Tracking of electrochemical impedance of batteries
NASA Astrophysics Data System (ADS)
Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.
2016-04-01
This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.
Impedance learning for robotic contact tasks using natural actor-critic algorithm.
Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul
2010-04-01
Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
NASA Astrophysics Data System (ADS)
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
Optimal critic learning for robot control in time-varying environments.
Wang, Chen; Li, Yanan; Ge, Shuzhi Sam; Lee, Tong Heng
2015-10-01
In this paper, optimal critic learning is developed for robot control in a time-varying environment. The unknown environment is described as a linear system with time-varying parameters, and impedance control is employed for the interaction control. Desired impedance parameters are obtained in the sense of an optimal realization of the composite of trajectory tracking and force regulation. Q -function-based critic learning is developed to determine the optimal impedance parameters without the knowledge of the system dynamics. The simulation results are presented and compared with existing methods, and the efficacy of the proposed method is verified.
Mechanical Impedance Modeling of Human Arm: A survey
NASA Astrophysics Data System (ADS)
Puzi, A. Ahmad; Sidek, S. N.; Sado, F.
2017-03-01
Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.
New power sharing control for inverter-dominated microgrid based on impedance match concept.
Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang
2013-01-01
Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method.
New Power Sharing Control for Inverter-Dominated Microgrid Based on Impedance Match Concept
Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang
2013-01-01
Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method. PMID:24453910
Workspace Safe Operation of a Force- or Impedance-Controlled Robot
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Strawser, Philip A. (Inventor); Yamokoski, John D. (Inventor)
2013-01-01
A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.
NASA Technical Reports Server (NTRS)
Laskowski, Edward L. (Inventor)
1995-01-01
An apparatus for sensing a target characteristic, such as relative distance between the apparatus and target, target thickness, target material, or lateral position between the apparatus and the target, includes a coil for directing an electro-magnetic field at the target. A voltage controlled oscillator energizes the coil at a resonant frequency which is functionally related to the target characteristic. The coil has an effective impedance value at resonance functionally related to the target characteristic. A frequency monitor measures the resonant frequency. An impedance monitor determines the impedance value when the drive frequency is at the resonant value. A PROM or controller determines the target characteristic in response to the measured resonant frequency and the determined impedance value. The PROM or controller provides a signal responsive to the determined target characteristic.
Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2017-01-01
Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.
NASA Astrophysics Data System (ADS)
Kapica, Dominik; Warchulińska, Joanna; Jakubiak, Monika; Teter, Mariusz; Mlak, Radosław; Hałabiś, Magdalena; Wójcik, Waldemar; Małecka-Massalska, Teresa
2015-09-01
Introduction: Bioelectrical impedance analysis (BIA) is a useful tool to asses human body composition and nutrition status; multi-frequency BIA has a higher accuracy than single-frequency BIA. In our study a difference of impedance values (Z) at 5, 100 and 200 kHz and Z200/Z5 index between professional athletes and control group were determined. Methods: In this research 105 people were tested, divided into control group (72 people: 35 males and 37 females) and professional athletes (33 people: 16 males and 17 females). Impedance was measured at three frequency values - 5, 100 and 200 kHz; with received values the Z200/Z5 index was calculated. Results: In most compared subgroups impedance values showed significantly lower values in athletes than in control group (5 kHz - males: p=0.136, females: p=0.001, 100 kHz - males: p=0.039, females: p<0.0001, 200 kHz - males: p=0.047, females: p<0.0001) Z200/Z5 index also showed lower value in athletes than in control group (p=0.016 for males, p<0.0001 for females). Conclusion: Lower values of impedance and Z200/Z5 index indicates a better nutrition status and general health condition of athletes than in control group.
Electrode immersion depth determination and control in electroslag remelting furnace
Melgaard, David K [Albuquerque, NM; Beaman, Joseph J [Austin, TX; Shelmidine, Gregory J [Tijeras, NM
2007-02-20
An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.
Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O
2016-03-01
An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.
Estimating surface acoustic impedance with the inverse method.
Piechowicz, Janusz
2011-01-01
Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.
Application of plant impedance for diagnosing plant disease
NASA Astrophysics Data System (ADS)
Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin
2006-10-01
Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.
Degtiarenko, Pavel V [Williamsburg, VA; Popov, Vladimir E [Newport News, VA
2011-03-22
A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.
Development on electromagnetic impedance function modeling and its estimation
NASA Astrophysics Data System (ADS)
Sutarno, D.
2015-09-01
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.
Development on electromagnetic impedance function modeling and its estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutarno, D., E-mail: Sutarno@fi.itb.ac.id
2015-09-30
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim atmore » reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.« less
[Current status of noninvasive hemodynamics in hypertension].
Waisman, G
Hypertension is a haemodynamic disorder resulting from a persistent mismatch between cardiac output and peripheral resistance. Hypertension undergoes haemodynamic progression during its natural history. Impedance cardiography is a method of evaluating the cardiovascular system that obtains haemodynamic information from beat to beat through the analysis of variations in the impedance of the thorax on the passage of an electric current. Impedance cardiography unmasks the haemodynamic deterioration underlying the increase in blood pressure as age and systolic blood pressure increases. This method may help to improve blood pressure control through individualized treatment with reduction of peripheral resistance, maintenance of cardiac output or its increase, improvement of arterial compliance and preservation of organ-tissue perfusion. It is useful in the management of patients with resistant hypertension, since a greater percentage of patients controlled with changes in the treatment in relation to the haemodynamic measurements are obtained. Impedance cardiography is important and has prognostic utility in relation to a haemodynamic deterioration pattern and increased cardiovascular events. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Depernet, Daniel; Ba, Oumar; Berthon, Alain
2012-12-01
This paper presents a contribution to implementation of hybrid power plants in rural areas without electricity in Senegal. Wind and photovoltaic generators coupling is used to benefit from renewable energy resources in this country. Lead acid storage batteries are coupled with the generators to ensure smoothness of the electricity generation. This work is focused in particular on the development of a low cost online impedance spectroscopy method to address the problem of limited lifetime of batteries and the difficulties of their maintenance in isolated areas. Control of static converter associated with the battery is adapted to integrate the functionality of characterization of batteries by impedance spectroscopy. An experimental platform developed in the laboratory has validated the method for online measurement of battery impedance spectrum and to initiate a phase of data monitoring.
An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery
Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad
2007-01-01
In this paper we present an inexpensive electronic measurement instrumentation developed in our laboratory, to measure and plot the impedance of a loaded fuel cell or battery. Impedance measurements were taken by using the load modulation method. This instrumentation has been developed around a VXI system stand which controls electronic cards. Software under Hpvee® was developed for automatic measurements and the layout of the impedance of the fuel cell on load. The measurement environment, like the ambient temperature, the fuel cell temperature, the level of the hydrogen, etc…, were taken with several sensors that enable us to control the measurement. To filter the noise and the influence of the 50Hz, we have implemented a synchronous detection which filters in a very narrow way around the useful signal. The theoretical result obtained by a simulation under Pspice® of the method used consolidates the choice of this method and the possibility of obtaining correct and exploitable results. The experimental results are preliminary results on a 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedance measurements on a fuel cell are in progress, and will be the subject of a forthcoming paper). The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V) and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical) enables us to validate our electronic measurement instrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes. PMID:28903231
[Study on Accurately Controlling Discharge Energy Method Used in External Defibrillator].
Song, Biao; Wang, Jianfei; Jin, Lian; Wu, Xiaomei
2016-01-01
This paper introduces a new method which controls discharge energy accurately. It is achieved by calculating target voltage based on transthoracic impedance and accurately controlling charging voltage and discharge pulse width. A new defibrillator is designed and programmed using this method. The test results show that this method is valid and applicable to all kinds of external defibrillators.
NASA Astrophysics Data System (ADS)
Gowda, Haarish Kapaninaikappa
Noise is defined as unwanted sound, when perceived in excess can cause many harmful effects such as annoyance, interference with speech, and hearing loss, hence there is a need to control noise in practical situations. Noise can be controlled actively and/or passively, here we discuss the passive noise control techniques. Passive noise control involves using energy dissipating or reflecting materials such as absorbers or barriers respectively. Damping and isolating materials are also used in eliminating structure-borne noise. These materials exhibit properties such as reflection, absorption and transmission loss when incidence is by a sound source. Thus, there is a need to characterize the acoustical properties of these materials for practical use. The theoretical background of the random incident sound absorption with reverberation room and normal incident sound absorption using impedance tube are well documented. The Transfer Matrix method for measuring transmission loss and absorption coefficient using impedance tube is very attractive since it is rather inexpensive and fast. In this research, a low-cost Impedance Tube is constructed using transfer function method to measure both absorption and transmissibility of materials. Equipment and measurement instruments available in the laboratory were used in the construction of the tube, adhering to cost-effectiveness. Care has been taken for precise construction of tube to ensure better measurement results. Further various samples varying from hard non-porous to soft porous materials were tested for absorption and sound transmission loss. Absorption values were also compared with reverberation room method with the available samples further ensuring the reliability of the newly constructed tube for future measurements.
Walsh, David O; Turner, Peter
2014-05-27
Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.
Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity
NASA Technical Reports Server (NTRS)
Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.
1995-01-01
A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.
Method and apparatus for deflection measurements using eddy current effects
NASA Astrophysics Data System (ADS)
Chern, Engmin J.
1993-05-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
Method and apparatus for deflection measurements using eddy current effects
NASA Technical Reports Server (NTRS)
Chern, Engmin J. (Inventor)
1993-01-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
Method and apparatus for automatic control of a humanoid robot
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor)
2013-01-01
A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.
Richardson, John G [Idaho Falls, ID
2009-11-17
An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.
NASA Astrophysics Data System (ADS)
Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.
2016-01-01
This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.
Kelchen, Megan N; Holdren, Grant O; Farley, Matthew J; Zimmerman, M Bridget; Fairley, Janet A; Brogden, Nicole K
2014-12-01
The objective of this study was to optimize a reproducible impedance spectroscopy method in elderly subjects as a means to evaluate the effects of microneedles on aging skin. Human volunteers were treated with microneedles at six sites on the upper arm. Repeated impedance measurements were taken pre- and post-microneedle insertion. Two electrode types were evaluated (dry vs. gel), using either light or direct pressure to maintain contact between the electrode and skin surface. Transepidermal water loss (TEWL) was measured as a complementary technique. Five control subjects and nine elderly subjects completed the study. Microneedle insertion produced a significant decrease in impedance from baseline in all subjects (p < 0.05, regardless of electrode type or pressure application), confirming micropore formation. This was supported by a complementary significant increase in TEWL (p < 0.05). The gel*direct condition produced the lowest variability between measurements, as demonstrated by a coefficient of variation of 3.8% and 3.5% (control and elderly subjects, respectively). This was lower than variation between TEWL measurements at the same sites: 19.8% and 21.6% (control and elderly subjects, respectively). Impedance spectroscopy reproducibly measures micropore formation in elderly subjects, which will be essential for future studies describing microneedle-assisted transdermal delivery in aging populations.
Harth, Yoram; Lischinsky, Daniel
2011-03-01
The thermal effects of monopolar and bipolar radiofrequency (RF) have been proven to be beneficial in skin tightening. Nevertheless, these effects were frequently partial or unpredictable because of the uncontrolled nature of monopolar or unipolar RF and the superficial nature of energy flow for bipolar or tripolar configurations. One of the hypotheses for lack or predictability of efficacy of the first-generation RF therapy skin tightening systems is lack of adaptation of delivered power to differences in individual skin impedance. A novel multisource phase-controlled system was used (1 MHz, power range 0-65 W) for treatment and real-time skin impedance measurements in 24 patients (EndyMed PRO™; EndyMed, Cesarea, Israel). This system allows continuous real-time measurement of skin impedance delivering constant energy to the patient skin independent of changes in its impedance. More than 6000 unique skin impedance measurements on 22 patients showed an average session impedance range was 215-584 Ohm with an average of 369 Ohm (standard deviation of 49 Ohm). Analyzing individual pulses (total of 600 readings) showed a significant decrease in impedance during the pulse. These findings validate the expected differences in skin impedance between individual patients and in the same patients during the treatment pulse. Clinical study on 30 patients with facial skin aging using the device has shown high predictability of efficacy (86.7% of patients had good results or better at 3 months' follow-up [decrease of 2 or more grades in Fitzpatrick's wrinkle scale]). The real-time customization of energy according to skin impedance allows a significantly more accurate and safe method of nonablative skin tightening with more consistent and predictable results. © 2011 Wiley Periodicals, Inc.
Hynynen, Kullervo; Yin, Jianhua
2009-03-01
A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (averaged over the cylinder diameter) over 10 W / cm(2) (a therapeutically relevant intensity) was measured from these elements.
Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan
2004-03-09
There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.
NASA Technical Reports Server (NTRS)
Mehling, Joshua S.; Holley, James; O'Malley, Marcia K.
2015-01-01
The fidelity with which series elastic actuators (SEAs) render desired impedances is important. Numerous approaches to SEA impedance control have been developed under the premise that high-precision actuator torque control is a prerequisite. Indeed, the design of an inner torque compensator has a significant impact on actuator impedance rendering. The disturbance observer (DOB) based torque control implemented in NASA's Valkyrie robot is considered here and a mathematical model of this torque control, cascaded with an outer impedance compensator, is constructed. While previous work has examined the impact a disturbance observer has on torque control performance, little has been done regarding DOBs and impedance rendering accuracy. Both simulation and a series of experiments are used to demonstrate the significant improvements possible in an SEA's ability to render desired dynamic behaviors when utilizing a DOB. Actuator transparency at low impedances is improved, closed loop hysteresis is reduced, and the actuator's dynamic response to both commands and interaction torques more faithfully matches that of the desired model. All of this is achieved by leveraging DOB based control rather than increasing compensator gains, thus making improved SEA impedance control easier to achieve in practice.
Performance and stability of telemanipulators using bilateral impedance control. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Moore, Christopher Lane
1991-01-01
A new method of control for telemanipulators called bilateral impedance control is investigated. This new method differs from previous approaches in that interaction forces are used as the communication signals between the master and slave robots. The new control architecture has several advantages: (1) It allows the master robot and the slave robot to be stabilized independently without becoming involved in the overall system dynamics; (2) It permits the system designers to arbitrarily specify desired performance characteristics such as the force and position ratios between the master and slave; (3) The impedance at both ends of the telerobotic system can be modulated to suit the requirements of the task. The main goals of the research are to characterize the performance and stability of the new control architecture. The dynamics of the telerobotic system are described by a bond graph model that illustrates how energy is transformed, stored, and dissipated. Performance can be completely described by a set of three independent parameters. These parameters are fundamentally related to the structure of the H matrix that regulates the communication of force signals within the system. Stability is analyzed with two mathematical techniques: the Small Gain Theorem and the Multivariable Nyquist Criterion. The theoretical predictions for performance and stability are experimentally verified by implementing the new control architecture on a multidegree of freedom telemanipulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newby, M.J.; Keim, N.L.; Brown, D.L.
1990-08-01
This study contrasts body compositions (by six methods) of eight cystic fibrosis (CF) subjects with those of eight control subjects matched for age, height, and sex. CF subjects weighed 84% as much as control subjects. Densitometry and two bioelectrical impedance-analysis methods suggested that reduced CF weights were due to less lean tissue (10.7, 9.5, and 10.4 kg). Total-body electrical conductivity (TOBEC) and skinfold-thickness measurements indicated that CF subjects were leaner than control subjects and had less fat (5.4 and 3.6 kg) and less lean (5.2 and 7 kg) tissue. D2O dilution showed a pattern similar to TOBEC (8.3 kg lessmore » lean, 2.7 kg less fat tissue). Densitometry estimates of fat (mass and percent) were not correlated (r less than 0.74, p greater than 0.05) with any other method for CF subjects but were correlated with all other methods for control subjects. CF subjects contained less fat and lean tissue than did control subjects. Densitometry by underwater weighing is unsuitable for assessing body composition of CF patients.« less
Fernández, Pilar; Gabaldón, José Antonio; Periago, Mª Jesús
2017-12-01
Alicyclobacillus acidoterrestris is a thermotolerant bacterium able to grow in fruit juices and drinks, as the spoilage by Alicyclobacillus in the final product does not product any gas, but leads to a "medicine flavor" due to the formation of guaicol. Also, its detection is a challenge for the quality control departments, because it takes several days to get the results of traditional microbiology methods. This study aimed at developing a more accurate electrical impedance technique for the detection of A. acidoterrestris in concentrated apple juice. Samples of apple juice were inoculated with A. acidoterrestris spores isolated from a peach and grape juice. For the spore germination, several heat-shock treatments were tested (80 °C/10 min, 70 °C/20 min and 60 °C/30 min). Direct and indirect electrical impedance was applied to detect and quantify the microorganism in the inoculated apple juice, using BAT broth and Bimedia 002A (pH 4). The 80 °C/10 min treatment was selected for spore activation. The valid electrical impedance technique was the indirect method in BAT broth, which measured the changes in the impedance through the formation of CO 2 . In addition, a positive correlation (r = 0.98, R 2 = 0.97) was observed between the classical microbiology (BAM agar) and the indirect impedance method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rouse, Elliott J; Hargrove, Levi J; Perreault, Eric J; Peshkin, Michael A; Kuiken, Todd A
2013-08-01
The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment. The estimation of these properties requires the displacement of the joint from its intended motion and a subsequent analysis to determine the relationship between the imposed perturbation and the resultant joint torque. There has been much investigation into the estimation of upper-extremity joint impedance during dynamic activities, yet the estimation of ankle impedance during walking has remained a challenge. This estimation is important for understanding how the mechanical properties of the human ankle are modulated during locomotion, and how those properties can be replicated in artificial prostheses designed to restore natural movement control. Here, we introduce a mechatronic platform designed to address the challenge of estimating the stiffness component of ankle impedance during walking, where stiffness denotes the static component of impedance. The system consists of a single degree of freedom mechatronic platform that is capable of perturbing the ankle during the stance phase of walking and measuring the response torque. Additionally, we estimate the platform's intrinsic inertial impedance using parallel linear filters and present a set of methods for estimating the impedance of the ankle from walking data. The methods were validated by comparing the experimentally determined estimates for the stiffness of a prosthetic foot to those measured from an independent testing machine. The parallel filters accurately estimated the mechatronic platform's inertial impedance, accounting for 96% of the variance, when averaged across channels and trials. Furthermore, our measurement system was found to yield reliable estimates of stiffness, which had an average error of only 5.4% (standard deviation: 0.7%) when measured at three time points within the stance phase of locomotion, and compared to the independently determined stiffness values of the prosthetic foot. The mechatronic system and methods proposed in this study are capable of accurately estimating ankle stiffness during the foot-flat region of stance phase. Future work will focus on the implementation of this validated system in estimating human ankle impedance during the stance phase of walking.
Developing a stability assessment method for power electronics-based microgrids
NASA Astrophysics Data System (ADS)
Austin, Peter M.
Modern microgrids with microsources and energy storage are dependent on power electronics for control and regulation. Under certain circumstances power electronics can be destabilizing to the system due to an effect called negative incremental impedance. A careful review of the theory and literature on the subject is presented. This includes stability criteria for both AC and DC systems, as well as a discussion on the limitations posed by the analysis. A method to integrate stability assessment with higher-level microgrid architectural design is proposed. Crucial to this is impedance characterization of individual components, which was accomplished through simulation. DC and AC impedance measurement blocks were created in Matlab simulink to automate the process. A detailed switching-level model of a DC microgrid was implemented in simulink, including wind turbine microsource, battery storage, and three phase inverter. Maximum power point tracking (MPPT) was included to maximize the efficiency of the turbine and was implemented through three rectifier alternatives and control schemes. The stability characteristics of each was compared in the final analysis. Impedance data was collected individually from the components and used to assess stability in the system as a whole. The results included the assessment of stability, margin, and unstable operating points to demonstrate the feasibility of the proposed approach.
Ravi, K; Geno, D M; Vela, M F; Crowell, M D; Katzka, D A
2017-05-01
Baseline impedance measured with ambulatory impedance pH monitoring (MII-pH) and a mucosal impedance catheter detects gastroesophageal reflux disease (GERD). However, these tools are limited by cost or patient tolerance. We investigated whether baseline impedance measured during high-resolution impedance manometry (HRIM) distinguishes GERD patients from controls. Consecutive patients with clinical HRIM and MII-pH testing were identified. Gastroesophageal reflux disease was defined by esophageal pH <4 for ≥5% of both the supine and total study time, whereas controls had an esophageal pH <4 for ≤3% of the study performed off PPI. Baseline impedance was measured over 15 seconds during the landmark period of HRIM and over three 10 minute intervals during the overnight period of MII-pH. Among 29 GERD patients and 26 controls, GERD patients had a mean esophageal acid exposure time of 22.7% compared to 1.2% in controls (P<.0001). Mean baseline impedance during HRIM was lower in GERD (1061 Ω) than controls (2814 Ω) (P<.0001). Baseline mucosal impedance measured during HRIM and MII-pH correlated (r=0.59, P<.0001). High-resolution esophageal manometry baseline impedance had high diagnostic accuracy for GERD, with an area under the curve (AUC) of 0.931 on receiver operating characteristics (ROC) analysis. A HRIM baseline impedance threshold of 1582 Ω had a sensitivity of 86.2% and specificity of 88.5% for GERD, with a positive predictive value of 89.3% and negative predictive value of 85.2%. Baseline impedance measured during HRIM can reliably discriminate GERD patients with at least moderate esophageal acid exposure from controls. This diagnostic tool may represent an accurate, cost-effective, and less invasive test for GERD. © 2016 John Wiley & Sons Ltd.
Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review
Bera, Tushar Kanti
2014-01-01
Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932
Methods and apparatus for microwave tissue welding for wound closure
NASA Technical Reports Server (NTRS)
Ngo, Phong H. (Inventor); Dusl, John R. (Inventor); Arndt, G. Dickey (Inventor); Phan, Chau T. (Inventor); Byerly, Diane L. (Inventor); Sognier, Marguerite A. (Inventor); Carl, James R. (Inventor)
2013-01-01
Methods and apparatus for joining biological tissue together are provided. In at least one specific embodiment, a method for joining biological tissue together can include applying a biological solder on a wound. A barrier layer can be disposed on the biological solder. An antenna can be located in proximate spatial relationship to the barrier layer. An impedance of the antenna can be matched to an impedance of the wound. Microwaves from a signal generator can be transmitted through the antenna to weld two or more biological tissue pieces of the wound together. A power of the microwaves can be adjusted by a control circuit disposed between the antenna and the signal generator. The heating profile within the tissue may be adjusted and controlled by the placement of metallic microspheres in or around the wound.
Modified coaxial wire method for measurement of transfer impedance of beam position monitors
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.
2018-05-01
The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.
Chang, Pyung Hun; Kang, Sang Hoon
2010-05-30
The basic assumption of stochastic human arm impedance estimation methods is that the human arm and robot behave linearly for small perturbations. In the present work, we have identified the degree of influence of nonlinear friction in robot joints to the stochastic human arm impedance estimation. Internal model based impedance control (IMBIC) is then proposed as a means to make the estimation accurate by compensating for the nonlinear friction. From simulations with a nonlinear Lugre friction model, it is observed that the reliability and accuracy of the estimation are severely degraded with nonlinear friction: below 2 Hz, multiple and partial coherence functions are far less than unity; estimated magnitudes and phases are severely deviated from that of a real human arm throughout the frequency range of interest; and the accuracy is not enhanced with an increase of magnitude of the force perturbations. In contrast, the combined use of stochastic estimation and IMBIC provides with accurate estimation results even with large friction: the multiple coherence functions are larger than 0.9 throughout the frequency range of interest and the estimated magnitudes and phases are well matched with that of a real human arm. Furthermore, the performance of suggested method is independent of human arm and robot posture, and human arm impedance. Therefore, the IMBIC will be useful in measuring human arm impedance with conventional robot, as well as in designing a spatial impedance measuring robot, which requires gearing. (c) 2010 Elsevier B.V. All rights reserved.
Metals processing control by counting molten metal droplets
Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.
2000-01-01
Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.
Development and Validation of an Interactive Liner Design and Impedance Modeling Tool
NASA Technical Reports Server (NTRS)
Howerton, Brian M.; Jones, Michael G.; Buckley, James L.
2012-01-01
The Interactive Liner Impedance Analysis and Design (ILIAD) tool is a LabVIEW-based software package used to design the composite surface impedance of a series of small-diameter quarter-wavelength resonators incorporating variable depth and sharp bends. Such structures are useful for packaging broadband acoustic liners into constrained spaces for turbofan engine noise control applications. ILIAD s graphical user interface allows the acoustic channel geometry to be drawn in the liner volume while the surface impedance and absorption coefficient calculations are updated in real-time. A one-dimensional transmission line model serves as the basis for the impedance calculation and can be applied to many liner configurations. Experimentally, tonal and broadband acoustic data were acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3000 Hz at 120 and 140 dB SPL. Normalized impedance spectra were measured using the Two-Microphone Method for the various combinations of channel configurations. Comparisons between the computed and measured impedances show excellent agreement for broadband liners comprised of multiple, variable-depth channels. The software can be used to design arrays of resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.
Effects of Liner Length and Attenuation on NASA Langley Impedance Eduction
NASA Technical Reports Server (NTRS)
Jones, M. G.; Watson, W. R.
2016-01-01
This study explores the effects of liner length and attenuation on the CHE (convected Helmholtz equation) impedance eduction method, in which the surface impedance of an acoustic liner is inferred through an iterative process based on repeated solutions to the convected Helmholtz equation. Wire mesh-over-honeycomb and perforate-over-honeycomb acoustic liners are tested in the NASA Langley Grazing Flow Impedance Tube, and the resultant data are processed using two impedance eduction methods. The first is the CHE method, and the second is a direct method (labeled the KT method) that uses the Kumaresan and Tufts algorithm to compute the impedance directly. The CHE method has been extensively used for acoustic liner evaluation, but experiences anomalous behavior under some test conditions. It is postulated that the anomalies are related to the liner length and/or attenuation. Since the KT method only employs data measured over the length of the liner, it is expected to be unaffected by liner length. A comparison of results achieved with the two impedance eduction methods is used to explore the interactive effects of liner length and attenuation on the CHE impedance eduction method.
Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?
Loram, Ian D; Kelly, Sue M; Lakie, Martin
2001-01-01
Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. Two main questions were addressed. Can subjects systematically change sway size in response to instruction and availability of visual feedback? If so, do subjects decrease sway size by increasing ankle impedance or by some alternative mechanism? The position of the pendulum, the torque generated at each ankle and the soleus and tibialis anterior EMG were recorded. Results showed that subjects could significantly reduce the mean sway size of the pendulum by giving full attention to that goal. With visual feedback sway size could be minimised significantly more than without visual feedback. In changing sway size, the frequency of the sways was not changed. Results also revealed that ankle impedance and muscle co-contraction were not significantly changed when the sway size was decreased. As the ankle impedance and sway frequency do not change when the sway size is decreased, this implies no change in ankle stiffness or viscosity. Increasing ankle impedance, stiffness or viscosity are not the only methods by which sway size could be reduced. A reduction in torque noise or torque inaccuracy via a predictive process which provides active damping could reduce sway size without changing ankle impedance and is plausible given the data. Such a strategy involving motion recognition and generation of an accurate motor response may require higher levels of control than changing ankle impedance by altering reflex or feedforward gain. PMID:11313453
NASA Technical Reports Server (NTRS)
Fuller, C. R.; Hansen, C. H.; Snyder, S. D.
1991-01-01
Active control of sound radiation from a rectangular panel by two different methods has been experimentally studied and compared. In the first method a single control force applied directly to the structure is used with a single error microphone located in the radiated acoustic field. Global attenuation of radiated sound was observed to occur by two main mechanisms. For 'on-resonance' excitation, the control force had the effect of increasing the total panel input impedance presented to the nosie source, thus reducing all radiated sound. For 'off-resonance' excitation, the control force tends not significantly to modify the panel total response amplitude but rather to restructure the relative phases of the modes leading to a more complex vibration pattern and a decrease in radiation efficiency. For acoustic control, the second method, the number of acoustic sources required for global reduction was seen to increase with panel modal order. The mechanism in this case was that the acoustic sources tended to create an inverse pressure distribution at the panel surface and thus 'unload' the panel by reducing the panel radiation impedance. In general, control by structural inputs appears more effective than control by acoustic sources for structurally radiated noise.
Control Software for a High-Performance Telerobot
NASA Technical Reports Server (NTRS)
Kline-Schoder, Robert J.; Finger, William
2005-01-01
A computer program for controlling a high-performance, force-reflecting telerobot has been developed. The goal in designing a telerobot-control system is to make the velocity of the slave match the master velocity, and the environmental force on the master match the force on the slave. Instability can arise from even small delays in propagation of signals between master and slave units. The present software, based on an impedance-shaping algorithm, ensures stability even in the presence of long delays. It implements a real-time algorithm that processes position and force measurements from the master and slave and represents the master/slave communication link as a transmission line. The algorithm also uses the history of the control force and the slave motion to estimate the impedance of the environment. The estimate of the impedance of the environment is used to shape the controlled slave impedance to match the transmission-line impedance. The estimate of the environmental impedance is used to match the master and transmission-line impedances and to estimate the slave/environment force in order to present that force immediately to the operator via the master unit.
Optimization and Control of Acoustic Liner Impedance with Bias Flow
NASA Technical Reports Server (NTRS)
Wood, Houston; Follet, Jesse
2000-01-01
Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.
Reduction of turbulent boundary layer induced interior noise through active impedance control.
Remington, Paul J; Curtis, Alan R D; Coleman, Ronald B; Knight, J Scott
2008-03-01
The use of a single actuator tuned to an optimum impedance to control the sound power radiated from a turbulent boundary layer (TBL) excited aircraft panel into the aircraft interior is examined. An approach to calculating the optimum impedance is defined and the limitations on the reduction in radiated power by a single actuator tuned to that impedance are examined. It is shown that there are too many degrees of freedom in the TBL and in the radiation modes of the panel to allow a single actuator to control the radiated power. However, if the panel modes are lightly damped and well separated in frequency, significant reductions are possible. The implementation of a controller that presents a desired impedance to a structure is demonstrated in a laboratory experiment, in which the structure is a mass. The performance of such a controller on an aircraft panel is shown to be effective, if the actuator impedance is similar to but not the same as the desired impedance, provided the panel resonances are well separated in frequency and lightly damped.
An Automated Method to Monitor Cell Migration.
NASA Astrophysics Data System (ADS)
Giaever, Ivar; Keese, Charles R.
2002-03-01
Electric cell-substrate impedance sensing (ECIS) has been developed as a non-invasive means to follow cell behavior in culture. In this method cells are cultured on small (250 micrometer diameter) gold film electrodes. The impedance of the electrode is measured by an AC current about 1 microampere. When challenged by biochemical or physical stimuli the cells will respond by changing their morphology and motion. These changes are reflected in the measured impedance values. In this study, the basic ECIS system was used in both a non-invasive and invasive mode to carry out an automated wound-healing assay for quantifying cell migration activity. BSC-1, MDCK, and NRK cell lines were grown to confluence in ECIS wells before data was collected. An AC current of approximately 1 milliampere at 40,000 Hz was applied for several seconds, killing the cells in contact with the ECIS electrode and dropping the impedance to that of a cell-free electrode. For the next few hours following this incursion, the neighboring cells migrate into the wounded area replacing the dead cells, and the electrodes return to impedance values of unwounded controls. Data shows that the time required for the completion of this activity is strongly dependent upon cell type, medium composition, and the type of protein adsorbed to the substrate.
Novel method to control antenna currents based on theory of characteristic modes
NASA Astrophysics Data System (ADS)
Elghannai, Ezdeen Ahmed
Characteristic Mode Theory is one of the very few numerical methods that provide a great deal of physical insight because it allows us to determine the natural modes of the radiating structure. The key feature of these modes is that the total induced antenna current, input impedance/admittance and radiation pattern can be expressed as a linear weighted combination of individual modes. Using this decomposition method, it is possible to study the behavior of the individual modes, understand them and therefore control the antennas behavior; in other words, control the currents induced on the antenna structure. This dissertation advances the topic of antenna design by carefully controlling the antenna currents over the desired frequency band to achieve the desired performance specifications for a set of constraints. Here, a systematic method based on the Theory of Characteristic Modes (CM) and lumped reactive loading to achieve the goal of current control is developed. The lumped reactive loads are determined based on the desired behavior of the antenna currents. This technique can also be used to impedance match the antenna to the source/generator connected to it. The technique is much more general than the traditional impedance matching. Generally, the reactive loads that properly control the currents exhibit a combination of Foster and non-Foster behavior. The former can be implemented with lumped passive reactive components, while the latter can be implemented with lumped non-Foster circuits (NFC). The concept of current control is applied to design antennas with a wide band (impedance/pattern) behavior using reactive loads. We successfully applied this novel technique to design multi band and wide band antennas for wireless applications. The technique was developed to match the antenna to resistive and/or complex source impedance and control the radiation pattern at these frequency bands, considering size and volume constraints. A wide band patch antenna was achieved using the developed technique. In addition, the technique was applied to multi band wire less Universal Serial Bus (USB) dongle antenna that serves for WLAN IEEE 802.11 a/b/g/n band applications and Radio Frequency Identification (RFID) tag antenna for 915MHz band applications with superior performance compared to previous published results. This dissertation also discusses the total Q of an antenna from the CM standpoint. A new expression as well as additional physical information about each mode's individual contribution to the total antenna Q are provided. Finally, the theory is used to an analyze the antenna in both radiation and/or scattering modes. In the antenna scattering mode, the field scattered by an antenna contains a component that is the short circuit scattered field, and a second component that is proportional to the radiation field. In this dissertation, an analytical study of this phenomena from the CM standpoint is performed aiming to shed some light on antenna scattering phenomenon where additional physical insight is obtained and thus used to reach desire results.
NASA Technical Reports Server (NTRS)
White, C. W.
1981-01-01
The computational efficiency of the impedance type loads prediction method was studied. Three goals were addressed: devise a method to make the impedance method operate more efficiently in the computer; assess the accuracy and convenience of the method for determining the effect of design changes; and investigate the use of the method to identify design changes for reduction of payload loads. The method is suitable for calculation of dynamic response in either the frequency or time domain. It is concluded that: the choice of an orthogonal coordinate system will allow the impedance method to operate more efficiently in the computer; the approximate mode impedance technique is adequate for determining the effect of design changes, and is applicable for both statically determinate and statically indeterminate payload attachments; and beneficial design changes to reduce payload loads can be identified by the combined application of impedance techniques and energy distribution review techniques.
Local Probing Spinel and Perovskite Complex Magnetic Systems
NASA Astrophysics Data System (ADS)
Oliveira, Goncalo Nuno de Pinho
Noise is defined as unwanted sound, when perceived in excess can cause many harmful effects such as annoyance, interference with speech, and hearing loss, hence there is a need to control noise in practical situations. Noise can be controlled actively and/or passively, here we discuss the passive noise control techniques. Passive noise control involves using energy dissipating or reflecting materials such as absorbers or barriers respectively. Damping and isolating materials are also used in eliminating structure-borne noise. These materials exhibit properties such as reflection, absorption and transmission loss when incidence is by a sound source. Thus, there is a need to characterize the acoustical properties of these materials for practical use. The theoretical background of the random incident sound absorption with reverberation room and normal incident sound absorption using impedance tube are well documented. The Transfer Matrix method for measuring transmission loss and absorption coefficient using impedance tube is very attractive since it is rather inexpensive and fast. In this research, a low-cost Impedance Tube is constructed using transfer function method to measure both absorption and transmissibility of materials. Equipment and measurement instruments available in the laboratory were used in the construction of the tube, adhering to cost-effectiveness. Care has been taken for precise construction of tube to ensure better measurement results. Further various samples varying from hard non-porous to soft porous materials were tested for absorption and sound transmission loss. Absorption values were also compared with reverberation room method with the available samples further ensuring the reliability of the newly constructed tube for future measurements.
Method to tune electrical impedance of LSMO/PMN-PT by nanocontact
NASA Astrophysics Data System (ADS)
Zhou, Hao; Pei, Yongmao; Wang, Yaobing; Lei, Hongshuai
2018-01-01
Electromagnetic composites have wide application in the functional devices. For the best performance of devices, the regulation of the electrical impedance has been being desired for the impedance matching in service. However, the keeping of impedance matching in service is quite challenging. In the present work, a mechanical method for tuning the electrical impedance of La0.7Sr0.3MnO3/0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (LSMO/PMN-PT) based on the nanocontact technique is proposed. It is found that the electrical impedance reduces with the increase of the nanocontact load. A linear relationship is found between the square of impedance magnitude and the inverse of nanocontact depth. Furthermore, a method for predicting the contact-depth-dependent impedance magnitude of LSMO/PMN-PT is proposed.
Implementation of robotic force control with position accommodation
NASA Technical Reports Server (NTRS)
Ryan, Michael J.
1992-01-01
As the need for robotic manipulation in fields such as manufacturing and telerobotics increases, so does the need for effective methods of controlling the interaction forces between the manipulators and their environment. Position Accommodation (PA) is a form of robotic force control where the nominal path of the manipulator is modified in response to forces and torques sensed at the tool-tip of the manipulator. The response is tailored such that the manipulator emulates a mechanical impedance to its environment. PA falls under the category of position-based robotic force control, and may be viewed as a form of Impedance Control. The practical implementations are explored of PA into an 18 degree-of-freedom robotic testbed consisting of two PUMA 560 arms mounted on two 3 DOF positioning platforms. Single and dual-arm architectures for PA are presented along with some experimental results. Characteristics of position-based force control are discussed, along with some of the limitations of PA.
NASA Astrophysics Data System (ADS)
Amako, Eri; Enjoji, Takaharu; Uchida, Satoshi; Tochikubo, Fumiyoshi
Constant monitoring and immediate control of fermentation processes have been required for advanced quality preservation in food industry. In the present work, simple estimation of metabolic states for heat-injured Escherichia coli (E. coli) in a micro-cell was investigated using dielectrophoretic impedance measurement (DEPIM) method. Temporal change in the conductance between micro-gap (ΔG) was measured for various heat treatment temperatures. In addition, the dependence of enzyme activity, growth capacity and membrane situation for E. coli on heat treatment temperature was also analyzed with conventional biological methods. Consequently, a correlation between ΔG and those biological properties was obtained quantitatively. This result suggests that DEPIM method will be available for an effective monitoring technique for complex change in various biological states of microorganisms.
A Numerical Theory for Impedance Education in Three-Dimensional Normal Incidence Tubes
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2016-01-01
A method for educing the locally-reacting acoustic impedance of a test sample mounted in a 3-D normal incidence impedance tube is presented and validated. The unique feature of the method is that the excitation frequency (or duct geometry) may be such that high-order duct modes may exist. The method educes the impedance, iteratively, by minimizing an objective function consisting of the difference between the measured and numerically computed acoustic pressure at preselected measurement points in the duct. The method is validated on planar and high-order mode sources with data synthesized from exact mode theory. These data are then subjected to random jitter to simulate the effects of measurement uncertainties on the educed impedance spectrum. The primary conclusions of the study are 1) Without random jitter the method is in excellent agreement with that for known impedance samples, and 2) Random jitter that is compatible to that found in a typical experiment has minimal impact on the accuracy of the educed impedance.
Implementation and Validation of an Impedance Eduction Technique
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.
2011-01-01
Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.
NASA Astrophysics Data System (ADS)
Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao
2017-05-01
Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.
Andrade, N J; Bridgeman, T A; Zottola, E A
1998-07-01
Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P < 0.05) using Statview software. The adhered cells were more resistant (P < 0.05) than nonadherent cells. The DR averages for all of the sanitizers for 30 s of exposure were 6.4, 2.2, and 2.5 for the AOAC suspension test, plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P < 0.05) after 30 s of sanitizer exposure but not after 2 min. The impedance measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P < 0.05, T = impedance detection time in hours. This method showed that the sanitizers PAS and PA were more effective against E. faecium than the other sanitizers. At 30 s, the impedance method recovered about 25 times more cells than the plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.
Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.
2001-01-01
Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.
NASA Astrophysics Data System (ADS)
Alawasa, Khaled Mohammad
Voltage-source converters (VSCs) have gained widespread acceptance in modern power systems. The stability and dynamics of power systems involving these devices have recently become salient issues. In the small-signal sense, the dynamics of VSC-based systems is dictated by its incremental output impedance, which is formed by a combination of 'passive' circuit components and 'active' control elements. Control elements such as control parameters, control loops, and control topologies play a significant role in shaping the impedance profile. Depending on the control schemes and strategies used, VSC-based systems can exhibit different incremental impedance dynamics. As the control elements and dynamics are involved in the impedance structure, the frequency-dependent output impedance might have a negative real-part (i.e., a negative resistance). In the grid-connected mode, the negative resistance degrades the system damping and negatively impacts the stability. In high-voltage networks where high-power VSC-based systems are usually employed and where sub-synchronous dynamics usually exist, integrating large VSC-based systems might reduce the overall damping and results in unstable dynamics. The objectives of this thesis are to (1) investigate and analyze the output impedance properties under different control strategies and control functions, (2) identify and characterize the key contributors to the impedance and sub-synchronous damping profiles, and (3) propose mitigation techniques to minimize and eliminate the negative impact associated with integrating VSC-based systems into power systems. Different VSC configurations are considered in this thesis; in particular, the full-scale and partial-scale topologies (doubly fed-induction generators) are addressed. Additionally, the impedance and system damping profiles are studied under two different control strategies: the standard vector control strategy and the recently-developed power synchronization control strategy. Furthermore, this thesis proposes a simple and robust technique for damping the sub-synchronous resonance in a power system.
NASA Astrophysics Data System (ADS)
Khairuddin, I. M.; Sidek, S. N.; Yusof, H. Md; Majeed, A. P. P. Abdul; Puzi, A. Ahmad; Mat Rosly, H.
2018-04-01
Rehabilitation is a necessary restoration process of recovering impaired joint motion and muscle strength. Recent trends of rehabilitation have also moved towards providing more participation of the patient in therapy rather than simple passive treatments as it has been demonstrated to be non-trivial in promoting neural plasticity meant to promote motor recovery process. This paper presents an assistive control strategy based on impedance control technique. Dynamic modelling of upper arm is obtained by utilising the Euler-Lagrange formulation. The proportional-derivative (PD), computed torque control (CTC) impedance based framework is applied to examine its effectiveness in performing joint-space control with objectives specified in rehabilitating the elbow joint along the sagittal plane. A feasibility study through simulation was carried out to investigate the efficacy of the proposed controller on acceleration-based impedance model. The results show that impedance controller is more suitable as it allows the cooperative effort of the patient.
An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery.
Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad
2007-10-17
In this paper we present an inexpensive electronic measurement instrumentationdeveloped in our laboratory, to measure and plot the impedance of a loaded fuel cell orbattery. Impedance measurements were taken by using the load modulation method. Thisinstrumentation has been developed around a VXI system stand which controls electroniccards. Software under Hpvee ® was developed for automatic measurements and the layout ofthe impedance of the fuel cell on load. The measurement environment, like the ambienttemperature, the fuel cell temperature, the level of the hydrogen, etc..., were taken withseveral sensors that enable us to control the measurement. To filter the noise and theinfluence of the 50Hz, we have implemented a synchronous detection which filters in a verynarrow way around the useful signal. The theoretical result obtained by a simulation underPspice ® of the method used consolidates the choice of this method and the possibility ofobtaining correct and exploitable results. The experimental results are preliminary results ona 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedancemeasurements on a fuel cell are in progress, and will be the subject of a forthcoming paper).The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V)and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from theexperimental data enable us to show an influence of the load of the battery on its internalimpedance. The similitude in the graph form and in order of magnitude of the valuesobtained (both theoretical and practical) enables us to validate our electronic measurementinstrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.
Guang, Hui; Ji, Linhong; Shi, Yingying; Misgeld, Berno J E
2018-01-01
The robot-assisted therapy has been demonstrated to be effective in the improvements of limb function and even activities of daily living for patients after stroke. This paper presents an interactive upper-limb rehabilitation robot with a parallel mechanism and an isometric screen embedded in the platform to display trajectories. In the dynamic modeling for impedance control, the effects of friction and inertia are reduced by introducing the principle of virtual work and derivative of Jacobian matrix. To achieve the assist-as-needed impedance control for arbitrary trajectories, the strategy based on orthogonal deviations is proposed. Simulations and experiments were performed to validate the dynamic modeling and impedance control. Besides, to investigate the influence of the impedance in practice, a subject participated in experiments and performed two types of movements with the robot, that is, rectilinear and circular movements, under four conditions, that is, with/without resistance or impedance, respectively. The results showed that the impedance and resistance affected both mean absolute error and standard deviation of movements and also demonstrated the significant differences between movements with/without impedance and resistance ( p < 0.001). Furthermore, the error patterns were discussed, which suggested that the impedance environment was capable of alleviating movement deviations by compensating the synergetic inadequacy between the shoulder and elbow joints.
Shi, Yingying; Misgeld, Berno J. E.
2018-01-01
The robot-assisted therapy has been demonstrated to be effective in the improvements of limb function and even activities of daily living for patients after stroke. This paper presents an interactive upper-limb rehabilitation robot with a parallel mechanism and an isometric screen embedded in the platform to display trajectories. In the dynamic modeling for impedance control, the effects of friction and inertia are reduced by introducing the principle of virtual work and derivative of Jacobian matrix. To achieve the assist-as-needed impedance control for arbitrary trajectories, the strategy based on orthogonal deviations is proposed. Simulations and experiments were performed to validate the dynamic modeling and impedance control. Besides, to investigate the influence of the impedance in practice, a subject participated in experiments and performed two types of movements with the robot, that is, rectilinear and circular movements, under four conditions, that is, with/without resistance or impedance, respectively. The results showed that the impedance and resistance affected both mean absolute error and standard deviation of movements and also demonstrated the significant differences between movements with/without impedance and resistance (p < 0.001). Furthermore, the error patterns were discussed, which suggested that the impedance environment was capable of alleviating movement deviations by compensating the synergetic inadequacy between the shoulder and elbow joints. PMID:29850004
Glenn, David F.; Matthern, Gretchen E.; Propp, W. Alan; Glenn, Anne W.; Shaw, Peter G.
2006-08-08
A method and apparatus for determining spatial locations of defects in a material are described. The method includes providing a plurality of electrodes in contact with a material, applying a sinusoidal voltage to a select number of the electrodes at a predetermined frequency, determining gain and phase angle measurements at other of the electrodes in response to applying the sinusoidal voltage to the select number of electrodes, determining impedance values from the gain and phase angle measurements, computing an impedance spectrum for an area of the material from the determined impedance values, and comparing the computed impedance spectrum with a known impedance spectrum to identify spatial locations of defects in the material.
Impedance measurement using a two-microphone, random-excitation method
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Parrott, T. L.
1978-01-01
The feasibility of using a two-microphone, random-excitation technique for the measurement of acoustic impedance was studied. Equations were developed, including the effect of mean flow, which show that acoustic impedance is related to the pressure ratio and phase difference between two points in a duct carrying plane waves only. The impedances of a honeycomb ceramic specimen and a Helmholtz resonator were measured and compared with impedances obtained using the conventional standing-wave method. Agreement between the two methods was generally good. A sensitivity analysis was performed to pinpoint possible error sources and recommendations were made for future study. The two-microphone approach evaluated in this study appears to have some advantages over other impedance measuring techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Jeffrey Wayne; Pratt, Richard M
A modulated backscatter radio frequency identification device includes a diode detector configured to selectively modulate a reply signal onto an incoming continuous wave; communications circuitry configured to provide a modulation control signal to the diode detector, the diode detector being configured to modulate the reply signal in response to be modulation control signal; and circuitry configured to increase impedance change at the diode detector which would otherwise not occur because the diode detector rectifies the incoming continuous wave while modulating the reply signal, whereby reducing the rectified signal increases modulation depth by removing the reverse bias effects on impedance changes.more » Methods of improving depth of modulation in a modulated backscatter radio frequency identification device are also provided.« less
Impedance changes during setting of amorphous calcium phosphate composites.
Par, Matej; Šantić, Ana; Gamulin, Ozren; Marovic, Danijela; Moguš-Milanković, Andrea; Tarle, Zrinka
2016-11-01
To investigate the electrical properties of experimental light-curable composite materials based on amorphous calcium phosphate (ACP) with the admixture of silanized barium glass and silica fillers. Short-term setting was investigated by impedance measurements at a frequency of 1kHz, while for the long-term setting the impedance spectra were measured consecutively over a frequency range of 0.05Hz to 1MHz for 24h. The analysis of electrical resistivity changes during curing allowed the extraction of relevant kinetic parameters. The impedance results were correlated to the degree of conversion assessed by Raman spectroscopy, water content determined by gravimetry, light transmittance measured by CCD spectrometer and microstructural features observed by scanning electron microscopy. ACP-based composites have shown higher immediate degree of conversion and less post-cure polymerization than the control composites, but lower polymerization rate. The polymerization rate assessed by impedance measurements correlated well with the light transmittance. The differences in the electrical conductivity values observed among the materials were correlated to the amount of water introduced into composites by the ACP filler. High correlation was found between the degree of conversion and electrical resistivity. Equivalent circuit modeling revealed two electrical contributions for the ACP-based composites and a single contribution for the control composites. The impedance spectroscopy has proven a valuable method for gaining insight into various features of ACP-based composites. Better understanding of the properties of ACP-based composites should further the development of these promising bioactive materials. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Impedance hand controllers for increasing efficiency in teleoperations
NASA Technical Reports Server (NTRS)
Carignan, C.; Tarrant, J.
1989-01-01
An impedance hand controller with direct force feedback is examined as an alternative to bilateral force reflection in teleoperations involving force contact. Experimentation revealed an operator preference for direct force feedback which provided a better feel of contact with the environment. The advantages of variable arm impedance were also made clear in tracking tests where subjects preferred the larger hand controller inertias made possible by the acceleration feedback loop in the master arm. The ability to decouple the hand controller impedance from the slave arm dynamics is expected to be even more significant when the inertial properties of various payloads in the slave arm are considered.
Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation.
Cao, Hong; Tungjitkusolmun, Supan; Choy, Young Bin; Tsai, Jang-Zern; Vorperian, Vicken R; Webster, John G
2002-03-01
During radio-frequency (RF) cardiac catheter ablation, there is little information to estimate the contact between the catheter tip electrode and endocardium because only the metal electrode shows up under fluoroscopy. We present a method that utilizes the electrical impedance between the catheter electrode and the dispersive electrode to predict the catheter tip electrode insertion depth into the endocardium. Since the resistivity of blood differs from the resistivity of the endocardium, the impedance increases as the catheter tip lodges deeper in the endocardium. In vitro measurements yielded the impedance-depth relations at 1, 10, 100, and 500 kHz. We predict the depth by spline curve interpolation using the obtained calibration curve. This impedance method gives reasonably accurate predicted depth. We also evaluated alternative methods, such as impedance difference and impedance ratio.
Chaudhry, Naueen A; Zahid, Kamran; Keihanian, Sara; Dai, Yunfeng; Zhang, Qing
2017-01-01
AIM To investigate the behavior of pulsatile pressure zones (PPZ’s) as noted on high resolution esophageal impedance manometry (HREIM), and determine their association with dysphagia. METHODS Retrospective, single center case control design screening HREIM studies for cases (dysphagia) and controls (no dysphagia). Thoracic radiology studies were reviewed further in cases for (thoracic cardiovascular) thoracic cardiovascular (TCV) structures in esophageal proximity to compare with HREIM findings. Manometric data was collected for number, location, axial length, PPZ pressure and esophageal clearance function (impedance). RESULTS Among 317 screened patients, 56% cases and 64% controls had PPZ’s. Fifty cases had an available thoracic radiology comparison. The distribution of PPZ’s in these 50 cases and 59 controls was similar (average 1.4 PPZ/patient). Controls (mean 31.2 ± SD 12 years) were a significantly younger population than cases (mean 67.3 ± SD 14.9 years) with P < 0.0001. The upright posture PPZ pressure was higher in controls (15.7 ± 10.0 mmHg) than cases (10.8 ± 9.7 mmHg). Although statistically significant (P = 0.005), it was a weak predictor using logistic regression and ROC model (AUC = 0.65). Three dysphagia patients had partial compression from external TCV on radiology (1 aberrant subclavian artery, 2 dilated left atrium). The posture (supine vs upright) with more prominent PPZ’s impaired bolus clearance in 9 additional cases by > 20%. CONCLUSION Transmitted TCV pulsations observed in HREIM bear no significant impact on swallowing. However, in older adults with dysphagia, evidence of impaired bolus clearance on impedance should be evaluated for external TCV compression. These associations have never been explored previously in literature, and are novel. PMID:29209125
NASA Astrophysics Data System (ADS)
Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.
2015-01-01
The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.
Method for controlling clathrate hydrates in fluid systems
Sloan, Jr., Earle D.
1995-01-01
Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.
NASA Astrophysics Data System (ADS)
Pliquett, Uwe
2013-04-01
Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics. Structures down to sub-micrometer range and complex impedance measurements tools integrated at single chips are now affordable. Moreover, the introduction of alternative signals and data processing algorithms focuses on very fast and parallel electrical characterization which in turn pushes this technique to new applications and markets. Electrical impedance tomography today yields pictures in real time with a resolution that was impossible 10 years ago. The XVth International Conference on Electrical Bio-Impedance in conjunction with the XIVth Electrical Impedance Tomography ICEBI/EIT 2013 organized by the Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany, together with the EIT-group at the University of Göttingen, Germany, brings world leading scientists in these fields together. It is a platform to present the latest developments in instrumentation and signal processing but also points to new applications, especially in the field of biosensors and non-linear phenomena. Two Keynote lectures will extend the view of the participants above the mainstream of bio-impedance measurement. Friederich Kremer (University of Leipzig) delivers the plenary lecture on broad bandwidth dielectric spectroscopy. New achievements in the research of ligand gated ionic channels will be presented by Klaus Benndorf (University of Jena). Leading scientists in the field of bio-impedance measurement, such as, Sverre Grimnes, Orjan Martinsen, Andrea Robitzki, Richard Bayford, Jan Gimsa and Mart Min will give lectures for students but also more experienced scientists in a pre-conference tutorial which is a good opportunity to learn or refresh the basics. List of committees Conference Chair Dr Uwe Pliquett Professor Dieter Beckmann Institut für Bioprozess- und Analysenmesstechnik eV, Rosenhof, Heilbad Heiligenstadt, Germany Technical Program Chair Maik Hiller Conventus Congressmanagement & Marketing GmbH, Carl-Pulfrich-Str. 1 - 07745 Jena Pre-Conference Tutorial Coordinator Uwe Pliquett International Advisory committee Kenneth R Foster, USA Sverre Grimnes, Norway David Holder, UK Alexander V Korjenewski, Russia Ørjan G Martinsen, Norway Mart Min, Estonia Stig Ollmar, Sweden Tadeusz Palko, Poland Pere J Riu, Spain Andrea Robitzki, Germany Hermann Scharfetter, Austria Leigh C Ward, Australia Conference logo Conference logo Sponsor logos Sponsor logos
Operator dynamics for stability condition in haptic and teleoperation system: A survey.
Li, Hongbing; Zhang, Lei; Kawashima, Kenji
2018-04-01
Currently, haptic systems ignore the varying impedance of the human hand with its countless configurations and thus cannot recreate the complex haptic interactions. The literature does not reveal a comprehensive survey on the methods proposed and this study is an attempt to bridge this gap. The paper includes an extensive review of human arm impedance modeling and control deployed to address inherent stability and transparency issues in haptic interaction and teleoperation systems. Detailed classification and comparative study of various contributions in human arm modeling are presented and summarized in tables and diagrams. The main challenges in modeling human arm impedance for haptic robotic applications are identified. The possible future research directions are outlined based on the gaps identified in the survey. Copyright © 2018 John Wiley & Sons, Ltd.
Wang, Yearnchee Curtis; Chan, Terence Chee-Hung; Sahakian, Alan Varteres
2018-01-04
Radiofrequency ablation (RFA), a method of inducing thermal ablation (cell death), is often used to destroy tumours or potentially cancerous tissue. Current techniques for RFA estimation (electrical impedance tomography, Nakagami ultrasound, etc.) require long compute times (≥ 2 s) and measurement devices other than the RFA device. This study aims to determine if a neural network (NN) can estimate ablation lesion depth for control of bipolar RFA using complex electrical impedance - since tissue electrical conductivity varies as a function of tissue temperature - in real time using only the RFA therapy device's electrodes. Three-dimensional, cubic models comprised of beef liver, pork loin or pork belly represented target tissue. Temperature and complex electrical impedance from 72 data generation ablations in pork loin and belly were used for training the NN (403 s on Xeon processor). NN inputs were inquiry depth, starting complex impedance and current complex impedance. Training-validation-test splits were 70%-0%-30% and 80%-10%-10% (overfit test). Once the NN-estimated lesion depth for a margin reached the target lesion depth, RFA was stopped for that margin of tissue. The NN trained to 93% accuracy and an NN-integrated control ablated tissue to within 1.0 mm of the target lesion depth on average. Full 15-mm depth maps were calculated in 0.2 s on a single-core ARMv7 processor. The results show that a NN could make lesion depth estimations in real-time using less in situ devices than current techniques. With the NN-based technique, physicians could deliver quicker and more precise ablation therapy.
Skin-electrode impedance measurement during ECG acquisition: method’s validation
NASA Astrophysics Data System (ADS)
Casal, Leonardo; La Mura, Guillermo
2016-04-01
Skm-electrode impedance measurement can provide valuable information prior. dunng and post electrocardiographic (ECG) or electroencephalographs (EEG) acquisitions. In this work we validate a method for skm-electrode impedance measurement using test circuits with known resistance and capacitor values, at different frequencies for injected excitation current. Finally the method is successfully used for impedance measurement during ECG acquisition on a subject usmg 125 Hz and 6 nA square wave excitation signal at instrumentation amplifier mput. The method can be used for many electrodes configuration.
Comparative Study of Impedance Eduction Methods, Part 2: NASA Tests and Methodology
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Howerton, Brian M.; Busse-Gerstengarbe, Stefan
2013-01-01
A number of methods have been developed at NASA Langley Research Center for eduction of the acoustic impedance of sound-absorbing liners mounted in the wall of a flow duct. This investigation uses methods based on the Pridmore-Brown and convected Helmholtz equations to study the acoustic behavior of a single-layer, conventional liner fabricated by the German Aerospace Center and tested in the NASA Langley Grazing Flow Impedance Tube. Two key assumptions are explored in this portion of the investigation. First, a comparison of results achieved with uniform-flow and shear-flow impedance eduction methods is considered. Also, an approach based on the Prony method is used to extend these methods from single-mode to multi-mode implementations. Finally, a detailed investigation into the effects of harmonic distortion on the educed impedance is performed, and the results are used to develop guidelines regarding acceptable levels of harmonic distortion
Impedance-based cellular assays for regenerative medicine.
Gamal, W; Wu, H; Underwood, I; Jia, J; Smith, S; Bagnaninchi, P O
2018-07-05
Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Yoshizawa, Masasumi; Nakamura, Yuuta; Ishiguro, Masataka; Moriya, Tadashi
2007-07-01
In this paper, we describe a method of compensating the attenuation of the ultrasound caused by soft tissue in the transducer vibration method for the measurement of the acoustic impedance of in vivo bone. In the in vivo measurement, the acoustic impedance of bone is measured through soft tissue; therefore, the amplitude of the ultrasound reflected from the bone is attenuated. This attenuation causes an error of the order of -20 to -30% when the acoustic impedance is determined from the measured signals. To compensate the attenuation, the attenuation coefficient and length of the soft tissue are measured by the transducer vibration method. In the experiment using a phantom, this method allows the measurement of the acoustic impedance typically with an error as small as -8 to 10%.
NASA Astrophysics Data System (ADS)
Rahman, Md. Mozasser; Ikeura, Ryojun; Mizutani, Kazuki
In the near future many aspects of our lives will be encompassed by tasks performed in cooperation with robots. The application of robots in home automation, agricultural production and medical operations etc. will be indispensable. As a result robots need to be made human-friendly and to execute tasks in cooperation with humans. Control systems for such robots should be designed to work imitating human characteristics. In this study, we have tried to achieve these goals by means of controlling a simple one degree-of-freedom cooperative robot. Firstly, the impedance characteristic of the human arm in a cooperative task is investigated. Then, this characteristic is implemented to control a robot in order to perform cooperative task with humans. A human followed the motion of an object, which is moved through desired trajectories. The motion is actuated by the linear motor of the one degree-of-freedom robot system. Trajectories used in the experiments of this method were minimum jerk (the rate of change of acceleration) trajectory, which was found during human and human cooperative task and optimum for muscle movement. As the muscle is mechanically analogous to a spring-damper system, a simple second-order equation is used as models for the arm dynamics. In the model, we considered mass, stiffness and damping factor. Impedance parameter is calculated from the position and force data obtained from the experiments and based on the “Estimation of Parametric Model”. Investigated impedance characteristic of human arm is then implemented to control a robot, which performed cooperative task with human. It is observed that the proposed control methodology has given human like movements to the robot for cooperating with human.
Real-Time Control of the Embedded Waveform for External Defibrillation
2001-10-25
independently from transthoracic electrical impedance changes during shock time. Keywords - External defibrillation, real-time control I. INTRODUCTION ...Additional such possibilities may be useful for development a new electrotherapy methods, as electrochemotherapy for cancer treatment [6]. II...Department, Moscow State Institute of Electronic Technology , Moscow, Russia Fig.1. High voltage delivery unit. Report Documentation Page Report Date 25
Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control
NASA Astrophysics Data System (ADS)
Zhou, Jiawang; Zhou, Zude; Ai, Qingsong
As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.
Rotor damage detection by using piezoelectric impedance
NASA Astrophysics Data System (ADS)
Qin, Y.; Tao, Y.; Mao, Y. F.
2016-04-01
Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.
Time-domain representation of frequency-dependent foundation impedance functions
Safak, E.
2006-01-01
Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.
NASA Astrophysics Data System (ADS)
Cao, Enguo; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko
In many countries in which the phenomenon of population aging is being experienced, motor function recovery activities have aroused much interest. In this paper, a sit-to-stand rehabilitation robot utilizing a double-rope system was developed, and the performance of the robot was evaluated by analyzing the dynamic parameters of human lower limbs. For the robot control program, an impedance control method with a training game was developed to increase the effectiveness and frequency of rehabilitation activities, and a calculation method was developed for evaluating the joint moments of hip, knee, and ankle. Test experiments were designed, and four subjects were requested to stand up from a chair with assistance from the rehabilitation robot. In the experiments, body segment rotational angles, trunk movement trajectories, rope tensile forces, ground reaction forces (GRF) and centers of pressure (COP) were measured by sensors, and the moments of ankle, knee and hip joint were real-time calculated using the sensor-measured data. The experiment results showed that the sit-to-stand rehabilitation robot with impedance control method could maintain the comfortable training postures of users, decrease the moments of limb joints, and enhance training effectiveness. Furthermore, the game control method could encourage collaboration between the brain and limbs, and allow for an increase in the frequency and intensity of rehabilitation activities.
Utilization of bone impedance for age estimation in postmortem cases.
Ishikawa, Noboru; Suganami, Hideki; Nishida, Atsushi; Miyamori, Daisuke; Kakiuchi, Yasuhiro; Yamada, Naotake; Wook-Cheol, Kim; Kubo, Toshikazu; Ikegaya, Hiroshi
2015-11-01
In the field of Forensic Medicine the number of unidentified cadavers has increased due to natural disasters and international terrorism. The age estimation is very important for identification of the victims. The degree of sagittal closure is one of such age estimation methods. However it is not widely accepted as a reliable method for age estimation. In this study, we have examined whether measuring impedance value (z-values) of the sagittal suture of the skull is related to the age in men and women and discussed the possibility to use bone impedance for age estimation. Bone impedance values increased with aging and decreased after the age of 64.5. Then we compared age estimation through the conventional visual method and the proposed bone impedance measurement technique. It is suggested that the bone impedance measuring technique may be of value to forensic science as a method of age estimation. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control
Geyer, Hartmut
2016-01-01
Objective Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion. Methods We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a non-amputee user. Results In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to mid-swing disturbances neither replicates human responses nor averts falls. Conclusions The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait. Significance This work provides a potential avenue for future development of control policies that help improve amputee balance recovery. PMID:26315935
An evaluation of a bioelectrical impedance analyser for the estimation of body fat content.
Maughan, R J
1993-01-01
Measurement of body composition is an important part of any assessment of health or fitness. Hydrostatic weighing is generally accepted as the most reliable method for the measurement of body fat content, but is inconvenient. Electrical impedance analysers have recently been proposed as an alternative to the measurement of skinfold thickness. Both these latter methods are convenient, but give values based on estimates obtained from population studies. This study compared values of body fat content obtained by hydrostatic weighing, skinfold thickness measurement and electrical impedance on 50 (28 women, 22 men) healthy volunteers. Mean(s.e.m.) values obtained by the three methods were: hydrostatic weighing, 20.5(1.2)%; skinfold thickness, 21.8(1.0)%; impedance, 20.8(0.9)%. The results indicate that the correlation between the skinfold method and hydrostatic weighing (0.931) is somewhat higher than that between the impedance method and hydrostatic weighing (0.830). This is, perhaps, not surprising given the fact that the impedance method is based on an estimate of total body water which is then used to calculate body fat content. The skinfold method gives an estimate of body density, and the assumptions involved in the conversion from body density to body fat content are the same for both methods. PMID:8457817
A new hybrid active/passive sound absorber with variable surface impedance
NASA Astrophysics Data System (ADS)
Betgen, Benjamin; Galland, Marie-Annick
2011-07-01
The context of the present paper is the wall treatment of flow ducts, notably aero-engine nacelle intakes and outlets. For this purpose, hybrid active/passive absorbers have been developed at the LMFA for about 15 years. A hybrid cell combines passive absorbent properties of a porous layer and active control at its rear face. Active control is mainly used to increase absorption at low frequencies by cancelling the imaginary part of the surface impedance presented by the absorber. However, the optimal impedance (i.e. the one that produces the highest noise reduction) of an absorber for flow duct applications is generally complex and frequency dependent. A new hybrid absorber intended to realise any of impedance has therefore been developed. The new cell uses one microphone on each side of a resistive cloth. Normal velocity can then be deduced by a simple pressure difference, which allows an estimation of the surface impedance of the absorber. In order to obtain an error signal related to a target impedance, the target impedance has to be reproduced in time domain. The design of a stable and causal filter is a difficult task, considering the kind of frequency response we seek. An alternative way of representing the impedance in time domain is therefore given. The new error signal is integrated into a feedback control structure. Fast convergence and good stability are observed for a wide range of target impedances. Typical optimal impedances with a positive increasing real part and a negative decreasing imaginary part have been successfully realised. Measurements in a grazing-incidence tube show that the new complex impedance absorber clearly outperforms the former active absorber.
Proof-of-principle Experiment of a Ferroelectric Tuner for the 1.3 GHz Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi,E.M.; Hahn, H.; Shchelkunov, S. V.
2009-01-01
A novel tuner has been developed by the Omega-P company to achieve fast control of the accelerator RF cavity frequency. The tuner is based on the ferroelectric property which has a variable dielectric constant as function of applied voltage. Tests using a Brookhaven National Laboratory (BNL) 1.3 GHz electron gun cavity have been carried out for a proof-of-principle experiment of the ferroelectric tuner. Two different methods were used to determine the frequency change achieved with the ferroelectric tuner (FT). The first method is based on a S11 measurement at the tuner port to find the reactive impedance change when themore » voltage is applied. The reactive impedance change then is used to estimate the cavity frequency shift. The second method is a direct S21 measurement of the frequency shift in the cavity with the tuner connected. The estimated frequency change from the reactive impedance measurement due to 5 kV is in the range between 3.2 kHz and 14 kHz, while 9 kHz is the result from the direct measurement. The two methods are in reasonable agreement. The detail description of the experiment and the analysis are discussed in the paper.« less
Operators manual for a computer controlled impedance measurement system
NASA Astrophysics Data System (ADS)
Gordon, J.
1987-02-01
Operating instructions of a computer controlled impedance measurement system based in Hewlett Packard instrumentation are given. Hardware details, program listings, flowcharts and a practical application are included.
Ida, Midori; Hirata, Masakazu; Hosoda, Kiminori; Nakao, Kazuwa
2013-02-01
Two novel bioelectrical impedance analysis (BIA) methods have been developed recently for evaluation of intra-abdominal fat accumulation. Both methods use electrodes that are placed on abdominal wall and allow evaluation of intra-abdominal fat area (IAFA) easily without radiation exposure. Of these, "abdominal BIA" method measures impedance distribution along abdominal anterior-posterior axis, and IAFA by BIA method(BIA-IAFA) is calculated from waist circumference and the voltage occurring at the flank. Dual BIA method measures impedance of trunk and body surface at the abdominal level and calculates BIA-IAFA from transverse and antero-posterior diameters of the abdomen and the impedance of trunk and abdominal surface. BIA-IAFA by these two BIA methods correlated well with IAFA measured by abdominal CT (CT-IAFA) with correlatipn coefficient of 0.88 (n = 91, p < 0.0001) for the former, and 0.861 (n = 469, p < 0.01) for the latter. These new BIA methods are useful for evaluating abdominal adiposity in clinical study and routine clinical practice of metabolic syndrome and obesity.
NASA Astrophysics Data System (ADS)
Liu, Hai-Tao; Wen, Zhi-Yu; Xu, Yi; Shang, Zheng-Guo; Peng, Jin-Lan; Tian, Peng
2017-09-01
In this paper, an integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection was purposed based on microfluidic chips dielectrophoresis technique and electrochemical impedance detection principle. The microsystems include microfluidic chip, main control module, and drive and control module, and signal detection and processing modulet and result display unit. The main control module produce the work sequence of impedance detection system parts and achieve data communication functions, the drive and control circuit generate AC signal which amplitude and frequency adjustable, and it was applied on the foodborne pathogens impedance analysis microsystems to realize the capture enrichment and impedance detection. The signal detection and processing circuit translate the current signal into impendence of bacteria, and transfer to computer, the last detection result is displayed on the computer. The experiment sample was prepared by adding Escherichia coli standard sample into chicken sample solution, and the samples were tested on the dielectrophoresis chip capture enrichment and in-situ impedance detection microsystems with micro-array electrode microfluidic chips. The experiments show that the Escherichia coli detection limit of microsystems is 5 × 104 CFU/mL and the detection time is within 6 min in the optimization of voltage detection 10 V and detection frequency 500 KHz operating conditions. The integrated microfluidic analysis microsystems laid the solid foundation for rapid real-time in-situ detection of bacteria.
Auto-tuning for NMR probe using LabVIEW
NASA Astrophysics Data System (ADS)
Quen, Carmen; Pham, Stephanie; Bernal, Oscar
2014-03-01
Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program uses a simplified model of the NMR probe conditions near perfect tuning to mimic the tuning process and predict the position of the capacitor shafts needed to achieve the desirable impedance. The tuning capacitors of the probe are controlled by stepper motors through a LabVIEW/computer interface. Our program calculates the effective capacitance needed to tune the probe and provides controlling parameters to advance the motors in the right direction. The impedance reading of a network analyzer can be used to correct the model parameters in real time for feedback control.
NASA Technical Reports Server (NTRS)
Silcox, Richard J. (Inventor); Fuller, Chris R. (Inventor); Gibbs, Gary P. (Inventor)
1992-01-01
Arrays of actuators are affixed to structural elements to impede the transmission of vibrational energy. A single pair is used to provide control of bending and extensional waves and two pairs are used to control torsional motion. The arrays are applied to a wide variety of structural elements such as a beam structure that is part of a larger framework that may or may not support a rigid or non-rigid skin. Electrical excitation is applied to the actuators that generate forces on the structure. These electrical inputs may be adjusted in their amplitude and phase by a controller in communication with appropriate vibrational wave sensors to impede the flow of vibrational power in all of the above mentioned wave forms beyond the actuator location. Additional sensor elements can be used to monitor the performance and adjust the electrical inputs to maximize the attenuation of vibrational energy.
An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.
Kiguchi, K; Hayashi, Y
2012-08-01
Many kinds of power-assist robots have been developed in order to assist self-rehabilitation and/or daily life motions of physically weak persons. Several kinds of control methods have been proposed to control the power-assist robots according to user's motion intention. In this paper, an electromyogram (EMG)-based impedance control method for an upper-limb power-assist exoskeleton robot is proposed to control the robot in accordance with the user's motion intention. The proposed method is simple, easy to design, humanlike, and adaptable to any user. A neurofuzzy matrix modifier is applied to make the controller adaptable to any users. Not only the characteristics of EMG signals but also the characteristics of human body are taken into account in the proposed method. The effectiveness of the proposed method was evaluated by the experiments.
[Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].
Alekseenko, V A; Kus'min, A A; Filist, S A
2008-01-01
Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.
Transonic flight flutter tests of a control surface utilizing an impedance response technique
NASA Technical Reports Server (NTRS)
Mirowitz, L. I.
1975-01-01
Transonic flight flutter tests of the XF3H-1 Demon Airplane were conducted utilizing a frequency response technique in which the oscillating rudder provides the means of system excitation. These tests were conducted as a result of a rudder flutter incident in the transonic speed range. The technique employed is presented including a brief theoretical development of basic concepts. Test data obtained during the flight are included and the method of interpretation of these data is indicated. This method is based on an impedance matching technique. It is shown that an artificial stabilizing device, such as a damper, may be incorporated in the system for test purposes without complicating the interpretation of the test results of the normal configuration. Data are presented which define the margin of stability introduced to the originally unstable rudder by design changes which involve higher control system stiffness and external damper. It is concluded that this technique of flight flutter testing is a feasible means of obtaining flutter stability information in flight.
Issues in impedance selection and input devices for multijoint powered orthotics.
Lemay, M A; Hogan, N; van Dorsten, J W
1998-03-01
We investigated the applicability of impedance controllers to robotic orthoses for arm movements. We had tetraplegics turn a crank using their paralyzed arm propelled by a planar robot manipulandum. The robot was under impedance control, and chin motion served as command source. Stiffness varied between 50, 100, or 200 N/m and damping varied between 5 or 15 N/m/s. Results indicated that a low stiffness and high viscosity provided better directional control of the tangential force exerted on the crank.
A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2013-01-01
A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.
NASA Astrophysics Data System (ADS)
Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew
2018-04-01
With continuous monitoring of the lungs using multi-angle electric impedance tomography method, a large array of images of impedance changes in the patient's chest cavity is accumulated. This article proposes a method for evaluating the regional ventilation function of lungs based on the results of continuous monitoring using the multi-angle electric impedance tomography method, which allows one image of the thoracic cavity to be formed on the basis of a large array of images of the impedance change in the patient's chest cavity. In the presence of pathologies in the lungs (neoplasms, fluid, pneumothorax, etc.) in these areas, air filling will be disrupted, which will be displayed on the generated image. When conducting continuous monitoring in several sections, a three-dimensional pattern of air filling of the thoracic cavity is possible.
Carlson, DA; Omari, T; Lin, Z; Rommel, N; Starkey, K; Kahrilas, PJ; Tack, J; Pandolfino, JE
2016-01-01
Background High-resolution impedance manometry (HRIM) allows evaluation of esophageal bolus retention, flow, and pressurization. We aimed to perform a collaborative analysis of HRIM metrics to evaluate patients with non-obstructive dysphagia. Methods 14 asymptomatic controls (58% female; ages 20 – 50) and 41 patients (63% female; ages 24 – 82), 18 evaluated for dysphagia, 23 for reflux (‘non-dysphagia patients’), with esophageal motility diagnoses of normal motility or ineffective esophageal motility were evaluated with HRIM and a global dysphagia symptom score (Brief Esophageal Dysphagia Questionnaire). HRIM were analyzed to assess Chicago Classification metrics, automated pressure-flow metrics, the esophageal impedance integral (EII) ratio, and the bolus flow time (BFT). Key Results Significant symptom-metric correlations were detected only with basal EGJ pressure, EII ratio, and BFT. The EII ratio, BFT, and impedance ratio differed between controls and dysphagia patients, while the EII ratio in the upright position was the only measure that differentiated dysphagia from non-dysphagia patients. Conclusions & Inferences The EII ratio and BFT appear to offer an improved diagnostic evaluation in patients with non-obstructive dysphagia without a major esophageal motility disorder. Bolus retention as measured with the EII ratio appears to carry the strongest association with dysphagia, and thus may aid in the characterization of symptomatic patients with otherwise normal manometry. PMID:27647522
[Non-invasive estimation of aortic flow by local electrical impedance changes].
Okuda, N; Ohashi, N; Yamada, M; Fujinami, T
1986-09-01
Aortic flow velocity was measured by catheter-tip flow transducer in 25 patients who underwent left cardiac catheterization for non-invasive estimates by the impedance method. Disk electrodes were attached to the skin at the levels of the second thoracic vertebra in the posterior median line and the V8 lead position for electrocardiography. Alternating current, 350 micro-amperes, 50 KHz constant, was applied to the outer electrode, and impedance changes were detected via the inner electrode. The e wave, or height of the first derivative dz/dt wave of the electrical impedance was lower in cases of old myocardial infarction and higher in cases of aortic valve regurgitation, as compared with the values of the healthy control group. The time lag between the start of the upward deflection and the peak value of the dz/dt wave coincided with that of the aortic flow curve as measured at the aortic arch and descending aorta. These time lags were about 20 to 30 msec as compared with the ascending aortic flow curve, and were -20 to -30 msec as compared with the abdominal aortic flow curve. There was a close correlation between the maximum flow velocity measured at the aortic arch and the height of the e waves. The regression equation was: Y = 0.21X - 1.53, r = 0.88, p less than 0.01. These data suggest that the first derivative of electrical impedance change as obtained by the disk electrode method reflects aortic flow at the arch and descending aorta.
Evaluation of a multi-point method for determining acoustic impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Parrott, Tony L.
1988-01-01
An investigation was conducted to explore potential improvements provided by a Multi-Point Method (MPM) over the Standing Wave Method (SWM) and Two-Microphone Method (TMM) for determining acoustic impedance. A wave propagation model was developed to model the standing wave pattern in an impedance tube. The acoustic impedance of a test specimen was calculated from a best fit of this standing wave pattern to pressure measurements obtained along the impedance tube centerline. Three measurement spacing distributions were examined: uniform, random, and selective. Calculated standing wave patterns match the point pressure measurement distributions with good agreement for a reflection factor magnitude range of 0.004 to 0.999. Comparisons of results using 2, 3, 6, and 18 measurement points showed that the most consistent results are obtained when using at least 6 evenly spaced pressure measurements per half-wavelength. Also, data were acquired with broadband noise added to the discrete frequency noise and impedances were calculated using the MPM and TMM algorithms. The results indicate that the MPM will be superior to the TMM in the presence of significant broadband noise levels associated with mean flow.
An approach to the diagnosis of metabolic syndrome by the multi-electrode impedance method
NASA Astrophysics Data System (ADS)
Furuya, N.; Sakamoto, K.; Kanai, H.
2010-04-01
It is well known that metabolic syndrome can induce myocardial infarction and cerebral infarction. So, it is very important to measure the visceral fat volume. In the electric impedance method, information in the vicinity of the electrodes is strongly reflected. Therefore, we propose a new multi-electrode arrangement method based on the impedance sensitivity theorem to measure the visceral fat volume. This electrode arrangement is designed to enable high impedance sensitivity in the visceral and subcutaneous fat regions. Currents are simultaneously applied to several current electrodes on the body surface, and one voltage electrode pair is arranged on the body surface near the organ of interest to obtain the visceral fat information and another voltage electrode pair is arranged on the body surface near the current electrodes to obtain the subcutaneous fat information. A simulation study indicates that by weighting the impedance sensitivity distribution, as in our method, a high-sensitivity region in the visceral and the subcutaneous fat regions can be formed. In addition, it was confirmed that the visceral fat volume can be estimated by the measured impedance data.
NASA Astrophysics Data System (ADS)
Snakowska, Anna; Jurkiewicz, Jerzy; Gorazd, Łukasz
2017-05-01
The paper presents derivation of the impedance matrix based on the rigorous solution of the wave equation obtained by the Wiener-Hopf technique for a semi-infinite unflanged cylindrical duct. The impedance matrix allows, in turn, calculate the acoustic impedance along the duct and, as a special case, the radiation impedance. The analysis is carried out for a multimode incident wave accounting for modes coupling on the duct outlet not only qualitatively but also quantitatively for a selected source operating inside. The quantitative evaluation of the acoustic impedance requires setting of modes amplitudes which has been obtained applying the mode decomposition method to the far-field pressure radiation measurements and theoretical formulae for single mode directivity characteristics for an unflanged duct. Calculation of the acoustic impedance for a non-uniform distribution of the sound pressure and the sound velocity on a duct cross section requires determination of the acoustic power transmitted along/radiated from a duct. In the paper, the impedance matrix, the power, and the acoustic impedance were derived as functions of Helmholtz number and distance from the outlet.
NASA Astrophysics Data System (ADS)
Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.
2017-05-01
The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.
Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating
NASA Astrophysics Data System (ADS)
Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.
2001-10-01
A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.
Measuring impedance in congestive heart failure: Current options and clinical applications
Tang, W. H. Wilson; Tong, Wilson
2011-01-01
Measurement of impedance is becoming increasingly available in the clinical setting as a tool for assessing hemodynamics and volume status in patients with heart failure. The 2 major categories of impedance assessment are the band electrode method and the implanted device lead method. The exact sources of the impedance signal are complex and can be influenced by physiologic effects such as blood volume, fluid, and positioning. This article provides a critical review of our current understanding and promises of impedance measurements, the techniques that have evolved, as well as the evidence and limitations regarding their clinical applications in the setting of heart failure management. PMID:19249408
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
Bockman, Alexander; Fackler, Cameron; Xiang, Ning
2015-04-01
Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.
Dyer, Karrie; Lanning, Craig; Das, Bibhuti; Lee, Po-Feng; Ivy, D. Dunbar; Valdes-Cruz, Lilliam; Shandas, Robin
2007-01-01
Background We have shown previously that input impedance of the pulmonary vasculature provides a comprehensive characterization of right ventricular afterload by including compliance. However, impedance-based compliance assessment requires invasive measurements. Here, we develop and validate a noninvasive method to measure pulmonary artery (PA) compliance using ultrasound color M-mode (CMM) Doppler tissue imaging (DTI). Methods Dynamic compliance (Cdyn) of the PA was obtained from CMM DTI and continuous wave Doppler measurement of the tricuspid regurgitant velocity. Cdyn was calculated as: [(Ds − Dd)/(Dd × Ps)] × 104; where Ds = systolic diameter, Dd = diastolic diameter, and Ps = systolic pressure. The method was validated both in vitro and in 13 patients in the catheterization laboratory, and then tested on 27 pediatric patients with pulmonary hypertension, with comparison with 10 age-matched control subjects. Cdyn was also measured in an additional 13 patients undergoing reactivity studies. Results Instantaneous diameter measured using CMM DTI agreed well with intravascular ultrasound measurements in the in vitro models. Clinically, Cdyn calculated by CMM DTI agreed with Cdyn calculated using invasive techniques (23.4 ± 16.8 vs 29.1 ± 20.6%/100 mm Hg; P = not significant). Patients with pulmonary hypertension had significantly lower peak wall velocity values and lower Cdyn values than control subjects (P < .01). Cdyn values followed an exponentially decaying relationship with PA pressure, indicating the nonlinear stress–strain behavior of these arteries. Reactivity in Cdyn agreed with reactivity measured using impedance techniques. Conclusion The Cdyn method provides a noninvasive means of assessing PA compliance and should be useful as an additional measure of vascular reactivity subsequent to pulmonary vascular resistance in patients with pulmonary hypertension. PMID:16581479
Acoustic Treatment Design Scaling Methods. Phase 2
NASA Technical Reports Server (NTRS)
Clark, L. (Technical Monitor); Parrott, T. (Technical Monitor); Jones, M. (Technical Monitor); Kraft, R. E.; Yu, J.; Kwan, H. W.; Beer, B.; Seybert, A. F.; Tathavadekar, P.
2003-01-01
The ability to design, build and test miniaturized acoustic treatment panels on scale model fan rigs representative of full scale engines provides not only cost-savings, but also an opportunity to optimize the treatment by allowing multiple tests. To use scale model treatment as a design tool, the impedance of the sub-scale liner must be known with confidence. This study was aimed at developing impedance measurement methods for high frequencies. A normal incidence impedance tube method that extends the upper frequency range to 25,000 Hz. without grazing flow effects was evaluated. The free field method was investigated as a potential high frequency technique. The potential of the two-microphone in-situ impedance measurement method was evaluated in the presence of grazing flow. Difficulties in achieving the high frequency goals were encountered in all methods. Results of developing a time-domain finite difference resonator impedance model indicated that a re-interpretation of the empirical fluid mechanical models used in the frequency domain model for nonlinear resistance and mass reactance may be required. A scale model treatment design that could be tested on the Universal Propulsion Simulator vehicle was proposed.
NASA Astrophysics Data System (ADS)
Fang, G. J.; Bao, H.
2017-12-01
The widely used method of calculating electric distances is sensitivity method. The sensitivity matrix is the result of linearization and based on the hypothesis that the active power and reactive power are decoupled, so it is inaccurate. In addition, it calculates the ratio of two partial derivatives as the relationship of two dependent variables, so there is no physical meaning. This paper presents a new method for calculating electrical distance, namely transmission impedance method. It forms power supply paths based on power flow tracing, then establishes generalized branches to calculate transmission impedances. In this paper, the target of power flow tracing is S instead of Q. Q itself has no direction and the grid delivers complex power so that S contains more electrical information than Q. By describing the power transmission relationship of the branch and drawing block diagrams in both forward and reverse directions, it can be found that the numerators of feedback parts of two block diagrams are all the transmission impedances. To ensure the distance is scalar, the absolute value of transmission impedance is defined as electrical distance. Dividing network according to the electric distances and comparing with the results of sensitivity method, it proves that the transmission impedance method can adapt to the dynamic change of system better and reach a reasonable subarea division scheme.
Evaluation of a cost-effective loads approach. [shock spectra/impedance method for Viking Orbiter
NASA Technical Reports Server (NTRS)
Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.
1976-01-01
A shock spectra/impedance method for loads predictions is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost, a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, J.F.; Babcock, S.M.
1989-11-01
Several bilateral control techniques and methods for exploiting redundant slaves are investigated as a part of research to develop and analyze bilateral, force-reflecting control methodologies for teleoperator systems with kinematic dissimilar masters and slaves. The study indicates that, with force/torque sensing at the wrist, and an impedance type of controller with the appropriate joint compensation, a significant improvement in performance and controllability of a teleoperator system can be achieved. 32 refs., 6 figs., 2 tabs.
Rinsma, N F; Farré, R; Bouvy, N D; Masclee, A A M; Conchillo, J M
2015-02-01
Antireflux therapy may lead to recovery of impaired mucosal integrity in gastro-esophageal reflux disease (GERD) patients as reflected by an increase in baseline impedance. The study objective was to evaluate the effect of endoscopic fundoplication and proton pump inhibitor (PPI) PPI therapy on baseline impedance and heartburn severity in GERD patients. Forty-seven GERD patients randomized to endoscopic fundoplication (n = 32) or PPI therapy (n = 15), and 29 healthy controls were included. Before randomization and 6 months after treatment, baseline impedance was obtained during 24-h pH-impedance monitoring. Heartburn severity was evaluated using the GERD-HRQL questionnaire. Before treatment, baseline impedance in GERD patients was lower than in healthy controls (p < 0.001). Antireflux therapy increased baseline impedance (from 1498 [IQR 951-2472] to 2393 [IQR 1353-3027] Ω, p = 0.001), however it only led to a partial recovery when compared to healthy controls (2393 [IQR 1353-3027] vs 2983 [2335-3810] Ω, p < 0.01). The effect of both treatment options was not significantly different (p = 0.13) despite the increased number of non-acid reflux events in the PPI group. No correlation was found between baseline impedance and GERD symptoms before or after treatment. Reduction in acid reflux by endoscopic fundoplication or PPI therapy leads to an increase in baseline impedance in GERD patients, likely to reflect recovery of mucosal integrity. The impact of non-acid reflux events on esophageal mucosal integrity may be limited as no difference in the increase in baseline impedance was observed after both treatment options. The lack of association between impedance baseline and heartburn severity indicates that other factors may contribute to heartburn perception in GERD. © 2014 John Wiley & Sons Ltd.
Skin impedance is not a factor in transcutaneous electrical nerve stimulation effectiveness
Vance, Carol GT; Rakel, Barbara A; Dailey, Dana L; Sluka, Kathleen A
2015-01-01
Objective Transcutaneous electrical nerve stimulation (TENS) is a nonpharmacological intervention used to manage pain using skin surface electrodes. Optimal electrode placement is unclear. We hypothesized that better analgesia would occur if electrodes were placed over sites with lower skin impedance. Optimal site selection (OSS) and sham site selection (SSS) electrode sites on the forearm were identified using a standard clinical technique. Methods Experiment 1 measured skin impedance in the forearm at OSS and SSS. Experiment 2 was a crossover design double-blind randomized controlled trial comparing OSS-TENS, SSS-TENS, and placebo TENS (P-TENS) to confirm differences in skin impedance between OSS and SSS, and measure change in pressure pain threshold (PPT) following a 30-minute TENS treatment. Healthy volunteers were recruited (ten for Experiment 1 [five male, five female] and 24 for Experiment 2 [12 male, 12 female]). TENS was applied for 30 minutes at 100 Hz frequency, 100 µs pulse duration, and “strong but nonpainful” amplitude. Results Experiment 1 results demonstrate significantly higher impedance at SSS (17.69±1.24 Ω) compared to OSS (13.53±0.57 Ω) (P=0.007). For Experiment 2, electrode site impedance was significantly higher over SSS, with both the impedance meter (P=0.001) and the TENS unit (P=0.012) compared to OSS. PPT change was significantly greater for both OSS-TENS (P=0.024) and SSS-TENS (P=0.025) when compared to P-TENS. PPT did not differ between the two active TENS treatments (P=0.81). Conclusion Skin impedance is lower at sites characterized as optimal using the described technique of electrode site selection. When TENS is applied at adequate intensities, skin impedance is not a factor in attainment of hypoalgesia of the forearm in healthy subjects. Further investigation should include testing in patients presenting with painful conditions. PMID:26316808
NASA Astrophysics Data System (ADS)
Tan, Funeng; Li, Lei
2018-03-01
A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.
Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens
NASA Astrophysics Data System (ADS)
Radhakrishnan, Rajeswaran
Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer onto Au. Advantages of degenerate Si include a simpler equivalent circuit, simple and reproducible surface preparation, easy incorporation into ULSI devices, and the greater strength of Si-C bonds (~520 kJ/mole) relative to Au-S bonds (125-150 kJ/mole). New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a thirty-day trial. An impedance biosensor is reported that employs the bidentate thiol 16-[3,5-bis(mercaptomethyl)phenoxy]-hexadecanoic acid (BMPHA) to immobilize the mouse monoclonal antibody to peanut protein Ara h 1. The detection limit for Ara h 1 is approximately 0.71 ng/mL (0.01 nM), which is about one order of magnitude lower than that obtained for antibody immobilization atop the monodendate thiol, 16-mercaptohexadecanoic acid (16 MHA). Antibody regeneration was studied daily using a gentle denaturing agent, 0.2 M KSCN at pH 7.3. The antibody-coated on Au electrodes retained activity towards Ara h1 for 10 and 20 days of regeneration of the monodendate- and BMPHA-coated Au electrodes, respectively. This prolonged activity illustrates the superior stability of protein films atop the BMPHA bidentate thiol- coated Au electrode relative to the 16-MHA monodendate thiol-coated Au electrode.
Object impedance control for cooperative manipulation - Theory and experimental results
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Cannon, Robert H., Jr.
1992-01-01
This paper presents the dynamic control module of the Dynamic and Strategic Control of Cooperating Manipulators (DASCCOM) project at Stanford University's Aerospace Robotics Laboratory. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to higher level strategic control modules. Experimental results from a dual two-link-arm robotic system are used to compare the object impedance controller with other strategies, both for free-motion slews and environmental contact.
Modeling of electrical impedance tomography to detect breast cancer by finite volume methods
NASA Astrophysics Data System (ADS)
Ain, K.; Wibowo, R. A.; Soelistiono, S.
2017-05-01
The properties of the electrical impedance of tissue are an interesting study, because changes of the electrical impedance of organs are related to physiological and pathological. Both physiological and pathological properties are strongly associated with disease information. Several experiments shown that the breast cancer has a lower impedance than the normal breast tissue. Thus, the imaging based on impedance can be used as an alternative equipment to detect the breast cancer. This research carries out by modelling of Electrical Impedance Tomography to detect the breast cancer by finite volume methods. The research includes development of a mathematical model of the electric potential field by 2D Finite Volume Method, solving the forward problem and inverse problem by linear reconstruction method. The scanning is done by 16 channel electrode with neighbors method to collect data. The scanning is performed at a frequency of 10 kHz and 100 kHz with three objects numeric includes an anomaly at the surface, an anomaly at the depth and an anomaly at the surface and at depth. The simulation has been successfully to reconstruct image of functional anomalies of the breast cancer at the surface position, the depth position or a combination of surface and the depth.
Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
Bin, Jonghoon; Yousuff Hussaini, M; Lee, Soogab
2009-02-01
An accurate and practical surface impedance boundary condition in the time domain has been developed for application to broadband-frequency simulation in aeroacoustic problems. To show the capability of this method, two kinds of numerical simulations are performed and compared with the analytical/experimental results: one is acoustic wave reflection by a monopole source over an impedance surface and the other is acoustic wave propagation in a duct with a finite impedance wall. Both single-frequency and broadband-frequency simulations are performed within the framework of linearized Euler equations. A high-order dispersion-relation-preserving finite-difference method and a low-dissipation, low-dispersion Runge-Kutta method are used for spatial discretization and time integration, respectively. The results show excellent agreement with the analytical/experimental results at various frequencies. The method accurately predicts both the amplitude and the phase of acoustic pressure and ensures the well-posedness of the broadband time-domain impedance boundary condition.
Measurement of low temperature plasma properties using non-invasive impedance measurements
NASA Astrophysics Data System (ADS)
Gillman, Eric; Amatucci, Bill; Tejero, Erik; Blackwell, David
2017-10-01
A plasma discharge can be modeled electrically as a combination of capacitors, resistors, and inductors. The plasma, much like an RLC circuit, will have resonances at particular frequencies. The location in frequency space of these resonances provides information about the plasma parameters. These resonances can be detected using impedance measurements, where the AC impedance of the plasma is measured by sweeping the frequency of an AC voltage applied to a sensor and determining the magnitude and phase of the measured current. In this work, an electrode used to sustain a glow discharge is also used as an impedance probe. The novelty of this method is that insertion of a physical probe, which can introduce perturbation and/or contamination, is not necessary. This non-invasive impedance probe method is used to measure the plasma discharge density in various regimes of plasma operation. Experimental results are compared to the basic circuit model results. The potential applications of this diagnostic method and regimes over which this measurement method is valid will be discussed.
Lottrup, Christian; Krarup, Anne L; Gregersen, Hans; Ejstrud, Per; Drewes, Asbjørn M
2016-01-01
Background/Aims Impaired esophageal acid clearance may be a contributing factor in the pathogenesis of Barrett’s esophagus. However, few studies have measured acid clearance as such in these patients. In this explorative, cross-sectional study, we aimed to compare esophageal acid clearance and swallowing rate in patients with Barrett’s esophagus to that in healthy controls. Methods A total of 26 patients with histology-confirmed Barrett’s esophagus and 12 healthy controls underwent (1) upper endoscopy, (2) an acid clearance test using a pH-impedance probe under controlled conditions including controlled and random swallowing, and (3) an ambulatory pH-impedance measurement. Results Compared with controls and when swallowing randomly, patients cleared acid 46% faster (P = 0.008). Furthermore, patients swallowed 60% more frequently (mean swallows/minute: 1.90 ± 0.74 vs 1.19 ± 0.58; P = 0.005), and acid clearance time decreased with greater random swallowing rate (P < 0.001). Swallowing rate increased with lower distal esophageal baseline impedance (P = 0.014). Ambulatory acid exposure was greater in patients (P = 0.033), but clearance times assessed from the ambulatory pH-measurement and acid clearance test were not correlated (all P > 0.3). Conclusions More frequent swallowing and thus faster acid clearance in Barrett’s esophagus may constitute a protective reflex due to impaired mucosal integrity and possibly acid hypersensitivity. Despite these reinforced mechanisms, acid clearance ability seems to be overthrown by repeated, retrograde acid reflux, thus resulting in increased esophageal acid exposure and consequently mucosal changes. PMID:27557545
Active acoustical impedance using distributed electrodynamical transducers.
Collet, M; David, P; Berthillier, M
2009-02-01
New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency.
A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.
Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru
2009-02-01
A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.
Liu, Xiayi; Yao, Jiafeng; Zhao, Tong; Obara, Hiromichi; Cui, Yahui; Takei, Masahiro
2018-06-01
Contact impedance has an important effect on micro electrical impedance tomography (EIT) sensors compared to conventional macro sensors. In the present work, a complex contact impedance effect ratio ξ is defined to quantitatively evaluate the effect of the contact impedance on the accuracy of the reconstructed images by micro EIT. Quality of the reconstructed image under various ξ is estimated by the phantom simulation to find the optimum algorithm. The generalized vector sampled pattern matching (GVSPM) method reveals the best image quality and the best tolerance to ξ. Moreover, the images of yeast cells sedimentary distribution in a multilayered microchannel are reconstructed by the GVSPM method under various mean magnitudes of contact impedance effect ratio |ξ|. The result shows that the best image quality that has the smallest voltage error U E = 0.581 is achieved with measurement frequency f = 1 MHz and mean magnitude |ξ| = 26. In addition, the reconstructed images of cells distribution become improper while f < 10 kHz and mean value of |ξ| > 2400.
Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces
NASA Technical Reports Server (NTRS)
Navidi, Sal; Agdinaoay, Rodell; Walter, Keith
2013-01-01
High-speed serial communication (i.e., Gigabit Ethernet) requires differential transmission and controlled impedances. Impedance control is essential throughout cabling, connector, and circuit board construction. An impedance discontinuity arises at the interface of a high-speed quadrax and twinax connectors and the attached printed circuit board (PCB). This discontinuity usually is lower impedance since the relative dielectric constant of the board is higher (i.e., polyimide approx. = 4) than the connector (Teflon approx. = 2.25). The discontinuity can be observed in transmit or receive eye diagrams, and can reduce the effective link margin of serial data networks. High-speed serial data network transmission improvements can be made at the connector-to-board interfaces as well as improving differential via hole impedances. The impedance discontinuity was improved by 10 percent by drilling a 20-mil (approx. = 0.5-mm) hole in between the pin of a differential connector spaced 55 mils (approx. = 1.4 mm) apart as it is attached to the PCB. The effective dielectric constant of the board can be lowered by drilling holes into the board material between the differential lines in a quadrax or twinax connector attachment points. The differential impedance is inversely proportional to the square root of the relative dielectric constant. This increases the differential impedance and thus reduces the above described impedance discontinuity. The differential via hole impedance can also be increased in the same manner. This technique can be extended to multiple smaller drilled holes as well as tapered holes (i.e., big in the middle followed by smaller ones diagonally).
Using impedance cardiography with postural change to stratify patients with hypertension.
DeMarzo, Arthur P
2011-06-01
Early detection of cardiovascular disease in patients with hypertension could initiate appropriate treatment to control blood pressure and prevent the progression of cardiovascular disease. The goal of this study was to show how impedance cardiography waveform analysis with postural change can be used to detect subclinical cardiovascular disease in patients with high blood pressure. Patients with high blood pressure had impedance cardiography data obtained in two positions, standing upright and supine. In 50 adults, impedance cardiography indicated that all patients had abnormal data, with 44 (88%) having multiple abnormalities. Impedance cardiography showed 32 (64%) had ventricular dysfunction, 48 (96%) had vascular load abnormalities, 34 (68%) had hemodynamic abnormalities, 2 (4%) had hypovolemia, and 3 (6%) had hypervolemia. Hypertensive patients have diverse cardiovascular abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment could be customized based on the abnormal underlying mechanisms with the potential to rapidly control blood pressure, prevent progression of cardiovascular disease, and possibly reverse remodeling.
Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators.
Kim, Pil-Jong; Kim, Hong-Gee; Cho, Byeong-Hoon
2015-05-01
The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.
Mudraia, I S; Kirpatovskiĭ, V I
1993-01-01
The paper describes impedance methods of investigating upper urinary tracts (UUT) which may serve adjuvants in the diagnosis of the urinary tract wall disturbances due to diseases caused by impaired urine evacuation from the kidney and which may prove helpful in the choice of therapeutic policy, evaluation of the postoperative period and outcomes prognosis. UUT impedance tests can be performed during endoscopic manipulations or under open operative interventions. Two-frequency impedancemetry allows rapid detection of non-functioning UUT parts or sclerosal sites of the UUT wall, relevant criteria being the ratio of basic impedances of the site under low and high scanning current. This value is computed by an urological two-frequency impedancemeter IDU-M. To assess the UUT wall functionally, use should be made of 6-channel urological rheograph REUR-6 providing multichannel registration of immediate impedance ureterograms. In this manner one can obtain qualitative and quantitative assessment of the ureteral peristalsis through its all length, the criteria being the amplitude of impedance ureterographic complexes, their shape, duration, frequency, rhythm, sequence and rate of distribution. Loading tests increase the accuracy of UUT impedance measurements, are able to define compensatory reserves of the wall contractility. The introduction of rheological methods in urological practice makes broader the armory of diagnostic techniques in urology, upgrade pathogenetic validity of surgical and therapeutic measures.
Drilling electrode for real-time measurement of electrical impedance in bone tissues.
Dai, Yu; Xue, Yuan; Zhang, Jianxun
2014-03-01
In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.
NASA Astrophysics Data System (ADS)
Li, Zuohua; Chen, Chaojun; Teng, Jun; Wang, Ying
2018-04-01
Active mass damper/driver (AMD) control system has been proposed as an effective tool for high-rise buildings to resist strong dynamic loads. However, such disadvantage as time-varying delay in AMD control systems impedes their application in practices. Time-varying delay, which has an effect on the performance and stability of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems, is considered in the paper. In addition, a new time-delay compensation controller based on regional pole-assignment method is presented. To verify its effectiveness, the proposed method is applied to a numerical example of a ten-storey frame and an experiment of a single span four-storey steel frame. Both numerical and experimental results demonstrate that the proposed method can enhance the performances of an AMD control system with time-varying delays.
Experimental implementation of acoustic impedance control by a 2D network of distributed smart cells
NASA Astrophysics Data System (ADS)
David, P.; Collet, M.; Cote, J.-M.
2010-03-01
New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. Smart structures combining large arrays of elementary motion pixels are thus being studied so that fundamental properties could be dynamically adjusted. This paper investigates the acoustical capabilities of a network of distributed transducers connected with a suitable controlling strategy. The research aims at designing an integrated active interface for sound attenuation by using suitable changes of acoustical impedance. The control strategy is based on partial differential equations (PDE) and the multiscaled physics of electromechanical elements. Specific techniques based on PDE control theory have provided a simple boundary control equation able to annihilate the reflections of acoustic waves. To experimentally implement the method, the control strategy is discretized as a first order time-space operator. The obtained quasi-collocated architecture, composed of a large number of sensors and actuators, provides high robustness and stability. The experimental results demonstrate how a well controlled active skin can substantially modify sound reflectivity of the acoustical interface and reduce the propagation of acoustic waves.
Body Fat Measurement: Weighing the Pros and Cons of Electrical Impedance.
ERIC Educational Resources Information Center
Nash, Heyward L.
1985-01-01
Research technologists have developed electrical impedance units in response to demand for a convenient and reliable method of measuring body fat. Accuracy of impedance measures versus calipers and underwater weighing are discussed. (MT)
NASA Astrophysics Data System (ADS)
Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew
2018-04-01
Continuous monitoring of the patient's breathing by the method of multi-angle electric impedance tomography allows to obtain images of conduction change in the chest cavity during the monitoring. Direct analysis of images is difficult due to the large amount of information and low resolution images obtained by multi-angle electrical impedance tomography. This work presents a method for obtaining a graph of respiratory activity of the lungs based on the results of continuous lung monitoring using the multi-angle electrical impedance tomography method. The method makes it possible to obtain a graph of the respiratory activity of the left and right lungs separately, as well as a summary graph, to which it is possible to apply methods of processing the results of spirography.
ERIC Educational Resources Information Center
Swaine, J.; Parish, S. L.; Luken, K.; Atkins, L.
2011-01-01
Background: The need for evidence-based health promotion interventions for women with intellectual and developmental disabilities is critical. However, significant barriers impede them from participating in research, including those related to recruitment and obtaining informed consent. Methods: This study describes a procedure for the recruitment…
Self-healing bolted joint employing a shape memory actuator
NASA Astrophysics Data System (ADS)
Muntges, Daniel E.; Park, Gyuhae; Inman, Daniel J.
2001-08-01
This paper is a report of an initial investigation into the active control of preload in the joint using a shape memory actuator around the axis of the bolt shaft. Specifically, the actuator is a cylindrical Nitinol washer that expands axially when heated, according to the shape memory effect. The washer is actuated in response to an artificial decrease in torque. Upon actuation, the stress generated by its axial strain compresses the bolted members and creates a frictional force that has the effect of generating a preload and restoring lost torque. In addition to torque wrenches, the system in question was monitored in all stages of testing using piezoelectric impedance analysis. Impedance analysis drew upon research techniques developed at Center for Intelligent Material Systems and Structures, in which phase changes in the impedance of a self-sensing piezoceramic actuator correspond to changes in joint stiffness. Through experimentation, we have documented a successful actuation of the shape memory element. Due to complexity of constitutive modeling, qualitative analysis by the impedance method is used to illustrate the success. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful commercial application of this promising technique.
2014-01-01
Background There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. Methods A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Results Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Conclusion Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance. PMID:24594284
Method for controlling clathrate hydrates in fluid systems
Sloan, Jr., Earle D.
1995-01-01
Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.
Method for controlling clathrate hydrates in fluid systems
Sloan, E.D. Jr.
1995-07-11
Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.
He, W.; Anderson, R.N.
1998-08-25
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.
He, Wei; Anderson, Roger N.
1998-01-01
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.
Impedance Eduction in Ducts with Higher-Order Modes and Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2009-01-01
An impedance eduction technique, previously validated for ducts with plane waves at the source and duct termination planes, has been extended to support higher-order modes at these locations. Inputs for this method are the acoustic pressures along the source and duct termination planes, and along a microphone array located in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented that eliminates the need for the microphone array. The integrity of both methods is tested using three sound sources, six Mach numbers, and six selected frequencies. Results are presented for both a hardwall and a test liner (with known impedance) consisting of a perforated plate bonded to a honeycomb core. The primary conclusion of the study is that the second method performs well in the presence of higher-order modes and flow. However, the first method performs poorly when most of the microphones are located near acoustic pressure nulls. The negative effects of the acoustic pressure nulls can be mitigated by a judicious choice of the mode structure in the sound source. The paper closes by using the first impedance eduction method to design a rectangular array of 32 microphones for accurate impedance eduction in the NASA LaRC Curved Duct Test Rig in the presence of expected measurement uncertainties, higher order modes, and mean flow.
Comparative Study of Impedance Eduction Methods. Part 1; DLR Tests and Methodology
NASA Technical Reports Server (NTRS)
Busse-Gerstengarbe, Stefan; Bake, Friedrich; Enghardt, Lars; Jones, Michael G.
2013-01-01
The absorption efficiency of acoustic liners used in aircraft engines is characterized by the acoustic impedance. World wide, many grazing ow test rigs and eduction methods are available that provide values for that impedance. However, a direct comparison and assessment of the data of the di erent rigs and methods is often not possible because test objects and test conditions are quite di erent. Only a few papers provide a direct comparison. Therefore, this paper together with a companion paper, present data measured with a reference test object under similar conditions in the DLR and NASA grazing ow test rigs. Additionally, by applying the in-house methods Liner Impedance Non-Uniform ow Solving algorithm (LINUS, DLR) and Convected Helmhholtz Equation approach (CHE, NASA) on the data sets, similarities and differences due to underlying theory are identi ed and discussed.
NASA Astrophysics Data System (ADS)
Liang, Li-Feng; Zhang, Hong-Bing; Dan, Zhi-Wei; Xu, Zi-Qiang; Liu, Xiu-Juan; Cao, Cheng-Hao
2017-03-01
Simultaneous prestack inversion is based on the modified Fatti equation and uses the ratio of the P- and S-wave velocity as constraints. We use the relation of P-wave impedance and density (PID) and S-wave impedance and density (SID) to replace the constant Vp/Vs constraint, and we propose the improved constrained Fatti equation to overcome the effect of P-wave impedance on density. We compare the sensitivity of both methods using numerical simulations and conclude that the density inversion sensitivity improves when using the proposed method. In addition, the random conjugate-gradient method is used in the inversion because it is fast and produces global solutions. The use of synthetic and field data suggests that the proposed inversion method is effective in conventional and nonconventional lithologies.
Energy storage cell impedance measuring apparatus, methods and related systems
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.
2017-12-26
Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.
Enhancing Piezoelectric Performance of CaBi2Nb2O9 Ceramics Through Microstructure Control
NASA Astrophysics Data System (ADS)
Chen, Huanbei; Zhai, Jiwei
2012-08-01
Calcium bismuth niobate (CaBi2Nb2O9, CBN) is a high-Curie-temperature ( T C) piezoelectric material with relatively poor piezoelectric performance. Attempts were made to enhance the piezoelectric and direct-current (DC) resistive properties of CBN ceramics by increasing their density and controlling their microstructural texture, which were achieved by combining the templated grain growth and hot pressing methods. The modified CBN ceramics with 97.5% relative density and 90.5% Lotgering factor had much higher piezoelectric constant ( d 33 = 20 pC/N) than those prepared by the normal sintering process ( d 33 = 6 pC/N). High-temperature alternating-current (AC) impedance spectroscopy of the CBN ceramics was measured by using an impedance/gain-phase analyzer. Their electrical resistivity was approximately 6.5 × 104 Ω cm at 600°C. Therefore, CBN ceramics can be used for high-temperature piezoelectric applications.
Xie, Chenxi; Sifrim, Daniel; Li, Yuwen; Chen, Minhu; Xiao, Yinglian
2018-01-30
Esophageal baseline impedance, which is decreased in gastroesophageal reflux disease (GERD) patients, is related to the severity of acid reflux and the integrity of the esophageal mucosa. The study aims to compare the baseline impedance and the dilated intercellular spaces (DIS) within patients with typical reflux symptoms and to evaluate the correlation of baseline impedance with DIS, esophageal acid exposure, as well as the efficacy of proton pump inhibitor (PPI) treatment. Ninety-two patients and 10 healthy controls were included in the study. Erosive esophagitis (EE) was defined by esophageal mucosal erosion under upper endoscopy. Patients without mucosa erosion were divided into groups with pathologic acid reflux (non-erosive reflux disease [NERD]) or with hypersensitive esophagus. The biopsies of esophageal mucosa were taken 2-4 cm above the gastroesophageal junction Z-line during upper endoscopy for DIS measurement. All the patients received esomeprazole 20 mg twice-daily treatment for 8 weeks. The efficacy of esomeprazole was evaluated among all patients. The intercellular spaces were dilated in both EE and NERD patients ( P < 0.05). The value 0.73 µm could be used as the cut-off DIS value to distinguish patients from controls (area under the curve [AUC] = 0.849, P < 0.01). One thousand seven hundred sixty-four ohms could be used as the cut-off impedance values to distinguish patients from controls (AUC = 0.794, P < 0.01). The baseline impedance was decreased in both EE patients and NERD patients, and negatively correlated to the acid exposure time ( r = -0.527, P < 0.05). There was a weak correlation between DIS and baseline impedance ( r = -0.230, P < 0.05). "Baseline impedance > 1764 Ω" was an independent predictor for PPI failure (OR, 11.9; 95% CI, 2.4-58.9; P < 0.01). The DIS and decreased baseline impedance was observed in patients with mucosa erosion or pathological acid reflux. The baseline impedance reflected the mucosal integrity, it was more sensitive to esophageal acid exposure. Patients with high impedance might not benefit from the PPI treatment.
NASA Technical Reports Server (NTRS)
Dean, P. D.
1978-01-01
A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.
Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz
NASA Astrophysics Data System (ADS)
Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.
2018-03-01
Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.
Dyer, Karrie; Lanning, Craig; Das, Bibhuti; Lee, Po-Feng; Ivy, D Dunbar; Valdes-Cruz, Lilliam; Shandas, Robin
2006-04-01
We have shown previously that input impedance of the pulmonary vasculature provides a comprehensive characterization of right ventricular afterload by including compliance. However, impedance-based compliance assessment requires invasive measurements. Here, we develop and validate a noninvasive method to measure pulmonary artery (PA) compliance using ultrasound color M-mode (CMM) Doppler tissue imaging (DTI). Dynamic compliance (C(dyn)) of the PA was obtained from CMM DTI and continuous wave Doppler measurement of the tricuspid regurgitant velocity. C(dyn) was calculated as: [(D(s) - D(d))/(D(d) x P(s))] x 10(4); where D(s) = systolic diameter, D(d) = diastolic diameter, and P(s) = systolic pressure. The method was validated both in vitro and in 13 patients in the catheterization laboratory, and then tested on 27 pediatric patients with pulmonary hypertension, with comparison with 10 age-matched control subjects. C(dyn) was also measured in an additional 13 patients undergoing reactivity studies. Instantaneous diameter measured using CMM DTI agreed well with intravascular ultrasound measurements in the in vitro models. Clinically, C(dyn) calculated by CMM DTI agreed with C(dyn) calculated using invasive techniques (23.4 +/- 16.8 vs 29.1 +/- 20.6%/100 mm Hg; P = not significant). Patients with pulmonary hypertension had significantly lower peak wall velocity values and lower C(dyn) values than control subjects (P < .01). C(dyn) values followed an exponentially decaying relationship with PA pressure, indicating the nonlinear stress-strain behavior of these arteries. Reactivity in C(dyn) agreed with reactivity measured using impedance techniques. The C(dyn) method provides a noninvasive means of assessing PA compliance and should be useful as an additional measure of vascular reactivity subsequent to pulmonary vascular resistance in patients with pulmonary hypertension.
On the Use of Experimental Methods to Improve Confidence in Educed Impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.
2011-01-01
Results from impedance eduction methods developed by NASA Langley Research Center are used throughout the acoustic liner community. In spite of recent enhancements, occasional anomalies persist with these methods, generally at frequencies where the liner produces minimal attenuation. This investigation demonstrates an experimental approach to educe impedance with increased confidence over a desired frequency range, by combining results from successive tests with different cavity depths. A series of tests is conducted with three wire-mesh facesheets, for which the results should be weakly dependent on source sound pressure level and mean grazing flow speed. First, a raylometer is used to measure the DC flow resistance of each facesheet. These facesheets are then mounted onto a frame and a normal incidence tube is used to determine their respective acoustic impedance spectra. A comparison of the acoustic resistance component with the DC flow resistance for each facesheet is used to validate the measurement process. Next, each facesheet is successively mounted onto three frames with different cavity depths, and a grazing flow impedance tube is used to educe their respective acoustic impedance spectra with and without mean flow. The no-flow results are compared with those measured in the normal incidence tube to validate the impedance eduction method. Since the anti-resonance frequency varies with cavity depth, each sample provides robust results over a different frequency range. Hence, a combination of results can be used to determine the facesheet acoustic resistance. When combined with the acoustic reactance, observed to be weakly dependent on the source sound pressure level and grazing flow Mach number, the acoustic impedance can be educed with increased confidence. Representative results of these tests are discussed, and the complete database is available in electronic format upon request.
Sakin, Yusuf S; Vardar, Rukiye; Sezgin, Baha; Cetin, Zeynep Erdogan; Alev, Yasemin; Yildirim, Esra; Kirazli, Tayfun; Bor, Serhat
2017-08-01
The diagnosis of laryngopharyngeal reflux is currently based on a combination of the patient history of multichannel intraluminal impedance and ambulatory pH (MII-pH); however, none of these findings alone is specific for the diagnosis of laryngopharyngeal reflux. We aimed to compare the baseline characteristics and esophageal baseline impedance values between patients with and without laryngopharyngeal reflux symptoms. We retrospectively analyzed data from two groups of patients with laryngopharyngeal reflux according to their reflux finding score (RFS) as scored by ENTs. Control patients were nonerosive reflux disease patients without laryngopharyngeal reflux. All MII-pH parameters and baseline impedance were analyzed from six levels and the proximal and distal baseline impedance and the ratio of the proximal to distal baseline impedance levels was calculated. Altogether 123 patients with laryngopharyngeal reflux and 49 control patients were included. A total of 81 of 123 patients had RFS ≥ 7, and 42 of 123 patients had RFS < 7. Baseline impedance analysis showed that patients with laryngopharyngeal reflux symptoms had significantly lower proximal baseline impedance values (1997 ± 51 vs 2245 ± 109, p < 0.05) than the control group. Additionally, patients with laryngopharyngeal reflux symptoms had a significantly lower proximal-to-distal ratio (1.28 ± 0.05 vs 1.53 ± 0.09, p < 0.05). In the subgroup analysis, patients with RFS < 7 were found to have a significantly lower acid exposure time than either the patients with RFS ≥ 7 (3.85 ± 0.65 vs 8.2 ± 1.52, p < 0.05) or the control group (3.85 ± 0.65 vs 6.1 ± 0.81, p < 0.05). Additionally, patients with RFS ≥ 7 had significantly lower proximal baseline impedance levels than the control group (1970 ± 63 vs 2245 ± 109, p < 0.05). Patients with pathologic laryngopharyngeal reflux symptom scores had lower proximal baseline impedance levels and lower proximal-to-distal ratios, which may reflect the proximal mucosal noxious effect of the refluxate. These results may indicate that laryngopharyngeal reflux symptoms may be due to chronic acid exposure in the proximal segments of the esophagus, and the proximal-to-distal ratio may be used as a new metric for diagnosis.
Active Control of Liner Impedance by Varying Perforate Orifice Geometry
NASA Technical Reports Server (NTRS)
Ahuji, K. K.; Gaeta, R. J., Jr.
2000-01-01
The present work explored the feasibility of controlling the acoustic impedance of a resonant type acoustic liner. This was accomplished by translating one perforate over another of the same porosity creating a totally new perforate that had an intermediate porosity. This type of adjustable perforate created a variable orifice perforate whose orifices were non-circular. The key objective of the present study was to quantify, the degree of attenuation control that can be achieved by applying such a concept to the buried septum in a two-degree-of-freedom (2DOF) acoustic liner. An additional objective was to examine the adequacy of the existing impedance models to explain the behavior of the unique orifice shapes that result from the proposed silding perforate concept. Different orifice shapes with equivalent area were also examined to determine if highly non-circular orifices had a significant impact on the impedance.
A partially reflecting random walk on spheres algorithm for electrical impedance tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maire, Sylvain, E-mail: maire@univ-tln.fr; Simon, Martin, E-mail: simon@math.uni-mainz.de
2015-12-15
In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance ofmore » the new estimator both theoretically and experimentally. Subsequently, the variance of the new estimator is considerably reduced via a novel control variate conditional sampling technique which yields a highly efficient hybrid forward solver coupling probabilistic and deterministic algorithms.« less
Inverse solutions for electrical impedance tomography based on conjugate gradients methods
NASA Astrophysics Data System (ADS)
Wang, M.
2002-01-01
A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.
Comparison of Norethindrone-Containing OCPs to Desogestrel OCPs and Depo-Provera in Women
2000-10-01
induces amenorrhea (12,20-26). To date, however, no study has directly compared continuation rates among these different methods of contraception. The...height physical standards unique to their branch of the armed forces after long term use. Although consistent exercise may help control this weight gain...a willingness to exercise may be impeded by DMPA use as preliminary studies suggest that this method results in increased fatigue (32). Other issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yanlin; Wang, Mi; Yao, Jun
2014-04-11
Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases systemmore » involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles based on EIS measurement using a sensor of 8 electrodes are reported. Results have demonstrated the potential as well as revealed the challenge in the use of EIS and EITS for characterisation of particle in suspension.« less
Kim, Minseok; Eleftheriades, George V
2016-10-15
We propose a highly efficient (nearly lossless and impedance-matched) all-dielectric optical tensor impedance metasurface that mimics chiral effects at optical wavelengths. By cascading an array of rotated crossed silicon nanoblocks, we realize chiral optical tensor impedance metasurfaces that operate as circular polarization selective surfaces. Their efficiencies are maximized through a nonlinear numerical optimization process in which the tensor impedance metasurfaces are modeled via multi-conductor transmission line theory. From rigorous full-wave simulations that include all material losses, we show field transmission efficiencies of 94% for right- and left-handed circular polarization selective surfaces at 800 nm.
Powell, Harry R F; Birman, Catherine S
2015-01-01
The aim of this study was to assess if large vestibular aqueduct syndrome (LVAS), with the increase in perilymphatic pressure, affects impedance changes over time with different types of Cochlear(®) implant electrode arrays Contour, Straight, and CI 422. To report speech perception outcomes for these cochlear implant recipients. Retrospective case review of impedance levels and categories of auditory performance. Impedance data were collected at switch on, 1 month, 3, 6, 12, and 24 months after cochlear implantation and compared with control (non-LVAS cochlear implant recipient) data for each array type. Forty-seven patients with exclusive LVAS and no other vestibulocochlear abnormalities or other identifiable cause of deafness were eligible for inclusion in the study. In LVAS patients, there was a significant difference in impedance between the three types of device (P < 0.0001). Time since switch on was associated with a decrease in impedance for all three devices (P < 0.0001). The mean impedance reduced between switch on and 1 month and remained relatively constant thereafter. Sound variation with softening of sounds was seen in four CI 422 (Straight Research Array) recipients due to ongoing fluctuations in electrode compliance. For all three array types, there was no significant difference in the mean impedance between the LVAS patients and controls over the first 12 months. In keeping with previous studies cochlear implant recipients with LVAS hear very well through the cochlear implant.
Edelson, Dana P.; Eilevstjønn, Joar; Weidman, Elizabeth K.; Retzer, Elizabeth; Vanden Hoek, Terry L.; Abella, Benjamin S.
2009-01-01
Objective Hyperventilation is both common and detrimental during cardiopulmonary resuscitation (CPR). Chest wall impedance algorithms have been developed to detect ventilations during CPR. However, impedance signals are challenged by noise artifact from multiple sources, including chest compressions. Capnography has been proposed as an alternate method to measure ventilations. We sought to assess and compare the adequacy of these two approaches. Methods Continuous chest wall impedance and capnography were recorded during consecutive in-hospital cardiac arrests. Algorithms utilizing each of these data sources were compared to a manually determined “gold standard” reference ventilation rate. In addition, a combination algorithm, which utilized the highest of the impedance or capnography values in any given minute, was similarly evaluated. Results Data were collected from 37 cardiac arrests, yielding 438 min of data with continuous chest compressions and concurrent recording of impedance and capnography. The manually calculated mean ventilation rate was 13.3±4.3/min. In comparison, the defibrillator’s impedance-based algorithm yielded an average rate of 11.3±4.4/min (p=0.0001) while the capnography rate was 11.7±3.7/min (p=0.0009). There was no significant difference in sensitivity and positive predictive value between the two methods. The combination algorithm rate was 12.4±3.5/min (p=0.02), which yielded the highest fraction of minutes with respiratory rates within 2/min of the reference. The impedance signal was uninterpretable 19.5% of the time, compared with 9.7% for capnography. However, the signals were only simultaneously non-interpretable 0.8% of the time. Conclusions Both the impedance and capnography-based algorithms underestimated the ventilation rate. Reliable ventilation rate determination may require a novel combination of multiple algorithms during resuscitation. PMID:20036047
Zhong, Chanjuan; Duan, Liping; Wang, Kun; Xu, Zhijie; Ge, Ying; Yang, Changqing; Han, Yajing
2013-05-01
The esophageal intraluminal baseline impedance may be used to evaluate the status of mucosa integrity. Esophageal acid exposure decreases the baseline impedance. We aimed to compare baseline impedance in patients with various reflux events and with different acid-related parameters, and investigate the relationships between epithelial histopathologic abnormalities and baseline impedance. A total of 229 GERD patients and 34 controls underwent 24-h multichannel intraluminal impedance and pH monitoring (MII-pH monitoring), gastroendoscopy, and completed a GERD questionnaire (GerdQ). We quantified epithelial intercellular spaces (ICSs) and expression of tight junction (TJ) proteins by histologic techniques. Mean baseline values in reflux esophagitis (RE) (1752 ± 1018 Ω) and non-erosive reflux disease (NERD) (2640 ± 1143 Ω) were significantly lower than in controls (3360 ± 1258 Ω; p < 0.001 and p = 0.001, respectively). Among NERD subgroups, mean baselines in the acid reflux group (2510 ± 1239 Ω) and mixed acid/weakly acidic reflux group (2393 ± 1009 Ω) were much lower than in controls (3360 ± 1258 Ω; p = 0.020 and p < 0.001, respectively). The mean baseline in severe RE patients was significantly lower than in mild RE patients (LA-C/D vs. LA-A/B: 970 ± 505 Ω vs. 1921 ± 1024 Ω, p < 0.001). There was a significant negative correlation between baseline value and acid exposure time (AET) (r = -0.41, p < 0.001), and a weak but significant correlation (r = -0.20, p = 0.007) between baseline value and weakly AET. Negative correlations were observed between ICS and the baseline impedance (r = -0.637, p < 0.001) and claudin-1 and the baseline impedance (r = -0.648, p < 0.001). Patients with dominant acid reflux events and with longer AET have low baseline impedance. Baseline values are correlated with esophageal mucosal histopathologic changes such as dilated ICS and TJ alteration.
de Bortoli, Nicola; Martinucci, Irene; Savarino, Edoardo; Tutuian, Radu; Frazzoni, Marzio; Piaggi, Paolo; Bertani, Lorenzo; Furnari, Manuele; Franchi, Riccardo; Russo, Salvatore; Bellini, Massimo; Savarino, Vincenzo; Marchi, Santino
2015-06-01
Esophageal impedance measurements have been proposed to indicate the status of the esophageal mucosa, and might be used to study the roles of the impaired mucosal integrity and increased acid sensitivity in patients with heartburn. We compared baseline impedance levels among patients with heartburn who did and did not respond to proton pump inhibitor (PPI) therapy, along with the pathophysiological characteristics of functional heartburn (FH). In a case-control study, we collected data from January to December 2013 on patients with heartburn and normal findings from endoscopy who were not receiving PPI therapy and underwent impedance pH testing at hospitals in Italy. Patients with negative test results were placed on an 8-week course of PPI therapy (84 patients received esomeprazole and 36 patients received pantoprazole). Patients with more than 50% symptom improvement were classified as FH/PPI responders and patients with less than 50% symptom improvement were classified as FH/PPI nonresponders. Patients with hypersensitive esophagus and healthy volunteers served as controls. In all patients and controls, we measured acid exposure time, number of reflux events, baseline impedance, and swallow-induced peristaltic wave indices. FH/PPI responders had higher acid exposure times, numbers of reflux events, and acid refluxes compared with FH/PPI nonresponders (P < .05). Patients with hypersensitive esophagus had mean acid exposure times and numbers of reflux events similar to those of FH/PPI responders. Baseline impedance levels were lower in FH/PPI responders and patients with hypersensitive esophagus, compared with FH/PPI nonresponders and healthy volunteers (P < .001). Swallow-induced peristaltic wave indices were similar between FH/PPI responders and patients with hypersensitive esophagus. Patients with FH who respond to PPI therapy have impedance pH features similar to those of patients with hypersensitive esophagus. Baseline impedance measurements might allow for identification of patients who respond to PPIs but would be classified as having FH based on conventional impedance-pH measurements. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Scattering by a groove in an impedance plane
NASA Technical Reports Server (NTRS)
Bindiganavale, Sunil; Volakis, John L.
1993-01-01
An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.
Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.
2010-01-01
Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478
FDTD modeling of thin impedance sheets
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.
Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments
NASA Technical Reports Server (NTRS)
Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)
2012-01-01
A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.
Thompson, D.O.; Hsu, D.K.
1993-12-14
The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.
Thompson, Donald O.; Hsu, David K.
1993-12-14
The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.
Broadband electrical impedance matching for piezoelectric ultrasound transducers.
Huang, Haiying; Paramo, Daniel
2011-12-01
This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.
Wu, Xiaoming; Dong, Xiuzhen; Qin, Mingxin; Fu, Feng; Wang, Yuemin; You, Fusheng; Xiang, Haiyan; Liu, Ruigang; Shi, Xuetao
2003-03-01
The in vivo measurements of rabbit brain tissue impedance were taken under both normal and ischemic conditions by using two-electrode measurement method in the frequency range from 0.1 Hz to 1 MHz. The dynamic images about the resistivity of cerebral ischemia were reconstructed based on a 16-electrode system. The results of in vivo measurement showed that the ratio of impedance increased can be as high as 75% at frequencies lower than 10 Hz. In the range from 1 KHz to 1 MHz, the ratio showed a constant value of 15%. The electrical impedance tomography (EIT) images obtained suggested that the regions of impedance changes highly correspond to the position of ischemia. It is confirmed that the brain function changes caused by local deficiency of blood can be detected and imaged by EIT method.
Ventilation mapping of chest using Focused Impedance Method (FIM)
NASA Astrophysics Data System (ADS)
Kadir, M. Abdul; Ferdous, Humayra; Baig, Tanvir Noor; Siddique-e-Rabbani, K.
2010-04-01
Focused Impedance Method (FIM) provides an opportunity for localized impedance measurement down to reasonable depths within the body using surface electrodes, and has a potential application in localized lung ventilation study. This however needs assessment of normal values for healthy individuals. In this study, localized ventilation maps in terms of electrical impedance in a matrix formation around the thorax, both from the front and the back, were obtained from two normal male subjects using a modified configuration of FIM. For this the focused impedance values at full inspiration and full expiration were measured and the percentage difference with respect to the latter was used. Some of the measured values would have artefacts due to movements of the heart and the diaphragm in the relevant anatomical positions which needs to be considered with due care in any interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Panbao; Lu, Xiaonan; Yang, Xu
This paper proposes an improved distributed secondary control scheme for dc microgrids (MGs), aiming at overcoming the drawbacks of conventional droop control method. The proposed secondary control scheme can remove the dc voltage deviation and improve the current sharing accuracy by using voltage-shifting and slope-adjusting approaches simultaneously. Meanwhile, the average value of droop coefficients is calculated, and then it is controlled by an additional controller included in the distributed secondary control layer to ensure that each droop coefficient converges at a reasonable value. Hence, by adjusting the droop coefficient, each participating converter has equal output impedance, and the accurate proportionalmore » load current sharing can be achieved with different line resistances. Furthermore, the current sharing performance in steady and transient states can be enhanced by using the proposed method. The effectiveness of the proposed method is verified by detailed experimental tests based on a 3 × 1 kW prototype with three interface converters.« less
Novel method to form adaptive internal impedance profiles in walkers.
Escudero Morland, Maximilano F; Althoefer, Kaspar; Nanayakkara, Thrishantha
2015-01-01
This paper proposes a novel approach to improve walking in prosthetics, orthotics and robotics without closed loop controllers. The approach requires impedance profiles to be formed in a walker and uses state feedback to update the profiles in real-time via a simple policy. This approach is open loop and inherently copes with the challenge of uncertain environment. In application it could be used either online for a walker to adjust its impedance profiles in real-time to compensate for environmental changes, or offline to learn suitable profiles for specific environments. So far we have conducted simulations and experiments to investigate the transient and steady state gaits obtained using two simple update policies to form damping profiles in a passive dynamic walker known as the rimless wheel (RW). The damping profiles are formed in the motor that moves the RW vertically along a rail, analogous to a knee joint, and the two update equations were designed to a) control the angular velocity profile and b) minimise peak collision forces. Simulation results show that the velocity update equation works within limits and can cope with varying ground conditions. Experiment results show the angular velocity average reaching the target as well as the peak force update equation reducing peak collision forces in real-time.
Ayas, Selçuk; Bayraktar, Mesut; Gürbüz, Ayşe; Alkan, Akif; Eren, Sadiye
2012-01-01
Objective: We aimed to evaluate uterine junctional zone thickness, cervical length and bioelectrical impedance analysis of body composition in women with endometriosis. Material and Methods: This is a prospective study conducted in a tertiary teaching hospital. A total of 73 patients were included in the study. Endometriosis was surgically diagnosed in 36 patients (study group). The control group included 37 patients. Main outcome measure(s): Bioelectrical impedance analysis was used to measure body composition. Uterine junctional zone thickness and cervical length were measured by transvaginal ultrasonography. Results: Patients’ characteristics (age, gravida, parity, live baby, age of menarche, lengths of menstrual cycle, percentage of patients with dysmenorrhea, positive family history), body mass index (BMI) (kg/m2), amount of body fat (kg), percentage of body fat were not statistically different between the two groups (p>0.05). The length of menstruation and cervical length were longer in women with endometriosis. Similarly, the inner myometrium was thicker in women with endometriosis than the control group. Conclusion: The relation between endometriosis and demographic features such as age, gravida, parity, gravida, BMI, lengths of the menstrual cycle, age of menarche are controversial. Longer cervical length and thicker inner myometrial layer may be important in the etiopathogenesis of endometriosis. PMID:25207044
Raggueneau, J L; Gambini, D; Levante, A; Riche, F; de Vernejoul, P; Echter, E
1979-01-01
To evaluate the extra-cellular space, we measure the impedance (or resistance) of the extra-cellular electrolyte compartment with an alternating current at a fixed frequency of 5 kHz that can't pass through the cellular membrane. Total water is measured by the impedance to a current of 1 MHz which is conducted by extra and intra cellular hydro-electrolytic space. There is a good correlation between electrical impedance measurements and distribution of isotopic markers. The extra-cellular compartment was evaluated by diffusion of D.T.P.A. marked with 99mTc or with 111In and the total water by the diffusion of Antipyrin marked with 1,311 or 1,231. The findings indicate that there is not a significant difference between the results of the size of extra-cellular water measured by electrical impedance and D.T.P.A. diffusion (r = 0.75). Comparable results have been obtained in the determination of total water by electrical impedance measure and diffusion of Antipyrin (r = 0.90). We have also studied by method of electric impedance:--The state of hydratation in head injured patients and after pituitary surgery.--The lean body mass and hydro-electrolyte compartments in pregnancy. Electrical impedance measure seems to be a simple and reliable method to assess the hydric state of patients.
Bredenoord, A J; Weusten, B L A M; Sifrim, D; Timmer, R; Smout, A J P M
2004-01-01
Background: Patients with aerophagia are believed to have excessive belches due to air swallowing. Intraluminal impedance monitoring has made it possible to investigate the validity of this concept. Methods: The authors measured oesophageal pH and electrical impedance before and after a meal in 14 patients with excessive belching and 14 healthy controls and identified patterns of air transport through the oesophagus. The size of the gastric air bubble was measured radiographically. In four patients prolonged oesophageal manometry was performed simultaneously. Results: In all subjects, impedance tracings showed that a significant amount of air is propulsed in front of about a third of the swallow induced peristaltic waves. Two types of retrograde gas flow through the oesophagus (belch) were observed. In the first type air flowed from the stomach through the oesophagus in oral direction (“gastric belch”). In the second type air entered the oesophagus rapidly from proximal and was expulsed almost immediately in oral direction (“supragastric belch”). The incidence of air-containing swallows and gastric belches was similar in patients and controls but supragastric belches occurred exclusively in patients. There was no evidence of lower oesophageal sphincter relaxation during supragastric belches. Gastric air bubble size was not different between the two groups. Conclusions: In patients with excessive belching the incidence of gaseous reflux from stomach to oesophagus is similar to that in healthy subjects. Their excess belching activity follows a distinct pattern, characterised by rapid antegrade and retrograde flow of air in the oesophagus that does not reach the stomach. PMID:15479671
A novel material screening platform for nanoporous gold-based neural electrodes
NASA Astrophysics Data System (ADS)
Chapman, Christopher Abbott Reece
Neural-electrical interfaces have emerged in the past decades as a promising modality to facilitate the understanding of the electropathophysiology of neurological disorders as well as the normal functioning of the central nervous system, and enable the treatment of neurological defects through electrical stimulation or electrically-controlled drug delivery. However, chronically implanted electrodes face a myriad of design challenges, including their coupling to neural tissue (biocompatibility), small form factor requirement, and their electrical properties (maintaining a low electrical impedance). Planar electrode materials such as planar platinum and gold experience a large increase in electrical impedance when electrode dimensions are reduced to increase spatial resolution of neural recordings. A decrease in electrode surface area reduces the total capacitance of the electrode double layer resulting in an increase in electrode impedance. This high impedance can reduce the signal amplitude and increase the thermal noise, resulting in degradation of signal-to-noise ratio. Conventionally, this increase in electrical impedance at small electrode dimensions has been mitigated by coatings with rough morphologies such as platinum black, conducting polymers, and titanium nitride. Porous surfaces have high effective surface area enabling low impedance at small electrode dimensions. However, achieving long-term stability of cellular coupling to the electrode surface has remained difficult. Designing electrodes that can physically couple with neurons successfully and maintain low impedance at small electrode dimensions necessitates consideration of novel electrode coatings, such as carbon nanotubes and gold nanopillars. Another promising material, and focus of this proposal, is thin film nanoporous gold (np-Au). Nanoporous gold is a promising material for addressing these limitations because of its inherently large effective surface area allows for lower impedances at small form factors, and its modifiable surface morphology can be used to control cell-electrode coupling. Additionally, thin film nanoporous gold is fabricated by traditional microfabrication methods, and thus can be directly adopted by the current state-of-the-art neural electrode fabrication processes. All these properties make thin film nanoporous gold a promising candidate for use in neural electrode surfaces. This dissertation seeks to characterize both the morphological and the electrical response of neural cells to thin film nanoporous gold morphologies using an in vitro electrode morphology screening platform. The specific aims for this proposal are to: (i) develop a electrode morphology library that displays varying topographies to study structure-property relationships of thin film nanoporous gold and cellular response, (ii) characterize neural cell response to identified nanoporous gold topographies that reduce adverse tissue response in vitro, and (iii) develop an electrophysiology platform to characterize neural coupling to each identified nanoporous gold topography.
Comparison of a Convected Helmholtz and Euler Model for Impedance Eduction in Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2006-01-01
Impedances educed from a well-tested convected Helmholtz model are compared to that of a recently developed linearized Euler model using two ceramic test liners under the assumed conditions or uniform flow and a plane wave source. The convected Helmholtz model is restricted to uniform mean flow whereas the linearized Euler model can account for the effect or the shear layer. Test data to educe the impedance is acquired from measurements obtained in the NASA Langley Research Center Grazing Incidence Tube for mean flow Mach numbers ranging from 0.0 to 0.5 and source frequencies ranging from 0.5 kHz to 3.0 kHz. The unknown impedance of the liner b educed by judiciously chooingth e impedance via an optimization method to match the measured acoustic pressure on the wall opposite the test liner. Results are presented on four spatial grids using three different optimization methods (contour deformation, Davidon-Fletcher Powell, and the Genetic Algorithm). All three optimization methods converge to the same impedance when used with the same model and to nearly identical impedances when used on different models. h anomaly was observed only at 0.5 kHz for high mean flow speeds. The anomaly is likely due to the use of measured data in a flow regime where shear layer effects are important but are neglected in the math models. Consistency between the impedances educed using the two models provides confidence that the linearized Euler model is ready For application to more realistic flows, such as those containing shear layers.
Effects of tissue impedance on heat generation during RF delivery with the Thermage system
NASA Astrophysics Data System (ADS)
Tomkoria, Sara; Pope, Karl
2005-04-01
The Thermage ThermaCool TC system is a non-ablative RF device designed to promote tissue tightening and contouring. The system delivers RF energy to a target area under the skin, with volumetric tissue heating in that area. While the amount of energy delivered to a patient can be controlled by ThermaCool system settings, the distribution of energy to the treatment area and underlying layers is variable from individual to individual due to differences in body composition. The present study investigated how local tissue impedance affects the amount of discomfort experienced by patients during RF energy delivery. Discomfort results from heat generation in the treatment area. By using features of the ThermaCool TC System, local impedance (impedance of the treatment area), bulk impedance (impedance of the underlying tissue layers), and total impedance (the sum of local and bulk impedance) were measured for 35 patients. For each patient, impedance measurements were compared to discomfort levels expressed during treatment. Analysis of whole body, local, and bulk impedance values indicate that the percent of total body impedance in the local treatment area contributes to discomfort levels expressed by patients during treatment.
Sensorless battery temperature measurements based on electrochemical impedance spectroscopy
NASA Astrophysics Data System (ADS)
Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.
2014-02-01
A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.
Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves
2012-10-11
The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.
Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves
2012-01-01
The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline. PMID:23202013
System and method for magnetic current density imaging at ultra low magnetic fields
Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich
2016-02-09
Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.
Invasive Electrical Impedance Tomography for Blood Vessel Detection
Martinsen, Ørjan G.; Kalvøy, Håvard; Grimnes, Sverre; Nordbotten, Bernt; Hol, Per Kristian; Fosse, Erik; Myklebust, Helge; Becker, Lance B
2010-01-01
We present a novel method for localization of large blood vessels using a bioimpedance based needle positioning system on an array of ten monopolar needle electrodes. The purpose of the study is to develop a portable, low cost tool for rapid vascular access for cooling and controlled reperfusion of cardiac arrest patients. Preliminary results show that localization of blood vessels is feasible with this method, but larger studies are necessary to improve the technology. PMID:21611140
NASA Astrophysics Data System (ADS)
Pál, Edit; Hornok, Viktória; Kun, Robert; Chernyshev, Vladimir; Seemann, Torben; Dékány, Imre; Busse, Matthias
2012-08-01
Zinc oxide particles with different morphologies were prepared by hydrothermal method at 60-90 °C. The structure formation was controlled by the addition rate and temperature of hydrolyzing agent, while the particles size (10 nm-2.5 μm) was influenced by the preparation (hydrothermal) temperature. Scanning electron microscopy studies showed that raspberry-, prism- and flower-like ZnO particles were prepared, whose average size decreased with increasing reaction temperature. X-ray diffraction investigations confirmed that ZnO particles with hexagonal crystal structure formed in all syntheses. The raspberry-, prism- and flower-like ZnO particles showed a weak UV-emission in the range of 390-395 nm and strong visible emission with a maximum at 586, 593 and 598 nm, respectively. Morphology effect on electrical and water vapour sensing properties of ZnO samples was investigated by impedance spectroscopy and quartz crystal microbalance, respectively. The absolute impedance of raspberry-, prism- and flower-like ZnO particles was found to be strong dependent on the morphology. Space-charge-limited conductivity transport mechanism was proved by the oscillatory behaviour of impedance. Humidity sensor tests also revealed morphology and specific surface area dependency on the sensitivity and water vapour adsorption property.
USDA-ARS?s Scientific Manuscript database
An immunosensor method for diagnosis of Babesia bovis in cattle based on impedance measurement is presented in this study. The method probes the interaction between serum antibodies against B. bovis infected cattle and recombinant protein, RAP-1, with C-terminal obtained from a Portuguese B. bovis s...
NASA Astrophysics Data System (ADS)
Tam, Kai-Chung; Lau, Siu-Kit; Tang, Shiu-Keung
2016-07-01
A microphone array signal processing method for locating a stationary point source over a locally reactive ground and for estimating ground impedance is examined in detail in the present study. A non-linear least square approach using the Levenberg-Marquardt method is proposed to overcome the problem of unknown ground impedance. The multiple signal classification method (MUSIC) is used to give the initial estimation of the source location, while the technique of forward backward spatial smoothing is adopted as a pre-processer of the source localization to minimize the effects of source coherence. The accuracy and robustness of the proposed signal processing method are examined. Results show that source localization in the horizontal direction by MUSIC is satisfactory. However, source coherence reduces drastically the accuracy in estimating the source height. The further application of Levenberg-Marquardt method with the results from MUSIC as the initial inputs improves significantly the accuracy of source height estimation. The present proposed method provides effective and robust estimation of the ground surface impedance.
Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping
2016-10-01
Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.
Bancalari, Elena; Bernini, Valentina; Bottari, Benedetta; Neviani, Erasmo; Gatti, Monica
2016-01-01
Impedance microbiology is a method that enables tracing microbial growth by measuring the change in the electrical conductivity. Different systems, able to perform this measurement, are available in commerce and are commonly used for food control analysis by mean of measuring a point of the impedance curve, defined "time of detection." With this work we wanted to find an objective way to interpret the metabolic significance of impedance curves and propose it as a valid approach to evaluate the potential acidifying performances of starter lactic acid bacteria to be employed in milk transformation. To do this it was firstly investigated the possibility to use the Gompertz equation to describe the data coming from the impedance curve obtained by mean of BacTrac 4300®. Lag time (λ), maximum specific M% rate (μmax), and maximum value of M% (Yend) have been calculated and, given the similarity of the impedance fitted curve to the bacterial growth curve, their meaning has been interpreted. Potential acidifying performances of eighty strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis , and Streptococcus thermophilus species have been evaluated by using the kinetics parameters, obtained from Excel add-in DMFit version 2.1. The novelty and importance of our findings, obtained by means of BacTrac 4300®, is that they can also be applied to data obtained from other devices. Moreover, the meaning of λ, μmax, and Yend that we have extrapolated from Modified Gompertz equation and discussed for lactic acid bacteria in milk, can be exploited also to other food environment or other bacteria, assuming that they can give a curve and that curve is properly fitted with Gompertz equation.
Bancalari, Elena; Bernini, Valentina; Bottari, Benedetta; Neviani, Erasmo; Gatti, Monica
2016-01-01
Impedance microbiology is a method that enables tracing microbial growth by measuring the change in the electrical conductivity. Different systems, able to perform this measurement, are available in commerce and are commonly used for food control analysis by mean of measuring a point of the impedance curve, defined “time of detection.” With this work we wanted to find an objective way to interpret the metabolic significance of impedance curves and propose it as a valid approach to evaluate the potential acidifying performances of starter lactic acid bacteria to be employed in milk transformation. To do this it was firstly investigated the possibility to use the Gompertz equation to describe the data coming from the impedance curve obtained by mean of BacTrac 4300®. Lag time (λ), maximum specific M% rate (μmax), and maximum value of M% (Yend) have been calculated and, given the similarity of the impedance fitted curve to the bacterial growth curve, their meaning has been interpreted. Potential acidifying performances of eighty strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis, and Streptococcus thermophilus species have been evaluated by using the kinetics parameters, obtained from Excel add-in DMFit version 2.1. The novelty and importance of our findings, obtained by means of BacTrac 4300®, is that they can also be applied to data obtained from other devices. Moreover, the meaning of λ, μmax, and Yend that we have extrapolated from Modified Gompertz equation and discussed for lactic acid bacteria in milk, can be exploited also to other food environment or other bacteria, assuming that they can give a curve and that curve is properly fitted with Gompertz equation. PMID:27799925
Katle, E J; Hatlebakk, J G; Grimstad, T; Kvaløy, J T; Steinsvåg, S K
2017-03-01
The pathophysiology of chronic rhinosinusitis (CRS) is unclear. It has been discussed for decades whether gastro-oesophageal reflux (GOR) may be a contributing factor for some patients. The aim of the present study was to evaluate the level of GOR in an unselected group of patients with CRS using multichannel impedance-pH monitoring. Consecutive patients with CRS diagnosed using the EPOS2012 criteria, completed questionnaires on GOR symptoms and were offered 24-h multichannel intraluminal impedance (MII)-pH monitoring. The results were compared with a group of healthy controls. Forty-six patients completed MII-pH-monitoring and were compared with 45 control subjects, with comparable age and gender distributions. The median number of reflux episodes in the patients was 56.5 compared with 33 in controls, while, the numbers of proximal reflux episodes was 27.5 versus 3, respectively. Thirty nine patients had abnormal pH-impedance recordings compared with five controls. The CRS patients had significantly higher incidences of gastro-oesophageal reflux compared with asymptomatic controls. The results of this study suggest that GOR may be a causative or contributing factor of CRS.
NASA Technical Reports Server (NTRS)
Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.
2011-01-01
The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.
Imposed Power of Breathing Associated With Use of an Impedance Threshold Device
2007-02-01
threshold device and a sham impedance threshold device. DESIGN: Prospective randomized blinded protocol. SETTING: University medical center. PATIENTS...for males). METHODS: The volunteers completed 2 trials of breathing through a face mask fitted with an active impedance threshold device set to open...at -7cmH 2 O pressure, or with a sham impedance threshold device, which was identical to the active device except that it did not contain an
Lungu, Codrin; Tarulli, Andrew W; Tarsy, Daniel; Mongiovi, Phillip; Vanderhorst, Veronique G; Rutkove, Seward B
2010-01-01
Objective Cervical Dystonia (CD) lacks an objective quantitative measure. Electrical impedance myography (EIM) is a non-invasive assessment method sensitive to changes in muscle structure and physiology. We evaluate the potential role of EIM in quantifying CD, hypothesizing that patients would demonstrate differences in the symmetry of muscle electrical resistance compared to controls, and that this asymmetry would decrease after botulinum neurotoxin (BoNT) treatment. Methods EIM was performed on the sternocleidomastoid (SCM) and cervical paraspinal (PS) muscles of CD patients and age-matched controls. 50kHz Resistance was analyzed, comparing side-to-side asymmetry in patients and controls, and, in patients, before and after BoNT treatment. Results 16 patients and 10 controls were included. Resistance asymmetry was on average 3-5 times higher in patients than controls. Receiver operating characteristic analysis demonstrated 91% accuracy of discriminating CD from normal. From pre-treatment to maximum BoNT effect, asymmetry decreased from 20.8 (13.9-26.1)% to 6.2 (3.1-9.9)% (SCM), and from 16.0(14.3-16.0)% to 8.4(7.0-9.2)% (PS), p<0.05 (median, interquartile range). Conclusions EIM effectively differentiates normal subjects from CD patients by revealing asymmetries in resistance values and detects improvement in muscle symmetry after treatment. Significance These results suggest that EIM, a painless, non-invasive measure, can provide a useful quantitative metric in CD evaluation and deserves further study. PMID:20943436
A shock spectra and impedance method to determine a bound for spacecraft structural loads
NASA Technical Reports Server (NTRS)
Bamford, R.; Trubert, M.
1974-01-01
A method to determine a bound of structural loads for a spacecraft mounted on a launch vehicle is developed. The method utilizes the interface shock spectra and the relative impedance of the spacecraft and launch vehicle. The method is developed for single-degree-of-freedom models and then generalized to multidegree-of-freedom models.
A macro-micro robot for precise force applications
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Wang, Yulun
1993-01-01
This paper describes an 8 degree-of-freedom macro-micro robot capable of performing tasks which require accurate force control. Applications such as polishing, finishing, grinding, deburring, and cleaning are a few examples of tasks which need this capability. Currently these tasks are either performed manually or with dedicated machinery because of the lack of a flexible and cost effective tool, such as a programmable force-controlled robot. The basic design and control of the macro-micro robot is described in this paper. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system.
DOT National Transportation Integrated Search
1965-01-01
Rheoencephalography, the monitoring of cerebral blood flow by impedance methods, has been used successfully in clinical medicine in Europe and Russia but not in the United States. Three cases are presented to demonstrate the potential value of this m...
Tissue type determination by impedance measurement: A bipolar and monopolar comparison
Sharp, Jack; Bouazza-Marouf, Kaddour; Noronha, Dorita; Gaur, Atul
2017-01-01
Background: In certain medical applications, it is necessary to be able to determine the position of a needle inside the body, specifically with regards to identifying certain tissue types. By measuring the electrical impedance of specific tissue types, it is possible to determine the type of tissue the tip of the needle (or probe) is at. Materials and Methods: Two methods have been investigated for electric impedance detection; bipolar and monopolar. Commercially available needle electrodes are of a monopolar type. Although many patents exist on the bipolar setups, these have not as yet been commercialized. This paper reports a comparison of monopolar and bipolar setups for tissue type determination. In vitro experiments were carried out on pork to compare this investigation with other investigations in this field. Results: The results show that both monopolar and bipolar setups are capable of determining tissue type. However, the bipolar setup showed slightly better results; the difference between the different soft tissue type impedances was greater compared to the monopolar method. Conclusion: Both monopolar and bipolar electrical impedance setups work very similarly in inhomogeneous volumes such as biological tissue. There is a clear potential for clinical applications with impedance-based needle guidance, with both the monopolar and bipolar setups. It is, however, worth noting that the bipolar setup is more versatile. PMID:28217047
A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Jones, M. G.; Parrott, T. L.
2005-01-01
A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers.
NASA Astrophysics Data System (ADS)
Sekiguchi, Atsushi
2013-03-01
The QCM method allows measurements of impedance, an index of swelling layer viscosity in a photoresist during development. While impedance is sometimes used as a qualitative index of change in the viscosity of the swelling layer, it has to date not been used quantitatively, for data analysis. We explored a method for converting impedance values to elastic modulus (Pa), a coefficient expressing viscosity. Applying this method, we compared changes in the viscosity of the swelling layer in an ArF resist generated during development in a TMAH developing solution and in a TBAH developing solution. This paper reports the results of this comparative study.
Three-dimensional electrical impedance tomography: a topology optimization approach.
Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli
2008-02-01
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Method and device for bio-impedance measurement with hard-tissue applications.
Guimerà, A; Calderón, E; Los, P; Christie, A M
2008-06-01
Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kOmega to 10 MOmega across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kOmega to 10 MOmega and from 20 pF to 100 pF, are discussed.
NASA Astrophysics Data System (ADS)
Zheng, Sifa; Liu, Haitao; Dan, Jiabi; Lian, Xiaomin
2015-05-01
Linear time-invariant assumption for the determination of acoustic source characteristics, the source strength and the source impedance in the frequency domain has been proved reasonable in the design of an exhaust system. Different methods have been proposed to its identification and the multi-load method is widely used for its convenience by varying the load number and impedance. Theoretical error analysis has rarely been referred to and previous results have shown an overdetermined set of open pipes can reduce the identification error. This paper contributes a theoretical error analysis for the load selection. The relationships between the error in the identification of source characteristics and the load selection were analysed. A general linear time-invariant model was built based on the four-load method. To analyse the error of the source impedance, an error estimation function was proposed. The dispersion of the source pressure was obtained by an inverse calculation as an indicator to detect the accuracy of the results. It was found that for a certain load length, the load resistance at the frequency points of one-quarter wavelength of odd multiples results in peaks and in the maximum error for source impedance identification. Therefore, the load impedance of frequency range within the one-quarter wavelength of odd multiples should not be used for source impedance identification. If the selected loads have more similar resistance values (i.e., the same order of magnitude), the identification error of the source impedance could be effectively reduced.
Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin
2013-01-01
It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off. PMID:23717398
Smart Sensing and Dynamic Fitting for Enhanced Comfort and Performance of Prosthetics
2017-10-01
studying microstrip resonators for bio- impedance measurement. For actuation, we have 1) improved and de -bugged the prosthetic interface control ...studying microstrip resonators for bio‐impedance measurement. For actuation, we have 1) improved and de -bugged the prosthetic interface control ...shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number
De Geeter, Nele; Crevecoeur, Guillaume; Dupre, Luc
2011-02-01
In many important bioelectromagnetic problem settings, eddy-current simulations are required. Examples are the reduction of eddy-current artifacts in magnetic resonance imaging and techniques, whereby the eddy currents interact with the biological system, like the alteration of the neurophysiology due to transcranial magnetic stimulation (TMS). TMS has become an important tool for the diagnosis and treatment of neurological diseases and psychiatric disorders. A widely applied method for simulating the eddy currents is the impedance method (IM). However, this method has to contend with an ill conditioned problem and consequently a long convergence time. When dealing with optimal design problems and sensitivity control, the convergence rate becomes even more crucial since the eddy-current solver needs to be evaluated in an iterative loop. Therefore, we introduce an independent IM (IIM), which improves the conditionality and speeds up the numerical convergence. This paper shows how IIM is based on IM and what are the advantages. Moreover, the method is applied to the efficient simulation of TMS. The proposed IIM achieves superior convergence properties with high time efficiency, compared to the traditional IM and is therefore a useful tool for accurate and fast TMS simulations.
Mori, V; Oliveira, M A; Vargas, M H M; da Cunha, A A; de Souza, R G; Pitrez, P M; Moriya, H T
2017-06-01
Objective and approach: In this study, we estimated the constant phase model (CPM) parameters from the respiratory impedance of male BALB/c mice by performing the forced oscillation technique (FOT) in a control group (n = 8) and in a murine model of asthma (OVA) (n = 10). Then, we compared the results obtained by two different methods, using a commercial equipment (flexiVent-flexiWare 7.X; SCIREQ, Montreal, Canada) (FXV) and a wavetube method equipment (Sly et al 2003 J. Appl. Physiol. 94 1460-6) (WVT). We believe that the results from different methods may not be comparable. First, we compared the results performing a two-way analysis of variance (ANOVA) for the resistance, elastance and tissue damping. We found statistically significant differences in all CPM parameters, except for resistance, when comparing Control and OVA groups. When comparing devices, we found statistically significant differences in resistance, while differences in elastance were not observed. For tissue damping, the results from WVT were observed to be higher than those from FXV. Finally, when comparing the relative variation between the CPM parameters of the Control and OVA groups in both devices, no significant differences were observed for all parameters. We then conclude that this assessment can compensate the effect of using different cannulas. Furthermore, tissue damping differences between groups can be compensated, since bronchoconstrictors were not used. Therefore, we believe that relative variations in the results between groups can be a comparing parameter when using different equipment without bronchoconstrictor administration.
Self isolating high frequency saturable reactor
Moore, James A.
1998-06-23
The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.
47 CFR 73.1692 - Broadcast station construction near or installation on an AM broadcast tower.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the indirect method (see § 73.51). Upon the completion of the installation, antenna impedance... completion of construction, antenna impedance measurements of the AM station shall be made. In addition... simultaneously with the filing of the application for license to cover this permit, the results of the impedance...
47 CFR 73.1692 - Broadcast station construction near or installation on an AM broadcast tower.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the indirect method (see § 73.51). Upon the completion of the installation, antenna impedance... completion of construction, antenna impedance measurements of the AM station shall be made. In addition... simultaneously with the filing of the application for license to cover this permit, the results of the impedance...
New equivalent-electrical circuit model and a practical measurement method for human body impedance.
Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako
2015-01-01
Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.
Hunter, Kendall S.; Lee, Po-Feng; Lanning, Craig J.; Ivy, D. Dunbar; Kirby, K. Scott; Claussen, Lori R.; Chan, K. Chen; Shandas, Robin
2011-01-01
Background Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated an method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero-harmonic impedance value and PVR, and suggested a correlation between higher harmonic impedance values and pulmonary vascular stiffness (PVS). Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and PVS from a single measurement, and that impedance is a better predictor of disease outcomes compared to PVR. Methods Pressure and velocity waveforms within the main PA were measured during right-heart catheterization of patients with normal PA hemodynamics (n=14) and those with PAH undergoing reactivity evaluation (49 subjects; 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Results Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y=1.095·x+1.381, R2=0.9620). Additionally, the modulus sum of the first two harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (PP/SV) (y=13.39·x-0.8058, R2=0.7962). Amongst a subset of PAH patients (n=25), cumulative logistic regression between outcomes to total indexed impedance was better (RL2=0.4012) than between outcomes and indexed PVR (RL2=0.3131). Conclusions Input impedance can be consistently and easily obtained from PW Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and better predicts patient outcomes compared to PVR alone. PMID:18082509
Domain identification in impedance computed tomography by spline collocation method
NASA Technical Reports Server (NTRS)
Kojima, Fumio
1990-01-01
A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.
(abstract) Scaling Nominal Solar Cell Impedances for Array Design
NASA Technical Reports Server (NTRS)
Mueller, Robert L; Wallace, Matthew T.; Iles, Peter
1994-01-01
This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.
Limb Dominance Results from Asymmetries in Predictive and Impedance Control Mechanisms
Yadav, Vivek; Sainburg, Robert L.
2014-01-01
Handedness is a pronounced feature of human motor behavior, yet the underlying neural mechanisms remain unclear. We hypothesize that motor lateralization results from asymmetries in predictive control of task dynamics and in control of limb impedance. To test this hypothesis, we present an experiment with two different force field environments, a field with a predictable magnitude that varies with the square of velocity, and a field with a less predictable magnitude that varies linearly with velocity. These fields were designed to be compatible with controllers that are specialized in predicting limb and task dynamics, and modulating position and velocity dependent impedance, respectively. Because the velocity square field does not change the form of the equations of motion for the reaching arm, we reasoned that a forward dynamic-type controller should perform well in this field, while control of linear damping and stiffness terms should be less effective. In contrast, the unpredictable linear field should be most compatible with impedance control, but incompatible with predictive dynamics control. We measured steady state final position accuracy and 3 trajectory features during exposure to these fields: Mean squared jerk, Straightness, and Movement time. Our results confirmed that each arm made straighter, smoother, and quicker movements in its compatible field. Both arms showed similar final position accuracies, which were achieved using more extensive corrective sub-movements when either arm performed in its incompatible field. Finally, each arm showed limited adaptation to its incompatible field. Analysis of the dependence of trajectory errors on field magnitude suggested that dominant arm adaptation occurred by prediction of the mean field, thus exploiting predictive mechanisms for adaptation to the unpredictable field. Overall, our results support the hypothesis that motor lateralization reflects asymmetries in specific motor control mechanisms associated with predictive control of limb and task dynamics, and modulation of limb impedance. PMID:24695543
From impedance theory to needle electrode guidance in tissue
NASA Astrophysics Data System (ADS)
Kalvøy, Håvard; Høyum, Per; Grimnes, Sverre; Martinsen, Ørjan G.
2010-04-01
Fast access to blood vessels or other tissues/organs can be crucial in clinical or acute medical treatment. We have developed a method for needle guidance for use in different types of applications. The feasibility of an automatic application for fast access to blood vessels during acute cardiac arrest, based on this method, has been evaluated. Suited electrode setups were found by development of needle electrode models used in simulation and sensitivity analyses. In vitro measurements were done both to determine the fundamental properties of the electrodes for use in the models and to confirm the simulation results. Development of algorithms for tissue characterization and differentiation was based on in vivo impedance measurement in porcine models and confirmed in human tissue in vivo. Feasibility was proven by application prototyping and impedance data presented as invasive Electrical Impedance Tomography (iEIT). Our conclusion is that this method can be utilized in a wide range of clinical applications.
Antibody biosensors for spoilage yeast detection based on impedance spectroscopy.
Tubía, I; Paredes, J; Pérez-Lorenzo, E; Arana, S
2018-04-15
Brettanomyces is a yeast species responsible for wine and cider spoilage, producing volatile phenols that result in off-odors and loss of fruity sensorial qualities. Current commercial detection methods for these spoilage species are liable to frequent false positives, long culture times and fungal contamination. In this work, an interdigitated (IDE) biosensor was created to detect Brettanomyces using immunological reactions and impedance spectroscopy analysis. To promote efficient antibody immobilization on the electrodes' surface and to decrease non-specific adsorption, a Self-Assembled Monolayer (SAM) was developed. An impedance spectroscopy analysis, over four yeast strains, confirmed our device's increased efficacy. Compared to label-free sensors, antibody biosensors showed a higher relative impedance. The results also suggested that these biosensors could be a promising method to monitor some spoilage yeasts, offering an efficient alternative to the laborious and expensive traditional methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Determination of Peukert's Constant Using Impedance Spectroscopy: Application to Supercapacitors.
Mills, Edmund Martin; Kim, Sangtae
2016-12-15
Peukert's equation is widely used to model the rate dependence of battery capacity, and has recently attracted attention for application to supercapacitors. Here we present a newly developed method to readily determine Peukert's constant using impedance spectroscopy. Impedance spectroscopy is ideal for this purpose as it has the capability of probing electrical performance of a device over a wide range of time-scales within a single measurement. We demonstrate that the new method yields consistent results with conventional galvanostatic measurements through applying it to commercially available supercapacitors. Additionally, the novel method is much simpler and more precise, making it an attractive alternative for the determination of Peukert's constant.
A FEM-based method to determine the complex material properties of piezoelectric disks.
Pérez, N; Carbonari, R C; Andrade, M A B; Buiochi, F; Adamowski, J C
2014-08-01
Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is considered in the adjustment procedure, the obtained material properties allow simulating the displacement amplitude accurately. Copyright © 2014 Elsevier B.V. All rights reserved.
Testing procedures for carbon fiber reinforced plastic components
NASA Technical Reports Server (NTRS)
Gosse, H. J.; Kaitatzidi, M.; Roth, S.
1977-01-01
Tests for studying the basic material are considered and quality control investigations involving preimpregnated materials (prepreg) are discussed. Attention is given to the prepreg area weight, the fiber area weight of prepregs, the resin content, volatile components, the effective thickness, resin flow, the resistance to bending strain, tensile strength, and shear strength. A description of tests conducted during the manufacturing process is also presented, taking into account X-ray methods, approaches of neutron radiography, ultrasonic procedures, resonance methods and impedance studies.
Mylvaganam, Saba
2018-01-01
This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode). This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc.). PMID:29597327
Duct modes damping through an adjustable electroacoustic liner under grazing incidence
NASA Astrophysics Data System (ADS)
Boulandet, R.; Lissek, H.; Karkar, S.; Collet, M.; Matten, G.; Ouisse, M.; Versaevel, M.
2018-07-01
This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers.
Holographic leaky-wave metasurfaces for dual-sensor imaging.
Li, Yun Bo; Li, Lian Lin; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun
2015-12-10
Metasurfaces have huge potentials to develop new type imaging systems due to their abilities of controlling electromagnetic waves. Here, we propose a new method for dual-sensor imaging based on cross-like holographic leaky-wave metasurfaces which are composed of hybrid isotropic and anisotropic surface impedance textures. The holographic leaky-wave radiations are generated by special impedance modulations of surface waves excited by the sensor ports. For one independent sensor, the main leaky-wave radiation beam can be scanned by frequency in one-dimensional space, while the frequency scanning in the orthogonal spatial dimension is accomplished by the other sensor. Thus, for a probed object, the imaging plane can be illuminated adequately to obtain the two-dimensional backward scattered fields by the dual-sensor for reconstructing the object. The relativity of beams under different frequencies is very low due to the frequency-scanning beam performance rather than the random beam radiations operated by frequency, and the multi-illuminations with low relativity are very appropriate for multi-mode imaging method with high resolution and anti- noise. Good reconstruction results are given to validate the proposed imaging method.
NASA Astrophysics Data System (ADS)
Li, J.; Fogerson, P. M.; Rutkove, S. B.
2010-04-01
Electrical impedance methods can be used to evaluate and monitor neuromuscular disease states. Recently, we have applied tetrapolar surface electrical impedance methods to the gastrocnemius muscle of the rat for this purpose and substantial changes in the impedance parameters after sciatic nerve crush can be identified. In order to be able to study additional animal models of nerve and muscle disease, however, it would highly desirable to be able to perform such impedance measurements in the mouse. Yet the small size of the mouse presents a substantial technical challenge. In this study, we evaluate a basic approach for performing such measurements. A series of thin, stainless steel strip electrodes affixed to the gastrocnemius and interfaced via a separate connector to the Imp SFB7® (Impedimed, Inc), provided an effective means for obtaining impedance data in the 20-500 kHz range. After two weeks, test-retest reproducibility was good, with intra-class correlation coefficients as high 0.84 and variability as low as 12.86 ± 6.18% in the 15 mice studied. Using this approach, it may now be possible to study impedance changes in a variety of mouse models of neuromuscular disease, including amyotrophic lateral sclerosis, spinal muscular atrophy, muscular dystrophy and Charcot-Marie-Tooth disease.
System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells
Chuang, Cheng-Hsin; Huang, Yao-Wei; Wu, Yao-Tung
2011-01-01
This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at the bottom of the micro-cavity. Impedance sensing of single cells could be performed as follows: firstly, cells were trapped in a micro-cavity array by negative DEP force provided by top and middle electrodes; then, the impedance measurement for discrimination of different stage of bladder cancer cells was accomplished by the middle and bottom electrodes. After impedance sensing, the individual releasing of trapped cells was achieved by negative DEP force using the top and bottom electrodes in order to collect the identified cells once more. Both cell manipulations and impedance measurement had been integrated within a system controlled by a PC-based LabVIEW program. In the experiments, two different stages of bladder cancer cell lines (grade III: T24 and grade II: TSGH8301) were utilized for the demonstration of programmable manipulation and impedance sensing; as the results show, the lower-grade bladder cancer cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In general, the multi-step manipulations of cells can be easily programmed by controlling the electrical signal in our design, which provides an excellent platform technology for lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). PMID:22346685
Characterization of dielectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Danny J.; Babinec, Susan; Hagans, Patrick L.
2017-06-27
A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formedmore » in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.« less
DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragicevic, Tomislav; Lu, Xiaonan; Vasquez, Juan
2015-01-01
This paper presents a review of control strategies, stability analysis, and stabilization techniques for dc microgrids (MGs). Overall control is systematically classified into local and coordinated control levels according to respective functionalities in each level. As opposed to local control, which relies only on local measurements, some line of communication between units needs to be made available in order to achieve the coordinated control. Depending on the communication method, three basic coordinated control strategies can be distinguished, i.e., decentralized, centralized, and distributed control. Decentralized control can be regarded as an extension of the local control since it is also basedmore » exclusively on local measurements. In contrast, centralized and distributed control strategies rely on digital communication technologies. A number of approaches using these three coordinated control strategies to achieve various control objectives are reviewed in this paper. Moreover, properties of dc MG dynamics and stability are discussed. This paper illustrates that tightly regulated point-of-load converters tend to reduce the stability margins of the system since they introduce negative impedances, which can potentially oscillate with lightly damped power supply input filters. It is also demonstrated that how the stability of the whole system is defined by the relationship of the source and load impedances, referred to as the minor loop gain. Several prominent specifications for the minor loop gain are reviewed. Finally, a number of active stabilization techniques are presented.« less
Arneson, Michael R [Chippewa Falls, WI; Bowman, Terrance L [Sumner, WA; Cornett, Frank N [Chippewa Falls, WI; DeRyckere, John F [Eau Claire, WI; Hillert, Brian T [Chippewa Falls, WI; Jenkins, Philip N [Eau Claire, WI; Ma, Nan [Chippewa Falls, WI; Placek, Joseph M [Chippewa Falls, WI; Ruesch, Rodney [Eau Claire, WI; Thorson, Gregory M [Altoona, WI
2007-07-24
The present invention is directed toward a communications channel comprising a link level protocol, a driver, a receiver, and a canceller/equalizer. The link level protocol provides logic for DC-free signal encoding and recovery as well as supporting many features including CRC error detection and message resend to accommodate infrequent bit errors across the medium. The canceller/equalizer provides equalization for destabilized data signals and also provides simultaneous bi-directional data transfer. The receiver provides bit deskewing by removing synchronization error, or skewing, between data signals. The driver provides impedance controlling by monitoring the characteristics of the communications medium, like voltage or temperature, and providing a matching output impedance in the signal driver so that fewer distortions occur while the data travels across the communications medium.
NASA Astrophysics Data System (ADS)
Yohanasari, R. H.; Utari; Purnama, B.
2017-11-01
In this paper, we studied the magneto-impedance effect in multilayered [Ni80Fe20/Cu]N with variation in the number of parallel-line on Cu PCB substrate. The method used in this research is the electrodeposition at a room temperature with Pt as an electrode. The results show that the magneto-impedance ratio increases with the increase in the number of parallel-line on Cu PCB. The maximum magneto-impedance ratio obtained in Cu PCB substrate which four parallel lines were 4.5%. Likewise, frequency variation, the magneto-impedance ratio increases with increasing frequency.
Optically stimulated differential impedance spectroscopy
Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P
2014-02-18
Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.
Solid Micro Horn Array (SMIHA) for Acoustic Matching
NASA Technical Reports Server (NTRS)
Sherrit, S.; Bao, X.; Bar-Cohen, Y.
2008-01-01
Transduction of electrical signals to mechanical signals and vice-versa in piezoelectric materials is controlled by the material coupling coefficient. In general in a loss-less material the ratio of energy conversion per cycle is proportional to the square of the coupling coefficient. In practical transduction however the impedance mismatch between the piezoelectric material and the electrical drive circuitry or the mechanical structure can have a significant impact on the power transfer. This paper looks at novel methods of matching the acoustic impedance of structures to the piezoelectric material in an effort to increase power transmission and efficiency. In typical methods the density and acoustic velocity of the matching layer is adjusted to give good matching between the transducer and the load. The approach discussed in this paper utilizes solid micro horn arrays in the matching layer which channel the stress and increase the strain in the layer. This approach is found to have potential applications in energy harvesting, medical ultrasound and in liquid and gas coupled transducers.
Synthesis of resistive tapers to control scattering patterns of strips
NASA Astrophysics Data System (ADS)
Haupt, Randy L.
Scattering occurs when an electromagnetic wave impinges on an object and creates currents in that object which reradiate other electromagnetic waves. Three primary methods exist to reduce microwave scattering from an object: covering it with absorber, changing its shape, and detuning it through impedance loading. Absorbers convert unwanted electromagnetic energy into heat. An example is lining an anechoic chamber with absorbers. Changing its shape channels energy from one direction to another, changes dominant scattering centers, or causes returns from one direction to another, changes dominant scattering centers, or causes returns from various parts to coherently add and cancel the total return. Impedance loading alters the resonant frequency of an object. Absorbers have the most attractive features. They have a broad bandwidth, attenuate the return in many directions, and may be used to reduce scattering from an object after the object is designed. Before trying to control scattering from complex shapes, such as an antenna or airplane, one should try to develop methods to control scattering from simple objects. A very simple object is two dimensional strip. It is infinitely thin, has a finite width, and an infinite length. The scattering pattern of the strip depends upon its width and material composition. Varying these two factors provides a means for controlling the radar cross-section (RCS) of the strip. The goal of this thesis is to synthesize resistive tapers for the strip that produce desired bistatic scattering and backscattering patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu
Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasingmore » trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.« less
NASA Astrophysics Data System (ADS)
Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul
2016-08-01
Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.
Marine Controlled Source EM Methods: Equipment, Methodology, and Results
NASA Astrophysics Data System (ADS)
Constable, S.; Behrens, J.; Key, K.
2005-12-01
The marine CSEM method has become an important tool for academia and the petroleum industry. Commercially viable seafloor receivers were developed for marine MT exploration over the last decade, but progress in CSEM transmitter design is still at an early stage. We have developed 200~A and 500~A transmitters (Scripps Undersea Electromagnetic Source Instrument, or SUESI-200/500) which operate within the 30~kVA power limitations of academic tow cables. This is done by careful control of antenna impedance (resistance and inductance) and power efficiency. Electrode impedance is largely a function of length, rather than surface area or diameter. The antenna can be made neutrally buoyant by balancing the weight of an aluminum conductor with a thick plastic jacket. Telemetry for control, navigation, and monitoring is overlaid on high voltage power transmission down coaxial tow cables, as an alternative to fiber optic telemetry, allowing use with winches and cables of opportunity. The CSEM noise floor determines the source--receiver ranges, and thus the investigation depths, that can be achieved, and depends on frequency, dipole moment, receiver noise, magnetotelluric interference, and stack time. For typical values, this is 10-15~VA-1m-2. We present examples of data from a sub-salt hydrocarbon prospect in the Gulf of Mexico, and an academic project over the magma chambers of the East Pacific Rise.
NASA Astrophysics Data System (ADS)
Huang, Liang-Sheng; Wang, Sheng; Liu, Yu-Dong; Li, Yong; Liu, Ren-Hong; Xiao, Ou-Zheng
2016-04-01
The fast extraction kicker system is one of the most important accelerator components and the main source of impedance in the Rapid Cycling Synchrotron of the China Spallation Neutron Source. It is necessary to understand the kicker impedance before its installation into the tunnel. Conventional and improved wire methods are employed in the impedance measurement. The experimental results for the kicker impedance are explained by comparison with simulation using CST PARTICLE STUDIO. The simulation and measurement results confirm that the window-frame ferrite geometry and the end plate are the important structures causing coupling impedance. It is proved in the measurements that the mismatching from the power form network to the kicker leads to a serious oscillation sideband of the longitudinal and vertical impedance and the oscillation can be reduced by ferrite absorbing material. Supported by National Natural Science Foundation of China (11175193, 11275221)
Lewis, George K; Lewis, George K; Olbricht, William
2008-01-01
This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2−5 MHz piezoelectrics, but the methodology applies for 700 kHz–20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost. PMID:19081773
NASA Astrophysics Data System (ADS)
Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.
2018-03-01
Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.
The use of bioimpedance analysis to evaluate lymphedema.
Warren, Anne G; Janz, Brian A; Slavin, Sumner A; Borud, Loren J
2007-05-01
Lymphedema, a chronic disfiguring condition resulting from lymphatic dysfunction or disruption, can be difficult to accurately diagnose and manage. Of particular challenge is identifying the presence of clinically significant limb swelling through simple and noninvasive methods. Many historical and currently used techniques for documenting differences in limb volume, including volume displacement and circumferential measurements, have proven difficult and unreliable. Bioimpedance spectroscopy analysis, a technology that uses resistance to electrical current in comparing the composition of fluid compartments within the body, has been considered as a cost-effective and reproducible alternative for evaluating patients with suspected lymphedema. All patients were recruited through the Beth Israel Deaconess Medical Center Lymphedema Clinic. A total of 15 patients (mean age: 55.2 years) with upper-extremity or lower-extremity lymphedema as documented by lymphoscintigraphy underwent bioimpedance spectroscopy analysis using an Impedimed SFB7 device. Seven healthy medical students and surgical residents (mean age: 26.9 years) were selected to serve as normal controls. All study participants underwent analysis of both limbs, which allowed participants to act as their own controls. The multifrequency bioimpedance device documented impedance values for each limb, with lower values correlating with higher levels of accumulated protein-rich edematous fluid. The average ratio of impedance to current flow of the affected limb to the unaffected limb in lymphedema patients was 0.9 (range: 0.67 to 1.01). In the control group, the average impedance ratio of the participant's dominant limb to their nondominant limb was 0.99 (range: 0.95 to 1.02) (P = 0.01). Bioimpedance spectroscopy can be used as a reliable and accurate tool for documenting the presence of lymphedema in patients with either upper- or lower-extremity swelling. Measurement with the device is quick and simple and results are reproducible among patients. Given significant limitations with other methods of evaluating lymphedema, the use of bioimpedance analysis may aid in the diagnosis of lymphedema and allow for tracking patients over time as they proceed with treatment of their disease.
Using of electrical impedance tomography for diagnostics of the cervix uteri diseases
NASA Astrophysics Data System (ADS)
Trokhanova, O. V.; Chijova, Y. A.; Okhapkin, M. B.; Korjenevsky, A. V.; Tuykin, T. S.
2010-04-01
The report presents results of investigation of the neck of the womb (cervix) of 64 women aged from 19 to 70, that formed 4 clinical groups (1st group: 15 women without any pathology of the cervix, 2nd group: 27 women with the erosion, 3rd group: 11 women with dysplasia, 4th group: 11 women with cancer of the cervix). The aim of this research is to assess the capabilities of electrical impedance tomography in the diagnostics of the cervix diseases. The methods of the research were: visual examination with the speculum, colposcopy, and biopsy of the cervix. Also the new method of visualization of the cervix was used - electrical impedance tomography with the help of gynecological impedance tomograph (GIT). The following results were obtained. The electrical conductivity of the cervix in norm and in different pathology has different indices, which allow differential diagnostics of benign and malignant diseases. Summary: the method of electrical impedance tomography allows not only visually estimate portio vaginalis, but receive indices of electrical conductivity of the cervix on the depth up to 0.8 cm and thereby reveal pathological changes in epithelium without invasive and operative intervention.
Design and construction of the artificial patient module for testing bioimpedance measuring devices
NASA Astrophysics Data System (ADS)
Młyńczak, Marcel; Pariaszewska, Katarzyna; Niewiadomski, Wiktor; Cybulski, Gerard
2013-10-01
The purpose of this study was to describe the design of the electronic module for testing bioimpedance measuring devices, for example impedance cardiographs or impedance pneumographs. Artificial Patient was conceived as an electronic equivalent of the impedance of skin-electrode interface and the impedance between electrodes - measured one. Different approaches in imitating a resistance of skin and an impedance of electrode-skin connection were presented. The module was adapted for frequently applied tetrapolar electrode configuration. Therefore the design do not enclose the elements simulating impedance between skin and receiver electrodes due to negligible effect of this impedance on the current flow through the receiver. The Artificial Patient enables testing either application generators, or receiver parts, particularly the level of noise and distortions of the signal. Use of digitally controlled potentiometer allows simulating different tissue resistances changes such as constant values, very-low-frequency and low-frequency changes corresponding to those caused by breathing or heart activity. Also it allows distorting signals in order to test algorithms of artifacts attenuation.
Home environmental consequences of commute travel impedance.
Novaco, R W; Kliewer, W; Broquet, A
1991-12-01
The physical and perceptual dimensions of commuting travel impedance were again found to have stressful consequences in a study of 99 employees of two companies. This quasi-experimental replication study, which focuses here on home environment consequences, investigated the effects of physical impedance and subjective impedance on multivariate measures of residential satisfaction and personal affect in the home. Both sets of residential outcome measures were significantly related to the two impedance dimensions. As predicted, gender was a significant moderator of physical impedance effects. Women commuting on high physical impedance routes were most negatively affected. Previously found subjective impedance effects on negative home mood, regardless of gender, were strongly replicated with several methods and were buttressed by convergent results with objective indices. The theoretical conjecture that subjective impedance mediates the stress effects of physical impedance was supported by the personal affect cluster but only for one variable in the residential satisfaction cluster. Traffic congestion has increased in metropolitan areas nationwide, and commuters, families, and organizations are absorbing associated hidden costs. The results are reviewed in terms of our ecological model, and the moderating effects of gender are discussed in terms of choice and role constraints.
Noncontact Measurement Of Sizes And Eccentricities Of Holes
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
Semiautomatic eddy-current-probe apparatus makes noncontact measurements of nominally round holes in electrically conductive specimens and processes measurement data into diameters and eccentricities of holes. Includes x-y translation platform, which holds specimen and moves it horizontally. Probe mounted on probe scanner, positioning probe along vertical (z) direction and rotates probe about vertical axis at preset low speed. Eddy-current sensing coil mounted in side of probe near tip. As probe rotates, impedance analyzer measures electrical impedance (Z) of coil as function of instantaneous rotation angle. Translation and rotation mechanisms and impedance analyzer controlled by computer, which also processes impedance-measurement data.
Clemensen, R.E.
1959-11-01
An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.
Ma, Jieshi; Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen; Fu, Feng
2014-01-01
Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke.
Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao
2014-01-01
Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke. PMID:25006594
On the use of The Bio-Impedance technique for Body Composition Measurements
NASA Astrophysics Data System (ADS)
Huerta-Franco, R.; Vargas-Luna, M.; González-Solís, J. L.; Gutiérrez-Juárez, G.
2003-09-01
Reviewing the methods and physical principles used in body composition measurements (BCM), it is evident that more accurate, reliable, and easily handled methods are required. The use of bio-impedance analysis (BIA) has been very useful in BCM. This technique, in the single frequency mode, has some commercial versions to perform BCM. However these apparatus have significant variability in the BCM values. The multi-frequency option of the bio-impedance technique has still a lot of challenges to overcome. We studied the variability of the body impedance spectrum (from 1 Hz to 1 MHz) in a group of subjects compared to the values obtained from commercial apparatus. We compared different anatomical body regions, some of them with less subcutaneous body fat (frontal, anterior tibial, knee, and frontal regions); others with more subcutaneous body fat (pectoral, abdominal, and internal calf regions). In order to model the bio-impedance spectrum, we analyzed layered samples with different thickness and material composition.
Middle ear impedance measurements in large vestibular aqueduct syndrome.
Bilgen, Cem; Kirkim, Günay; Kirazli, Tayfun
2009-06-01
To assess the effect of inner ear pressure on middle ear impedance in patients with large vestibular aqueduct syndrome (LVAS). Data from admittance tympanometry and multifrequency tympanometry on 8 LVAS patients and control subjects were studied. Static acoustic compliance (SAC) values for the ears with stable sensorineural hearing loss (SNHL) were within the limits of the mean values of control groups except for two ears. The resonance frequency (RF) values of the ears with stable SNHL were lower than the mean values of control groups except for three ears. SAC values for the two ears with fluctuating SNHL were lower and the RF values were higher than the mean values of control groups. Decreased SAC values and increased RF values found in the ears with fluctuating SNHL might be an indirect indicator of increased inner ear pressure, while low RF values in the ears with stable SNHL might reflect the decreased inner ear impedance.
Automated analysis of plethysmograms for functional studies of hemodynamics
NASA Astrophysics Data System (ADS)
Zatrudina, R. Sh.; Isupov, I. B.; Gribkov, V. Yu.
2018-04-01
The most promising method for the quantitative determination of cardiovascular tone indicators and of cerebral hemodynamics indicators is the method of impedance plethysmography. The accurate determination of these indicators requires the correct identification of the characteristic points in the thoracic impedance plethysmogram and the cranial impedance plethysmogram respectively. An algorithm for automatic analysis of these plethysmogram is presented. The algorithm is based on the hard temporal relationships between the phases of the cardiac cycle and the characteristic points of the plethysmogram. The proposed algorithm does not require estimation of initial data and selection of processing parameters. Use of the method on healthy subjects showed a very low detection error of characteristic points.
Na, Wongi S.; Baek, Jongdae
2017-01-01
The emergence of composite materials has revolutionized the approach to building engineering structures. With the number of applications for composites increasing every day, maintaining structural integrity is of utmost importance. For composites, adhesive bonding is usually the preferred choice over the mechanical fastening method, and monitoring for delamination is an essential factor in the field of composite materials. In this study, a non-destructive method known as the electromechanical impedance method is used with an approach of monitoring multiple areas by specifying certain frequency ranges to correspond to a certain test specimen. Experiments are conducted using various numbers of stacks created by attaching glass fiber epoxy composite plates onto one another, and two different debonding damage types are introduced to evaluate the performance of the multiple monitoring electromechanical impedance method. PMID:28629194
Evaluation of a cost-effective loads approach. [for Viking Orbiter light weight structural design
NASA Technical Reports Server (NTRS)
Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.
1976-01-01
A shock spectra/impedance method for loads prediction is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.
Prediction of ground effects on aircraft noise
NASA Technical Reports Server (NTRS)
Pao, S. P.; Wenzel, A. R.; Oncley, P. B.
1978-01-01
A unified method is recommended for predicting ground effects on noise. This method may be used in flyover noise predictions and in correcting static test-stand data to free-field conditions. The recommendation is based on a review of recent progress in the theory of ground effects and of the experimental evidence which supports this theory. It is shown that a surface wave must be included sometimes in the prediction method. Prediction equations are collected conveniently in a single section of the paper. Methods of measuring ground impedance and the resulting ground-impedance data are also reviewed because the recommended method is based on a locally reactive impedance boundary model. Current practice of estimating ground effects are reviewed and consideration is given to practical problems in applying the recommended method. These problems include finite frequency-band filters, finite source dimension, wind and temperature gradients, and signal incoherence.
Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
Kalani, Hadi; Moghimi, Sahar; Akbarzadeh, Alireza
2016-08-01
This paper proposes a real-time trajectory generation for a masticatory rehabilitation robot based on surface electromyography (SEMG) signals. We used two Gough-Stewart robots. The first robot was used as a rehabilitation robot while the second robot was developed to model the human jaw system. The legs of the rehabilitation robot were controlled by the SEMG signals of a tele-operator to reproduce the masticatory motion in the human jaw, supposedly mounted on the moving platform, through predicting the location of a reference point. Actual jaw motions and the SEMG signals from the masticatory muscles were recorded and used as output and input, respectively. Three different methods, namely time-delayed neural networks, time delayed fast orthogonal search, and time-delayed Laguerre expansion technique, were employed and compared to predict the kinematic parameters. The optimal model structures as well as the input delays were obtained for each model and each subject through a genetic algorithm. Equations of motion were obtained by the virtual work method. Fuzzy method was employed to develop a fuzzy impedance controller. Moreover, a jaw model was developed to demonstrate the time-varying behavior of the muscle lengths during the rehabilitation process. The three modeling methods were capable of providing reasonably accurate estimations of the kinematic parameters, although the accuracy and training/validation speed of time-delayed fast orthogonal search were higher than those of the other two aforementioned methods. Also, during a simulation study, the fuzzy impedance scheme proved successful in controlling the moving platform for the accurate navigation of the reference point in the desired trajectory. SEMG has been widely used as a control command for prostheses and exoskeleton robots. However, in the current study by employing the proposed rehabilitation robot the complete continuous profile of the clenching motion was reproduced in the sagittal plane. Copyright © 2016. Published by Elsevier Ltd.
Wang, Hua; Liu, Feng; Xia, Ling; Crozier, Stuart
2008-11-21
This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.
FDTD modeling of thin impedance sheets
NASA Technical Reports Server (NTRS)
Luebbers, Raymond; Kunz, Karl
1991-01-01
Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.
Electromechanical Apparatus Measures Residual Stress
NASA Technical Reports Server (NTRS)
Chern, Engmin J.; Flom, Yury
1993-01-01
Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.
Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.
2014-01-01
An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.
Anisotropic bioelectrical impedance determination of subcutaneous fat thickness
NASA Astrophysics Data System (ADS)
Hernández-Becerra, P. A. I.; Delgadillo-Holtfort, I.; Balleza-Ordaz, M.; Huerta-Franco, M. R.; Vargas-Luna, M.
2014-11-01
Preliminary results have shown that bioelectrical impedance measurements performed on different parts of the human body strongly depend upon the subcutaneous fat of the considered region. In this work, a method for the determination of subcutaneous fat thickness is explored. Within this method the measurement of the bioelectrical impedance response of the fat-muscle system, both along the direction defined by the muscle fibers and along the corresponding perpendicular direction, are performed. Measurements have been carried out on human female and male subjects of ages around 25 years old at the region of the biceps. Correlation has been performed with skinfold caliper measurements.
Radiation impedance of condenser microphones and their diffuse-field responses.
Barrera-Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn
2010-04-01
The relation between the diffuse-field response and the radiation impedance of a microphone has been investigated. Such a relation can be derived from classical theory. The practical measurement of the radiation impedance requires (a) measuring the volume velocity of the membrane of the microphone and (b) measuring the pressure on the membrane of the microphone. The first measurement is carried out by means of laser vibrometry. The second measurement cannot be implemented in practice. However, the pressure on the membrane can be calculated numerically by means of the boundary element method. In this way, a hybrid estimate of the radiation impedance is obtained. The resulting estimate of the diffuse-field response is compared with experimental estimates of the diffuse-field response determined using reciprocity and the random-incidence method. The different estimates are in good agreement at frequencies below the resonance frequency of the microphone. Although the method may not be of great practical utility, it provides a useful validation of the estimates obtained by other means.
Method for conducting nonlinear electrochemical impedance spectroscopy
Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.
2015-06-02
A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.
Ficanha, Evandro Maicon; Ribeiro, Guilherme Aramizo; Dallali, Houman; Rastgaar, Mohammad
2016-01-01
This paper describes the design of an ankle–foot robotic prosthesis controllable in the sagittal and frontal planes. The prosthesis was designed to meet the mechanical characteristics of the human ankle including power, range of motion, and weight. To transfer the power from the motors and gearboxes to the ankle–foot mechanism, a Bowden cable system was used. The Bowden cable allows for optimal placement of the motors and gearboxes in order to improve gait biomechanics such as the metabolic energy cost and gait asymmetry during locomotion. Additionally, it allows flexibility in the customization of the device to amputees with different residual limb sizes. To control the prosthesis, impedance controllers in both sagittal and frontal planes were developed. The impedance controllers used torque feedback from strain gages installed on the foot. Preliminary evaluation was performed to verify the capability of the prosthesis to track the kinematics of the human ankle in two degrees of freedom (DOFs), the mechanical efficiency of the Bowden cable transmission, and the ability of the prosthesis to modulate the impedance of the ankle. Moreover, the system was characterized by describing the relationship between the stiffness of the impedance controllers to the actual stiffness of the ankle. Efficiency estimation showed 85.4% efficiency in the Bowden cable transmission. The prosthesis was capable of properly mimicking human ankle kinematics and changing its mechanical impedance in two DOFs in real time with a range of stiffness sufficient for normal human walking. In dorsiflexion–plantarflexion (DP), the stiffness ranged from 0 to 236 Nm/rad and in inversion–eversion (IE), the stiffness ranged from 1 to 33 Nm/rad. PMID:27200342
Kaczka, David W; Lutchen, Kenneth R
2004-04-01
The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.
Multi-channel electrical impedance tomography for regional tissue hydration monitoring.
Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M
2014-06-01
Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical settings for helping optimize patient fluid management during hemodialysis as well as for home monitoring of patients with congestive heart failure, chronic kidney disease, diabetes and other diseases with peripheral edema symptoms.
Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie
2015-01-01
Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.
Torréns, Mabel; Ortiz, Mayreli; Turner, Anthony P F; Beni, Valerio; O'Sullivan, Ciara K
2015-01-07
A controlled, rapid, and potentiostat-free method has been developed for grafting the diazonium salt (3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate (DCOOH)) on gold and carbon substrates, based on a Zn-mediated chemical dediazonation. The highly stable thin layer organic platforms obtained were characterized by cyclic voltammetry, AFM, impedance, XP, and Raman spectroscopies. A dediazonation mechanism based on radical formation is proposed. Finally, DCOOH was proved as a linker to an aminated electroactive probe. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, Jesse H.; Surendranath, Yogesh; Alivisatos, Paul
Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentrationmore » in porous semiconductor thin films.« less
Geometric beam coupling impedance of LHC secondary collimators
NASA Astrophysics Data System (ADS)
Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas
2016-02-01
The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.
Impedance technology reduces the enumeration time of Brettanomyces yeast during beer fermentation.
van Wyk, Sanelle; Silva, Filipa V M
2016-12-01
Brettanomyces yeasts are increasingly being used to produce lambic style beers and craft beers with unique flavors. Currently, the industry monitors Brettanomyces bruxellensis using time consuming plate counting. B. bruxellensis is a fastidious slow growing organism, requiring five days of incubation at 30°C for visible growth on agar plates. Thus, a need exists to develop a quicker, feasible method to enumerate this yeast. The aim of this study was therefore to determine the feasibility of using the 'direct' and 'indirect' impedance methods for the enumeration of B. bruxellensis in beer and to monitor the growth of the yeast during fermentation. The impedance methods were able to decrease the incubation time of beer samples containing Brettanomyces from 120 h down to 2 and 84 h for samples containing 10 7 and 10 3 cfu/mL, respectively. The 'indirect' method was more successful than the 'direct' method, presenting a smaller error and wider detection range. Overall, the 'indirect' impedance method is a viable alternative to plate counting for the enumeration of yeasts in the brewing industry because it decreases preparation and incubation times, thereby increasing throughput and decreasing the chance of contamination. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Population control methods in stochastic extinction and outbreak scenarios.
Segura, Juan; Hilker, Frank M; Franco, Daniel
2017-01-01
Adaptive limiter control (ALC) and adaptive threshold harvesting (ATH) are two related control methods that have been shown to stabilize fluctuating populations. Large variations in population abundance can threaten the constancy and the persistence stability of ecological populations, which may impede the success and efficiency of managing natural resources. Here, we consider population models that include biological mechanisms characteristic for causing extinctions on the one hand and pest outbreaks on the other hand. These models include Allee effects and the impact of natural enemies (as is typical of forest defoliating insects). We study the impacts of noise and different levels of biological parameters in three extinction and two outbreak scenarios. Our results show that ALC and ATH have an effect on extinction and outbreak risks only for sufficiently large control intensities. Moreover, there is a clear disparity between the two control methods: in the extinction scenarios, ALC can be effective and ATH can be counterproductive, whereas in the outbreak scenarios the situation is reversed, with ATH being effective and ALC being potentially counterproductive.
Brandão, Eric; Flesch, Rodolfo C C; Lenzi, Arcanjo; Flesch, Carlos A
2011-07-01
The pressure-particle velocity (PU) impedance measurement technique is an experimental method used to measure the surface impedance and the absorption coefficient of acoustic samples in situ or under free-field conditions. In this paper, the measurement uncertainty of the the absorption coefficient determined using the PU technique is explored applying the Monte Carlo method. It is shown that because of the uncertainty, it is particularly difficult to measure samples with low absorption and that difficulties associated with the localization of the acoustic centers of the sound source and the PU sensor affect the quality of the measurement roughly to the same extent as the errors in the transfer function between pressure and particle velocity do. © 2011 Acoustical Society of America
Clean carbon nanotubes coupled to superconducting impedance-matching circuits.
Ranjan, V; Puebla-Hellmann, G; Jung, M; Hasler, T; Nunnenkamp, A; Muoth, M; Hierold, C; Wallraff, A; Schönenberger, C
2015-05-15
Coupling carbon nanotube devices to microwave circuits offers a significant increase in bandwidth (BW) and signal-to-noise ratio. These facilitate fast non-invasive readouts important for quantum information processing, shot noise and correlation measurements. However, creation of a device that unites a low-disorder nanotube with a low-loss microwave resonator has so far remained a challenge, due to fabrication incompatibility of one with the other. Employing a mechanical transfer method, we successfully couple a nanotube to a gigahertz superconducting matching circuit and thereby retain pristine transport characteristics such as the control over formation of, and coupling strengths between, the quantum dots. Resonance response to changes in conductance and susceptance further enables quantitative parameter extraction. The achieved near matching is a step forward promising high-BW noise correlation measurements on high impedance devices such as quantum dot circuits.
In situ measurement of tissue impedance using an inductive coupling interface circuit.
Chiu, Hung-Wei; Chuang, Jia-min; Lu, Chien-Chi; Lin, Wei-Tso; Lin, Chii-Wann; Lin, Mu-Lien
2013-06-01
In this work, a method of an inductive coupling impedance measurement (ICIM) is proposed for measuring the nerve impedance of a dorsal root ganglion (DRG) under PRF stimulation. ICIM provides a contactless interface for measuring the reflected impedance by an impedance analyzer with a low excitation voltage of 7 mV. The paper develops a calibration procedure involving a 50-Ω reference resistor to calibrate the reflected resistance for measuring resistance of the nerve in the test. A de-embedding technique to build the equivalent transformer circuit model for the ICIM circuit is also presented. A batteryless PRF stimulator with ICIM circuit demonstrated good accuracy for the acute measurement of DRG impedance both in situ and in vivo. Besides, an in vivo animal experiment was conducted to show that the effectiveness of pulsed radiofrequency (PRF) stimulation in relieving pain gradually declined as the impedance of the stimulated nerve increased. The experiment also revealed that the excitation voltage for measuring impedance below 25 mV can prevent the excitation of a nonlinear response of DRG.
NASA Technical Reports Server (NTRS)
Kraft, R. E.; Yu, J.; Kwan, H. W.
1999-01-01
The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.
Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators
NASA Astrophysics Data System (ADS)
Lissek, Hervé; Rivet, Etienne; Laurence, Thomas; Fleury, Romain
2018-03-01
We introduce an active concept for achieving acoustic metasurfaces with steerable reflection properties, effective over a wide frequency band. The proposed active acoustic metasurface consists of a surface array of subwavelength loudspeaker diaphragms, each with programmable individual active acoustic impedances allowing for local control over the different reflection phases over the metasurface. The active control framework used for controlling the reflection phase over the metasurface is derived from the Active Electroacoustic Resonator concept. Each unit-cell simply consists of a current-driven electrodynamic loudspeaker in a closed box, whose acoustic impedance at the diaphragm is judiciously adjusted by connecting an active electrical control circuit. The control is known to achieve a wide variety of acoustic impedances on a single loudspeaker diaphragm used as an acoustic resonator, with the possibility to shift its resonance frequency by more than one octave. This paper presents a methodology for designing such active metasurface elements. An experimental validation of the achieved individual reflection coefficients is presented, and full wave simulations present a few examples of achievable reflection properties, with a focus on the bandwidth of operation of the proposed control concept.
Characterization of damaged skin by impedance spectroscopy: chemical damage by dimethyl sulfoxide.
White, Erick A; Orazem, Mark E; Bunge, Annette L
2013-10-01
To relate changes in the electrochemical impedance spectra to the progression and mechanism of skin damage arising from exposure to dimethyl sulfoxide (DMSO). Electrochemical impedance spectra measured before and after human cadaver skin was treated with neat DMSO or phosphate buffered saline (control) for 1 h or less were compared with electrical circuit models representing two contrasting theories describing the progression of DMSO damage. Flux of a model lipophilic compound (p-chloronitrobenzene) was also measured. The impedance spectra collected before and after 1 h treatment with DMSO were consistent with a single circuit model; whereas, the spectra collected after DMSO exposure for 0.25 h were consistent with the model circuits observed before and after DMSO treatment for 1 h combined in series. DMSO treatments did not significantly change the flux of p-chloronitrobenzene compared to control. Impedance measurements of human skin exposed to DMSO for less than about 0.5 h were consistent with the presence of two layers: one damaged irreversibly and one unchanged. The thickness of the damaged layer increased proportional to the square-root of treatment time until about 0.5 h, when DMSO affected the entire stratum corneum. Irreversible DMSO damage altered the lipophilic permeation pathway minimally.
NASA Astrophysics Data System (ADS)
Ravikumar, M.; Reddappa, H. N.; Suresh, R.
2018-04-01
The study of corrosion rate and the inhibition efficiency of inhibitor for Al 7075 and Al 7075/Al2O3/SiCp corrosion in 1 M hydrochloride acid solution under Laboratory temperature by electrochemical measurements process. The efficiency increases by increasing of wt. % of reinforcement. The premier efficiency 99.1% is observed in the presence of reinforcement. The Electrochemical Impedance spectroscopic (EIS) method exhibit the capacitive loop representing the corrosion effect was controlled by the charge transfer method.
OP-15 FEATURES OF AEROPHAGIA MEASURED WITH MULTICHANNEL PH-IMPEDANCE IN CHILDREN.
Rybak, Anna; Gomez, Carlos Tutau; Lindley, Keith; Thapar, Nikhil; Mutalib, Mohamed
2015-10-01
Diagnosis of aerophagia is based on clinical symptoms and described in Rome III Criteria. The aim of this study was to estimate the normal and pathological values for air swallows measured with pH-impedance in children. We analysed features of air swallowing in pH-impedance for patients hospitalized in the Great Ormond Street Hospital in 2008-2014, with the clinical symptoms of aerophagia, who have met the Rome III Criteria. Children with pH-impedance performed due to other gastrointestinal conditions (GORD, Abdominal pain, food allergy and asthma) and had normal studies comprised the control group. The exclusion criteria were: neurological, metabolic or genetic disorders, previous oesophageal surgery including fundoplication, connective tissue disorders and studies lasting less than 16 hours in durationAll studies were re analysed manually, meals were excluded from analysis. Total number of air swallows (in upright and recumbent position); mixed swallows, gastric belching and supragastric belching were counted. The results were presented as total number of episodes and as median number of episodes per hour. Impedance recording of 10 patients (7 males) with clinical aerophagia and control group of10 children (7 males) were analysed. Mean age of patients was 10 years (4.5-13.5) and 7 years in control group (4.5-17 years). Mean (±SD) recording time for patients 21.3 hrs (±2.3) for control 21.2 hrs (±1.2).Total number of liquid reflux (mean ± SD) for patients 46.9 (±22.6), control 27.6 (±15.4) p = 0.028. The median of total air swallows per hour was 30.35 (IQR: 22.6 to 43.50) in patients with aerophagia and 7.33 (IQR: 5.43 to 9.9) in control group. There were significant differences in total number of air swallows, as well as in supragastric belches between the groups (p = 0.0001 and p = 0.001, respectively). Both, air swallows and gastric belches were significantly more often observed in boys (median for boys 20.92 and 1.06; for girls 7.20 and 0.34; p = 0.02 and p = 0.006, respectively). pH-impedance is an important diagnostic tool in the measurement of gas and fluid movement in the oesophagus. Hereby we showed suitability of pH-impedance in the assessment of children with clinically diagnosed aerophagia.
Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing
2017-01-27
Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a "smart washer" with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the "smart washer", increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments.
NASA Astrophysics Data System (ADS)
Zhao, Yanlin; Yao, Jun; Wang, Mi
2016-07-01
On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.
Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing
2017-01-01
Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a “smart washer” with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the “smart washer”, increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments. PMID:28134811
Vertical electrical impedance evaluation of asphalt overlays on concrete bridge decks
NASA Astrophysics Data System (ADS)
Baxter, Jared S.; Guthrie, W. Spencer; Waters, Tenli; Barton, Jeffrey D.; Mazzeo, Brian A.
2018-04-01
Vertical electrical impedance scanning of concrete bridge decks is a non-destructive method for quantifying the degree of protection provided to steel reinforcement against the ingress of corrosive agents. Four concrete bridge decks with asphalt overlays in northern Utah were evaluated using scanning vertical electrical impedance measurements in this study. At the time of testing, the bridges ranged in age from 21 to 34 years, and asphalt overlays had been in place for 7 to 22 years, depending on the bridge. Electrical impedance measurements were collected using a previously constructed apparatus that consisted of six probes spanning a transverse distance of 12 ft. The impedance measurements were compared to surface cracking observations and cores obtained from the same four bridge decks. The results presented in this paper demonstrate the utility of scanning vertical electrical impedance measurements for detecting cracks in asphalt overlays and quantifying their severity. In addition, the results demonstrate the sensitivity of impedance measurements to the presence of an intact membrane beneath the asphalt overlay.
Whole-body impedance--what does it measure?
Foster, K R; Lukaski, H C
1996-09-01
Although the bioelectrical impedance technique is widely used in human nutrition and clinical research, an integrated summary of the biophysical and bioelectrical bases of this approach is lacking. We summarize the pertinent electrical phenomena relevant to the application of the impedance technique in vivo and discuss the relations between electrical measurements and biological conductor volumes. Key terms in the derivation of bioelectrical impedance analysis are described and the relation between the electrical properties of tissues and tissue structure is discussed. The relation between the impedance of an object and its geometry, scale, and intrinsic electrical properties is also discussed. Correlations between whole-body impedance measurements and various bioconductor volumes, such as total body water and fat-free mass, are experimentally well established; however, the reason for the success of the impedence technique is much less clear. The bioengineering basis for the technique is critically presented and considerations are proposed that might help to clarify the method and potentially improve its sensitivity.
Positional dependence of particles in microfludic impedance cytometry.
Spencer, Daniel; Morgan, Hywel
2011-04-07
Single cell impedance cytometry is a label-free electrical analysis method that requires minimal sample preparation and has been used to count and discriminate cells on the basis of their impedance properties. This paper shows experimental and numerically simulated impedance signals for test particles (6 μm diameter polystyrene) flowing through a microfluidic channel. The variation of impedance signal with particle position is mapped using numerical simulation and these results match closely with experimental data. We demonstrate that for a nominal 40 μm × 40 μm channel, the impedance signal is independent of position over the majority of the channel area, but shows large experimentally verifiable variation at extreme positions. The parabolic flow profile in the channel ensures that most of the sample flows through the area of uniform signal. At high flow rates inertial focusing is observed; the particles flow in equal numbers through two equilibrium positions reducing the coefficient of variance (CV) in the impedance signals to negligible values.
Mutual conversion between B-mode image and acoustic impedance image
NASA Astrophysics Data System (ADS)
Chean, Tan Wei; Hozumi, Naohiro; Yoshida, Sachiko; Kobayashi, Kazuto; Ogura, Yuki
2017-07-01
To study the acoustic properties of a B-mode image, two ways of analysis methods were proposed in this report. The first method is the conversion of an acoustic impedance image into a B-mode image (Z to B). The time domain reflectometry theory and transmission line model were used as reference in the calculation. The second method is the direct a conversion of B-mode image into an acoustic impedance image (B to Z). The theoretical background of the second method is similar to that of the first method; however, the calculation is in the opposite direction. Significant scatter, refraction, and attenuation were assumed not to take place during the propagation of an ultrasonic wave. Hence, they were ignored in both calculations. In this study, rat cerebellar tissue and human cheek skin were used to determine the feasibility of the first and second methods respectively. Some good results are obtained and hence both methods showed their possible applications in the study of acoustic properties of B-mode images.
Vibration analysis of rotor systems using reduced subsystem models
NASA Technical Reports Server (NTRS)
Fan, Uei-Jiun; Noah, Sherif T.
1989-01-01
A general impedance method using reduced submodels has been developed for the linear dynamic analysis of rotor systems. Formulated in terms of either modal or physical coordinates of the subsystems, the method enables imbalance responses at specific locations of the rotor systems to be efficiently determined from a small number of 'master' degrees of freedom. To demonstrate the capability of this impedance approach, the Space Shuttle Main Engine high-pressure oxygen turbopump has been investigated to determine the bearing loads due to imbalance. Based on the same formulation, an eigenvalue analysis has been performed to study the system stability. A small 5-DOF model has been utilized to illustrate the application of the method to eigenvalue analysis. Because of its inherent characteristics of allowing formulation of reduced submodels, the impedance method can significantly increase the computational speed.
Initial experience with a microprocessor controlled current based defibrillator.
Dalzell, G W; Cunningham, S R; Anderson, J; Adgey, A A
1989-01-01
Intramyocardial current flow is a critical factor in successful ventricular defibrillation. The main determinants of intramyocardial current flow during transthoracic countershock are the selected energy and the transthoracic impedance of the patient. To optimise the success of the first shock and to titrate energy dosage according to each patient's transthoracic impedance, a microprocessor controlled current based defibrillator was developed. It was compared with a conventional energy based protocol of 200 J (delivered energy), 200 J, then 360 J if required in 42 consecutive episodes of ventricular fibrillation in 33 men and seven women. The mean (SD) predicted transthoracic impedance was 69.9 (14.0) omega. First shock success with the standard protocol was 80.9%, and first or second shock success was 95.2%. The microprocessor controlled current based defibrillator automatically measured transthoracic impedance and calculated the energy required to develop a selected current in each patient. A current protocol of 30 A, 30 A, then 40 A, if required, was used in 29 men and 12 women with 41 episodes of ventricular fibrillation. Transthoracic impedance (mean 65.1 (15.9) omega) was similar to that in the energy protocol group and success rates for first shock (82.9%) and first or second shocks (97.5%) were also similar. The mean delivered energy per shock with the current based defibrillator for first or second shock success was significantly less (144.8 J) with the energy protocol (200 J). The mean peak current of successful shocks was also significantly reduced (29.0 v 31.9 A). A current based defibrillator titrates energy according to transthoracic impedance; it has a success rate comparable to conventional defibrillators but it delivers significantly less energy and current per shock. Images Fig 1 PMID:2757862
Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan
2016-12-15
Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection. Copyright © 2016 Elsevier B.V. All rights reserved.
Improved Estimation of Electron Temperature from Rocket-borne Impedance Probes
NASA Astrophysics Data System (ADS)
Rowland, D. E.; Wolfinger, K.; Stamm, J. D.
2017-12-01
The impedance probe technique is a well known method for determining high accuracy measurements of electron number density in the Earth's ionosphere. We present analysis of impedance probe data from several sounding rockets at low, mid-, and auroral latitudes, including high cadence estimates of the electron temperature, derived from analytical fits to the antenna impedance curves. These estimates compare favorably with independent estimates from Langmuir Probes, but at much higher temporal and spatial resolution, providing a capability to resolve small-scale temperature fluctuations. We also present some considerations for the design of impedance probes, including assessment of the effects of resonance damping due to rocket motion, effects of wake and spin modulation, and aspect angle to the magnetic field.
Impedance study of undoped, polycrystalline diamond layers obtained by HF CVD
NASA Astrophysics Data System (ADS)
Paprocki, Kazimierz; Fabisiak, Kazimerz; Dychalska, Anna; Szybowicz, Mirosław; Dudkowiak, Alina; Iskaliyeva, Aizhan
2017-04-01
In this paper, we report results of impedance measurements in polycrystalline diamond films deposited on n-Si using HF CVD method. The temperature was changed from 170 K up to RT and the scan frequency from 42 Hz to 5 MHz. The results of impedance measurement of the real and imaginary parts were presented in the form of a Cole-Cole plot in the complex plane. In the temperatures below RT, the observed impedance response of polycrystalline diamond was in the form of a single semicircular form. In order to interpret the observed response, a double resistor-capacitor parallel circuit model was used which allow for interpretation physical mechanisms responsible for such behavior. The impedance results were correlated with Raman spectroscopy measurements.
Earth impedance model for through-the-earth communication applications with electrodes
NASA Astrophysics Data System (ADS)
Bataller, Vanessa; MuñOz, Antonio; Gaudó, Pilar Molina; Mediano, Arturo; Cuchí, José A.; Villarroel, José L.
2010-12-01
Through-the-earth (TTE) communications are relevant in applications such as caving, tunnel and cave rescue, mining, and subsurface radiolocation. The majority of the TTE communication systems use ground electrodes as load antenna. Wires, electrode contact, and earth impedances are the major contributors to the impedance observed by the transmitter. In this paper, state-of-art models found in the literature are reviewed, and an improved method to measure the earth impedance is presented. The paper also proposes an optimal circuit model for earth impedance between electrodes as a function of frequency, as a consequence of the particular conditions of the application. The model is validated with measurements for different soil conditions, showing a good agreement between empirical data and the simulation results.
Broad band antennas and feed methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benzel, David M.; Twogood, Richard E.
Two or more Vivaldi antennas, consisting of two plates each, each with the antenna's natural impedance of approximately 100 ohms, are placed in parallel to achieve a 50 ohm impedance in the case of two antennas or other impedances (100/n ohms) for more than two antennas. A single Vivaldi antenna plate (half Vivaldi antenna) over a ground plane can also be used to achieve a 50 ohm impedance, or two or more single plates over a ground plane to achieve other impedances. Unbalanced 50 ohm transmission lines, e.g. coaxial cables, can be used to directly feed, the dual Vivaldi (fourmore » plate) antenna in a center fed angled center departure, or more desirably, a center fed offset departure configuration.« less
Method for detecting pathogens attached to specific antibodies
Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.
2005-01-25
The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.
Applications for Electrical Impedance Tomography (EIT) and Electrical Properties of the Human Body.
Lymperopoulos, Georgios; Lymperopoulos, Panagiotis; Alikari, Victoria; Dafogianni, Chrisoula; Zyga, Sofia; Margari, Nikoletta
2017-01-01
Electrical Impedance Tomography (EIT) is a promising application that displays changes in conductivity within a body. The basic principle of the method is the repeated measurement of surface voltages of a body, which are a result of rolling injection of known and small-volume sinusoidal AC current to the body through the electrodes attached to its surface. This method finds application in biomedicine, biology and geology. The objective of this paper is to present the applications of Electrical Impedance Tomography, along with the method's capabilities and limitations due to the electrical properties of the human body. For this purpose, investigation of existing literature has been conducted, using electronic databases, PubMed, Google Scholar and IEEE Xplore. In addition, there was a secondary research phase, using paper citations found during the first research phase. It should be noted that Electrical Impedance Tomography finds use in a plethora of medical applications, as the different tissues of the body have different conductivities and dielectric constants. Main applications of EIT include imaging of lung function, diagnosis of pulmonary embolism, detection of tumors in the chest area and diagnosis and distinction of ischemic and hemorrhagic stroke. EIT advantages include portability, low cost and safety, which the method provide, since it is a noninvasive imaging method that does not cause damage to the body. The main disadvantage of the method, which blocks its wider spread, appears in the image composition from the voltage measurements, which are conducted by electrodes placed on the periphery of the body, because the injected currents are affected nonlinearly by the general distribution of the electrical properties of the body. Furthermore, the complex impedance of the skin-electrode interface can be modelled by using a capacitor and two resistor, as a result of skin properties. In conclusion, Electrical Impedance Tomography is a promising method for the development of noninvasive diagnostic medicine, since it is able to provide imaging of the interior of the human body in real time without causing harm or putting the human body in risk.
Acoustic characteristics of the medium with gradient change of impedance
NASA Astrophysics Data System (ADS)
Hu, Bo; Yang, Desen; Sun, Yu; Shi, Jie; Shi, Shengguo; Zhang, Haoyang
2015-10-01
The medium with gradient change of acoustic impedance is a new acoustic structure which developed from multiple layer structures. In this paper, the inclusion is introduced and a new set of equations is developed. It can obtain better acoustic properties based on the medium with gradient change of acoustic impedance. Theoretical formulation has been systematically addressed which demonstrates how the idea of utilizing this method. The sound reflection and absorption coefficients were obtained. At last, the validity and the correctness of this method are assessed by simulations. The results show that appropriate design of parameters of the medium can improve underwater acoustic properties.
Active sensors for health monitoring of aging aerospace structures
NASA Astrophysics Data System (ADS)
Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk
2000-06-01
A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.
Mathematical simulation of sound propagation in a flow channel with impedance walls
NASA Astrophysics Data System (ADS)
Osipov, A. A.; Reent, K. S.
2012-07-01
The paper considers the specifics of calculating tonal sound propagating in a flow channel with an installed sound-absorbing device. The calculation is performed on the basis of numerical integrating on linearized nonstationary Euler equations using a code developed by the authors based on the so-called discontinuous Galerkin method. Using the linear theory of small perturbations, the effect of the sound-absorbing lining of the channel walls is described with the modified value of acoustic impedance proposed by the authors, for which, under flow channel conditions, the traditional classification of the active and reactive types of lining in terms of the real and imaginary impedance values, respectively, remains valid. To stabilize the computation process, a generalized impedance boundary condition is proposed in which, in addition to the impedance value itself, some additional parameters are introduced characterizing certain fictitious properties of inertia and elasticity of the impedance surface.
Method of estimating pulse response using an impedance spectrum
Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G
2014-10-21
Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.
Wavelet analysis of the impedance cardiogram waveforms
NASA Astrophysics Data System (ADS)
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Transverse impedances and collective instabilities in a heavy ion accelerator
NASA Astrophysics Data System (ADS)
Liu, J.; Yang, J. C.; Xia, J. W.; Yin, D. Y.; Shen, G. D.; Li, P.; Wu, B.; Ruan, S.; Zhao, H.; Wang, G.; Dong, Z. Q.; Wang, K. D.; Yao, L. P.
2018-06-01
Evaluation of transverse impedances and collective instabilities is important for determining whether a transverse feedback system or damping schemes should be prepared in the BRing (Booster Ring) at the HIAF (High Intensity Heavy-ion Accelerator Facility). In this paper, some dominant transverse impedances are estimated to build a transverse impedance model of the BRing. With this model, all potential transverse instabilities and their growth times or rates are analyzed by analytical methods or simulations, and the results agree with each other. The growth times of some instabilities are shorter than the duration times of corresponding manipulations, which shows transverse instabilities may have many detrimental impacts on the BRing. To cure the transverse instabilities, a transverse feedback system will be proposed in the design of the BRing. Besides, this paper not only shows the transverse instabilities in the BRing, but also provides the whole method for estimating them in the design of a new accelerator facility.
NASA Technical Reports Server (NTRS)
Papazian, Peter B.; Perala, Rodney A.; Curry, John D.; Lankford, Alan B.; Keller, J. David
1988-01-01
Using three different current injection methods and a simple voltage probe, transfer impedances for Solid Rocket Motor (SRM) joints, wire meshes, aluminum foil, Thorstrand and a graphite composite motor case were measured. In all cases, the surface current distribution for the particular current injection device was calculated analytically or by finite difference methods. The results of these calculations were used to generate a geometric factor which was the ratio of total injected current to surface current density. The results were validated in several ways. For wire mesh measurements, results showed good agreement with calculated results for a 14 by 18 Al screen. SRM joint impedances were independently verified. The filiment wound case measurement results were validated only to the extent that their curve shape agrees with the expected form of transfer impedance for a homogeneous slab excited by a plane wave source.
Method and apparatus for in-situ characterization of energy storage and energy conversion devices
Christophersen, Jon P [Idaho Falls, ID; Motloch, Chester G [Idaho Falls, ID; Morrison, John L [Butte, MT; Albrecht, Weston [Layton, UT
2010-03-09
Disclosed are methods and apparatuses for determining an impedance of an energy-output device using a random noise stimulus applied to the energy-output device. A random noise signal is generated and converted to a random noise stimulus as a current source correlated to the random noise signal. A bias-reduced response of the energy-output device to the random noise stimulus is generated by comparing a voltage at the energy-output device terminal to an average voltage signal. The random noise stimulus and bias-reduced response may be periodically sampled to generate a time-varying current stimulus and a time-varying voltage response, which may be correlated to generate an autocorrelated stimulus, an autocorrelated response, and a cross-correlated response. Finally, the autocorrelated stimulus, the autocorrelated response, and the cross-correlated response may be combined to determine at least one of impedance amplitude, impedance phase, and complex impedance.
Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong
2012-12-21
In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.
Xiao, Xia; Lei, Kin Fong; Huang, Chia-Hao
2015-01-01
Cell migration is a cellular response and results in various biological processes such as cancer metastasis, that is, the primary cause of death for cancer patients. Quantitative investigation of the correlation between cell migration and extracellular stimulation is essential for developing effective therapeutic strategies for controlling invasive cancer cells. The conventional method to determine cell migration rate based on comparison of successive images may not be an objective approach. In this work, a microfluidic chip embedded with measurement electrodes has been developed to quantitatively monitor the cell migration activity based on the impedimetric measurement technique. A no-damage wound was constructed by microfluidic phenomenon and cell migration activity under the stimulation of cytokine and an anti-cancer drug, i.e., interleukin-6 and doxorubicin, were, respectively, investigated. Impedance measurement was concurrently performed during the cell migration process. The impedance change was directly correlated to the cell migration activity; therefore, the migration rate could be calculated. In addition, a good match was found between impedance measurement and conventional imaging analysis. But the impedimetric measurement technique provides an objective and quantitative measurement. Based on our technique, cell migration rates were calculated to be 8.5, 19.1, and 34.9 μm/h under the stimulation of cytokine at concentrations of 0 (control), 5, and 10 ng/ml. This technique has high potential to be developed into a powerful analytical platform for cancer research. PMID:26180566
Impedance-based structural health monitoring of wind turbine blades
NASA Astrophysics Data System (ADS)
Pitchford, Corey; Grisso, Benjamin L.; Inman, Daniel J.
2007-04-01
Wind power is a fast-growing source of non-polluting, renewable energy with vast potential. However, current wind turbine technology must be improved before the potential of wind power can be fully realized. Wind turbine blades are one of the key components in improving this technology. Blade failure is very costly because it can damage other blades, the wind turbine itself, and possibly other wind turbines. A successful damage detection system incorporated into wind turbines could extend blade life and allow for less conservative designs. A damage detection method which has shown promise on a wide variety of structures is impedance-based structural health monitoring. The technique utilizes small piezoceramic (PZT) patches attached to a structure as self-sensing actuators to both excite the structure with high-frequency excitations, and monitor any changes in structural mechanical impedance. By monitoring the electrical impedance of the PZT, assessments can be made about the integrity of the mechanical structure. Recently, advances in hardware systems with onboard computing, including actuation and sensing, computational algorithms, and wireless telemetry, have improved the accessibility of the impedance method for in-field measurements. This paper investigates the feasibility of implementing such an onboard system inside of turbine blades as an in-field method of damage detection. Viability of onboard detection is accomplished by running a series of tests to verify the capability of the method on an actual wind turbine blade section from an experimental carbon/glass/balsa composite blade developed at Sandia National Laboratories.
Järverud, K; Ollmar, S; Brodin, L A
2002-09-01
Modern pacemakers (implantable devices used for maintaining an appropriate heart rate in patients) can use an intracardiac ventricular impedance signal for physiological cardiac stimulation control. Intracardiac ventricular impedance from nine animal subjects is analysed and presented (seven sheep: 49.0 +/- 6.5 kg, sinus rhythm 100.3 +/- 16.5 beats min(-1), average impedance 629.8 +/- 72.6 ohms; and two dogs: 30 kg each, sinus rhythm 86.0 beats min(-1), 862.1 ohms and 134.0 beats min(-1), 1114.6 ohms, respectively). The averaged curve and standard deviation curve of the impedance in sinus rhythm were analysed in MATLAB to clarify and study consistent impedance shape over one heart cycle. In eight of nine (89%) animal subjects, a consistent impedance slope change (notch) was observed in the early stage of the cardiac filling phase. This result was reproduced in an additional subject with simultaneous echocardiographical measurements of mitral valve blood flow. The notch occured soon after rapid early filling (E-wave in mitral flow) but prior to ventricular filling caused by atrial contraction, indicating that the impedance notch was caused by rapid ventricular filling and that it might be a sensed feature of diagnostic value. The intracardiac impedance notch in the present study had similar features to the non-invasive transthoracic impedance O-wave reported by others, and it is shown here that an O-wave is found in intracardiac impedance signals, strongly suggesting that the non-invasive O-wave is caused by cardiac events.
NASA Technical Reports Server (NTRS)
Deligiannis, F.; Shen, D. H.; Halpert, G.; Ang, V.; Donley, S.
1991-01-01
A program was initiated to investigate the effects of storage on the performance of lithium primary cells. Two types of liquid cathode cells were chosen to investigate these effects. The cell types included Li-SOCl2/BCX cells, Li-SO2 cells from two different manufacturers, and a small sample size of 8-year-old Li-SO2 cells. The following measurements are performed at each test interval: open circuit voltage, resistance and weight, microcalorimetry, ac impedance, capacity, and voltage delay. The authors examine the performance characteristics of these cells after one year of controlled storage at two temperatures (10 and 30 C). The Li-SO2 cells experienced little to no voltage and capacity degradation after one year storage. The Li-SOCl2/BCX cells exhibited significant voltage and capacity degradation after 30 C storage. Predischarging shortly prior to use appears to be an effective method of reducing the initial voltage drop. Studies are in progress to correlate ac impedance and microcalorimetry measurements with capacity losses and voltage delay.
The general 2-D moments via integral transform method for acoustic radiation and scattering
NASA Astrophysics Data System (ADS)
Smith, Jerry R.; Mirotznik, Mark S.
2004-05-01
The moments via integral transform method (MITM) is a technique to analytically reduce the 2-D method of moments (MoM) impedance double integrals into single integrals. By using a special integral representation of the Green's function, the impedance integral can be analytically simplified to a single integral in terms of transformed shape and weight functions. The reduced expression requires fewer computations and reduces the fill times of the MoM impedance matrix. Furthermore, the resulting integral is analytic for nearly arbitrary shape and weight function sets. The MITM technique is developed for mixed boundary conditions and predictions with basic shape and weight function sets are presented. Comparisons of accuracy and speed between MITM and brute force are presented. [Work sponsored by ONR and NSWCCD ILIR Board.
A theoretical and experimental investigation of impact control for manipulators
NASA Technical Reports Server (NTRS)
Volpe, Richard; Khosla, Pradeep
1993-01-01
This article describes a simple control strategy for stable hardon-hard contact of a manipulator with the environment. The strategy is motivated by recognition of the equivalence of proportional gain explicit force control and impedance control. It is shown that negative proportional force gains, or impedance mass ratios less than unity, can equivalently provide excellent impact response without bouncing. This result is indicated by an analysis performed with an experimentally determined arm/sensor/environment model. The results are corroborated by experimental data from implementation of the control algorithms on the CMU DD Arm II system. The results confirm that manipulator impact against a stiff environment without bouncing can be readily handled by this novel control strategy.
Technique for measurement of characteristic impedance and propagation constant for porous materials
NASA Astrophysics Data System (ADS)
Jung, Ki Won; Atchley, Anthony A.
2005-09-01
Knowledge of acoustic properties such as characteristic impedance and complex propagation constant is useful to characterize the acoustic behaviors of porous materials. Song and Bolton's four-microphone method [J. Acoust. Soc. Am. 107, 1131-1152 (2000)] is one of the most widely employed techniques. In this method two microphones are used to determine the complex pressure amplitudes for each side of a sample. Muehleisen and Beamer [J. Acoust. Soc. Am. 117, 536-544 (2005)] improved upon a four-microphone method by interchanging microphones to reduce errors due to uncertainties in microphone response. In this paper, a multiple microphone technique is investigated to reconstruct the pressure field inside an impedance tube. Measurements of the acoustic properties of a material having square cross-section pores is used to check the validity of the technique. The values of characteristic impedance and complex propagation constant extracted from the reconstruction agree well with predicted values. Furthermore, this technique is used in investigating the acoustic properties of reticulated vitreous carbon (RVC) in the range of 250-1100 Hz.
NASA Astrophysics Data System (ADS)
Melnikov, A. A.; Popov, S. G.; Nikolaev, D. V.; Vikulov, A. D.
2013-04-01
We have investigated the distribution of peripheral blood volumes in different regions of the body in response to the tilt-test in endurance trained athletes after aerobic exercise. Distribution of peripheral blood volumes (ml/beat) simultaneously in six regions of the body (two legs, two hands, abdomen, neck and ECG) was assessed in response to the tilt-test using the impedance method (the impedance change rate (dZ/dT). Before and after exercise session cardiac stroke (CSV) and blood volumes in legs, arms and neck were higher in athletes both in lying and standing positions. Before exercise the increase of heart rate and the decrease of a neck blood volume in response to tilting was lower (p <0.05) but the decrease of leg blood volumes was higher (p<0.001) in athletes. The reactions in arms and abdomen blood volumes were similar. Also, the neck blood volumes as percentage of CSV (%/CSV) did not change in the control but increased in athletes (p <0.05) in response to the tilt test. After (10 min recovery) the aerobic bicycle exercise (mean HR = 156±8 beat/min, duration 30 min) blood volumes in neck and arms in response to the tilting were reduced equally, but abdomen (p<0.05) and leg blood volumes (p <0.001) were lowered more significantly in athletes. The neck blood flow (%/CSV) did not change in athletes but decreased in control (p<0.01), which was offset by higher tachycardia in response to tilt-test in controls after exercise. The data demonstrate greater orthostatic tolerance in athletes both before and after exercise during fatigue which is due to effective distribution of blood flows aimed at maintaining cerebral blood flow.
van Mierlo, Lisa D; MacNeil-Vroomen, Janet; Meiland, Franka J M; Joling, Karlijn J; Bosmans, Judith E; Dröes, Rose Marie; Moll van Charante, Eric P; de Rooij, Sophia E J A; van Hout, Hein P J
2016-12-01
Different forms of case management for dementia have emerged over the past few years. In the COMPAS study (Collaborative dementia care for patients and caregivers study), two prominent Dutch case management forms were studied: the linkage and the integrated care form. Evaluation of the (cost)effectiveness of two dementia case management forms compared to usual care as well as factors that facilitated or impeded their implementation. A mixed methods design with a) a prospective, observational controlled cohort study with 2 years follow-up among 521 dyads of people with dementia and their primary informal caregiver with and without case management; b) interviews with 22 stakeholders on facilitating and impeding factors of the implementation and continuity of the two case management models. Outcome measures were severity and frequency of behavioural problems (NPI) for the person with dementia and mental health complaints (GHQ-12) for the informal caregiver, total met and unmet care needs (CANE) and quality adjusted life years (QALYs). Outcomes showed a better quality of life of informal caregivers in the integrated model compared to the linkage model. Caregivers in the control group reported more care needs than those in both case management groups. The independence of the case management provider in the integrated model facilitated the implementation, while the rivalry between multiple providers in the linkage model impeded the implementation. The costs of care were lower in the linkage model (minus 22 %) and integrated care model (minus 33 %) compared to the control group. The integrated care form was (very) cost-effective in comparison with the linkage form or no case management. The integrated care form is easy to implement.
Ward, L; Cornish, B H; Paton, N I; Thomas, B J
1999-11-01
It has been proposed that multiple frequency bioelectrical impedance models of the human body should include an inductive property for the circulatory system, the inductor circuit model (ICM), and that such a model, when coupled with a new method of data analysis, can improve the predictive power of multiple frequency bioelectrical impedance analysis (MFBIA). This hypothesis was tested using MFBIA measurements and gold standard measures of total body and extracellular water volumes in a cross-validation study in two subject groups (viz. controls and HIV). The MFBIA measurements were analysed using the current, widely accepted Cole model and the alternative ICM model which includes an inductive component. Correlations in the range 0.75 to 0.92 (for TBW) and 0.46 to 0.79 (for ECW) for impedance quotients versus gold standard measures within the subject groups were observed. These decreased, to as low as r = 0.50 for TBW and r = 0.29 for ECW, when the derived algorithms were applied to the alternative subject group. These results suggest that lack of portability of MFBIA algorithms between subject groups is not due to an inadequacy of the analogue circuit model per se but is possibly due more to fundamental flaws in the principles associated with its application. These include assuming a constant proportionality of body segment geometries and tissue fluid resistivities. This study has also demonstrated that this inadequacy cannot be overcome by simply introducing an inductive component into the analogue electrical circuit.
Determining bonding, thickness, and density via thermal wave impedance NDE
NASA Technical Reports Server (NTRS)
Green, D. R.
1985-01-01
Bonding, density, and thickness of coatings have a vital effect on their performance in many applications. Pioneering development work on thermal wave nondestructive evaluation (NDE) methods during the past 25 years has resulted in an array of useful techniques for performing bonding, density, and thickness measurements in a practical shop environment. The most useful thermal wave methods for this purpose are based on thermal wave surface impedance measurement or scanning. A pulse of heat from either a thermal transducer or a hot gas pulse is projected onto the surface, and the resulting temperature response is analyzed to unfold the bonding, density, and thickness of the coating. An advanced emissivity independent infrared method was applied to detect the temperature response. These methods were recently completely computerized and can automatically provide information on coating quality in near real-time using the proper equipment. Complex shapes such as turbine blades can be scanned. Microscopic inhomogeneities such as microstructural differences and small, normal, isolated voids do not cause problems but are seen as slight differences in the bulk thermal properties. Test objects with rough surfaces can be effectively nondestructively evaluated using proper thermal surface impedance methods. Some of the basic principles involved, as well as metallographic results illustrating the ability of the thermal wave surface impedance method to detect natural nonbonds under a two-layer thermally sprayed coating, will be presented.
Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.
Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun
2014-09-01
Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination. © 2014 Wiley Periodicals, Inc.
Measurement and simulation of the RHIC abort kicker longitudinal impedence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu,N.P.; Hahn,H.; Choi, E.
2009-09-01
In face of the new upgrades for RHIC the longitudinal impedance of the machine plays an important role in setting the threshold for instabilities and the efficacy of some systems. In this paper we describe the measurement of the longitudinal impedance of the abort kicker for RHIC as well as computer simulations of the structure. The impedance measurement was done by the S{sub 21} wire method covering the frequency range from 9 kHz to 2.5 GHz. We observed a sharp resonance peak around 10 MHz and a broader peak around 20 MHz in both, the real and imaginary part, ofmore » the Z/n. These two peaks account for a maximum imaginary longitudinal impedance of j15 {Omega}, a value an order of magnitude larger than the estimated value of j0.2 {Omega}, which indicates that the kicker is one of the main sources of longitudinal impedance in the machine. A computer model was constructed for simulations in the CST MWS program. Results for the magnet input and the also the beam impedance are compared to the measurements. A more detail study of the system properties and possible changes to reduce the coupling impedance are presented.« less
Analyses of radiation impedances of finite cylindrical ducts
NASA Astrophysics Data System (ADS)
Shao, W.; Mechefske, C. K.
2005-08-01
To aid in understanding the characteristics of acoustic radiation from finite cylindrical ducts with infinite flanges, mathematical expressions of generalized radiation impedances at the open ends have been developed. Newton's method is used to find the complex wavenumbers of radial modes for the absorption boundary condition. The self-radiation impedances and mutual impedances for some acoustic modes are calculated for the ducts with rigid and absorption walls. The results show that the acoustical conditions of the duct walls have a significant influence on the radiation impedance. The acoustical interaction between the two open ends of the ducts cannot be neglected, especially for plane waves. To increase the wall admittance will reduce this interference effect. This study creates the possibility for simulating the sound field inside finite ducts in future work.
Ruiz-Vargas, A; Mohd Rosli, R; Ivorra, A; Arkwright, J W
2018-01-08
Intraluminal electrical impedance is a well-known diagnostic tool used to study bolus movement in the human esophagus. However, it is use in the human colon it is hindered by the fact that the content cannot be controlled and may include liquid, gas, solid, or a mixture of these at any one time. This article investigates the use of complex impedance spectroscopy to study different luminal content (liquid and gas). An excised section of guinea pig proximal colon was placed in an organ bath with Krebs solution at 37°C and a custom built bioimpedance catheter was placed in the lumen. Liquid (Krebs) and gas (air) content was pumped through the lumen and the intraluminal impedance was measured at five different frequencies (1, 5.6, 31.6, 177.18 kHz and 1 MHz) at 10 samples per second. A numerical model was created to model the passage of bolus with different content and compared to the experimental data. Differences in mean impedance magnitude and phase angle were found (from 1 to 177.18 kHz) for different contents. The numerical results qualitatively agreed with those in the experimental study. Conductivities of bolus had an effect on detecting its passage. Complex impedance spectroscopy can distinguish between different luminal content within a range of measuring frequencies. The numerical model showed the importance of bolus conductivities for bolus transit studies in those where the bolus is controlled. © 2018 John Wiley & Sons Ltd.
Impedance modulation and feedback corrections in tracking targets of variable size and frequency.
Selen, Luc P J; van Dieën, Jaap H; Beek, Peter J
2006-11-01
Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffness and damping as indices of impedance modulation and submovement scaling as an index of feedback driven corrections. Eight subjects tracked three differently sized targets (0.0135, 0.0270, and 0.0405 rad) moving at three different frequencies (0.20, 0.25, and 0.33 Hz). Movement variability decreased with both decreasing target size and movement frequency, whereas stiffness and damping increased with decreasing target size, independent of movement frequency. These results are consistent with the theory that mechanical impedance acts as a filter of noisy neuromuscular signals but challenge stochastic theories of motor control that do not account for impedance modulation and only partially for feedback control. Submovements during unperturbed cycles were quantified in terms of their gain, i.e., the slope between their duration and amplitude in the speed profile. Submovement gain decreased with decreasing movement frequency and increasing target size. The results were interpreted to imply that submovement gain is related to observed tracking errors and that those tracking errors are expressed in units of target size. We conclude that impedance and submovement gain modulation contribute additively to tracking accuracy.
Quantitative impedance measurements for eddy current model validation
NASA Astrophysics Data System (ADS)
Khan, T. A.; Nakagawa, N.
2000-05-01
This paper reports on a series of laboratory-based impedance measurement data, collected by the use of a quantitatively accurate, mechanically controlled measurement station. The purpose of the measurement is to validate a BEM-based eddy current model against experiment. We have therefore selected two "validation probes," which are both split-D differential probes. Their internal structures and dimensions are extracted from x-ray CT scan data, and thus known within the measurement tolerance. A series of measurements was carried out, using the validation probes and two Ti-6Al-4V block specimens, one containing two 1-mm long fatigue cracks, and the other containing six EDM notches of a range of sizes. Motor-controlled XY scanner performed raster scans over the cracks, with the probe riding on the surface with a spring-loaded mechanism to maintain the lift off. Both an impedance analyzer and a commercial EC instrument were used in the measurement. The probes were driven in both differential and single-coil modes for the specific purpose of model validation. The differential measurements were done exclusively by the eddyscope, while the single-coil data were taken with both the impedance analyzer and the eddyscope. From the single-coil measurements, we obtained the transfer function to translate the voltage output of the eddyscope into impedance values, and then used it to translate the differential measurement data into impedance results. The presentation will highlight the schematics of the measurement procedure, a representative of raw data, explanation of the post data-processing procedure, and then a series of resulting 2D flaw impedance results. A noise estimation will be given also, in order to quantify the accuracy of these measurements, and to be used in probability-of-detection estimation.—This work was supported by the NSF Industry/University Cooperative Research Program.
Lee, Dong-Jin; Lee, Sun-Kyu
2015-01-01
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.
Bayesian identification of acoustic impedance in treated ducts.
Buot de l'Épine, Y; Chazot, J-D; Ville, J-M
2015-07-01
The noise reduction of a liner placed in the nacelle of a turbofan engine is still difficult to predict due to the lack of knowledge of its acoustic impedance that depends on grazing flow profile, mode order, and sound pressure level. An eduction method, based on a Bayesian approach, is presented here to adjust an impedance model of the liner from sound pressures measured in a rectangular treated duct under multimodal propagation and flow. The cost function is regularized with prior information provided by Guess's [J. Sound Vib. 40, 119-137 (1975)] impedance of a perforated plate. The multi-parameter optimization is achieved with an Evolutionary-Markov-Chain-Monte-Carlo algorithm.
Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek
2003-03-01
In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.
Electrophysiologic studies of neronal activities under ischemia condition.
Huang, Shun-Ho; Wang, Ping-Hsien; Chen, Jia-Jin Jason
2008-01-01
Substrate with integrated microelectrode arrays (MEAs) provides an alternative electrophysiological method. With MEAS, one can measure the impedance and elicit electrical stimulation from multiple sites of MEAs to determine the electrophysiological conditions of cells. The aims of this research were to construct an impedance and action potential measurement system for neurons cultured on MEAs for observing the electrophysiological signal transmission in neuronal network during glucose and oxygen deprivation (OGD). An extracellular stimulator producing the biphasic micro-current pulse for neuron stimulation was built in this study. From the time-course recording of impedance, OGD condition effectively induced damage in neurons in vitro. It is known that the results of cell stimulation are affected by electrode impedance, so does the result of neuron cells covered on the electrode can measure the sealing resistance. For extracellular stimulation study, cortical neuronal activity was recorded and the suitable stimulation window was determined. However, the stimulation results were affected by electrode impedance as well as sealing impedance resulting from neuron cells covering the electrode. Further development of surface modification for cultured neuron network should provide a better way for in vitro impedance and electrophysiological measurements.
A User''s Guide to the Zwikker-Kosten Transmission Line Code (ZKTL)
NASA Technical Reports Server (NTRS)
Kelly, J. J.; Abu-Khajeel, H.
1997-01-01
This user's guide documents updates to the Zwikker-Kosten Transmission Line Code (ZKTL). This code was developed for analyzing new liner concepts developed to provide increased sound absorption. Contiguous arrays of multi-degree-of-freedom (MDOF) liner elements serve as the model for these liner configurations, and Zwikker and Kosten's theory of sound propagation in channels is used to predict the surface impedance. Transmission matrices for the various liner elements incorporate both analytical and semi-empirical methods. This allows standard matrix techniques to be employed in the code to systematically calculate the composite impedance due to the individual liner elements. The ZKTL code consists of four independent subroutines: 1. Single channel impedance calculation - linear version (SCIC) 2. Single channel impedance calculation - nonlinear version (SCICNL) 3. Multi-channel, multi-segment, multi-layer impedance calculation - linear version (MCMSML) 4. Multi-channel, multi-segment, multi-layer impedance calculation - nonlinear version (MCMSMLNL) Detailed examples, comments, and explanations for each liner impedance computation module are included. Also contained in the guide are depictions of the interactive execution, input files and output files.
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1999-01-01
The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made in the analysis were addressed and fully investigated for their accuracy by using the three-dimensional electromagnetic simulation code MAFIA (Solution of Maxwell's Equations by the Finite Integration Algorithm) (refs. 3 and 4). We found that several approximations introduced significant error (ref. 5).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji
2014-09-15
A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understandingmore » the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.« less
Zhou, C T; Zhong, W J; Hua, L; Hu, H F; Jin, Z G
2000-06-01
To observe the effect of Erigeron breviscapus (Vant) Hand Mazz (HEr) in impeding oral leukoplakia carcinogenesis, and to seek effective Chinese herb medicine that can impede precarcinoma of oral mucosas. 132 golden hamsters were randomly divided into model group (60 animals), HEr group (60 animals), and control group 12 animals. Salley's leukoplakia carcinogenesis model of golden hamster cheek pouch was used in this study. HEr was injected into the stomach to impede evolution of carcinogenesis. Pathological specimens were observed via naked eye and light microscope between model group and HEr group. Results were compared. Observation via naked-eye showed that leukoplakia rate of HEr group (18.2%) was lower than that of model group (27.3%). Observation via light microscope showed that carcinogenesis rate descended one fold and displasia rate descended 0.4 fold in HEr group. HEr has exact effect in impeding leukoplakia carcinogenesis.
Bioelectrical impedance analysis for bovine milk: Preliminary results
NASA Astrophysics Data System (ADS)
Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.
2010-04-01
This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.
Power independent EMG based gesture recognition for robotics.
Li, Ling; Looney, David; Park, Cheolsoo; Rehman, Naveed U; Mandic, Danilo P
2011-01-01
A novel method for detecting muscle contraction is presented. This method is further developed for identifying four different gestures to facilitate a hand gesture controlled robot system. It is achieved based on surface Electromyograph (EMG) measurements of groups of arm muscles. The cross-information is preserved through a simultaneous processing of EMG channels using a recent multivariate extension of Empirical Mode Decomposition (EMD). Next, phase synchrony measures are employed to make the system robust to different power levels due to electrode placements and impedances. The multiple pairwise muscle synchronies are used as features of a discrete gesture space comprising four gestures (flexion, extension, pronation, supination). Simulations on real-time robot control illustrate the enhanced accuracy and robustness of the proposed methodology.
A power saving protocol for impedance spectroscopy
NASA Astrophysics Data System (ADS)
Bîrlea, Nicolae Marius
2017-12-01
Because power saving is a main concern of wearable devices we present here a transient method with a low power demand for impedance spectroscopy of the skin, but the idea is valid for other test materials. The used signal is an electrical pulse (the ON period) followed by a pause (the OFF period) when the electrodes do not consume current from the power supply. The method has the advantage of being able to measure at once the frequency characteristics of the impedance and is well suited for the time varying bioimpedance. In addition, this kind of measurement creates a more direct and explicit relationship between the lumped elements of the electrical model and the measured signal.
Adaptive control for solar energy based DC microgrid system development
NASA Astrophysics Data System (ADS)
Zhang, Qinhao
During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.
NASA Astrophysics Data System (ADS)
Chizhik, Alexander; Zhukov, Arkady; Gonzalez, Julian; Stupakiewicz, Andrzej
2018-02-01
Magnetization reversal in magnetic microwires was studied in the presence of external mechanical stress and helical magnetic fields using the magneto-optical Kerr effect. It was found that a combination of tuned magnetic anisotropy and a direct current or pulsed circular magnetic field activated different types of magnetization reversal scenarios. The application of the pulsed magnetic field of 10 ns time duration induced a transient controlling action to switch the magnetic states without activating a domain wall motion. This created a promising method for tuning the giant magneto-impedance effect.
NASA Astrophysics Data System (ADS)
Salissou, Yacoubou
L'objectif global vise par les travaux de cette these est d'ameliorer la caracterisation des proprietes macroscopiques des materiaux poreux a structure rigide ou souple par des approches inverses et indirectes basees sur des mesures acoustiques faites en tube d'impedance. La precision des approches inverses et indirectes utilisees aujourd'hui est principalement limitee par la qualite des mesures acoustiques obtenues en tube d'impedance. En consequence, cette these se penche sur quatre problemes qui aideront a l'atteinte de l'objectif global precite. Le premier probleme porte sur une caracterisation precise de la porosite ouverte des materiaux poreux. Cette propriete en est une de passage permettant de lier la mesure des proprietes dynamiques acoustiques d'un materiau poreux aux proprietes effectives de sa phase fluide decrite par les modeles semi-phenomenologiques. Le deuxieme probleme traite de l'hypothese de symetrie des materiaux poreux selon leur epaisseur ou un index et un critere sont proposes pour quantifier l'asymetrie d'un materiau. Cette hypothese est souvent source d'imprecision des methodes de caracterisation inverses et indirectes en tube d'impedance. Le critere d'asymetrie propose permet ainsi de s'assurer de l'applicabilite et de la precision de ces methodes pour un materiau donne. Le troisieme probleme vise a mieux comprendre le probleme de transmission sonore en tube d'impedance en presentant pour la premiere fois un developpement exact du probleme par decomposition d'ondes. Ce developpement permet d'etablir clairement les limites des nombreuses methodes existantes basees sur des tubes de transmission a 2, 3 ou 4 microphones. La meilleure comprehension de ce probleme de transmission est importante puisque c'est par ce type de mesures que des methodes permettent d'extraire successivement la matrice de transfert d'un materiau poreux et ses proprietes dynamiques intrinseques comme son impedance caracteristique et son nombre d'onde complexe. Enfin, le quatrieme probleme porte sur le developpement d'une nouvelle methode de transmission exacte a 3 microphones applicable a des materiaux ou systemes symetriques ou non. Dans le cas symetrique, on montre que cette approche permet une nette amelioration de la caracterisation des proprietes dynamiques intrinseques d'un materiau. Mots cles. materiaux poreux, tube d'impedance, transmission sonore, absorption sonore, impedance acoustique, symetrie, porosite, matrice de transfert.
Gudra, Tadeusz; Opieliński, Krzysztof J
2002-05-01
In different solutions of ultrasonic transducers radiating acoustic energy into the air there occurs the problem of the proper selection of the acoustic impedance of one or more matching layers. The goal of this work was a computer analysis of the influence of acoustic impedance on the transfer function of piezoceramic transducers equipped with matching layers. Cases of resonance and non-resonance matching impedance in relation to the transfer function and the energy transmission coefficient for solid state-air systems were analysed. With stable thickness of matching layers the required shape of the transfer function can be obtained through proper choice of acoustic impedance were built (e.g. maximal flat function). The proper choice of acoustic impedance requires an elaboration of precise methods of synthesis of matching systems. Using the known matching criteria (Chebyshev's, DeSilets', Souquet's), the transfer function characteristics of transducers equipped with one, two, and three matching layers as well as the optimisation methods of the energy transmission coefficient were presented. The influence of the backside load of the transducer on the shape of transfer function was also analysed. The calculation results of this function for different loads of the transducer backside without and with the different matching layers were presented. The proper load selection allows us to obtain the desired shape of the transfer function, which determines the pulse shape generated by the transducer.
The use of the Kalman filter in the automated segmentation of EIT lung images.
Zifan, A; Liatsis, P; Chapman, B E
2013-06-01
In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging.
The analysis of transient noise of PCB P/G network based on PI/SI co-simulation
NASA Astrophysics Data System (ADS)
Haohang, Su
2018-02-01
With the frequency of the space camera become higher than before, the power noise of the imaging electronic system become the important factor. Much more power noise would disturb the transmissions signal, and even influence the image sharpness and system noise. "Target impedance method" is one of the traditional design method of P/G network (power and ground network), which is shorted of transient power noise analysis and often made "over design". In this paper, a new design method of P/G network is provided which simulated by PI/SI co-simulation. The transient power noise can be simulated and then applied in the design of noise reduction, thus effectively controlling the change of the noise in the P/G network. The method can efficiently control the number of adding decoupling capacitor, and is very efficient and feasible to keep the power integrity.
A 0.4-2.3 GHz broadband power amplifier extended continuous class-F design technology
NASA Astrophysics Data System (ADS)
Chen, Peng; He, Songbai
2015-08-01
A 0.4-2.3 GHz broadband power amplifier (PA) extended continuous class-F design technology is proposed in this paper. Traditional continuous class-F PA performs in high-efficiency only in one octave bandwidth. With the increasing development of wireless communication, the PA is in demand to cover the mainstream communication standards' working frequencies from 0.4 GHz to 2.2 GHz. In order to achieve this objective, the bandwidths of class-F and continuous class-F PA are analysed and discussed by Fourier series. Also, two criteria, which could reduce the continuous class-F PA's implementation complexity, are presented and explained to investigate the overlapping area of the transistor's current and voltage waveforms. The proposed PA design technology is based on the continuous class-F design method and divides the bandwidth into two parts: the first part covers the bandwidth from 1.3 GHz to 2.3 GHz, where the impedances are designed by the continuous class-F method; the other part covers the bandwidth from 0.4 GHz to 1.3 GHz, where the impedance to guarantee PA to be in high-efficiency over this bandwidth is selected and controlled. The improved particle swarm optimisation is employed for realising the multi-impedances of output and input network. A PA based on a commercial 10 W GaN high electron mobility transistor is designed and fabricated to verify the proposed design method. The simulation and measurement results show that the proposed PA could deliver 40-76% power added efficiency and more than 11 dB power gain with more than 40 dBm output power over the bandwidth from 0.4-2.3 GHz.
SINGLE BUNCH BEAM BREAKUP - A GENERAL SOLUTION.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WANG,J.M.; MANE,S.R.; TOWNE,N.
2000-06-26
Caporaso, Barletta and Neil (CBN) found in a solution to the problem of the single-bunch beam breakup in a linac[1]. However, their method applies only to the case of a beam traveling in a strongly betatron-focused linac under the influence of the resistive wall impedance. We suggest in this paper a method for dealing with the same problem. Our methods is more general; it applies to the same problem under any impedance, and it applies to a linac with or without external betatron focusing.
A New Powered Lower Limb Prosthesis Control Framework Based on Adaptive Dynamic Programming.
Wen, Yue; Si, Jennie; Gao, Xiang; Huang, Stephanie; Huang, He Helen
2017-09-01
This brief presents a novel application of adaptive dynamic programming (ADP) for optimal adaptive control of powered lower limb prostheses, a type of wearable robots to assist the motor function of the limb amputees. Current control of these robotic devices typically relies on finite state impedance control (FS-IC), which lacks adaptability to the user's physical condition. As a result, joint impedance settings are often customized manually and heuristically in clinics, which greatly hinder the wide use of these advanced medical devices. This simulation study aimed at demonstrating the feasibility of ADP for automatic tuning of the twelve knee joint impedance parameters during a complete gait cycle to achieve balanced walking. Given that the accurate models of human walking dynamics are difficult to obtain, the model-free ADP control algorithms were considered. First, direct heuristic dynamic programming (dHDP) was applied to the control problem, and its performance was evaluated on OpenSim, an often-used dynamic walking simulator. For the comparison purposes, we selected another established ADP algorithm, the neural fitted Q with continuous action (NFQCA). In both cases, the ADP controllers learned to control the right knee joint and achieved balanced walking, but dHDP outperformed NFQCA in this application during a 200 gait cycle-based testing.
Gao, Yue-Ming; Wu, Zhu-Mei; Pun, Sio-Hang; Mak, Peng-Un; Vai, Mang-I; Du, Min
2016-04-02
Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results.
Stochastic Estimation of Arm Mechanical Impedance During Robotic Stroke Rehabilitation
Palazzolo, Jerome J.; Ferraro, Mark; Krebs, Hermano Igo; Lynch, Daniel; Volpe, Bruce T.; Hogan, Neville
2009-01-01
This paper presents a stochastic method to estimate the multijoint mechanical impedance of the human arm suitable for use in a clinical setting, e.g., with persons with stroke undergoing robotic rehabilitation for a paralyzed arm. In this context, special circumstances such as hypertonicity and tissue atrophy due to disuse of the hemiplegic limb must be considered. A low-impedance robot was used to bring the upper limb of a stroke patient to a test location, generate force perturbations, and measure the resulting motion. Methods were developed to compensate for input signal coupling at low frequencies apparently due to human–machine interaction dynamics. Data was analyzed by spectral procedures that make no assumption about model structure. The method was validated by measuring simple mechanical hardware and results from a patient's hemiplegic arm are presented. PMID:17436881
Jafar-Zanjani, Samad; Cheng, Jierong; Mosallaei, Hossein
2016-04-10
An efficient auxiliary differential equation method for incorporating 2D inhomogeneous dispersive impedance sheets in the finite-difference time-domain solver is presented. This unique proposed method can successfully solve optical problems of current interest involving 2D sheets. It eliminates the need for ultrafine meshing in the thickness direction, resulting in a significant reduction of computation time and memory requirements. We apply the method to characterize a novel broad-beam leaky-wave antenna created by cascading three sinusoidally modulated reactance surfaces and also to study the effect of curvature on the radiation characteristic of a conformal impedance sheet holographic antenna. Considerable improvement in the simulation time based on our technique in comparison with the traditional volumetric model is reported. Both applications are of great interest in the field of antennas and 2D sheets.
NASA Technical Reports Server (NTRS)
Kao, G. C.
1973-01-01
Method has been developed for predicting interaction between components and corresponding support structures subjected to acoustic excitations. Force environments determined in spectral form are called force spectra. Force-spectra equation is determined based on one-dimensional structural impedance model.
Cirnigliaro, Christopher M.; La Fountaine, Michael F.; Emmons, Racine; Kirshblum, Steven C.; Asselin, Pierre; Spungen, Ann M.; Bauman, William A.
2013-01-01
Background Bioimpedance spectroscopy (BIS) is a non-invasive, simple, and inexpensive modality that uses 256 frequencies to determine the extracellular volume impedance (ECVRe) and intracellular volume impedance (ICVRi) in the total body and regional compartments. As such, it may have utility as a surrogate measure to assess lean tissue mass (LTM). Objective To compare the relationship between LTM from dual-energy X-ray absorptiometry (DXA) and BIS impedance values in spinal cord injury (SCI) and able-bodied (AB) control subjects using a cross-sectional research design. Methods In 60 subjects (30 AB and 30 SCI), a total body DXA scan was used to obtain total body and leg LTM. BIS was performed to measure the impedance quotient of the ECVRe and ICVRi in the total body and limbs. Results BIS-derived ECVRe yielded a model for LTM in paraplegia, tetraplegia, and control for the right leg (RL) (R2 = 0.75, standard errors of estimation (SEE) = 1.02 kg, P < 0.0001; R2 = 0.65, SEE = 0.91 kg, P = 0.0006; and R2 = 0.54, SEE = 1.31 kg, P < 0.0001, respectively) and left leg (LL) (R2 = 0.76, SEE = 1.06 kg, P < 0.0001; R2 = 0.64, SEE = 0.83 kg, P = 0.0006; and R2 = 0.54, SEE = 1.34 kg, P < 0.0001, respectively). The ICVRi was similarly predictive of LTM in paraplegia, tetraplegia, and AB controls for the RL (R2 = 0.85, SEE = 1.31 kg, P < 0.0001; R2 = 0.52, SEE = 0.95 kg, P = 0.003; and R2 = 0.398, SEE = 1.46 kg, P = 0.0003, respectively) and LL (R2 = 0.62, SEE = 1.32 kg, P = 0.0003; R2 = 0.57, SEE = 0.91 kg, P = 0.002; and R2 = 0.42, SEE = 1.31 kg, P = 0.0001, respectively). Conclusion Findings demonstrate that the BIS-derived impedance quotients for ECVRe and ICVRi may be used as surrogate markers to track changes in leg LTM in persons with SCI. PMID:23941792
Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.
Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J
2016-08-01
Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment.
Park, Yangkyu; Kim, Hyeon Woo; Yun, Joho; Seo, Seungwan; Park, Chang-Ju; Lee, Jeong Zoo; Lee, Jong-Hyun
2016-01-01
Purpose. To distinguish between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines using microelectrical impedance spectroscopy (μEIS). Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF) was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT) was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p < 0.001), was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p < 0.001). Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF. PMID:26998490
[An instrument for estimating human body composition using impedance measurement].
Yin, J; Peng, C
1997-03-01
According to the impedance feature of biological tissue, the instrument was designed at 1, 5, 10, 50, 100kHz to measure human impedance, and then to calculate human FAT, FFM, FAT%, TBW, ECW, ICW and so on. A 8031 singlechip microprocessor contacuting used as a control center in the instrument. The part of electric circuit contacuting human body in the instrument was unreally earthing. The instrument was safty, effective, repeatable, and easily manpulative. Prelimintary clinical experiment showed the results measured with the instrument could effectively reflect practical, status of human composition.
Parametric investigation of enclosed keeper discharge characteristics
NASA Technical Reports Server (NTRS)
Sheheen, T. W.; Finke, R. C.
1973-01-01
Volt-ampere discharge characteristics of an enclosed keeper hollow cathode discharge were measured as a function of the mercury flow rate and external circuit impedance. Discharge currents were varied from 0 to 1 ampere and voltages were 7 to 39 volts. Batteries and a vacuum tube control circuit were used to obtain characteristics curves that were independent of power supply impedance. Variation of the neutral flow results in changes in the discharge which interact with the impedance of the external circuit, and under some conditions, give rise to multiple operating points.
Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
Manh, Tung; Jensen, Geir Uri; Johansen, Tonni F; Hoff, Lars
2013-08-01
Medical ultrasound transducers require matching layers to couple energy from the piezoelectric ceramic into the tissue. Composites of type 0-3 are often used to obtain the desired acoustic impedances, but they introduce challenges at high frequencies, i.e. non-uniformity, attenuation, and dispersion. This paper presents novel acoustic matching layers made as silicon-polymer 1-3 composites, fabricated by deep reactive ion etch (DRIE). This fabrication method is well-established for high-volume production in the microtechnology industry. First estimates for the acoustic properties were found from the iso-strain theory, while the Finite Element Method (FEM) was employed for more accurate modeling. The composites were used as single matching layers in 15 MHz ultrasound transducers. Acoustic properties of the composite were estimated by fitting the electrical impedance measurements to the Mason model. Five composites were fabricated. All had period 16 μm, while the silicon width was varied to cover silicon volume fractions between 0.17 and 0.28. Silicon-on-Insulator (SOI) wafers were used to get a controlled etch stop against the buried oxide layer at a defined depth, resulting in composites with thickness 83 μm. A slight tapering of the silicon side walls was observed; their widths were 0.9 μm smaller at the bottom than at the top, corresponding to a tapering angle of 0.3°. Acoustic parameters estimated from electrical impedance measurements were lower than predicted from the iso-strain model, but fitted within 5% to FEM simulations. The deviation was explained by dispersion caused by the finite dimensions of the composite and by the tapered walls. Pulse-echo measurements on a transducer with silicon volume fraction 0.17 showed a two-way -6 dB relative bandwidth of 50%. The pulse-echo measurements agreed with predictions from the Mason model when using material parameter values estimated from electrical impedance measurements. The results show the feasibility of the fabrication method and the theoretical description. A next step would be to include these composites as one of several layers in an acoustic matching layer stack. Copyright © 2013 Elsevier B.V. All rights reserved.
Yousif, Aziz; Kelly, Shawn K
2016-08-01
There has been a push for a greater number of channels in implantable neuroprosthetic devices; but, that number has largely been limited by current hermetic packaging technology. Microfabricated packaging is becoming reality, but a standard testing system is needed to prepare these devices for clinical trials. Impedance measurements of electrodes built into the packaging layers may give an early warning of device failure and predict device lifetime. Because the impedance magnitudes of such devices can be on the order of gigaohms, a versatile system was designed to accommodate ultra-high impedances and allow future integrated circuit implementation in current neural prosthetic technologies. Here we present the circuitry, control software, and preliminary testing results of our designed system.
NASA Technical Reports Server (NTRS)
Reid, Margaret A.
1989-01-01
Impedances of fifteen electrodes form each of the four U.S. manufactures were measured at 0.200 V vs. the Hg/HgO reference electrode. This corresponds to a voltage of 1.145 for a Ni/H2 cell. Measurements were also made of a representative sample of these at 0.44 V. At the higher voltage, the impedances were small and very similar, but at the lower voltage there were major differences between manufacturers. Electrodes from the same manufacturers showed only small differences. The impedances of electrodes from two manufacturers were considerably different in 26 percent KOH from those in 31 percent KOH. These preliminary results seen to correlate with the limited data from earlier life testing of cells from these manufacturers. The impedances of cells being tested for Space Station Freedom are being followed, and more impendance measurements of electrodes are being performed as functions of manufacturer, voltage, electrolyte concentration, and cycle history in hopes of finding better correlations of impedance with life.
Ficanha, Evandro M; Ribeiro, Guilherme A; Knop, Lauren; Rastgaar, Mo
2017-07-01
This paper describes the methods and experiment protocols for estimation of the human ankle impedance during turning and straight line walking. The ankle impedance of two human subjects during the stance phase of walking in both dorsiflexion plantarflexion (DP) and inversion eversion (IE) were estimated. The impedance was estimated about 8 axes of rotations of the human ankle combining different amounts of DP and IE rotations, and differentiating among positive and negative rotations at 5 instants of the stance length (SL). Specifically, the impedance was estimated at 10%, 30%, 50%, 70% and 90% of the SL. The ankle impedance showed great variability across time, and across the axes of rotation, with consistent larger stiffness and damping in DP than IE. When comparing straight walking and turning, the main differences were in damping at 50%, 70%, and 90% of the SL with an increase in damping at all axes of rotation during turning.
2010-01-01
Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm) acupuncture at the acupoint Kongzui (LU6). The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser) at an acupoint causes direct electrical biosignal changes. PMID:21092296
Bilateral Impedance Control For Telemanipulators
NASA Technical Reports Server (NTRS)
Moore, Christopher L.
1993-01-01
Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.
ONERA-NASA Cooperative Effort on Liner Impedance Eduction
NASA Technical Reports Server (NTRS)
Primus, Julien; Piot, Estelle; Simon, Frank; Jones, Michael G.; Watson, Willie R
2013-01-01
As part of a cooperation between ONERA and NASA, the liner impedance eduction methods developed by the two research centers are compared. The NASA technique relies on an objective function built on acoustic pressure measurements located on the wall opposite the test liner, and the propagation code solves the convected Helmholtz equation in uniform ow using a finite element method that implements a continuous Galerkin discretization. The ONERA method uses an objective function based either on wall acoustic pressure or on acoustic velocity acquired above the liner by Laser Doppler Anemometry, and the propagation code solves the linearized Euler equations by a discontinuous Galerkin discretization. Two acoustic liners are tested in both ONERA and NASA ow ducts and the measured data are treated with the corresponding impedance eduction method. The first liner is a wire mesh facesheet mounted onto a honeycomb core, designed to be linear with respect to incident sound pressure level and to grazing ow velocity. The second one is a conventional, nonlinear, perforate-over-honeycomb single layer liner. Configurations without and with ow are considered. For the nonlinear liner, the comparison of liner impedance educed by NASA and ONERA shows a sensitivity to the experimental conditions, namely to the nature of the source and to the sample width.
Comparison of Norethindrone-Containing OCPs to Desogestrel OCPs and Depro-Provera in Women
1999-10-01
it is easy to use or because it induces amenorrhea (12,20-26). To date, however, no study has directly compared continuation rates among these... exercise may help control this weight gain, a willingness to exercise may be impeded by DMPA use as preliminary studies suggest that this method results...not induce cyclic bleeding, as with DMPA (33). Irregular bleeding may also occur with use of hormonal contraception. However, the frequency of
Value of Impedance Cardiography during 6‐Minute Walk Test in Pulmonary Hypertension
Alkukhun, Laith; Arelli, Vineesha; Ramos, José; Newman, Jennie; McCarthy, Kevin; Pichurko, Bohdan; Minai, Omar A.; Dweik, Raed A.
2013-01-01
Abstract Background Methods that predict prognosis and response to therapy in pulmonary hypertension (PH) are lacking. We tested whether the noninvasive estimation of hemodynamic parameters during 6‐minute walk test (6MWT) in PH patients provides information that can improve the value of the test. Methods We estimated hemodynamic parameters during the 6MWT using a portable, signal‐morphology‐based, impedance cardiograph (PhysioFlow Enduro) with real‐time wireless monitoring via a bluetooth USB adapter. Results We recruited 48 subjects in the study (30 with PH and 18 healthy controls). PH patients had significantly lower maximum stroke volume (SV) and CI and slower cardiac output (CO) acceleration and decelerations slopes during the test when compared with healthy controls. In PH patients, CI change was associated with total distance walked (R = 0.62; P < 0.001) and percentage of predicted (R = 0.4, P = 0.03), HR recovery at 1 minute (0.57, P < 0.001), 2 minutes (0.65, P < 0.001), and 3 minutes (0.66, P < 0.001). Interestingly, in PH patients CO change during the test was predominantly related to an increase in SV instead of HR. Conclusions Estimation of hemodynamic parameters such as cardiac index during 6‐minute walk test is feasible and may provide useful information in patients with PH. Clin Trans Sci 2013; Volume #: 1–7 PMID:24330692
2013-01-01
Background Robot-aided gait training is an emerging clinical tool for gait rehabilitation of neurological patients. This paper deals with a novel method of offering gait assistance, using an impedance controlled exoskeleton (LOPES). The provided assistance is based on a recent finding that, in the control of walking, different modules can be discerned that are associated with different subtasks. In this study, a Virtual Model Controller (VMC) for supporting one of these subtasks, namely the foot clearance, is presented and evaluated. Methods The developed VMC provides virtual support at the ankle, to increase foot clearance. Therefore, we first developed a new method to derive reference trajectories of the ankle position. These trajectories consist of splines between key events, which are dependent on walking speed and body height. Subsequently, the VMC was evaluated in twelve healthy subjects and six chronic stroke survivors. The impedance levels, of the support, were altered between trials to investigate whether the controller allowed gradual and selective support. Additionally, an adaptive algorithm was tested, that automatically shaped the amount of support to the subjects’ needs. Catch trials were introduced to determine whether the subjects tended to rely on the support. We also assessed the additional value of providing visual feedback. Results With the VMC, the step height could be selectively and gradually influenced. The adaptive algorithm clearly shaped the support level to the specific needs of every stroke survivor. The provided support did not result in reliance on the support for both groups. All healthy subjects and most patients were able to utilize the visual feedback to increase their active participation. Conclusion The presented approach can provide selective control on one of the essential subtasks of walking. This module is the first in a set of modules to control all subtasks. This enables the therapist to focus the support on the subtasks that are impaired, and leave the other subtasks up to the patient, encouraging him to participate more actively in the training. Additionally, the speed-dependent reference patterns provide the therapist with the tools to easily adapt the treadmill speed to the capabilities and progress of the patient. PMID:23336754
A synergy-driven approach to a myoelectric hand.
Godfrey, S B; Ajoudani, A; Catalano, M; Grioli, G; Bicchi, A
2013-06-01
In this paper, we present the Pisa/IIT SoftHand with myoelectric control as a synergy-driven approach for a prosthetic hand. Commercially available myoelectric hands are more expensive, heavier, and less robust than their body-powered counterparts; however, they can offer greater freedom of motion and a more aesthetically pleasing appearance. The Pisa/IIT SoftHand is built on the motor control principle of synergies through which the immense complexity of the hand is simplified into distinct motor patterns. As the SoftHand grasps, it follows a synergistic path with built-in flexibility to allow grasping of a wide variety of objects with a single motor. Here we test, as a proof-of-concept, 4 myoelectric controllers: a standard controller in which the EMG signal is used only as a position reference, an impedance controller that determines both position and stiffness references from the EMG input, a standard controller with vibrotactile force feedback, and finally a combined vibrotactile-impedance (VI) controller. Four healthy subjects tested the control algorithms by grasping various objects. All controllers were sufficient for basic grasping, however the impedance and vibrotactile controllers reduced the physical and cognitive load on the user, while the combined VI mode was the easiest to use of the four. While these results need to be validated with amputees, they suggest a low-cost, robust hand employing hardware-based synergies is a viable alternative to traditional myoelectric prostheses.
Testing and analyses of electrochemical cells using frequency response
NASA Technical Reports Server (NTRS)
Norton, O. A., Jr.; Thomas, D. L.
1992-01-01
The feasibility of electrochemical impedance spectroscopy as a method for analyzing battery state of health and state of charge was investigated. Porous silver, zinc, nickel, and cadmium electrodes as well as silver/zinc cells were studied. State of charge could be correlated with impedance data for all but the nickel electrodes. State of health was correlated with impedance data for two silver/zinc cells, one apparently good and the other dead. The experimental data were fit to equivalent circuit models.
Impedance spectroscopy for the detection and identification of unknown toxins
NASA Astrophysics Data System (ADS)
Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.
2012-06-01
Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.
Liu, Guangda; Wang, Xianzhong; Cai, Jing; Wang, Wei; Zha, Yutong
2016-12-01
Considering the importance of the human respiratory signal detection and based on the Cole-Cole bio-impedance model,we developed a wearable device for detecting human respiratory signal.The device can be used to analyze the impedance characteristics of human body at different frequencies based on the bio-impedance theory.The device is also based on the method of proportion measurement to design a high signal to noise ratio(SNR)circuit to get human respiratory signal.In order to obtain the waveform of the respiratory signal and the value of the respiration rate,we used the techniques of discrete Fourier transform(DFT)and dynamic difference threshold peak detection.Experiments showed that this system was valid,and we could see that it could accurately detect the waveform of respiration and the detection accuracy rate of respiratory wave peak point detection results was over 98%.So it can meet the needs of the actual breath test.
Method, system and computer-readable media for measuring impedance of an energy storage device
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.
2016-01-26
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
Anti-islanding Protection of Distributed Generation Using Rate of Change of Impedance
NASA Astrophysics Data System (ADS)
Shah, Pragnesh; Bhalja, Bhavesh
2013-08-01
Distributed Generation (DG), which is interlinked with distribution system, has inevitable effect on distribution system. Integrating DG with the utility network demands an anti-islanding scheme to protect the system. Failure to trip islanded generators can lead to problems such as threats to personnel safety, out-of-phase reclosing, and degradation of power quality. In this article, a new method for anti-islanding protection based on impedance monitoring of distribution network is carried out in presence of DG. The impedance measured between two phases is used to derive the rate of change of impedance (dz/dt), and its peak values are used for final trip decision. Test data are generated using PSCAD/EMTDC software package and the performance of the proposed method is evaluated in MatLab software. The simulation results show the effectiveness of the proposed scheme as it is capable to detect islanding condition accurately. Subsequently, it is also observed that the proposed scheme does not mal-operate during other disturbances such as short circuit and switching event.
Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen
2015-12-01
The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.
Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery
NASA Astrophysics Data System (ADS)
Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki
2016-05-01
A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.
A new approach of active compliance control via fuzzy logic control for multifingered robot hand
NASA Astrophysics Data System (ADS)
Jamil, M. F. A.; Jalani, J.; Ahmad, A.
2016-07-01
Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.
MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAHN,H.; DAVINO,D.
2001-06-18
Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S{sub 21} forward transmission coefficient. A commercial 450 {Omega} twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable inmore » magnitude, but differ from Handbook predictions.« less
RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAHN,H.; DAVINO,D.
2002-06-02
Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without externalmore » resistive damping, such as the RHIC abort kicker, would benefit.« less
Borrelli, O; Mancini, V; Thapar, N; Ribolsi, M; Emerenziani, S; de'Angelis, G; Bizzarri, B; Lindley, K J; Cicala, M
2014-04-01
The diagnostic corroboration of the relationship between gastro-oesophageal reflux disease (GERD) and chronic cough remains challenging. To compare oesophageal mucosal intercellular space diameter (ISD) in children with GERD, children with gastro-oesophageal reflux (GER)-related cough (GrC) and a control group, and to explore the relationship between baseline impedance levels and dilated ISD in children with GER-related cough. Forty children with GERD, 15 children with GrC and 12 controls prospectively underwent oesophagogastroduodenoscopy (EGD) with oesophageal biopsies taken 2-3 cm above squamocolumnar junction. ISD were quantified using transmission electron microscopy. Impedance-pH monitoring with evaluation of baseline impedance in the most distal impedance channel was performed in both patient groups. A significant difference in mean ISD values was found between GrC patients (0.9 ± 0.2 μm) and controls (0.5 ± 0.2 μm, P < 0.001), whereas there was no difference between GrC and GERD group (1 ± 0.3 μm, NS). No difference was found in the mean ISD between GrC children with or without pathological oesophageal acid exposure time (1 ± 0.3 vs. 0.9 ± 0.2 μm), and there was no correlation between ISD and any reflux parameter. Finally, there was no correlation between ISD and distal baseline impedance values (r:-0.35; NS). In children with reflux-related cough, dilated intercellular space diameter appears to be an objective and useful marker of oesophageal mucosal injury regardless of acid exposure, and its evaluation should be considered for those patients where the diagnosis is uncertain. In children with reflux-related cough, baseline impedance levels have no role in identifying reflux-induced oesophageal mucosal ultrastructural changes. © 2014 John Wiley & Sons Ltd.
Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements
NASA Technical Reports Server (NTRS)
Ross, Richard W.; Hinton, Yolanda L.
2008-01-01
Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.
Penta, Virgil; Pirvu, Cristian; Demetrescu, Ioana
2014-01-01
The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects.
Langley, Robin S; Cotoni, Vincent
2010-04-01
Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.
Chaudhry, Naueen A; Zahid, Kamran; Keihanian, Sara; Dai, Yunfeng; Zhang, Qing
2017-11-28
To investigate the behavior of pulsatile pressure zones (PPZ's) as noted on high resolution esophageal impedance manometry (HREIM), and determine their association with dysphagia. Retrospective, single center case control design screening HREIM studies for cases (dysphagia) and controls (no dysphagia). Thoracic radiology studies were reviewed further in cases for (thoracic cardiovascular) thoracic cardiovascular (TCV) structures in esophageal proximity to compare with HREIM findings. Manometric data was collected for number, location, axial length, PPZ pressure and esophageal clearance function (impedance). Among 317 screened patients, 56% cases and 64% controls had PPZ's. Fifty cases had an available thoracic radiology comparison. The distribution of PPZ's in these 50 cases and 59 controls was similar (average 1.4 PPZ/patient). Controls (mean 31.2 ± SD 12 years) were a significantly younger population than cases (mean 67.3 ± SD 14.9 years) with P < 0.0001. The upright posture PPZ pressure was higher in controls (15.7 ± 10.0 mmHg) than cases (10.8 ± 9.7 mmHg). Although statistically significant ( P = 0.005), it was a weak predictor using logistic regression and ROC model (AUC = 0.65). Three dysphagia patients had partial compression from external TCV on radiology (1 aberrant subclavian artery, 2 dilated left atrium). The posture (supine vs upright) with more prominent PPZ's impaired bolus clearance in 9 additional cases by > 20%. Transmitted TCV pulsations observed in HREIM bear no significant impact on swallowing. However, in older adults with dysphagia, evidence of impaired bolus clearance on impedance should be evaluated for external TCV compression. These associations have never been explored previously in literature, and are novel.
Bioelectrical Impedance and Body Composition Assessment
ERIC Educational Resources Information Center
Martino, Mike
2006-01-01
This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…
Evaluation of Wall Boundary Conditions for Impedance Eduction Using a Dual-Source Method
NASA Technical Reports Server (NTRS)
Watson, W. R.; Jones, M. G.
2012-01-01
The accuracy of the Ingard-Myers boundary condition and a recently proposed modified Ingard-Myers boundary condition is evaluated for use in impedance eduction under the assumption of uniform mean flow. The evaluation is performed at three centerline Mach numbers, using data acquired in a grazing flow impedance tube, using both upstream and downstream propagating sound sources, and on a database of test liners for which the expected behavior of the impedance spectra is known. The test liners are a hard-wall insert consisting of 12.6 mm thick aluminum, a linear liner without a facesheet consisting of a number of small diameter but long cylindrical channels embedded in a ceramic material, and two conventional nonlinear liners consisting of a perforated facesheet bonded to a honeycomb core. The study is restricted to a frequency range for which only plane waves are cut on in the hard-wall sections of the flow impedance tube. The metrics used to evaluate each boundary condition are 1) how well it educes the same impedance for upstream and downstream propagating sources, and 2) how well it predicts the expected behavior of the impedance spectra over the Mach number range. The primary conclusions of the study are that the same impedance is educed for upstream and downstream propagating sources except at the highest Mach number, that an effective impedance based on both the upstream and downstream measurements is more accurate than an impedance based on the upstream or downstream data alone, and that the Ingard-Myers boundary condition with an effective impedance produces results similar to that achieved with the modified Ingard-Myers boundary condition.
Duct wall impedance control as an advanced concept for acoustic impression
NASA Technical Reports Server (NTRS)
Dean, P. D.; Tester, B. J.
1975-01-01
Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.
Blocky inversion of multichannel elastic impedance for elastic parameters
NASA Astrophysics Data System (ADS)
Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza
2018-04-01
Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.
sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand
Jiang, Yinlai; Togane, Masami; Lu, Baoliang; Yokoi, Hiroshi
2017-01-01
One of the greatest challenges of using a myoelectric prosthetic hand in daily life is to conveniently measure stable myoelectric signals. This study proposes a novel surface electromyography (sEMG) sensor using polypyrrole-coated nonwoven fabric sheet as electrodes (PPy electrodes) to allow people with disabilities to control prosthetic limbs. The PPy electrodes are sewn on an elastic band to guarantee close contact with the skin and thus reduce the contact electrical impedance between the electrodes and the skin. The sensor is highly customizable to fit the size and the shape of the stump so that people with disabilities can attach the sensor by themselves. The performance of the proposed sensor was investigated experimentally by comparing measurements of Ag/AgCl electrodes with electrolytic gel and the sEMG from the same muscle fibers. The high correlation coefficient (0.87) between the two types of sensors suggests the effectiveness of the proposed sensor. Another experiment of sEMG pattern recognition to control myoelectric prosthetic hands showed that the PPy electrodes are as effective as Ag/AgCl electrodes for measuring sEMG signals for practical myoelectric control. We also investigated the relation between the myoelectric signals' signal-to-noise ratio and the source impedances by simultaneously measuring the source impedances and the myoelectric signals with a switching circuit. The results showed that differences in both the norm and the phase of the source impedance greatly affect the common mode noise in the signal. PMID:28220058
The effect of a lignosulphate type additive on the lead—acid battery positive plate reactions
NASA Astrophysics Data System (ADS)
Ovuru, S. E.; Harrison, J. A.
The electrochemical formation of lead dioxide has been investigated at a lead electrode in a 5 M sulphuric acid solution, and in the presence of phosphoric acid and lignosulphate-type additive. The formation of lead dioxide from lead sulphate, and the reverse reaction, have been investigated by the linear potential sweep method, by an impedance method in which the impedance was measured at the end of each pulse during a potential pulse train, and by a charging curve method in which the current and charge was measured during a similar potential pulse train. The charge measurements prove that the main effect of the additive is to decrease the accompanying oxygen evolution reaction. The impedance measurements, however, show that the additive has a small but significant effect on the structure of the solid lead sulphate and lead dioxide layers.
Voltage Based Detection Method for High Impedance Fault in a Distribution System
NASA Astrophysics Data System (ADS)
Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama
2016-09-01
High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.
Scheme for rapid adjustment of network impedance
Vithayathil, John J.
1991-01-01
A static controlled reactance device is inserted in series with an AC electric power transmission line to adjust its transfer impedance. An inductor (reactor) is serially connected with two back-to-back connected thyristors which control the conduction period and hence the effective reactance of the inductor. Additional reactive elements are provided in parallel with the thyristor controlled reactor to filter harmonics and to obtain required range of variable reactance. Alternatively, the static controlled reactance device discussed above may be connected to the secondary winding of a series transformer having its primary winding connected in series to the transmission line. In a three phase transmission system, the controlled reactance device may be connected in delta configuration on the secondary side of the series transformer to eliminate triplen harmonics.
Acoustic Absorption Characteristics of an Orifice With a Mean Bias Flow
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)
2000-01-01
The objective of the study reported here was to acquire acoustic and flow data for numerical validation of impedance models that simulate bias flow through perforates. The impedance model is being developed by researchers at High Technology Corporation. This report documents normal incidence impedance measurements a singular circular orifice with mean flow passing through it. All measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube. The mean flow is introduced upstream of the orifice (with the flow and incident sound wave travelling in the same direction) with an anechoic termination downstream of the orifice. Velocity profiles are obtained upstream of the orifice to characterize the inflow boundary conditions. Velocity in the center of the orifice is also obtained. All velocity measurements are made with a hot wire anemometer and subsequent checked with mass flow measurements made concurrently. All impedance measurements are made using the Two-Microphone Method. Although we have left the analysis of the data to the developers of the impedance models that simulate bias flow through perforate, our initial examination indicates that our results follow the trends consistent with published theory on impedance of perforates with a steady bias flow.
NASA Astrophysics Data System (ADS)
Sharp, Andy; Heath, Jennifer; Peterson, Janet
2008-05-01
Consumer grade bioelectric impedance analysis (BIA) instruments measure the body's impedance at 50 kHz, and yield a quick estimate of percent body fat. The frequency dependence of the impedance gives more information about the current pathway and the response of different tissues. This study explores the impedance response of human tissue at a range of frequencies from 0.2 - 102 kHz using a four probe method and probe locations standard for segmental BIA research of the arm. The data at 50 kHz, for a 21 year old healthy Caucasian male (resistance of 180φ±10 and reactance of 33φ±2) is in agreement with previously reported values [1]. The frequency dependence is not consistent with simple circuit models commonly used in evaluating BIA data, and repeatability of measurements is problematic. This research will contribute to a better understanding of the inherent difficulties in estimating body fat using consumer grade BIA devices. [1] Chumlea, William C., Richard N. Baumgartner, and Alex F. Roche. ``Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectrical impedance.'' Am J Clin Nutr 48 (1998): 7-15.
Optimisation of micro-perforated cylindrical silencers in linear and nonlinear regimes
NASA Astrophysics Data System (ADS)
Bravo, Teresa; Maury, Cédric; Pinhède, Cédric
2016-02-01
This paper describes analytical and experimental studies conducted to understand the potential of lightweight non-fibrous alternatives to dissipative mufflers for in-duct noise control problems, especially under high sound pressure levels (SPLs) and in the low frequency domain. The cost-efficient multi-modal propagation method has been extended to predict nonlinear effects in the dissipation and the transmission loss (TL) of micro-perforated cylindrical liners with sub-millimetric holes diameter. A validation experiment was performed in a standing wave tube to measure the power dissipated and transmitted by a nonlocally reacting liner under moderate and high SPLs. Although nonlinear effects significantly reduce the dissipation and TL around the liner maximum damping frequency, these power quantities may be enhanced below the half-bandwidth resonance. An optimal value of the in-hole peak particle velocity has been found that maximizes the TL of locally reacting liners at low frequencies. Optimisation studies based on dissipation or TL maximization showed the sensitivity of the liner constituting parameters to variations in the design target range such as the center frequency, the levels of acoustic excitation and the nature of the surface impedance (locally or nonlocally reacting). An analysis is proposed of the deviation observed at low frequencies between the optimum impedance of the locally reacting liner under moderate SPLs and Cremer's optimum impedances.
Advanced Bode Plot Techniques for Ultrasonic Transducers
NASA Astrophysics Data System (ADS)
DeAngelis, D. A.; Schulze, G. W.
The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.
New Approaches in Force-Limited Vibration Testing of Flight Hardware
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Kern, Dennis L.
2012-01-01
To qualify flight hardware for random vibration environments the following methods are used to limit the loads in the aerospace industry: (1) Response limiting and notching (2) Simple TDOF model (3) Semi-empirical force limits (4) Apparent mass, etc. and (5) Impedance method. In all these methods attempts are made to remove conservatism due to the mismatch in impedances between the test and the flight configurations of the hardware that are being qualified. Assumption is the hardware interfaces have correlated responses. A new method that takes into account the un-correlated hardware interface responses are described in this presentation.
Grimaldi, E; Del Vecchio, L; Scopacasa, F; Lo Pardo, C; Capone, F; Pariante, S; Scalia, G; De Caterina, M
2009-04-01
The Abbot Cell-Dyn Sapphire is a new generation haematology analyser. The system uses optical/fluorescence flow cytometry in combination with electronic impedance to produce a full blood count. Optical and impedance are the default methods for platelet counting while automated CD61-immunoplatelet analysis can be run as selectable test. The aim of this study was to determine the platelet count performance of the three counting methods available on the instrument and to compare the results with those provided by Becton Dickinson FACSCalibur flow cytometer used as reference method. A lipid interference experiment was also performed. Linearity, carryover and precision were good, and satisfactory agreement with reference method was found for the impedance, optical and CD61-immunoplatelet analysis, although this latter provided the closest results in comparison with flow cytometry. In the lipid interference experiment, a moderate inaccuracy of optical and immunoplatelet counts was observed starting from a very high lipid value.
Estimation of limb adiposity by bioimpedance spectroscopy in lymphoedema
NASA Astrophysics Data System (ADS)
Ward, L. C.; Essex, T.; Gaw, R.; Czerniec, S.; Dylke, E.; Abell, B.; Kilbreath, S. L.
2013-04-01
Lymphoedema is a chronic debilitating condition that may occur in approximately 25% of women treated for breast cancer. As the condition progresses, accumulated lymph fluid becomes fibrotic with infiltration of adipose tissue. Bioelectrical impedance spectroscopy is the preferred method for early detection of lymphoedema based on the measurement of impedance of extracellular fluid. The present study assessed whether these impedance measurements could also be used to estimate the adipose tissue content of the arm based on a model previously used to predict whole body composition. Estimates of arm adipose tissue in a cohort of women with lymphoedema were found to be highly correlated (r > 0.82) with measurements of adipose tissue obtained using the reference method of dual energy X-ray absorptiometry. Paired t-tests confirmed that there was no significant difference between the adipose tissue volumes obtained by the two methods. These results support the view that the method shows promise for the estimation of arm adiposity in lymphoedema.
The uses and limitations of the square‐root‐impedance method for computing site amplification
Boore, David
2013-01-01
The square‐root‐impedance (SRI) method is a fast way of computing approximate site amplification that does not depend on the details from velocity models. The SRI method underestimates the peak response of models with large impedance contrasts near their base, but the amplifications for those models is often close to or equal to the root mean square of the theoretical full resonant (FR) response of the higher modes. On the other hand, for velocity models made up of gradients, with no significant impedance changes across small ranges of depth, the SRI method systematically underestimates the theoretical FR response over a wide frequency range. For commonly used gradient models for generic rock sites, the SRI method underestimates the FR response by about 20%–30%. Notwithstanding the persistent underestimation of amplifications from theoretical FR calculations, however, amplifications from the SRI method may often provide more useful estimates of amplifications than the FR method, because the SRI amplifications are not sensitive to details of the models and will not exhibit the many peaks and valleys characteristic of theoretical full resonant amplifications (jaggedness sometimes not seen in amplifications based on averages of site response from multiple recordings at a given site). The lack of sensitivity to details of the velocity models also makes the SRI method useful in comparing the response of various velocity models, in spite of any systematic underestimation of the response. The quarter‐wavelength average velocity, which is fundamental to the SRI method, is useful by itself in site characterization, and as such, is the fundamental parameter used to characterize the site response in a number of recent ground‐motion prediction equations.
Piervirgili, G; Petracca, F; Merletti, R
2014-10-01
A model-based new procedure for measuring the single electrode-gel-skin impedance (ZEGS) is presented. The method is suitable for monitoring the contact impedance of the electrodes of a large array with limited modifications of the hardware and without removing or disconnecting the array from the amplifier. The procedure is based on multiple measurements between electrode pairs and is particularly suitable for electrode arrays. It has been applied to study the effectiveness of three skin treatments, with respect to no treatment, for reducing the electrode-gel-skin impedance (ZEGS) and noise: (i) rubbing with alcohol; (ii) rubbing with abrasive conductive paste; (iii) stripping with adhesive tape. The complex impedances ZEGS of the individual electrodes were measured by applying this procedure to disposable commercial Ag-AgCl gelled electrode arrays (4 × 1) with a 5 mm(2) contact area. The impedance unbalance ΔZ = ZEGS1 - ZEGS2 and the RMS noise (VRMS) were measured between pairs of electrodes. The tissue impedance ZT was also obtained, as a collateral result. Measurements were repeated at t0 = 0 min and at t30 = 30 min from the electrode application. Mixed linear models and linear regression analysis applied to ZEGS, ΔZ and noise VRMS for the skin treatment factor demonstrated (a) that skin rubbing with abrasive conductive paste is more effective in lowering ZEGS, ΔZ and VRMS (p < 0.01) than the other treatments or no treatment, and (b) a statistically significant decrement (p < 0.01), between t0 and t30, of magnitude and phase of ZEGS.Rubbing with abrasive conductive paste significantly decreased the noise VRMS with respect to other treatments or no treatment.
Printed circuit board impedance matching step for microwave (millimeter wave) devices
Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul
2013-10-01
An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.
Smart mug to measure hand's geometrical mechanical impedance.
Hondori, Hossein Mousavi; Tech, Ang Wei
2011-01-01
A novel device, which looks like a mug, has been proposed for measuring the impedance of human hand. The device is designed to have convenient size and light weight similar to an ordinary coffee mug. It contains a 2-axis inertia sensor to monitor vibration and a small motor to carry an eccentric mass (m=100 gr, r=2 cm, rpm=600). The centrifugal force due to the rotating mass applies a dynamic force to the hand that holds the mug. Correlation of the acceleration signals with the perturbing force gives the geometrical mechanical impedance. Experimental results on a healthy subject shows that impedance is posture dependant while it changes with the direction of the applied perturbing force. For nine postures the geometrical impedance is obtained all of which have elliptical shapes. The method can be used for assessment of spasticity and monitoring stability in patients with stroke or similar problems.
Ion transport restriction in mechanically strained separator membranes
NASA Astrophysics Data System (ADS)
Cannarella, John; Arnold, Craig B.
2013-03-01
We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.
Ehmler, Hartmut; Köppen, Matthias
2007-10-01
The impedance spectrum test was employed for detection of short circuits within Wendelstein 7-X (W7-X) superconducting magnetic field coils. This test is based on measuring the complex impedance over several decades of frequency. The results are compared to predictions of appropriate electrical equivalent circuits of coils in different production states or during cold test. When the equivalent circuit is not too complicated the impedance can be represented by an analytic function. A more detailed analysis is performed with a network simulation code. The overall agreement of measured and calculated or simulated spectra is good. Two types of short circuits which appeared are presented and analyzed. The detection limit of the method is discussed. It is concluded that combined high-voltage ac and low-voltage impedance spectrum tests are ideal means to rule out short circuits in the W7-X coils.
Lungu, Codrin; Tarulli, Andrew W; Tarsy, Daniel; Mongiovi, Phillip; Vanderhorst, Veronique G; Rutkove, Seward B
2011-05-01
Cervical dystonia (CD) lacks an objective quantitative measure. Electrical impedance myography (EIM) is a non-invasive assessment method sensitive to changes in muscle structure and physiology. We evaluate the potential role of EIM in quantifying CD, hypothesizing that patients would demonstrate differences in the symmetry of muscle electrical resistance compared to controls, and that this asymmetry would decrease after botulinum neurotoxin (BoNT) treatment. EIM was performed on the sternocleidomastoid (SCM) and cervical paraspinal (PS) muscles of CD patients and age-matched controls. 50 kHz resistance was analyzed, comparing side-to-side asymmetry in patients and controls, and, in patients, before and after BoNT treatment. Sixteen patients and 10 controls were included. Resistance asymmetry was on average 3-5 times higher in patients than controls. Receiver operating characteristic analysis demonstrated 91% accuracy of discriminating CD from normal. From pre-treatment to maximum BoNT effect, asymmetry decreased from 20.8(13.9-26.1)% to 6.2(3.1-9.9)% (SCM), and from 16.0(14.3-16.0)% to 8.4(7.0-9.2)% (PS), p<0.05 (median, interquartile range). EIM effectively differentiates normal subjects from CD patients by revealing asymmetries in resistance values and detects improvement in muscle symmetry after treatment. These results suggest that EIM, a painless, non-invasive measure, can provide a useful quantitative metric in CD evaluation and deserves further study. Published by Elsevier Ireland Ltd.
Song, Junho; Lucht, Benjamin; Hynynen, Kullervo
2012-07-01
With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.
Design and optimization of membrane-type acoustic metamaterials
NASA Astrophysics Data System (ADS)
Blevins, Matthew Grant
One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.
Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
van der Kooij, Herman; Veneman, Jan; Ekkelenkamp, Ralf
2006-01-01
We have designed and built a lower extremity powered exo-skeleton (LOPES) for the training of post-stroke patients. This paper describes the philosophy behind the design of LOPES, motivates the choices that have been made and gives some exemplary results of the ranges of mechanical impedances that can be achieved.
Isentropic compressive wave generator impact pillow and method of making same
Barker, Lynn M.
1985-01-01
An isentropic compressive wave generator and method of making same. The w generator comprises a disk or flat "pillow" member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.
Isentropic compressive wave generator and method of making same
Barker, L.M.
An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.
Oscillation mechanics of the respiratory system.
Bates, Jason H T; Irvin, Charles G; Farré, Ramon; Hantos, Zoltán
2011-07-01
The mechanical impedance of the respiratory system defines the pressure profile required to drive a unit of oscillatory flow into the lungs. Impedance is a function of oscillation frequency, and is measured using the forced oscillation technique. Digital signal processing methods, most notably the Fourier transform, are used to calculate impedance from measured oscillatory pressures and flows. Impedance is a complex function of frequency, having both real and imaginary parts that vary with frequency in ways that can be used empirically to distinguish normal lung function from a variety of different pathologies. The most useful diagnostic information is gained when anatomically based mathematical models are fit to measurements of impedance. The simplest such model consists of a single flow-resistive conduit connecting to a single elastic compartment. Models of greater complexity may have two or more compartments, and provide more accurate fits to impedance measurements over a variety of different frequency ranges. The model that currently enjoys the widest application in studies of animal models of lung disease consists of a single airway serving an alveolar compartment comprising tissue with a constant-phase impedance. This model has been shown to fit very accurately to a wide range of impedance data, yet contains only four free parameters, and as such is highly parsimonious. The measurement of impedance in human patients is also now rapidly gaining acceptance, and promises to provide a more comprehensible assessment of lung function than parameters derived from conventional spirometry. © 2011 American Physiological Society.
Ambulatory Monitoring of Congestive Heart Failure by Multiple Bioelectric Impedance Vectors
Khoury, Dirar S.; Naware, Mihir; Siou, Jeff; Blomqvist, Andreas; Mathuria, Nilesh S.; Wang, Jianwen; Shih, Hue-Teh; Nagueh, Sherif F.; Panescu, Dorin
2009-01-01
Objectives To investigate properties of multiple bioelectric impedance signals recorded during congestive heart failure (CHF) by utilizing various electrode configurations of an implanted cardiac resynchronization therapy (CRT) system. Background Monitoring of CHF has relied mainly on right-heart sensors. Methods Fifteen normal dogs underwent implantation of CRT systems using standard leads. An additional left atrial (LA) pressure lead-sensor was implanted in 5 dogs. Continuous rapid right ventricular (RV) pacing was applied over several weeks. Left ventricular (LV) catheterization and echocardiography were performed biweekly. Six steady-state impedance signals, utilizing intrathorcaic and intracardiac vectors, were measured via ring (r), coil (c), and device Can electrodes. Results All animals developed CHF after 2–4 weeks of pacing. Impedance diminished gradually during CHF induction, but at varying rates for different vectors. Impedance during CHF decreased significantly in all measured vectors: LVr-Can, −17%; LVr-RVr, −15%; LVr-RAr, −11%; RVr-Can, −12%; RVc-Can, −7%; RAr-Can, −5%. The LVr-Can vector reflected both the fastest and largest change in impedance in comparison to vectors employing only right-heart electrodes, and was highly reflective of changes in LV end-diastolic volume and LA pressure. Conclusions Impedance, acquired via different lead-electrodes, have variable responses to CHF. Impedance vectors employing a LV lead are highly responsive to physiologic changes during CHF. Measuring multiple impedance signals could be useful for optimizing ambulatory monitoring in heart failure patients. PMID:19298923
A Comparison of Three Methods to Measure Percent Body Fat on Mentally Retarded Adults.
ERIC Educational Resources Information Center
Burkett, Lee N.; And Others
1994-01-01
Reports a study that compared three measures for determining percent body fat in mentally retarded adults (multiple skinfolds and circumference measurements, Infrared Interactance, and Bioelectrical Impedance). Results indicated the Bioelectrical Impedance Analyzer and Infrared Interactance Analyzer produced values for percent body fat that were…
Aeolian vibration control of overhead electrical transmission line conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sireteanu, T.; Migdalovici, M.; Videa, E.
The paper presents a mathematical model and an analytical procedure to control the wind induced vibration of a single conductor such that the dynamic strain about the suspension clamp is kept within the imposed safety limits. The method is based on the energy balance principle which takes into account the wind energy input, the energy dissipated by the conductor self-damping properties and by the Stockbridge dampers which are frequently used for the aeolian vibration control. The damping characteristics of the Stockbridge dampers are expressed in terms of their mechanical impedance determined experimentally on a vibration exciter. The method can bemore » used to establish whether or not it is necessary to equip the conductor by Stockbridge dampers, which type of damper is more suitable for a given conductor, span length and EDS (every day stress), the necessary number of dampers as well as their optimum spacing on the conductor.« less
A method for analyzing electrical impedance spectroscopy data from breast cancer patients
Kim, Bong Seok; Isaacson, David; Xia, Hongjun; Kao, Tzu-Jen; Newell, Jonathan C; Saulnier, Gary J
2008-01-01
Research on freshly-excised malignant breast tissues and surrounding normal tissues in an in vitro impedance cell has shown that breast tumors have different conductivity and permittivity from normal or non-malignant tissues. This contrast may provide a basis for breast cancer detection using electrical impedance imaging. This paper describes a procedure for collecting electrical impedance spectroscopy data simultaneously and in register with tomosynthesis data from patients. We describe the methods used to analyze the data in order to determine if the electrodes are making contact with the breast of the patient. Canonical voltage patterns are applied and used to synthesize the data that would have resulted from constant voltage patterns applied to each of two parallel mammography plates. A type of Cole–Cole plot is generated and displayed from each of the currents measured on each of the electrodes for each of the frequencies (5, 10, 30, 100 and 300 kHz) of applied voltages. We illustrate the potential usefulness of these displays in distinguishing breast cancer from benign lesions with the Cole–Cole plots for two patients—one having cancer and one having a benign lesion—by comparing these graphs with electrical impedance spectra previously found by Jossinet and Schmitt in tissue samples taken from a variety of patients. PMID:17664638
Monitoring Cole-Cole parameters during haemodialysis (HD).
Al-Surkhi, Omar I; Riu, P J; Vazquez, F F; Ibeas, J
2007-01-01
The investigation of the hydration process during the haemodialysis treatment sessions is very important for the development of methods for predicting the unbalanced fluid shifts and hypotension crisis hence improving the quality of the haemodialysis procedure. Bioimpedance measurements can give valuable information about the tissue under measurement, therefore characterizing the tissue. In this work we propose a non-invasive method based on local multifrequency bioimpedance measurements that allow us to determine the fluid distribution and variations during haemodialysis. Clinical measurements were done using 10 HD patients during 60 HD sessions. Bioimpedance data, ultrafiltration volume, blood volume and blood heamatocrit variations were recorded continuously during the HD sessions. Bioimpedance of the local tissue was measured with a 4-elctrode impedance system using surface electrodes with sampling rate of 1meas./4min. at 6 different frequencies. The measured impedances were fitted into Cole-Cole model and the Cole-Cole parameters were continuously determined for each measurement point during the HD session. The 4 Cole-Cole parameters (R 00, R 0, Fc,alpha) and their variations were evaluated. Impedance values at infinite and zero (R 00, R 0) frequencies were extrapolated from Cole-Cole mathematical model. These values are assumed to represent the impedance of total tissue fluid and the impedance of the extracellular space respectively.
A method for analyzing electrical impedance spectroscopy data from breast cancer patients.
Kim, Bong Seok; Isaacson, David; Xia, Hongjun; Kao, Tzu-Jen; Newell, Jonathan C; Saulnier, Gary J
2007-07-01
Research on freshly-excised malignant breast tissues and surrounding normal tissues in an in vitro impedance cell has shown that breast tumors have different conductivity and permittivity from normal or non-malignant tissues. This contrast may provide a basis for breast cancer detection using electrical impedance imaging. This paper describes a procedure for collecting electrical impedance spectroscopy data simultaneously and in register with tomosynthesis data from patients. We describe the methods used to analyze the data in order to determine if the electrodes are making contact with the breast of the patient. Canonical voltage patterns are applied and used to synthesize the data that would have resulted from constant voltage patterns applied to each of two parallel mammography plates. A type of Cole-Cole plot is generated and displayed from each of the currents measured on each of the electrodes for each of the frequencies (5, 10, 30, 100 and 300 kHz) of applied voltages. We illustrate the potential usefulness of these displays in distinguishing breast cancer from benign lesions with the Cole-Cole plots for two patients--one having cancer and one having a benign lesion--by comparing these graphs with electrical impedance spectra previously found by Jossinet and Schmitt in tissue samples taken from a variety of patients.
Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition.
Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung
2015-07-07
Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.
Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition
Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung
2015-01-01
Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method. PMID:26198231
NASA Astrophysics Data System (ADS)
Wolfe, Joe; Smith, John; Tann, John; France, Ryan
2002-11-01
Acoustic pressures may generally be measured with much greater sensitivity, dynamic range, and frequency response than acoustic currents. Consequently, most measurements of acoustic impedance consist of comparison with standard impedances. The method reported here uses a semi-infinite waveguide as the reference because its impedance is purely resistive, frequency independent and accurately known, independent of theories of the boundary layer. Waveguides are effectively infinite for pulses shorter than the echo return time, or if the attenuation due to wall losses (typically 80 dB) exceeds the dynamic range of the experiment. The measurement signal from a high output impedance source is calibrated to have Fourier components proportional to fn, where n may be 1 for convenience or chosen to improve the signal:noise ratio. The method has been used on diverse systems over the range 50 Hz to 13 kHz. When applied to systems with simple geometries, the technique yields results with a little higher wall losses than those expected from the calculations of Rayleigh and Benade. Discontinuities introduce further losses as well as the expected departures from simple one-dimensional models. Measurements on musical wind instruments and on the human vocal tract are reported. [Work supported by the Australian Research Council.
NASA Astrophysics Data System (ADS)
Scheyer, Austin G.; Anton, Steven R.
2017-04-01
Embedding sensors within additive manufactured (AM) structures gives the ability to develop smart structures that are capable of monitoring the mechanical health of a system. AM provides an opportunity to embed sensors within a structure during the manufacturing process. One major limitation of AM technology is the ability to verify the geometric and material properties of fabricated structures. Over the past several years, the electromechanical impedance (EMI) method for structural health monitoring (SHM) has been proven to be an effective method for sensing damage in structurers. The EMI method utilizes the coupling between the electrical and mechanical properties of a piezoelectric transducer to detect a change in the dynamic response of a structure. A piezoelectric device, usually a lead zirconate titanate (PZT) ceramic wafer, is bonded to a structure and the electrical impedance is measured across as range of frequencies. A change in the electrical impedance is directly correlated to changes made to the mechanical condition of the structure. In this work, the EMI method is employed on piezoelectric transducers embedded inside AM parts to evaluate the feasibility of performing SHM on parts fabricated using additive manufacturing. The fused deposition modeling (FDM) method is used to print specimens for this feasibility study. The specimens are printed from polylactic acid (PLA) in the shape of a beam with an embedded monolithic piezoelectric ceramic disc. The specimen is mounted as a cantilever while impedance measurements are taken using an HP 4194A impedance analyzer. Both destructive and nondestructive damage is simulated in the specimens by adding an end mass and drilling a hole near the free end of the cantilever, respectively. The Root Mean Square Deviation (RMSD) method is utilized as a metric for quantifying damage to the system. In an effort to determine a threshold for RMSD, the values are calculated for the variation associated with taking multiple measurements and with re-clamping the cantilever, and determined to be 0.154, and 3.125 respectively. The RMSD value of the cantilever with a 400 g end mass is 11.39, and the RMSD value of the cantilever with a 4 mm hole near the end is 12.15. From these results, it can be determined that the damaged cases have much higher RMSD values than the RMSD values associated with measurements and set up variability of the healthy structure.
Sepulveda, Danna; Varela, Andres; Del Portillo, Patricia
2017-01-01
Bioelectrochemical sensing of Mycobacterium tuberculosis through electro-immunosensors is a promising technique to detect relevant analytes. In general, immunosensors require the formation of organic assemblies by the adsorption of molecular constituents. Moreover, they depend on the correct immobilization of the bio-recognition element in the biosensor. These procedures cannot be easily monitored without the use of invasive methods. In this work, an impedance analysis technique was used, as a non-invasive method, to measure and differentiate the manufacturing stages of the sensors. Biomicrosystems were fabricated through physical vapor deposition (PVD) of 80 nm Au nanolayers on 35 µm copper surfaces. Later, the surface was modified through thiolation methods generating a self-assembled-monolayer (SAM) with 20 mM 4-aminothiophenol (4-ATP) on which a polyclonal antibody (pAb) was covalently attached. Using impedance analysis, every step of the electro-immunosensor fabrication protocol was characterized using 40 independent replicas. Results showed that, compared to the negative controls, distilled water, and 0.5 µg/mL HSA, a maximum variation of 171% between each replica was achieved when compared to samples containing 0.5 µg/mL of ESAT-6 M. tuberculosis immunodominant protein. Therefore, this development validates a non-invasive method to electrically monitor the assembly process of electro-immunosensors and a tool for its further measure for detection of relevant antigens. PMID:28937645
Inverse solution of ear-canal area function from reflectance
Rasetshwane, Daniel M.; Neely, Stephen T.
2011-01-01
A number of acoustical applications require the transformation of acoustical quantities, such as impedance and pressure that are measured at the entrance of the ear canal, to quantities at the eardrum. This transformation often requires knowledge of the shape of the ear canal. Previous attempts to measure ear-canal area functions were either invasive, non-reproducible, or could only measure the area function up to a point mid-way along the canal. A method to determine the area function of the ear canal from measurements of acoustic impedance at the entrance of the ear canal is described. The method is based on a solution to the inverse problem in which measurements of impedance are used to calculate reflectance, which is then used to determine the area function of the canal. The mean ear-canal area function determined using this method is similar to mean ear-canal area functions measured by other researchers using different techniques. The advantage of the proposed method over previous methods is that it is non- invasive, fast, and reproducible. PMID:22225043
Impedance properties of circular microstrip antenna
NASA Technical Reports Server (NTRS)
Deshpande, M. D.; Bailey, M. C.
1983-01-01
A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.
Hunter, Kendall S; Lee, Po-Feng; Lanning, Craig J; Ivy, D Dunbar; Kirby, K Scott; Claussen, Lori R; Chan, K Chen; Shandas, Robin
2008-01-01
Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated a method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero harmonic impedance value and PVR and suggested a correlation between higher-harmonic impedance values and pulmonary vascular stiffness. Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and pulmonary vascular stiffness from a single measurement, and that impedance is a better predictor of disease outcomes compared with PVR. Pressure and velocity waveforms within the main pulmonary artery were measured during right heart catheterization of patients with normal pulmonary artery hemodynamics (n = 14) and those with PAH undergoing reactivity evaluation (49 subjects, 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y = 1.095x + 1.381, R2 = 0.9620). In addition, the modulus sum of the first 2 harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (y = 13.39x - 0.8058, R2 = 0.7962). Among a subset of patients with PAH (n = 25), cumulative logistic regression between outcomes to total indexed impedance was better (R(L)2 = 0.4012) than between outcomes and indexed PVR (R(L)2 = 0.3131). Input impedance can be consistently and easily obtained from pulse-wave Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and better predicts patient outcomes compared with PVR alone.
Mapping Earth's electromagnetic dimensionality
NASA Astrophysics Data System (ADS)
Love, J. J.; Kelbert, A.; Bedrosian, P.
2017-12-01
The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.
A High Performance Impedance-based Platform for Evaporation Rate Detection.
Chou, Wei-Lung; Lee, Pee-Yew; Chen, Cheng-You; Lin, Yu-Hsin; Lin, Yung-Sheng
2016-10-17
This paper describes the method of a novel impedance-based platform for the detection of the evaporation rate. The model compound hyaluronic acid was employed here for demonstration purposes. Multiple evaporation tests on the model compound as a humectant with various concentrations in solutions were conducted for comparison purposes. A conventional weight loss approach is known as the most straightforward, but time-consuming, measurement technique for evaporation rate detection. Yet, a clear disadvantage is that a large volume of sample is required and multiple sample tests cannot be conducted at the same time. For the first time in literature, an electrical impedance sensing chip is successfully applied to a real-time evaporation investigation in a time sharing, continuous and automatic manner. Moreover, as little as 0.5 ml of test samples is required in this impedance-based apparatus, and a large impedance variation is demonstrated among various dilute solutions. The proposed high-sensitivity and fast-response impedance sensing system is found to outperform a conventional weight loss approach in terms of evaporation rate detection.
Diagnostic criteria for mass lesions differentiating in electrical impedance mammography
NASA Astrophysics Data System (ADS)
A, Karpov; M, Korotkova
2013-04-01
The purpose of this research was to determine the diagnostic criteria for differentiating volumetric lesions in the mammary gland in electrical impedance mammography. The research was carried out utilizing the electrical impedance computer mammograph llMEIK v.5.6gg®, which enables to acquire images of 3-D conductivity distribution layers within mamma's tissues up to 5 cm depth. The weighted reciprocal projection method was employed to reconstruct the 3-D electric conductivity distribution of the examined organ. The results of 3,710 electrical impedance examinations were analyzed. The analysis of a volumetric lesion included assessment of its shape, contour, internal electrical structure and changes of the surrounding tissues. Moreover, mammary gland status was evaluated with the help of comparative and age-related electrical conductivity curves. The diagnostic chart is provided. Each criterion is measured in points. Using the numerical score for evaluation of mass and non-volumetric lesions within the mammary gland in electrical impedance mammography allowed comparing this information to BI-RADS categories developed by American College of Radiology experts. The article is illustrated with electrical impedance mammograms and tables.
A lumped-circuit model for the radiation impedance of a circular piston in a rigid baffle.
Bozkurt, Ayhan
2008-09-01
The radiation impedance of a piston transducer mounted in a rigid baffle has been widely addressed in the literature. The real and imaginary parts of the impedance are described by the first order Bessel and Struve functions, respectively. Although there are power series expansions for both functions, the analytic formulation of a lumped circuit is not trivial. In this paper, we present an empirical approach to the derivation of a lumped-circuit model for the radiation impedance expression, based on observations on the near-field behavior of stored kinetic and elastic energy. The field analysis is carried out using a finite element method model of the piston and surrounding fluid medium. We show that fluctuations in the real and imaginary components of the impedance can be modeled by series and shunt tank circuits, each of which shape a certain section of the impedance curve. Because the model is composed of lumped-circuit elements, it can be used in circuit simulators. Consequently, the proposed model is useful for the analysis of transducer front-end circuits.
NASA Astrophysics Data System (ADS)
Peczalski, K.; Palko, T.; Wojciechowski, D.; Dunajski, Z.; Kowalewski, M.
2013-04-01
The cardiac resynchronization therapy is an effective treatment for systolic failure patients. Independent electrical stimulation of left and right ventricle corrects mechanical ventricular dyssynchrony. About 30-40% treated patients do not respond to therapy. In order to improve clinical outcome authors propose the two channels impedance cardiography for assessment of ventricular dyssynchrony. The proposed method is intended for validation of patients diagnosis and optimization of pacemaker settings for cardiac resynchronization therapy. The preliminary study has showed that bichannel impedance cardiography is a promising tool for assessment of ventricular dyssynchrony.
Auxin, ethylene and the regulation of root growth under mechanical impedance
NASA Astrophysics Data System (ADS)
Sharma, Rameshwar; Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju
2012-07-01
Among the multitude functions performed by plant roots, little information is available about the mechanisms that allow roots to overcome the soil resistance, in order to grow in the soil to obtain water and nutrient. Tomato (Solanum lycopersicum) seedlings grown on horizontally placed agar plates showed a progressive decline in the root length with the increasing impedance of agar media. The incubation with 1-methylcyclopropane (1-MCP), an inhibitor of ethylene perception, led to aerial growth of roots. In contrast, in absence of 1-MCP control roots grew horizontally anchored to the agar surface. Though 1-MCP-treated and control seedlings showed differential ability to penetrate in the agar, the inhibition of root elongation was nearly similar for both treatments. While increased mechanical impedance also progressively impaired hypocotyl elongation in 1-MCP treated seedlings, it did not affect the hypocotyl length of control seedlings. The decline in root elongation was also associated with increased expression of DR5::GUS activity in the root tip signifying accumulation of auxin at the root tip. The increased expression of DR5::GUS activity in the root tip was also observed in 1-MCP treated seedlings, indicating independence of this response from ethylene signaling. Our results indicate operation of a sensing mechanism in root that likely operates independently of ethylene but involves auxin to determine the degree of impedance of the substratum.
NASA Astrophysics Data System (ADS)
Negrello, Camille; Gosselet, Pierre; Rey, Christian
2018-05-01
An efficient method for solving large nonlinear problems combines Newton solvers and Domain Decomposition Methods (DDM). In the DDM framework, the boundary conditions can be chosen to be primal, dual or mixed. The mixed approach presents the advantage to be eligible for the research of an optimal interface parameter (often called impedance) which can increase the convergence rate. The optimal value for this parameter is often too expensive to be computed exactly in practice: an approximate version has to be sought for, along with a compromise between efficiency and computational cost. In the context of parallel algorithms for solving nonlinear structural mechanical problems, we propose a new heuristic for the impedance which combines short and long range effects at a low computational cost.
NASA Astrophysics Data System (ADS)
Hoernlein, W.
1988-11-01
Measurements were made of the complex reflection coefficient of hf (10-400 MHz) signals from semiconductor injection lasers supplied with a direct bias current ranging from several milliamperes up to the threshold value or higher. The hf impedance was calculated. The parameters of the equivalent electrical circuit made it possible to predict the modulation characteristics. The impedance corresponding to currents below the lasing threshold was used to find the differential carrier lifetime from the RC constant of the p-n junction of a laser diode. A description of the apparatus is supplemented by an account of the method used in calculation of the electrical parameters and carrier lifetimes. The first results obtained using this apparatus and method are reported.
Design and control of a macro-micro robot for precise force applications
NASA Technical Reports Server (NTRS)
Wang, Yulun; Mangaser, Amante; Laby, Keith; Jordan, Steve; Wilson, Jeff
1993-01-01
Creating a robot which can delicately interact with its environment has been the goal of much research. Primarily two difficulties have made this goal hard to attain. The execution of control strategies which enable precise force manipulations are difficult to implement in real time because such algorithms have been too computationally complex for available controllers. Also, a robot mechanism which can quickly and precisely execute a force command is difficult to design. Actuation joints must be sufficiently stiff, frictionless, and lightweight so that desired torques can be accurately applied. This paper describes a robotic system which is capable of delicate manipulations. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system. Delicate force tasks such as polishing, finishing, cleaning, and deburring, are the target applications of the robot.
Non-Intrusive Impedance-Based Cable Tester
NASA Technical Reports Server (NTRS)
Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)
1999-01-01
A non-intrusive electrical cable tester determines the nature and location of a discontinuity in a cable through application of an oscillating signal to one end of the cable. The frequency of the oscillating signal is varied in increments until a minimum, close to zero voltage is measured at a signal injection point which is indicative of a minimum impedance at that point. The frequency of the test signal at which the minimum impedance occurs is then employed to determine the distance to the discontinuity by employing a formula which relates this distance to the signal frequency and the velocity factor of the cable. A numerically controlled oscillator is provided to generate the oscillating signal, and a microcontroller automatically controls operation of the cable tester to make the desired measurements and display the results. The device is contained in a portable housing which may be hand held to facilitate convenient use of the device in difficult to access locations.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2013-01-22
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2009-06-23
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
Gastrointestinal Impedance Spectroscopy to Detect Hypoperfusion During Hemorrhage.
Bloch, Andreas; Kohler, Andreas; Posthaus, Horst; Berger, David; Santos, Laura; Jakob, Stephan; Takala, Jukka; Haenggi, Matthias
2017-08-01
Changes in tissue impedance (Ω) have been proposed as early signs of impaired tissue perfusion. We hypothesized that hemorrhage may induce early changes in alimentary tract tissue impedance and that these can be detected by impedance spectroscopy. We evaluated impedance spectroscopy in an acute hemorrhage model in pigs. Twenty anesthetized pigs were randomized to stepwise hemorrhage to mean arterial blood pressure (MAP) targets of 60 mm Hg, 50 mm Hg, 45 mm Hg, and 40 mm Hg, followed by retransfusion in two steps, or control (n = 10 each). In the end, 500 mL of enteral nutrition was administered in both groups. Ω in four sites (sublingually, esophagus, stomach, proximal jejunum) and cardiac output (Qtot thermodilution), superior mesenteric artery blood flow (QSMA; Doppler ultrasound), and jejunal mucosal blood flow (LDF; laser Doppler) were measured. The bleeding (total volume 838 ± 185 mL; mean ± SD) resulted in progressive hypotension (actual MAP 65 ± 3 mm Hg, 59 ± 4 mm Hg, 55 ± 5 mm Hg, and 46 ± 6 mm Hg) and decrease in Qtot, QSMA, and mucosal LDF. Bleeding did not change Ω in any of the monitoring sites. Retransfusion restored the blood flows to at least baseline levels, again without change in Ω. Enteral nutrition did not alter Ω or any of the blood flows.Five animals (three in the hemorrhage group, two in the control group) had histologically proven acute gastric focal necrosis at the site of It transducer. Gastrointestinal impedance spectroscopy does not detect early changes in tissue perfusion during progressive hemorrhage or retransfusion. Ω spectroscopy is unlikely to provide any additional information of hypovolemia-induced early changes in gastrointestinal perfusion.
Implementation of In-Situ Impedance Techniques on a Full Scale Aero-Engine System
NASA Technical Reports Server (NTRS)
Gaeta, R. J.; Mendoza, J. M.; Jones, M. G.
2007-01-01
Determination of acoustic liner impedance for jet engine applications remains a challenge for the designer. Although suitable models have been developed that take account of source amplitude and the local flow environment experienced by the liner, experimental validation of these models has been difficult. This is primarily due to the inability of researchers to faithfully mimic the environment in jet engine nacelles in the laboratory. An in-situ measurement technique, one that can be implemented in an actual engine, is desirable so an accurate impedance can be determined for future modeling and quality control. This paper documents the implementation of such a local acoustic impedance measurement technique that is used under controlled laboratory conditions as well as on full scale turbine engine liner test article. The objective for these series of in-situ measurements is to substantiate treatment design, provide understanding of flow effects on installed liner performance, and provide modeling input for fan noise propagation computations. A series of acoustic liner evaluation tests are performed that includes normal incidence tube, grazing incidence tube, and finally testing on a full scale engine on a static test stand. Lab tests were intended to provide insight and guidance for accurately measuring the impedance of the liner housed in the inlet of a Honeywell Tech7000 turbofan. Results have shown that one can acquire very reasonable liner impedance data for a full scale engine under realistic test conditions. Furthermore, higher fidelity results can be obtained by using a three-microphone coherence technique that can enhance signal-to-noise ratio at high engine power settings. This research has also confirmed the limitations of this particular type of in-situ measurement. This is most evident in the installation of instrumentation and its effect on what is being measured.
High voltage electrical amplifier having a short rise time
Christie, David J.; Dallum, Gregory E.
1991-01-01
A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.
Arm Dominance Affects Feedforward Strategy more than Feedback Sensitivity during a Postural Task
Walker, Elise H. E.; Perreault, Eric J.
2015-01-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors, and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture, and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23–51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development. PMID:25850407
Arm dominance affects feedforward strategy more than feedback sensitivity during a postural task.
Walker, Elise H E; Perreault, Eric J
2015-07-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23 to 51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development.
USDA-ARS?s Scientific Manuscript database
Electrical impedance spectroscopy (EIS), as an effective analytical technique for electrochemical system, has shown a wide application for food quality and safety assessment recently. Individual differences of livestock cause high variation in quality of raw meat and fish and their commercialized pr...
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…
Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.
2000-01-01
This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.
Development of AC impedance methods for evaluating corroding metal surfaces and coatings
NASA Technical Reports Server (NTRS)
Knockemus, Ward
1986-01-01
In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.
Li, Jianping; Sapkota, Achyut; Kikuchi, Daisuke; Sakota, Daisuke; Maruyama, Osamu; Takei, Masahiro
2018-07-30
Red blood cells (RBCs) aggregability A G of coagulating blood in extracorporeal circulation system has been investigated under the condition of pulsatile flow. Relaxation frequency f c from the multiple-frequency electrical impedance spectroscopy is utilized to obtain RBCs aggregability A G . Compared with other methods, the proposed multiple-frequency electrical impedance method is much easier to obtain non-invasive measurement with high speed and good penetrability performance in biology tissues. Experimental results show that, RBCs aggregability A G in coagulating blood falls down with the thrombus formation while that in non-coagulation blood almost keeps the same value, which has a great agreement with the activated clotting time (ACT) fibrinogen concertation (F bg ) tests. Modified Hanai formula is proposed to quantitatively analyze the influence of RBCs aggregation on multiple-frequency electrical impedance measurement. The reduction of RBCs aggregability A G is associated with blood coagulation reaction, which indicates the feasibility of the high speed, compact and cheap on-line thrombus measurement biosensors in extracorporeal circulation systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Liang, Weihua; Liu, Yushan; Ge, Baoming; ...
2017-09-08
The battery energy stored quasi-Z-source (BESqZS) based photovoltaic (PV) power generation system combines advantages of the qZS inverter and the battery energy storage system. But, the second harmonic (2ω) power ripple degrades the system’s performance and affects the system’s design. An accurate model to analyze the 2ω ripple is very important. The existing models did not consider the battery, or assumed a symmetric qZS network with L 1=L 2 and C 1=C 2, which limits the design freedom and causes oversized impedance parameters. Our paper proposes a comprehensive model for the single-phase BES-qZS-PV inverter system, where the battery is consideredmore » and there is no restriction of L 1=L 2 and C 1=C 2. Based on the built model, a BES-qZS impedance design method is proposed to mitigate the 2ω ripple with asymmetric qZS network. Simulation and experimental results verify the proposed 2ω ripple model and impedance design method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Weihua; Liu, Yushan; Ge, Baoming
The battery energy stored quasi-Z-source (BESqZS) based photovoltaic (PV) power generation system combines advantages of the qZS inverter and the battery energy storage system. But, the second harmonic (2ω) power ripple degrades the system’s performance and affects the system’s design. An accurate model to analyze the 2ω ripple is very important. The existing models did not consider the battery, or assumed a symmetric qZS network with L 1=L 2 and C 1=C 2, which limits the design freedom and causes oversized impedance parameters. Our paper proposes a comprehensive model for the single-phase BES-qZS-PV inverter system, where the battery is consideredmore » and there is no restriction of L 1=L 2 and C 1=C 2. Based on the built model, a BES-qZS impedance design method is proposed to mitigate the 2ω ripple with asymmetric qZS network. Simulation and experimental results verify the proposed 2ω ripple model and impedance design method.« less
Detection of microbial concentration in ice-cream using the impedance technique.
Grossi, M; Lanzoni, M; Pompei, A; Lazzarini, R; Matteuzzi, D; Riccò, B
2008-06-15
The detection of microbial concentration, essential for safe and high quality food products, is traditionally made with the plate count technique, that is reliable, but also slow and not easily realized in the automatic form, as required for direct use in industrial machines. To this purpose, the method based on impedance measurements represents an attractive alternative since it can produce results in about 10h, instead of the 24-48h needed by standard plate counts and can be easily realized in automatic form. In this paper such a method has been experimentally studied in the case of ice-cream products. In particular, all main ice-cream compositions of real interest have been considered and no nutrient media has been used to dilute the samples. A measurement set-up has been realized using benchtop instruments for impedance measurements on samples whose bacteria concentration was independently measured by means of standard plate counts. The obtained results clearly indicate that impedance measurement represents a feasible and reliable technique to detect total microbial concentration in ice-cream, suitable to be implemented as an embedded system for industrial machines.
NASA Astrophysics Data System (ADS)
Min, Jiyoung; Shim, Hyojin; Yun, Chung-Bang
2012-04-01
For a nuclear containment structure, the structural health monitoring is essential because of its high potential risk and grave social impact. In particular, the tendon and anchorage zone are to be monitored because they are under high tensile or compressive stress. In this paper, a method to monitor the tendon force and the condition of the anchorage zone is presented by using the impedance-based health diagnosis system. First, numerical simulations were conducted for cases with various loose tensile forces on the tendon as well as damages on the bearing plate and concrete structure. Then, experimental studies were carried out on a scaled model of the anchorage system. The relationship between the loose tensile force and the impedance-based damage index was analyzed by a regression analysis. When a structure gets damaged, the damage index increases so that the status of damage can be identified. The results of the numerical and experimental studies indicate a big potential of the proposed impedance-based method for monitoring the tendon and anchorage system.
On impedance measurement of reinforced concrete on the surface for estimate of corroded rebar
NASA Astrophysics Data System (ADS)
Sasamoto, Akira; Yu, Jun; Harada, Yoshihisa; Iwata, Masahiro; Noguchi, Kazuhiro
2017-04-01
In an estimate of health monitoring for reinforced concrete, corrosion degree of rebar is important parameter but is not easy to be estimated by non destructive testing. A few test method such as half cell method or polarization resistance method could be a 'perfect' nondestructive method if luckily having had wired connection to rebar without destructing target concrete. In this presentation it is reported the experimental result that an impedance measurement on surface of reinforced concretes is able to distinguish corroded rebar from healthy rebar. The contact electrode on concrete surface are simple structure made of urethane sponge and needle. Impedance measurement are carried out with frequency response analyzer with frequency range from 0.01Hz to 1MHz, typical amplitude of imposed voltage are 10 volt. We made concrete specimens under two different corrosion process. One process(pre corrosion) has rebars corroded by electrolysis in salty water before concrete casting and another process (post corrosion) has concrete specimens being corroded during the curing. The results of application of developed method to these corroded specimens show the method is useful to estimate corrosion level of rebars.
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
Suppression of Tinnitus in Chinese Patients Receiving Regular Cochlear Implant Programming.
Liu, Ying; Wang, Hong; Han, Dong Xu; Li, Ming Hua; Wang, Yu; Xiao, Yu Li
2016-04-01
To assess the clinical effect of cochlear implant programming on tinnitus. Tinnitus patients (n = 234) were divided into 3 groups: (1) preoperative tinnitus (n = 108), (2) postoperative tinnitus occurring before implant switch-on at week 4 (n = 88), and (3) tinnitus occurring more than 1 year postoperatively (n = 44). Patients in each group were randomly allocated into a programming subgroup that received programming for 12 weeks postoperatively or after tinnitus occurrence or a control subgroup. Impedance testing and the Tinnitus Handicap Inventory (THI) were performed preoperatively and at 4, 6, 8, and 12 weeks postoperatively (groups 1 and 2) or after tinnitus occurrence (group 3). Comparisons were performed using t tests and chi-square tests. Impedance was significantly lower in the programming subgroup than in the control subgroup in groups 1 and 2 at 8 and 12 weeks and in group 3 at 12 weeks. The THI scores decreased in both programming and control subgroups in all groups. However, this decrease was pronounced in the programming subgroup, whereas in the control subgroup, it occurred slowly over time. Cochlear implant programming decreases impedance and improves tinnitus symptoms. © The Author(s) 2015.
Impedance-controlled ultrasound probe
NASA Astrophysics Data System (ADS)
Gilbertson, Matthew W.; Anthony, Brian W.
2011-03-01
An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Jin; Lee, Sun-Kyu, E-mail: skyee@gist.ac.kr
2015-01-15
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of amore » nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.« less
Does Cholecystectomy Increase the Esophageal Alkaline Reflux? Evaluation by Impedance-pH Technique.
Uyanikoglu, Ahmet; Akyuz, Filiz; Ermis, Fatih; Arici, Serpil; Bas, Gurhan; Cakirca, Mustafa; Baran, Bulent; Mungan, Zeynel
2012-04-01
The aim of this study is to investigate the reflux patterns in patients with galbladder stone and the change of reflux patterns after cholecystectomy in such patients. Fourteen patients with cholecystolithiasis and a control group including 10 healthy control subjects were enrolled in this prospective study. Demographical findings, reflux symptom score scale and 24-hour impedance pH values of the 14 cholecystolithiasis cases and the control group were evaluated. The impedance pH study was repeated 3 months after cholecystectomy. Age, gender, and BMI were not different between the two groups. Total and supine weakly alkaline reflux time (%) (1.0 vs 22.5, P = 0.028; 201.85 vs 9.65, P = 0.012), the longest episodes of total, upright and supine weakly alkaline reflux mediums (11 vs 2, P = 0.025; 8.5 vs 1.0, P = 0.035; 3 vs 0, P = 0.027), total and supine weakly alkaline reflux time in minutes (287.35 vs 75.10, P = 0.022; 62.5 vs 1.4, P = 0.017), the number of alkaline reflux episodes (162.5 vs 72.5, P = 0.022) were decreased with statistical significance. No statistically significant difference was found in the comparison of symptoms between the subjects in the control group and the patients with cholecystolithiasis, in preoperative, postoperative and postcholecystectomy status. Significant reflux symptoms did not occur after cholecystectomy. Post cholecystectomy weakly alkaline reflux was decreased, but it was determined that acid reflux increased after cholecystectomy by impedance pH-metry in the study group.
Insulator-based DEP with impedance measurements for analyte detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davalos, Rafael V.; Simmons, Blake A.; Crocker, Robert W.
2010-03-16
Disclosed herein are microfluidic devices for assaying at least one analyte specie in a sample comprising at least one analyte concentration area in a microchannel having insulating structures on or in at least one wall of the microchannel which provide a nonuniform electric field in the presence of an electric field provided by off-chip electrodes; and a pair of passivated sensing electrodes for impedance detection in a detection area. Also disclosed are assay methods and methods of making.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung
2017-07-01
In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.
Alvarez, P. E.; Vallejo, A. E.
2008-01-01
Kinetics of facilitated ion transport through planar bilayer membranes are normally analyzed by electrical conductance methods. The additional use of electrical relaxation techniques, such as voltage jump, is necessary to evaluate individual rate constants. Although electrochemical impedance spectroscopy is recognized as the most powerful of the available electric relaxation techniques, it has rarely been used in connection with these kinetic studies. According to the new approach presented in this work, three steps were followed. First, a kinetic model was proposed that has the distinct quality of being general, i.e., it properly describes both carrier and channel mechanisms of ion transport. Second, the state equations for steady-state and for impedance experiments were derived, exhibiting the input–output representation pertaining to the model’s structure. With the application of a method based on the similarity transformation approach, it was possible to check that the proposed mechanism is distinguishable, i.e., no other model with a different structure exhibits the same input–output behavior for any input as the original. Additionally, the method allowed us to check whether the proposed model is globally identifiable (i.e., whether there is a single set of fit parameters for the model) when analyzed in terms of its impedance response. Thus, our model does not represent a theoretical interpretation of the experimental impedance but rather constitutes the prerequisite to select this type of experiment in order to obtain optimal kinetic identification of the system. Finally, impedance measurements were performed and the results were fitted to the proposed theoretical model in order to obtain the kinetic parameters of the system. The successful application of this approach is exemplified with results obtained for valinomycin–K+ in lipid bilayers supported onto gold substrates, i.e., an arrangement capable of emulating biological membranes. PMID:19669528
Klotz, Dino; Grave, Daniel A; Dotan, Hen; Rothschild, Avner
2018-03-15
Photoelectrochemical impedance spectroscopy (PEIS) is a useful tool for the characterization of photoelectrodes for solar water splitting. However, the analysis of PEIS spectra often involves a priori assumptions that might bias the results. This work puts forward an empirical method that analyzes the distribution of relaxation times (DRT), obtained directly from the measured PEIS spectra of a model hematite photoanode. By following how the DRT evolves as a function of control parameters such as the applied potential and composition of the electrolyte solution, we obtain unbiased insights into the underlying mechanisms that shape the photocurrent. In a subsequent step, we fit the data to a process-oriented equivalent circuit model (ECM) whose makeup is derived from the DRT analysis in the first step. This yields consistent quantitative trends of the dominant polarization processes observed. Our observations reveal a common step for the photo-oxidation reactions of water and H 2 O 2 in alkaline solution.
Kim, Raeyoung; Nam, Yoonkey
2015-04-01
Platinum black (PtBK) has long been used for microelectrode fabrication owing to its high recording performance of neural signals. The porous structure of PtBK enlarges the surface area and lowers the impedance, which results in background noise reduction. However, the brittleness of PtBK has been a problem in practice. In this work, we report mechanically stable PtBK microelectrodes using a bioinspired adhesive film, polydopamine (pDA), while maintaining the low impedance of PtBK. The pDA layer was incorporated into the PtBK structure through electrochemical layer-by-layer deposition. Varying the number of layers and the order of materials, multi-layered pDA-PtBK hybrids were fabricated and the electrical properties, both impedance and charge injection limit, were evaluated. Multilayered pDA-PtBK hybrids had electrical impedances as low as PtBK controls and charge injection limit twice larger than controls. For the 30 min-ultrasonication agitation test, impedance levels rarely changed for some of the pDA-PtBK hybrids indicating that the pDA improved the mechanical property of the PtBK structures. The pDA-PtBK hybrid microelectrodes readily recorded neural signals of cultured hippocampal neurons, where background noise levels and signal-to-noise were 2.43 ∼ 3.23 μVrms and 28.4 ∼ 69.1, respectively. The developed pDA-PtBK hybrid microelectrodes are expected to be applicable to neural sensors for neural prosthetic studies.
PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.
Păunescu, T G; Helman, S I
2001-01-01
Measurements of transepithelial electrical impedance of continuously short-circuited A6 epithelia were made at audio frequencies (0.244 Hz to 10.45 kHz) to investigate the time course and extent to which prostaglandin E(2) (PGE(2)) modulates Cl(-) transport and apical membrane capacitance in this cell-cultured model epithelium. Apical and basolateral membrane resistances were determined by nonlinear curve-fitting of the impedance vectors at relatively low frequencies (<50 Hz) to equations (Păunescu, T. G., and S. I. Helman. 2001. Biophys. J. 81:838--851) where depressed Nyquist impedance semicircles were characteristic of the membrane impedances under control Na(+)-transporting and amiloride-inhibited conditions. In all tissues (control, amiloride-blocked, and amiloride-blocked and furosemide-pretreated), PGE(2) caused relatively small (< approximately 3 microA/cm(2)) and rapid (<60 s) maximal increase of chloride current due to activation of a rather large increase of apical membrane conductance that preceded significant activation of Na(+) transport through amiloride-sensitive epithelial Na(+) channels (ENaCs). Apical membrane capacitance was frequency-dependent with a Cole-Cole dielectric dispersion whose relaxation frequency was near 150 Hz. Analysis of the time-dependent changes of the complex frequency-dependent equivalent capacitance of the cells at frequencies >1.5 kHz revealed that the mean 9.8% increase of capacitance caused by PGE(2) was not correlated in time with activation of chloride conductance, but rather correlated with activation of apical membrane Na(+) transport. PMID:11463630
Christophersen, Jon; Morrison, Bill
2018-02-14
Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/
Novel compliant actuator for wearable robotics applications.
Claros, M; Soto, R; Rodríguez, J J; Cantú, C; Contreras-Vidal, José L
2013-01-01
In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable impedance and force actuators are being designed and implemented because of their ability to dynamically modulate the intrinsic viscoelastic properties such as stiffness and damping. This modulation is crucial to achieve an efficient and safe human-robot interaction that could lead to electronically generate useful emergent dynamical behaviors. In this work we propose a novel actuation system in which is implemented a control scheme based on equilibrium forces for an active joint capable to provide assistance/resistance as needed and also achieve minimal mechanical impedance when tracking the movement of the user limbs. The actuation system comprises a DC motor with a built in speed reducer, two force-sensing resistors (FSR), a mechanism which transmits to the FSRs the torque developed in the joint and a controller which regulate the amount of energy that is delivered to the DC motor. The proposed system showed more impedance reduction, by the effect of the controlled contact forces, compared with the ones in the reviewed literature.
Creating low-impedance tetrodes by electroplating with additives
Ferguson, John E.; Boldt, Chris; Redish, A. David
2011-01-01
A tetrode is a bundle of four microwires that can record from multiple neurons simultaneously in the brain of a freely moving animal. Tetrodes are usually electroplated to reduce impedances from 2-3 MΩ to 200-500 kΩ (measured at 1 kHz), which increases the signal-to-noise ratio and allows for the recording of small amplitude signals. Tetrodes with even lower impedances could improve neural recordings but cannot be made using standard electroplating methods without shorting. We were able to electroplate tetrodes to 30-70 kΩ by adding polyethylene glycol (PEG) or multi-walled carbon nanotube (MWCNT) solutions to a commercial gold-plating solution. The MWCNTs and PEG acted as inhibitors in the electroplating process and created large-surface-area, low-impedance coatings on the tetrode tips. PMID:21379404
Primary Multi-frequency Data Analyze in Electrical Impedance Scanning.
Liu, Ruigang; Dong, Xiuzhen; Fu, Feng; Shi, Xuetao; You, Fusheng; Ji, Zhenyu
2005-01-01
This paper deduced the Cole-Cole arc equation in form of admittance by the traditional Cole-Cole equation in form of impedance. Comparing to the latter, the former is more adaptive to the electrical impedance scanning which using lower frequency region. When using our own electrical impedance scanning device at 50-5000Hz, the measurement data separated on the arc of the former, while collected near the direct current resistor on the arc of the latter. The four parameters of the former can be evaluated by the least square method. The frequency of the imaginary part of admittance reaching maximum can be calculated by the Cole-Cole parameters. In conclusion, the Cole-Cole arc in form of admittance is more effective to multi-frequency data analyze at lower frequency region, like EIS.
The effects of non-stationary noise on electromagnetic response estimates
NASA Astrophysics Data System (ADS)
Banks, R. J.
1998-11-01
The noise in natural electromagnetic time series is typically non-stationary. Sections of data with high magnetic noise levels bias impedances and generate unreliable error estimates. Sections containing noise that is coherent between electric and magnetic channels also produce inappropriate impedances and errors. The answer is to compute response values for data sections which are as short as is feasible, i.e. which are compatible both with the chosen bandwidth and with the need to over-determine the least-squares estimation of the impedance and coherence. Only those values that are reliable are selected, and the best single measure of the reliability of Earth impedance estimates is their temporal invariance, which is tested by the coherence between the measured and predicted electric fields. Complex demodulation is the method used here to explore the temporal structure of electromagnetic fields in the period range 20-6000 s. For periods above 300 s, noisy sections are readily identified in time series of impedance values. The corresponding estimates deviate strongly from the normal value, are biased towards low impedance values, and are associated with low coherences. Plots of the impedance against coherence are particularly valuable diagnostic aids. For periods below 300 s, impedance bias increases systematically as the coherence falls, identifying input channel noise as the cause. By selecting sections with high coherence (equivalent to the impedance being invariant over the section) unbiased impedances and realistic errors can be determined. The scatter in impedance values among high-coherence sections is due to noise that is coherent between input and output channels, implying the presence of two or more systems for which a consistent response can be defined. Where the Earth and noise responses are significantly different, it may be possible to improve estimates of the former by rejecting sections that do not generate satisfactory values for all the response elements.
Non-acid gastro-oesophageal reflux is associated with squamous cell carcinoma of the oesophagus
Kgomo, Mpho; Mokoena, Taole R; Ker, James A
2017-01-01
Introduction Squamous cell carcinoma of the oesophagus is a common cancer among South Africans. Due to the absence of effective screening and surveillance programme for early detection and late presentation, squamous cell carcinoma of the oesophagus is usually diagnosed at an advanced stage or when metastasis has already occurred. The 5-year survival is often quoted at 5%–10%, which is poor. Objectives To determine the association between oesophageal squamous cell carcinoma (OSCC) and non-acid gastro-oesophageal reflux disease. Methods Study design A cross-sectional case–control analytical study of patients referred to the Gastroenterology Division of Steve Biko Academic Hospital in Pretoria, South Africa. All patients had combined multichannel impedance and pH studies done and interpreted after upper gastroscopy using the American College of Gastroenterology guidelines by two clinicians. Results Thirty-two patients with OSCC were recruited: non-acid reflux was found in 23 patients (73%), acid reflux in 2 patients (6%) and 7 patients (22%) had normal multichannel impedance and pH studies. Forty-nine patients matched by age, gender and race were recruited as a control group. Non-acid reflux was found in 11 patients (22%), acid reflux in 31 patients (63%) and 7 patients (14%) had normal multichannel impedance and pH monitoring study. Conclusion The significance of the association between non-acid reflux and OSCC was tested using χ2, and simple logistic regression was used to adjust for the effects of potential confounders. The OR of developing OSCC in patients with non-acid gastro-oesophageal reflux was 8.8 (95% CI 3.2 to 24.5, P<0.0001) in this South African group. Alcohol and smoking had no effect on these results. PMID:29177066
Cova, Ilaria; Pomati, Simone; Maggiore, Laura; Forcella, Marica; Cucumo, Valentina; Ghiretti, Roberta; Grande, Giulia; Muzio, Fulvio; Mariani, Claudio
2017-01-01
Analysis of nutritional status and body composition in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). A cross-sectional study was performed in a University-Hospital setting, recruiting 59 patients with AD, 34 subjects with MCI and 58 elderly healthy controls (HC). Nutritional status was assessed by anthropometric parameters (body mass index; calf, upper arm and waist circumferences), Mini Nutritional Assessment (MNA) and body composition by bioelectrical impedance vector analysis (BIVA). Variables were analyzed by analysis of variance and subjects were grouped by cognitive status and gender. Sociodemographic variables did not differ among the three groups (AD, MCI and HC), except for females' age, which was therefore used as covariate in a general linear multivariate model. MNA score was significantly lower in AD patients than in HC; MCI subjects achieved intermediate scores. AD patients (both sexes) had significantly (p<0.05) higher height-normalized impedance values and lower phase angles (body cell mass) compared with HC; a higher ratio of impedance to height was found in men with MCI with respect to HC. With BIVA method, MCI subjects showed a significant displacement on the RXc graph on the right side indicating lower soft tissues (Hotelling's T2 test: men = 10.6; women = 7.9;p < 0,05) just like AD patients (Hotelling's T2 test: men = 18.2; women = 16.9; p<0,001). Bioelectrical parameters significantly differ from MCI and AD to HC; MCI showed an intermediate pattern between AD and HC. Longitudinal studies are required to investigate if BIVA could reflect early AD-changes in body composition in subjects with MCI.
Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Jones, M. G.
2015-01-01
A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.
Reducing Uncertainties in Hydrocarbon Prediction through Application of Elastic Domain
NASA Astrophysics Data System (ADS)
Shamsuddin, S. Z.; Hermana, M.; Ghosh, D. P.; Salim, A. M. A.
2017-10-01
The application of lithology and fluid indicators has helped the geophysicists to discriminate reservoirs to non-reservoirs from a field. This analysis is conducted to select the most suitable lithology and fluid indicator for the Malaysian basins that could lead to better eliminate pitfalls of amplitude. This paper uses different rock physics analysis such as elastic impedance, Lambda-Mu-Rho, and SQp-SQs attribute. Litho-elastic impedance log is generated by correlating the gamma ray log with extended elastic impedance log. The same application is used for fluid-elastic impedance by correlation of EEI log with water saturation or resistivity. The work is done on several well logging data collected from different fields in Malay basin and its neighbouring basin. There's an excellent separation between hydrocarbon sand and background shale for Well-1 from different cross-plot analysis. Meanwhile, the Well-2 shows good separation in LMR plot. The similar method is done on the Well-3 shows fair separation of silty sand and gas sand using SQp-SQs attribute which can be correlated with well log. Based on the point distribution histogram plot, different lithology and fluid can be separated clearly. Simultaneous seismic inversion results in acoustic impedance, Vp/Vs, SQp, and SQs volumes. There are many attributes available in the industry used to separate the lithology and fluid, however some of the methods are not suitable for the application to the basins in Malaysia.
NASA Astrophysics Data System (ADS)
Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K
2009-03-01
Bi2O3-doped barium zirconate titanate ceramics, Ba1-xBix(Zr0.05Ti0.95)O3, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi3+ substitutes A-site ion, and thereafter with higher Bi3+ content, it enters the B-site sub lattice. Substitution of Bi3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.
Transition metal oxide as anode interface buffer for impedance spectroscopy
NASA Astrophysics Data System (ADS)
Xu, Hui; Tang, Chao; Wang, Xu-Liang; Zhai, Wen-Juan; Liu, Rui-Lan; Rong, Zhou; Pang, Zong-Qiang; Jiang, Bing; Fan, Qu-Li; Huang, Wei
2015-12-01
Impedance spectroscopy is a strong method in electric measurement, which also shows powerful function in research of carrier dynamics in organic semiconductors when suitable mathematical physical models are used. Apart from this, another requirement is that the contact interface between the electrode and materials should at least be quasi-ohmic contact. So in this report, three different transitional metal oxides, V2O5, MoO3 and WO3 were used as hole injection buffer for interface of ITO/NPB. Through the impedance spectroscopy and PSO algorithm, the carrier mobilities and I-V characteristics of the NPB in different devices were measured. Then the data curves were compared with the single layer device without the interface layer in order to investigate the influence of transitional metal oxides on the carrier mobility. The careful research showed that when the work function (WF) of the buffer material was just between the work function of anode and the HOMO of the organic material, such interface material could work as a good bridge for carrier injection. Under such condition, the carrier mobility measured through impedance spectroscopy should be close to the intrinsic value. Considering that the HOMO (or LUMO) of most organic semiconductors did not match with the work function of the electrode, this report also provides a method for wide application of impedance spectroscopy to the research of carrier dynamics.
Methods for calculating the electrode position Jacobian for impedance imaging.
Boyle, A; Crabb, M G; Jehl, M; Lionheart, W R B; Adler, A
2017-03-01
Electrical impedance tomography (EIT) or electrical resistivity tomography (ERT) current and measure voltages at the boundary of a domain through electrodes. The movement or incorrect placement of electrodes may lead to modelling errors that result in significant reconstructed image artifacts. These errors may be accounted for by allowing for electrode position estimates in the model. Movement may be reconstructed through a first-order approximation, the electrode position Jacobian. A reconstruction that incorporates electrode position estimates and conductivity can significantly reduce image artifacts. Conversely, if electrode position is ignored it can be difficult to distinguish true conductivity changes from reconstruction artifacts which may increase the risk of a flawed interpretation. In this work, we aim to determine the fastest, most accurate approach for estimating the electrode position Jacobian. Four methods of calculating the electrode position Jacobian were evaluated on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update methods are competitive in computational efficiency but achieve different solutions for certain values of contact impedance and mesh density.
Zhang, Hai-Long; Fu, Qiang; Li, Wen-Hui; Liu, Su-Wei; Zhong, Hua; Duoji, Bai-Ma; Zhang, Mei-Zhi; Lv, Po; Xi, Huan-Jiu
2015-01-01
We aimed to obtain the fat base value and the fat distribution characteristics of Tibetan children and teenagers by estimating their body fat content with the bioelectrical impedance method. We recruited 1427 healthy children and teenagers by a stratified cluster sampling method. By using bioelectrical impedance analysis, we obtained various values relevant to fat. We found that total body fat mass and the fat mass of various body parts increased with age in boys and girls. Yet there were no differences between age groups until 11 years. However, fat mass increased quickly between 11 and 18 years, and significant differences were seen between adolescent boys and girls; all fat indices were higher in girls than in boys (p<0.05). The characteristics of fat in Tibetan children and teenagers in Tibet is related to age and gender related hormone secretion, which reflects the physiological characteristics in different developmental stages.
AC orbit bump method of local impedance measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smaluk, Victor; Yang, Xi; Blednykh, Alexei
A fast and precise technique of local impedance measurement has been developed and tested at NSLS-II. This technique is based on in-phase sine-wave (AC) excitation of four fast correctors adjacent to the vacuum chamber section, impedance of which is measured. The beam position is measured using synchronous detection. Use of the narrow-band sine-wave signal allows us to improve significantly the accuracy of the orbit bump method. Beam excitation by fast correctors results in elimination of the systematic error caused by hysteresis effect. The systematic error caused by orbit drift is also eliminated because the measured signal is not affected bymore » the orbit motion outside the excitation frequency range. In this article, the measurement technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented.« less
Characterization of DUT impedance in immunity test setups
NASA Astrophysics Data System (ADS)
Hassanpour Razavi, Seyyed Ali; Frei, Stephan
2016-09-01
Several immunity test procedures for narrowband radiated electromagnetic energy are available for automotive components. The ISO 11452 series describes the most commonly used test methods. The absorber line shielded enclosure (ALSE) is often considered as the most reliable method. However, testing with the bulk current injection (BCI) can be done with less efforts and is often preferred. As the test setup in both procedures is quite similar, there were several trials for finding appropriate modifications to the BCI in order to increase the matching to the ALSE. However, the lack of knowledge regarding the impedance of the tested component, makes it impossible to find the equivalent current to be injected by the BCI and a good match cannot be achieved. In this paper, three approaches are proposed to estimate the termination impedance indirectly by using different current probes.
AC orbit bump method of local impedance measurement
Smaluk, Victor; Yang, Xi; Blednykh, Alexei; ...
2017-08-04
A fast and precise technique of local impedance measurement has been developed and tested at NSLS-II. This technique is based on in-phase sine-wave (AC) excitation of four fast correctors adjacent to the vacuum chamber section, impedance of which is measured. The beam position is measured using synchronous detection. Use of the narrow-band sine-wave signal allows us to improve significantly the accuracy of the orbit bump method. Beam excitation by fast correctors results in elimination of the systematic error caused by hysteresis effect. The systematic error caused by orbit drift is also eliminated because the measured signal is not affected bymore » the orbit motion outside the excitation frequency range. In this article, the measurement technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented.« less
Electrochemical Impedance Imaging via the Distribution of Diffusion Times
NASA Astrophysics Data System (ADS)
Song, Juhyun; Bazant, Martin Z.
2018-03-01
We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.
Bourlier, Christophe; Kubické, Gildas; Déchamps, Nicolas
2008-04-01
A fast, exact numerical method based on the method of moments (MM) is developed to calculate the scattering from an object below a randomly rough surface. Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)] have recently developed the PILE (propagation-inside-layer expansion) method for a stack of two one-dimensional rough interfaces separating homogeneous media. From the inversion of the impedance matrix by block (in which two impedance matrices of each interface and two coupling matrices are involved), this method allows one to calculate separately and exactly the multiple-scattering contributions inside the layer in which the inverses of the impedance matrices of each interface are involved. Our purpose here is to apply this method for an object below a rough surface. In addition, to invert a matrix of large size, the forward-backward spectral acceleration (FB-SA) approach of complexity O(N) (N is the number of unknowns on the interface) proposed by Chou and Johnson [Radio Sci.33, 1277 (1998)] is applied. The new method, PILE combined with FB-SA, is tested on perfectly conducting circular and elliptic cylinders located below a dielectric rough interface obeying a Gaussian process with Gaussian and exponential height autocorrelation functions.
Sensing the Moisture Content of Dry Cherries - A Rapid and Nondestructive Method
USDA-ARS?s Scientific Manuscript database
Impedance (Z), and phase angle (') of a parallel-plate capacitor with a single cherry fruit between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture cont...
Design and calibration of a high-frequency oscillatory ventilator.
Simon, B A; Mitzner, W
1991-02-01
High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].
Nanostructured cavity devices for extracellular stimulation of HL-1 cells
NASA Astrophysics Data System (ADS)
Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard
2015-05-01
Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network. Electronic supplementary information (ESI) available: Comparison of non-filtered and Savitzky-Golay filtered action potential recordings, electrical signals and corresponding optical signals. See DOI: 10.1039/c5nr01690h
Quantum optics in a high impedance environment
NASA Astrophysics Data System (ADS)
Puertas, Javier; Gheeraert, Nicolas; Krupko, Yuriy; Dassonneville, Remy; Planat, Luca; Foroughui, Farshad; Naud, Cecile; Guichard, Wiebke; Buisson, Olivier; Florens, Serge; Roch, Nicolas; Snyman, Izak
Understanding light matter interaction remains a key topic in fundamental physics. Its strength is imposed by the fine structure constant, α. For most atomic and molecular systems α =e2/ℏc 4 πɛo = 1 / 137 << 1 , giving weak interactions. When dealing with superconducting artificial atoms, α is either proportional to 1 /Zc (magnetic coupling) or Zc (electric coupling), where Zc is the characteristic impedance of the environment. Recent experiments followed the first approach, coupling a flux qubit to a low impedance environment, demonstrating strong interaction (α 1). In our work, we reached the large α regime, following a complementary approach: we couple electrically a transmon qubit to an array of 5000 SQUIDs. This metamaterial provides high characteristic impedance ( 3 kΩ), in-situ flux tunability and full control over its dispersion relation. In this new regime, all usual approximations break down and new phenomena such as frequency conversion at the single photon level are expected.
Real Objects Can Impede Conditional Reasoning but Augmented Objects Do Not.
Sato, Yuri; Sugimoto, Yutaro; Ueda, Kazuhiro
2018-03-01
In this study, Knauff and Johnson-Laird's (2002) visual impedance hypothesis (i.e., mental representations with irrelevant visual detail can impede reasoning) is applied to the domain of external representations and diagrammatic reasoning. We show that the use of real objects and augmented real (AR) objects can control human interpretation and reasoning about conditionals. As participants made inferences (e.g., an invalid one from "if P then Q" to "P"), they also moved objects corresponding to premises. Participants who moved real objects made more invalid inferences than those who moved AR objects and those who did not manipulate objects (there was no significant difference between the last two groups). Our results showed that real objects impeded conditional reasoning, but AR objects did not. These findings are explained by the fact that real objects may over-specify a single state that exists, while AR objects suggest multiple possibilities. Copyright © 2017 Cognitive Science Society, Inc.
Păunescu, T G; Helman, S I
2001-01-01
Transepithelial electrical impedance analysis provides a sensitive method to evaluate the conductances and capacitances of apical and basolateral plasma membranes of epithelial cells. Impedance analysis is complicated, due not only to the anatomical arrangement of the cells and their paracellular shunt pathways, but also in particular to the existence of audio frequency-dependent capacitances or dispersions. In this paper we explore implications and consequences of anatomically related Maxwell-Wagner and Cole-Cole dielectric dispersions that impose limitations, approximations, and pitfalls of impedance analysis when tissues are studied under widely ranging spontaneous rates of transport, and in particular when apical membrane sodium and chloride channels are activated by adenosine 3',5'-cyclic monophosphate (cAMP) in A6 epithelia. We develop the thesis that capacitive relaxation processes of any origin lead not only to dependence on frequency of the impedance locus, but also to the appearance of depressed semicircles in Nyquist transepithelial impedance plots, regardless of the tightness or leakiness of the paracellular shunt pathways. Frequency dependence of capacitance precludes analysis of data in traditional ways, where capacitance is assumed constant, and is especially important when apical and/or basolateral membranes exhibit one or more dielectric dispersions. PMID:11463629
Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance
NASA Astrophysics Data System (ADS)
Babauta, Jerome T.; Beyenal, Haluk
2017-07-01
The electrochemical impedance of Geobacter sulfurreducens biofilms reflects the extracellular electron transfer mechanisms determining the rate of current output. Binned into two characteristic parameters, conductance and capacitance, biofilm impedance has received significant attention. The goal of this study was to evaluate a small overpotential approximation for extracellular electron transfer in G. sulfurreducens biofilms. Our motivation was to determine whether conductance over biofilm growth behaved linearly with respect to limiting current. Biofilm impedance was tracked during growth using electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (eQCM). We showed that normalization of the biofilm impedance is useful for characterizing the changes during growth. When the conductance and capacitance were compared to the biofilm current, we found that: 1) conductance had a linear response and 2) constant phase elements (CPE) had a saturating response that coincided with the limiting current. We provided a framework using a simple iV relationship that predicted the conductance-current slope to be 9.57 V-1. CPEs showed more variability across biofilm replicates than conductance values. Although G. sulfurreducens biofilms were used here, other electrochemically active biofilms exhibiting catalytic waves could be studied using the same methods.
A systematic uncertainty analysis for liner impedance eduction technology
NASA Astrophysics Data System (ADS)
Zhou, Lin; Bodén, Hans
2015-11-01
The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.
NASA Astrophysics Data System (ADS)
Arslanagic, S.; Hansen, T. V.; Mortensen, N. A.; Gregersen, A. H.; Sigmund, O.; Ziolkowski, R. W.; Breinbjerg, O.
2013-04-01
The scattering parameter extraction method of metamaterial homogenization is reviewed to show that the only ambiguity is the one related to the choice of the branch of the complex logarithmic function (or the complex inverse cosine function), whereas it has no ambiguity for the sign of the wave number and intrinsic impedance. While the method indeed yields two signs of the intrinsic impedance, and thus the wave number, the signs are dependent, and moreover, both sign combinations lead to the same permittivity and permeability, and are thus permissible. This observation is in distinct contrast to a number of statements in the literature where the correct sign of the intrinsic impedance and wave number, resulting from the scattering parameter method, is chosen by imposing additional physical requirements such as passivity. The scattering parameter method is reviewed through an investigation of a uniform plane wave normally incident on a planar slab in free-space, and the severity of the branch ambiguity is illustrated through simulations of a known metamaterial realization. Several approaches for proper branch selection are reviewed and their suitability to metamaterial samples is discussed.
Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations
NASA Technical Reports Server (NTRS)
Kraft, R. E.; Yu, J.
1999-01-01
Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.
Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model
NASA Astrophysics Data System (ADS)
Chen, Huaizhen; Zhang, Guangzhi
2018-03-01
Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.
Standing stability enhancement with an intelligent powered transfemoral prosthesis.
Lawson, Brian Edward; Varol, Huseyin Atakan; Goldfarb, Michael
2011-09-01
The authors have developed a ground-adaptive standing controller for a powered knee and ankle prosthesis which is intended to enhance the standing stability of transfemoral amputees. The finite-state-based controller includes a ground-searching phase, a slope estimation phase, and a joint impedance modulation phase, which together enable the prosthesis to quickly conform to the ground and provide stabilizing assistance to the user. In order to assess the efficacy of the ground-adaptive standing controller, the control approach was implemented on a powered knee and ankle prosthesis, and experimental data were collected on an amputee subject for a variety of standing conditions. Results indicate that the controller can estimate the ground slope within ±1° over a range of ±15°, and that it can provide appropriate joint impedances for standing on slopes within this range.
NASA Astrophysics Data System (ADS)
Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.
2012-04-01
Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC) is in attention which is a technique to integrate large scale and complicated circuits. Lots of ASICs have been applied to high energy astrophysics. In this paper, we show our attempt to miniaturize the antennas impedances measurement system and Waveform Capture using the analogue ASIC. We design 8bits segment D/A converter that is implemented inside the waveform receiver ASIC chip. We improve input logic of the D/A converter to generate very weak signals accurately. The designed chip realizes the measurement of the antenna impedance as well as the waveform observation in the board size of business cards.
Björklund, Sebastian; Pham, Quoc Dat; Jensen, Louise Bastholm; Knudsen, Nina Østergaard; Nielsen, Lars Dencker; Ekelund, Katarina; Ruzgas, Tautgirdas; Engblom, Johan; Sparr, Emma
2016-10-01
In the development of transdermal and topical products it is important to understand how formulation ingredients interact with the molecular components of the upper layer of the skin, the stratum corneum (SC), and thereby influence its macroscopic barrier properties. The aim here was to investigate the effect of two commonly used excipients, transcutol and dexpanthenol, on the molecular as well as the macroscopic properties of the skin membrane. Polarization transfer solid-state NMR methods were combined with steady-state flux and impedance spectroscopy measurements to investigate how these common excipients influence the molecular components of SC and its barrier function at strictly controlled hydration conditions in vitro with excised porcine skin. The NMR results provide completely new molecular insight into how transcutol and dexpanthenol affect specific molecular segments of both SC lipids and proteins. The presence of transcutol or dexpanthenol in the formulation at fixed water activity results in increased effective skin permeability of the model drug metronidazole. Finally, impedance spectroscopy data show clear changes of the effective skin capacitance after treatment with transcutol or dexpanthenol. Based on the complementary data, we are able to draw direct links between effects on the molecular properties and on the macroscopic barrier function of the skin barrier under treatment with formulations containing transcutol or dexpanthenol. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic primitives in the control of locomotion.
Hogan, Neville; Sternad, Dagmar
2013-01-01
Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.
Johnston, Steven W.; Ahrenkiel, Richard K.
2002-01-01
An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.
NASA Astrophysics Data System (ADS)
Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.
2016-04-01
Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.
Finger impedance evaluation by means of hand exoskeleton.
Fiorilla, Angelo Emanuele; Nori, Francesco; Masia, Lorenzo; Sandini, Giulio
2011-12-01
Modulation of arm mechanical impedance is a fundamental aspect for interaction with the external environment and its regulation is essential for stability preservation during manipulation. Even though past research on human arm movements has suggested that models of human finger impedance would benefit the study of neural control mechanisms and the design of novel hand prostheses, relatively few studies have focused on finger and hand impedance. This article touches on the two main aspects of this research topic: first it introduces a mechanical refinement of a device that can be used to effectively measure finger impedance during manipulation tasks; then, it describes a pilot study aimed at identifying the inertia of the finger and the viscous and elastic properties of finger muscles. The proposed wearable exoskeleton, which has been designed to measure finger posture and impedance modulation while leaving the palm free, is capable of applying fast displacements while monitoring the interaction forces between the human finger and the robotic links. Moreover, due to the relatively small inertia of the fingers, it allows us to meet some stringent specifications, performing relatively large displacements (~45°) before the stretch reflex intervenes (~25 ms). The results of measurements on five subjects show that inertia, damping, and stiffness can be effectively identified and that the parameters obtained are comparable with values from previous studies.