination of Slow Waves With Sleep Spindles Predicts Sleep-Dependent Memory Consolidation in Schizophrenia.

    PubMed

    Demanuele, Charmaine; Bartsch, Ullrich; Baran, Bengi; Khan, Sheraz; Vangel, Mark G; Cox, Roy; Hämäläinen, Matti; Jones, Matthew W; Stickgold, Robert; Manoach, Dara S

    2017-01-01

    Schizophrenia patients have correlated deficits in sleep spindle density and sleep-dependent memory consolidation. In addition to spindle density, memory consolidation is thought to rely on the precise temporal coordination of spindles with slow waves (SWs). We investigated whether this coordination is intact in schizophrenia and its relation to motor procedural memory consolidation. Twenty-one chronic medicated schizophrenia patients and 17 demographically matched healthy controls underwent two nights of polysomnography, with training on the finger tapping motor sequence task (MST) on the second night and testing the following morning. We detected SWs (0.5-4 Hz) and spindles during non-rapid eye movement (NREM) sleep. We measured SW-spindle phase-amplitude coupling and its relation with overnight improvement in MST performance. Patients did not differ from controls in the timing of SW-spindle coupling. In both the groups, spindles peaked during the SW upstate. For patients alone, the later in the SW upstate that spindles peaked and the more reliable this phase relationship, the greater the overnight MST improvement. Regression models that included both spindle density and SW-spindle coordination predicted overnight improvement significantly better than either parameter alone, suggesting that both contribute to memory consolidation. Schizophrenia patients show intact spindle-SW temporal coordination, and these timing relationships, together with spindle density, predict sleep-dependent memory consolidation. These relations were seen only in patients suggesting that their memory is more dependent on optimal spindle-SW timing, possibly due to reduced spindle density. Interventions to improve memory may need to increase spindle density while preserving or enhancing the coordination of NREM oscillations. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e

  10. Methamphetamine Induces Anhedonic-Like Behavior and Impairs Frontal Cortical Energetics in Mice.

    PubMed

    Fonseca, Raquel; Carvalho, Rui A; Lemos, Cristina; Sequeira, Ana C; Pita, Inês R; Carvalho, Fábio; Silva, Carlos D; Prediger, Rui D S; Jarak, Ivana; Cunha, Rodrigo A; Fontes Ribeiro, Carlos A; Köfalvi, Attila; Pereira, Frederico C

    2017-02-01

    We recently showed that a single high dose of methamphetamine (METH) induces a persistent frontal cortical monoamine depletion that is accompanied by helpless-like behavior in mice. However, brain metabolic alterations underlying both neurochemical and mood alterations remain unknown. Herein, we aimed at characterizing frontal cortical metabolic alterations associated with early negative mood behavior triggered by METH. Adult C57BL/6 mice were injected with METH (30 mg/kg, i.p.), and their frontal cortical metabolic status was characterized after probing their mood and anxiety-related phenotypes 3 days postinjection. Methamphetamine induced depressive-like behavior, as indicated by the decreased grooming time in the splash test and by a transient decrease in sucrose preference. At this time, METH did not alter anxiety-like behavior or motor functions. Depolarization-induced glucose uptake was reduced in frontocortical slices from METH-treated mice compared to controls. Consistently, astrocytic glucose transporter (GluT1) density was lower in the METH group. A proton high rotation magic angle spinning (HRMAS) spectroscopic approach revealed that METH induced a significant decrease in N-acetyl aspartate (NAA) and glutamate levels, suggesting that METH decreased neuronal glutamatergic function in frontal cortex. We report, for the first time, that a single METH injection triggers early self-care and hedonic deficits and impairs frontal cortical energetics in mice. © 2016 John Wiley & Sons Ltd.

  11. Short-Term Total Sleep-Deprivation Impairs Contextual Fear Memory, and Contextual Fear-Conditioning Reduces REM Sleep in Moderately Anxious Swiss Mice

    PubMed Central

    Qureshi, Munazah F.; Jha, Sushil K.

    2017-01-01

    The conditioning tasks have been widely used to model fear and anxiety and to study their association with sleep. Many reports suggest that sleep plays a vital role in the consolidation of fear memory. Studies have also demonstrated that fear-conditioning influences sleep differently in mice strains having a low or high anxiety level. It is, therefore, necessary to know, how sleep influences fear-conditioning and how fear-conditioning induces changes in sleep architecture in moderate anxious strains. We have used Swiss mice, a moderate anxious strain, to study the effects of: (i) sleep deprivation on contextual fear conditioned memory, and also (ii) contextual fear conditioning on sleep architecture. Animals were divided into three groups: (a) non-sleep deprived (NSD); (b) stress control (SC); and (c) sleep-deprived (SD) groups. The SD animals were SD for 5 h soon after training. We found that the NSD and SC animals showed 60.57% and 58.12% freezing on the testing day, while SD animals showed significantly less freezing (17.13% only; p < 0.001) on the testing day. Further, we observed that contextual fear-conditioning did not alter the total amount of wakefulness and non-rapid eye movement (NREM) sleep. REM sleep, however, significantly decreased in NSD and SC animals on the training and testing days. Interestingly, REM sleep did not decrease in the SD animals on the testing day. Our results suggest that short-term sleep deprivation impairs fear memory in moderate anxious mice. It also suggests that NREM sleep, but not REM sleep, may have an obligatory role in memory consolidation. PMID:29238297

  12. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy.

    PubMed

    Torterolo, Pablo; Castro-Zaballa, Santiago; Cavelli, Matías; Chase, Michael H; Falconi, Atilio

    2016-02-01

    Higher cognitive functions require the integration and coordination of large populations of neurons in cortical and subcortical regions. Oscillations in the gamma band (30-45 Hz) of the electroencephalogram (EEG) have been involved in these cognitive functions. In previous studies, we analysed the extent of functional connectivity between cortical areas employing the 'mean squared coherence' analysis of the EEG gamma band. We demonstrated that gamma coherence is maximal during alert wakefulness and is almost absent during rapid eye movement (REM) sleep. The nucleus pontis oralis (NPO) is critical for REM sleep generation. The NPO is considered to exert executive control over the initiation and maintenance of REM sleep. In the cat, depending on the previous state of the animal, a single microinjection of carbachol (a cholinergic agonist) into the NPO can produce either REM sleep [REM sleep induced by carbachol (REMc)] or a waking state with muscle atonia, i.e. cataplexy [cataplexy induced by carbachol (CA)]. In the present study, in cats that were implanted with electrodes in different cortical areas to record polysomnographic activity, we compared the degree of gamma (30-45 Hz) coherence during REMc, CA and naturally-occurring behavioural states. Gamma coherence was maximal during CA and alert wakefulness. In contrast, gamma coherence was almost absent during REMc as in naturally-occurring REM sleep. We conclude that, in spite of the presence of somatic muscle paralysis, there are remarkable differences in cortical activity between REMc and CA, which confirm that EEG gamma (≈40 Hz) coherence is a trait that differentiates wakefulness from REM sleep. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. A review of sleep disorders and melatonin.

    PubMed

    Xie, Zizhen; Chen, Fei; Li, William A; Geng, Xiaokun; Li, Changhong; Meng, Xiaomei; Feng, Yan; Liu, Wei; Yu, Fengchun

    2017-06-01

    Sleep disorders are a group of conditions that affect the ability to sleep well on a regular basis and cause significant impairments in social and occupational functions. Although currently approved medications are efficacious, they are far from satisfactory. Benzodiazepines, antidepressants, antihistamines and anxiolytics have the potential for dependence and addiction. Moreover, some of these medications can gradually impair cognition. Melatonin (N-acetyl-5-methoxytryptamine) is an endogenous hormone produced by the pineal gland and released exclusively at night. Exogenous melatonin supplementation is well tolerated and has no obvious short- or long-term adverse effects. Melatonin has been shown to synchronize the circadian rhythms, and improve the onset, duration and quality of sleep. It is centrally involved in anti-oxidation, circadian rhythmicity maintenance, sleep regulation and neuronal survival. This narrative review aims to provide a comprehensive overview of various therapeutic functions of melatonin in insomnia, sleep-related breathing disorders, hypersomnolence, circadian rhythm sleep-wake disorders and parasomnias. Melatonin offers an alternative treatment to the currently available pharmaceutical therapies for sleep disorders with significantly less side effects.

  14. Accelerated Age-Dependent Hippocampal Volume Loss in Parkinson Disease With Mild Cognitive Impairment.

    PubMed

    Schneider, Christine B; Donix, Markus; Linse, Katharina; Werner, Annett; Fauser, Mareike; Klingelhoefer, Lisa; Löhle, Matthias; von Kummer, Rüdiger; Reichmann, Heinz; Storch, Alexander

    2017-09-01

    Patients with Parkinson disease are at high risk of developing dementia. During the course of the disease, a substantial number of patients will experience a cognitive decline, indicating the dynamics of the underlying neuropathology. Magnetic resonance imaging (MRI) has become increasingly useful for identifying structural characteristics in radiological brain anatomy existing prior to clinical symptoms. Whether these changes reflect pathology, whether they are aging related, or both often remains unclear. We hypothesized that aging-associated brain structural changes would be more pronounced in the hippocampal region among patients with Parkinson disease having mild cognitive deficits relative to cognitively unimpaired patients. Using MRI, we investigated 30 cognitively healthy patients with Parkinson disease and 33 patients with nondemented Parkinson disease having mild cognitive impairment. All participants underwent structural MRI scanning and extensive clinical and neuropsychological assessments. Irrespective of the study participants' cognitive status, older age was associated with reduced cortical thickness in various neocortical regions. Having mild cognitive impairment was not associated with an increased rate of cortical thinning or volume loss in these regions, except in the hippocampus bilaterally. Patients with Parkinson disease having mild cognitive impairment show an accelerated age-dependent hippocampal volume loss when compared with cognitively healthy patients with Parkinson disease. This may indicate pathological processes in a key region for memory functioning in patients with Parkinson disease at risk of developing dementia. Structural MRI of the hippocampal region could potentially contribute to identifying patients who should receive early treatment aimed at delaying the clinical onset of dementia.

  15. Sleep-Dependent Memory Consolidation and Incremental Sentence Comprehension: Computational Dependencies during Language Learning as Revealed by Neuronal Oscillations

    PubMed Central

    Cross, Zachariah R.; Kohler, Mark J.; Schlesewsky, Matthias; Gaskell, M. G.; Bornkessel-Schlesewsky, Ina

    2018-01-01

    We hypothesize a beneficial influence of sleep on the consolidation of the combinatorial mechanisms underlying incremental sentence comprehension. These predictions are grounded in recent work examining the effect of sleep on the consolidation of linguistic information, which demonstrate that sleep-dependent neurophysiological activity consolidates the meaning of novel words and simple grammatical rules. However, the sleep-dependent consolidation of sentence-level combinatorics has not been studied to date. Here, we propose that dissociable aspects of sleep neurophysiology consolidate two different types of combinatory mechanisms in human language: sequence-based (order-sensitive) and dependency-based (order-insensitive) combinatorics. The distinction between the two types of combinatorics is motivated both by cross-linguistic considerations and the neurobiological underpinnings of human language. Unifying this perspective with principles of sleep-dependent memory consolidation, we posit that a function of sleep is to optimize the consolidation of sequence-based knowledge (the when) and the establishment of semantic schemas of unordered items (the what) that underpin cross-linguistic variations in sentence comprehension. This hypothesis builds on the proposal that sleep is involved in the construction of predictive codes, a unified principle of brain function that supports incremental sentence comprehension. Finally, we discuss neurophysiological measures (EEG/MEG) that could be used to test these claims, such as the quantification of neuronal oscillations, which reflect basic mechanisms of information processing in the brain. PMID:29445333

  16. Discriminant analysis of multiple cortical changes in mild cognitive impairment

    NASA Astrophysics Data System (ADS)

    Wu, Congling; Guo, Shengwen; Lai, Chunren; Wu, Yupeng; Zhao, Di; Jiang, Xingjun

    2017-02-01

    To reveal the differences in brain structures and morphological changes between the mild cognitive impairment (MCI) and the normal control (NC), analyze and predict the risk of MCI conversion. First, the baseline and 2-year longitudinal follow-up magnetic resonance (MR) images of 73 NC, 46 patients with stable MCI (sMCI) and 40 patients with converted MCI (cMCI) were selected. Second, the FreeSurfer was used to extract the cortical features, including the cortical thickness, surface area, gray matter volume and mean curvature. Third, the support vector machine-recursive feature elimination method (SVM-RFE) were adopted to determine salient features for effective discrimination. Finally, the distribution and importance of essential brain regions were described. The experimental results showed that the cortical thickness and gray matter volume exhibited prominent capability in discrimination, and surface area and mean curvature behaved relatively weak. Furthermore, the combination of different morphological features, especially the baseline combined with the longitudinal changes, can be used to evidently improve the performance of classification. In addition, brain regions with high weights predominately located in the temporal lobe and the frontal lobe, which were relative to emotional control and memory functions. It suggests that there were significant different patterns in the brain structure and changes between the compared group, which could not only be effectively applied for classification, but also be used to evaluate and predict the conversion of the patients with MCI.

  17. Sleep-dependent Memory Consolidation in the Epilepsy Monitoring Unit: a Pilot Study

    PubMed Central

    Sarkis, Rani A.; Alam, Javad; Pavlova, Milena K.; Dworetzky, Barbara A.; Pennell, Page B.; Stickgold, Robert; Bubrick, Ellen J.

    2018-01-01

    Objective We sought to examine whether patients with focal epilepsy exhibit sleep dependent memory consolidation, whether memory retention rates correlated with particular aspects of sleep physiology, and how the process was affected by seizures. Methods We prospectively recruited patients with focal epilepsy and assessed declarative memory using a task consisting of 15 pairs of colored pictures on a 5 × 6 grid. Patients were tested 12 hours after training, once after 12 hours of wakefulness and once after 12 hours that included sleep. EMG chin electrodes were placed to enable sleep scoring. The number and density of sleep spindles were assessed using a wavelet-based algorithm. Results Eleven patients were analyzed age 21–56 years. The percentage memory retention over 12 hours of wakefulness was 62.7% % and over 12 hours which included sleep 83.6 % (p = 0.04). Performance on overnight testing correlated with the duration of slow wave sleep (SWS) (r=+0.63, p <0.05). Three patients had seizures during the day, and another 3 had nocturnal seizures. Day-time seizures did not affect retention rates, while those patients who had night time seizures had a drop in retention from an average of 92% to 60.5%. Conclusions There is evidence of sleep dependent memory consolidation in patients with epilepsy which mostly correlates with the amount of SWS. Our preliminary findings suggest that nocturnal seizures likely disrupt sleep dependent memory consolidation. Significance Findings highlight the importance of SWS in sleep dependent memory consolidation and the adverse impact of nocturnal seizures on this process. PMID:27417054

  18. Bedtime Routines for Young Children: A Dose-Dependent Association with Sleep Outcomes

    PubMed Central

    Mindell, Jodi A.; Li, Albert M.; Sadeh, Avi; Kwon, Robert; Goh, Daniel Y.T.

    2015-01-01

    Background: Establishment of a consistent bedtime routine (the activities that occur right before lights out) is often recommended as part of healthy sleep habits. However, no studies have investigated the dose-dependent association of a bedtime routine with sleep outcomes, especially in young children for whom they are particularly recommended. Thus, the aim of this study was to examine the associations of a consistent bedtime routine with sleep outcomes in young children (ages 0 through 5 y) in a large global sample and assess whether there is a dose-dependent relationship between the frequency of a bedtime routine both concurrently and retrospectively with sleep outcomes. Participants: Mothers of 10,085 children (Australia-New Zealand, Canada, China, Hong Kong, India, Japan, Korea, Malaysia, Philippines, Singapore, Thailand, United Kingdom, United States) completed the Brief Infant/Child Sleep Questionnaire. Results: A consistent bedtime routine was associated with better sleep outcomes, including earlier bedtimes, shorter sleep onset latency, reduced night wakings, and increased sleep duration. Decreased parent-perceived sleep problems and daytime behavior problems were also related to institution of a regular bedtime routine. Furthermore, there was a dose-dependent relationship, with better outcomes associated with increased “doses” of having a bedtime routine, both currently and retrospectively, and was found within both predominantly Asian and predominantly Caucasian cultural regions. Conclusions: These results indicate that having a regular nightly bedtime routine is associated with improved sleep in young children, and suggests that the more consistently a bedtime routine is instituted and the younger started the better. Citation: Mindell JA, Li AM, Sadeh A, Kwon R, Goh DY. Bedtime routines for young children: a dose-dependent association with sleep outcomes. SLEEP 2015;38(5):717–722. PMID:25325483

  19. Negative reinforcement impairs overnight memory consolidation.

    PubMed

    Stamm, Andrew W; Nguyen, Nam D; Seicol, Benjamin J; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert; Wamsley, Erin J

    2014-11-01

    Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism. © 2014 Stamm et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality.

    PubMed

    Meyerhoff, Dieter J; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C

    2014-05-01

    To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. VA Medical Center Research Service, Psychiatry and Radiology. Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD-), recruited from United States Army reservists, Army National Guard, and mental health clinics. None. 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD-. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches.

  1. Impaired sexual maturation associated with sleep apnea syndrome during puberty: a case study.

    PubMed

    Mosko, S S; Lewis, E; Sassin, J F

    1980-01-01

    A 20-year-old hypogonadal man was discovered to have had obstructive sleep apnea syndrome--secondary to hypertrophied tonsils, adenoids, and uvula--spanning the years of puberty. All-night polysomnographic recordings and 24 hr measurements of plasma luteinizing hormone (LH) concentrations (sampling at 20 min intervals) were performed before and after combined tonsillectomy, adenoidectomy, and uvulectomy. Two weeks preoperatively, nocturnal sleep was markedly disturbed by 407 apneic episodes, and the patient was found to be hypogonadotropic. Daytime LH concentrations were in the low-normal range for an adult male, and concentrations fell dramatically during nocturnal sleep. This contrasts with both the sleep-related elevation of LH normally seen in puberty and the adult pattern, where no difference is observed in mean concentrations during waking and sleep. Two week and 6 month postoperative evaluations revealed complete alleviation of the sleep apnea syndrome and normalization of the 24 hr pattern of plasma LH, although LH values remained in the low-normal range. Plasma testosterone concentrations were in the low to low-normal range both pre- and postoperatively. No evidence of continued sexual development, beyond that achieved preoperatively, was observed 20 months after surgery, despite continued relief from apnea. These data suggest that sleep apnea during puberty may impair sexual development by preventing the sleep-related elevation in LH secretion normally observed during a critical period spanning puberty.

  2. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei.

    PubMed

    Feng, Li; Motelow, Joshua E; Ma, Chanthia; Biche, William; McCafferty, Cian; Smith, Nicholas; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro; Blumenfeld, Hal

    2017-11-22

    The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal

  3. Sleep-dependent memory consolidation in the epilepsy monitoring unit: A pilot study.

    PubMed

    Sarkis, Rani A; Alam, Javad; Pavlova, Milena K; Dworetzky, Barbara A; Pennell, Page B; Stickgold, Robert; Bubrick, Ellen J

    2016-08-01

    We sought to examine whether patients with focal epilepsy exhibit sleep dependent memory consolidation, whether memory retention rates correlated with particular aspects of sleep physiology, and how the process was affected by seizures. We prospectively recruited patients with focal epilepsy and assessed declarative memory using a task consisting of 15 pairs of colored pictures on a 5×6 grid. Patients were tested 12h after training, once after 12h of wakefulness and once after 12h that included sleep. EMG chin electrodes were placed to enable sleep scoring. The number and density of sleep spindles were assessed using a wavelet-based algorithm. Eleven patients were analyzed age 21-56years. The percentage memory retention over 12h of wakefulness was 62.7% and over 12h which included sleep 83.6% (p=0.04). Performance on overnight testing correlated with the duration of slow wave sleep (SWS) (r=+0.63, p<0.05). Three patients had seizures during the day, and 3 had nocturnal seizures. Day-time seizures did not affect retention rates, while those patients who had night time seizures had a drop in retention from an average of 92% to 60.5%. There is evidence of sleep dependent memory consolidation in patients with epilepsy which mostly correlates with the amount of SWS. Our preliminary findings suggest that nocturnal seizures likely disrupt sleep dependent memory consolidation. Findings highlight the importance of SWS in sleep dependent memory consolidation and the adverse impact of nocturnal seizures on this process. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Acute Exacerbation of Sleep Apnea by Hyperoxia Impairs Cognitive Flexibility in Brown-Norway Rats

    PubMed Central

    Topchiy, Irina; Amodeo, Dionisio A.; Ragozzino, Michael E.; Waxman, Jonathan; Radulovacki, Miodrag; Carley, David W.

    2014-01-01

    Study Objectives: To determine whether learning deficits occur during acute exacerbation of spontaneous sleep related breathing disorder (SRBD) in rats with high (Brown Norway; BN) and low (Zucker Lean; ZL) apnea propensity. Design: Spatial acquisition (3 days) and reversal learning (3 days) in the Morris water maze (MWM) with polysomnography (12:00–08:00): (1) with acute SRBD exacerbation (by 20-h hyperoxia immediately preceding reversal learning) or (2) without SRBD exacerbation (room air throughout). Setting: Randomized, placebo-controlled, repeated-measures design. Participants: 14 BN rats; 16 ZL rats. Interventions: 20-h hyperoxia. Measurements and Results: Apneas were detected as cessation of respiration ≥ 2 sec. Swim latency in MWM, apnea indices (AI; apneas/hour of sleep) and percentages of recording time for nonrapid eye movement (NREM), rapid eye movement (REM), and total sleep were assessed. Baseline AI in BN rats was more than double that of ZL rats (22.46 ± 2.27 versus 10.7 ± 0.9, P = 0.005). Hyperoxia increased AI in both BN (34.3 ± 7.4 versus 22.46 ± 2.27) and ZL rats (15.4 ± 2.7 versus 10.7 ± 0.9) without changes in sleep stage percentages. Control (room air) BN and ZL rats exhibited equivalent acquisition and reversal learning. Acute exacerbation of AI by hyperoxia produced a reversal learning performance deficit in BN but not ZL rats. In addition, the percentage of REM sleep and REM apnea index in BN rats during hyperoxia negatively correlated with reversal learning performance. Conclusions: Acute exacerbation of sleep related breathing disorder by hyperoxia impairs reversal learning in a rat strain with high apnea propensity, but not a strain with a low apnea propensity. This suggests a non-linear threshold effect may contribute to the relationships between sleep apnea and cognitive dysfunctions, but strain-specific differences also may be important. Citation: Topchiy I, Amodeo DA, Ragozzino ME, Waxman J, Radulovacki M, Carley DW. Acute

  5. Cortical lamina-dependent blood volume changes in human brain at 7 T.

    PubMed

    Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Trampel, Robert; Guidi, Maria; Reimer, Enrico; Ivanov, Dimo; Neef, Nicole; Gauthier, Claudine J; Turner, Robert; Möller, Harald E

    2015-02-15

    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8-1.6mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity

  6. Transiently increasing cAMP levels selectively in hippocampal excitatory neurons during sleep deprivation prevents memory deficits caused by sleep loss.

    PubMed

    Havekes, Robbert; Bruinenberg, Vibeke M; Tudor, Jennifer C; Ferri, Sarah L; Baumann, Arnd; Meerlo, Peter; Abel, Ted

    2014-11-19

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object-location task. Five hours of total sleep deprivation directly following training impaired the formation of object-location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. Copyright © 2014 the authors 0270-6474/14/3415715-07$15.00/0.

  7. Identification of SLEEPLESS, a sleep-promoting factor.

    PubMed

    Koh, Kyunghee; Joiner, William J; Wu, Mark N; Yue, Zhifeng; Smith, Corinne J; Sehgal, Amita

    2008-07-18

    Sleep is an essential process conserved from flies to humans. The importance of sleep is underscored by its tight homeostatic control. Through a forward genetic screen, we identified a gene, sleepless, required for sleep in Drosophila. The sleepless gene encodes a brain-enriched, glycosylphosphatidylinositol-anchored protein. Loss of SLEEPLESS protein caused an extreme (>80%) reduction in sleep; a moderate reduction in SLEEPLESS had minimal effects on baseline sleep but markedly reduced the amount of recovery sleep after sleep deprivation. Genetic and molecular analyses revealed that quiver, a mutation that impairs Shaker-dependent potassium current, is an allele of sleepless. Consistent with this finding, Shaker protein levels were reduced in sleepless mutants. We propose that SLEEPLESS is a signaling molecule that connects sleep drive to lowered membrane excitability.

  8. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  9. Sleep-Dependent Consolidation of Procedural Motor Memories in Children and Adults: The Pre-Sleep Level of Performance Matters

    ERIC Educational Resources Information Center

    Wilhelm, Ines; Metzkow-Meszaros, Maila; Knapp, Susanne; Born, Jan

    2012-01-01

    In striking contrast to adults, in children sleep following training a motor task did not induce the expected (offline) gain in motor skill performance in previous studies. Children normally perform at distinctly lower levels than adults. Moreover, evidence in adults suggests that sleep dependent offline gains in skill essentially depend on the…

  10. Sleep Spindles Are Related to Schizotypal Personality Traits and Thalamic Glutamine/Glutamate in Healthy Subjects

    PubMed Central

    Lustenberger, Caroline; O’Gorman, Ruth L.; Pugin, Fiona; Tüshaus, Laura; Wehrle, Flavia; Achermann, Peter; Huber, Reto

    2015-01-01

    Background: Schizophrenia is a severe mental disorder affecting approximately 1% of the worldwide population. Yet, schizophrenia-like experiences (schizotypy) are very common in the healthy population, indicating a continuum between normal mental functioning and the psychosis found in schizophrenic patients. A continuum between schizotypy and schizophrenia would be supported if they share the same neurobiological origin. Two such neurobiological markers of schizophrenia are: (1) a reduction of sleep spindles (12–15 Hz oscillations during nonrapid eye movement sleep), likely reflecting deficits in thalamo-cortical circuits and (2) increased glutamine and glutamate (Glx) levels in the thalamus. Thus, this study aimed to investigate whether sleep spindles and Glx levels are related to schizotypal personality traits in healthy subjects. Methods: Twenty young male subjects underwent 2 all-night sleep electroencephalography recordings (128 electrodes). Sleep spindles were detected automatically. After those 2 nights, thalamic Glx levels were measured by magnetic resonance spectroscopy. Subjects completed a magical ideation scale to assess schizotypy. Results: Sleep spindle density was negatively correlated with magical ideation (r = −.64, P < .01) and thalamic Glx levels (r = −.70, P < .005). No correlation was found between Glx levels in the thalamus and magical ideation (r = .12, P > .1). Conclusions: The common relationship of sleep spindle density with schizotypy and thalamic Glx levels indicates a neurobiological overlap between nonclinical schizotypy and schizophrenia. Thus, sleep spindle density and magical ideation may reflect the anatomy and efficiency of the thalamo-cortical system that shows pronounced impairment in patients with schizophrenia. PMID:25074975

  11. Changes in sleep theta rhythm are related to episodic memory impairment in early Alzheimer's disease.

    PubMed

    Hot, Pascal; Rauchs, Géraldine; Bertran, Françoise; Denise, Pierre; Desgranges, Béatrice; Clochon, Patrice; Eustache, Francis

    2011-07-01

    Impairments have been reported both in sleep structure and episodic memory in Alzheimer's disease [AD]. Our objective was to investigate the relationships between episodic memory deficits and electro-encephalography [EEG] abnormalities occurring during sleep in patients with early AD. Postlearning sleep was recorded in 14 patients with mild to moderate AD, and 14 healthy elderly controls after they performed an episodic memory task derived from the Grober and Buschke's procedure. For each sleep stage, the relative power and mean frequency in each band were analyzed. Relative to agematched controls, AD patients presented faster mean theta frequency in both REM sleep and slow wave sleep [SWS]. In AD patients, a correlative analysis revealed that faster theta frequency during SWS was associated with better delayed episodic recall. We assume that increased theta activity reflects changes in neuronal activity to maintain memory performance, indicating that compensatory mechanisms already described at the waking state could also be engaged during SWS. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Looking for a precursor of spontaneous Sleep Slow Oscillations in human sleep: The role of the sigma activity

    PubMed Central

    Allegrini, Paolo; Bedini, Remo; Bergamasco, Massimo; Laurino, Marco; Sebastiani, Laura; Gemignani, Angelo

    2016-01-01

    Sleep Slow Oscillations (SSOs), paradigmatic EEG markers of cortical bistability (alternation between cellular downstates and upstates), and sleep spindles, paradigmatic EEG markers of thalamic rhythm, are two hallmarks of sleeping brain. Selective thalamic lesions are reportedly associated to reductions of spindle activity and its spectrum ~14 Hz (sigma), and to alterations of SSO features. This apparent, parallel behavior suggests that thalamo-cortical entrainment favors cortical bistability. Here we investigate temporally-causal associations between thalamic sigma activity and shape, topology, and dynamics of SSOs. We recorded sleep EEG and studied whether spatio-temporal variability of SSO amplitude, negative slope (synchronization in downstate falling) and detection rate are driven by cortical-sigma-activity expression (12–18 Hz), in 3 consecutive 1 s-EEG-epochs preceding each SSO event (Baselines). We analyzed: (i) spatial variability, comparing maps of baseline sigma power and of SSO features, averaged over the first sleep cycle; (ii) event-by-event shape variability, computing for each electrode correlations between baseline sigma power and amplitude/slope of related SSOs; (iii) event-by-event spreading variability, comparing baseline sigma power in electrodes showing an SSO event with the homologous ones, spared by the event. The scalp distribution of baseline sigma power mirrored those of SSO amplitude and slope; event-by-event variability in baseline sigma power was associated with that in SSO amplitude in fronto-central areas; within each SSO event, electrodes involved in cortical bistability presented higher baseline sigma activity than those free of SSO. In conclusion, spatio-temporal variability of thalamocortical entrainment, measured by background sigma activity, is a reliable estimate of the cortical proneness to bistability. PMID:26003553

  13. Differential effects of cannabis dependence on cortical inhibition in patients with schizophrenia and non-psychiatric controls.

    PubMed

    Goodman, Michelle S; Bridgman, Alanna C; Rabin, Rachel A; Blumberger, Daniel M; Rajji, Tarek K; Daskalakis, Zafiris J; George, Tony P; Barr, Mera S

    Cannabis is the most commonly used illicit substance among patients with schizophrenia. Cannabis exacerbates psychotic symptoms and leads to poor functional outcomes. Dysfunctional cortical inhibition has been implicated in the pathophysiology of schizophrenia; however, the effects of cannabis on this mechanism have been relatively unexamined. The goal of this study was to index cortical inhibition from the motor cortex among 4 groups: schizophrenia patients and non-psychiatric controls dependent on cannabis as well as cannabis-free schizophrenia patients and non-psychiatric controls. In this cross-sectional study, GABA-mediated cortical inhibition was index with single- and paired-pulse transcranial magnetic stimulation (TMS) paradigms to the left motor cortex in 12 cannabis dependent and 11 cannabis-free schizophrenia patients, and in 10 cannabis dependent and 13 cannabis-free controls. Cannabis-dependent patients with schizophrenia displayed greater short-interval cortical inhibition (SICI) compared to cannabis-free schizophrenia patients (p = 0.029), while cannabis-dependent controls displayed reduced SICI compared to cannabis-free controls (p = 0.004). SICI did not differ between cannabis dependent patients and cannabis-free controls, or between dependent schizophrenia patients compared to dependent controls. No significant differences were found for long-interval cortical inhibition (LICI) or intra-cortical facilitation (ICF) receptor function, suggesting a selective effect on SICI. These findings suggest that cannabis dependence may have selective and differing effects on SICI in schizophrenia patients compared to controls, which may provide insight into the pathophysiology of co-morbid cannabis dependence in schizophrenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Characterization of Topographically Specific Sleep Spindles in Mice

    PubMed Central

    Kim, Dongwook; Hwang, Eunjin; Lee, Mina; Sung, Hokun; Choi, Jee Hyun

    2015-01-01

    Study Objective: Sleep spindles in humans have been classified as slow anterior and fast posterior spindles; recent findings indicate that their profiles differ according to pharmacology, pathology, and function. However, little is known about the generation mechanisms within the thalamocortical system for different types of spindles. In this study, we aim to investigate the electrophysiological behaviors of the topographically distinctive spindles within the thalamocortical system by applying high-density EEG and simultaneous thalamic LFP recordings in mice. Design: 32-channel extracranial EEG and 2-channel thalamic LFP were recorded simultaneously in freely behaving mice to acquire spindles during spontaneous sleep. Subjects: Hybrid F1 male mice of C57BL/6J and 129S4/svJae. Measurements and Results: Spindle events in each channel were detected by spindle detection algorithm, and then a cluster analysis was applied to classify the topographically distinctive spindles. All sleep spindles were successfully classified into 3 groups: anterior, posterior, and global spindles. Each spindle type showed distinct thalamocortical activity patterns regarding the extent of similarity, phase synchrony, and time lags between cortical and thalamic areas during spindle oscillation. We also found that sleep slow waves were likely to associate with all types of sleep spindles, but also that the ongoing cortical decruitment/recruitment dynamics before the onset of spindles and their relationship with spindle generation were also variable, depending on the spindle types. Conclusion: Topographically specific sleep spindles show distinctive thalamocortical network behaviors. Citation: Kim D, Hwang E, Lee M, Sung H, Choi JH. Characterization of topographically specific sleep spindles in mice. SLEEP 2015;38(1):85–96. PMID:25325451

  15. Altered behavior in experimental cortical dysplasia.

    PubMed

    Zhou, Fu-Wen; Rani, Asha; Martinez-Diaz, Hildabelis; Foster, Thomas C; Roper, Steven N

    2011-12-01

    Developmental delay and cognitive impairment are common comorbidities in people with epilepsy associated with malformations of cortical development (MCDs). We studied cognition and behavior in an animal model of diffuse cortical dysplasia (CD), in utero irradiation, using a battery of behavioral tests for neuromuscular and cognitive function. Fetal rats were exposed to 2.25 Gy external radiation on embryonic day 17 (E17). At 1 month of age they were tested using an open field task, a grip strength task, a grid walk task, inhibitory avoidance, an object recognition task, and the Morris water maze task. Rats with CD showed reduced nonlocomotor activity in the open field task and impaired motor coordination for grid walking but normal grip strength. They showed a reduced tendency to recognize novel objects and reduced retention in an inhibitory avoidance task. Water maze testing showed that learning and memory were impaired in irradiated rats for both cue discrimination and spatially oriented tasks. These results demonstrate significant deficits in cortex- and hippocampus-dependent cognitive functions associated with the diffuse abnormalities of cortical and hippocampal development that have been documented in this model. This study documents multimodal cognitive deficits associated with CD and can serve as the foundation for future investigations into the mechanisms of and possible therapeutic interventions for this problem. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  16. Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle.

    PubMed

    Ferrara, Michele; De Gennaro, Luigi

    2011-01-01

    In the present paper, we reviewed a large body of evidence, mainly from quantitative EEG studies of our laboratory, supporting the notion that sleep is a local and use-dependent process. Quantitative analyses of sleep EEG recorded from multiple cortical derivations clearly indicate that every sleep phenomenon, from sleep onset to the awakening, is strictly local in nature. Sleep onset first occurs in frontal areas, and a frontal predominance of low-frequency power persists in the first part of the night, when the homeostatic processes mainly occur, and then it vanishes. Upon awakening, we showed an asynchronous EEG activation of different cortical areas, the more anterior ones being the first to wake up. During extended periods of wakefulness, the increase of sleepiness-related low-EEG frequencies is again evident over the frontal derivations. Similarly, experimental manipulations of sleep length by total sleep deprivation, partial sleep curtailment or even selective slow-wave sleep deprivation lead to a slow-wave activity rebound localized especially on the anterior derivations. Thus, frontal areas are crucially involved in sleep homeostasis. According to the local use-dependent theory, this would derive from a higher sleep need of the frontal cortex, which in turn is due to its higher levels of activity during wakefulness. The fact that different brain regions can simultaneously exhibit different sleep intensities indicates that sleep is not a spatially global and uniform state, as hypothesized in the theory. We have also reviewed recent evidence of localized effects of learning and plasticity on EEG sleep measures. These studies provide crucial support to a key concept in the theory, the one claiming that local sleep characteristics should be use-dependent. Finally, we have reported data corroborating the notion that sleep is not necessarily present simultaneously in the entire brain. Our stereo-EEG recordings clearly indicate that sleep and wakefulness can co

  17. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance.

    PubMed

    McCauley, Peter; Kalachev, Leonid V; Mollicone, Daniel J; Banks, Siobhan; Dinges, David F; Van Dongen, Hans P A

    2013-12-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation--and thereby sensitivity to neurobehavioral impairment from sleep loss--is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation--and thus sensitivity to sleep loss--depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work.

  18. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila.

    PubMed

    Donlea, Jeffrey M; Ramanan, Narendrakumar; Shaw, Paul J

    2009-04-03

    Sleep is important for memory consolidation and is responsive to waking experience. Clock circuitry is uniquely positioned to coordinate interactions between processes underlying memory and sleep need. Flies increase sleep both after exposure to an enriched social environment and after protocols that induce long-term memory. We found that flies mutant for rutabaga, period, and blistered were deficient for experience-dependent increases in sleep. Rescue of each of these genes within the ventral lateral neurons (LNVs) restores increased sleep after social enrichment. Social experiences that induce increased sleep were associated with an increase in the number of synaptic terminals in the LNV projections into the medulla. The number of synaptic terminals was reduced during sleep and this decline was prevented by sleep deprivation.

  19. Circadian and sleep-dependent regulation of hormone release in humans

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    rhythm sleep disorders, including the dyssomnia of shift work and visual impairment. Yet to be fully investigated are the interactions of these factors with age and gender. Characterization of the factors governing hormone secretion is critical to understanding the temporal regulation of endocrine systems and presents many exciting areas for future research.

  20. Subcortical atrophy is associated with cognitive impairment in mild Parkinson disease: a combined investigation of volumetric changes, cortical thickness, and vertex-based shape analysis.

    PubMed

    Mak, E; Bergsland, N; Dwyer, M G; Zivadinov, R; Kandiah, N

    2014-12-01

    The involvement of subcortical deep gray matter and cortical thinning associated with mild Parkinson disease remains poorly understood. We assessed cortical thickness and subcortical volumes in patients with Parkinson disease without dementia and evaluated their associations with cognitive dysfunction. The study included 90 patients with mild Parkinson disease without dementia. Neuropsychological assessments classified the sample into patients with mild cognitive impairment (n = 25) and patients without cognitive impairment (n = 65). Volumetric data for subcortical structures were obtained by using the FMRIB Integrated Registration and Segmentation Tool while whole-brain, gray and white matter volumes were estimated by using Structural Image Evaluation, with Normalization of Atrophy. Vertex-based shape analyses were performed to investigate shape differences in subcortical structures. Vertex-wise group differences in cortical thickness were also assessed. Volumetric comparisons between Parkinson disease with mild cognitive impairment and Parkinson disease with no cognitive impairment were performed by using ANCOVA. Associations of subcortical structures with both cognitive function and disease severity were assessed by using linear regression models. Compared with Parkinson disease with no cognitive impairment, Parkinson disease with mild cognitive impairment demonstrated reduced volumes of the thalamus (P = .03) and the nucleus accumbens (P = .04). Significant associations were found for the nucleus accumbens and putamen with performances on the attention/working memory domains (P < .05) and nucleus accumbens and language domains (P = .04). The 2 groups did not differ in measures of subcortical shape or in cortical thickness. Patients with Parkinson disease with mild cognitive impairment demonstrated reduced subcortical volumes, which were associated with cognitive deficits. The thalamus, nucleus accumbens, and putamen may serve as potential biomarkers for

  1. Cocaine- and amphetamine-regulated transcript facilitates the neurite outgrowth in cortical neurons after oxygen and glucose deprivation through PTN-dependent pathway.

    PubMed

    Wang, Y; Qiu, B; Liu, J; Zhu, Wei-Guo; Zhu, S

    2014-09-26

    Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide that plays neuroprotective roles in cerebral ischemia and reperfusion (I/R) injury in animal models or oxygen and glucose deprivation (OGD) in cultured neurons. Recent data suggest that intranasal CART treatment facilitates neuroregeneration in stroke brain. However, little is known about the effects of post-treatment with CART during the neuronal recovery after OGD and reoxygenation in cultured primary cortical neurons. The present study was to investigate the role of CART treated after OGD injury in neurons. Primary mouse cortical neurons were subjected to OGD and then treated with CART. Our data show that post-treatment with CART reduced the neuronal apoptosis caused by OGD injury. In addition, CART repaired OGD-impaired cortical neurons by increasing the expression of growth-associated protein 43 (GAP43), which promotes neurite outgrowth. This effect depends on pleiotrophin (PTN) as siRNA-mediated PTN knockdown totally abolished the increase in CART-stimulated GAP43 protein levels. In summary, our findings demonstrate that CART repairs the neuronal injury after OGD by facilitating neurite outgrowth through PTN-dependent pathway. The role for CART in neurite outgrowth makes it a new potential therapeutic agent for the treatment of neurodegenerative diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Ascent to moderate altitude impairs overnight memory improvements.

    PubMed

    Tesler, Noemi; Latshang, Tsogyal D; Lo Cascio, Christian M; Stadelmann, Katrin; Stoewhas, Anne-Christin; Kohler, Malcolm; Bloch, Konrad E; Achermann, Peter; Huber, Reto

    2015-02-01

    Several studies showed beneficial effects of sleep on memory performance. Slow waves, the electroencephalographic characteristic of deep sleep, reflected on the neuronal level by synchronous slow oscillations, seem crucial for these benefits. Traveling to moderate altitudes decreases deep sleep. In a randomized cross-over design healthy male subjects performed a visuo-motor learning task in Zurich (490 m) and at Davos Jakobshorn (2590 m) in random order. Memory performance was assessed immediately after learning, before sleep, and in the morning after a night of sleep. Sleep EEG recordings were performed during the nights. Our findings show an altitude induced reduction of sleep dependent memory performance. Moreover, this impaired sleep dependent memory performance was associated with reduced slow wave derived measures of neuronal synchronization. Our results are consistent with a critical role of slow waves for the beneficial effects of sleep on memory that is susceptible to natural environmental influences. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Cortical network models of impulse firing in the resting and active states predict cortical energetics

    PubMed Central

    Bennett, Maxwell R.; Farnell, Les; Gibson, William G.; Lagopoulos, Jim

    2015-01-01

    Measurements of the cortical metabolic rate of glucose oxidation [CMRglc(ox)] have provided a number of interesting and, in some cases, surprising observations. One is the decline in CMRglc(ox) during anesthesia and non-rapid eye movement (NREM) sleep, and another, the inverse relationship between the resting-state CMRglc(ox) and the transient following input from the thalamus. The recent establishment of a quantitative relationship between synaptic and action potential activity on the one hand and CMRglc(ox) on the other allows neural network models of such activity to probe for possible mechanistic explanations of these phenomena. We have carried out such investigations using cortical models consisting of networks of modules with excitatory and inhibitory neurons, each receiving excitatory inputs from outside the network in addition to intermodular connections. Modules may be taken as regions of cortical interest, the inputs from outside the network as arising from the thalamus, and the intermodular connections as long associational fibers. The model shows that the impulse frequency of different modules can differ from each other by less than 10%, consistent with the relatively uniform CMRglc(ox) observed across different regions of cortex. The model also shows that, if correlations of the average impulse rate between different modules decreases, there is a concomitant decrease in the average impulse rate in the modules, consistent with the observed drop in CMRglc(ox) in NREM sleep and under anesthesia. The model also explains why a transient thalamic input to sensory cortex gives rise to responses with amplitudes inversely dependent on the resting-state frequency, and therefore resting-state CMRglc(ox). PMID:25775588

  4. Long-term exposure to noise impairs cortical sound processing and attention control.

    PubMed

    Kujala, Teija; Shtyrov, Yury; Winkler, Istvan; Saher, Marieke; Tervaniemi, Mari; Sallinen, Mikael; Teder-Sälejärvi, Wolfgang; Alho, Kimmo; Reinikainen, Kalevi; Näätänen, Risto

    2004-11-01

    Long-term exposure to noise impairs human health, causing pathological changes in the inner ear as well as other anatomical and physiological deficits. Numerous individuals are daily exposed to excessive noise. However, there is a lack of systematic research on the effects of noise on cortical function. Here we report data showing that long-term exposure to noise has a persistent effect on central auditory processing and leads to concurrent behavioral deficits. We found that speech-sound discrimination was impaired in noise-exposed individuals, as indicated by behavioral responses and the mismatch negativity brain response. Furthermore, irrelevant sounds increased the distractibility of the noise-exposed subjects, which was shown by increased interference in task performance and aberrant brain responses. These results demonstrate that long-term exposure to noise has long-lasting detrimental effects on central auditory processing and attention control.

  5. Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization

    PubMed Central

    Bonjean, Maxime; Baker, Tanya; Bazhenov, Maxim; Cash, Sydney; Halgren, Eric; Sejnowski, Terrence

    2012-01-01

    Sleep spindles, which are bursts of 11–15 Hz that occur during non-REM sleep, are highly synchronous across the scalp when measured with EEG, but have low spatial coherence and exhibit low correlation with EEG signals when simultaneously measured with MEG spindles in humans. We developed a computational model to explore the hypothesis that the spatial coherence of the EEG spindle is a consequence of diffuse matrix projections of the thalamus to layer 1 compared to the focal projections of the core pathway to layer 4 recorded by the MEG. Increasing the fanout of thalamocortical connectivity in the matrix pathway while keeping the core pathway fixed led to increased synchrony of the spindle activity in the superficial cortical layers in the model. In agreement with cortical recordings, the latency for spindles to spread from the core to the matrix was independent of the thalamocortical fanout but highly dependent on the probability of connections between cortical areas. PMID:22496571

  6. Cortical Development and Neuroplasticity in Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Sharma, Anu; Cardon, Garrett

    2015-01-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. PMID:26070426

  7. Acute cortical deafness in a child with MELAS syndrome.

    PubMed

    Pittet, Marie P; Idan, Roni B; Kern, Ilse; Guinand, Nils; Van, Hélène Cao; Toso, Seema; Fluss, Joël

    2016-05-01

    Auditory impairment in mitochondrial disorders are usually due to peripheral sensorineural dysfunction. Central deafness is only rarely reported. We report here an 11-year-old boy with MELAS syndrome who presented with subacute deafness after waking up from sleep. Peripheral hearing loss was rapidly excluded. A brain MRI documented bilateral stroke-like lesions predominantly affecting the superior temporal lobe, including the primary auditory cortex, confirming the central nature of deafness. Slow recovery was observed in the following weeks. This case serves to illustrate the numerous challenges caused by MELAS and the unusual occurrence of acute cortical deafness, that to our knowledge has not be described so far in a child in this setting.

  8. Impairment due to combined sleep restriction and alcohol is not mitigated by decaying breath alcohol concentration or rest breaks.

    PubMed

    Manousakis, Jessica E; Anderson, Clare

    2017-09-01

    Epidemiological and laboratory-based driving simulator studies have shown the detrimental impact of moderate, legal levels of alcohol consumption on driving performance in sleepy drivers. As less is known about the time course of decaying alcohol alongside performance impairment, our study examined impairment and recovery of performance alongside decaying levels of alcohol, with and without sleep restriction. Sixteen healthy young males (18-27 years) underwent 4 counterbalanced conditions: Baseline, Alcohol (breath alcohol concentration [BrAC] < 0.05%), Sleep Restriction (5 hr time in bed), and Combined. Participants consumed alcohol (or control drink) ~4.5 hr post wake (12:30 p.m.). To test on the descending limb of alcohol, attention and vigilance test batteries commenced 1 hr after consumption and were completed every 30 min for 2 hr (1:30 p.m.-3:30 p.m.). The Combined condition impaired subjective and objective sleepiness. Here, performance deficits peaked 90 min after alcohol consumption or 30 min after the BrAC peak. Performance did not return to baseline levels until 2.5 hr following consumption, despite receiving rest breaks in between testing. These findings suggest that (a) falling BrACs are an inadequate guide for performance/safety and (b) rest breaks without sleep are not a safety measure for mitigating performance impairment when consuming alcohol following restricted sleep. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Consolidation through the looking-glass: sleep-dependent proactive interference on visuomotor adaptation in children.

    PubMed

    Urbain, Charline; Houyoux, Emeline; Albouy, Geneviève; Peigneux, Philippe

    2014-02-01

    Although a beneficial role of post-training sleep for declarative memory has been consistently evidenced in children, as in adults, available data suggest that procedural memory consolidation does not benefit from sleep in children. However, besides the absence of performance gains in children, sleep-dependent plasticity processes involved in procedural memory consolidation might be expressed through differential interference effects on the learning of novel but related procedural material. To test this hypothesis, 32 10-12-year-old children were trained on a motor rotation adaptation task. After either a sleep or a wake period, they were first retested on the same rotation applied at learning, thus assessing offline sleep-dependent changes in performance, then on the opposite (unlearned) rotation to assess sleep-dependent modulations in proactive interference coming from the consolidated visuomotor memory trace. Results show that children gradually improve performance over the learning session, showing effective adaptation to the imposed rotation. In line with previous findings, no sleep-dependent changes in performance were observed for the learned rotation. However, presentation of the opposite, unlearned deviation elicited significantly higher interference effects after post-training sleep than wakefulness in children. Considering that a definite feature of procedural motor memory and skill acquisition is the implementation of highly automatized motor behaviour, thus lacking flexibility, our results suggest a better integration and/or automation or motor adaptation skills after post-training sleep, eventually resulting in higher proactive interference effects on untrained material. © 2013 European Sleep Research Society.

  10. Sleep-mediated memory consolidation depends on the level of integration at encoding.

    PubMed

    Himmer, Lea; Müller, Elias; Gais, Steffen; Schönauer, Monika

    2017-01-01

    There is robust evidence that sleep facilitates declarative memory consolidation. Integration of newly acquired memories into existing neocortical knowledge networks has been proposed to underlie this effect. Here, we test whether sleep affects memory retention for word-picture associations differently when it was learned explicitly or using a fast mapping strategy. Fast mapping is an incidental form of learning that references new information to existing knowledge and possibly allows neocortical integration already during encoding. If the integration of information into neocortical networks is a main function of sleep-dependent memory consolidation, material learned via fast mapping should therefore benefit less from sleep. Supporting this idea, we find that sleep has a protective effect on explicitly learned associations. In contrast, memory for associations learned by fast mapping does not benefit from sleep and remains stable regardless of whether sleep or wakefulness follows learning. Our results thus indicate that the need for sleep-mediated consolidation depends on the strategy used for learning and might thus be related to the level of integration of newly acquired memory achieved during encoding. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Sleep and Cognitive Decline: A Strong Bidirectional Relationship. It Is Time for Specific Recommendations on Routine Assessment and the Management of Sleep Disorders in Patients with Mild Cognitive Impairment and Dementia.

    PubMed

    Guarnieri, Biancamaria; Sorbi, Sandro

    2015-01-01

    Sleep disturbances and disruption of the neural regulation of the sleep-wake rhythm appear to be involved in the cellular and molecular mechanisms of cognitive decline. Although sleep problems are highly prevalent in mild cognitive impairment (MCI) and many types of dementia, they have not been systematically investigated in the clinical setting and are often only investigated by sleep specialists upon individual request. This review discusses sleep disorders in the context of cognitive decline and provides an overview of the clinical diagnosis and management of these disorders in patients with dementia and MCI. Key Messages: Sleep disorders are largely underestimated and do not receive sufficient attention in the global management of dementia patients. Sleep disturbances have a significant impact on cognitive and physical functions in individuals with cognitive decline and may be associated with important psychological distress and depression. They are positively associated with the severity of behavioral problems and cognitive impairment. The recent recommendations by the Sleep Study Group of the Italian Dementia Research Association can be used as a guideline for the clinical assessment and management of sleep disorders in MCI and dementia patients. Sleep disorders should be carefully investigated using an in-depth sleep history, physical examination, questionnaires and clinical scales and should be validated with the support of a direct caregiver. The recommendations for older adults can be used as a framework to guide the diagnosis and treatment of sleep disorders in individuals with dementia and MCI. The management strategy should be based on the choice of different treatments for each sleep problem present in the same patient, while avoiding adverse interactions between treatments. © 2015 S. Karger AG, Basel.

  12. The Drosophila Circadian Clock Gates Sleep through Time-of-Day Dependent Modulation of Sleep-Promoting Neurons.

    PubMed

    Cavanaugh, Daniel J; Vigderman, Abigail S; Dean, Terry; Garbe, David S; Sehgal, Amita

    2016-02-01

    Sleep is under the control of homeostatic and circadian processes, which interact to determine sleep timing and duration, but the mechanisms through which the circadian system modulates sleep are largely unknown. We therefore used adult-specific, temporally controlled neuronal activation and inhibition to identify an interaction between the circadian clock and a novel population of sleep-promoting neurons in Drosophila. Transgenic flies expressed either dTRPA1, a neuronal activator, or Shibire(ts1), an inhibitor of synaptic release, in small subsets of neurons. Sleep, as determined by activity monitoring and video tracking, was assessed before and after temperature-induced activation or inhibition using these effector molecules. We compared the effect of these manipulations in control flies and in mutant flies that lacked components of the molecular circadian clock. Adult-specific activation or inhibition of a population of neurons that projects to the sleep-promoting dorsal Fan-Shaped Body resulted in bidirectional control over sleep. Interestingly, the magnitude of the sleep changes were time-of-day dependent. Activation of sleep-promoting neurons was maximally effective during the middle of the day and night, and was relatively ineffective during the day-to-night and night-to-day transitions. These time-ofday specific effects were absent in flies that lacked functional circadian clocks. We conclude that the circadian system functions to gate sleep through active inhibition at specific times of day. These data identify a mechanism through which the circadian system prevents premature sleep onset in the late evening, when homeostatic sleep drive is high. © 2016 Associated Professional Sleep Societies, LLC.

  13. Cortical excitability in tramadol dependent patients: A transcranial magnetic stimulation study.

    PubMed

    Khedr, Eman M; Gabra, Romany H; Noaman, Mostafa; Abo Elfetoh, Noha; Farghaly, Hanan S M

    2016-12-01

    Addiction to tramadol, a widely used analgesic, is becoming increasingly common. Tramadol can also induce seizures even after a single clinical dose. We tested whether the epileptogenicity of tramadol was associated with any changes in cortical excitability and inhibitory transmission using transcranial magnetic stimulation (TMS). The study included 16 tramadol dependent patients and 15 age and sex matched healthy volunteers. Clinical evaluation was conducted using an addiction severity index. TMS assessment of excitability was conducted on the motor cortex since the response to each TMS pulse at that site is easily measured in terms of the amplitude of the twitches it evokes in contralateral muscles. Measures included resting and active motor threshold (RMT and AMT respectively), motor evoked potential (MEP) amplitude, cortical silent period (CSP) duration, transcallosal inhibition (TCI), and short interval intracortical inhibition and facilitation (SICI and ICF respectively). Urinary level of tramadol was measured immediately before assessing cortical excitability in each patient. RMT and AMT were significantly lower, the duration of the CSP was shorter and SICI was reduced in patients compared with the control group. These findings are suggestive of increased neural excitability and reduced GABAergic inhibition following exposure to tramadol. Also there were negative correlations between the severity of tramadol dependence and a number of cortical excitability parameters (AMT, RMT, and CSP with P=0.002, 0.005, and 0.04 respectively). The results provide evidence for hyperexcitability of the motor cortex coupled with inhibitory deficits in tramadol dependent patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Alterations in Cortical Thickness and White Matter Integrity in Mild Cognitive Impairment Measured by Whole Brain Cortical Thickness Mapping and Diffusion Tensor Imaging

    PubMed Central

    Wang, Liya; Goldstein, Felicia C.; Veledar, Emir; Levey, Allan I.; Lah, James J.; Meltzer, Carolyn C.; Holder, Chad A.; Mao, Hui

    2010-01-01

    Background and Purpose Mild cognitive impairment (MCI) is a risk factor for Alzheimer's disease (AD) and can be difficult to diagnose due to the subtlety of symptoms. This work attempted to examine gray and white matter changes with cortical thickness analysis and diffusion tensor imaging (DTI) in MCI patients and demographically-matched comparison subjects in order to test these measurements as possible imaging markers for diagnosis. Materials and Methods Subjects with amnestic MCI (n=10; age 72.2±7.1) and normal cognition (n=10; age 70.1±7.7) underwent DTI and T1 weighted MRI at 3T. Fractional anisotropy, apparent diffusion coefficient and cortical thickness were measured and compared between MCI and control groups. The diagnostic accuracy of two methods, either in combination or separately, was evaluated using binary logistic regression and nonparametric statistical analyses for sensitivity, specificity and accuracy. Results Decreased FA and increased ADC in white matter regions of frontal and temporal lobes and corpus callosum were observed in MCI patients. Cortical thickness was decreased in gray matter regions of the frontal, temporal, parietal lobes in MCI patients. Changes in white matter and cortical thickness appeared to be more pronounced in the left hemisphere than in the right hemisphere. Furthermore the combination of cortical thickness and DTI measurements in left temporal areas improved the accuracy of differentiating MCI patients from controls compared to either measure alone. Conclusion DTI and cortical thickness analyses may both serve imaging markers for differentiating MCI from normal aging. Combined use of two methods may improve the accuracy of MCI diagnosis. PMID:19279272

  15. Sleep Restriction Therapy for Insomnia is Associated with Reduced Objective Total Sleep Time, Increased Daytime Somnolence, and Objectively Impaired Vigilance: Implications for the Clinical Management of Insomnia Disorder

    PubMed Central

    Kyle, Simon D.; Miller, Christopher B.; Rogers, Zoe; Siriwardena, A. Niroshan; MacMahon, Kenneth M.; Espie, Colin A.

    2014-01-01

    Study Objectives: To investigate whether sleep restriction therapy (SRT) is associated with reduced objective total sleep time (TST), increased daytime somnolence, and impaired vigilance. Design: Within-subject, noncontrolled treatment investigation. Setting: Sleep research laboratory. Participants: Sixteen patients [10 female, mean age = 47.1 (10.8) y] with well-defined psychophysiological insomnia (PI), reporting TST ≤ 6 h. Interventions: Patients were treated with single-component SRT over a 4-w protocol, sleeping in the laboratory for 2 nights prior to treatment initiation and for 3 nights (SRT night 1, 8, 22) during the acute interventional phase. The psychomotor vigilance task (PVT) was completed at seven defined time points [day 0 (baseline), day 1,7,8,21,22 (acute treatment) and day 84 (3 mo)]. The Epworth Sleepiness Scale (ESS) was completed at baseline, w 1-4, and 3 mo. Measurement and results: Subjective sleep outcomes and global insomnia severity significantly improved before and after SRT. There was, however, a robust decrease in PSG-defined TST during acute implementation of SRT, by an average of 91 min on night 1, 78 min on night 8, and 69 min on night 22, relative to baseline (P < 0.001; effect size range = 1.60-1.80). During SRT, PVT lapses were significantly increased from baseline (at three of five assessment points, all P < 0.05; effect size range = 0.69-0.78), returning to baseline levels by 3 mo (P = 0.43). A similar pattern was observed for RT, with RTs slowing during acute treatment (at four of five assessment points, all P < 0.05; effect size range = 0.57-0.89) and returning to pretreatment levels at 3 mo (P = 0.78). ESS scores were increased at w 1, 2, and 3 (relative to baseline; all P < 0.05); by 3 mo, sleepiness had returned to baseline (normative) levels (P = 0.65). Conclusion: For the first time we show that acute sleep restriction therapy is associated with reduced objective total sleep time, increased daytime sleepiness, and

  16. Cortical Amyloid β Deposition and Current Depressive Symptoms in Alzheimer Disease and Mild Cognitive Impairment.

    PubMed

    Chung, Jun Ku; Plitman, Eric; Nakajima, Shinichiro; Chakravarty, M Mallar; Caravaggio, Fernando; Gerretsen, Philip; Iwata, Yusuke; Graff-Guerrero, Ariel

    2016-05-01

    Depressive symptoms are frequently seen in patients with dementia and mild cognitive impairment (MCI). Evidence suggests that there may be a link between current depressive symptoms and Alzheimer disease (AD)-associated pathological changes, such as an increase in cortical amyloid-β (Aβ). However, limited in vivo studies have explored the relationship between current depressive symptoms and cortical Aβ in patients with MCI and AD. Our study, using a large sample of 455 patients with MCI and 153 patients with AD from the Alzheimer's disease Neuroimaging Initiatives, investigated whether current depressive symptoms are related to cortical Aβ deposition. Depressive symptoms were assessed using the Geriatric Depression Scale and Neuropsychiatric Inventory-depression/dysphoria. Cortical Aβ was quantified using positron emission tomography with the Aβ probe(18)F-florbetapir (AV-45).(18)F-florbetapir standardized uptake value ratio (AV-45 SUVR) from the frontal, cingulate, parietal, and temporal regions was estimated. A global AV-45 SUVR, defined as the average of frontal, cingulate, precuneus, and parietal cortex, was also used. We observed that current depressive symptoms were not related to cortical Aβ, after controlling for potential confounds, including history of major depression. We also observed that there was no difference in cortical Aβ between matched participants with high and low depressive symptoms, as well as no difference between matched participants with the presence and absence of depressive symptoms. The association between depression and cortical Aβ deposition does not exist, but the relationship is highly influenced by stressful events in the past, such as previous depressive episodes, and complex interactions of different pathways underlying both depression and dementia. © The Author(s) 2015.

  17. Dynamic Circadian Modulation in a Biomathematical Model for the Effects of Sleep and Sleep Loss on Waking Neurobehavioral Performance

    PubMed Central

    McCauley, Peter; Kalachev, Leonid V.; Mollicone, Daniel J.; Banks, Siobhan; Dinges, David F.; Van Dongen, Hans P. A.

    2013-01-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation—and thereby sensitivity to neurobehavioral impairment from sleep loss—is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation—and thus sensitivity to sleep loss—depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work. Citation: McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HPA. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance. SLEEP 2013;36(12):1987-1997. PMID:24293775

  18. Neuronal machinery of sleep homeostasis in Drosophila.

    PubMed

    Donlea, Jeffrey M; Pimentel, Diogo; Miesenböck, Gero

    2014-02-19

    Sleep is under homeostatic control, but the mechanisms that sense sleep need and correct sleep deficits remain unknown. Here, we report that sleep-promoting neurons with projections to the dorsal fan-shaped body (FB) form the output arm of Drosophila's sleep homeostat. Homeostatic sleep control requires the Rho-GTPase-activating protein encoded by the crossveinless-c (cv-c) gene in order to transduce sleep pressure into increased electrical excitability of dorsal FB neurons. cv-c mutants exhibit decreased sleep time, diminished sleep rebound, and memory deficits comparable to those after sleep loss. Targeted ablation and rescue of Cv-c in sleep-control neurons of the dorsal FB impair and restore, respectively, normal sleep patterns. Sleep deprivation increases the excitability of dorsal FB neurons, but this homeostatic adjustment is disrupted in short-sleeping cv-c mutants. Sleep pressure thus shifts the input-output function of sleep-promoting neurons toward heightened activity by modulating ion channel function in a mechanism dependent on Cv-c. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Sleep Extension Improves Neurocognitive Functions in Chronically Sleep-Deprived Obese Individuals

    PubMed Central

    Lucassen, Eliane A.; Piaggi, Paolo; Dsurney, John; de Jonge, Lilian; Zhao, Xiong-ce; Mattingly, Megan S.; Ramer, Angela; Gershengorn, Janet; Csako, Gyorgy; Cizza, Giovanni

    2014-01-01

    Background Sleep deprivation and obesity, are associated with neurocognitive impairments. Effects of sleep deprivation and obesity on cognition are unknown, and the cognitive long-term effects of improvement of sleep have not been prospectively assessed in short sleeping, obese individuals. Objective To characterize neurocognitive functions and assess its reversibility. Design Prospective cohort study. Setting Tertiary Referral Research Clinical Center. Patients A cohort of 121 short-sleeping (<6.5 h/night) obese (BMI 30–55 kg/m2) men and pre-menopausal women. Intervention Sleep extension (468±88 days) with life-style modifications. Measurements Neurocognitive functions, sleep quality and sleep duration. Results At baseline, 44% of the individuals had an impaired global deficit score (t-score 0–39). Impaired global deficit score was associated with worse subjective sleep quality (p = 0.02), and lower urinary dopamine levels (p = 0.001). Memory was impaired in 33%; attention in 35%; motor skills in 42%; and executive function in 51% of individuals. At the final evaluation (N = 74), subjective sleep quality improved by 24% (p<0.001), self-reported sleep duration increased by 11% by questionnaires (p<0.001) and by 4% by diaries (p = 0.04), and daytime sleepiness tended to improve (p = 0.10). Global cognitive function and attention improved by 7% and 10%, respectively (both p = 0.001), and memory and executive functions tended to improve (p = 0.07 and p = 0.06). Serum cortisol increased by 17% (p = 0.02). In a multivariate mixed model, subjective sleep quality and sleep efficiency, urinary free cortisol and dopamine and plasma total ghrelin accounted for 1/5 of the variability in global cognitive function. Limitations Drop-out rate. Conclusions Chronically sleep-deprived obese individuals exhibit substantial neurocognitive deficits that are partially reversible upon improvement of sleep in a non-pharmacological way. These

  20. Sleep-dependent memory triage: Evolving generalization through selective processing

    PubMed Central

    Stickgold, Robert; Walker, Matthew P.

    2018-01-01

    The brain does not retain all the information it encodes in a day. Much is forgotten, and of those memories retained, their subsequent “evolution” can follow any of a number of pathways. Emerging data makes clear that sleep is a compelling candidate for performing many of these operations. But how does the sleeping brain know which information to preserve and which to forget? What should sleep do with that information it chooses to keep? For information that is retained, sleep can integrate it into existing memory networks, look for common patterns and distill overarching rules, or simply stabilize and strengthen the memory exactly as it was learned. We suggest such “memory triage” lies at the heart of a sleep-dependent memory processing system that selects new information, in a discriminatory manner, and assimilates it into the brain’s vast armamentarium of evolving knowledge, helping guide each organism through its own, unique life. PMID:23354387

  1. Sleep-Disordered Breathing, Postoperative Delirium, and Cognitive Impairment.

    PubMed

    Lam, Enoch W K; Chung, Frances; Wong, Jean

    2017-05-01

    Sleep-disordered breathing (SDB) is highly prevalent in the general population and has been associated with cognitive impairment in older individuals. Delirium is an acute decline in cognitive function and attention that often occurs after surgery, especially in older individuals. Several recent studies suggest an association between SDB and postoperative delirium. The aim of this systematic review is to examine the current literature on SDB, postoperative delirium, and cognitive impairment and to discuss the pathophysiology and perioperative considerations. A literature search was performed of Medline (1946-2016), Medline In-Process (June 2016), Embase (1947-2016), Cochrane Central Register of Controlled Trials (May 2016), and Cochrane Database of Systematic Reviews (2005 to June 2016). Inclusion criteria for studies were (1) polysomnography confirmed SDB; (2) postoperative delirium or cognitive impairment confirmed by a validated diagnostic tool; and (3) publications in the English language. All study designs including randomized controlled trials and observational studies were included. The literature search identified 2 studies on SDB and postoperative delirium, 15 studies on SDB and cognitive impairment, and 5 studies on the effect of continuous positive airway pressure on cognitive impairment and delirium in older individuals. SDB was associated with cognitive impairment, and this systematic review revealed that SDB may be a risk factor for postoperative delirium, especially in older individuals. Although the pathophysiology of SDB and postoperative delirium is unclear and effective treatments for SDB to reduce the incidence of delirium have not been studied extensively, preliminary evidence suggests that continuous positive airway pressure therapy may lower the risk of delirium. Health care professionals need to be aware that undiagnosed SDB may contribute to postoperative delirium. Preoperative screening for SDB and strategies to reduce the risk for

  2. Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting.

    PubMed

    Helfrich, Randolph F; Mander, Bryce A; Jagust, William J; Knight, Robert T; Walker, Matthew P

    2018-01-03

    The coupled interaction between slow-wave oscillations and sleep spindles during non-rapid-eye-movement (NREM) sleep has been proposed to support memory consolidation. However, little evidence in humans supports this theory. Moreover, whether such dynamic coupling is impaired as a consequence of brain aging in later life, contributing to cognitive and memory decline, is unknown. Combining electroencephalography (EEG), structural MRI, and sleep-dependent memory assessment, we addressed these questions in cognitively normal young and older adults. Directional cross-frequency coupling analyses demonstrated that the slow wave governs a precise temporal coordination of sleep spindles, the quality of which predicts overnight memory retention. Moreover, selective atrophy within the medial frontal cortex in older adults predicted a temporal dispersion of this slow wave-spindle coupling, impairing overnight memory consolidation and leading to forgetting. Prefrontal-dependent deficits in the spatiotemporal coordination of NREM sleep oscillations therefore represent one pathway explaining age-related memory decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Fear memory consolidation in sleep requires protein kinase A.

    PubMed

    Cho, Jiyeon; Sypniewski, Krzysztof A; Arai, Shoko; Yamada, Kazuo; Ogawa, Sonoko; Pavlides, Constantine

    2018-05-01

    It is well established that protein kinase A (PKA) is involved in hippocampal dependent memory consolidation. Sleep is also known to play an important role in this process. However, whether sleep-dependent memory consolidation involves PKA activation has not been clearly determined. Using behavioral observation, animals were categorized into sleep and awake groups. We show that intrahippocampal injections of the PKA inhibitor Rp-cAMPs in post-contextual fear conditioning sleep produced a suppression of long-term fear memory, while injections of Rp-cAMPs during an awake state, at a similar time point, had no effect. In contrast, injections of the PKA activator Sp-cAMPs in awake state, rescued sleep deprivation-induced memory impairments. These results suggest that following learning, PKA activation specifically in sleep is required for the consolidation of long-term memory. © 2018 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Are Nocturnal Breathing, Sleep, and Cognitive Performance Impaired at Moderate Altitude (1,630-2,590 m)?

    PubMed Central

    Latshang, Tsogyal D.; Lo Cascio, Christian M.; Stöwhas, Anne-Christin; Grimm, Mirjam; Stadelmann, Katrin; Tesler, Noemi; Achermann, Peter; Huber, Reto; Kohler, Malcolm; Bloch, Konrad E.

    2013-01-01

    Study Objectives: Newcomers at high altitude (> 3,000 m) experience periodic breathing, sleep disturbances, and impaired cognitive performance. Whether similar adverse effects occur at lower elevations is uncertain, although numerous lowlanders travel to moderate altitude for professional or recreational activities. We evaluated the hypothesis that nocturnal breathing, sleep, and cognitive performance of lowlanders are impaired at moderate altitude. Design: Randomized crossover trial. Setting: University hospital at 490 m, Swiss mountain villages at 1,630 m and 2,590 m. Participants: Fifty-one healthy men, median (quartiles) age 24 y (20-28 y), living below 800 m. Interventions: Studies at Zurich (490 m) and during 4 consecutive days at 1,630 m and 2,590 m, respectively, 2 days each. The order of altitude exposure was randomized. Polysomnography, psychomotor vigilance tests (PVT), the number back test, several other tests of cognitive performance, and questionnaires were evaluated. Measurements and Results: The median (quartiles) apnea-hypopnea index at 490 m was 4.6/h (2.3; 7.9), values at 1,630 and 2,590 m, day 1 and 2, respectively, were 7.0/h (4.1; 12.6), 5.4/h (3.5; 10.5), 13.1/h (6.7; 32.1), and 8.0/h (4.4; 23.1); corresponding values of mean nocturnal oxygen saturation were 96% (95; 96), 94% (93; 95), 94% (93; 95), 90% (89; 91), 91% (90; 92), P < 0.05 versus 490 m, all instances. Slow wave sleep on the first night at 2,590 m was 21% (18; 25) versus 24% (20; 27) at 490 m (P < 0.05). Psychomotor vigilance and various other measures of cognitive performance did not change significantly. Conclusions: Healthy men acutely exposed during 4 days to hypoxemia at 1,630 m and 2,590 m reveal a considerable amount of periodic breathing and sleep disturbances. However, no significant effects on psychomotor reaction speed or cognitive performance were observed. Clinical Trials Registration: Clinicaltrials.gov: NCT01130948. Citation: Latshang TD; Lo Cascio CM; Stöwhas AC

  5. Cycle-Triggered Cortical Stimulation during Slow Wave Sleep Facilitates Learning a BMI Task: A Case Report in a Non-Human Primate

    PubMed Central

    Rembado, Irene; Zanos, Stavros; Fetz, Eberhard E.

    2017-01-01

    Slow wave sleep (SWS) has been identified as the sleep stage involved in consolidating newly acquired information. A growing body of evidence has shown that delta (1–4 Hz) oscillatory activity, the characteristic electroencephalographic signature of SWS, is involved in coordinating interaction between the hippocampus and the neocortex and is thought to take a role in stabilizing memory traces related to a novel task. This case report describes a new protocol that uses neuroprosthetics training of a non-human primate to evaluate the effects of surface cortical electrical stimulation triggered from SWS cycles. The results suggest that stimulation phase-locked to SWS oscillatory activity promoted learning of the neuroprosthetic task. This protocol could be used to elucidate mechanisms of synaptic plasticity underlying off-line learning during sleep and offers new insights into the role of brain oscillations in information processing and memory consolidation. PMID:28450831

  6. Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD.

    PubMed

    Vanderheyden, William M; George, Sophie A; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R

    2015-08-01

    Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stressor exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops. SPS resulted in acute increases in REM sleep and transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. Reductions in theta (4-10 Hz) and sigma (10-15 Hz) band power during transition to REM sleep also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure.

  7. Eight weeks of citicoline treatment does not perturb sleep/wake cycles in cocaine-dependent adults

    PubMed Central

    Bracken, Bethany K.; Penetar, David M.; Rodolico, John; Ryan, Elizabeth T.; Lukas, Scott E.

    2011-01-01

    Background Citicoline (cytidine-5’-diphosphate) is a mononucleotide composed of ribose, cytosine, pyrophosphate, and choline, and is involved in the biosynthesis of the structural phosopholipids of cell membranes. Treatment with citicoline, improves memory in patients with dementia, and reduces damage to the brain after traumatic brain injury or stroke. Recent research has been conducted to assess whether citicoline is an effective treatment for cocaine dependence. In cocaine-dependent individuals, withdrawal from cocaine is associated with disturbed sleep, which may contribute to the high rate of relapse to cocaine use. Therefore, it is important to know the impact of citicoline on the sleep/wake cycle in these individuals in order to rate its overall efficacy. Method In this double-blind, placebo-controlled trial, the effects of citicoline treatment on the sleep/wake cycles of cocaine dependent participants were assessed. The results of the current study are reported as part of a larger study, consisting of an eight-week treatment period to assess the efficacy of longer-term treatment with citicoline at decreasing cocaine consumption in cocaine-dependent polydrug using participants. Results In this non-abstinent, cocaine-dependent population, citicoline had no effect on any of the sleep parameters measured including sleep efficiency, sleep latency, total sleep time, number of waking episodes, time awake per episode, amount of time in bed spent moving, number of sleep episodes, time asleep per episode, and amount of time in bed spent immobile. Conclusions These data suggest that eight weeks of citicoline administration does not disturb sleep/wake cycles of cocaine-dependent individuals. PMID:21397626

  8. Brain Damage and Motor Cortex Impairment in Chronic Obstructive Pulmonary Disease: Implication of Nonrapid Eye Movement Sleep Desaturation.

    PubMed

    Alexandre, Francois; Heraud, Nelly; Sanchez, Anthony M J; Tremey, Emilie; Oliver, Nicolas; Guerin, Philippe; Varray, Alain

    2016-02-01

    Nonrapid eye movement (NREM) sleep desaturation may cause neuronal damage due to the withdrawal of cerebrovascular reactivity. The current study (1) assessed the prevalence of NREM sleep desaturation in nonhypoxemic patients with chronic obstructive pulmonary disease (COPD) and (2) compared a biological marker of cerebral lesion and neuromuscular function in patients with and without NREM sleep desaturation. One hundred fifteen patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] grades 2 and 3), resting PaO2 of 60-80 mmHg, aged between 40 and 80 y, and without sleep apnea (apnea-hypopnea index < 15) had polysomnographic sleep recordings. In addition, twenty-nine patients (substudy) were assessed i) for brain impairment by serum S100B (biological marker of cerebral lesion), and ii) for neuromuscular function via motor cortex activation and excitability and maximal voluntary quadriceps strength measurement. A total of 51.3% patients (n = 59) had NREM sleep desaturation (NREMDes). Serum S100B was higher in the NREMDes patients of the substudy (n = 14): 45.1 [Q1: 37.7, Q3: 62.8] versus 32.9 [Q1: 25.7, Q3: 39.5] pg.ml(-1) (P = 0.028). Motor cortex activation and excitability were lower in NREMDes patients (both P = 0.03), but muscle strength was comparable between groups (P = 0.58). Over half the nonhypoxemic COPD patients exhibited NREM sleep desaturation associated with higher values of the cerebral lesion biomarker and lower neural drive reaching the quadriceps during maximal voluntary contraction. The lack of muscle strength differences between groups suggests a compensatory mechanism(s). Altogether, the results are consistent with an involvement of NREM sleep desaturation in COPD brain impairment. The study was registered at www.clinicaltrials.gov as NCT01679782. © 2016 Associated Professional Sleep Societies, LLC.

  9. Viii. Attachment and sleep among toddlers: disentangling attachment security and dependency.

    PubMed

    Bélanger, Marie-Ève; Bernier, Annie; Simard, Valérie; Bordeleau, Stéphanie; Carrier, Julie

    2015-03-01

    Many scholars have proposed that parent-child attachment security should favor child sleep. Research has yet, however, to provide convincing support for this hypothesis. The current study used objective measures of sleep and attachment to assess the longitudinal links between mother-child attachment security and subsequent sleep, controlling for child dependency. Sixty-two middle-class families (30 girls) were met twice, when children were 15 months (Wave 1; W1) and 2 years of age (Wave 2; W2). At W1, mother-child attachment was assessed with the observer version of the Attachment Q-Sort. At W2, children wore an actigraph monitor for 72 hr. Results indicated that children more securely attached to their mothers subsequently slept more at night and had higher sleep efficiency, and these predictions were not confounded by child dependency. These findings suggest a unique role for secure attachment relationships in the development of young children's sleep regulation, while addressing methodological issues that have long precluded consensus in this literature. © 2015 The Society for Research in Child Development, Inc.

  10. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives.

    PubMed

    Mascetti, Gian Gastone

    2016-01-01

    Sleep is a behavior characterized by a typical body posture, both eyes' closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a different sleep behavior, in which one cerebral hemisphere sleeps while the other is awake. In dolphins, eared seals, and manatees, unihemispheric sleep allows them to have the benefits of sleep, breathing, thermoregulation, and vigilance. In birds, antipredation vigilance is the main function of unihemispheric sleep, but in domestic chicks, it is also associated with brain lateralization or dominance in the control of behavior. Compared to bihemispheric sleep, unihemispheric sleep would mean a reduction of the time spent sleeping and of the associated recovery processes. However, the behavior and health of aquatic mammals and birds does not seem at all impaired by the reduction of sleep. The neural mechanisms of unihemispheric sleep are unknown, but assuming that the neural structures involved in sleep in cetaceans, seals, and birds are similar to those of terrestrial mammals, it is suggested that they involve the interaction of structures of the hypothalamus, basal forebrain, and brain stem. The neural mechanisms promoting wakefulness dominate one side of the brain, while those promoting sleep predominates the other side. For cetaceans, unihemispheric sleep is the only way to sleep, while in seals and birds, unihemispheric sleep events are intermingled with bihemispheric and rapid eye movement sleep events. Electroencephalogram hemispheric asymmetries are also reported during bihemispheric sleep, at awakening, and at sleep onset, as well as being associated with a use-dependent process (local sleep).

  11. Genetic variants in autism-related CNTNAP2 impair axonal growth of cortical neurons.

    PubMed

    Canali, Giorgia; Garcia, Marta; Hivert, Bruno; Pinatel, Delphine; Goullancourt, Aline; Oguievetskaia, Ksenia; Saint-Martin, Margaux; Girault, Jean-Antoine; Faivre-Sarrailh, Catherine; Goutebroze, Laurence

    2018-06-01

    The CNTNAP2 gene, coding for the cell adhesion glycoprotein Caspr2, is thought to be one of the major susceptibility genes for autism spectrum disorder (ASD). A large number of rare heterozygous missense CNTNAP2 variants have been identified in ASD patients. However, most of them are inherited from an unaffected parent, questioning their clinical significance. In the present study, we evaluate their impact on neurodevelopmental functions of Caspr2 in a heterozygous genetic background. Performing cortical neuron cultures from mouse embryos, we demonstrate that Caspr2 plays a dose-dependent role in axon growth in vitro. Loss of one Cntnap2 allele is sufficient to elicit axonal growth alteration, revealing a situation that may be relevant for CNTNAP2 heterozygosity in ASD patients. Then, we show that the two ASD variants I869T and G731S, which present impaired binding to Contactin2/TAG-1, do not rescue axonal growth deficits. We find that the variant R1119H leading to protein trafficking defects and retention in the endoplasmic reticulum has a dominant-negative effect on heterozygous Cntnap2 cortical neuron axon growth, through oligomerization with wild-type Caspr2. Finally, we identify an additional variant (N407S) with a dominant-negative effect on axon growth although it is well-localized at the membrane and properly binds to Contactin2. Thus, our data identify a new neurodevelopmental function for Caspr2, the dysregulation of which may contribute to clinical manifestations of ASD, and provide evidence that CNTNAP2 heterozygous missense variants may contribute to pathogenicity in ASD, through selective mechanisms.

  12. Functional neuroimaging and behavioral correlates of capacity decline in visual short-term memory after sleep deprivation.

    PubMed

    Chee, Michael W L; Chuah, Y M Lisa

    2007-05-29

    Sleep deprivation (SD) impairs short-term memory, but it is unclear whether this is because of reduced storage capacity or processes contributing to appropriate information encoding. We evaluated 30 individuals twice, once after a night of normal sleep and again after 24 h of SD. In each session, we evaluated visual memory capacity by presenting arrays of one to eight colored squares. Additionally, we measured cortical responses to varying visual array sizes without engaging memory. The magnitude of intraparietal sulcus activation and memory capacity after normal sleep were highly correlated. SD elicited a pattern of activation in both tasks, indicating that deficits in visual processing and visual attention accompany and could account for loss of short-term memory capacity. Additionally, a comparison between better and poorer performers showed that preservation of precuneus and temporoparietal junction deactivation with increasing memory load corresponds to less performance decline when one is sleep-deprived.

  13. Linking sleep and general anesthesia mechanisms: this is no walkover.

    PubMed

    Bonhomme, V; Boveroux, P; Vanhaudenhuyse, A; Hans, P; Brichant, J F; Jaquet, O; Boly, M; Laureys, S

    2011-01-01

    This review aims at defining the link between physiological sleep and general anesthesia. Despite common behavioral and electrophysiological characteristics between both states, current literature suggests that the transition process between waking and sleep or anesthesia-induced alteration of consciousness is not driven by the same sequence of events. On the one hand, sleep originates in sub-cortical structures with subsequent repercussions on thalamo-cortical interactions and cortical activity. On the other hand, anesthesia seems to primarily affect the cortex with subsequent repercussions on the activity of sub-cortical networks. This discrepancy has yet to be confirmed by further functional brain imaging and electrophysiological experiments. The relationship between the observed functional modifications of brain activity during anesthesia and the known biochemical targets of hypnotic anesthetic agents also remains to be determined.

  14. Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

    PubMed Central

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert

    2010-01-01

    Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102

  15. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder

    PubMed Central

    Maski, Kiran; Holbrook, Hannah; Manoach, Dara; Hanson, Ellen; Kapur, Kush; Stickgold, Robert

    2015-01-01

    Study Objectives: Examine the role of sleep in the consolidation of declarative memory in children with autism spectrum disorder (ASD). Design: Case-control study. Setting: Home-based study with sleep and wake conditions. Participants: Twenty-two participants with ASD and 20 control participants between 9 and 16 y of age. Measurements and Results: Participants were trained to criterion on a spatial declarative memory task and then given a cued recall test. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with home-based polysomnography; Wake and Sleep conditions were counterbalanced. Children with ASD had poorer sleep efficiency than controls, but other sleep macroarchitectural and microarchitectural measures were comparable after controlling for age and medication use. Both groups demonstrated better memory consolidation across Sleep than Wake, although participants with ASD had poorer overall memory consolidation than controls. There was no interaction between group and condition. The change in performance across sleep, independent of medication and age, showed no significant relationships with any specific sleep parameters other than total sleep time and showed a trend toward less forgetting in the control group. Conclusion: This study shows that despite their more disturbed sleep quality, children with autism spectrum disorder (ASD) still demonstrate more stable memory consolidation across sleep than in wake conditions. The findings support the importance of sleep for stabilizing memory in children with and without neurodevelopmental disabilities. Our results suggest that improving sleep quality in children with ASD could have direct benefits to improving their overall cognitive functioning. Citation: Maski K, Holbrook H, Manoach D, Hanson E, Kapur K, Stickgold R. Sleep dependent memory consolidation in children with autism spectrum disorder. SLEEP 2015;38(12):1955–1963. PMID:26194566

  16. The Role of Sleep and Sleep Disorders in the Development, Diagnosis, and Management of Neurocognitive Disorders

    PubMed Central

    Miller, Michelle A.

    2015-01-01

    It is becoming increasingly apparent that sleep plays an important role in the maintenance, disease prevention, repair, and restoration of both mind and body. The sleep and wake cycles are controlled by the pacemaker activity of the superchiasmic nucleus in the hypothalamus but can be disrupted by diseases of the nervous system causing disordered sleep. A lack of sleep has been associated with an increase in all-cause mortality. Likewise, sleep disturbances and sleep disorders may disrupt neuronal pathways and have an impact on neurological diseases. Sleep deprivation studies in normal subjects demonstrate that a lack of sleep can cause attention and working memory impairment. Moreover, untreated sleep disturbances and sleep disorders such as obstructive sleep apnoe (OSA) can also lead to cognitive impairment. Poor sleep and sleep disorders may present a significant risk factor for the development of dementia. In this review, the underlying mechanisms and the role of sleep and sleep disorders in the development of neurocognitive disorders [dementia and mild cognitive impairment (MCI)] and how the presence of sleep disorders could direct the process of diagnosis and management of neurocognitive disorders will be discussed. PMID:26557104

  17. Chronic post-stroke oropharyngeal dysphagia is associated with impaired cortical activation to pharyngeal sensory inputs.

    PubMed

    Cabib, C; Ortega, O; Vilardell, N; Mundet, L; Clavé, P; Rofes, L

    2017-11-01

    The role of afferent sensory pathways in the pathophysiology of post-stroke oropharyngeal dysphagia is not known. We hypothesized that patients with chronic post-stroke dysphagia (PSD) would show impaired sensory cortical activation in the ipsilesional hemisphere. We studied 28 chronic unilateral post-stroke patients [17 PSD and 11 post-stroke non-dysphagic patients (PSnD)] and 11 age-matched healthy volunteers. Event-related sensory-evoked potentials to pharyngeal stimulation (pSEP) and sensory thresholds were assessed. We analyzed pSEP peak latency and amplitude (N1, P1, N2 and P2), and neurotopographic stroke characteristics from brain magnetic resonance imaging. Healthy volunteers presented a highly symmetric bihemispheric cortical pattern of brain activation at centroparietal areas (N1-P1 and N2-P2) to pharyngeal stimuli. In contrast, an asymmetric pattern of reduced ipsilesional activation was found in PSD (N2-P2; P = 0.026) but not in PSnD. PSD presented impaired safety of swallow (penetration-aspiration score: 4.3 ± 1.6), delayed laryngeal vestibule closure (360.0 ± 70.0 ms) and higher National Institute of Health Stroke Scale (7.0 ± 6.2 vs. 1.9 ± 1.4, P = 0.001) and Fazekas scores (3.0 ± 1.4 vs. 2.0 ± 1.1; P < 0.05) than PSnD. pSEP showed a unilateral delay at stroke site exclusively for PSD (peak-latency interhemispheric difference vs. PSnD: N1, 6.5 ± 6.7 vs. 1.1 ± 1.0 ms; N2, 32.0 ± 15.8 vs. 4.5 ± 4.9 ms; P < 0.05). Chronic post-stroke oropharyngeal dysphagia is associated with stroke severity and degree of leukoaraoisis. Impaired conduction and cortical integration of pharyngeal sensory inputs at stroke site are key features of chronic PSD. These findings highlight the role of sensory pathways in the pathophysiology of post-stroke oropharyngeal dysphagia and offer a potential target for future treatments. © 2017 EAN.

  18. Cortical inhibition within motor and frontal regions in alcohol dependence post-detoxification: A pilot TMS-EEG study.

    PubMed

    Naim-Feil, Jodie; Bradshaw, John L; Rogasch, Nigel C; Daskalakis, Zafiris J; Sheppard, Dianne M; Lubman, Dan I; Fitzgerald, Paul B

    2016-10-01

    Preclinical studies suggest that cortical alterations within the prefrontal cortex (PFC) are critical to the pathophysiology of alcohol dependence. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows direct assessment of cortical excitability and inhibition within the PFC of human subjects. We report the first application of TMS-EEG to measure these indices within the PFC of alcohol-dependent (ALD) patients post-detoxification. Cortical inhibition was assessed in 12 ALD patients and 14 healthy controls through single and paired-pulse TMS paradigms. Long-interval cortical inhibition indexed cortical inhibition in the PFC. In the motor cortex (MC), short- interval intracortical inhibition and cortical silent period determined inhibition, while intracortical facilitation measured facilitation, resting and active motor threshold indexed cortical excitability. ALD patients demonstrated altered cortical inhibition across the bilateral frontal cortices relative to controls. There was evidence of altered cortical excitability in ALD patients; however, no significant differences in MC inhibition. Our study provides first direct evidence of reduced cortical inhibition in the PFC of ALD patients post-detoxification. Altered cortical excitability in the MC may reflect hyper-excitability within the cortex associated with chronic alcohol consumption. These findings provide initial neurophysiological evidence of disrupted cortical excitability within the PFC of ALD patients.

  19. Are disease severity, sleep-related problems, and anxiety associated with work functioning in patients with obstructive sleep apnoea?

    PubMed

    Timkova, Vladimira; Nagyova, Iveta; Reijneveld, Sijmen A; Tkacova, Ruzena; van Dijk, Jitse P; Bültmann, Ute

    2018-04-17

    To examine whether Obstructive Sleep Apnoea severity, sleep-related problems, and anxiety are associated with work functioning in Obstructive Sleep Apnoea patients, when controlled for age, gender and type of occupation. To investigate whether anxiety moderates the associations between sleep-related problems and work functioning. We included 105 Obstructive Sleep Apnoea patients (70% male; mean age 46.62 ± 9.79 years). All patients completed the Pittsburgh Sleep Quality Index, the Epworth Sleepiness Scale, the Beck Anxiety Inventory, and the Work Role Functioning Questionnaire-2.0. Obstructive Sleep Apnoea-severity, poor nighttime sleep quality, and anxiety were univariately associated with impaired work functioning. Multivariate analyzes revealed that poor perceived sleep quality was more strongly associated with work functioning than sleep efficiency and daily disturbances. Anxiety was strongly associated with impaired work functioning. After adding anxiety, the explained variance in work functioning increased from 20% to 25%. Anxiety moderated the association between low and medium levels of nighttime sleep quality problems and work functioning. Poor perceived sleep quality and anxiety were strongly associated with impaired work functioning in Obstructive Sleep Apnoea patients. These findings may help to optimize management, standard treatment, and work functioning in people with Obstructive Sleep Apnoea when confirmed in longitudinal studies. Implications for Rehabilitation Studies show an impairment of functional status, including work functioning, in obstructive sleep apnea patients. Aside from physical disorders, obstructive sleep apnea patients often experience mental problems, such as anxiety. As many people with obstructive sleep apnea are undiagnosed, our results demonstrate to employers and healthcare professionals the need to encourage patients for obstructive sleep apnea screening, especially in the situation of impaired work functioning

  20. Impact of sex steroids and reproductive stage on sleep-dependent memory consolidation in women.

    PubMed

    Baker, Fiona C; Sattari, Negin; de Zambotti, Massimiliano; Goldstone, Aimee; Alaynick, William A; Mednick, Sara C

    2018-03-21

    Age and sex are two of the three major risk factors for Alzheimer's disease (ApoE-e4 allele is the third), with women having a twofold greater risk for Alzheimer's disease after the age of 75 years. Sex differences have been shown across a wide range of cognitive skills in young and older adults, and evidence supports a role for sex steroids, especially estradiol, in protecting against the development of cognitive decline in women. Sleep may also be a protective factor against age-related cognitive decline, since specific electrophysiological sleep events (e.g. sleep spindle/slow oscillation coupling) are critical for offline memory consolidation. Furthermore, studies in young women have shown fluctuations in sleep events and sleep-dependent memory consolidation during different phases of the menstrual cycle that are associated with the levels of sex steroids. An under-appreciated possibility is that there may be an important interaction between these two protective factors (sex steroids and sleep) that may play a role in daily fluctuations in cognitive processing, in particular memory, across a woman's lifespan. Here, we summarize the current knowledge of sex steroid-dependent influences on sleep and cognition across the lifespan in women, with special emphasis on sleep-dependent memory processing. We further indicate gaps in knowledge that require further experimental examination in order to fully appreciate the complex and changing landscape of sex steroids and cognition. Lastly, we propose a series of testable predictions for how sex steroids impact sleep events and sleep-dependent cognition across the three major reproductive stages in women (reproductive years, menopause transition, and post-menopause). Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle.

    PubMed

    Netchiporouk, L; Shram, N; Salvert, D; Cespuglio, R

    2001-04-01

    In the present study, cortical extracellular levels of glucose were monitored for the first time throughout the sleep-wake states of the freely moving rat. For this purpose, polygraphic recordings (electroencephalogram of the fronto-occipital cortices and electromyogram of the neck muscles) were achieved in combination with differential normal pulse voltammetry (DNPV) using a specific glucose sensor. Data obtained reveal that the basal extracellular glucose concentration in the conscious rat is 0.59 +/- 0.3 m M while under chloral hydrate anaesthesia (0.4 g/kg, i.p.) it increases up to 180% of its basal concentration. Regarding the sleep-wake cycle, the existence of spontaneous significant variations in the mean glucose level during slow-wave sleep (SWS = +13%) and paradoxical sleep (PS = -11%) compared with the waking state (100%) is also reported. It is to be noticed that during long periods of active waking, glucose level tends towards a decrease that becomes significant after 15 min (active waking = -32%). On the contrary, during long episodes of slow-wave sleep, it tends towards an increase which becomes significant after 12 min (SWS = +28%). It is suggested that voltammetric techniques using enzymatic biosensors are useful tools allowing direct glucose measurements in the freely moving animal. On the whole, paradoxical sleep is pointed out as a state highly dependent on the availability of energy and slow-wave sleep as a period of energy saving.

  2. Overnight changes in the slope of sleep slow waves during infancy.

    PubMed

    Fattinger, Sara; Jenni, Oskar G; Schmitt, Bernhard; Achermann, Peter; Huber, Reto

    2014-02-01

    Slow wave activity (SWA, 0.5-4.5 Hz) is a well-established marker for sleep pressure in adults. Recent studies have shown that increasing sleep pressure is reflected by an increased synchronized firing pattern of cortical neurons, which can be measured by the slope of sleep slow waves. Thus we aimed at investigating whether the slope of sleep slow waves might provide an alternative marker to study the homeostatic regulation of sleep during early human development. All-night sleep electroencephalography (EEG) was recorded longitudinally at 2, 4, 6, and 9 months after birth. Home recording. 11 healthy full-term infants (5 male, 6 female). None. The slope of sleep slow waves increased with age. At all ages the slope decreased from the first to the last hour of non rapid-eye-movement (NREM) sleep, even when controlling for amplitude differences (P < 0.002). The decrease of the slope was also present in the cycle-by-cycle time course across the night (P < 0.001) at the age of 6 months when the alternating pattern of low-delta activity (0.75-1.75 Hz) is most prominent. Moreover, we found distinct topographical differences exhibiting the steepest slope over the occipital cortex. The results suggest an age-dependent increase in synchronization of cortical activity during infancy, which might be due to increasing synaptogenesis. Previous studies have shown that during early postnatal development synaptogenesis is most pronounced over the occipital cortex, which could explain why the steepest slope was found in the occipital derivation. Our results provide evidence that the homeostatic regulation of sleep develops early in human infants.

  3. Language experience enhances early cortical pitch-dependent responses

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  4. Resting-state synchrony between the retrosplenial cortex and anterior medial cortical structures relates to memory complaints in subjective cognitive impairment.

    PubMed

    Yasuno, Fumihiko; Kazui, Hiroaki; Yamamoto, Akihide; Morita, Naomi; Kajimoto, Katsufumi; Ihara, Masafumi; Taguchi, Akihiko; Matsuoka, Kiwamu; Kosaka, Jun; Tanaka, Toshihisa; Kudo, Takashi; Takeda, Masatoshi; Nagatsuka, Kazuyuki; Iida, Hidehiro; Kishimoto, Toshifumi

    2015-06-01

    Subjective cognitive impairment (SCI) is a clinical state characterized by subjective cognitive deficits without cognitive impairment. To test the hypothesis that this state might involve dysfunction of self-referential processing mediated by cortical midline structures, we investigated abnormalities of functional connectivity in these structures in individuals with SCI using resting-state functional magnetic resonance imaging. We performed functional connectivity analysis for 23 individuals with SCI and 30 individuals without SCI. To reveal the pathophysiological basis of the functional connectivity change, we performed magnetic resonance-diffusion tensor imaging. Positron emission tomography-amyloid imaging was conducted in 13 SCI and 15 nonSCI subjects. Individuals with SCI showed reduced functional connectivity in cortical midline structures. Reduction in white matter connections was related to reduced functional connectivity, but we found no amyloid deposition in individuals with SCI. The results do not necessarily contradict the possibility that SCI indicates initial cognitive decrements, but imply that reduced functional connectivity in cortical midline structures contributes to overestimation of the experience of forgetfulness. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Invariant Natural Killer T Cell Deficiency and Functional Impairment in Sleep Apnea: Links to Cancer Comorbidity.

    PubMed

    Gaoatswe, Gadintshware; Kent, Brian D; Corrigan, Michelle A; Nolan, Geraldine; Hogan, Andrew E; McNicholas, Walter T; O'Shea, Donal

    2015-10-01

    Emerging evidence links obstructive sleep apnea (OSA) with increased cancer incidence and mortality. Invariant natural killer T (iNKT) cells play an important role in cancer immunity. We hypothesized that patients with OSA have low number of circulating invariant natural killer T (iNKT) cells, which may also be functionally impaired. This study aims to evaluate the frequency of circulating iNKT cells in OSA. We evaluated the frequency of circulating iNKT cells by flow cytometry in 33 snorers being assessed for possible OSA. Using iNKT cell lines, we also evaluated the effect of exposure to hypoxia over 24 hours on apoptosis, cytotoxicity, and cytokine production. Teaching hospital based sleep unit and research laboratory. Thirty-three snorers were evaluated: 9 with no OSA (apnea-hypopnea frequency [AHI] < 5/h), 12 with mild-moderate OSA (AHI 5-30) and 12 with severe OSA (AHI > 30). Patients with severe OSA had considerably fewer iNKT cells (0.18%) compared to patients with mild-moderate (0.24%) or no OSA (0.35%), P = 0.0026. The frequency of iNKT cells correlated negatively with apnea-hypopnea index (r = -0.58, P = 0.001), oxygen desaturation index (r = -0.58, P = 0.0003), and SpO2% < 90% (r = -0.5407, P = 0.005). The frequency of iNKT cells increased following 12 months of nCPAP therapy (P = 0.015). Hypoxia resulted in increased apoptosis (P = 0.016) and impaired cytotoxicity (P = 0.035). Patients with obstructive sleep apnea (OSA) have significantly reduced levels of circulating invariant natural killer T (iNKT) cells and hypoxia leads to impaired iNKT cell function. These observations may partly explain the increased cancer risk reported in patients with OSA. © 2015 Associated Professional Sleep Societies, LLC.

  6. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior

    PubMed Central

    Rosi, Susanna

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC) functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI) model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior. PMID:26964036

  7. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD

    PubMed Central

    Vanderheyden, William M.; George, Sophie A.; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R.

    2015-01-01

    Sleep abnormalities such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of post-traumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating these sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stress exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops in rats. SPS resulted in acutely increased REM sleep, transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. We also report reductions in theta (4–10 Hz) and sigma (10–15 Hz) band power during transition to REM sleep which also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  8. Sleep disturbance in family caregivers of children who depend on medical technology: A systematic review.

    PubMed

    Keilty, Krista; Cohen, Eyal; Ho, Michelle; Spalding, Karen; Stremler, Robyn

    2015-01-01

    Society relies on family caregivers of children who depend on medical technology (e.g. mechanical ventilation), to provide highly skilled and vigilant care in their homes 24 hours per day. Sleep disturbance is among the most common complaints of these caregivers. The purpose of this review is to systematically examine studies reporting on sleep outcomes in family caregivers of technology dependent children. All relevant databases were systematically searched: MEDLINE, EMBASE, PsycINFO and CINAHL. Given the heterogeneity of the studies, a qualitative analysis was completed and thus results of this review are presented as a narrative. Thirteen studies were retrieved that met eligibility criteria for inclusion. All of the studies reported on family caregivers of children with medical complexity living at home. Moreover, all of the studies relied entirely on self-report, not objective sleep measures. No intervention studies were found. Sleep disturbance was found to be common (51-100%) along with caregiver reports of poor sleep quality. Sleep quantity was seldom measured, but was found in the few studies that did, to be approximately 6 hours, or less than recommendations for optimal health and daytime function. Multiple caregiver, child and environmental factors were also identified that may negatively influence caregiver sleep, health and daytime function. Findings of this review suggest that family caregivers of children with medical complexity who depend on medical technology achieve poor sleep quality and quantity that may place them at risk of the negative consequences of sleep deprivation. Recommendations for practice include that health care providers routinely assess for sleep disturbance in this vulnerable population. The review also suggests that studies using objective sleep measurement are needed to more fully characterize sleep and inform the development of targeted interventions to promote sleep in family caregivers of technology dependent children.

  9. Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation.

    PubMed

    Holst, Sebastian C; Müller, Thomas; Valomon, Amandine; Seebauer, Britta; Berger, Wolfgang; Landolt, Hans-Peter

    2017-04-10

    Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D 2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans.

  10. Are there any seasonal changes of cognitive impairment, depression, sleep disorders and quality of life in hemodialysis patients?

    PubMed

    Afsar, Baris; Kirkpantur, Alper

    2013-01-01

    Cognitive impairment, depression, sleep disorders and impaired quality of life are very common in hemodialysis (HD) patients. However, whether there are any seasonal changes of cognitive impairment, depression, sleep disorders and quality of life in HD patients is not known. The laboratory parameters, depressive symptoms, health-related quality of life, sleep quality (SQ) and cognitive function, were measured twice. A total of 66 HD patients were enrolled. Pre-dialysis systolic blood pressure (BP) and pre-dialysis diastolic BP were higher, whereas predialysis creatinine and sodium were lower in January compared to July. Among domains of Short Form 36 (SF-36), physical functioning, role-physical limitation, general health perception, vitality, role emotional, Physical Component Summary Score (PCS) were higher, whereas Beck Depression Inventory (BDI) score was lower in July compared to January. Stepwise linear regression analysis revealed that only change in albumin and smoking status were related with seasonal change of BDI scores. Additionally only change in Mental Component Summary score of SF-36 were related with change in PCS score of SF-36 scores. Depressive symptoms and quality of life but not SQ and cognitive function showed seasonal variability in HD patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.

    PubMed

    Mikhail, Cyril; Vaucher, Angélique; Jimenez, Sonia; Tafti, Mehdi

    2017-01-24

    Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality. Copyright © 2017, American Association for the Advancement of Science.

  12. Upper Airway Collapsibility (Pcrit) and Pharyngeal Dilator Muscle Activity are Sleep Stage Dependent

    PubMed Central

    Carberry, Jayne C.; Jordan, Amy S.; White, David P.; Wellman, Andrew; Eckert, Danny J.

    2016-01-01

    Study Objectives: An anatomically narrow/highly collapsible upper airway is the main cause of obstructive sleep apnea (OSA). Upper airway muscle activity contributes to airway patency and, like apnea severity, can be sleep stage dependent. Conversely, existing data derived from a small number of participants suggest that upper airway collapsibility, measured by the passive pharyngeal critical closing pressure (Pcrit) technique, is not sleep stage dependent. This study aimed to determine the effect of sleep stage on Pcrit and upper airway muscle activity in a larger cohort than previously tested. Methods: Pcrit and/or muscle data were obtained from 72 adults aged 20–64 y with and without OSA.Pcrit was determined via transient reductions in continuous positive airway pressure (CPAP) during N2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. Genioglossus and tensor palatini muscle activities were measured: (1) awake with and without CPAP, (2) during stable sleep on CPAP, and (3) in response to the CPAP reductions used to quantify Pcrit. Results: Pcrit was 4.9 ± 1.4 cmH2O higher (more collapsible) during REM versus SWS (P = 0.012), 2.3 ± 0.6 cmH2O higher during REM versus N2 (P < 0.001), and 1.6 ± 0.7 cmH2O higher in N2 versus SWS (P = 0.048). Muscle activity decreased from wakefulness to sleep and from SWS to N2 to REM sleep for genioglossus but not for tensor palatini. Pharyngeal muscle activity increased by ∼50% by breath 5 following CPAP reductions. Conclusions: Upper airway collapsibility measured via the Pcrit technique and genioglossus muscle activity vary with sleep stage. These findings should be taken into account when performing and interpreting “passive” Pcrit measurements. Citation: Carberry JC, Jordan AS, White DP, Wellman A, Eckert DJ. Upper airway collapsibility (Pcrit) and pharyngeal dilator muscle activity are sleep stage dependent. SLEEP 2016;39(3):511–521. PMID:26612386

  13. Deep sleep divides the cortex into opposite modes of anatomical-functional coupling.

    PubMed

    Tagliazucchi, Enzo; Crossley, Nicolas; Bullmore, Edward T; Laufs, Helmut

    2016-11-01

    The coupling of anatomical and functional connectivity at rest suggests that anatomy is essential for wake-typical activity patterns. Here, we study the development of this coupling from wakefulness to deep sleep. Globally, similarity between whole-brain anatomical and functional connectivity networks increased during deep sleep. Regionally, we found differential coupling: during sleep, functional connectivity of primary cortices resembled more the underlying anatomical connectivity, while we observed the opposite in associative cortices. Increased anatomical-functional similarity in sensory areas is consistent with their stereotypical, cross-modal response to the environment during sleep. In distinction, looser coupling-relative to wakeful rest-in higher order integrative cortices suggests that sleep actively disrupts default patterns of functional connectivity in regions essential for the conscious access of information and that anatomical connectivity acts as an anchor for the restoration of their functionality upon awakening.

  14. The Effect of Two Benzodiazepine Receptor Agonist Hypnotics on Sleep-Dependent Memory Consolidation

    PubMed Central

    Hall-Porter, Janine M.; Schweitzer, Paula K.; Eisenstein, Rhody D.; Ahmed, Hasan Ali H.; Walsh, James K.

    2014-01-01

    Introduction: Numerous studies have demonstrated that sleep promotes memory consolidation, but there is little research on the effect of hypnotics on sleep-dependent memory consolidation. We compared bedtime administration of zolpidem-ER 12.5 mg (6- to 8-h duration of action), middle-of-the-night administration of zaleplon 10 mg (3- to 4-h duration of action), and placebo to examine the effect of different durations of hypnotic drug exposure on memory consolidation during sleep. Methods: Twenty-two participants with no sleep complaints underwent 3 conditions in a counterbalanced crossover study: (1) zolpidem-ER 12.5 mg (bedtime dosing), (2) zaleplon 10 mg (middle-of-the-night dosing), and (3) placebo. Memory testing was conducted before and after an 8-h sleep period, using a word pair association task (WPT; declarative memory) and a finger-tapping task (FTT; procedural memory). Results: ANOVA revealed a significant condition effect for the WPT (p = 0.025) and a trend for the FTT (p = 0.067), which was significant when sex was added to the model (p = 0.014). Improvement in memory performance following sleep was lower with bedtime dosing of zolpidem-ER compared to placebo and middle-of-the-night dosing of zaleplon. There were no differences between placebo and zaleplon. Conclusions: The results suggest that in some circumstances hypnotics may have the potential to reduce the degree of sleep-dependent memory consolidation and that drug-free sleep early in the night may ameliorate this effect. Citation: Hall-Porter JM; Schweitzer PK; Eisenstein RD; Ahmed HAH; Walsh JK. The effect of two benzodiazepine receptor agonist hypnotics on sleep-dependent memory consolidation. J Clin Sleep Med 2014;10(1):27-34. PMID:24426817

  15. Filtering the reality: functional dissociation of lateral and medial pain systems during sleep in humans.

    PubMed

    Bastuji, Hélène; Mazza, Stéphanie; Perchet, Caroline; Frot, Maud; Mauguière, François; Magnin, Michel; Garcia-Larrea, Luis

    2012-11-01

    Behavioral reactions to sensory stimuli during sleep are scarce despite preservation of sizeable cortical responses. To further understand such dissociation, we recorded intracortical field potentials to painful laser pulses in humans during waking and all-night sleep. Recordings were obtained from the three cortical structures receiving 95% of the spinothalamic cortical input in primates, namely the parietal operculum, posterior insula, and mid-anterior cingulate cortex. The dynamics of responses during sleep differed among cortical sites. In sleep Stage 2, evoked potential amplitudes were similarly attenuated relative to waking in all three cortical regions. During paradoxical, or rapid eye movements (REM), sleep, opercular and insular potentials remained stable in comparison with Stage 2, whereas the responses from mid-anterior cingulate abated drastically, and decreasing below background noise in half of the subjects. Thus, while the lateral operculo-insular system subserving sensory analysis of somatic stimuli remained active during paradoxical-REM sleep, mid-anterior cingulate processes related to orienting and avoidance behavior were suppressed. Dissociation between sensory and orienting-motor networks might explain why nociceptive stimuli can be either neglected or incorporated into dreams without awakening the subject. Copyright © 2011 Wiley Periodicals, Inc.

  16. Disturbed sleep: linking allergic rhinitis, mood and suicidal behavior.

    PubMed

    Fang, Beverly J; Tonelli, Leonardo H; Soriano, Joseph J; Postolache, Teodor T

    2010-01-01

    Allergic inflammation is associated with mood disorders, exacerbation of depression, and suicidal behavior. Mediators of inflammation modulate sleep , with Th1 cytokines promoting NREM sleep and increasing sleepiness and Th2 cytokines (produced during allergic inflammation) impairing sleep. As sleep impairment is a rapidly modifiable suicide risk factor strongly associated with mood disorders, we review the literature leading to the hypothesis that allergic rhinitis leads to mood and anxiety disorders and an increased risk of suicide via sleep impairment. Specifically, allergic rhinitis can impair sleep through mechanical (obstructive) and molecular (cytokine production) processes. The high prevalence of mood and anxiety disorders and allergy, the nonabating suicide incidence, the currently available treatment modalities to treat sleep impairment and the need for novel therapeutic targets for mood and anxiety disorders, justify multilevel efforts to explore disturbance of sleep as a pathophysiological link.

  17. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    PubMed

    Posluszny, Anna; Liguz-Lecznar, Monika; Turzynska, Danuta; Zakrzewska, Renata; Bielecki, Maksymilian; Kossut, Malgorzata

    2015-01-01

    Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  18. Genes Involved in the Astrocyte-Neuron Lactate Shuttle (ANLS) Are Specifically Regulated in Cortical Astrocytes Following Sleep Deprivation in Mice

    PubMed Central

    Petit, Jean-Marie; Gyger, Joël; Burlet-Godinot, Sophie; Fiumelli, Hubert; Martin, Jean-Luc; Magistretti, Pierre J.

    2013-01-01

    regulated in cortical astrocytes following sleep deprivation in mice. SLEEP 2013;36(10):1445-1458. PMID:24082304

  19. Functional neuroimaging insights into the physiology of human sleep.

    PubMed

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre

    2010-12-01

    Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.

  20. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation

    PubMed Central

    Mander, Bryce A.; Marks, Shawn M.; Vogel, Jacob W.; Rao, Vikram; Lu, Brandon; Saletin, Jared M.; Ancoli-Israel, Sonia; Jagust, William J.; Walker, Matthew P.

    2015-01-01

    Independent evidence associates β-amyloid pathology with both NREM sleep disruption and memory impairment in older adults. However, whether the influence of β-amyloid pathology on hippocampus-dependent memory is, in part, driven by impairments of NREM slow wave activity (SWA) and associated overnight memory consolidation is unknown. Here, we show that β-amyloid burden within medial prefrontal cortex (mPFC) is significantly correlated with the severity of impairment in NREM SWA generation. Moreover, reduced NREM SWA generation was further associated with impaired overnight memory consolidation and impoverished hippocampal-neocortical memory transformation. Furthermore, structural equation models revealed that the association between mPFC β-amyloid pathology and impaired hippocampus-dependent memory consolidation is not direct, but instead, statistically depends on the intermediary factor of diminished NREM SWA. By linking β-amyloid pathology with impaired NREM SWA, these data implicate sleep disruption as a novel mechanistic pathway through which β-amyloid pathology may contribute to hippocampus-dependent cognitive decline in the elderly. PMID:26030850

  1. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder

    PubMed Central

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Introduction Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Methods Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants’ brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz) and slow-frequency spindle activity (10.5–12.5 Hz). Result Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Conclusion Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep. PMID

  2. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder.

    PubMed

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5-16 Hz) and slow-frequency spindle activity (10.5-12.5 Hz). Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep.

  3. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    PubMed

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Brief Report: Parental Descriptions of Sleep Problems in Children with Autism, Down Syndrome, and Prader-Willi Syndrome

    ERIC Educational Resources Information Center

    Cotton, Sue; Richdale, Amanda

    2006-01-01

    Children with an intellectual disability (ID) are at high risk of developing sleep problems. The extent to which the prevalence and nature of sleep problems in these children is dependent on the disorder underlying their intellectual impairments remains unclear. This study examined and compared parental descriptions of sleep problems in children…

  5. Spontaneous cortical activity is transiently poised close to criticality

    PubMed Central

    Monier, Cyril; Kumar, Arvind; Deco, Gustavo; Frégnac, Yves

    2017-01-01

    Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuronal avalanches in spiking activity has been equivocal with studies reporting both its presence and absence. Here, we show that signs of criticality in spiking activity can change between synchronized and desynchronized cortical states. We analyzed the spontaneous activity in the primary visual cortex of the anesthetized cat and the awake monkey, and found that neuronal avalanches and thermodynamic indicators of criticality strongly depend on collective synchrony among neurons, LFP fluctuations, and behavioral state. We found that synchronized states are associated to criticality, large dynamical repertoire and prolonged epochs of eye closure, while desynchronized states are associated to sub-criticality, reduced dynamical repertoire, and eyes open conditions. Our results show that criticality in cortical dynamics is not stationary, but fluctuates during anesthesia and between different vigilance states. PMID:28542191

  6. Spontaneous cortical activity is transiently poised close to criticality.

    PubMed

    Hahn, Gerald; Ponce-Alvarez, Adrian; Monier, Cyril; Benvenuti, Giacomo; Kumar, Arvind; Chavane, Frédéric; Deco, Gustavo; Frégnac, Yves

    2017-05-01

    Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuronal avalanches in spiking activity has been equivocal with studies reporting both its presence and absence. Here, we show that signs of criticality in spiking activity can change between synchronized and desynchronized cortical states. We analyzed the spontaneous activity in the primary visual cortex of the anesthetized cat and the awake monkey, and found that neuronal avalanches and thermodynamic indicators of criticality strongly depend on collective synchrony among neurons, LFP fluctuations, and behavioral state. We found that synchronized states are associated to criticality, large dynamical repertoire and prolonged epochs of eye closure, while desynchronized states are associated to sub-criticality, reduced dynamical repertoire, and eyes open conditions. Our results show that criticality in cortical dynamics is not stationary, but fluctuates during anesthesia and between different vigilance states.

  7. Sleep-Dependent Synaptic Down-Selection (I): Modeling the Benefits of Sleep on Memory Consolidation and Integration

    PubMed Central

    Nere, Andrew; Hashmi, Atif; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Sleep can favor the consolidation of both procedural and declarative memories, promote gist extraction, help the integration of new with old memories, and desaturate the ability to learn. It is often assumed that such beneficial effects are due to the reactivation of neural circuits in sleep to further strengthen the synapses modified during wake or transfer memories to different parts of the brain. A different possibility is that sleep may benefit memory not by further strengthening synapses, but rather by renormalizing synaptic strength to restore cellular homeostasis after net synaptic potentiation in wake. In this way, the sleep-dependent reactivation of neural circuits could result in the competitive down-selection of synapses that are activated infrequently and fit less well with the overall organization of memories. By using computer simulations, we show here that synaptic down-selection is in principle sufficient to explain the beneficial effects of sleep on the consolidation of procedural and declarative memories, on gist extraction, and on the integration of new with old memories, thereby addressing the plasticity-stability dilemma. PMID:24137153

  8. Some Sleep Drugs Can Impair Driving

    MedlinePlus

    ... prescribed sleep medications. Some sleep drugs contain an extended-release form of zolpidem that stays in the ... the regular form. FDA is particularly concerned about extended-release forms of zolpidem. They are sold as ...

  9. Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images.

    PubMed

    Guo, Shengwen; Lai, Chunren; Wu, Congling; Cen, Guiyin

    2017-01-01

    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI-cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI-NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI-NC comparison. The best performances obtained by the SVM classifier using the essential features were 5-40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its

  10. Dose-Dependent Cortical Thinning After Partial Brain Irradiation in High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karunamuni, Roshan; Bartsch, Hauke; White, Nathan S.

    Purpose: Radiation-induced cognitive deficits may be mediated by tissue damage to cortical regions. Volumetric changes in cortex can be reliably measured using high-resolution magnetic resonance imaging (MRI). We used these methods to study the association between radiation therapy (RT) dose and change in cortical thickness in high-grade glioma (HGG) patients. Methods and Materials: We performed a voxel-wise analysis of MRI from 15 HGG patients who underwent fractionated partial brain RT. Three-dimensional MRI was acquired pre- and 1 year post RT. Cortex was parceled with well-validated segmentation software. Surgical cavities were censored. Each cortical voxel was assigned a change in cortical thicknessmore » between time points, RT dose value, and neuroanatomic label by lobe. Effects of dose, neuroanatomic location, age, and chemotherapy on cortical thickness were tested using linear mixed effects (LME) modeling. Results: Cortical atrophy was seen after 1 year post RT with greater effects at higher doses. Estimates from LME modeling showed that cortical thickness decreased by −0.0033 mm (P<.001) for every 1-Gy increase in RT dose. Temporal and limbic cortex exhibited the largest changes in cortical thickness per Gy compared to that in other regions (P<.001). Age and chemotherapy were not significantly associated with change in cortical thickness. Conclusions: We found dose-dependent thinning of the cerebral cortex, with varying neuroanatomical regional sensitivity, 1 year after fractionated partial brain RT. The magnitude of thinning parallels 1-year atrophy rates seen in neurodegenerative diseases and may contribute to cognitive decline following high-dose RT.« less

  11. Sleep-Dependent Oscillatory Synchronization: A Role in Fear Memory Consolidation.

    PubMed

    Totty, Michael S; Chesney, Logan A; Geist, Phillip A; Datta, Subimal

    2017-01-01

    Sleep plays an important role in memory consolidation through the facilitation of neuronal plasticity; however, how sleep accomplishes this remains to be completely understood. It has previously been demonstrated that neural oscillations are an intrinsic mechanism by which the brain precisely controls neural ensembles. Inter-regional synchronization of these oscillations is also known to facilitate long-range communication and long-term potentiation (LTP). In the present study, we investigated how the characteristic rhythms found in local field potentials (LFPs) during non-REM and REM sleep play a role in emotional memory consolidation. Chronically implanted bipolar electrodes in the lateral amygdala (LA), dorsal and ventral hippocampus (DH, VH), and the infra-limbic (IL), and pre-limbic (PL) prefrontal cortex were used to record LFPs across sleep-wake activity following each day of a Pavlovian cued fear conditioning paradigm. This resulted in three principle findings: (1) theta rhythms during REM sleep are highly synchronized between regions; (2) the extent of inter-regional synchronization during REM and non-REM sleep is altered by FC and EX; (3) the mean phase difference of synchronization between the LA and VH during REM sleep predicts changes in freezing after cued fear extinction. These results both oppose a currently proposed model of sleep-dependent memory consolidation and provide a novel finding which suggests that the role of REM sleep theta rhythms in memory consolidation may rely more on the relative phase-shift between neural oscillations, rather than the extent of phase synchronization.

  12. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine.

    PubMed

    Kantrowitz, Joshua T; Epstein, Michael L; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M; Revheim, Nadine; Lehrfeld, Nayla P; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C

    2016-12-01

    Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time-frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908 Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated

  13. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine

    PubMed Central

    Kantrowitz, Joshua T.; Epstein, Michael L.; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M.; Revheim, Nadine; Lehrfeld, Nayla P.; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C.

    2016-01-01

    Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time–frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908. Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that

  14. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night

    PubMed Central

    Muller, Lyle; Piantoni, Giovanni; Koller, Dominik; Cash, Sydney S; Halgren, Eric; Sejnowski, Terrence J

    2016-01-01

    During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories. DOI: http://dx.doi.org/10.7554/eLife.17267.001 PMID:27855061

  15. Natural sleep modifies the rat electroretinogram.

    PubMed Central

    Galambos, R; Juhász, G; Kékesi, A K; Nyitrai, G; Szilágyi, N

    1994-01-01

    We show here electroretinograms (ERGs) recorded from freely moving rats during sleep and wakefulness. Bilateral ERGs were evoked by flashes delivered through a light-emitting diode implanted under the skin above one eye and recorded through electrodes inside each orbit near the optic nerve. Additional electrodes over each visual cortex monitored the brain waves and collected flash-evoked cortical potentials to compare with the ERGs. Connections to the stimulating and recording instruments through a plug on the head made data collection possible at any time without physically disturbing the animal. The three major findings are (i) the ERG amplitude during slow-wave sleep can be 2 or more times that of the waking response; (ii) the ERG patterns in slow-wave and REM sleep are different; and (iii) the sleep-related ERG changes closely mimic those taking place at the same time in the responses evoked from the visual cortex. We conclude that the mechanisms that alter the visual cortical-evoked responses during sleep operate also and similarly at the retinal level. PMID:8197199

  16. Reduced cortical complexity in children with Prader-Willi Syndrome and its association with cognitive impairment and developmental delay.

    PubMed

    Lukoshe, Akvile; Hokken-Koelega, Anita C; van der Lugt, Aad; White, Tonya

    2014-01-01

    Prader-Willi Syndrome (PWS) is a complex neurogenetic disorder with symptoms involving not only hypothalamic, but also a global, central nervous system dysfunction. Previously, qualitative studies reported polymicrogyria in adults with PWS. However, there have been no quantitative neuroimaging studies of cortical morphology in PWS and no studies to date in children with PWS. Thus, our aim was to investigate and quantify cortical complexity in children with PWS compared to healthy controls. In addition, we investigated differences between genetic subtypes of PWS and the relationship between cortical complexity and intelligence within the PWS group. High-resolution structural magnetic resonance images were acquired in 24 children with genetically confirmed PWS (12 carrying a deletion (DEL), 12 with maternal uniparental disomy (mUPD)) and 11 age- and sex-matched typically developing siblings as healthy controls. Local gyrification index (lGI) was obtained using the FreeSurfer software suite. Four large clusters, two in each hemisphere, comprising frontal, parietal and temporal lobes, had lower lGI in children with PWS, compared to healthy controls. Clusters with lower lGI also had significantly lower cortical surface area in children with PWS. No differences in cortical thickness of the clusters were found between the PWS and healthy controls. lGI correlated significantly with cortical surface area, but not with cortical thickness. Within the PWS group, lGI in both hemispheres correlated with Total IQ and Verbal IQ, but not with Performance IQ. Children with mUPD, compared to children with DEL, had two small clusters with lower lGI in the right hemisphere. lGI of these clusters correlated with cortical surface area, but not with cortical thickness or IQ. These results suggest that lower cortical complexity in children with PWS partially underlies cognitive impairment and developmental delay, probably due to alterations in gene networks that play a prominent role in

  17. Sleep Disturbances Associated with Parkinson's Disease

    PubMed Central

    Suzuki, Keisuke; Miyamoto, Masayuki; Miyamoto, Tomoyuki; Iwanami, Masaoki; Hirata, Koichi

    2011-01-01

    Sleep disturbances are common problems affecting the quality life of Parkinson's disease (PD) patients and are often underestimated. The causes of sleep disturbances are multifactorial and include nocturnal motor disturbances, nocturia, depressive symptoms, and medication use. Comorbidity of PD with sleep apnea syndrome, restless legs syndrome, rapid eye movement sleep behavior disorder, or circadian cycle disruption also results in impaired sleep. In addition, the involvement of serotoninergic, noradrenergic, and cholinergic neurons in the brainstem as a disease-related change contributes to impaired sleep structures. Excessive daytime sleepiness is not only secondary to nocturnal disturbances or dopaminergic medication but may also be due to independent mechanisms related to impairments in ascending arousal system and the orexin system. Notably, several recent lines of evidence suggest a strong link between rapid eye movement sleep behavior disorder and the risk of neurodegenerative diseases such as PD. In the present paper, we review the current literature concerning sleep disorders in PD. PMID:21876839

  18. Sleep effects on slow-brain-potential reflections of associative learning.

    PubMed

    Verleger, Rolf; Ludwig, Janna; Kolev, Vasil; Yordanova, Juliana; Wagner, Ullrich

    2011-03-01

    Previous research has indicated that information acquired before sleep gets consolidated during sleep. This process of consolidation might be reflected after sleep in changed extent and topography of cortical activation during retrieval of information. Here, we designed an experiment to measure those changes by means of slow event-related EEG potentials (SPs). Retrieval of newly learnt verbal or spatial associations was tested both immediately after learning and two days later. In the night directly following immediate recall, participants either slept or stayed awake. In line with previous studies, SPs measured during retrieval from memory had parietal or left-frontal foci depending on whether the retrieved associations were spatial or verbal. However, contrary to our expectations, sleep-related consolidation did not further accentuate these content-specific topographic profiles. Rather, sleep modified SPs independently of the spatial or verbal type of learned association: SPs were reduced more after sleep than after waking specifically for those stimulus configurations that had been presented in the same combination at retrieval before sleep. The association-independent stimulus-specific effect might generally form a major component of sleep-related effects on memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Subjective sleepiness is a sensitive indicator of insufficient sleep and impaired waking function.

    PubMed

    Akerstedt, Torbjörn; Anund, Anna; Axelsson, John; Kecklund, Göran

    2014-06-01

    The main consequence of insufficient sleep is sleepiness. While measures of sleep latency, continuous encephalographical/electro-oculographical (EEG/EOG) recording and performance tests are useful indicators of sleepiness in the laboratory and clinic, they are not easily implemented in large, real-life field studies. Subjective ratings of sleepiness, which are easily applied and unobtrusive, are an alternative, but whether they measure sleepiness sensitively, reliably and validly remains uncertain. This review brings together research relevant to these issues. It is focused on the Karolinska Sleepiness Scale (KSS), which is a nine-point Likert-type scale. The diurnal pattern of sleepiness is U-shaped, with high KSS values in the morning and late evening, and with great stability across years. KSS values increase sensitively during acute total and repeated partial sleep deprivation and night work, including night driving. The effect sizes range between 1.5 and 3. The relation to driving performance or EEG/EOG indicators of sleepiness is highly significant, strongly curvilinear and consistent across individuals. High (>6) KSS values are associated particularly with impaired driving performance and sleep intrusions in the EEG. KSS values are also increased in many clinical conditions such as sleep apnea, depression and burnout. The context has a strong influence on KSS ratings. Thus, physical activity, social interaction and light exposure will reduce KSS values by 1-2 units. In contrast, time-on-task in a monotonous context will increase KSS values by 1-2 units. In summary, subjective ratings of sleepiness as described here is as sensitive and valid an indicator of sleepiness as objective measures, and particularly suitable for field studies. © 2014 European Sleep Research Society.

  20. Heightened Background Cortical Synchrony in Patients With Epilepsy: EEG Phase Synchrony Analysis During Awake and Sleep Stages Using Novel Ensemble Measure.

    PubMed

    Nayak, Chetan S; Mariyappa, N; Majumdar, Kaushik K; Prasad, Pradeep D; Ravi, G S; Nagappa, M; Kandavel, Thennarasu; Taly, Arun B; Sinha, Sanjib

    2018-05-01

    Excessive cortical synchrony within neural ensembles has been implicated as an important mechanism driving epileptiform activity. The current study measures and compares background electroencephalographic (EEG) phase synchronization in patients having various types of epilepsies and healthy controls during awake and sleep stages. A total of 120 patients with epilepsy (PWE) subdivided into 3 groups (juvenile myoclonic epilepsy [JME], temporal lobe epilepsy [TLE], and extra-temporal lobe epilepsy [Ex-TLE]; n = 40 in each group) and 40 healthy controls were subjected to overnight polysomnography. EEG phase synchronization (SI) between the 8 EEG channels was assessed for delta, theta, alpha, sigma, and high beta frequency bands using ensemble measure on 10-second representative time windows and compared between patients and controls and also between awake and sleep stages. Mean ± SD of SI was compared using 2-way analysis of variance followed by pairwise comparison ( P ≤ .05). In both delta and theta bands, the SI was significantly higher in patients with JME, TLE, and Ex-TLE compared with controls, whereas in alpha, sigma, and high beta bands, SI was comparable between the groups. On comparison of SI between sleep stages, delta band: progressive increase in SI from wake ⇒ N1 ⇒ N2 ⇒ N3, whereas REM (rapid eye movement) was comparable to wake; theta band: decreased SI during N2 and increase during N3; alpha band: SI was highest in wake and lower in N1, N2, N3, and REM; and sigma and high beta bands: progressive increase in SI from wake ⇒ N1 ⇒ N2 ⇒ N3; however, sigma band showed lower SI during REM. This study found an increased background cortical synchronization in PWE compared with healthy controls in delta and theta bands during wake and sleep. This background hypersynchrony may be an important property of epileptogenic brain circuitry in PWE, which enables them to effortlessly generate a paroxysmal EEG depolarization shift.

  1. REM Sleep Rebound as an Adaptive Response to Stressful Situations

    PubMed Central

    Suchecki, Deborah; Tiba, Paula Ayako; Machado, Ricardo Borges

    2011-01-01

    Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral, and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a way to cope with the adverse stimuli. Chronic, as opposed to acute, stress impairs sleep and has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders. These outcomes are dependent on individual psychobiological characteristics, conferring even more complexity to the stress-sleep relationship. Its neurobiology has only recently begun to be explored, through animal models, which are also valuable for the development of potential therapeutic agents and preventive actions. This review seeks to present data on the effects of stress on sleep and the different approaches used to study this relationship as well as possible neurobiological underpinnings and mechanisms involved. The results of numerous studies in humans and animals indicate that increased sleep, especially the rapid eye movement phase, following a stressful situation is an important adaptive behavior for recovery. However, this endogenous advantage appears to be impaired in human beings and rodent strains that exhibit high levels of anxiety and anxiety-like behavior. PMID:22485105

  2. Is family history of alcohol dependence a risk factor for disturbed sleep in alcohol dependent subjects?

    PubMed

    Chakravorty, Subhajit; Chaudhary, Ninad S; Morales, Knashawn; Grandner, Michael A; Oslin, David W

    2018-07-01

    Disturbed sleep and a family history of alcohol dependence (AD) are risk factors for developing AD, yet the underlying relationship between them is unclear among individuals with AD. Understanding these inherited associations will help us not only identify risk for development of these comorbid disorders, but also individualize treatment at this interface. We evaluated whether a first-degree family history of AD (FH+) was a risk factor for sleep continuity disturbance in patients with AD. We also evaluated whether alcohol use or mood disturbance moderated the relationship between FH and sleep. We analyzed cross-sectional baseline data from an alcohol clinical trial in a sample of individuals with AD (N = 280). Their family history of AD among nuclear family members, sleep complaints, alcohol use (over the last 90 days), and mood disturbance were assessed using the Family History Interview for Substance and Mood Disorders, Medical Outcomes Study Sleep Scale, Time Line Follow-Back Interview, and Profile of Mood States-Short Form, respectively. A FH + status (65% of subjects) was significantly associated with lower model estimated mean sleep adequacy (β = - 7.05, p = 0.02) and sleep duration (β = - 0.38, p = 0.04) scale scores. FH was not associated with sleep disturbance scale. No significant moderating effect involving alcohol use or mood disturbance was seen. Family history of AD is a unique risk factor for sleep complaints in AD. Non-restorative sleep and sleep duration may be noteworthy phenotypes to help probe for underlying genotypic polymorphisms in these comorbid disorders. Published by Elsevier B.V.

  3. Alcohol Dependence and Its Relationship With Insomnia and Other Sleep Disorders.

    PubMed

    Chakravorty, Subhajit; Chaudhary, Ninad S; Brower, Kirk J

    2016-11-01

    Sleep-related complaints are widely prevalent in those with alcohol dependence (AD). AD is associated not only with insomnia, but also with multiple sleep-related disorders as a growing body of literature has demonstrated. This article will review the various aspects of insomnia associated with AD. In addition, the association of AD with other sleep-related disorders will be briefly reviewed. The association of AD with insomnia is bidirectional in nature. The etiopathogenesis of insomnia has demonstrated multiple associations and is an active focus of research. Treatment with cognitive behavioral therapy for insomnia is showing promise as an optimal intervention. In addition, AD may be associated with circadian abnormalities, short sleep duration, obstructive sleep apnea, and sleep-related movement disorder. The burgeoning knowledge on insomnia associated with moderate-to-severe alcohol use disorder has expanded our understanding of its underlying neurobiology, clinical features, and treatment options. Copyright © 2016 by the Research Society on Alcoholism.

  4. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices.

    PubMed

    Zheng, Jing-Jing; Li, Shu-Jing; Zhang, Xiao-Di; Miao, Wan-Ying; Zhang, Dinghong; Yao, Haishan; Yu, Xiang

    2014-03-01

    Sensory experience is critical to development and plasticity of neural circuits. Here we report a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling. Unimodal sensory deprivation from birth through whisker deprivation or dark rearing reduced excitatory synaptic transmission in the correspondent sensory cortex and cross-modally in other sensory cortices. Sensory experience regulated synthesis and secretion of the neuropeptide oxytocin as well as its level in the cortex. Both in vivo oxytocin injection and increased sensory experience elevated excitatory synaptic transmission in multiple sensory cortices and significantly rescued the effects of sensory deprivation. Together, these results identify a new function for oxytocin in promoting cross-modal, experience-dependent cortical development. This link between sensory experience and oxytocin is particularly relevant to autism, where hypersensitivity or hyposensitivity to sensory inputs is prevalent and oxytocin is a hotly debated potential therapy.

  5. Orexin and Epilepsy: Potential Role of REM Sleep.

    PubMed

    Ng, Marcus C

    2017-03-01

    Interest in orexin receptor antagonism as a novel mechanism of action against seizures and epilepsy has increased in recent years. Loss of orexinergic activity is associated with rapid eye movement (REM) sleep onset, and REM sleep is generally protective against seizures. This paper discusses the dynamic modulation of seizure threshold by orexin through a postulated "orexi-cortical" axis in which the specific type of orexinergic activity exquisitely regulates sleep-wake states to modify ascending subcortical influences on cortical synchronization with profound subsequent consequences on seizure threshold. This paper also explores the current state of research into experimental orexinergic modulation of seizure threshold and suggests possible future research directions to fully understand the promise and peril of orexinergic manipulation in seizures and epilepsy. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  6. The MMPI-2 Symptom Validity Scale (FBS) not influenced by medical impairment: a large sleep center investigation.

    PubMed

    Greiffenstein, Manfred F

    2010-06-01

    The Symptom Validity Scale (Minnesota Multiphasic Personality Inventory-2-FBS [MMPI-2-FBS]) is a standard MMPI-2 validity scale measuring overstatement of somatic distress and subjective disability. Some critics assert the MMPI-2-FBS misclassifies too many medically impaired persons as malingering symptoms. This study tests the assertion of malingering misclassification with a large sample of 345 medical inpatients undergoing sleep studies that standardly included MMPI-2 testing. The variables included standard MMPI-2 validity scales (Lie Scale [L], Infrequency Scale [F], K-Correction [K]; FBS), objective medical data (e.g., body mass index, pulse oximetry), and polysomnographic scores (e.g., apnea/hypopnea index). The results showed the FBS had no substantial or unique association with medical/sleep variables, produced false positive rates <20% (median = 9, range = 4-11), and male inpatients showed marginally higher failure rates than females. The MMPI-2-FBS appears to have acceptable specificity, because it did not misclassify as biased responders those medical patients with sleep problems, male or female, with primary gain only (reducing sickness). Medical impairment does not appear to be a major influence on deviant MMPI-2-FBS scores.

  7. Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    PubMed Central

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8–12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25–45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies. PMID:21340034

  8. Functional Neuroimaging Insights into the Physiology of Human Sleep

    PubMed Central

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre

    2010-01-01

    Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep. Citation: Dang

  9. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury.

    PubMed

    Zoladz, Phillip R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah L; Fry, Megan E; Johnson, Brandon L; Rorabaugh, Boyd R

    2016-01-01

    Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner.

  10. Prevalence of impaired memory in hospitalized adults and associations with in-hospital sleep loss.

    PubMed

    Calev, Hila; Spampinato, Lisa M; Press, Valerie G; Meltzer, David O; Arora, Vineet M

    2015-07-01

    Effective inpatient teaching requires intact patient memory, but studies suggest hospitalized adults may have memory deficits. Sleep loss among inpatients could contribute to memory impairment. To assess memory in older hospitalized adults, and to test the association between sleep quantity, sleep quality, and memory, in order to identify a possible contributor to memory deficits in these patients. Prospective cohort study. General medicine and hematology/oncology inpatient wards. Fifty-nine hospitalized adults at least 50 years of age with no diagnosed sleep disorder. Immediate memory and memory after a 24-hour delay were assessed using a word recall and word recognition task from the University of Southern California Repeatable Episodic Memory Test. A vignette-based memory task was piloted as an alternative test more closely resembling discharge instructions. Sleep duration and efficiency overnight in the hospital were measured using actigraphy. Mean immediate recall was 3.8 words out of 15 (standard deviation = 2.1). Forty-nine percent of subjects had poor memory, defined as immediate recall score of 3 or lower. Median immediate recognition was 11 words out of 15 (interquartile range [IQR] = 9-13). Median delayed recall score was 1 word, and median delayed recognition was 10 words (IQR = 8-12). In-hospital sleep duration and efficiency were not significantly associated with memory. The medical vignette score was correlated with immediate recall (r = 0.49, P < 0.01). About half of the inpatients studied had poor memory while in the hospital, signaling that hospitalization might not be an ideal teachable moment. In-hospital sleep was not associated with memory scores. © 2015 Society of Hospital Medicine.

  11. Prevalence of Impaired Memory in Hospitalized Adults and Associations with In-Hospital Sleep Loss

    PubMed Central

    Calev, Hila; Spampinato, Lisa M; Press, Valerie G; Meltzer, David O; Arora, Vineet M

    2015-01-01

    Background Effective inpatient teaching requires intact patient memory, but studies suggest hospitalized adults may have memory deficits. Sleep loss among inpatients could contribute to memory impairment. Objective To assess memory in older hospitalized adults, and to test the association between sleep quantity, sleep quality and memory, in order to identify a possible contributor to memory deficits in these patients. Design Prospective cohort study Setting General medicine and hematology/oncology inpatient wards Patients 59 hospitalized adults at least 50 years of age with no diagnosed sleep disorder. Measurements Immediate memory and memory after a 24-hour delay were assessed using a word recall and word recognition task from the University of Southern California Repeatable Episodic Memory Test (USC-REMT). A vignette-based memory task was piloted as an alternative test more closely resembling discharge instructions. Sleep duration and efficiency overnight in the hospital were measured using actigraphy. Results Mean immediate recall was 3.8 words out of 15 (SD=2.1). Forty-nine percent of subjects had poor memory, defined as immediate recall score of 3 or lower. Median immediate recognition was 11 words out of 15 (IQR=9, 13). Median delayed recall score was 1 word and median delayed recognition was 10 words (IQR= 8–12). In-hospital sleep duration and efficiency were not significantly associated with memory. The medical vignette score was correlated with immediate recall (r=0.49, p<0.01) Conclusions About half of inpatients studied had poor memory while in the hospital, signaling that hospitalization might not be an ideal teachable moment. In-hospital sleep was not associated with memory scores. PMID:25872763

  12. Arousals and aircraft noise - environmental disorders of sleep and health in terms of sleep medicine.

    PubMed

    Raschke, F

    2004-01-01

    World wide rules for sleep staging originate to 1967. Since then many investigations aimed to give numbers for the degree of sleep disturbances due to air traffic noise. But the variables used, such as the amount of relative sleep stages, total sleep time, or sleep efficiency, could not explain impairment in health and performance sufficiently. The beginning of the eighties has given new insight into the restorative functions of sleep, according to sleep fragmentation by micro-arousals. These are originating in autonomous dysfunctions during sleep, leading to non-restorative sleep. Environmentally related sleep disturbances are described, EEG and vegetative (micro)-arousals, and the actual knowledge in sleep medicine is given in terms of the international classification of sleep disorders (ICSD). The effects on health, and disturbed performance capacity during the day are shown by self ratings of 160 patients. Elevated metabolic rate caused by micro-arousal and/or insomnia, may play an additional role in health impairment.

  13. Consumer Sleep Technologies: A Review of the Landscape.

    PubMed

    Ko, Ping-Ru T; Kientz, Julie A; Choe, Eun Kyoung; Kay, Matthew; Landis, Carol A; Watson, Nathaniel F

    2015-12-15

    To review sleep related consumer technologies, including mobile electronic device "apps," wearable devices, and other technologies. Validation and methodological transparency, the effect on clinical sleep medicine, and various social, legal, and ethical issues are discussed. We reviewed publications from the digital libraries of the Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and PubMed; publications from consumer technology websites; and mobile device app marketplaces. Search terms included "sleep technology," "sleep app," and "sleep monitoring." Consumer sleep technologies are categorized by delivery platform including mobile device apps (integrated with a mobile operating system and utilizing mobile device functions such as the camera or microphone), wearable devices (on the body or attached to clothing), embedded devices (integrated into furniture or other fixtures in the native sleep environment), accessory appliances, and conventional desktop/website resources. Their primary goals include facilitation of sleep induction or wakening, self-guided sleep assessment, entertainment, social connection, information sharing, and sleep education. Consumer sleep technologies are changing the landscape of sleep health and clinical sleep medicine. These technologies have the potential to both improve and impair collective and individual sleep health depending on method of implementation. © 2015 American Academy of Sleep Medicine.

  14. Linalool Ameliorates Memory Loss and Behavioral Impairment Induced by REM-Sleep Deprivation through the Serotonergic Pathway.

    PubMed

    Lee, Bo Kyung; Jung, An Na; Jung, Yi-Sook

    2018-07-01

    Rapid eye movement (REM) sleep has an essential role in the process of learning and memory in the hippocampus. It has been reported that linalool, a major component of Lavandula angustifolia , has antioxidant, anti-inflammatory, and neuroprotective effects, along with other effects. However, the effect of linalool on the cognitive impairment and behavioral alterations that are induced by REM-sleep deprivation has not yet been elucidated. Several studies have reported that REM-sleep deprivation-induced memory deficits provide a well-known model of behavioral alterations. In the present study, we examined whether linalool elicited an anti-stress effect, reversing the behavioral alterations observed following REM-sleep deprivation in mice. Furthermore, we investigated the underlying mechanism of the effect of linalool. Spatial memory and learning memory were assessed through Y maze and passive avoidance tests, respectively, and the forced swimming test was used to evaluate anti-stress activity. The mechanisms through which linalool improves memory loss and behavioral alterations in sleep-deprived mice appeared to be through an increase in the serotonin levels. Linalool significantly ameliorated the spatial and learning memory deficits, and stress activity observed in sleep-deprived animals. Moreover, linalool led to serotonin release, and cortisol level reduction. Our findings suggest that linalool has beneficial effects on the memory loss and behavioral alterations induced by REM-sleep deprivation through the regulation of serotonin levels.

  15. (Mis)perception of sleep in insomnia: a puzzle and a resolution.

    PubMed

    Harvey, Allison G; Tang, Nicole K Y

    2012-01-01

    Insomnia is prevalent, causing severe distress and impairment. This review focuses on illuminating the puzzling finding that many insomnia patients misperceive their sleep. They overestimate their sleep onset latency (SOL) and underestimate their total sleep time (TST), relative to objective measures. This tendency is ubiquitous (although not universal). Resolving this puzzle has clinical, theoretical, and public health importance. There are implications for assessment, definition, and treatment. Moreover, solving the puzzle creates an opportunity for real-world applications of theories from clinical, perceptual, and social psychology as well as neuroscience. Herein we evaluate 13 possible resolutions to the puzzle. Specifically, we consider the possible contribution, to misperception, of (1) features inherent to the context of sleep (e.g., darkness); (2) the definition of sleep onset, which may lack sensitivity for insomnia patients; (3) insomnia being an exaggerated sleep complaint; (4) psychological distress causing magnification; (5) a deficit in time estimation ability; (6) sleep being misperceived as wake; (7) worry and selective attention toward sleep-related threats; (8) a memory bias influenced by current symptoms and emotions, a confirmation bias/belief bias, or a recall bias linked to the intensity/recency of symptoms; (9) heightened physiological arousal; (10) elevated cortical arousal; (11) the presence of brief awakenings; (12) a fault in neuronal circuitry; and (13) there being 2 insomnia subtypes (one with and one without misperception). The best supported resolutions were misperception of sleep as wake, worry, and brief awakenings. A deficit in time estimation ability was not supported. We conclude by proposing several integrative solutions.

  16. (Mis)Perception of Sleep in Insomnia: A puzzle and a resolution

    PubMed Central

    Harvey, Allison G.; Tang, Nicole

    2011-01-01

    Insomnia is prevalent, causing severe distress and impairment. This review focuses on illuminating the puzzling finding that many insomnia patients misperceive their sleep. They overestimate their sleep onset latency (SOL) and underestimate their total sleep time (TST), relative to objective measures. This tendency is ubiquitous (although not universal). Resolving this puzzle has clinical, theoretical, and public health importance. There are implications for assessment, definition, and treatment. Moreover, solving the puzzle creates an opportunity for "real world" applications of theories from clinical, perceptual, and social psychology as well as neuroscience. Herein we evaluate thirteen possible resolutions to the puzzle. Specifically, we consider the possible contribution, to misperception, of: (1) features inherent to the context of sleep (e.g., darkness); (2) the definition of sleep onset which may lack sensitivity for insomnia patients; (3) insomnia being an exaggerated sleep complaint; (4) psychological distress causing magnification; (5) a deficit in time estimation ability; (6) sleep being misperceived as wake; (7) worry and selective attention toward sleep-related threats; (8) a memory bias influenced by current symptoms and emotions, a confirmation bias/belief bias or a recall bias linked to the intensity/recency of symptoms; (9) heightened physiological arousal; (10) elevated cortical arousal; (11) the presence of brief awakenings; (12) a fault in neuronal circuitry; and (13) there being two insomnia subtypes (one with and one without misperception). The best supported resolutions were misperception of sleep as wake, worry, and brief awakenings. A deficit in time estimation ability was not supported. We conclude by proposing several integrative solutions. PMID:21967449

  17. A prospective, longitudinal study of sleep disturbance and comorbidity in opiate dependence (the ANRS Methaville study).

    PubMed

    Nordmann, Sandra; Lions, Caroline; Vilotitch, Antoine; Michel, Laurent; Mora, Marion; Spire, Bruno; Maradan, Gwenaelle; Morel, Alain; Roux, Perrine; Carrieri, M Patrizia

    2016-04-01

    Sleep disturbance is frequent in opioid-dependent patients. To date, no data are available about the impact of methadone maintenance treatment on sleep disturbance. Using 1-year follow-up data from the Methaville trial, we investigated the impact of methadone initiation and other correlates on sleep disturbance in opioid-dependent patients. Sleep disturbance severity was evaluated using two items from different scales (Center for Epidemiological Studies Depression Scale for depression and Opiate Treatment Index). We assessed the effect of methadone and other correlates on sleep disturbance severity during follow-up (months 0, 6, and 12) using a mixed multinomial logistic regression model. We included 173 patients who had 1-year follow-up data on sleep disturbance, corresponding to 445 visits. At enrolment, 60.5 % reported medium to severe sleep disturbance. This proportion remained stable during methadone treatment: 54.0 % at month 6 and 55.4 % at month 12. The final multivariate model indicated that younger patients (odds ratio (OR) [95 % CI] 0.95 [0.90-1.00]), patients with pain (OR [95 % CI] 2.45 [1.13-5.32]), patients with high or very high nicotine dependence (OR [95 % CI] 5.89 [2.41-14.39]), and patients at suicidal risk (2.50 [1.13-5.52]) had a higher risk of severe sleep disturbance. Because of collinearity between suicidal risk and attention deficit hyperactivity disorder (ADHD) symptoms, ADHD was not associated with sleep disturbance in the final model. Receiving methadone treatment had no significant effect on sleep disturbance. Sleep disturbance is frequent among opioid-dependent patients. It can be regarded as an important signal of more complex psychiatric comorbidities such as suicidal risk and ADHD. However, sleep disturbance should not be considered an obstacle to methadone maintenance treatment (MMT) initiation or continuation.

  18. Blindfolding during wakefulness causes decrease in sleep slow wave activity.

    PubMed

    Korf, Eva Magdalena; Mölle, Matthias; Born, Jan; Ngo, Hong-Viet V

    2017-04-01

    Slow wave activity (SWA, 0.5-4 Hz) represents the predominant EEG oscillatory activity during slow wave sleep (SWS). Its amplitude is considered in part a reflection of synaptic potentiation in cortical networks due to encoding of information during prior waking, with higher amplitude indicating stronger potentiation. Previous studies showed that increasing and diminishing specific motor behaviors produced corresponding changes in SWA in the respective motor cortical areas during subsequent SWS Here, we tested whether this relationship can be generalized to the visual system, that is, whether diminishing encoding of visual information likewise leads to a localized decrease in SWA over the visual cortex. Experiments were performed in healthy men whose eyes on two different days were or were not covered for 10.5 h before bedtime. The subject's EEG was recorded during sleep and, after sleep, visual evoked potentials (VEPs) were recorded. SWA during nonrapid eye movement sleep (NonREM sleep) was lower after blindfolding than after eyes open ( P  < 0.01). The decrease in SWA that was most consistent during the first 20 min of NonREM sleep, did not remain restricted to visual cortex regions, with changes over frontal and parietal cortical regions being even more pronounced. In the morning after sleep, the N75-P100 peak-to-peak-amplitude of the VEP was significantly diminished in the blindfolded condition. Our findings confirm a link between reduced wake encoding and diminished SWA during ensuing NonREM sleep, although this link appears not to be restricted to sensory cortical areas. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Hypomyelination, memory impairment, and blood-brain barrier permeability in a model of sleep apnea.

    PubMed

    Kim, Lenise Jihe; Martinez, Denis; Fiori, Cintia Zappe; Baronio, Diego; Kretzmann, Nélson Alexandre; Barros, Helena Maria Tannhauser

    2015-02-09

    We investigated the effect of intermittent hypoxia, mimicking sleep apnea, on axonal integrity, blood-brain barrier permeability, and cognitive function of mice. Forty-seven C57BL mice were exposed to intermittent or sham hypoxia, alternating 30s of progressive hypoxia and 30s of reoxigenation, during 8h/day. The axonal integrity in cerebellum was evaluated by transmission electron microscopy. Short- and long-term memories were assessed by novel object recognition test. The levels of endothelin-1 were measured by ELISA. Blood-brain barrier permeability was quantified by Evans Blue dye. After 14 days, animals exposed to intermittent hypoxia showed hypomyelination in cerebellum white matter and higher serum levels of endothelin-1. The short and long-term memories in novel object recognition test was impaired in the group exposed to intermittent hypoxia as compared to controls. Blood-brain barrier permeability was similar between the groups. These results indicated that hypomyelination and impairment of short- and long-term working memories occurred in C57BL mice after 14 days of intermittent hypoxia mimicking sleep apnea. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Properties of slow oscillation during slow-wave sleep and anesthesia in cats

    PubMed Central

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-01-01

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat, to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, while under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were largely uniform across cortical areas under anesthesia, but in SWS they were most pronounced in associative and visual areas, but smaller and less regular in somatosensory and motor cortices. We conclude that although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS as compared to ketamine-xylazine anesthesia. PMID:22016533

  1. Properties of slow oscillation during slow-wave sleep and anesthesia in cats.

    PubMed

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-10-19

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia.

  2. Reduced Cortical Thickness in Mental Retardation

    PubMed Central

    Wang, Chao; Wang, Jiaojian; Zhang, Yun; Yu, Chunshui; Jiang, Tianzi

    2011-01-01

    Mental retardation is a developmental disorder associated with impaired cognitive functioning and deficits in adaptive behaviors. Many studies have addressed white matter abnormalities in patients with mental retardation, while the changes of the cerebral cortex have been studied to a lesser extent. Quantitative analysis of cortical integrity using cortical thickness measurement may provide new insights into the gray matter pathology. In this study, cortical thickness was compared between 13 patients with mental retardation and 26 demographically matched healthy controls. We found that patients with mental retardation had significantly reduced cortical thickness in multiple brain regions compared with healthy controls. These regions include the bilateral lingual gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral temporal pole, the left inferior temporal gyrus, the right lateral orbitofrontal cortex and the right precentral gyrus. The observed cortical thickness reductions might be the anatomical substrates for the impaired cognitive functioning and deficits in adaptive behaviors in patients with mental retardation. Cortical thickness measurement might provide a sensitive prospective surrogate marker for clinical trials of neuroprotective medications. PMID:22216343

  3. Impaired health status, sleep disorders, and pain in the craniomandibular and cervical spinal regions.

    PubMed

    Lobbezoo, Frank; Visscher, Corine M; Naeije, Machiel

    2004-02-01

    This study investigated the relationship between health status (i.e., physical well-being and quality of life), sleep disorders (e.g., insomnia, sleep-related depression and anxiety), and musculoskeletal pain in the craniomandibular and cervical spinal regions. The number of painful body areas below the cervical spine (i.e., widespread pain) was also taken into account. Two questionnaires, viz., the RAND 36-item Health Survey Questionnaire and the Dutch Sleep Disorders Questionnaire (SDQ), were administered to 103 persons who could unequivocally be classified into one of four mutually exclusive groups: No pain, craniomandibular pain (CMP), cervical spinal pain (CSP), and both CMP and CSP. Body drawings were used for the self-report of widespread pain. Multivariate analysis of variance showed effects of gender, group, and widespread pain on the questionnaire scales; not of age. As shown by univariate analysis of variance, men suffered more from sleep apnea than did women. No other gender differences were found. Simple contrast analyses following univariate analyses of the group and widespread pain effects showed that, in general, more questionnaire scales, both of the RAND-36 and of the SDQ, reached statistical significance with an increase in the number of painful areas. It was concluded that both musculoskeletal pain in the trigemino-cervical area and widespread body pain are associated with an increased impairment of health status. Also, sleep disorders are frequently found in patients with chronic pain in the craniomandibular and cervical spinal regions as well as in patients with widespread pain. The more painful areas there are, the likelier it is that sleep disorders are present.

  4. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction

    PubMed Central

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2016-01-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983

  5. A Cross-Syndrome Study of the Differential Effects of Sleep on Declarative Memory Consolidation in Children with Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Ashworth, Anna; Hill, Catherine M.; Karmiloff-Smith, Annette; Dimitriou, Dagmara

    2017-01-01

    Sleep plays an active role in memory consolidation. Because children with Down syndrome (DS) and Williams syndrome (WS) experience significant problems with sleep and also with learning, we predicted that sleep-dependent memory consolidation would be impaired in these children when compared to typically developing (TD) children. This is the first…

  6. Anosognosia in mild cognitive impairment: Relationship to activation of cortical midline structures involved in self-appraisal

    PubMed Central

    Ries, Michele L.; Jabbar, Britta M.; Schmitz, Taylor W.; Trivedi, Mehul A.; Gleason, Carey E.; Carlsson, Cynthia M.; Rowley, Howard A.; Asthana, Sanjay; Johnson, Sterling C.

    2009-01-01

    Awareness of cognitive dysfunction shown by individuals with Mild Cognitive Impairment (MCI), a condition conferring risk for Alzheimer’s disease (AD), is variable. Anosognosia, or unawareness of loss of function, is beginning to be recognized as an important clinical symptom of MCI. However, little is known about the brain substrates underlying this symptom. We hypothesized that MCI participants’ activation of cortical midline structures (CMS) during self-appraisal would covary with level of insight into cognitive difficulties (indexed by a discrepancy score between patient and informant ratings of cognitive decline in each MCI participant). To address this hypothesis, we first compared 16 MCI participants and 16 age-matched controls, examining brain regions showing conjoint or differential BOLD response during self-appraisal. Second, we used regression to investigate the relationship between awareness of deficit in MCI and BOLD activity during self-appraisal, controlling for extent of memory impairment. Between-group comparisons indicated that MCI participants show subtly attenuated CMS activity during self-appraisal. Regression analysis revealed a highly-significant relationship between BOLD response during self-appraisal and self-awareness of deficit in MCI. This finding highlights the level of anosognosia in MCI as an important predictor of response to self-appraisal in cortical midline structures, brain regions vulnerable to changes in early AD. PMID:17445294

  7. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.

    PubMed

    Kroeger, Daniel; Ferrari, Loris L; Petit, Gaetan; Mahoney, Carrie E; Fuller, Patrick M; Arrigoni, Elda; Scammell, Thomas E

    2017-02-01

    The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep-wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior, improving our

  9. The 5-HT6 receptor antagonist idalopirdine potentiates the effects of donepezil on gamma oscillations in the frontal cortex of anesthetized and awake rats without affecting sleep-wake architecture.

    PubMed

    Amat-Foraster, Maria; Leiser, Steven C; Herrik, Kjartan F; Richard, Nelly; Agerskov, Claus; Bundgaard, Christoffer; Bastlund, Jesper F; de Jong, Inge E M

    2017-02-01

    The 5-HT 6 receptor is a promising target for cognitive disorders, in particular for Alzheimer's disease (AD). The high affinity and selective 5-HT 6 receptor antagonist idalopirdine (Lu AE58054) is currently in development for mild-moderate AD as adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We studied the effects of idalopirdine alone and in combination with the AChEI donepezil on cortical function using two in vivo electrophysiological methods. Neuronal network oscillations in the frontal cortex were measured during electrical stimulation of the brainstem nucleus pontis oralis (nPO) in the anesthetized rat and by an electroencephalogram (EEG) in the awake, freely moving rat. In conjunction with the EEG study, we investigated the effects of idalopirdine and donepezil on sleep-wake architecture using telemetric polysomnography. Idalopirdine (2 mg/kg i.v.) increased gamma power in the medial prefrontal cortex (mPFC) during nPO stimulation. Donepezil (0.3 and 1 mg/kg i.v.) also increased cortical gamma power and pretreatment with idalopirdine (2 mg/kg i.v.) potentiated and prolonged the effects of donepezil. Similarly, donepezil (1 and 3 mg/kg s.c.) dose-dependently increased frontal cortical gamma power in the freely moving rat and pretreatment with idalopirdine (10 mg/kg p.o.) augmented the effect of donepezil 1 mg/kg. Analysis of the sleep-wake architecture showed that donepezil (1 and 3 mg/kg s.c.) dose-dependently delayed sleep onset and decreased the time spent in both REM and non REM sleep stages. In contrast, idalopirdine (10 mg/kg p.o.) did not affect sleep-wake architecture nor the effects of donepezil. In summary, we show that idalopirdine potentiates the effects of donepezil on frontal cortical gamma oscillations, a pharmacodynamic biomarker associated with cognition, without modifying the effects of donepezil on sleep. The increased cortical excitability may contribute to the procognitive effects of idalopirdine in donepezil

  10. Cognitive Neuroscience of Sleep

    PubMed Central

    Poe, Gina R.; Walsh, Christine M.; Bjorness, Theresa E.

    2014-01-01

    Mechanism is at the heart of understanding, and this chapter addresses underlying brain mechanisms and pathways of cognition and the impact of sleep on these processes, especially those serving learning and memory. This chapter reviews the current understanding of the relationship between sleep/waking states and cognition from the perspective afforded by basic neurophysiological investigations. The extensive overlap between sleep mechanisms and the neurophysiology of learning and memory processes provide a foundation for theories of a functional link between the sleep and learning systems. Each of the sleep states, with its attendant alterations in neurophysiology, is associated with facilitation of important functional learning and memory processes. For rapid eye movement (REM) sleep, salient features such as PGO waves, theta synchrony, increased acetylcholine, reduced levels of monoamines and, within the neuron, increased transcription of plasticity-related genes, cumulatively allow for freely occurring bidirectional plasticity (long-term potentiation (LTP) and its reversal, depotentiation). Thus, REM sleep provides a novel neural environment in which the synaptic remodeling essential to learning and cognition can occur, at least within the hippocampal complex. During nonREM sleep Stage 2 spindles, the cessation and subsequent strong bursting of noradrenergic cells and coincident reactivation of hippocampal and cortical targets would also increase synaptic plasticity, allowing targeted bidirectional plasticity in the neocortex as well. In delta nonREM sleep, orderly neuronal reactivation events in phase with slow wave delta activity, together with high protein synthesis levels, would facilitate the events that convert early LTP to long lasting LTP. Conversely, delta sleep does not activate immediate early genes associated with de novo LTP. This nonREM sleep-unique genetic environment combined with low acetylcholine levels may serve to reduce the strength of

  11. REM sleep respiratory behaviours mental content in narcoleptic lucid dreamers.

    PubMed

    Oudiette, Delphine; Dodet, Pauline; Ledard, Nahema; Artru, Emilie; Rachidi, Inès; Similowski, Thomas; Arnulf, Isabelle

    2018-02-08

    Breathing is irregular during rapid eye-movement (REM) sleep, whereas it is stable during non-REM sleep. Why this is so remains a mystery. We propose that irregular breathing has a cortical origin and reflects the mental content of dreams, which often accompany REM sleep. We tested 21 patients with narcolepsy who had the exceptional ability to lucid dream in REM sleep, a condition in which one is conscious of dreaming during the dream and can signal lucidity with an ocular code. Sleep and respiration were monitored during multiple naps. Participants were instructed to modify their dream scenario so that it involved vocalizations or an apnoea, -two behaviours that require a cortical control of ventilation when executed during wakefulness. Most participants (86%) were able to signal lucidity in at least one nap. In 50% of the lucid naps, we found a clear congruence between the dream report (e.g., diving under water) and the observed respiratory behaviour (e.g., central apnoea) and, in several cases, a preparatory breath before the respiratory behaviour. This suggests that the cortico-subcortical networks involved in voluntary respiratory movements are preserved during REM sleep and that breathing irregularities during this stage have a cortical/subcortical origin that reflects dream content.

  12. Rescue of Impaired mGluR5-Driven Endocannabinoid Signaling Restores Prefrontal Cortical Output to Inhibit Pain in Arthritic Rats.

    PubMed

    Kiritoshi, Takaki; Ji, Guangchen; Neugebauer, Volker

    2016-01-20

    The medial prefrontal cortex (mPFC) serves executive functions that are impaired in neuropsychiatric disorders and pain. Underlying mechanisms remain to be determined. Here we advance the novel concept that metabotropic glutamate receptor 5 (mGluR5) fails to engage endocannabinoid (2-AG) signaling to overcome abnormal synaptic inhibition in pain, but restoring endocannabinoid signaling allows mGluR5 to increase mPFC output hence inhibit pain behaviors and mitigate cognitive deficits. Whole-cell patch-clamp recordings were made from layer V pyramidal cells in the infralimbic mPFC in rat brain slices. Electrical and optogenetic stimulations were used to analyze amygdala-driven mPFC activity. A selective mGluR5 activator (VU0360172) increased pyramidal output through an endocannabinoid-dependent mechanism because intracellular inhibition of the major 2-AG synthesizing enzyme diacylglycerol lipase or blockade of CB1 receptors abolished the facilitatory effect of VU0360172. In an arthritis pain model mGluR5 activation failed to overcome abnormal synaptic inhibition and increase pyramidal output. mGluR5 function was rescued by restoring 2-AG-CB1 signaling with a CB1 agonist (ACEA) or inhibitors of postsynaptic 2-AG hydrolyzing enzyme ABHD6 (intracellular WWL70) and monoacylglycerol lipase MGL (JZL184) or by blocking GABAergic inhibition with intracellular picrotoxin. CB1-mediated depolarization-induced suppression of synaptic inhibition (DSI) was also impaired in the pain model but could be restored by coapplication of VU0360172 and ACEA. Stereotaxic coadministration of VU0360172 and ACEA into the infralimbic, but not anterior cingulate, cortex mitigated decision-making deficits and pain behaviors of arthritic animals. The results suggest that rescue of impaired endocannabinoid-dependent mGluR5 function in the mPFC can restore mPFC output and cognitive functions and inhibit pain. Significance statement: Dysfunctions in prefrontal cortical interactions with subcortical

  13. State-dependent metabolic partitioning and energy conservation: A theoretical framework for understanding the function of sleep.

    PubMed

    Schmidt, Markus H; Swang, Theodore W; Hamilton, Ian M; Best, Janet A

    2017-01-01

    Metabolic rate reduction has been considered the mechanism by which sleep conserves energy, similar to torpor or hibernation. This mechanism of energy savings is in conflict with the known upregulation (compared to wake) of diverse functions during sleep and neglects a potential role in energy conservation for partitioning of biological operations by behavioral state. Indeed, energy savings as derived from state-dependent resource allocations have yet to be examined. A mathematical model is presented based on relative rates of energy deployment for biological processes upregulated during either wake or sleep. Using this model, energy savings from sleep-wake cycling over constant wakefulness is computed by comparing stable limit cycles for systems of differential equations. A primary objective is to compare potential energy savings derived from state-dependent metabolic partitioning versus metabolic rate reduction. Additionally, energy conservation from sleep quota and the circadian system are also quantified in relation to a continuous wake condition. As a function of metabolic partitioning, our calculations show that coupling of metabolic operations with behavioral state may provide comparatively greater energy savings than the measured decrease in metabolic rate, suggesting that actual energy savings derived from sleep may be more than 4-fold greater than previous estimates. A combination of state-dependent metabolic partitioning and modest metabolic rate reduction during sleep may enhance energy savings beyond what is achievable through metabolic partitioning alone; however, the relative contribution from metabolic partitioning diminishes as metabolic rate is decreased during the rest phase. Sleep quota and the circadian system further augment energy savings in the model. Finally, we propose that state-dependent resource allocation underpins both sleep homeostasis and the optimization of daily energy conservation across species. This new paradigm identifies an

  14. Is sleep-related verbal memory consolidation impaired in sleepwalkers?

    PubMed

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2015-04-01

    In order to evaluate verbal memory consolidation during sleep in subjects experiencing sleepwalking or sleep terror, 19 patients experiencing sleepwalking/sleep terror and 19 controls performed two verbal memory tasks (16-word list from the Free and Cued Selective Reminding Test, and a 220- and 263-word modified story recall test) in the evening, followed by nocturnal video polysomnography (n = 29) and morning recall (night-time consolidation after 14 h, n = 38). The following morning, they were given a daytime learning task using the modified story recall test in reverse order, followed by an evening recall test after 9 h of wakefulness (daytime consolidation, n = 38). The patients experiencing sleepwalking/sleep terror exhibited more frequent awakenings during slow-wave sleep and longer wakefulness after sleep onset than the controls. Despite this reduction in sleep quality among sleepwalking/sleep terror patients, they improved their scores on the verbal tests the morning after sleep compared with the previous evening (+16 ± 33%) equally well as the controls (+2 ± 13%). The performance of both groups worsened during the daytime in the absence of sleep (-16 ± 15% for the sleepwalking/sleep terror group and -14 ± 11% for the control group). There was no significant correlation between the rate of memory consolidation and any of the sleep measures. Seven patients experiencing sleepwalking also sleep-talked during slow-wave sleep, but their sentences were unrelated to the tests or the list of words learned during the evening. In conclusion, the alteration of slow-wave sleep during sleepwalking/sleep terror does not noticeably impact on sleep-related verbal memory consolidation. © 2014 European Sleep Research Society.

  15. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice

    PubMed Central

    Kroeger, Daniel; Ferrari, Loris L.; Mahoney, Carrie E.; Arrigoni, Elda

    2017-01-01

    The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. SIGNIFICANCE STATEMENT More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep–wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior

  16. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool.

    PubMed

    Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano

    2015-01-01

    Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z < 0.05), and neurophysiological data tested with the Mann-Whitney t test and binomial distribution test (P or Z < 0.05). An improvement in declarative (P = 0.05) and visuospatial memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Reduced Cortical Complexity in Children with Prader-Willi Syndrome and Its Association with Cognitive Impairment and Developmental Delay

    PubMed Central

    Lukoshe, Akvile; Hokken-Koelega, Anita C.; van der Lugt, Aad; White, Tonya

    2014-01-01

    Background Prader-Willi Syndrome (PWS) is a complex neurogenetic disorder with symptoms involving not only hypothalamic, but also a global, central nervous system dysfunction. Previously, qualitative studies reported polymicrogyria in adults with PWS. However, there have been no quantitative neuroimaging studies of cortical morphology in PWS and no studies to date in children with PWS. Thus, our aim was to investigate and quantify cortical complexity in children with PWS compared to healthy controls. In addition, we investigated differences between genetic subtypes of PWS and the relationship between cortical complexity and intelligence within the PWS group. Methods High-resolution structural magnetic resonance images were acquired in 24 children with genetically confirmed PWS (12 carrying a deletion (DEL), 12 with maternal uniparental disomy (mUPD)) and 11 age- and sex-matched typically developing siblings as healthy controls. Local gyrification index (lGI) was obtained using the FreeSurfer software suite. Results Four large clusters, two in each hemisphere, comprising frontal, parietal and temporal lobes, had lower lGI in children with PWS, compared to healthy controls. Clusters with lower lGI also had significantly lower cortical surface area in children with PWS. No differences in cortical thickness of the clusters were found between the PWS and healthy controls. lGI correlated significantly with cortical surface area, but not with cortical thickness. Within the PWS group, lGI in both hemispheres correlated with Total IQ and Verbal IQ, but not with Performance IQ. Children with mUPD, compared to children with DEL, had two small clusters with lower lGI in the right hemisphere. lGI of these clusters correlated with cortical surface area, but not with cortical thickness or IQ. Conclusions These results suggest that lower cortical complexity in children with PWS partially underlies cognitive impairment and developmental delay, probably due to alterations in gene

  18. Absence of bone sialoprotein (BSP) impairs cortical defect repair in mouse long bone.

    PubMed

    Malaval, Luc; Monfoulet, Laurent; Fabre, Thierry; Pothuaud, Laurent; Bareille, Reine; Miraux, Sylvain; Thiaudiere, Eric; Raffard, Gerard; Franconi, Jean-Michel; Lafage-Proust, Marie-Hélène; Aubin, Jane E; Vico, Laurence; Amédée, Joëlle

    2009-11-01

    Matrix proteins of the SIBLING family interact with bone cells and with bone mineral and are thus in a key position to regulate bone development, remodeling and repair. Within this family, bone sialoprotein (BSP) is highly expressed by osteoblasts, hypertrophic chondrocytes and osteoclasts. We recently reported that mice lacking BSP (BSP-/-) have very low trabecular bone turnover. In the present study, we set up an experimental model of bone repair by drilling a 1 mm diameter hole in the cortical bone of femurs in both BSP-/- and +/+ mice. A non-invasive MRI imaging and bone quantification procedure was designed to follow bone regeneration, and these data were extended by microCT imaging and histomorphometry on undecalcified sections for analysis at cellular level. These combined approaches revealed that the repair process as reflected in defect-refilling in the cortical area was significantly delayed in BSP-/- mice compared to +/+ mice. Concomitantly, histomorphometry showed that formation, mineralization and remodeling of repair (primary) bone in the medulla were delayed in BSP-/- mice, with lower osteoid and osteoclast surfaces at day 15. In conclusion, the absence of BSP delays bone repair at least in part by impairing both new bone formation and osteoclast activity.

  19. Cortical drive to breathe in amyotrophic lateral sclerosis: a dyspnoea-worsening defence?

    PubMed

    Georges, Marjolaine; Morawiec, Elise; Raux, Mathieu; Gonzalez-Bermejo, Jésus; Pradat, Pierre-François; Similowski, Thomas; Morélot-Panzini, Capucine

    2016-06-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing diaphragm weakness that can be partially compensated by inspiratory neck muscle recruitment. This disappears during sleep, which is compatible with a cortical contribution to the drive to breathe. We hypothesised that ALS patients with respiratory failure exhibit respiratory-related cortical activity, relieved by noninvasive ventilation (NIV) and related to dyspnoea.We studied 14 ALS patients with respiratory failure. Electroencephalographic recordings (EEGs) and electromyographic recordings of inspiratory neck muscles were performed during spontaneous breathing and NIV. Dyspnoea was evaluated using the Multidimensional Dyspnea Profile.Eight patients exhibited slow EEG negativities preceding inspiration (pre-inspiratory potentials) during spontaneous breathing. Pre-inspiratory potentials were attenuated during NIV (p=0.04). Patients without pre-inspiratory potentials presented more advanced forms of ALS and more severe respiratory impairment, but less severe dyspnoea. Patients with pre-inspiratory potentials had stronger inspiratory neck muscle activation and more severe dyspnoea during spontaneous breathing.ALS-related diaphragm weakness can engage cortical resources to augment the neural drive to breathe. This might reflect a compensatory mechanism, with the intensity of dyspnoea a negative consequence. Disease progression and the corresponding neural loss could abolish this phenomenon. A putative cognitive cost should be investigated. Copyright ©ERS 2016.

  20. A Controlled Trial of CPAP Therapy on Metabolic Control in Individuals with Impaired Glucose Tolerance and Sleep Apnea

    PubMed Central

    Weinstock, Tanya G.; Wang, Xuelei; Rueschman, Michael; Ismail-Beigi, Faramarz; Aylor, Joan; Babineau, Denise C.; Mehra, Reena; Redline, Susan

    2012-01-01

    Study Objectives: To address whether treatment of sleep apnea improves glucose tolerance. Design: Randomized, double-blind crossover study. Setting: Sleep clinic referrals. Patients: 50 subjects with moderate to severe sleep apnea (AHI > 15) and impaired glucose tolerance. Interventions: Subjects were randomized to 8 weeks of CPAP or sham CPAP, followed by the alternate therapy after a one-month washout. After each treatment, subjects underwent 2-hour OGTT, polysomnography, actigraphy, and measurements of indices of glucose control. Measurements and Results: The primary outcome was normalization of the mean 2-h OGTT; a secondary outcome was improvement in the Insulin Sensitivity Index (ISI (0,120). Subjects were 42% men, mean age of 54 (10), BMI of 39 (8), and AHI of 44 (27). Baseline fasting glucose was 104 (12), and mean 2-h OGTT was 110 (57) mg/dL. Seven subjects normalized their mean 2-h OGTT after CPAP but not after sham CPAP, while 5 subjects normalized after sham CPAP but not after CPAP. Overall, there was no improvement in ISI (0,120) between CPAP and sham CPAP (3.6%; 95% CI: [-2.2%, 9.7%]; P = 0.22). However, in those subjects with baseline AHI ≥ 30 (n = 25), there was a 13.3% (95% CI: [5.2%, 22.1%]; P < 0.001) improvement in ISI (0,120) and a 28.7% (95%CI: [-46.5%, −10.9%], P = 0.002) reduction in the 2-h insulin level after CPAP compared to sham CPAP. Conclusions: This study did not show that IGT normalizes after CPAP in subjects with moderate sleep apnea and obesity. However, insulin sensitivity improved in those with AHI ≥ 30, suggesting beneficial metabolic effects of CPAP in severe sleep apnea. Clinical Trials Information: ClinicalTrials.gov Identifier: NCT01385995. Citation: Weinstock TG; Wang X; Rueschman M; Ismail-Beigi F; Aylor J; Babineau DC; Mehra R; Redline S. A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. SLEEP 2012;35(5):617-625. PMID:22547887

  1. The Experiences of Sleep Disruption in Families of Technology-Dependent Children Living at Home

    ERIC Educational Resources Information Center

    Heaton, Janet; Noyes, Jane; Sloper, Patricia; Shah, Robina

    2006-01-01

    This paper examines the sleep disruption experienced by 36 families of technology-dependent children living at home in the United Kingdom. The paper begins with an overview of the qualitative study in which parents' experiences of sleep disruption emerged as a major theme. We then describe the nature of and reasons for the sleep disruption, the…

  2. Age-dependent seizures of absence epilepsy and sleep spindles dynamics in WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In the given paper, a relation between time-frequency characteristics of sleep spindles and the age-dependent epileptic activity in WAG/Rij rats is discussed. Analysis of sleep spindles based on the continuous wavelet transform is performed for rats of different ages. It is shown that the epileptic activity affects the time-frequency intrinsic dynamics of sleep spindles.

  3. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus.

    PubMed

    Khodagholy, Dion; Gelinas, Jennifer N; Buzsáki, György

    2017-10-20

    Consolidation of declarative memories requires hippocampal-neocortical communication. Although experimental evidence supports the role of sharp-wave ripples in transferring hippocampal information to the neocortex, the exact cortical destinations and the physiological mechanisms of such transfer are not known. We used a conducting polymer-based conformable microelectrode array (NeuroGrid) to record local field potentials and neural spiking across the dorsal cortical surface of the rat brain, combined with silicon probe recordings in the hippocampus, to identify candidate physiological patterns. Parietal, midline, and prefrontal, but not primary cortical areas, displayed localized ripple (100 to 150 hertz) oscillations during sleep, concurrent with hippocampal ripples. Coupling between hippocampal and neocortical ripples was strengthened during sleep following learning. These findings suggest that ripple-ripple coupling supports hippocampal-association cortical transfer of memory traces. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Sleep Pattern and Sleep Hygiene Practices among Nigerian Schooling Adolescents

    PubMed Central

    Peter, Igoche David; Adamu, Halima; Asani, Mustafa O.; Aliyu, Ibrahim; Sabo, Umar A.; Umar, Umar I.

    2017-01-01

    Background: Sleep problems, especially in the adolescent stage of development, may be associated with excessive daytime sleepiness, impaired neurocognitive function, and a host of others leading to suboptimal performance. Objectives: To determine the pattern of sleep problems in school-going adolescents based on the bedtime problems; excessive daytime sleepiness; awakenings during the night and problems falling back asleep; regularity and duration of sleep; sleep-disordered breathing (BEARS) sleep screening algorithm. Materials and Methods: This is a cross-sectional descriptive study involving 353 secondary school-going adolescents in Kano metropolis. Subjects were selected for the study using multistage sampling technique. The study lasted from March 2015 to July 2015. Sleep problems were screened for using the BEARS sleep screening algorithm. Tables were used to present the qualitative data. The various BEARS sleep patterns were assessed, and comparison between stages of adolescence was done using Chi-square test (and Fisher's exact test where necessary). A significant association was considered at P < 0.05. Results: Of the 353 adolescents studied, 61.8% were males while 38.2% were females with male, female ratio of 1.6:1. Early, middle, and late adolescents constituted 13.9%, 39.9%, 46.2% respectively. BEARS sleep screening revealed awakenings during the night (34.6%) as the most common sleep-related problem reported, and this was followed by excessive daytime sleepiness (21.0%). Age-group dependent sleep duration was 7.19 ± 1.26, 7.13 ± 1.13, 7.16 ± 1.28, with P > 0.05. Although 62.9% of all the adolescents watched TV/play video games until 1 h before going to bed and this was highest in late adolescence, it was not statistically significantly associated with any of the sleep problems. Conclusion: Both the quality and quantity of sleep in Nigerian adolescents in Kano is suboptimal. Adolescent and sleep medicine should receive more attention in our

  5. Electroencephalographic findings related with mild cognitive impairment in idiopathic rapid eye movement sleep behavior disorder.

    PubMed

    Sasai, Taeko; Matsuura, Masato; Inoue, Yuichi

    2013-12-01

    Mild cognitive impairment (MCI) and electroencephalographic (EEG) slowing have been reported as common findings of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) and α-synucleinopathies. The objective of this study is to clarify the relation between MCI and physiological markers in iRBD. Cross-sectional study. Yoyogi Sleep Disorder Center. Thirty-one patients with iRBD including 17 younger patients with iRBD (younger than 70 y) and 17 control patients for the younger patients with iRBD. N/A. Montreal Cognitive Assessment (MoCA) and n-polysomnogram (PSG) were conducted of all participants. In patients with iRBD, the factors associated with MCI were explored among parameters of REM sleep without atonia (RWA), score of Sniffin' Sticks Test (threshold-discrimination-identification [TDI] score), RBD morbidity, and RBD severity evaluated with the Japanese version of the RBD questionnaire (RBDQ-JP). The younger iRBD group showed significantly lower alpha power during wake and lower MoCA score than the age-matched control group. MCI was detected in 13 of 17 patients (76.5%) on MoCA in this group. Among patients wtih iRBD, the MoCA score negatively correlated with age, proportion of slow wave sleep, TDI score, and EEG spectral power. Multiple regression analysis provided the following equation: MoCA score = 50.871-0.116*age -5.307*log (δ power during REM sleep) + 0.086*TDI score (R² = 0.598, P < 0.01). The standardized partial regression coefficients were -0.558 for age, -0.491 for log (δ power during REM sleep), and 0.357 for TDI score (F = 9.900, P < 0.001). Electroencephalographic slowing, especially during rapid eye movement sleep and olfactory dysfunction, was revealed to be associated with cognitive decline in idiopathic rapid eye movement sleep behavior disorder.

  6. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    ERIC Educational Resources Information Center

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  7. Impaired cortical activation in autistic children: is the mirror neuron system involved?

    PubMed

    Martineau, Joëlle; Cochin, Stéphanie; Magne, Rémy; Barthelemy, Catherine

    2008-04-01

    The inability to imitate becomes obvious early in autistic children and seems to contribute to learning delay and to disorders of communication and contact. Posture, motility and imitation disorders in autistic syndrome might be the consequence of an abnormality of sensori-motor integration, related to the visual perception of movement, and could reflect impairment of the mirror neuron system (MNS). We compared EEG activity during the observation of videos showing actions or still scenes in 14 right-handed autistic children and 14 right-handed, age- and gender-matched control children (3 girls and 11 boys, aged 5 years 3 months-7 years 11 months). We showed desynchronisation of the EEG in the motor cerebral cortex and the frontal and temporal areas during observation of human actions in the group of healthy children. No such desynchronisation was found in autistic children. Moreover, inversion of the pattern of hemispheric activation was found in autistic children, with increased cortical activity in the right hemisphere in the posterior region, including the centro-parietal and temporo-occipital sites. These results are in agreement with the hypothesis of impairment of the mirror neuron system in autistic disorder.

  8. Cortical thickness in neuropsychologically near-normal schizophrenia.

    PubMed

    Cobia, Derin J; Csernansky, John G; Wang, Lei

    2011-12-01

    Schizophrenia is a severe psychiatric illness with widespread impairments of cognitive functioning; however, a certain percentage of subjects are known to perform in the normal range on neuropsychological measures. While the cognitive profiles of these individuals have been examined, there has been relatively little attention to the neuroanatomical characteristics of this important subgroup. The aims of this study were to statistically identify schizophrenia subjects with relatively normal cognition, examine their neuroanatomical characteristics relative to their more impaired counterparts using cortical thickness mapping, and to investigate relationships between these characteristics and demographic variables to better understand the nature of cognitive heterogeneity in schizophrenia. Clinical, neuropsychological, and MRI data were collected from schizophrenia (n = 79) and healthy subjects (n = 65). A series of clustering algorithms on neuropsychological scores was examined, and a 2-cluster solution that separated subjects into neuropsychologically near-normal (NPNN) and neuropsychologically impaired (NPI) groups was determined most appropriate. Surface-based cortical thickness mapping was utilized to examine differences in thinning among schizophrenia subtypes compared with the healthy participants. A widespread cortical thinning pattern characteristic of schizophrenia emerged in the NPI group, while NPNN subjects demonstrated very limited thinning relative to healthy comparison subjects. Analysis of illness duration indicated minimal effects on subtype classification and cortical thickness results. Findings suggest a strong link between cognitive impairment and cortical thinning in schizophrenia, where subjects with near-normal cognitive abilities also demonstrate near-normal cortical thickness patterns. While generally supportive of distinct etiological processes for cognitive subtypes, results provide direction for further examination of additional

  9. Non-24-Hour Sleep-Wake Rhythm Disorder and Melatonin Secretion Impairment in a Patient With Pineal Cyst

    PubMed Central

    Ferri, Lorenzo; Filardi, Marco; Moresco, Monica; Pizza, Fabio; Vandi, Stefano; Antelmi, Elena; Toni, Francesco; Zucchelli, Mino; Pierangeli, Giulia; Plazzi, Giuseppe

    2017-01-01

    We report the case of a 14-year-old girl with a wide non-compressive pineal cyst, associated with the inability to control her sleep-wake schedule. Actigraphic monitoring showed a 24-hour free-running disorder (tau 26.96 hours). A 24-hour serum melatonin curve assay, with concomitant video-polysomnographic and body-core temperature monitoring, was performed. Melatonin curve showed a blunted nocturnal peak, lower total quantity of melatonin, and prolonged melatonin secretion in the morning, with normal temperature profile and sleep parameters. Treatment with melatonin up to 14 mg at bedtime was initiated with complete realignment of the sleep-wake rhythm (tau 23.93 hours). The role of the pineal cyst in the aforementioned alteration of melatonin secretion and free-running disorder remains controversial, but our case supports the utility of monitoring sleep/wake, temperature, and melatonin rhythms in the diagnostic work-up of pineal cysts associated with free-running disorder. Citation: Ferri L, Filardi M, Moresco M, Pizza F, Vandi S, Antelmi E, Toni F, Zucchelli M, Pierangeli G, Plazzi G. Non-24-hour sleep-wake rhythm disorder and melatonin secretion impairment in a patient with pineal cyst. J Clin Sleep Med. 2017;13(11):1355–1357. PMID:28992833

  10. Shaping the aging brain: role of auditory input patterns in the emergence of auditory cortical impairments

    PubMed Central

    Kamal, Brishna; Holman, Constance; de Villers-Sidani, Etienne

    2013-01-01

    Age-related impairments in the primary auditory cortex (A1) include poor tuning selectivity, neural desynchronization, and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function. PMID:24062649

  11. Auditory Evoked Potentials as a Function of Sleep Deprivation and Recovery Sleep

    DTIC Science & Technology

    1985-09-29

    present research: They relate to the effects of: a) 48-hours of sleep deprivation on endogenous event related potentials (ERPs); b) circadian rhythms on...the study were: decreases in amplitude for N2, P3 and N2P3 across the reprivation period; a circadian rhythm was apparent for both ERP recordings and...of cortical evoked response potentials (ERPs)? 2) How do circadian rhythms affect ERPS under conditions of sleep deprivation? 3) How do different

  12. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters

    PubMed Central

    Rempe, Michael J; Clegern, William C; Wisor, Jonathan P

    2015-01-01

    Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state

  13. Insufficient sleep: Enhanced risk-seeking relates to low local sleep intensity.

    PubMed

    Maric, Angelina; Montvai, Eszter; Werth, Esther; Storz, Matthias; Leemann, Janina; Weissengruber, Sebastian; Ruff, Christian C; Huber, Reto; Poryazova, Rositsa; Baumann, Christian R

    2017-09-01

    Chronic sleep restriction is highly prevalent in modern society and is, in its clinical form, insufficient sleep syndrome, one of the most prevalent diagnoses in clinical sleep laboratories, with substantial negative impact on health and community burden. It reflects every-day sleep loss better than acute sleep deprivation, but its effects and particularly the underlying mechanisms remain largely unknown for a variety of critical cognitive domains, as, for example, risky decision making. We assessed financial risk-taking behavior after 7 consecutive nights of sleep restriction and after 1 night of acute sleep deprivation compared to a regular sleep condition in a within-subject design. We further investigated potential underlying mechanisms of sleep-loss-induced changes in behavior by high-density electroencephalography recordings during restricted sleep. We show that chronic sleep restriction increases risk-seeking, whereas this was not observed after acute sleep deprivation. This increase was subjectively not noticed and was related to locally lower values of slow-wave energy during preceding sleep, an electrophysiological marker of sleep intensity and restoration, in electrodes over the right prefrontal cortex. This study provides, for the first time, evidence that insufficient sleep restoration over circumscribed cortical areas leads to aberrant behavior. In chronically sleep restricted subjects, low slow-wave sleep intensity over the right prefrontal cortex-which has been shown to be linked to risk behavior-may lead to increased and subjectively unnoticed risk-seeking. Ann Neurol 2017;82:409-418. © 2017 American Neurological Association.

  14. The relation between polysomnography and subjective sleep and its dependence on age - poor sleep may become good sleep.

    PubMed

    Åkerstedt, Torbjörn; Schwarz, Johanna; Gruber, Georg; Lindberg, Eva; Theorell-Haglöw, Jenny

    2016-10-01

    Women complain more about sleep than men, but polysomnography (PSG) seems to suggest worse sleep in men. This raises the question of how women (or men) perceive objective (PSG) sleep. The present study sought to investigate the relation between morning subjective sleep quality and PSG variables in older and younger women. A representative sample of 251 women was analysed in age groups above and below 51.5 years (median). PSG was recorded at home during one night. Perceived poor sleep was related to short total sleep time (TST), long wake within total sleep time (WTSP), low sleep efficiency and a high number of awakenings. The older women showed lower TST and sleep efficiency and higher WTSP for a rating of good sleep than did the younger women. For these PSG variables the values for good sleep in the older group were similar to the values for poor sleep in the young group. It was concluded that women perceive different levels of sleep duration, sleep efficiency and wake after sleep onset relatively well, but that older women adjust their objective criteria for good sleep downwards. It was also concluded that age is an important factor in the relation between subjective and objective sleep. © 2016 European Sleep Research Society.

  15. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.

    PubMed

    Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S

    2013-02-01

    Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.

  16. Objective and subjective measurement of sleep disturbance in female trauma survivors with posttraumatic stress disorder.

    PubMed

    Werner, Kimberly B; Griffin, Michael G; Galovski, Tara E

    2016-06-30

    Sleep disturbance may be the most often endorsed symptom of posttraumatic stress disorder (PTSD). Much of this research is based on subjective reports from trauma survivors; however, objective measures of sleep-related impairment have yielded findings inconsistent with self-report data. More studies investigating subjective and objective assessments concordantly are needed to understand sleep impairment in PTSD. The current study examined PTSD-related sleep disturbance in a female interpersonal violence cohort with full PTSD diagnoses (N=51) assessing subjective (global and daily diary measures) and objective (actigraphy) sleep measures concurrently. PTSD severity was positively associated with global, subjective reports of sleep impairment and insomnia. Subjective measures of sleep (including global sleep impairment, insomnia, and daily sleep diary reports of total sleep time, sleep efficiency, and sleep onset latency) were moderately to strongly correlated. However, no significant correlations between subjective and objective reports of sleep impairment were found in this cohort. Analyses demonstrated an overall elevation in subjectively reported sleep impairment when compared to objective measurement assessed concurrently. Findings demonstrate a lack of agreement between subjective and objective measurements of sleep in a PTSD-positive female cohort, suggesting objective and subjective sleep impairments are distinct sleep parameters that do not necessarily directly co-vary. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Morning administration of oral methamphetamine dose-dependently disrupts nighttime sleep in recreational stimulant users.

    PubMed

    Herrmann, Evan S; Johnson, Patrick S; Bruner, Natalie R; Vandrey, Ryan; Johnson, Matthew W

    2017-09-01

    Use of amphetamine-type stimulants (e.g., methamphetamine) is associated with acute sleep disruptions. No prior reports have characterized the acute effects of methamphetamine on sleep using polysomnography, the gold standard for objective sleep monitoring. Recreational stimulant users (n=19) completed a baseline assessment, which included questionnaires assessing demographic and substance use characteristics, and the Pittsburgh Sleep Quality Index (PSQI), which assesses sleep quality over the past month. Participants were administered 0mg (placebo), 20mg, or 40mg oral methamphetamine at 08:15h on study days, using a double-blind, randomized, within-subjects design. Sleep was monitored using polysomnography from 22:20 that evening until 06:15 the following morning. PSQI scores indicated more than half of participants reported poor sleep quality at baseline. Methamphetamine dose-dependently increased sleep latency, and decreased total sleep time, sleep efficiency, time in NREM 2 sleep, number of REM periods, and total time in REM sleep. Sleep under placebo conditions was consistent with what would be expected from healthy adults. Morning oral administration of methamphetamine produces robust disruptions in nighttime sleep. Future research should examine relations between stimulant use and sleep disruption in naturalistic settings, with regard to both stimulant abuse and licit prescription use. Copyright © 2017. Published by Elsevier B.V.

  18. Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation.

    PubMed

    Ramakrishnan, Sridhar; Laxminarayan, Srinivas; Wesensten, Nancy J; Kamimori, Gary H; Balkin, Thomas J; Reifman, Jaques

    2014-10-07

    Caffeine is the most widely consumed stimulant to counter sleep-loss effects. While the pharmacokinetics of caffeine in the body is well-understood, its alertness-restoring effects are still not well characterized. In fact, mathematical models capable of predicting the effects of varying doses of caffeine on objective measures of vigilance are not available. In this paper, we describe a phenomenological model of the dose-dependent effects of caffeine on psychomotor vigilance task (PVT) performance of sleep-deprived subjects. We used the two-process model of sleep regulation to quantify performance during sleep loss in the absence of caffeine and a dose-dependent multiplier factor derived from the Hill equation to model the effects of single and repeated caffeine doses. We developed and validated the model fits and predictions on PVT lapse (number of reaction times exceeding 500 ms) data from two separate laboratory studies. At the population-average level, the model captured the effects of a range of caffeine doses (50-300 mg), yielding up to a 90% improvement over the two-process model. Individual-specific caffeine models, on average, predicted the effects up to 23% better than population-average caffeine models. The proposed model serves as a useful tool for predicting the dose-dependent effects of caffeine on the PVT performance of sleep-deprived subjects and, therefore, can be used for determining caffeine doses that optimize the timing and duration of peak performance. Published by Elsevier Ltd.

  19. Adenosine and sleep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanik, G.M. Jr.

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% andmore » 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.« less

  20. Sleep: A synchrony of cell activity-driven small network states

    PubMed Central

    Krueger, James M.; Huang, Yanhua; Rector, David M.; Buysse, Daniel J.

    2013-01-01

    We posit a bottom-up sleep regulatory paradigm in which state changes are initiated within small networks as a consequence of local cell activity. Bottom-up regulatory mechanisms are prevalent throughout nature, occurring in vastly different systems and levels of organization. Synchronization of state without top-down regulation is a fundamental property of large collections of small semi-autonomous entities. We posit that such synchronization mechanisms are sufficient and necessary for whole organism sleep onset. Within brain we posit that small networks of highly interconnected neurons and glia, e.g. cortical columns, are semi-autonomous units oscillating between sleep-like and wake-like states. We review evidence showing that cells, small networks, and regional areas of brain share sleep-like properties with whole animal sleep. A testable hypothesis focused on how sleep is initiated within local networks is presented. We posit that the release of cell activity-dependent molecules, such as ATP and nitric oxide, into the extracellular space initiates state changes within the local networks where they are produced. We review mechanisms of ATP induction of sleep regulatory substances (SRS) and their actions on receptor trafficking. Finally, we provide an example of how such local metabolic and state changes provide mechanistic explanations for clinical conditions such as insomnia. PMID:23651209

  1. Sleep deprivation: Impact on cognitive performance

    PubMed Central

    Alhola, Paula; Polo-Kantola, Päivi

    2007-01-01

    Today, prolonged wakefulness is a widespread phenomenon. Nevertheless, in the field of sleep and wakefulness, several unanswered questions remain. Prolonged wakefulness can be due to acute total sleep deprivation (SD) or to chronic partial sleep restriction. Although the latter is more common in everyday life, the effects of total SD have been examined more thoroughly. Both total and partial SD induce adverse changes in cognitive performance. First and foremost, total SD impairs attention and working memory, but it also affects other functions, such as long-term memory and decision-making. Partial SD is found to influence attention, especially vigilance. Studies on its effects on more demanding cognitive functions are lacking. Coping with SD depends on several factors, especially aging and gender. Also interindividual differences in responses are substantial. In addition to coping with SD, recovering from it also deserves attention. Cognitive recovery processes, although insufficiently studied, seem to be more demanding in partial sleep restriction than in total SD. PMID:19300585

  2. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep.

    PubMed

    Poe, G R; Nitz, D A; McNaughton, B L; Barnes, C A

    2000-02-07

    The idea that sleep could serve a cognitive function has remained popular since Freud stated that dreams were "not nonsense" but a time to sort out experiences [S. Freud, Letter to Wilhelm Fliess, May 1897, in The Origins of Psychoanalysis - Personal Letters of Sigmund Freud, M. Bonaparte, A. Freud, E. Kris (Eds.), Translated by E. Mosbacher, J. Strachey, Basic Books and Imago Publishing, 1954]. Rapid eye movement (REM) sleep, which is associated with dream reports, is now known to be is important for acquisition of some tasks [A. Karni, D. Tanne, B.S. Rubenstein, J.J.M. Askenasy, D. Sagi, Dependence on REM sleep of overnight improvement of a perceptual skill, Science 265 (1994) 679-682; C. Smith, Sleep states and learning: a review of the animal literature, Biobehav. Rev. 9 (1985) 157-168]; although why this is so remains obscure. It has been proposed that memories may be consolidated during REM sleep or that forgetting of unnecessary material occurs in this state [F. Crick, G. Mitchison, The function of dream sleep, Nature 304 (1983) 111-114; D. Marr, Simple memory: a theory for archicortex, Philos. Trans. R. Soc. B. 262 (1971) 23-81]. We studied the firing of multiple single neurons in the hippocampus, a structure that is important for episodic memory, during familiar and novel experiences and in subsequent REM sleep. Cells active in familiar places during waking exhibited a reversal of firing phase relative to local theta oscillations in REM sleep. Because firing-phase can influence whether synapses are strengthened or weakened [C. Holscher, R. Anwyl, M.J. Rowan, Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo, J. Neurosci. 15 (1977) 6470-6477; P.T. Huerta, J.E. Lisman, Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro, Neuron 15 (1995) 1053-1063; C. Pavlides, Y

  3. Association between Facebook dependence and poor sleep quality: a study in a sample of undergraduate students in Peru.

    PubMed

    Wolniczak, Isabella; Cáceres-DelAguila, José Alonso; Palma-Ardiles, Gabriela; Arroyo, Karen J; Solís-Visscher, Rodrigo; Paredes-Yauri, Stephania; Mego-Aquije, Karina; Bernabe-Ortiz, Antonio

    2013-01-01

    Internet can accelerate information exchange. Social networks are the most accessed especially Facebook. This kind of networks might create dependency with several negative consequences in people's life. The aim of this study was to assess potential association between Facebook dependence and poor sleep quality. A cross sectional study was performed enrolling undergraduate students of the Universidad Peruana de Ciencias Aplicadas, Lima, Peru. The Internet Addiction Questionnaire, adapted to the Facebook case, and the Pittsburgh Sleep Quality Index, were used. A global score of 6 or greater was defined as the cutoff to determine poor sleep quality. Generalized linear model were used to determine prevalence ratios (PR) and 95% confidence intervals (95%CI). A total of 418 students were analyzed; of them, 322 (77.0%) were women, with a mean age of 20.1 (SD: 2.5) years. Facebook dependence was found in 8.6% (95% CI: 5.9%-11.3%), whereas poor sleep quality was present in 55.0% (95% CI: 50.2%-59.8%). A significant association between Facebook dependence and poor sleep quality mainly explained by daytime dysfunction was found (PR = 1.31; IC95%: 1.04-1.67) after adjusting for age, sex and years in the faculty. There is a relationship between Facebook dependence and poor quality of sleep. More than half of students reported poor sleep quality. Strategies to moderate the use of this social network and to improve sleep quality in this population are needed.

  4. The potential role of melatonin on sleep deprivation-induced cognitive impairments: implication of FMRP on cognitive function.

    PubMed

    Kwon, K J; Lee, E J; Kim, M K; Jeon, S J; Choi, Y Y; Shin, C Y; Han, S-H

    2015-08-20

    While prolonged sleep deprivation (SD) could lead to profound negative health consequences, such as impairments in vital biological functions of immunity and cognition, melatonin possesses powerful ameliorating effects against those harmful insults. Melatonin has strong antioxidant and anti-inflammatory effects that help to restore body's immune and cognitive functions. In this study, we investigated the possible role of melatonin in reversing cognitive dysfunction induced by SD in rats. Our experimental results revealed that sleep-deprived animals exhibited spatial memory impairment in the Morris water maze tasks compared with the control groups. Furthermore, there was an increased glial activation most prominent in the hippocampal region of the SD group compared to the normal control (NC) group. Additionally, markers of oxidative stress such as 4-hydroxynonenal (4-HNE) and 7,8-dihydro-8-oxo-deoxyguanine (8-oxo-dG) were significantly increased, while fragile X-mental retardation protein (FMRP) expression was decreased in the SD group. Interestingly, melatonin treatment normalized these events to control levels following SD. Our data demonstrate that SD induces oxidative stress through glial activation and decreases FMRP expression in the neurons. Furthermore, our results suggest the efficacy of melatonin for the treatment of sleep-related neuronal dysfunction, which occurs in neurological disorders such as Alzheimer's disease and autism. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Modeling the adenosine system as a modulator of cognitive performance and sleep patterns during sleep restriction and recovery.

    PubMed

    Phillips, Andrew J K; Klerman, Elizabeth B; Butler, James P

    2017-10-01

    Sleep loss causes profound cognitive impairments and increases the concentrations of adenosine and adenosine A1 receptors in specific regions of the brain. Time courses for performance impairment and recovery differ between acute and chronic sleep loss, but the physiological basis for these time courses is unknown. Adenosine has been implicated in pathways that generate sleepiness and cognitive impairments, but existing mathematical models of sleep and cognitive performance do not explicitly include adenosine. Here, we developed a novel receptor-ligand model of the adenosine system to test the hypothesis that changes in both adenosine and A1 receptor concentrations can capture changes in cognitive performance during acute sleep deprivation (one prolonged wake episode), chronic sleep restriction (multiple nights with insufficient sleep), and subsequent recovery. Parameter values were estimated using biochemical data and reaction time performance on the psychomotor vigilance test (PVT). The model closely fit group-average PVT data during acute sleep deprivation, chronic sleep restriction, and recovery. We tested the model's ability to reproduce timing and duration of sleep in a separate experiment where individuals were permitted to sleep for up to 14 hours per day for 28 days. The model accurately reproduced these data, and also correctly predicted the possible emergence of a split sleep pattern (two distinct sleep episodes) under these experimental conditions. Our findings provide a physiologically plausible explanation for observed changes in cognitive performance and sleep during sleep loss and recovery, as well as a new approach for predicting sleep and cognitive performance under planned schedules.

  6. Modeling the adenosine system as a modulator of cognitive performance and sleep patterns during sleep restriction and recovery

    PubMed Central

    Phillips, Andrew J. K.

    2017-01-01

    Sleep loss causes profound cognitive impairments and increases the concentrations of adenosine and adenosine A1 receptors in specific regions of the brain. Time courses for performance impairment and recovery differ between acute and chronic sleep loss, but the physiological basis for these time courses is unknown. Adenosine has been implicated in pathways that generate sleepiness and cognitive impairments, but existing mathematical models of sleep and cognitive performance do not explicitly include adenosine. Here, we developed a novel receptor-ligand model of the adenosine system to test the hypothesis that changes in both adenosine and A1 receptor concentrations can capture changes in cognitive performance during acute sleep deprivation (one prolonged wake episode), chronic sleep restriction (multiple nights with insufficient sleep), and subsequent recovery. Parameter values were estimated using biochemical data and reaction time performance on the psychomotor vigilance test (PVT). The model closely fit group-average PVT data during acute sleep deprivation, chronic sleep restriction, and recovery. We tested the model’s ability to reproduce timing and duration of sleep in a separate experiment where individuals were permitted to sleep for up to 14 hours per day for 28 days. The model accurately reproduced these data, and also correctly predicted the possible emergence of a split sleep pattern (two distinct sleep episodes) under these experimental conditions. Our findings provide a physiologically plausible explanation for observed changes in cognitive performance and sleep during sleep loss and recovery, as well as a new approach for predicting sleep and cognitive performance under planned schedules. PMID:29073206

  7. State-dependent changes in cortical gain control as measured by auditory evoked responses to varying intensity stimuli.

    PubMed

    Phillips, Derrick J; Schei, Jennifer L; Meighan, Peter C; Rector, David M

    2011-11-01

    Auditory evoked potential (AEP) components correspond to sequential activation of brain structures within the auditory pathway and reveal neural activity during sensory processing. To investigate state-dependent modulation of stimulus intensity response profiles within different brain structures, we assessed AEP components across both stimulus intensity and state. We implanted adult female Sprague-Dawley rats (N = 6) with electrodes to measure EEG, EKG, and EMG. Intermittent auditory stimuli (6-12 s) varying from 50 to 75 dBa were delivered over a 24-h period. Data were parsed into 2-s epochs and scored for wake/sleep state. All AEP components increased in amplitude with increased stimulus intensity during wake. During quiet sleep, however, only the early latency response (ELR) showed this relationship, while the middle latency response (MLR) increased at the highest 75 dBa intensity, and the late latency response (LLR) showed no significant change across the stimulus intensities tested. During rapid eye movement sleep (REM), both ELR and LLR increased, similar to wake, but MLR was severely attenuated. Stimulation intensity and the corresponding AEP response profile were dependent on both brain structure and sleep state. Lower brain structures maintained stimulus intensity and neural response relationships during sleep. This relationship was not observed in the cortex, implying state-dependent modification of stimulus intensity coding. Since AEP amplitude is not modulated by stimulus intensity during sleep, differences between paired 75/50 dBa stimuli could be used to determine state better than individual intensities.

  8. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation.

    PubMed

    Skelin, Ivan; Kilianski, Scott; McNaughton, Bruce L

    2018-04-13

    Memory consolidation is a gradual process through which episodic memories become incorporated into long-term 'semantic' representations. It likely involves reactivation of neural activity encoding the recent experience during non-REM sleep. A critical prerequisite for memory consolidation is precise coordination of reactivation events between the hippocampus and cortical/subcortical structures, facilitated by the coupling of local field potential (LFP) oscillations (slow oscillations, sleep spindles and sharp wave/ripples) between these structures. We review the rapidly expanding literature on the qualitative and quantitative aspects of hippocampal oscillatory and neuronal coupling with cortical/subcortical structures in the context of memory reactivation. Reactivation in the hippocampus and cortical/subcortical structures is tightly coupled with sharp wave/ripples. Hippocampal-cortical/subcortical coupling is rich in dimensionality and this dimensionality is likely underestimated due to the limitations of the current methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Impact of partial sleep deprivation on immune markers.

    PubMed

    Wilder-Smith, A; Mustafa, F B; Earnest, A; Gen, L; Macary, P A

    2013-10-01

    Sleep quality is considered to be an important predictor of immunity. Lack of sleep therefore may reduce immunity, thereby increasing the susceptibility to respiratory pathogens. A previous study showed that reduced sleep duration was associated with an increased likelihood of the common cold. It is important to understand the role of sleep in altering immune responses to understand how sleep deprivation leads to an increased susceptibility to the common cold or other respiratory infections. We sought to examine the impact of partial sleep deprivation on various immune markers. Fifty-two healthy volunteers were partially sleep deprived for one night. We took blood samples before the sleep deprivation, immediately after, and 4 and 7 days after sleep deprivation. We measured various immune markers and used a generalized estimating equation (GEE) to examine the differences in the repeated measures. CD4, CD8, CD14, and CD16 all showed significant time-dependent changes, but CD3 did not. The most striking time-dependent change was observed for the mitogen proliferation assay and for HLA-DR. There was a significant decrease in the mitogen proliferation values and HLA-DR immediately after the sleep deprivation experiment, which started to rise again on day 4 and normalized by day 7. The transiently impaired mitogen proliferation, the decreased HLA-DR, the upregulated CD14, and the variations in CD4 and CD8 that we observed in temporal relationship with partial sleep deprivation could be one possible explanation for the increased susceptibility to respiratory infections reported after reduced sleep duration. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Lowered Insulin Signalling Ameliorates Age-Related Sleep Fragmentation in Drosophila

    PubMed Central

    Hendrich, Oliver; Hinze, Yvonne; Birras, Ulrike; Partridge, Linda

    2014-01-01

    Sleep fragmentation, particularly reduced and interrupted night sleep, impairs the quality of life of older people. Strikingly similar declines in sleep quality are seen during ageing in laboratory animals, including the fruit fly Drosophila. We investigated whether reduced activity of the nutrient- and stress-sensing insulin/insulin-like growth factor (IIS)/TOR signalling network, which ameliorates ageing in diverse organisms, could rescue the sleep fragmentation of ageing Drosophila. Lowered IIS/TOR network activity improved sleep quality, with increased night sleep and day activity and reduced sleep fragmentation. Reduced TOR activity, even when started for the first time late in life, improved sleep quality. The effects of reduced IIS/TOR network activity on day and night phenotypes were mediated through distinct mechanisms: Day activity was induced by adipokinetic hormone, dFOXO, and enhanced octopaminergic signalling. In contrast, night sleep duration and consolidation were dependent on reduced S6K and dopaminergic signalling. Our findings highlight the importance of different IIS/TOR components as potential therapeutic targets for pharmacological treatment of age-related sleep fragmentation in humans. PMID:24690889

  11. Zinc-containing yeast extract promotes nonrapid eye movement sleep in mice.

    PubMed

    Cherasse, Yoan; Saito, Hitomi; Nagata, Nanae; Aritake, Kosuke; Lazarus, Michael; Urade, Yoshihiro

    2015-10-01

    Zinc is an essential trace element for humans and animals, being located, among other places, in the synaptic vesicles of cortical glutamatergic neurons and hippocampal mossy fibers in the brain. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate and GABA receptors. Because of the central role of these neurotransmitters in brain activity, we examined in this study the sleep-promoting activity of zinc by monitoring locomotor activity and electroencephalogram after its administration to mice. Zinc-containing yeast extract (40 and 80 mg/kg) dose dependently increased the total amount of nonrapid eye movement sleep and decreased the locomotor activity. However, this preparation did not change the amount of rapid eye movement sleep or show any adverse effects such as rebound of insomnia during a period of 24 h following the induction of sleep; whereas the extracts containing other divalent cations (manganese, iron, and copper) did not decrease the locomotor activity. This is the first evidence that zinc can induce sleep. Our data open the way to new types of food supplements designed to improve sleep. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Propofol Anesthesia and Sleep: A High-Density EEG Study

    PubMed Central

    Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie

    2011-01-01

    Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845

  13. Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons

    PubMed Central

    Aton, Sara J.; Broussard, Christopher; Dumoulin, Michelle; Seibt, Julie; Watson, Adam; Coleman, Tammi; Frank, Marcos G.

    2013-01-01

    Ocular dominance plasticity in the developing primary visual cortex is initiated by monocular deprivation (MD) and consolidated during subsequent sleep. To clarify how visual experience and sleep affect neuronal activity and plasticity, we continuously recorded extragranular visual cortex fast-spiking (FS) interneurons and putative principal (i.e., excitatory) neurons in freely behaving cats across periods of waking MD and post-MD sleep. Consistent with previous reports in mice, MD induces two related changes in FS interneurons: a response shift in favor of the closed eye and depression of firing. Spike-timing–dependent depression of open-eye–biased principal neuron inputs to FS interneurons may mediate these effects. During post-MD nonrapid eye movement sleep, principal neuron firing increases and becomes more phase-locked to slow wave and spindle oscillations. Ocular dominance (OD) shifts in favor of open-eye stimulation—evident only after post-MD sleep—are proportional to MD-induced changes in FS interneuron activity and to subsequent sleep-associated changes in principal neuron activity. OD shifts are greatest in principal neurons that fire 40–300 ms after neighboring FS interneurons during post-MD slow waves. Based on these data, we propose that MD-induced changes in FS interneurons play an instructive role in ocular dominance plasticity, causing disinhibition among open-eye–biased principal neurons, which drive plasticity throughout the visual cortex during subsequent sleep. PMID:23300282

  14. Sleep restriction therapy for insomnia is associated with reduced objective total sleep time, increased daytime somnolence, and objectively impaired vigilance: implications for the clinical management of insomnia disorder.

    PubMed

    Kyle, Simon D; Miller, Christopher B; Rogers, Zoe; Siriwardena, A Niroshan; Macmahon, Kenneth M; Espie, Colin A

    2014-02-01

    To investigate whether sleep restriction therapy (SRT) is associated with reduced objective total sleep time (TST), increased daytime somnolence, and impaired vigilance. Within-subject, noncontrolled treatment investigation. Sleep research laboratory. Sixteen patients [10 female, mean age = 47.1 (10.8) y] with well-defined psychophysiological insomnia (PI), reporting TST ≤ 6 h. Patients were treated with single-component SRT over a 4-w protocol, sleeping in the laboratory for 2 nights prior to treatment initiation and for 3 nights (SRT night 1, 8, 22) during the acute interventional phase. The psychomotor vigilance task (PVT) was completed at seven defined time points [day 0 (baseline), day 1,7,8,21,22 (acute treatment) and day 84 (3 mo)]. The Epworth Sleepiness Scale (ESS) was completed at baseline, w 1-4, and 3 mo. Subjective sleep outcomes and global insomnia severity significantly improved before and after SRT. There was, however, a robust decrease in PSG-defined TST during acute implementation of SRT, by an average of 91 min on night 1, 78 min on night 8, and 69 min on night 22, relative to baseline (P < 0.001; effect size range = 1.60-1.80). During SRT, PVT lapses were significantly increased from baseline (at three of five assessment points, all P < 0.05; effect size range = 0.69-0.78), returning to baseline levels by 3 mo (P = 0.43). A similar pattern was observed for RT, with RTs slowing during acute treatment (at four of five assessment points, all P < 0.05; effect size range = 0.57-0.89) and returning to pretreatment levels at 3 mo (P = 0.78). ESS scores were increased at w 1, 2, and 3 (relative to baseline; all P < 0.05); by 3 mo, sleepiness had returned to baseline (normative) levels (P = 0.65). For the first time we show that acute sleep restriction therapy is associated with reduced objective total sleep time, increased daytime sleepiness, and objective performance impairment. Our data have important implications for implementation guidelines

  15. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increasemore » in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.« less

  16. The cognitive cost of sleep lost

    PubMed Central

    McCoy, John G.; Strecker, Robert E.

    2013-01-01

    A substantial body of literature supports the intuitive notion that a good night’s sleep can facilitate human cognitive performance the next day. Deficits in attention, learning & memory, emotional reactivity, and higher-order cognitive processes, such as executive function and decision making, have all been documented following sleep disruption in humans. Thus, whilst numerous clinical and experimental studies link human sleep disturbance to cognitive deficits, attempts to develop valid and reliable rodent models of these phenomena are fewer, and relatively more recent. This review focuses primarily on the cognitive impairments produced by sleep disruption in rodent models of several human patterns of sleep loss/sleep disturbance. Though not an exclusive list, this review will focus on four specific types of sleep disturbance: total sleep deprivation, experimental sleep fragmentation, selective REM sleep deprivation, and chronic sleep restriction. The use of rodent models can provide greater opportunities to understand the neurobiological changes underlying sleep loss induced cognitive impairments. Thus, this review concludes with a description of recent neurobiological findings concerning the neuroplastic changes and putative brain mechanisms that may underlie the cognitive deficits produced by sleep disturbances. PMID:21875679

  17. [Association between sleep quality and life function among elderly community residents].

    PubMed

    Tanaka, Mika; Kusaga, Mari; Tagaya, Hirokuni; Miyoko, I; Oshima, Asami; Watanabe, Chiho

    2012-01-01

    To investigate the association between sleep quality and life function in an elderly Japanese population. A total of 563 residents of a village in Kumamoto Prefecture aged ≥65 years were asked to fill out a self-administered questionnaire survey from June to July 2010. Sleep quality and life function were respectively evaluated using the Pittsburgh Sleep Quality Index (PSQI) and Basics Check List, which is used to screen elderly individuals at high risk of needing long-term care in the future. As adjustment factors, age, sex, economic situation, residency status, medical history, depression status, and cognitive function were assessed. We examined the relationship between sleep quality and life function using multiple logistic regression analysis, with life function as a dependent variable. Subjects already receiving care or with psychiatric disorders or severe cognitive disturbance were excluded from analysis. Among the subjects (n=395), a significant relationship was found between poor sleep quality and impaired life function in all models. The odds ratio was 1.82 (95% confidence interval: 1.03-3.23) in the final model controlling for all adjustment factors. Our findings here suggest a significant relationship between poor sleep quality and impaired life function among elderly community residents. Given these findings, intervention to improve sleep may help delay or prevent the need for long-term care among elderly individuals.

  18. Association between Facebook Dependence and Poor Sleep Quality: A Study in a Sample of Undergraduate Students in Peru

    PubMed Central

    Wolniczak, Isabella; Cáceres-DelAguila, José Alonso; Palma-Ardiles, Gabriela; Arroyo, Karen J.; Solís-Visscher, Rodrigo; Paredes-Yauri, Stephania; Mego-Aquije, Karina; Bernabe-Ortiz, Antonio

    2013-01-01

    Objectives Internet can accelerate information exchange. Social networks are the most accessed especially Facebook. This kind of networks might create dependency with several negative consequences in people’s life. The aim of this study was to assess potential association between Facebook dependence and poor sleep quality. Methodology/Principal Findings A cross sectional study was performed enrolling undergraduate students of the Universidad Peruana de Ciencias Aplicadas, Lima, Peru. The Internet Addiction Questionnaire, adapted to the Facebook case, and the Pittsburgh Sleep Quality Index, were used. A global score of 6 or greater was defined as the cutoff to determine poor sleep quality. Generalized linear model were used to determine prevalence ratios (PR) and 95% confidence intervals (95%CI). A total of 418 students were analyzed; of them, 322 (77.0%) were women, with a mean age of 20.1 (SD: 2.5) years. Facebook dependence was found in 8.6% (95% CI: 5.9%–11.3%), whereas poor sleep quality was present in 55.0% (95% CI: 50.2%–59.8%). A significant association between Facebook dependence and poor sleep quality mainly explained by daytime dysfunction was found (PR = 1.31; IC95%: 1.04–1.67) after adjusting for age, sex and years in the faculty. Conclusions There is a relationship between Facebook dependence and poor quality of sleep. More than half of students reported poor sleep quality. Strategies to moderate the use of this social network and to improve sleep quality in this population are needed. PMID:23554978

  19. How smoking affects sleep: a polysomnographical analysis.

    PubMed

    Jaehne, Andreas; Unbehaun, Thomas; Feige, Bernd; Lutz, Ulrich C; Batra, Anil; Riemann, Dieter

    2012-12-01

    Subjective quality of sleep is impaired in smokers compared with non-smokers, but there is only limited evidence from methodologically sound studies about differences in polysomnography (PSG) sleep characteristics. Therefore, this study used PSG to evaluate sleep in smokers and non-smokers while controlling for other parameters that affect sleep. After an adaptation night, PSG sleep laboratory data were obtained from 44 smokers (29 men and 15 women, median age 29.6 years) and compared with PSG data from 44 healthy, sex- and age-matched never smokers. Exclusion criteria were alcohol or other substance abuse, psychiatric or endocrine diseases, and treatment with any kind of psychotropic medication. Nicotine and cotinine plasma levels were measured (in the smoking group) and subjective sleep quality assessed in both groups. The smokers had a Fagerström tolerance score of 6.4, consumed an average of 21.2 cigarettes per day and had been smoking for 13.1 years (median). Smokers had a shorter sleep period time, longer sleep latency, higher rapid eye movement sleep density, more sleep apneas and leg movements in sleep than non-smokers. There were no differences regarding parameters of spectral analysis of the sleep electroencephalogram as well as in the sleep efficiency measured by PSG. Nevertheless smokers rated their sleep efficiency lower on the Pittsburgh Sleep Quality Index compared with non-smoking individuals, but no differences were detected on the SF-A. Plasma cotinine level correlated negatively with slow wave sleep in the smoking group. Smokers showed a number of insomnia-like sleep impairments. The findings suggest that it is important for sleep researchers to control smoking status in their analyses. Further research should focus on the causes and consequences of impaired sleep during tobacco cessation, as sleep disturbances are a known risk factor for early relapse after initial tobacco abstinence. Copyright © 2012. Published by Elsevier B.V.

  20. Trait- and pre-sleep-state-dependent arousal in insomnia disorders: what role may sleep reactivity and sleep-related metacognitions play? A pilot study.

    PubMed

    Palagini, Laura; Mauri, Mauro; Dell'Osso, Liliana; Riemann, Dieter; Drake, Christopher L

    2016-09-01

    Research into the cause of chronic insomnia has identified hyperarousal as a key factor, which is likely to have both trait and state components. Sleep-related cognition, metacognition, and sleep reactivity also play an important role in insomnia. Our aim was to investigate how these insomnia-related constructs are associated with trait predisposition and pre-sleep arousal in subjects with an insomnia disorder. Fifty-three individuals with insomnia disorder (according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (F = 33; 52 + 10)) and 30 healthy controls (F = 18; 51.8 + 12 years) were evaluated with a set of questionnaires, including the Ford Insomnia Response to Stress Test (FIRST), Metacognition Questionnaire - Insomnia (MCQI), Arousal Predisposition Scale (APS), and Pre-sleep Arousal Scale (PSAS). Statistical analyses included multiple regression to elucidate the independent determinants of APS and PSAS. Participants with insomnia presented higher FIRST, MCQI, APS, PSAS scores (p-values <0.001) than healthy controls. In insomnia, APS and cognitive PSAS were best determined by MCQI (respectively, B = 0.09, p = 0.001, B = 0.08, p = 0.02), somatic PSAS by cognitive arousal (PSAS B = 0.35, p = 0.004) CONCLUSIONS: This study suggests that in insomnia disorders, trait predisposition toward hyperarousal and pre-sleep-cognitive-state-dependent arousal may be closely related to sleep-related metacognitive processes. Sleep-related metacognitive processes may be associated with trait hyperarousal within the framework of a mutual relationship, and could, in turn, modulate cognitive pre-sleep-state arousal. A broad range of cognitive and metacognitive processes should be considered when dealing with subjects with insomnia. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Stereotypic wheel running decreases cortical activity in mice

    PubMed Central

    Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.

    2016-01-01

    Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455

  2. Ventilatory control sensitivity in patients with obstructive sleep apnea is sleep stage dependent.

    PubMed

    Landry, Shane A; Andara, Christopher; Terrill, Philip I; Joosten, Simon A; Leong, Paul; Mann, Dwayne L; Sands, Scott A; Hamilton, Garun S; Edwards, Bradley A

    2018-05-01

    The severity of obstructive sleep apnea (OSA) is known to vary according to sleep stage; however, the pathophysiology responsible for this robust observation is incompletely understood. The objective of the present work was to examine how ventilatory control system sensitivity (i.e. loop gain) varies during sleep in patients with OSA. Loop gain was estimated using signals collected from standard diagnostic polysomnographic recordings performed in 44 patients with OSA. Loop gain measurements associated with nonrapid eye movement (NREM) stage 2 (N2), stage 3 (N3), and REM sleep were calculated and compared. The sleep period was also split into three equal duration tertiles to investigate how loop gain changes over the course of sleep. Loop gain was significantly lower (i.e. ventilatory control more stable) in REM (Mean ± SEM: 0.51 ± 0.04) compared with N2 sleep (0.63 ± 0.04; p = 0.001). Differences in loop gain between REM and N3 (p = 0.095), and N2 and N3 (p = 0.247) sleep were not significant. Furthermore, N2 loop gain was significantly lower in the first third (0.57 ± 0.03) of the sleep period compared with later second (0.64 ± 0.03, p = 0.012) and third (0.64 ± 0.03, p = 0.015) tertiles. REM loop gain also tended to increase across the night; however, this trend was not statistically significant [F(2, 12) = 3.49, p = 0.09]. These data suggest that loop gain varies between REM and NREM sleep and modestly increases over the course of sleep. Lower loop gain in REM is unlikely to contribute to the worsened OSA severity typically observed in REM sleep, but may explain the reduced propensity for central sleep apnea in this sleep stage.

  3. Care mapping in clinical neuroscience settings: Cognitive impairment and dependency.

    PubMed

    Leigh, Andrew James; O'Hanlon, Katie; Sheldrick, Russell; Surr, Claire; Hare, Dougal Julian

    2015-01-01

    Person-centred care can improve the well-being of patients and is therefore a key driver in healthcare developments in the UK. The current study aims to investigate the complex relationship between cognitive impairment, dependency and well-being in people with a wide range of acquired brain and spinal injuries. Sixty-five participants, with varied acquired brain and spinal injuries, were selected by convenience sampling from six inpatient clinical neuroscience settings. Participants were observed using Dementia Care Mapping - Neurorehabilitation (DCM-NR) and categorised based on severity of cognitive impairment. A significant difference in the behaviours participants engaged in, their well-being and dependency was found between the severe cognitive impairment group and the mild, moderate or no cognitive impairment groups. Dependency and cognitive impairment accounted for 23.9% of the variance in well-ill-being scores and 17.2% of the variance in potential for positive engagement. The current study highlights the impact of severe cognitive impairment and dependency on the behaviours patients engaged in and their well-being. It also affirms the utility of DCM-NR in providing insights into patient experience. Consideration is given to developing DCM-NR as a process that may improve person-centred care in neuroscience settings.

  4. Vascular compliance limits during sleep deprivation and recovery sleep.

    PubMed

    Phillips, Derrick J; Schei, Jennifer L; Rector, David M

    2013-10-01

    Our previous studies showed that evoked hemodynamic responses are smaller during wake compared to sleep; suggesting neural activity is associated with vascular expansion and decreased compliance. We explored whether prolonged activity during sleep deprivation may exacerbate vascular expansion and blunt hemodynamic responses. Evoked auditory responses were generated with periodic 65 dB speaker clicks over a 72-h period and measured with cortical electrodes. Evoked hemodynamic responses were measured simultaneously with optical techniques using three light-emitting diodes, and a photodiode. Animals were housed in separate 30×30×80 cm enclosures, tethered to a commutator system and maintained on a 12-h light/dark cycle. Food and water were available ad libitum. Seven adult female Sprague-Dawley rats. Following a 24-h baseline recording, sleep deprivation was initiated for 0 to 10 h by gentle handling, followed by a 24-h recovery sleep recording. Evoked electrical and hemodynamic responses were measured before, during, and after sleep deprivation. Following deprivation, evoked hemodynamic amplitudes were blunted. Steady-state oxyhemoglobin concentration increased during deprivation and remained high during the initial recovery period before returning to baseline levels after approximately 9-h. Sleep deprivation resulted in blood vessel expansion and decreased compliance while lower basal neural activity during recovery sleep may allow blood vessel compliance to recover. Chronic sleep restriction or sleep deprivation could push the vasculature to critical levels, limiting blood delivery, and leading to metabolic deficits with the potential for neural trauma.

  5. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Foy, R.; Dijk, D. J.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The effect of sleep deprivation (40 h) on topographic and temporal aspects of electroencephalographic (EEG) activity during sleep was investigated by all night spectral analysis in six young volunteers. The sleep-deprivation-induced increase of EEG power density in the delta and theta frequencies (1-7 Hz) during nonREM sleep, assessed along the antero-posterior axis (midline: Fz, Cz, Pz, Oz), was significantly larger in the more frontal derivations (Fz, Cz) than in the more parietal derivations (Pz, Oz). This frequency-specific frontal predominance was already present in the first 30 min of recovery sleep, and dissipated in the course of the 8-h sleep episode. The data demonstrate that the enhancement of slow wave EEG activity during sleep following extended wakefulness is most pronounced in frontal cortical areas.

  6. AMPA receptors mediate passive avoidance deficits induced by sleep deprivation.

    PubMed

    Dubiela, Francisco Paulino; Queiroz, Claudio Marcos; Moreira, Karin Di Monteiro; Nobrega, Jose N; Sita, Luciane Valéria; Tufik, Sergio; Hipolide, Debora Cristina

    2013-11-15

    The present study addressed the effects of sleep deprivation (SD) on AMPA receptor (AMPAR) binding in brain regions associated with learning and memory, and investigated whether treatment with drugs acting on AMPAR could prevent passive avoidance deficits in sleep deprived animals. [(3)H]AMPA binding and GluR1 in situ hybridization signals were quantified in different brain regions of male Wistar rats either immediately after 96 h of sleep deprivation or after 24h of sleep recovery following 96 h of sleep deprivation. Another group of animals were sleep deprived and then treated with either the AMPAR potentiator, aniracetam (25, 50 and 100mg/kg, acute administration) or the AMPAR antagonist GYKI-52466 (5 and 10mg/kg, acute and chronic administration) before passive avoidance training. Task performance was evaluated 2h and 24h after training. A significant reduction in [(3)H]AMPA binding was found in the hippocampal formation of SD animals, while no alterations were observed in GluR1 mRNA levels. The highest dose of aniracetam (100mg/kg) reverted SD-induced impairment of passive avoidance performance in both retention tests, whereas GYKI-52466 treatment had no effect. Pharmacological enhancement of AMPAR function may revert hippocampal-dependent learning impairments produced after SD. We argue that such effects might be associated with reduced AMPAR binding in the hippocampus of sleep deprived animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Poor Sleep Quality and Functional Decline in Older Women

    PubMed Central

    Spira, Adam P.; Covinsky, Kenneth; Rebok, George W.; Punjabi, Naresh M.; Stone, Katie L.; Hillier, Teresa A.; Ensrud, Kristine; Yaffe, Kristine

    2012-01-01

    OBJECTIVES To determine whether objectively measured sleep quality predicts five-year incident instrumental activities of daily living (IADL) impairment and decline in grip strength and gait speed in older women. DESIGN Prospective cohort SETTING Participants’ homes, Study of Osteoporotic Fractures sites PARTICIPANTS 817 women (mean 82.4 years at baseline) MEASUREMENTS Participants completed 4.1 ±0.7 nights of wrist actigraphy at baseline, and measures of IADL impairment, grip strength, and gait speed at baseline and five-year follow-up. RESULTS After five years of follow-up, approximately 41% of participants had incident impairment in ≥1 IADL. The quartile of women with the shortest total sleep time had a 93% greater odds of incident IADL impairment than the longest sleepers (adjusted odds ratio (AOR) = 1.93, 95% confidence interval (CI) 1.25, 2.97). Similarly, the quartile of women with the lowest sleep efficiency had a 65% greater odds of impairment than those with the highest (AOR = 1.65, 95% CI 1.06, 2.57). Women in the shortest total sleep time quartile had double the odds of declining grip strength, compared to those with the longest total sleep time (AOR = 1.97, 95% CI 1.17, 3.32). Finally, women in the quartiles with the most wake after sleep onset and the lowest sleep efficiency had an approximately 90% greater odds of grip strength decline than those with the least wake after sleep onset (AOR = 1.90, 95% CI 1.11, 3.24) and sleep efficiency (AOR = 1.92, 95% CI 1.12, 3.29). CONCLUSION Findings indicate that shorter sleep duration, greater wake after sleep onset, and lower sleep efficiency are risk factors for functional or physical decline in older women. PMID:22690985

  8. Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training

    PubMed Central

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation–associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items. PMID:21677190

  9. Deep Sleep and Parietal Cortex Gene Expression Changes Are Related to Cognitive Deficits with Age

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Searcy, James L.; Porter, Nada M.; Thibault, Olivier; Blalock, Eric M.

    2011-01-01

    Background Age-related cognitive deficits negatively affect quality of life and can presage serious neurodegenerative disorders. Despite sleep disruption's well-recognized negative influence on cognition, and its prevalence with age, surprisingly few studies have tested sleep's relationship to cognitive aging. Methodology We measured sleep stages in young adult and aged F344 rats during inactive (enhanced sleep) and active (enhanced wake) periods. Animals were behaviorally characterized on the Morris water maze and gene expression profiles of their parietal cortices were taken. Principal Findings Water maze performance was impaired, and inactive period deep sleep was decreased with age. However, increased deep sleep during the active period was most strongly correlated to maze performance. Transcriptional profiles were strongly associated with behavior and age, and were validated against prior studies. Bioinformatic analysis revealed increased translation and decreased myelin/neuronal pathways. Conclusions The F344 rat appears to serve as a reasonable model for some common sleep architecture and cognitive changes seen with age in humans, including the cognitively disrupting influence of active period deep sleep. Microarray analysis suggests that the processes engaged by this sleep are consistent with its function. Thus, active period deep sleep appears temporally misaligned but mechanistically intact, leading to the following: first, aged brain tissue appears capable of generating the slow waves necessary for deep sleep, albeit at a weaker intensity than in young. Second, this activity, presented during the active period, seems disruptive rather than beneficial to cognition. Third, this active period deep sleep may be a cognitively pathologic attempt to recover age-related loss of inactive period deep sleep. Finally, therapeutic strategies aimed at reducing active period deep sleep (e.g., by promoting active period wakefulness and/or inactive period deep sleep) may

  10. Consumer Sleep Technologies: A Review of the Landscape

    PubMed Central

    Ko, Ping-Ru T.; Kientz, Julie A.; Choe, Eun Kyoung; Kay, Matthew; Landis, Carol A.; Watson, Nathaniel F.

    2015-01-01

    Objective: To review sleep related consumer technologies, including mobile electronic device “apps,” wearable devices, and other technologies. Validation and methodological transparency, the effect on clinical sleep medicine, and various social, legal, and ethical issues are discussed. Methods: We reviewed publications from the digital libraries of the Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and PubMed; publications from consumer technology websites; and mobile device app marketplaces. Search terms included “sleep technology,” “sleep app,” and “sleep monitoring.” Results: Consumer sleep technologies are categorized by delivery platform including mobile device apps (integrated with a mobile operating system and utilizing mobile device functions such as the camera or microphone), wearable devices (on the body or attached to clothing), embedded devices (integrated into furniture or other fixtures in the native sleep environment), accessory appliances, and conventional desktop/website resources. Their primary goals include facilitation of sleep induction or wakening, self-guided sleep assessment, entertainment, social connection, information sharing, and sleep education. Conclusions: Consumer sleep technologies are changing the landscape of sleep health and clinical sleep medicine. These technologies have the potential to both improve and impair collective and individual sleep health depending on method of implementation. Citation: Ko PR, Kientz JA, Choe EK, Kay M, Landis CA, Watson NF. Consumer sleep technologies: a review of the landscape. J Clin Sleep Med 2015;11(12):1455–1461. PMID:26156958

  11. Stress-related exhaustion disorder--clinical manifestation of burnout? A review of assessment methods, sleep impairments, cognitive disturbances, and neuro-biological and physiological changes in clinical burnout.

    PubMed

    Grossi, Giorgio; Perski, Aleksander; Osika, Walter; Savic, Ivanka

    2015-12-01

    The aim of this paper was to provide an overview of the literature on clinically significant burnout, focusing on its assessment, associations with sleep disturbances, cognitive impairments, as well as neurobiological and physiological correlates. Fifty-nine English language articles and six book chapters were included. The results indicate that exhaustion disorder (ED), as described in the Swedish version of the International Classification of Diseases, seems to be the most valid clinical equivalent of burnout. The data supports the notion that sleep impairments are causative and maintaining factors for this condition. Patients with clinical burnout/ED suffer from cognitive impairments in the areas of memory and executive functioning. The studies on neuro-biological mechanisms have reported functional uncoupling of networks relating the limbic system to the pre-frontal cortex, and decreased volumes of structures within the basal ganglia. Although there is a growing body of literature on the physiological correlates of clinical burnout/ED, there is to date no biomarker for this condition. More studies on the role of sleep disturbances, cognitive impairments, and neurobiological and physiological correlates in clinical burnout/ED are warranted. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  12. Poor quality of life, depressed mood, and memory impairment may be mediated by sleep disruption in patients with Addison's disease

    PubMed Central

    Henry, Michelle; Wolf, Pedro S.A.; Ross, Ian L.; Thomas, Kevin G.F.

    2015-01-01

    Standard replacement therapy for Addison's disease (AD) does not restore a normal circadian rhythm. In fact, hydrocortisone replacement in AD patients likely induces disrupted sleep. Given that healthy sleep plays an important role in improving quality of life, optimizing cognition, and ensuring affect regulation, the aim of this study was to investigate whether poor quality of life, mood alterations, and memory complaints reported by AD patients are associated with their disrupted sleep patterns. Sixty patients with AD and 60 matched healthy controls completed a battery of self-report questionnaires assessing perceived physical and mental health (Short-Form 36), mood (Beck Depression Inventory—II), sleep quality (Pittsburgh Sleep Quality Index), and cognition (Cognitive Failures Questionnaire). A latent variable model revealed that although AD had a significant direct effect on quality of life, the indirect effect of sleep was significantly greater. Furthermore, although AD had no direct effect on cognitive functioning, the indirect effect of sleep was significant. The overall model showed a good fit (comparative fit index = 0.91, root mean square of approximation = 0.09, and standardized root mean square residual = 0.05). Our findings suggest that disrupted sleep, and not the disease per se, may induce poor quality of life, memory impairment, and affect dysregulation in patients with AD. We think that improving sleep architecture may improve cognitive, affective, and physical functioning. PMID:26256520

  13. Poor quality of life, depressed mood, and memory impairment may be mediated by sleep disruption in patients with Addison's disease.

    PubMed

    Henry, Michelle; Wolf, Pedro S A; Ross, Ian L; Thomas, Kevin G F

    2015-11-01

    Standard replacement therapy for Addison's disease (AD) does not restore a normal circadian rhythm. In fact, hydrocortisone replacement in AD patients likely induces disrupted sleep. Given that healthy sleep plays an important role in improving quality of life, optimizing cognition, and ensuring affect regulation, the aim of this study was to investigate whether poor quality of life, mood alterations, and memory complaints reported by AD patients are associated with their disrupted sleep patterns. Sixty patients with AD and 60 matched healthy controls completed a battery of self-report questionnaires assessing perceived physical and mental health (Short-Form 36), mood (Beck Depression Inventory-II), sleep quality (Pittsburgh Sleep Quality Index), and cognition (Cognitive Failures Questionnaire). A latent variable model revealed that although AD had a significant direct effect on quality of life, the indirect effect of sleep was significantly greater. Furthermore, although AD had no direct effect on cognitive functioning, the indirect effect of sleep was significant. The overall model showed a good fit (comparative fit index = 0.91, root mean square of approximation = 0.09, and standardized root mean square residual = 0.05). Our findings suggest that disrupted sleep, and not the disease per se, may induce poor quality of life, memory impairment, and affect dysregulation in patients with AD. We think that improving sleep architecture may improve cognitive, affective, and physical functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Sleep stages, memory and learning.

    PubMed Central

    Dotto, L

    1996-01-01

    Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256

  15. Potential gray matter unpruned in adolescents and young adults dependent on dextromethorphan-containing cough syrups: evidence from cortical and subcortical study.

    PubMed

    Qiu, Ying-Wei; Lv, Xiao-Fei; Jiang, Gui-Hua; Su, Huan-Huan; Ma, Xiao-Fen; Tian, Jun-Zhang; Zhuo, Fu-Zhen

    2017-10-01

    Adolescence is a unique period in neurodevelopment. Dextromethorphan (DXM)-containing cough syrups are new addictive drugs used by adolescents and young adults. The effects of chronic DXM abuse on neurodevelopment in adolescents and young adults are still unknown. The aim of this study was to investigate the differences in cortical thickness and subcortical gray matter volumes between DXM-dependent adolescents and young adults and healthy controls, and to explore relationships between alternations in cortical thickness/subcortical volume and DXM duration, initial age of DXM use, as well as impulsive behavior in DXM-dependent adolescents and young adults. Thirty-eight DXM-dependent adolescents and young adults and 18 healthy controls underwent magnetic resonance imaging scanning, and cortical thickness across the continuous cortical surface was compared between the groups. Subcortical volumes were compared on a structure-by-structure basis. DXM-dependent adolescents and young adults exhibited significantly increased cortical thickness in the bilateral precuneus (PreC), left dorsal lateral prefrontal cortex (DLPFC. L), left inferior parietal lobe (IPL. L), right precentral gyrus (PreCG. R), right lateral occipital cortex (LOC. R), right inferior temporal cortex (ITC. R), right lateral orbitofrontal cortex (lOFC. R) and right transverse temporal gyrus (TTG. R) (all p < 0.05, multiple comparison corrected) and increased subcortical volumes of the right thalamus and right pallidum. There was a significant correlation between initial age of DXM use and cortical thickness of the DLPFC. L and PreCG. R. A significant correlation was also found between cortical thickness of the DLPFC. L and impulsive behavior in patients. This was the first study to explore relationships between cortical thickness/subcortical volume and impulsive behavior in adolescents dependent on DXM. These structural changes might explain the neurobiological mechanism of impulsive behavior in

  16. Vascular Compliance Limits during Sleep Deprivation and Recovery Sleep

    PubMed Central

    Phillips, Derrick J.; Schei, Jennifer L.; Rector, David M.

    2013-01-01

    Study Objectives: Our previous studies showed that evoked hemodynamic responses are smaller during wake compared to sleep; suggesting neural activity is associated with vascular expansion and decreased compliance. We explored whether prolonged activity during sleep deprivation may exacerbate vascular expansion and blunt hemodynamic responses. Design: Evoked auditory responses were generated with periodic 65dB speaker clicks over a 72-h period and measured with cortical electrodes. Evoked hemodynamic responses were measured simultaneously with optical techniques using three light-emitting diodes, and a photodiode. Setting: Animals were housed in separate 30×30×80cm enclosures, tethered to a commutator system and maintained on a 12-h light/dark cycle. Food and water were available ad libitum. Patients or Participants: Seven adult female Sprague-Dawley rats. Interventions: Following a 24-h baseline recording, sleep deprivation was initiated for 0 to 10 h by gentle handling, followed by a 24-h recovery sleep recording. Evoked electrical and hemodynamic responses were measured before, during, and after sleep deprivation. Measurements and Results: Following deprivation, evoked hemodynamic amplitudes were blunted. Steady-state oxyhemoglobin concentration increased during deprivation and remained high during the initial recovery period before returning to baseline levels after approximately 9-h. Conclusions: Sleep deprivation resulted in blood vessel expansion and decreased compliance while lower basal neural activity during recovery sleep may allow blood vessel compliance to recover. Chronic sleep restriction or sleep deprivation could push the vasculature to critical levels, limiting blood delivery, and leading to metabolic deficits with the potential for neural trauma. Citation: Phillips DJ; Schei JL; Rector DM. Vascular compliance limits during sleep deprivation and recovery sleep. SLEEP 2013;36(10):1459-1470. PMID:24082305

  17. Intra- and interregional cortical interactions related to sharp-wave ripples and dentate spikes.

    PubMed

    Headley, Drew B; Kanta, Vasiliki; Paré, Denis

    2017-02-01

    The hippocampus generates population events termed sharp-wave ripples (SWRs) and dentate spikes (DSs). While little is known about DSs, SWR-related hippocampal discharges during sleep are thought to replay prior waking activity, reactivating the cortical networks that encoded the initial experience. During slow-wave sleep, such reactivations likely occur during up-states, when most cortical neurons are depolarized. However, most studies have examined the relationship between SWRs and up-states measured in single neocortical regions. As a result, it is currently unclear whether SWRs are associated with particular patterns of widely distributed cortical activity. Additionally, no such investigation has been carried out for DSs. The present study addressed these questions by recording SWRs and DSs from the dorsal hippocampus simultaneously with prefrontal, sensory (visual and auditory), perirhinal, and entorhinal cortices in naturally sleeping rats. We found that SWRs and DSs were associated with up-states in all cortical regions. Up-states coinciding with DSs and SWRs exhibited increased unit activity, power in the gamma band, and intraregional gamma coherence. Unexpectedly, interregional gamma coherence rose much more strongly in relation to DSs than to SWRs. Whereas the increase in gamma coherence was time locked to DSs, that seen in relation to SWRs was not. These observations suggest that SWRs are related to the strength of up-state activation within individual regions throughout the neocortex but not so much to gamma coherence between different regions. Perhaps more importantly, DSs coincided with stronger periods of interregional gamma coherence, suggesting that they play a more important role than previously assumed. Off-line cortico-hippocampal interactions are thought to support memory consolidation. We surveyed the relationship between hippocampal sharp-wave ripples (SWRs) and dentate spikes (DSs) with up-states across multiple cortical regions. SWRs and

  18. Sleep impairment in ecstasy/polydrug and cannabis-only users.

    PubMed

    Fisk, John E; Montgomery, Catharine

    2009-01-01

    The present study investigated aspects of sleep quality in ecstasy and cannabis users. Two-hundred and twenty seven participants (117 ecstasy/polydrug users, 53 cannabis users and 57 drug naive participants) took part. The participants completed measures of daytime sleepiness, and indicators of sleep quality. The results demonstrated that ecstasy/polydrug users viewed themselves as being more evening types and having poorer sleep quality than cannabis users and drug naive participants. They were also more likely to have missed a night's sleep. The reported differences in sleep type may reflect ecstasy-related serotonergic dysfunction resulting in problems with shifting circadian rhythms.

  19. Memory reactivation and consolidation during sleep

    PubMed Central

    Paller, Ken A.; Voss, Joel L.

    2004-01-01

    Do our memories remain static during sleep, or do they change? We argue here that memory change is not only a natural result of sleep cognition, but further, that such change constitutes a fundamental characteristic of declarative memories. In general, declarative memories change due to retrieval events at various times after initial learning and due to the formation and elaboration of associations with other memories, including memories formed after the initial learning episode. We propose that declarative memories change both during waking and during sleep, and that such change contributes to enhancing binding of the distinct representational components of some memories, and thus to a gradual process of cross-cortical consolidation. As a result of this special form of consolidation, declarative memories can become more cohesive and also more thoroughly integrated with other stored information. Further benefits of this memory reprocessing can include developing complex networks of interrelated memories, aligning memories with long-term strategies and goals, and generating insights based on novel combinations of memory fragments. A variety of research findings are consistent with the hypothesis that cross-cortical consolidation can progress during sleep, although further support is needed, and we suggest some potentially fruitful research directions. Determining how processing during sleep can facilitate memory storage will be an exciting focus of research in the coming years. PMID:15576883

  20. Prior sleep with zolpidem enhances the effect of caffeine or modafinil during 18 hours continuous work.

    PubMed

    Batéjat, Denise; Coste, Olivier; Van Beers, Pascal; Lagarde, Didier; Piérard, Christophe; Beaumont, Maurice

    2006-05-01

    Continuous military operations may disrupt sleep-wakefulness cycles, resulting in impaired performance and fatigue. We assessed the treatment efficacy of a hypnotic-psychostimulant combination to maintain sleep quality, performance, and alertness during a 42-h simulated military operation. A 6-h prophylactic sleep period with zolpidem (ZOL) followed by a 18-h continuous work period with administration at midway of 300 mg of slow release caffeine (CAF) or 200 mg of modafinil (MOD) was performed by eight healthy male subjects. Performance level was assessed with a reaction time test, a memory search test, a dual task, an attention test, and a computerized Stroop test. Cortical activation level was evaluated by the Critical Flicker Frequency test. Subjective sleepiness was evaluated using a visual analog scale and questionnaires. Effects of drugs on prophylactic and recovery sleep were also quantified from EEG recordings. CAF and MOD maintained performance and alertness throughout the 18-h work period. As shown by EEG recordings, ZOL improved prophylactic sleep without any deleterious effect on performance immediately after waking. As a result of its positive effects on prophylactic sleep, a lower pressure for slow wave sleep during recovery sleep was observed; nevertheless, zolpidem did not enhance the effects of either psychostimulant on performance. MOD and CAF may be of value in promoting performance and wakefulness during shiftwork or military operations while zolpidem improves prophylactic sleep quality without any deleterious effect after waking. We concluded that a zolpidem/ caffeine or modafinil combination could be useful in a context of environmental conditions not conducive to sleep.