Science.gov

Sample records for impending regime shift

  1. Turning back from the brink: detecting an impending regime shift in time to avert it.

    PubMed

    Biggs, Reinette; Carpenter, Stephen R; Brock, William A

    2009-01-20

    Ecological regime shifts are large, abrupt, long-lasting changes in ecosystems that often have considerable impacts on human economies and societies. Avoiding unintentional regime shifts is widely regarded as desirable, but prediction of ecological regime shifts is notoriously difficult. Recent research indicates that changes in ecological time series (e.g., increased variability and autocorrelation) could potentially serve as early warning indicators of impending shifts. A critical question, however, is whether such indicators provide sufficient warning to adapt management to avert regime shifts. We examine this question using a fisheries model, with regime shifts driven by angling (amenable to rapid reduction) or shoreline development (only gradual restoration is possible). The model represents key features of a broad class of ecological regime shifts. We find that if drivers can only be manipulated gradually management action is needed substantially before a regime shift to avert it; if drivers can be rapidly altered aversive action may be delayed until a shift is underway. Large increases in the indicators only occur once a regime shift is initiated, often too late for management to avert a shift. To improve usefulness in averting regime shifts, we suggest that research focus on defining critical indicator levels rather than detecting change in the indicators. Ideally, critical indicator levels should be related to switches in ecosystem attractors; we present a new spectral density ratio indicator to this end. Averting ecological regime shifts is also dependent on developing policy processes that enable society to respond more rapidly to information about impending regime shifts.

  2. The detection of impending regime shifts from Fisher Information(presentation)

    EPA Science Inventory

    Resilient systems typically exhibit periodic fluctuations yet are able to withstand perturbations while maintaining functionality. However, it is possible for a system to reach a dynamic threshold and shift to another set of system conditions. These regime shifts have been demon...

  3. The detection and assessment of impending regime shifts from Fisher Information

    EPA Science Inventory

    Resilient systems typically exhibit periodic fluctuations yet are able to withstand perturbations while maintaining functionality. However, it is possible for a system to reach a dynamic threshold and shift to another set of system conditions. These regime shifts have been demon...

  4. The detection of impending regime shifts from Fisher Information(presentation)

    EPA Science Inventory

    Resilient systems typically exhibit periodic fluctuations yet are able to withstand perturbations while maintaining functionality. However, it is possible for a system to reach a dynamic threshold and shift to another set of system conditions. These regime shifts have been demon...

  5. The detection and assessment of impending regime shifts from Fisher Information

    EPA Science Inventory

    Resilient systems typically exhibit periodic fluctuations yet are able to withstand perturbations while maintaining functionality. However, it is possible for a system to reach a dynamic threshold and shift to another set of system conditions. These regime shifts have been demon...

  6. Prolonged instability prior to a regime shift.

    PubMed

    Spanbauer, Trisha L; Allen, Craig R; Angeler, David G; Eason, Tarsha; Fritz, Sherilyn C; Garmestani, Ahjond S; Nash, Kirsty L; Stone, Jeffery R

    2014-01-01

    Regime shifts are generally defined as the point of 'abrupt' change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia.

  7. Shifts in fisheries management: adapting to regime shifts

    PubMed Central

    King, Jacquelynne R.; McFarlane, Gordon A.; Punt, André E.

    2015-01-01

    For many years, fisheries management was based on optimizing yield and maintaining a target biomass, with little regard given to low-frequency environmental forcing. However, this policy was often unsuccessful. In the last two to three decades, fisheries science and management have undergone a shift towards balancing sustainable yield with conservation, with the goal of including ecosystem considerations in decision-making frameworks. Scientific understanding of low-frequency climate–ocean variability, which is manifested as ecosystem regime shifts and states, has led to attempts to incorporate these shifts and states into fisheries assessment and management. To date, operationalizing these attempts to provide tactical advice has met with limited success. We review efforts to incorporate regime shifts and states into the assessment and management of fisheries resources, propose directions for future investigation and outline a potential framework to include regime shifts and changes in ecosystem states into fisheries management.

  8. A holistic view of marine regime shifts

    PubMed Central

    Conversi, Alessandra; Dakos, Vasilis; Gårdmark, Anna; Ling, Scott; Folke, Carl; Mumby, Peter J.; Greene, Charles; Edwards, Martin; Blenckner, Thorsten; Casini, Michele; Pershing, Andrew; Möllmann, Christian

    2015-01-01

    Understanding marine regime shifts is important not only for ecology but also for developing marine management that assures the provision of ecosystem services to humanity. While regime shift theory is well developed, there is still no common understanding on drivers, mechanisms and characteristic of abrupt changes in real marine ecosystems. Based on contributions to the present theme issue, we highlight some general issues that need to be overcome for developing a more comprehensive understanding of marine ecosystem regime shifts. We find a great divide between benthic reef and pelagic ocean systems in how regime shift theory is linked to observed abrupt changes. Furthermore, we suggest that the long-lasting discussion on the prevalence of top-down trophic or bottom-up physical drivers in inducing regime shifts may be overcome by taking into consideration the synergistic interactions of multiple stressors, and the special characteristics of different ecosystem types. We present a framework for the holistic investigation of marine regime shifts that considers multiple exogenous drivers that interact with endogenous mechanisms to cause abrupt, catastrophic change. This framework takes into account the time-delayed synergies of these stressors, which erode the resilience of the ecosystem and eventually enable the crossing of ecological thresholds. Finally, considering that increased pressures in the marine environment are predicted by the current climate change assessments, in order to avoid major losses of ecosystem services, we suggest that marine management approaches should incorporate knowledge on environmental thresholds and develop tools that consider regime shift dynamics and characteristics. This grand challenge can only be achieved through a holistic view of marine ecosystem dynamics as evidenced by this theme issue.

  9. Gradual regime shifts in fairy circles.

    PubMed

    Zelnik, Yuval R; Meron, Ehud; Bel, Golan

    2015-10-06

    Large responses of ecosystems to small changes in the conditions--regime shifts--are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water-vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts.

  10. Multiscale regime shifts and planetary boundaries.

    PubMed

    Hughes, Terry P; Carpenter, Stephen; Rockström, Johan; Scheffer, Marten; Walker, Brian

    2013-07-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a tipping point. Whether human activities will trigger such a global event in the near future is uncertain, due to critical knowledge gaps. In particular, we lack understanding of how regime shifts propagate across scales, and whether local or regional tipping points can lead to global transitions. The ongoing disruption of ecosystems and climate, combined with unprecedented breakdown of isolation by human migration and trade, highlights the need to operate within safe planetary boundaries.

  11. Prolonged Instability Prior to a Regime Shift

    EPA Science Inventory

    Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of th...

  12. Anticipating regime shifts in gene expression: The case of an autoactivating positive feedback loop

    NASA Astrophysics Data System (ADS)

    Sharma, Yogita; Dutta, Partha Sharathi; Gupta, A. K.

    2016-03-01

    Considerable evidence suggests that anticipating sudden shifts from one state to another in bistable dynamical systems is a challenging task; examples include ecosystems, financial markets, and complex diseases. In this paper, we investigate the effects of additive, multiplicative, and cross-correlated stochastic perturbations on determining the regime shifts in a bistable gene regulatory system, which gives rise to two distinct states of low and high concentrations of protein. We obtain the stationary probability density and mean first-passage time of the system. We show that increasing the additive (multiplicative) noise intensity induces a regime shift from a low (high) to a high (low) protein concentration state. However, an increase in the cross-correlation intensity always induces regime shifts from a high to a low protein concentration state. For both bifurcation-induced (often called the tipping point) and noise-induced (called stochastic switching) regime shifts, we further explore the robustness of recently developed critical-down-based early warning signal (EWS) indicators (e.g., rising variance and lag-1 autocorrelation) on our simulated time-series data. We identify that using EWS indicators, prediction of an impending bifurcation-induced regime shift is relatively easier than that of a noise-induced regime shift in the considered system. Moreover, the success of EWS indicators also strongly depends upon the nature of the noise.

  13. Regime Shifts in the Anthropocene: Drivers, Risks, and Resilience

    PubMed Central

    Rocha, Juan Carlos; Peterson, Garry D.; Biggs, Reinette

    2015-01-01

    Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers. PMID:26267896

  14. Regime shifts in the anthropocene: drivers, risks, and resilience.

    PubMed

    Rocha, Juan Carlos; Peterson, Garry D; Biggs, Reinette

    2015-01-01

    Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers.

  15. TBT causes regime shift in shallow lakes.

    PubMed

    Sayer, Carl D; Hoare, Daniel J; Simpson, Gavin L; Henderson, Andrew C G; Liptrot, Eleanor R; Jackson, Michael J; Appleby, Peter G; Boyle, John F; Jones, I Iwan; Waldock, Mike J

    2006-09-01

    Tributyltin (TBT) is an organotin compound used since the early 1960s as a biocide in boat antifouling paints. Its use has been linked to a host of negative effects in marine ecosystems including malformations and imposex in Mollusca and acute toxicity in many other aquatic animals. Yet, the consequences of TBT use in freshwaters are largely unknown. Here, for the first time we reveal that TBT may have caused hitherto unsuspected damage to freshwater ecosystems. Through an analysis of dated sediment cores collected from a system of recreationally boated, shallow lakes, we show that first evidence of TBT is associated with a dramatic loss of submerged vegetation and associated diverse animal communities. Cause and effect are difficult to unravel in our study. However, we hypothesize that TBT, through reducing populations of grazing organisms in lakes already affected by eutrophication, promoted the replacement of macrophytes by phytoplankton, ultimately leading to a regime shift in the ecosystem. Our findings may have parallels in freshwater ecosystems all over the world.

  16. Signals of impending change

    USGS Publications Warehouse

    Grace, James B.

    2017-01-01

    Society has an increasing awareness that there are finite limits to what we can expect the planet to absorb and still provide goods and services at current rates1. Both historical reconstructions and contemporary events continue to remind us that ecological regime changes are often abrupt rather than gradual. This reality motivates researchers who seek to discover leading indicators for impending ecosystem change. Berdugo et al.2 report an important advance in our ability to anticipate the conversion of arid lands from self-organized, self-maintaining and productive ecosystems, to a state characterized by disorganization and low functionality. Such conversions have important implications for our understanding of ‘desertification’ — which is a shift from arid to desert-like conditions.Theoretical studies have suggested that patterns in the patchiness of vegetation might indicate how close a system is to making an abrupt change to desert-like conditions3,4,5. Empirical studies, however, have tended to show instead that simply the total cover of vegetation, rather than its arrangement, often foretells the state of the system4,5,6,7,8,9. Berdugo et al.2 combine these competing ideas into one integrated perspective. They show how major environmental drivers, such as aridity, influence both vegetation cover and patchiness, as well as where self-organizing, stabilizing forces in the vegetation are likely to be found.

  17. Global regime shift dynamics of catastrophic sea urchin overgrazing

    PubMed Central

    Ling, S. D.; Scheibling, R. E.; Rassweiler, A.; Johnson, C. R.; Shears, N.; Connell, S. D.; Salomon, A. K.; Norderhaug, K. M.; Pérez-Matus, A.; Hernández, J. C.; Clemente, S.; Blamey, L. K.; Hereu, B.; Ballesteros, E.; Sala, E.; Garrabou, J.; Cebrian, E.; Zabala, M.; Fujita, D.; Johnson, L. E.

    2015-01-01

    A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.

  18. Conditional heteroscedasticity as a leading indicator of ecological regime shifts.

    PubMed

    Seekell, David A; Carpenter, Stephen R; Pace, Michael L

    2011-10-01

    Regime shifts are massive, often irreversible, rearrangements of nonlinear ecological processes that occur when systems pass critical transition points. Ecological regime shifts sometimes have severe consequences for human well-being, including eutrophication in lakes, desertification, and species extinctions. Theoretical and laboratory evidence suggests that statistical anomalies may be detectable leading indicators of regime shifts in ecological time series, making it possible to foresee and potentially avert incipient regime shifts. Conditional heteroscedasticity is persistent variance characteristic of time series with clustered volatility. Here, we analyze conditional heteroscedasticity as a potential leading indicator of regime shifts in ecological time series. We evaluate conditional heteroscedasticity by using ecological models with and without four types of critical transition. On approaching transition points, all time series contain significant conditional heteroscedasticity. This signal is detected hundreds of time steps in advance of the regime shift. Time series without regime shifts do not have significant conditional heteroscedasticity. Because probability values are easily associated with tests for conditional heteroscedasticity, detection of false positives in time series without regime shifts is minimized. This property reduces the need for a reference system to compare with the perturbed system.

  19. Detection and Assessment of Ecosystem Regime Shifts from Fisher Information

    EPA Science Inventory

    Ecosystem regime shifts, which are long-term system reorganizations, have profound implications for sustainability. There is a great need for indicators of regime shifts, particularly methods that are applicable to data from real systems. We have developed a form of Fisher info...

  20. Detection and Assessment of Ecosystem Regime Shifts from Fisher Information

    EPA Science Inventory

    Ecosystem regime shifts, which are long-term system reorganizations, have profound implications for sustainability. There is a great need for indicators of regime shifts, particularly methods that are applicable to data from real systems. We have developed a form of Fisher info...

  1. Marine regime shifts: drivers and impacts on ecosystems services

    PubMed Central

    Rocha, J.; Yletyinen, J.; Biggs, R.; Blenckner, T.; Peterson, G.

    2015-01-01

    Marine ecosystems can experience regime shifts, in which they shift from being organized around one set of mutually reinforcing structures and processes to another. Anthropogenic global change has broadly increased a wide variety of processes that can drive regime shifts. To assess the vulnerability of marine ecosystems to such shifts and their potential consequences, we reviewed the scientific literature for 13 types of marine regime shifts and used networks to conduct an analysis of co-occurrence of drivers and ecosystem service impacts. We found that regime shifts are caused by multiple drivers and have multiple consequences that co-occur in a non-random pattern. Drivers related to food production, climate change and coastal development are the most common co-occurring causes of regime shifts, while cultural services, biodiversity and primary production are the most common cluster of ecosystem services affected. These clusters prioritize sets of drivers for management and highlight the need for coordinated actions across multiple drivers and scales to reduce the risk of marine regime shifts. Managerial strategies are likely to fail if they only address well-understood or data-rich variables, and international cooperation and polycentric institutions will be critical to implement and coordinate action across the scales at which different drivers operate. By better understanding these underlying patterns, we hope to inform the development of managerial strategies to reduce the risk of high-impact marine regime shifts, especially for areas of the world where data are not available or monitoring programmes are not in place.

  2. Synchronous marine pelagic regime shifts in the Northern Hemisphere

    PubMed Central

    Beaugrand, G.; Conversi, A.; Chiba, S.; Edwards, M.; Fonda-Umani, S.; Greene, C.; Mantua, N.; Otto, S. A.; Reid, P. C.; Stachura, M. M.; Stemmann, L.; Sugisaki, H.

    2015-01-01

    Regime shifts are characterized by sudden, substantial and temporally persistent changes in the state of an ecosystem. They involve major biological modifications and often have important implications for exploited living resources. In this study, we examine whether regime shifts observed in 11 marine systems from two oceans and three regional seas in the Northern Hemisphere (NH) are synchronous, applying the same methodology to all. We primarily infer marine pelagic regime shifts from abrupt shifts in zooplankton assemblages, with the exception of the East Pacific where ecosystem changes are inferred from fish. Our analyses provide evidence for quasi-synchronicity of marine pelagic regime shifts both within and between ocean basins, although these shifts lie embedded within considerable regional variability at both year-to-year and lower-frequency time scales. In particular, a regime shift was detected in the late 1980s in many studied marine regions, although the exact year of the observed shift varied somewhat from one basin to another. Another regime shift was also identified in the mid- to late 1970s but concerned less marine regions. We subsequently analyse the main biological signals in relation to changes in NH temperature and pressure anomalies. The results suggest that the main factor synchronizing regime shifts on large scales is NH temperature; however, changes in atmospheric circulation also appear important. We propose that this quasi-synchronous shift could represent the variably lagged biological response in each ecosystem to a large-scale, NH change of the climatic system, involving both an increase in NH temperature and a strongly positive phase of the Arctic Oscillation. Further investigation is needed to determine the relative roles of changes in temperature and atmospheric pressure patterns and their resultant teleconnections in synchronizing regime shifts at large scales.

  3. Regime shifts driven by dynamic correlations in gene expression noise

    NASA Astrophysics Data System (ADS)

    Sharma, Yogita; Dutta, Partha Sharathi

    2017-08-01

    Gene expression is a noisy process that leads to regime shifts between alternative steady states among individual living cells, inducing phenotypic variability. The effects of white noise on the regime shift in bistable systems have been well characterized, however little is known about such effects of colored noise (noise with nonzero correlation time). Here, we show that noise correlation time, by considering a genetic circuit of autoactivation, can have a significant effect on the regime shift between distinct phenotypic states in gene expression. We demonstrate this theoretically, using stochastic potential, stationary probability density function, and first-passage time based on the Fokker-Planck description, where the Ornstein-Uhlenbeck process is used to model colored noise. We find that an increase in noise correlation time in the degradation rate can induce a regime shift from a low to a high protein concentration state and enhance the bistable regime, while an increase in noise correlation time in the basal rate retains the bimodal distribution. We then show how cross-correlated colored noises in basal and degradation rates can induce regime shifts from a low to a high protein concentration state, but reduce the bistable regime. We also validate these results through direct numerical simulations of the stochastic differential equation. In gene expression understanding the causes of regime shift to a harmful phenotype could improve early therapeutic intervention in complex human diseases.

  4. Regime shifts and resilience in China's coastal ecosystems.

    PubMed

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.

  5. Early warnings of regime shifts: a whole-ecosystem experiment.

    PubMed

    Carpenter, S R; Cole, J J; Pace, M L; Batt, R; Brock, W A; Cline, T; Coloso, J; Hodgson, J R; Kitchell, J F; Seekell, D A; Smith, L; Weidel, B

    2011-05-27

    Catastrophic ecological regime shifts may be announced in advance by statistical early warning signals such as slowing return rates from perturbation and rising variance. The theoretical background for these indicators is rich, but real-world tests are rare, especially for whole ecosystems. We tested the hypothesis that these statistics would be early warning signals for an experimentally induced regime shift in an aquatic food web. We gradually added top predators to a lake over 3 years to destabilize its food web. An adjacent lake was monitored simultaneously as a reference ecosystem. Warning signals of a regime shift were evident in the manipulated lake during reorganization of the food web more than a year before the food web transition was complete, corroborating theory for leading indicators of ecological regime shifts.

  6. Regime shifts in North Sea and Baltic Sea: A comparison

    NASA Astrophysics Data System (ADS)

    Dippner, Joachim W.; Möller, Caroline; Hänninen, Jari

    2012-12-01

    The ICES subdivisions in the North Sea (SD IIIa, SD IVa, and SD IVb) and the subdivisions in the Baltic Sea (SD 29, SD 27/28-2, and SD 25/26) are selected to compare the response in long term monitoring data (1970-2000) with respect to climate regime shifts. A modified AMOEBA model is applied to the data sets to identify the status and development of the North Sea and Baltic Sea system during two recent regime shifts. Biological regime shifts can be identified 1989/1990 in SD IIIa in the North Sea and in SD 25/26 in the Baltic Sea. A synchronous appearance of regime shifts could only be identified in the central and southern Baltic Sea for both regime shifts 1975/76 and 1989/90 where the AMOEBA model indicated a high similarity in ecosystem response. A clear difference was identified in the response of the North Sea and the Baltic Sea. Inter-annual and inter-decadal variability as well as regime shifts are driven in the Baltic Sea by direct atmospheric forcing only. In contrast, the changes in the North Sea are influenced by both the direct atmospheric forcing and the indirect forcing from the changes in North Atlantic. The fact that regime shifts as well as their synchronous appearance can be identified with the AMOEBA model might be of major interest for the management of sustainable use of ecosystem goods and services, the development of ecosystem approach to management and the implementation of the Marine Strategy Framework Directive (MSFD) of the European Union (EU).

  7. Living dangerously on borrowed time during slow, unrecognized regime shifts.

    PubMed

    Hughes, Terry P; Linares, Cristina; Dakos, Vasilis; van de Leemput, Ingrid A; van Nes, Egbert H

    2013-03-01

    Regime shifts from one ecological state to another are often portrayed as sudden, dramatic, and difficult to reverse. Yet many regime shifts unfold slowly and imperceptibly after a tipping point has been exceeded, especially at regional and global scales. These long, smooth transitions between equilibrium states are easy to miss, ignore, or deny, confounding management and governance. However, slow responses by ecosystems after transgressing a dangerous threshold also affords borrowed time - a window of opportunity to return to safer conditions before the new state eventually locks in and equilibrates. In this context, the most important challenge is a social one: convincing enough people to confront business-as-usual before time runs out to reverse unwanted regime shifts even after they have already begun.

  8. Connectivity, regime shifts and the resilience of coral reefs

    NASA Astrophysics Data System (ADS)

    Elmhirst, Toby; Connolly, Sean R.; Hughes, Terry P.

    2009-12-01

    Connectivity of larvae among metapopulations in open marine systems can be a double-edged sword, allowing for the colonization and replenishment of both desirable and undesirable elements of interacting species-rich assemblages. This article studies the effect of recruitment by coral and macroalgae on the resilience of grazed reef ecosystems. In particular, we focus on how larval connectivity affects regime shifts between alternative assemblages that are dominated either by corals or by macroalgae. Using a model with bistability dynamics, we show that recruitment of coral larvae erodes the resilience of a macroalgae-dominated ecosystem when grazing is high, but has negligible effect when grazing is low. Conversely, recruitment by macroalgae erodes the resilience of a coral-dominated ecosystem when grazing is low, leading to a regime shift to macroalgae. Thus, spillover of coral recruits from highly protected areas will not restore coral cover or prevent flips to macroalgae in the surrounding seascape if grazing levels in these areas are depleted, but may be pivotal for re-building coral populations if grazing is high. Fishing restrictions and the re-introduction of herbivores should therefore be a prime conservation objective for preventing undesirable regime shifts. Connectivity by some components of coral reef assemblages (e.g., macroalgae, pathogens, crown-of-thorns starfish) may be detrimental to sustaining reefs, especially where overfishing and other drivers have eroded their resilience, making them more vulnerable to a regime shift.

  9. Prolonged Instability Prior to a Regime Shift | Science ...

    EPA Pesticide Factsheets

    Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia. This manuscript explores various methods of assessing the transition between alternative states in an ecological system described by a long-term high-resolution paleoecological dataset.

  10. The legacy of large regime shifts in shallow lakes.

    PubMed

    Ramstack Hobbs, Joy M; Hobbs, William O; Edlund, Mark B; Zimmer, Kyle D; Theissen, Kevin M; Hoidal, Natalie; Domine, Leah M; Hanson, Mark A; Herwig, Brian R; Cotner, James B

    2016-12-01

    Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. We examine the modern and historical stability of 11 shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 yr suggest that (1) the diatom assemblage is characteristic of either clear or turbid lakes, (2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state, (3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 yr and have since remained in a regime where turbid-water predominates, and (4) top-down impacts to the lake food-web from fish introductions appear to be the dominant driver of strong regime shifts and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention.

  11. Body size distributions signal a regime shift in a lake ...

    EPA Pesticide Factsheets

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana,USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. Communities of organisms from mammals to microorganisms have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at discrete spatial and temporal scales within ecosystems. Here, a paleoecological record of diatom community change is use

  12. Globalization, marine regime shifts and the Soviet Union

    PubMed Central

    Österblom, Henrik; Folke, Carl

    2015-01-01

    Regime shifts have been observed in marine ecosystems around the world, with climate and fishing suggested as major drivers of such shifts. The global and regional dynamics of the climate system have been studied in this context, and efforts to develop an analogous understanding of fishing activities are developing. Here, we investigate the timing of pelagic marine regime shifts in relation to the emergence of regional and global fishing activities of the Soviet Union. Our investigation of official catch statistics reflects that the Soviet Union was a major fishing actor in all large marine ecosystems where regime shifts have been documented, including in ecosystems where overfishing has been established as a key driver of these changes (in the Baltic and Black Seas and the Scotian Shelf). Globalization of Soviet Union fishing activities pushed exploitation to radically new levels and triggered regional and global governance responses for improved management. Since then, exploitation levels have remained and increased with new actors involved. Based on our exploratory work, we propose that a deeper understanding of the role of global fishing actors is central for improved management of marine ecosystems.

  13. Global impacts of the 1980s regime shift.

    PubMed

    Reid, Philip C; Hari, Renata E; Beaugrand, Grégory; Livingstone, David M; Marty, Christoph; Straile, Dietmar; Barichivich, Jonathan; Goberville, Eric; Adrian, Rita; Aono, Yasuyuki; Brown, Ross; Foster, James; Groisman, Pavel; Hélaouët, Pierre; Hsu, Huang-Hsiung; Kirby, Richard; Knight, Jeff; Kraberg, Alexandra; Li, Jianping; Lo, Tzu-Ting; Myneni, Ranga B; North, Ryan P; Pounds, J Alan; Sparks, Tim; Stübi, René; Tian, Yongjun; Wiltshire, Karen H; Xiao, Dong; Zhu, Zaichun

    2016-02-01

    Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Unsustainable Groundwater Exploitation and Stochastic Regime Shifts: Converging Management Constraints

    NASA Astrophysics Data System (ADS)

    Rao, Suresh; Park, Jeryang

    2014-05-01

    Increasing water security concerns arise from projected increases in competing freshwater demands, resulting from rapid urbanization, growing affluent population, and the need for increased production of food and bio-energy. These global trends in concert with the convergence of three groups of threats are likely to exacerbate freshwater security issues: (1) increasing dependency on effectively non-renewable groundwater ("peak water"); (2) increasing groundwater quality impairment("land-use intensification") from larger contaminant loads delivered from the vadose zone and surface water; and (3) increasing uncertainties in groundwater demand/supply from climate change ("stochastic risks"). Here, we present a conceptual framework for exploring water security threats, with a consideration of aquifers as complex hydrological systems with two stable states. Regime shifts in groundwater pumping -- from "sufficient" to "insufficient" -- result from changes in both internal system dynamics and external forcing from stochastic divers (non-stationary demands, hydro-climatic patterns). Examples from recent related work, in groundwater and surface water systems and ecosystems, are briefly reviewed as a prelude to presentation of model simulations of hypothetical scenarios of regime-shifts (tipping points) involving groundwater quantity and quality constraints. In addition to three types of widely recognized tipping points, we introduce a new type, stochastic tipping, that contributes to unexpected, undesirable regime shifts, resulting in inability to meet groundwater pumping needs, even when the perceived precariousness is small and the system is far from bifurcation point (deterministic tipping). Implications to sustainable groundwater management are discussed.

  15. Socioecological regime shifts in the setting of complex social interactions

    NASA Astrophysics Data System (ADS)

    Sugiarto, Hendrik Santoso; Chung, Ning Ning; Lai, Choy Heng; Chew, Lock Yue

    2015-06-01

    The coupling between social and ecological system has become more ubiquitous and predominant in the current era. The strong interaction between these systems can bring about regime shifts which in the extreme can lead to the collapse of social cooperation and the extinction of ecological resources. In this paper, we study the occurrence of such regime shifts in the context of a coupled social-ecological system where social cooperation is established by means of sanction that punishes local selfish act and promotes norms that prescribe nonexcessive resource extraction. In particular, we investigate the role of social networks on social-ecological regimes shift and the corresponding hysteresis effects caused by the local ostracism mechanism under different social and ecological parameters. Our results show that a lowering of network degree reduces the hysteresis effect and also alters the tipping point, which is duly verified by our numerical results and analytical estimation. Interestingly, the hysteresis effect is found to be stronger in scale-free network in comparison with random network even when both networks have the same average degree. These results provide deeper insights into the resilience of these systems, and can have important implications on the management of coupled social-ecological systems with complex social interactions.

  16. Predicting regime shifts in flow of the Colorado River

    USGS Publications Warehouse

    Gangopadhyay, Subhrendu; McCabe, Gregory J.

    2010-01-01

    The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g., decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. To manage water resources in the future water managers will have to understand the joint hydrologic effects of natural climate variability and global warming. These joint effects may produce future hydrologic conditions that are unprecedented in both the instrumental and paleoclimatic records.

  17. Experimental floods cause ecosystem regime shift in a regulated river.

    PubMed

    Robinson, Christopher T; Uehlinger, Urs

    2008-03-01

    Reservoirs have altered the flow regime of most rivers on the globe. To simulate the natural flow regime, experimental floods are being implemented on regulated rivers throughout the world to improve their ecological integrity. As a large-scale disturbance, the long-term sequential use of floods provides an excellent empirical approach to examine ecosystem regime shifts in rivers. This study evaluated the long-term effects of floods (15 floods over eight years) on a regulated river. We hypothesized that sequential floods over time would cause a regime shift in the ecosystem. The floods resulted in little change in the physicochemistry of the river, although particulate organic carbon and particulate phosphorus were lower after the floods. The floods eliminated moss cover on bed sediments within the first year of flooding and maintained low periphyton biomass and benthic organic matter after the third year of flooding. Organic matter in transport was reduced after the third year of flooding, although peaks were still observed during rain events due to tributary inputs and side slopes. The floods reduced macroinvertebrate richness and biomass after the first year of floods, but density was not reduced until the third year. The individual mass of invertebrates decreased by about one-half after the floods. Specific taxa displayed either a loss in abundance, or an increase in abundance, or an increase followed by a loss after the third year. The first three flood years were periods of nonequilibrium with coefficients of variation in all measured parameters increasing two to five times from those before the floods. Coefficients of variation decreased after the third year, although they were still higher than before the floods. Analysis of concordance using Kendall's W confirmed the temporal changes observed in macroinvertebrate assemblage structure. An assessment of individual flood effects showed that later floods had approximately 30% less effect on macroinvertebrates

  18. Climate-driven regime shift of a temperate marine ecosystem.

    PubMed

    Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun

    2016-07-08

    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.

  19. AN INDEX TO DETECT EXTERNALLY-FORCED DYNAMIC REGIME SHIFTS IN ECOSYSTEMS

    EPA Science Inventory

    The concept of dynamic regimes, and nonlinear shifts between regimes, has gained acceptance and importance in ecosystem research. Regimes in ecosystems are identified as states with characteristic species abundances and abiotic conditions. Ecosystems are maintained in particular ...

  20. USING FISHER INFORMATION TO DETECT GRADUAL AND RAPID ECOSYSTEM REGIME SHIFTS

    EPA Science Inventory

    As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or "flip" into the neighborhood of a regime with different characteristics. Although the possibility of such regime shifts...

  1. USING FISHER INFORMATION TO DETECT GRADUAL AND RAPID ECOSYSTEM REGIME SHIFTS

    EPA Science Inventory

    As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or "flip" into the neighborhood of a regime with different characteristics. Although the possibility of such regime shifts...

  2. AN INDEX TO DETECT EXTERNALLY-FORCED DYNAMIC REGIME SHIFTS IN ECOSYSTEMS

    EPA Science Inventory

    The concept of dynamic regimes, and nonlinear shifts between regimes, has gained acceptance and importance in ecosystem research. Regimes in ecosystems are identified as states with characteristic species abundances and abiotic conditions. Ecosystems are maintained in particular ...

  3. Climate-driven regime shifts in Arctic marine benthos

    PubMed Central

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E.; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-01-01

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980–2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years. PMID:22891319

  4. Climate-driven regime shifts in Arctic marine benthos.

    PubMed

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-08-28

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980-2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years.

  5. Indicators of regime shifts in ecological systems: what do we need to know and when do we need to know it?

    PubMed

    Contamin, Raphael; Ellison, Aaron M

    2009-04-01

    Because novel ecological conditions can cause severe and long-lasting environmental damage with large economic costs, ecologists must identify possible environmental regime shifts and pro-actively guide ecosystem management. As an illustrative example, we applied six potential indicators of impending regime shifts to S. R. Carpenter and W. A. Brock's model of lake eutrophication and analyzed whether or not they afforded adequate advance warning to enable preventative interventions. Our initial analyses suggest that an indicator based on the high-frequency signal in the spectral density of the time-series provides the best advance warning of a regime shift, even when only incomplete information about underlying system drivers and processes is available. In light of this result, we explored two key factors associated with using indicators to prevent regime shifts. The first key factor is the amount of inertia in the system; i.e., how fast the system will react to a change in management, given that a manager can actually control relevant system drivers. If rapid, intensive management is possible, our analyses suggest that an indicator must provide at least 20 years advance warning to reduce the probability of a regime shift to < 5%. As time to intervention is increased or intensity of intervention is decreased, the necessary amount of advance warning required to avoid a regime shift increases exponentially. The second key factor concerns the amount and type of variability intrinsic to the system, and the impact of this variability on the power of an indicator. Indicators are considered powerful if they detect an impending regime shift with adequate lead time for effective management intervention, but not so far in advance that interventions are too costly or unnecessary. Intrinsic "noise" in the system obscures the "signal" provided by all indicators, and therefore, the power of the indicators declines rapidly with increasing within- and between-year variability in

  6. Regime shifts in the Humboldt Current ecosystem [review article

    NASA Astrophysics Data System (ADS)

    Alheit, Jürgen; Niquen, Miguel

    2004-02-01

    Of the four major eastern boundary currents, the Humboldt Current (HC) stands out because it is extremely productive, dominated by anchovy dynamics and subject to frequent direct environmental perturbations of the El Niño Southern Oscillation (ENSO). The long-term dynamics of the HC ecosystem are controlled by shifts between alternating anchovy and sardine regimes that restructure the entire ecosystem from phytoplankton to the top predators. These regime shifts are caused by lasting periods of warm or cold temperature anomalies related to the approach or retreat of warm subtropical oceanic waters to the coast of Peru and Chile. Phases with mainly negative temperature anomalies parallel anchovy regimes (1950-1970; 1985 to the present) and the rather warm period from 1970 to 1985 was characterized by sardine dominance. The transition periods (turning points) from one regime to the other were 1968-1970 and 1984-1986. Like an El Nino, the warm periods drastically change trophic relationships in the entire HC ecosystem, exposing the Peruvian anchovy to a multitude of adverse conditions. Positive temperature anomalies off Peru drive the anchovy population close to the coast as the coastal upwelling cells usually offer the coolest environment, thereby substantially decreasing the extent of the areas of anchovy distribution and spawning. This enhances the effects of negative density-dependent processes such as egg and larval cannibalism and dramatically increases its catchability. Increased spatial overlap between anchovies and the warmer water preferring sardines intensifies anchovy egg mortality further as sardines feed heavily on anchovy eggs. Food sources for juvenile and adult anchovies which prey on a mixed diet of phyto- and zooplankton are drastically reduced because of decreased plankton production due to restricted upwelling in warm years, as demonstrated by lower zooplankton and phytoplankton volumes and the diminution of the fraction of large copepods, their

  7. Newly discovered landscape traps produce regime shifts in wet forests

    PubMed Central

    Lindenmayer, David B.; Hobbs, Richard J.; Likens, Gene E.; Krebs, Charles J.; Banks, Samuel C.

    2011-01-01

    We describe the “landscape trap” concept, whereby entire landscapes are shifted into, and then maintained (trapped) in, a highly compromised structural and functional state as the result of multiple temporal and spatial feedbacks between human and natural disturbance regimes. The landscape trap concept builds on ideas like stable alternative states and other relevant concepts, but it substantively expands the conceptual thinking in a number of unique ways. In this paper, we (i) review the literature to develop the concept of landscape traps, including their general features; (ii) provide a case study as an example of a landscape trap from the mountain ash (Eucalyptus regnans) forests of southeastern Australia; (iii) suggest how landscape traps can be detected before they are irrevocably established; and (iv) present evidence of the generality of landscape traps in different ecosystems worldwide. PMID:21876151

  8. Allometry and catastrophic regime shifts in food chains.

    PubMed

    Suzuki, Kenta; Ikegami, Takashi

    2010-11-07

    Population dynamics can reflect the body mass distribution of species because there is an allometric relationship between the average body mass of species and its metabolic timescale. Since predators are generally larger than their prey, a hierarchical structure from fast timescales to slow timescales can be a general structure in food webs. In this paper, we show that changes of the metabolic timescale ratio can cause catastrophic shifts. Then, we investigate a two-dimensional parameter space with the timescale ratio and the carrying capacity of basal species, and reveal that the timescale ratio characterizes the response of the system to environmental variation. Finally, in a bistable regime, we try to clarify the relationship between the trophic position of a species and the extent to which the species induces attractor switching. We saw that, in a 4-species food chain, top predators and second consumers induce attractor switching easily compared to first consumers and basal species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Regime Shifts in Climate Forcing of Peru Denitrification

    NASA Astrophysics Data System (ADS)

    Altabet, M. A.; Cleaveland, L.; Tierny, J.; Herbert, T. D.

    2004-12-01

    and/or changes in the relative isolation of the `shadow zone' from the subtropical gyre circulation. The Holocene is also marked by large excursions in denitrification that are only centennial scale in duration that are unique to this region. A regime shift appears to have occurred in which local, productivity-driven forcing appears to dominate.

  10. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    NASA Technical Reports Server (NTRS)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  11. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    NASA Technical Reports Server (NTRS)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  12. IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS

    EPA Science Inventory

    The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...

  13. IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS

    EPA Science Inventory

    The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...

  14. The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales

    USDA-ARS?s Scientific Manuscript database

    Regime shifts are difficult-to-reverse transitions that occur when an ecosystem reorganizes around a new set of self-reinforcing feedbacks. Regime shifts are predicted to occur when the intensity of some exogenous driver variable, such as temperature, annual harvest rate, or nutrient addition rate, ...

  15. Contrasting energy pathways at the community level as a consequence of regime shifts.

    PubMed

    Xu, Jun; Wen, Zhourui; Ke, Zhixin; Zhang, Meng; Zhang, Min; Guo, Nichun; Hansson, Lars-Anders; Xie, Ping

    2014-05-01

    Ecological regime shifts typically result in abrupt changes in ecosystem structure through several trophic levels, which leads to rapid ecosystem reconfiguration between regimes. An interesting aspect of the impact of regime shift is that alternative regimes may induce distinct shifts in energy pathways; these have been less tested than structural changes. This paper addresses this by using stable isotopes to establish the energy pathways in fish communities. We specifically focus on the impact of regime shift on changes of the energy pathways, and how the magnitude and direction of these changes affect the local community. We found that energy pathways significantly varied among the planktivorous, benthivorous, and piscivorous trophic guilds as a result of the alternative regimes. The regime shift from a clear to a turbid state altered the food web towards planktonic energy pathways and truncated food chain length, which is indicative of less ecological efficiency. This was confirmed by the adaptive foraging strategies of prevalent omnivores in the current communities. These structural and functional characteristics of trophic interactions might not facilitate classic trophic cascading effects in such a turbid regime and suppress the system's response to environmental changes, e.g., nutrient loading, and restoration efforts in turbid to clear water regime shifts.

  16. Out-phased decadal precipitation regime shift in China and the United States

    NASA Astrophysics Data System (ADS)

    Yang, Lichao; Fu, Zuntao

    2016-08-01

    In order to understand the changes in precipitation variability associated with the climate shift around mid-1970s, the precipitation regime changes have been analyzed over both China and the USA. Specifically, a new variable is designed based on Benford's Law (BL) to detect precipitation regime shift by using only the first digit information of the datasets. This new variable describes the decadal precipitation regime shift more directly and clearly than the traditional variables, such mean or trend of yearly precipitation amount. It is found that there is an obvious out-phased relation for precipitation regime shift over China and the USA, i.e., a significant shift from the lower to the higher BL's goodness of fit (weaker to stronger precipitation intensity) in the Southern China occurred in 1979, and a significant shift from the higher to the lower BL's goodness of fit (stronger to weaker precipitation intensity) in the USA occurred around 1978.

  17. Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): Evidence of a recent regime shift?

    NASA Astrophysics Data System (ADS)

    Tomczak, Maciej T.; Dinesen, Grete E.; Hoffmann, Erik; Maar, Marie; Støttrup, Josianne G.

    2013-01-01

    An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is a eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west and main outflow to the Kattegat in the east. We showed that from 1990 to 1995, the ecosystem structure shifted from dominance by demersal fish species (eelpout, whiting, flounder, plaice) to that of pelagic fish species (sprat, herring, sticklebacks), small-bodied fish species (black goby, pipefish), jellyfish, common shore crab, starfish and blue mussels. We interpret this change as a regime shift that showed a similar temporal pattern to regime shifts identified in adjacent seas. The observed changes in trophic interactions and food web reorganisation suggested a non-linear regime shift. The analyses further showed the regime shift to be driven by a combination of anthropogenic pressures and possible interplay with climatic disturbance.

  18. Marine regime shifts in ocean biogeochemical models: a case study in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Beaulieu, C.; Cole, H.; Henson, S.; Yool, A.; Anderson, T. R.; de Mora, L.; Buitenhuis, E. T.; Butenschön, M.; Totterdell, I. J.; Allen, J. I.

    2015-08-01

    Regime shifts have been reported in many marine ecosystems, and are often expressed as an abrupt change occurring in multiple physical and biological components of the system. In the Gulf of Alaska, a regime shift in the late 1970s was observed, indicated by an abrupt increase in sea surface temperature and major shifts in the catch of many fish species. This late 1970s regime shift in the Gulf of Alaska was followed by another shift in the late 1980s, not as pervasive as the 1977 shift, but which nevertheless did not return to the prior state. A thorough understanding of the extent and mechanisms leading to such regime shifts is challenged by data paucity in time and space. We investigate the ability of a suite of ocean biogeochemistry models of varying complexity to simulate regime shifts in the Gulf of Alaska by examining the presence of abrupt changes in time series of physical variables (sea surface temperature and mixed layer depth), nutrients and biological variables (chlorophyll, primary productivity and plankton biomass) using change-point analysis. Our study demonstrates that ocean biogeochemical models are capable of simulating the late 1970s shift, indicating an abrupt increase in sea surface temperature forcing followed by an abrupt decrease in nutrients and biological productivity. This predicted shift is consistent among all the models, although some of them exhibit an abrupt transition (i.e. a significant shift from one year to the next), whereas others simulate a smoother transition. Some models further suggest that the late 1980s shift was constrained by changes in mixed layer depth. Our study demonstrates that ocean biogeochemical can successfully simulate regime shifts in the Gulf of Alaska region, thereby providing better understanding of how changes in physical conditions are propagated from lower to upper trophic levels through bottom-up controls.

  19. [(Impending) pathological fracture].

    PubMed

    Sutter, P M; Regazzoni, P

    2002-01-01

    Pathological fractures will be encountered in increasing frequency due to more patients with cancer, surviving a longer period. The skeleton is the third most frequent localization for metastases. Breast cancer is still the most common primary tumor, but bone metastases from lung cancer seem to be diagnosed more and more. Despite of finding metastases most often in the spinal column, fractures are seen mostly at the femoral site. A pathological fracture and, in almost all cases, an impending fracture are absolute indication for operation. An exact definition of an "impending fracture" is still lacking; it is widely accepted, that 50 per cent of bone mass must be destroyed before visualization in X-ray is possible, thus defining an impending fracture. The score system by Mirels estimates the fracture risk by means of four parameters (localization, per cent of destructed bone mass, type of metastasis, pain). Improving quality of life, relieving pain, preferably with a single operation and a short length of stay are the goals of (operative) treatment. For fractures of the proximal femur, prosthetic replacement, for fractures of the subtrochanteric region or the shaft, intramedullary nails are recommended. Postoperative radiation therapy possibly avoids tumor progression. In patient with a good long term prognosis, tumor should be removed locally aggressive.

  20. Managing for resilience: early detection of regime shifts in complex systems

    EPA Science Inventory

    The goal of sustainability is to maintain a condition or regime of the Earth, which supports human existence from generation to generation. Hence, the ability to detect, characterize, and manage regime shifts, particularly catastrophic ones, is critical to maintaining human sust...

  1. Managing for resilience: early detection of regime shifts in complex systems

    EPA Science Inventory

    The goal of sustainability is to maintain a condition or regime of the Earth, which supports human existence from generation to generation. Hence, the ability to detect, characterize, and manage regime shifts, particularly catastrophic ones, is critical to maintaining human sust...

  2. Regime shifts and panarchies in regional scale social ...

    EPA Pesticide Factsheets

    In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises,

  3. The importance of within-system spatial variation in drivers of marine ecosystem regime shifts

    PubMed Central

    Fisher, J. A. D.; Casini, M.; Frank, K. T.; Möllmann, C.; Leggett, W. C.; Daskalov, G.

    2015-01-01

    Comparative analyses of the dynamics of exploited marine ecosystems have led to differing hypotheses regarding the primary causes of observed regime shifts, while many ecosystems have apparently not undergone regime shifts. These varied responses may be partly explained by the decade-old recognition that within-system spatial heterogeneity in key climate and anthropogenic drivers may be important, as recent theoretical examinations have concluded that spatial heterogeneity in environmental characteristics may diminish the tendency for regime shifts. Here, we synthesize recent, empirical within-system spatio-temporal analyses of some temperate and subarctic large marine ecosystems in which regime shifts have (and have not) occurred. Examples from the Baltic Sea, Black Sea, Bengula Current, North Sea, Barents Sea and Eastern Scotian Shelf reveal the largely neglected importance of considering spatial variability in key biotic and abiotic influences and species movements in the context of evaluating and predicting regime shifts. We highlight both the importance of understanding the scale-dependent spatial dynamics of climate influences and key predator–prey interactions to unravel the dynamics of regime shifts, and the utility of spatial downscaling of proposed mechanisms (as evident in the North Sea and Barents Sea) as a means of evaluating hypotheses originally derived from among-system comparisons.

  4. Resisting regime-shifts: the stabilising effect of compensatory processes.

    PubMed

    Connell, Sean D; Ghedini, Giulia

    2015-09-01

    Ecologists seem predisposed to studying change because we are intuitively interested in dynamic systems, including their vulnerability to human disturbance. We contrast this disposition with the value of studying processes that work against change. Although powerful, processes that counter disturbance often go unexplored because they yield no observable community change. This stability results from compensatory processes which are initiated by disturbance; these adjust in proportion to the strength of the disturbance to prevent community change. By recognising such buffering processes, we might also learn to recognise the early warning signals of community shifts which are notoriously difficult to predict because communities often show little to no change before their tipping point is reached.

  5. Regime shifts in marine communities: a complex systems perspective on food web dynamics.

    PubMed

    Yletyinen, Johanna; Bodin, Örjan; Weigel, Benjamin; Nordström, Marie C; Bonsdorff, Erik; Blenckner, Thorsten

    2016-02-24

    Species composition and habitats are changing at unprecedented rates in the world's oceans, potentially causing entire food webs to shift to structurally and functionally different regimes. Despite the severity of these regime shifts, elucidating the precise nature of their underlying processes has remained difficult. We address this challenge with a new analytic approach to detect and assess the relative strength of different driving processes in food webs. Our study draws on complexity theory, and integrates the network-centric exponential random graph modelling (ERGM) framework developed within the social sciences with community ecology. In contrast to previous research, this approach makes clear assumptions of direction of causality and accommodates a dynamic perspective on the emergence of food webs. We apply our approach to analysing food webs of the Baltic Sea before and after a previously reported regime shift. Our results show that the dominant food web processes have remained largely the same, although we detect changes in their magnitudes. The results indicate that the reported regime shift may not be a system-wide shift, but instead involve a limited number of species. Our study emphasizes the importance of community-wide analysis on marine regime shifts and introduces a novel approach to examine food webs.

  6. Regime shifts in marine communities: a complex systems perspective on food web dynamics

    PubMed Central

    Yletyinen, Johanna; Bodin, Örjan; Weigel, Benjamin; Nordström, Marie C.; Bonsdorff, Erik; Blenckner, Thorsten

    2016-01-01

    Species composition and habitats are changing at unprecedented rates in the world's oceans, potentially causing entire food webs to shift to structurally and functionally different regimes. Despite the severity of these regime shifts, elucidating the precise nature of their underlying processes has remained difficult. We address this challenge with a new analytic approach to detect and assess the relative strength of different driving processes in food webs. Our study draws on complexity theory, and integrates the network-centric exponential random graph modelling (ERGM) framework developed within the social sciences with community ecology. In contrast to previous research, this approach makes clear assumptions of direction of causality and accommodates a dynamic perspective on the emergence of food webs. We apply our approach to analysing food webs of the Baltic Sea before and after a previously reported regime shift. Our results show that the dominant food web processes have remained largely the same, although we detect changes in their magnitudes. The results indicate that the reported regime shift may not be a system-wide shift, but instead involve a limited number of species. Our study emphasizes the importance of community-wide analysis on marine regime shifts and introduces a novel approach to examine food webs. PMID:26888032

  7. Early detection of ecosystem regime shifts: a multiple method evaluation for management application.

    PubMed

    Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A; Möllmann, Christian

    2012-01-01

    Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change.

  8. Climate Regime Shifts and Streamflow Responses in the Merrimack Watershed, NH-MA

    NASA Astrophysics Data System (ADS)

    Berton, R.; Driscoll, C. T.; Chandler, D. G.

    2013-12-01

    Climate change has frequently been related to alterations to the hydrologic cycle, especially for sites with winter snowpack and an annual snowmelt hydrograph. In the Northeast USA, changes in streamflow depend on both advanced timing of melt, typical of the sites with winter dominated precipitation, and increasing summer precipitation. In order to manage various demands for water, planners require robust metrics of change in flow quantity and timing for both wet and dry years. This study seeks appropriate metrics of hydrologic change, at several sites with different stream orders and levels of development within the Merrimack Watershed in the Northeast USA. The term "regime" is defined as variation in a parameter of interest. The regime change is a given expression to changes in statistical properties of data including mean, standard deviation, and skewness. Looking at long-term changes of a hydrological parameter without considering regime changes could result in over- or under-estimating trends. Trend evaluation over similar regime segment could be a more precise approach to study changes in hydroclimatological parameters. Regime shift point detection method developed by (Rodionov, 2004) is a sequential analysis which does not need pre-assumptions about timing of the shifts. The purpose of our research is to find regime shift points in hydroclimatological parameters at the study sites located within the Merrimack Watershed, NH-MA. Analysis of complete and partial annual streamflow records, by a combination of hydrologic flow classification (Genz and Luz, 2012) and regime shift point detection (Rodionov, 2004) provides insight into recent changes in streamflow regime. We try to identify the correlation between regime shifts in climate indices and observed trends in hydrologic variables in the Merrimack Watershed. The Atlantic Multi-decadal Oscillation (AMO) and the North Atlantic Oscillation (NAO) are the two climate indices related to sea surface temperature

  9. Marine regime shifts in ocean biogeochemical models: a case study in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Beaulieu, Claudie; Cole, Harriet; Henson, Stephanie; Yool, Andrew; Anderson, Tom; de Mora, Lee; Buitenhuis, Erik T.; Butenschön, Momme; Totterdell, Ian J.; Icarus Allen, J.

    2016-08-01

    Regime shifts have been reported in many marine ecosystems, and are often expressed as an abrupt change occurring in multiple physical and biological components of the system. In the Gulf of Alaska, a regime shift in the late 1970s was observed, indicated by an abrupt increase in sea surface temperature and major shifts in the catch of many fish species. A thorough understanding of the extent and mechanisms leading to such regime shifts is challenged by data paucity in time and space. We investigate the ability of a suite of ocean biogeochemistry models of varying complexity to simulate regime shifts in the Gulf of Alaska by examining the presence of abrupt changes in time series of physical variables (sea surface temperature and mixed-layer depth), nutrients and biological variables (chlorophyll, primary productivity and plankton biomass) using change-point analysis. Our results show that some ocean biogeochemical models are capable of simulating the late 1970s shift, manifested as an abrupt increase in sea surface temperature followed by an abrupt decrease in nutrients and biological productivity. Models from low to intermediate complexity simulate an abrupt transition in the late 1970s (i.e. a significant shift from one year to the next) while the transition is smoother in higher complexity models. Our study demonstrates that ocean biogeochemical models can successfully simulate regime shifts in the Gulf of Alaska region. These models can therefore be considered useful tools to enhance our understanding of how changes in physical conditions are propagated from lower to upper trophic levels.

  10. [Streptokinase in impending heart infarct].

    PubMed

    Kiemeneij, F; Schuilenburg, R M

    1989-02-18

    A patient is described with an impending myocardial infarction due to presence of an intracoronary thrombus in an otherwise normal left anterior descending artery. This case illustrates that intracoronary and intravenous administration of streptokinase can be of value in the treatment of impending myocardial infarction.

  11. The Regime Shift Associated with the 2004-2008 US Housing Market Bubble.

    PubMed

    Tan, James; Cheong, Siew Ann

    2016-01-01

    The Subprime Bubble preceding the Subprime Crisis of 2008 was fueled by risky lending practices, manifesting in the form of a large abrupt increase in the proportion of subprime mortgages issued in the US. This event also coincided with critical slowing down signals associated with instability, which served as evidence of a regime shift or phase transition in the US housing market. Here, we show that the US housing market underwent a regime shift between alternate stable states consistent with the observed critical slowing down signals. We modeled this regime shift on a universal transition path and validated the model by estimating when the bubble burst. Additionally, this model reveals loose monetary policy to be a plausible cause of the phase transition, implying that the bubble might have been deflatable by a timely tightening of monetary policy.

  12. The Regime Shift Associated with the 2004–2008 US Housing Market Bubble

    PubMed Central

    Cheong, Siew Ann

    2016-01-01

    The Subprime Bubble preceding the Subprime Crisis of 2008 was fueled by risky lending practices, manifesting in the form of a large abrupt increase in the proportion of subprime mortgages issued in the US. This event also coincided with critical slowing down signals associated with instability, which served as evidence of a regime shift or phase transition in the US housing market. Here, we show that the US housing market underwent a regime shift between alternate stable states consistent with the observed critical slowing down signals. We modeled this regime shift on a universal transition path and validated the model by estimating when the bubble burst. Additionally, this model reveals loose monetary policy to be a plausible cause of the phase transition, implying that the bubble might have been deflatable by a timely tightening of monetary policy. PMID:27583633

  13. Catastrophic regime shifts in model ecological communities are true phase transitions

    NASA Astrophysics Data System (ADS)

    Capitán, J. A.; Cuesta, J. A.

    2010-10-01

    Ecosystems often undergo abrupt regime shifts in response to gradual external changes. These shifts are theoretically understood as a regime switch between alternative stable states of the ecosystem dynamical response to smooth changes in external conditions. Usual models introduce nonlinearities in the macroscopic dynamics of the ecosystem that lead to different stable attractors among which the shift takes place. Here we propose an alternative explanation of catastrophic regime shifts based on a recent model that pictures ecological communities as systems in continuous fluctuation, according to certain transition probabilities, between different micro-states in the phase space of viable communities. We introduce a spontaneous extinction rate that accounts for gradual changes in external conditions, and upon variations on this control parameter the system undergoes a regime shift with similar features to those previously reported. Under our microscopic viewpoint we recover the main results obtained in previous theoretical and empirical work (anomalous variance, hysteresis cycles, trophic cascades). The model predicts a gradual loss of species in trophic levels from bottom to top near the transition. But more importantly, the spectral analysis of the transition probability matrix allows us to rigorously establish that we are observing the fingerprints, in a finite size system, of a true phase transition driven by background extinctions.

  14. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts.

    PubMed

    Daskalov, Georgi M; Grishin, Alexander N; Rodionov, Sergei; Mihneva, Vesselina

    2007-06-19

    Large-scale transitions between alternative states in ecosystems are known as regime shifts. Once described as healthy and dominated by various marine predators, the Black Sea ecosystem by the late 20th century had experienced anthropogenic impacts such as heavy fishing, cultural eutrophication, and invasions by alien species. We studied changes related to these "natural experiments" to reveal the mechanisms of regime shifts. Two major shifts were detected, the first related to a depletion of marine predators and the second to an outburst of the alien comb jelly Mnemiopsis leidyi; both shifts were triggered by intense fishing resulting in system-wide trophic cascades. The complex nature of ecosystem responses to human activities calls for more elaborate approaches than currently provided by traditional environmental and fisheries management. This implies challenging existing practices and implementing explanatory models of ecosystem interactions that can better reconcile conservation and ecosystem management ideals.

  15. Architecture of collapse: regime shift and recovery in an hierarchically structured marine ecosystem.

    PubMed

    Daskalov, Georgi M; Boicenco, Laura; Grishin, Alexandre N; Lazar, Luminita; Mihneva, Vesselina; Shlyakhov, Vladislav A; Zengin, Mustafa

    2017-04-01

    By the late 20th century, a series of events or 'natural experiments', for example the depletion of apex predators, extreme eutrophication and blooms of invasive species, had suggested that the Black Sea could be considered as a large ecosystem 'laboratory'. The events resulted in regime shifts cascading through all trophic levels, disturbing ecosystem functioning and damaging the water environment. Causal pathways by which the external (hydroclimate, overfishing) and internal (food web interactions) drivers provoke regime shifts are investigated. Statistical data analyses supported by an interpretative framework based on hierarchical ecosystem theory revealed mechanisms of hierarchical incorporation of environmental factors into the ecosystem. Evidence links Atlantic teleconnections to Black Sea hydroclimate, which together with fishing shapes variability in fish stocks. The hydroclimatic signal is conveyed through the food web via changes in productivity at all levels, to planktivorous fish. Fluctuating fish abundance is believed to induce a lagged change in competitor jelly plankton that cascades down to phytoplankton and influences water quality. Deprived of the stabilising role of apex predators, the Black Sea's hierarchical ecosystem organisation is susceptible to both environmental and anthropogenic stresses, and increased fishing makes fish stock collapses highly probable. When declining stocks are confronted with burgeoning fishing effort associated with the inability of fishery managers and decision-makers to adapt rapidly to changes in fish abundance, there is overfishing and stock collapse. Management procedures are ineffective at handling complex phenomena such as ecosystem regime shifts because of the shortage of suitable explanatory models. The proposed concepts and models reported here relate the hydroclimate, overfishing and invasive species to shifts in ecosystem functioning and water quality, unravelling issues such as the causality of ecosystem

  16. Decadal regime shift linkage between global marine fish landings and atmospheric planetary wave forcing

    NASA Astrophysics Data System (ADS)

    Powell, A. M., Jr.; Xu, J.

    2015-04-01

    This investigation focuses on a global forcing mechanism for decadal regime shifts and their subsequent impacts. The proposed global forcing mechanism is that the global atmospheric planetary waves can lead to changes in the global surface air-sea conditions and subsequently fishery changes. In this study, the five decadal regime shifts (1956-1957, 1964-1965, 1977-1978, 1988-1989, and 1998-1999) in the most recent 59-year period (1950-2008) have been identified based on Student t tests and their association with global marine ecosystem change has been discussed. Changes in the three major oceanic (Pacific, Atlantic, and Indian) ecosystems will be explored with the goal of demonstrating the linkage between stratospheric planetary waves and the ocean surface forcing that leads to fisheries impacts. The global forcing mechanism is described with a top-down approach to help the multidisciplinary audience follow the analysis. Following previous work, this analysis addresses how changes in the atmospheric planetary waves may influence the vertical wind structure, surface wind stress, and their connection with the global ocean ecosystems based on a coupling of the atmospheric regime shifts with the decadal regime shifts determined from marine life changes. The multiple decadal regime shifts related to changes in marine life are discussed using the United Nations Food and Agriculture Organization's (FAO) global fish capture data (catch/stock). Analyses are performed to demonstrate that examining the interactions between the atmosphere, ocean, and fisheries is a plausible approach to explaining decadal climate change in the global marine ecosystems and its impacts. The results show a consistent mechanism, ocean wind stress, responsible for marine shifts in the three major ocean basins. Changes in the planetary wave pattern affect the ocean wind stress patterns. A change in the ocean surface wind pattern from longwave (relatively smooth and less complex) to shorter

  17. Decadal regime shift linkage between global marine fish landings and atmospheric planetary wave forcing

    NASA Astrophysics Data System (ADS)

    Powell, A. M., Jr.; Xu, J.

    2014-08-01

    This investigation focuses on a global forcing mechanism for decadal regime shifts and their subsequent impacts. The proposed global forcing mechanism is the global atmospheric planetary waves that can lead to changes in the global surface air-sea conditions and subsequently fishery changes. In this study, the five decadal regime shifts (1956-1957, 1964-1965, 1977-1978, 1988-1989, and 1998-1999) in the recent 59 years (1950-2008) have been identified based on student t tests and their association with global marine ecosystem change has been discussed. Changes in the three major oceanic (Pacific, Atlantic and Indian) ecosystems will be explored with the goal of demonstrating the linkage between stratospheric planetary waves and the ocean surface forcing that leads to fisheries impacts. Due to the multidisciplinary audience, the global forcing mechanism is described from a top-down approach to help the multidisciplinary audience follow the analysis. Following previous work, this analysis addresses how changes in the atmospheric planetary waves may influence the vertical wind structure, surface wind stress, and their connection with the global ocean ecosystems based on a coupling of the atmospheric regime shifts with the decadal regime shifts determined from marine life changes. The multiple decadal regime shifts related to changes in marine life are discussed using the United Nations Food and Agriculture Organization's (FAO) global fish capture data (catch/stock). Analyses are performed to demonstrate the interactions between the atmosphere, ocean, and fisheries are a plausible approach to explaining decadal climate change in the global marine ecosystems and its impacts. The results show a consistent mechanism, ocean wind stress, responsible for marine shifts in the three major ocean basins. Changes in the planetary wave pattern affect the ocean wind stress patterns. A change in the ocean surface wind pattern from long wave (relatively smooth and less complex) to

  18. Detecting regime shifts in marine systems with limited biological data: An example from southeast Australia

    NASA Astrophysics Data System (ADS)

    Litzow, Michael A.; Hobday, Alistair J.; Frusher, Stewart D.; Dann, Peter; Tuck, Geoffrey N.

    2016-02-01

    The ability to detect ecological regime shifts in a data-limited setting was investigated, using southeast Australian ecosystems as a model. Community variability was summarized for 1968-2008 with the first two principal components (PCs) of recruitment estimates for six fish stocks and reproductive parameters for four seabird species; regional climate was summarized for 1953-2008 with the first two PCs for three parameters (sea surface temperature [SST], sea surface salinity, surface nitrate) measured at two stations; and basin-scale climate variability was summarized for 1950-2012 with mean South Pacific SST and the first two PCs of detrended South Pacific SST. The first two biology PCs explained 45% of total community variability. The first two PCs of basin-scale SST showed abrupt shifts similar to "regime" behavior observed in other ocean basins, and the first PC of basin-scale SST showed significant covariation with the first PC of regional climate. Together, these results are consistent with the strong community variability and decadal-scale red noise climatic variability associated with Northern Hemisphere regime shifts. However, statistical model selection showed that the first two PCs of regional climate and the first PC of biology time series all exhibited linear change, rather than abrupt shifts. This result is consistent with previous studies documenting rapid linear change in the climate and biology of southeast Australian shelf ecosystems, and we conclude that there is no evidence for regime shift behavior in the region's ecology. However, analysis of a large set of previously-published biological time series from the North Pacific (n = 64) suggests that studies using fewer than ∼30 biological time series, such as this one, may be unable to detect regime shifts. Thus we conclude that the nature of ecological variability in the region cannot be determined with available data. The development of additional long-term biological observations is needed

  19. Regime-shifting streamflow processes: Implications for water supply reservoir operations

    NASA Astrophysics Data System (ADS)

    Turner, S. W. D.; Galelli, S.

    2016-05-01

    This paper examines the extent to which regime-like behavior in streamflow time series impacts reservoir operating policy performance. We begin by incorporating a regime state variable into a well-established stochastic dynamic programming model. We then simulate and compare optimized release policies—with and without the regime state variable—to understand how regime shifts affect operating performance in terms of meeting water delivery targets. Our optimization approach uses a Hidden Markov Model to partition the streamflow time series into a small number of separate regime states. The streamflow persistence structures associated with each state define separate month-to-month streamflow transition probability matrices for computing penalty cost expectations within the optimization procedure. The algorithm generates a four-dimensional array of release decisions conditioned on the within-year time period, reservoir storage state, inflow class, and underlying regime state. Our computational experiment is executed on 99 distinct, hypothetical water supply reservoirs fashioned from the Australian Bureau of Meteorology's Hydrologic Reference Stations. Results show that regime-like behavior is a major cause of suboptimal operations in water supply reservoirs; conventional techniques for optimal policy design may misguide the operator, particularly in regions susceptible to multiyear drought. Stationary streamflow models that allow for regime-like behavior can be incorporated into traditional stochastic optimization models to enhance the flexibility of operations.

  20. Regime shift of the South China Sea SST in the late 1990s

    NASA Astrophysics Data System (ADS)

    Thompson, Bijoy; Tkalich, Pavel; Malanotte-Rizzoli, Paola

    2017-03-01

    Decadal variability of the South China Sea (SCS) sea surface temperature (SST) during 1982-2014 is investigated using observations and ocean reanalysis datasets. The SCS SST shows an abrupt transition from a cold-to-warm regime in the late 1990s. Based on the long-term SST variability two epochs are defined, 1982-1996 and 2000-2014 as cold and warm regimes respectively, spanning on either side of the 1997-1999 SCS warming. Despite the occurrence of strong El Nino induced warming events, the SST anomalies tend to be negative in the cold regime. Conversely during the warm regime, the positive SST anomalies have dominated over the La Nina driven cooling events. The cold (warm) SST regime is marked by net heat gain (loss) by the SCS. The long-term variations of net surface heat flux are mainly driven by the latent heat flux anomalies while the short wave flux plays a secondary role. Low-frequency variability of the South China Sea throughflow (SCSTF) appears to be closely related to the SCS SST regime shift. The SCSTF shows reversing trends during the cold and warm epochs. The weakened SCSTF in the warm regime has promoted the SCS warming by limiting the outward flow of warm water from the SCS. Meanwhile, enhanced SCSTF during the cold regime acts as a cooling mechanism and lead to persistent negative SST anomalies. The change in trend of the SCSTF and SST regime shift coincides with the switching of pacific decadal oscillation from a warm to cold phase in the late 1990s.

  1. Critical slowing down associated with regime shifts in the US housing market

    NASA Astrophysics Data System (ADS)

    Tan, James Peng Lung; Cheong, Siew Siew Ann

    2014-02-01

    Complex systems are described by a large number of variables with strong and nonlinear interactions. Such systems frequently undergo regime shifts. Combining insights from bifurcation theory in nonlinear dynamics and the theory of critical transitions in statistical physics, we know that critical slowing down and critical fluctuations occur close to such regime shifts. In this paper, we show how universal precursors expected from such critical transitions can be used to forecast regime shifts in the US housing market. In the housing permit, volume of homes sold and percentage of homes sold for gain data, we detected strong early warning signals associated with a sequence of coupled regime shifts, starting from a Subprime Mortgage Loans transition in 2003-2004 and ending with the Subprime Crisis in 2007-2008. Weaker signals of critical slowing down were also detected in the US housing market data during the 1997-1998 Asian Financial Crisis and the 2000-2001 Technology Bubble Crisis. Backed by various macroeconomic data, we propose a scenario whereby hot money flowing back into the US during the Asian Financial Crisis fueled the Technology Bubble. When the Technology Bubble collapsed in 2000-2001, the hot money then flowed into the US housing market, triggering the Subprime Mortgage Loans transition in 2003-2004 and an ensuing sequence of transitions. We showed how this sequence of couple transitions unfolded in space and in time over the whole of US.

  2. Climate change and potential reversal of regime shifts in desrt ecosystems

    USDA-ARS?s Scientific Manuscript database

    Globally, regime shifts from grasslands to shrublands (i.e., desertification) in arid and semiarid ecosystems are thought to be irreversible, similar to state changes in other ecosystems. The consequences of desertification, including loss of soil and nutrients to wind and water erosion, reductions ...

  3. Evidence for a regime shift in nitrogen export from a forested watershed

    Treesearch

    J. R. Webster; Jennifer Knoepp; Wayne Swank; Chelcy Miniat

    2016-01-01

    In this study, we document a functional regime shift in stream inorganic nitrogen (N) processing indicated by a major change in N export from a forested watershed. Evidence from 36 years of data following experimental clearcut logging at Coweeta Hydrologic Laboratory, NC, suggests that forest disturbance in this area can cause elevation of dissolved inorganic...

  4. Early warning signals of regime shifts in coupled human-environment systems.

    PubMed

    Bauch, Chris T; Sigdel, Ram; Pharaon, Joe; Anand, Madhur

    2016-12-20

    In complex systems, a critical transition is a shift in a system's dynamical regime from its current state to a strongly contrasting state as external conditions move beyond a tipping point. These transitions are often preceded by characteristic early warning signals such as increased system variability. However, early warning signals in complex, coupled human-environment systems (HESs) remain little studied. Here, we compare critical transitions and their early warning signals in a coupled HES model to an equivalent environment model uncoupled from the human system. We parameterize the HES model, using social and ecological data from old-growth forests in Oregon. We find that the coupled HES exhibits a richer variety of dynamics and regime shifts than the uncoupled environment system. Moreover, the early warning signals in the coupled HES can be ambiguous, heralding either an era of ecosystem conservationism or collapse of both forest ecosystems and conservationism. The presence of human feedback in the coupled HES can also mitigate the early warning signal, making it more difficult to detect the oncoming regime shift. We furthermore show how the coupled HES can be "doomed to criticality": Strategic human interactions cause the system to remain perpetually in the vicinity of a collapse threshold, as humans become complacent when the resource seems protected but respond rapidly when it is under immediate threat. We conclude that the opportunities, benefits, and challenges of modeling regime shifts and early warning signals in coupled HESs merit further research.

  5. Early warning signals of regime shifts in coupled human–environment systems

    PubMed Central

    Bauch, Chris T.; Sigdel, Ram; Pharaon, Joe; Anand, Madhur

    2016-01-01

    In complex systems, a critical transition is a shift in a system’s dynamical regime from its current state to a strongly contrasting state as external conditions move beyond a tipping point. These transitions are often preceded by characteristic early warning signals such as increased system variability. However, early warning signals in complex, coupled human–environment systems (HESs) remain little studied. Here, we compare critical transitions and their early warning signals in a coupled HES model to an equivalent environment model uncoupled from the human system. We parameterize the HES model, using social and ecological data from old-growth forests in Oregon. We find that the coupled HES exhibits a richer variety of dynamics and regime shifts than the uncoupled environment system. Moreover, the early warning signals in the coupled HES can be ambiguous, heralding either an era of ecosystem conservationism or collapse of both forest ecosystems and conservationism. The presence of human feedback in the coupled HES can also mitigate the early warning signal, making it more difficult to detect the oncoming regime shift. We furthermore show how the coupled HES can be “doomed to criticality”: Strategic human interactions cause the system to remain perpetually in the vicinity of a collapse threshold, as humans become complacent when the resource seems protected but respond rapidly when it is under immediate threat. We conclude that the opportunities, benefits, and challenges of modeling regime shifts and early warning signals in coupled HESs merit further research. PMID:27815533

  6. Different delays-induced regime shifts in a stochastic insect outbreak dynamics

    NASA Astrophysics Data System (ADS)

    Zeng, Jiakui; Zeng, Chunhua; Xie, Qingshuang; Guan, Lin; Dong, Xiaohui; Yang, Fengzao

    2016-11-01

    Considering time delays in the deterministic and stochastic forces, we construct stochastic delayed differential equations to investigate the regime shifts in an insect ecosystem. The stationary probability distribution (SPD) and mean first passage time (MFPT) are obtained, respectively. Our main results show: (i) The multiplicative noise, positive cross-correlation noise between two noises and time delays can induce the regime shifts from the boom outbreak state to the bust one, but the additive noise and negative cross-correlation can induce the regime shifts from the bust outbreak state to the boom one; (ii) For the negative cross-correlation, the MFPT as a function of noise strengths exhibits one maximum, which shows the characteristic of the noise-delayed switching for the boom outbreak state, but for the no cross-correlation or positive cross-correlation, the MFPT decreases with the noise strengths; (iii) Two different types of time delays play same roles on the maximal MFPT with additive noise, and play opposite roles on the maximal MFPT with multiplicative noise. The mechanisms for noises-and delays-induced regime shifts between two states can be explained physically through the effective potential of ecological model.

  7. Ecological resilience of population cycles: a dynamic perspective of regime shift.

    PubMed

    Suzuki, Kenta; Yoshida, Takehito

    2015-04-07

    Studies of catastrophic regime shifts have mostly considered a simple equilibrium situation, in which there are two stable equilibria divided by an unstable equilibrium. However, populations and communities in nature often show more complex dynamics, and regime shifts in the complex dynamic systems have attracted limited attention so far. Understanding the division between alternative stable states in multispecies communities requires an extended perspective and the conventional analysis of a simple equilibrium situation cannot be applied as it is. What divides the alternative stable states can take complex structure rather than a point, and this division of alternative states is usually impossible to be obtained by analytical approaches. In this study, we developed a numerical method that can relatively easily provide the structure of the division of alternative stable states. We then applied the method to different three-species systems exhibiting oscillatory dynamics to understand their recoverability from perturbations that can bring out irreversible state change. Our results suggested that there is temporal variation of the recoverability that may not be understood straightforwardly because of the complex structure of the division of alternative stable states. Also, which of the alternative states is more vulnerable to perturbations and easier to show a regime shift can vary depending on the size of perturbation. These attributes of regime shifts have not been found in a simple equilibrium situation, suggesting the need of a dynamic aspect of the recoverability of ecological systems.

  8. Crossing the Threshold - Reviewed Evidence for Regime Shifts in Arctic Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Mård Karlsson, J.; Destouni, G.; Peterson, G.; Gordon, L.

    2009-12-01

    The Arctic is rapidly changing, and the Arctic terrestrial ecosystems may respond to changing conditions in different ways. We review the evidence of regime shifts (ecosystem change from one set of mutually reinforcing feedbacks to another) in Arctic terrestrial ecosystems in relation to the hydrological cycle, as part of a larger interdisciplinary research project on Pan-Arctic ice-water-biogeochemical system responses and social-ecological resilience effects in a warming climate, which has in turn been part of the International Polar Year project Arctic-HYDRA. Such regime shifts may have implications for the Earth system as a whole, through changes in water flows and energy balance that yield feedbacks to hydrology and the local and global climate. Because the presence or absence of permafrost is a main control on local hydrological processes in the Arctic, we use the ecological response to permafrost warming to define three types of regime shifts: 1) Conversion of aquatic to terrestrial ecosystems due to draining of lakes and wetlands caused by permafrost degradation and thermokarst processes, which may have a large impact on local people and animals that depend on these ecosystems for food, domestic needs, and habitat, and on climate as the water conditions influence the direction of CO2 exchange. 2) Conversion of terrestrial to aquatic ecosystems as forests are being replaced by wet sedge meadows, bogs, and thermokarst ponds that favor aquatic birds and mammals, as thawing permafrost atop continuous permafrost undermines and destroys the root zone, leading to collapse and death of the trees. 3) Shifts in terrestrial ecosystems due to transition from tundra to shrubland and/or forest, caused by warming of air and soil, resulting in increased surface energy exchanges and albedo, which may in turn feed back to enhanced warming at the local-regional scale. We compare the impact, scale and key processes for each of these regime shifts, and assess the degree to

  9. The Impending Crisis

    PubMed Central

    Kaplan, Raymond L.; Burgess, Thomas E.

    2010-01-01

    When you are ill and consult a physician for his or her expertise, many times laboratory testing is part of the clinical workup. This testing is critical to the physician’s ability to diagnose the patient’s condition. What if testing was not available … because there was no one to do the testing? Although seemingly far-fetched, this scenario could play itself out in the next ten years due to an impending manpower crisis in laboratory medicine. The profession of Medical Technology, also known as Clinical Laboratory Science, is experiencing a shortage of qualified individuals for a variety of reasons – not the least of which is the closure of almost 70% of the schools teaching this critical profession. Health care workers (HCW) rely on accurate and timely clinical laboratory results in order to make decisions for their patients. Because ∼ 70% of patient care decisions are based on clinical laboratory results, it is important to have a well-trained supply of laboratory professionals. This article will give an overview of the situation and the possible causes of this shortage, and pose challenges to our profession as to how this crisis can be averted. Visibility of this profession must be a prime focus of this effort in order for the population in general to be aware of the role Clinical Laboratory Scientists play in the health care consortium. This effort should begin early in the educational process, potentially as early as Middle School (junior high school), bringing awareness of the profession not only to students but to educators as well. PMID:23653714

  10. Challenges in the participatory assessment of sustainable management practices in dryland ecosystems under regime shifts

    NASA Astrophysics Data System (ADS)

    Jucker Riva, Matteo; Schwilch, Gudrun; Liniger, Hanspeter

    2015-04-01

    Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users' knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio

  11. Climatic regime shifts and their impacts on marine ecosystem and fisheries resources in Korean waters

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Ik; Lee, Jae Bong; Kim, Suam; Oh, Jai-Ho

    2000-10-01

    There were climatic regime shifts over the North Pacific in 1976 and 1988 which affected the dynamics of the marine ecosystem and fisheries resources in Korean waters. Precipitation in Korean waters showed a decadal scale climatic jump, especially of Ullungdo Island, reflecting the regime shift that occurred in the North Pacific. The variation was also detected in East Asian atmospheric systems. The Aleutian Low and North Pacific High Pressure Systems showed substantial changes in 1976 and around 1987-89. 1976 was an unusually warm year for Korea; mean sea surface temperature (SST) was higher than ‘normal’ and was accompanied by a northward shift in the thermal front. Post 1976, the volume transport of the Kuroshio Current increased and higher seawater and air temperatures persisted until 1988. Other shifts occurred after 1976 such as an increase in mixed layer depth (MLD) and biological changes in the ecosystem of Korean waters including decreases in spring primary production and an increase in autumn primary production. Primary production increased again after 1988, and was followed by a significant increase in zooplankton biomass after 1991. The 1976 regime shift was manifested by a decreased biomass and production of saury, but an increase in biomass and production of sardine and filefish in Korean waters. After 1988, recruitment, biomass, and production of sardine collapsed while those of mackerel substantially increased. Based on these observations, hypotheses on the relationship between the climate-driven oceanic changes and changes in fisheries resources were developed and are discussed.

  12. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    PubMed

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-05

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  13. Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth

    NASA Astrophysics Data System (ADS)

    Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda

    2017-04-01

    Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.

  14. Preventing regime shifts on the Colorado Plateau: Application of ecological threshold concepts to land management decision making

    USDA-ARS?s Scientific Manuscript database

    Investigating the mechanisms responsible for ecological thresholds is essential to understanding processes leading to ecosystem regime shifts. Dryland ecosystems are especially prone to threshold behavior wherein stressor-mediated alteration of patterns and processes can shift systems to alternative...

  15. Body size distributions signal a regime shift in a lake ecosystem

    USGS Publications Warehouse

    Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.; Stow, Craig A.; Sundstrom, Shana M.

    2016-01-01

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts.

  16. Body size distributions signal a regime shift in a lake ecosystem.

    PubMed

    Spanbauer, Trisha L; Allen, Craig R; Angeler, David G; Eason, Tarsha; Fritz, Sherilyn C; Garmestani, Ahjond S; Nash, Kirsty L; Stone, Jeffery R; Stow, Craig A; Sundstrom, Shana M

    2016-06-29

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts.

  17. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  18. Regime shifts and heterogeneous trends in malaria time series from Western Kenya Highlands.

    PubMed

    Chaves, Luis Fernando; Hashizume, Masahiro; Satake, Akiko; Minakawa, Noboru

    2012-01-01

    Large malaria epidemics in the East African highlands during the mid and late 1990s kindled a stream of research on the role that global warming might have on malaria transmission. Most of the inferences using temporal information have been derived from a malaria incidence time series from Kericho. Here, we report a detailed analysis of 5 monthly time series, between 15 and 41 years long, from West Kenya encompassing an altitudinal gradient along Lake Victoria basin. We found decreasing, but heterogeneous, malaria trends since the late 1980s at low altitudes (<1600 m), and the early 2000s at high altitudes (>1600 m). Regime shifts were present in 3 of the series and were synchronous in the 2 time series from high altitudes. At low altitude, regime shifts were associated with a shift from increasing to decreasing malaria transmission, as well as a decrease in variability. At higher altitudes, regime shifts reflected an increase in malaria transmission variability. The heterogeneity in malaria trends probably reflects the multitude of factors that can drive malaria transmission and highlights the need for both spatially and temporally fine-grained data to make sound inferences about the impacts of climate change and control/elimination interventions on malaria transmission.

  19. Regime shifts in bistable water-stressed ecosystems due to amplification of stochastic rainfall patterns.

    PubMed

    Cueto-Felgueroso, Luis; Dentz, Marco; Juanes, Ruben

    2015-05-01

    We develop a framework that casts the point water-vegetation dynamics under stochastic rainfall forcing as a continuous-time random walk (CTRW), which yields an evolution equation for the joint probability density function (PDF) of soil-moisture and biomass. We find regime shifts in the steady-state PDF as a consequence of changes in the rainfall structure, which flips the relative strengths of the system attractors, even for the same mean precipitation. Through an effective potential, we quantify the impact of rainfall variability on ecosystem resilience and conclude that amplified rainfall regimes reduce the resilience of water-stressed ecosystems, even if the mean annual precipitation remains constant.

  20. Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations

    PubMed Central

    Auber, Arnaud; Travers-Trolet, Morgane; Villanueva, Maria Ching; Ernande, Bruno

    2015-01-01

    Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation. PMID:26132268

  1. Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations.

    PubMed

    Auber, Arnaud; Travers-Trolet, Morgane; Villanueva, Maria Ching; Ernande, Bruno

    2015-01-01

    Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation.

  2. Regime-shifts in the southern Benguela shelf and inshore region

    NASA Astrophysics Data System (ADS)

    Blamey, Laura K.; Howard, James A. E.; Agenbag, Jacobus; Jarre, Astrid

    2012-11-01

    Over the past two decades, several species have undergone distributional shifts in the southern Benguela. The commercially-important West Coast rock lobster Jasus lalandii is one of these, and its shift in distribution has had profound effects on the rest of the ecosystem along the south-west coast. Reasons for these shifts are not fully understood, but are probably linked to changes in environmental conditions. We applied a sequential t-test algorithm for analyzing regime shifts (STARS) to physical (wind and upwelling) and biological (rock-lobster catch and growth, Bank Cormorant abundance) data for the southern Benguela inshore region and performed sensitivity tests on each of the variables. Regime shifts were defined as ‘robust’ or ‘possible’ if they were detected for ⩾70% or ⩾60% of the sensitivity tests respectively. To corroborate the shifts detected by STARS, we then applied two additional methods: change point analysis and the Chow breakpoint test. The STARS method outperformed the other two methods because it could handle shorter time series and detect shifts towards the end of the time series, but most of the significant shifts detected by STARS were also detected by one or both of the other methods. A significant shift in Cape Point winter winds occurred in 1983, an El Niño year. However, measurement methodology changed during the same period and this is discussed in relation to the shift. A decline in rock-lobster growth rate occurred in the mid 1980s, and significant increases in upwelling variability and mean summer winds were detected in the early-to-mid 1990s - the same period in which rock lobster abundance underwent an eastward shift, declining on the west coast and increasing on the south-west coast. Bank Cormorants underwent respective declines and increases in the mid-to-late 1990s on the west and south-west coasts following the shift in lobsters. Further shifts in mean wind and upwelling were detected in the 2000s. These results

  3. Luminescence blue-shift of CdSe nanowires beyond the quantum confinement regime

    NASA Astrophysics Data System (ADS)

    Yan, Yuan; Liao, Zhi-Min; Bie, Ya-Qing; Wu, Han-Chun; Zhou, Yang-Bo; Fu, Xue-Wen; Yu, Da-Peng

    2011-09-01

    Photoluminescence (PL) properties of individual CdSe nanowires with diameters beyond the quantum confinement regime have been studied. A blue-shift in the PL spectra was observed with decreasing nanowire diameter. We attribute the blue-shift to band-filling effect. Carrier density induced by surface vacancy doping and laser excitation is found to be high enough to meet the criterion of the band-filling effect and increases with decreasing nanowire diameter. Temperature dependent PL analysis and characterizations of a single CdSe nanowire based field-effect transistor were also performed.

  4. Motional frequency shifts of trapped ions in the Lamb-Dicke regime

    SciTech Connect

    Lizuain, I.; Muga, J. G.; Eschner, J.

    2007-09-15

    First order Doppler effects are usually ignored in laser driven trapped ions when the recoil frequency is much smaller than the trapping frequency (Lamb-Dicke regime). This means that the central, carrier excitation band is supposed to be unaffected by vibronic transitions in which the vibrational number changes. While this is strictly true in the Lamb-Dicke limit (infinitely tight confinement), the vibronic transitions do play a role in the Lamb-Dicke regime. In this paper we quantify the asymptotic behavior of their effect with respect to the Lamb-Dicke parameter. In particular, we give analytical expressions for the frequency shift, 'pulling' or 'pushing', produced in the carrier absorption band by the vibronic transitions both for Rabi and Ramsey schemes. This shift is shown to be independent of the initial vibrational state.

  5. Changing skewness: an early warning signal of regime shifts in ecosystems.

    PubMed

    Guttal, Vishwesha; Jayaprakash, Ciriyam

    2008-05-01

    Empirical evidence for large-scale abrupt changes in ecosystems such as lakes and vegetation of semi-arid regions is growing. Such changes, called regime shifts, can lead to degradation of ecological services. We study simple ecological models that show a catastrophic transition as a control parameter is varied and propose a novel early warning signal that exploits two ubiquitous features of ecological systems: nonlinearity and large external fluctuations. Either reduced resilience or increased external fluctuations can tip ecosystems to an alternative stable state. It is shown that changes in asymmetry in the distribution of time series data, quantified by changing skewness, is a model-independent and reliable early warning signal for both routes to regime shifts. Furthermore, using model simulations that mimic field measurements and a simple analysis of real data from abrupt climate change in the Sahara, we study the feasibility of skewness calculations using data available from routine monitoring.

  6. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean.

    PubMed

    McMahon, Kelton W; McCarthy, Matthew D; Sherwood, Owen A; Larsen, Thomas; Guilderson, Thomas P

    2015-12-18

    Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ(13)C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations.

  7. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    McMahon, Kelton W.; McCarthy, Matthew D.; Sherwood, Owen A.; Larsen, Thomas; Guilderson, Thomas P.

    2015-12-01

    Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ13C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations.

  8. Experimental inflow of groundwater induces a ``biogeochemical regime shift'' in iron-rich and acidic sediments

    NASA Astrophysics Data System (ADS)

    Blodau, Christian; Knorr, Klaus-Holger

    2006-06-01

    In acid mine drainage (AMD) polluted lakes, sediments may show a stable iron- or sulphate-reducing regime. We tested the hypothesis that increased inflow of groundwater can trigger a shift between these regimes. Schwertmannite-bearing sediment, rich in iron (40-43%), sulphur (2.5%), and carbon (4.5%), was sampled from an acidic mine lake, and percolated (0, 5, and 20 L m-2 d-1) with two solutions (1/1 mmol L-1 versus 10/15 mmol L-1 sulphate/ferrous iron, pH 5) in sediment columns. A dissolved organic carbon (DOC) source was added after 46 days (˜2.5 mmol C L-1) to ease the carbon limitation of reductive processes. The sediment remained in an iron-reducing and acidic regime during percolation without DOC. Percolation at a high rate and addition of DOC raised pH values in schwertmannite-rich layers from 2.8 to 4.5-5. Schwertmannite transformation to goethite partly accelerated by a factor of >2 but effectively buffered proton consumption only at the low percolation rate. Input of dissolved ferrous iron and sulphate reduced the mobilization of ferrous iron from the sediment. With pH increase, iron reduction slowed relative to CO2 production, sulphate was reduced, and iron sulphides were formed. Input of alkalinity and electron donors by percolation thus shifted the biogeochemical regime from iron to sulphate reduction. Similar regime shifts can be expected for other sediments containing immobile proton or redox buffers when exposed to the advective input of alkalinity and acidity, or electron acceptors and donors.

  9. Regime Shifts in Lakes: Organic Carbon Dynamics and Whole Ecosystem Responses

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.

    2015-12-01

    The concept of using sediment records to identify regime shifts in lakes has largely focussed on biological proxies, such as diatoms and chironomids. In this approach, long-term records of rapid ecological change are compared with independent proxies of the variables driving ecosystem change, for example, climate or catchment disturbance processes (hydrological budgets, deforestation, fire etc.). One of the main problems with this approach is that the sediment cores upon which the data analyses are made are taken from the central part of lakes, often at the deepest point. As a result, the ecological changes observed reflect pelagic (open water) processes rather than whole-lake responses. As most lakes (apart from hypertrophic systems) are dominated by benthic production it is unclear whether palaeolimnological assessments of regime shifts are representative of the whole lake response. Theoretically, this question can be addressed simply by using cores from shallow water. There are a number of problems with this approach, most notably the loss of temporal resolution in shallow water cores (due to the slower sediment accumulation rate) and the different biological assemblages in the shallow water (littoral) cores. There is a strong effect of water depth on the zonation and distribution of biological remains across any lake. An alternative approach therefore is to use total organic carbon [OC] accumulation rate as a measure of the whole lake response to see if there is, in fact, a regime shift at the whole lake scale. Here I present examples of Holocene OC accumulation rate responses to external forcing from shallow eutrophic and boreal lakes and compare them to biological records of structural ecological change to determine whether there has been a whole-lake regime shift.

  10. Slow Wetland Response to Hydrological Change: Press Response or Regime Shift?

    NASA Astrophysics Data System (ADS)

    Gell, P.; Kattel, G.

    2015-12-01

    Lakes vary in response to minor disturbances and, where stabilising feedbacks exist, tend to return to a particular stable state. If the disturbance is strong enough the stabilising forces may be overcome and the lake passes a threshold whereby it shifts into a new state controlled by a new suite of negative feedbacks. A typical switch in state is thought to occur in shallow lake systems whereby a pulse of sediment or nutrients may drive an increase in phytoplankton impacting the light regime. This impacts negatively on submerged plants which results in greater entrainment of benthic sediments and release of buried nutrients. These strengthen the competitive advantage of phytoplankton and entrench the lake in a new state. Multiple diatom-based sedimentary records of change in wetlands in the lower River Murray, Australia, have revealed assemblage turnover following river regulation and the impoundment of the estuary. Typically, benthic and epiphytic flora have yielded to planktonic and disturbance taxa indicative the loss of aquatic plants and a decline in the light regime consistent with regime shift theory. This evidence is supported by changes in the remains of macrophytes, cladocerans and stable isotopes which reveal the loss of plants and the shift to a pelagic system. However, rather than exhibiting flickering before changing abruptly, these systems have changed gradually over several decades. It could be argued that this represents a slow response to a threshold change. Alternatively, it is merely an ongoing response to the persistent pressure exerted by increased fluxes of sediments and nutrients.

  11. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought

    NASA Astrophysics Data System (ADS)

    Notaro, Michael; Yu, Yan; Kalashnikova, Olga V.

    2015-10-01

    The Arabian Peninsula has experienced pronounced interannual to decadal variability in dust activity, including an abrupt regime shift around 2006 from an inactive dust period during 1998-2005 to an active period during 2007-2013. Corresponding in time to the onset of this regime shift, the climate state transitioned into a combined La Niña and negative phase of the Pacific Decadal Oscillation, which incited a hiatus in global warming in the 2000s. Superimposed upon a long-term regional drying trend, synergistic interactions between these teleconnection modes triggered the establishment of a devastating and prolonged drought, which engulfed the Fertile Crescent, namely, Iraq and Syria, and led to crop failure and civil unrest. Dried soils and diminished vegetation cover in the Fertile Crescent, as evident through remotely sensed enhanced vegetation indices, supported greater dust generation and transport to the Arabian Peninsula in 2007-2013, as identified both in increased dust days observed at weather stations and enhanced remotely sensed aerosol optical depth. According to backward trajectory analysis of dust days on the Arabian Peninsula, increased dust lifting and atmospheric dust concentration in the Fertile Crescent during this recent, prolonged drought episode supported a greater frequency of dust events across the peninsula with associated northerly trajectories and led to the dust regime shift. These findings are particularly concerning, considering projections of warming and drying for the eastern Mediterranean region and potential collapse of the Fertile Crescent during this century.

  12. Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems

    PubMed Central

    Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise

    2015-01-01

    In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.

  13. An ecological regime shift resulting from disrupted predator-prey interactions in Holocene Australia.

    PubMed

    Prowse, Thomas A A; Johnson, Christopher N; Bradshaw, Corey J A; Brook, Barry W

    2014-03-01

    The mass extinction events during human prehistory are striking examples of ecological regime shifts, the causes of which are still hotly debated. In Australia, human arrival approximately 50 thousand years ago was associated with the continental-scale extinction of numerous marsupial megafauna species and a permanent change in vegetation structure. An alternative stable state persisted until a second regime shift occurred during the late Holocene, when the largest two remaining marsupial carnivores, the thylacine and devil, disappeared from mainland Australia. These extinctions have been widely attributed to the human-assisted invasion of a competing predator, the dingo. In this unusual case, the simultaneous effects of human "intensification" (population growth and technological advances) and climate change (particularly increased ENSO variability) have been largely overlooked. We developed a dynamic model system capable of simulating the complex interactions between the main predators (humans, thylacines, devils, dingoes) and their marsupial prey (macropods), which we coupled with reconstructions of human population growth and climate change for late-Holocene Australia. Because the strength of important interspecific interactions cannot be estimated directly, we used detailed scenario testing and sensitivity analysis to identify robust model outcomes and investigate competing explanations for the Holocene regime shift. This approach identified human intensification as the most probable cause, while also demonstrating the potential importance of synergies with the effects of climate change. Our models indicate that the prehistoric impact of humans on Australian mammals was not limited to the late Pleistocene (i.e., the megafaunal extinctions) but extended into the late Holocene.

  14. Historical Reconstruction of Regime Shifts in Amazon Oxbow Lakes - A Remote Sensing Approach

    NASA Astrophysics Data System (ADS)

    Belcon, A. U.; Baker, P. A.; Fritz, S. C.; Davenport, L.; Terborgh, J. W.

    2010-12-01

    Regime shifts in shallow lakes often have been associated with land-use change, increased nutrient loading and manipulation of trophic structure (Carpenter 2003). These shifts typically have been examined in lakes in temperate and boreal regions and within anthropogenically disturbed basins. By contrast in this study we examine a series of tropical floodplain lakes in a region of virtually no human disturbance to evaluate the effects of hydrological variability on ecosystem structure and dynamics. We reconstruct a timeline of regime shifts in Amazonian oxbow lakes (cochas) along the Manu River, Peru within the Manu National Park. The park contains the entire Manu watershed, including the river and oxbow lakes, providing an unprecedented opportunity to study both tropical lakes within a key region of high biodiversity, as well as regime shifts within a watershed that has not experienced any significant human influence. The Cocha Cashu Biological station was established on the banks of one of the Manu River’s oxbow lakes in the 1970 and has been operated by J. Terborgh since 1973. Observational reports from the station indicate that two types of flood events affect the floodplain lakes: “normal” floods that occur every year in the rainy season (October to May) and “megafloods” - extreme events that occur once a decade or so and sweep over the entire floodplain. Three megafloods occurred in the Manu River’s floodplain in the last 35 years: 1982, 1999 and 2003. The 2003 flood was followed rapidly by a regime shift at Cocha Cashu from phytoplankton, the state in which it had existed for the previous 30 years of observation, to a clear water lake with a luxuriant growth of submerged aquatic vegetation. Three years later in 2006, the lake switched again, this time to a state dominated by floating vegetation (Pistia stratiotes). It was not known at that time whether these changes were basin-wide and occurring at other lakes or whether they had occurred in the

  15. Large Dispersive Shift of Cavity Resonance Induced by a Superconducting Flux Qubit in the Straddling Regime

    NASA Astrophysics Data System (ADS)

    Inomata, Kunihiro; Yamamoto, Tsuyoshi; Billangeon, Pierre-M.; Lin, Zhirong; Nakamura, Yasunobu; Tsai, Jaw-Shen; Koshino, Kazuki

    2013-03-01

    We demonstrate enhancement of the dispersive frequency shift in a coplanar waveguide resonator induced by a capacitively coupled superconducting flux qubit in the straddling regime. The magnitude of the observed shift, 80 MHz for the qubit-resonator detuning of 5 GHz, is quantitatively explained by the generalized Rabi model which takes into account the contribution of the qubit higher energy levels. By applying the enhanced dispersive shift to the qubit readout, we achieved 90 % contrast of the Rabi oscillations which is mainly limited by the energy relaxation of the qubit. We also discuss the qubit readout using a Josephson parametric amplifier. This work was supported by the MEXT Kakenhi ``Quantum Cybernetics'', the JSPS through its FIRST Program, and the NICT Commissioned Research.

  16. Geographic variation in Pacific herring growth in response to regime shifts in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ito, Shin-ichi; Rose, Kenneth A.; Megrey, Bernard A.; Schweigert, Jake; Hay, Douglas; Werner, Francisco E.; Aita, Maki Noguchi

    2015-11-01

    Pacific herring populations at eight North Pacific Rim locations were simulated to compare basin-wide geographic variations in age-specific growth due to environmental influences on marine productivity and population-specific responses to regime shifts. Temperature and zooplankton abundance from a three-dimensional lower-trophic ecosystem model (NEMURO: North Pacific Ecosystem Model for Understanding Regional Oceanography) simulation from 1948 to 2002 were used as inputs to a herring bioenergetics growth model. Herring populations from California, the west coast of Vancouver Island (WCVI), Prince William Sound (PWS), Togiak Alaska, the western Bering Sea (WBS), the Sea of Okhotsk (SO), Sakhalin, and Peter the Great Bay (PGB) were examined. The half-saturation coefficients of herring feeding were calibrated to climatological conditions at each of the eight locations to reproduce averaged size-at-age data. The depth of averaging used for water temperature and zooplankton, and the maximum consumption rate parameter, were made specific to each location. Using the calibrated half-saturation coefficients, the 1948-2002 period was then simulated using daily values of water temperature and zooplankton densities interpolated from monthly model output. To detect regime shifts in simulated temperatures, zooplankton and herring growth rates, we applied sequential t-test analyses on the 54 years of hindcast simulation values. The detected shifts of herring age-5 growth showed closest match (69%) to the regime shift years (1957/58, 1970/71, 1976/77, 1988/89, 1998/99). We explored relationships among locations using cluster and principal component analyses. The first principal component of water temperature showed good correspondence to the Pacific Decadal Oscillation and all zooplankton groups showed a pan-Pacific decrease after the 1976/77 regime shift. However, the first principal component of herring growth rate showed decreased growth at the SO, PWS, WCVI and California

  17. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence.

    PubMed

    Capon, Samantha J; Lynch, A Jasmyn J; Bond, Nick; Chessman, Bruce C; Davis, Jenny; Davidson, Nick; Finlayson, Max; Gell, Peter A; Hohnberg, David; Humphrey, Chris; Kingsford, Richard T; Nielsen, Daryl; Thomson, James R; Ward, Keith; Mac Nally, Ralph

    2015-11-15

    The concepts of ecosystem regime shifts, thresholds and alternative or multiple stable states are used extensively in the ecological and environmental management literature. When applied to aquatic ecosystems, these terms are used inconsistently reflecting differing levels of supporting evidence among ecosystem types. Although many aquatic ecosystems around the world have become degraded, the magnitude and causes of changes, relative to the range of historical variability, are poorly known. A working group supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS) reviewed 135 papers on freshwater ecosystems to assess the evidence for pressure-induced non-linear changes in freshwater ecosystems; these papers used terms indicating sudden and non-linear change in their titles and key words, and so was a positively biased sample. We scrutinized papers for study context and methods, ecosystem characteristics and focus, types of pressures and ecological responses considered, and the type of change reported (i.e., gradual, non-linear, hysteretic or irreversible change). There was little empirical evidence for regime shifts and changes between multiple or alternative stable states in these studies although some shifts between turbid phytoplankton-dominated states and clear-water, macrophyte-dominated states were reported in shallow lakes in temperate climates. We found limited understanding of the subtleties of the relevant theoretical concepts and encountered few mechanistic studies that investigated or identified cause-and-effect relationships between ecological responses and nominal pressures. Our results mirror those of reviews for estuarine, nearshore and marine aquatic ecosystems, demonstrating that although the concepts of regime shifts and alternative stable states have become prominent in the scientific and management literature, their empirical underpinning is weak outside of a specific environmental setting. The application of these

  18. Iron fertilisation by Asian dust influences North Pacific sardine regime shifts

    NASA Astrophysics Data System (ADS)

    Qiu, Yongsong

    2015-05-01

    Forcing factors and mechanisms underlying multidecadal variability in the production of the world's major fish stocks are one of the great mysteries of the oceans. The Japanese and California sardine are species that exhibit the regime shifts. It is shown in the present work that during two periods of frequent Asian dust events over the last 100 years, sardines on opposite sides of the Pacific Ocean only flourished under a dust-active regime. The earlier such regime that peaked in the 1930s was strong, and it brought synchronous changes in the two species that were linked to the frequency of Asian dust events. However, there is an apparent mismatch in the rise and fall of abundance between the two species in the current dust-active regime. The massive increase in Japanese sardine stock in the 1970s was related to high levels of ocean precipitation and strong winter mixing, whereas the stock collapse since 1988 has been attributed to diminished winter mixing. High levels of ocean precipitation in the western North Pacific effectively cause wet deposition of Asian dust and enhance Japanese sardine stock, whereas it reduces dust flux that can be transported to the eastern North Pacific, delaying the increase of California sardine stock. Analysis further indicates that productivity of Japanese sardine stock is jointly controlled by wet deposition of Asian dust and winter mixing, which supplies macronutrients from depth. California sardine productivity is inversely related to precipitation in the western North Pacific and is positively affected by precipitation off western North America. This indicates that Asian dust influx dominates productivity of the species because of iron-limited ocean productivity in the California sardine ranges. The analysis suggests that dust regime shifts influence shifts in sardine productivity regimes and that iron input from Asian dust during trans-Pacific transport is directly responsible. It appears that in addition to enhancing

  19. Regime shifts in the ocean: reconciling observations and theory [review article

    NASA Astrophysics Data System (ADS)

    Steele, John H.

    2004-02-01

    The discussions in the Villefranche Workshop covered a wide range of issues. The term regime shift was originally confined to spatial or temporal correspondences between climatic indices and population abundance. The body of evidence for physical-biological coupling has certainly generated a much better appreciation of the natural decadal scale variability in marine systems. It is difficult, however, to deduce from these time series, the mechanisms or trophic pathways that produce the correspondence. Ideally, we would need experimental manipulations such as those used in small lakes, to unravel the causal connections. Since this is impossible in the open sea, we must use comparisons between systems subject to different types of perturbation or stress. We focused at the Workshop on the effects of over-fishing in different marine regimes. The consequences of large scale changes in community structure imposed by excessive fishing give valuable case studies. Coral reefs, rocky shores, freshwater and terrestrial ecosystems provide other examples. The possible existence of similar processes across such diverse systems raises corresponding questions about common ecological principles. The adaptive benefits of maximizing resilience (defined as minimizing the largest eigenvalue of the perturbed system) were considered. The corollary of this assumption is that, at the limits of adaptation, there will be switching between communities, providing a potential ground for a broad definition of regime shifts.

  20. Catastrophic Regime Shift in Water Reservoirs and São Paulo Water Supply Crisis.

    PubMed

    Coutinho, Renato M; Kraenkel, Roberto A; Prado, Paulo I

    2015-01-01

    The relation between rainfall and water accumulated in reservoirs comprises nonlinear feedbacks. Here we show that they may generate alternative equilibrium regimes, one of high water-volume, the other of low water-volume. Reservoirs can be seen as socio-environmental systems at risk of regime shifts, characteristic of tipping point transitions. We analyze data from stored water, rainfall, and water inflow and outflow in the main reservoir serving the metropolitan area of São Paulo, Brazil, by means of indicators of critical regime shifts, and find a strong signal of a transition. We furthermore build a mathematical model that gives a mechanistic view of the dynamics and demonstrates that alternative stable states are an expected property of water reservoirs. We also build a stochastic version of this model that fits well to the data. These results highlight the broader aspect that reservoir management must account for their intrinsic bistability, and should benefit from dynamical systems theory. Our case study illustrates the catastrophic consequences of failing to do so.

  1. Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes

    NASA Astrophysics Data System (ADS)

    Boer, Matthias M.; Bowman, David M. J. S.; Murphy, Brett P.; Cary, Geoffrey J.; Cochrane, Mark A.; Fensham, Roderick J.; Krawchuk, Meg A.; Price, Owen F.; Resco De Dios, Víctor; Williams, Richard J.; Bradstock, Ross A.

    2016-06-01

    Most studies of climate change effects on fire regimes assume a gradual reorganization of pyrogeographic patterns and have not considered the potential for transformational changes in the climate-vegetation-fire relationships underlying continental-scale fire regimes. Here, we model current fire activity levels in Australia as a function of mean annual actual evapotranspiration (E) and potential evapotranspiration (E 0), as proxies for fuel productivity and fuel drying potential. We distinguish two domains in E,{E}0 space according to the dominant constraint on fire activity being either fuel productivity (PL-type fire) or fuel dryness (DL-type fire) and show that the affinity to these domains is related to fuel type. We propose to assess the potential for transformational shifts in fire type from the difference in the affinity to either domain under a baseline climate and projected future climate. Under the projected climate changes potential for a transformational shift from DL- to PL-type fire was predicted for mesic savanna woodland in the north and for eucalypt forests in coastal areas of the south-west and along the Continental Divide in the south-east of the continent. Potential for a shift from PL- to DL-type fire was predicted for a narrow zone of eucalypt savanna woodland in the north-east.

  2. Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh

    2016-04-01

    Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.

  3. Changes in size and trends of North American sea duck populations associated with North Pacific oceanic regime shifts

    USGS Publications Warehouse

    Flint, Paul L.

    2013-01-01

    Broad-scale multi-species declines in populations of North American sea ducks for unknown reasons is cause for management concern. Oceanic regime shifts have been associated with rapid changes in ecosystem structure of the North Pacific and Bering Sea. However, relatively little is known about potential effects of these changes in oceanic conditions on marine bird populations at broad scales. I examined changes in North American breeding populations of sea ducks from 1957 to 2011 in relation to potential oceanic regime shifts in the North Pacific in 1977, 1989, and 1998. There was strong support for population-level effects of regime shifts in 1977 and 1989, but little support for an effect of the 1998 shift. The continental-level effects of these regime shifts differed across species groups and time. Based on patterns of sea duck population dynamics associated with regime shifts, it is unclear if the mechanism of change relates to survival or reproduction. Results of this analysis support the hypothesis that population size and trends of North American sea ducks are strongly influenced by oceanic conditions. The perceived population declines appear to have halted >20 years ago, and populations have been relatively stable or increasing since that time. Given these results, we should reasonably expect dramatic changes in sea duck population status and trends with future oceanic regime shifts.

  4. Evidencing a regime shift in the North Sea using early-warning signals as indicators of critical transitions

    NASA Astrophysics Data System (ADS)

    Wouters, N.; Dakos, V.; Edwards, M.; Serafim, M. P.; Valayer, P. J.; Cabral, H. N.

    2015-01-01

    One of the longest marine monitoring programs in the North Sea has been the spatiotemporal surveying of subsurface plankton since 1931. During this period a regime shift was detected in the late 1980s culminating in marked changes in phytoplankton, zooplankton and in the fisheries of horse mackerel. Here we used the phytoplankton colour index, a visual biomass estimate, from 1948 to 2010 and total diatom abundance from 1958 to 2010 to test whether the well-documented regime shift could have been anticipated by the recently developed Early-Warning Signals for critical transitions (EWS). We estimated EWS, namely autocorrelation and standard deviation, within moving windows along the time series prior to the regime shift. We found that both statistics increased revealing that the North Sea ecosystem was becoming progressively unstable prior to the regime shift. Moreover, this high-resolution time series permitted us to test for robustness, error and significance of the EWS. We did that by dividing the time series into independent blocks and estimating EWS after bootstrapping and randomising the blocks. This alternative approach confirmed the robustness of the EWS with limited associated errors. In particular, we found that the warning was significantly evident years before the onset of the regime shift. We conclude that EWS may provide robust and timely warning for upcoming regime shifts depending on the quality and quantity of recorded data in marine ecosystems.

  5. Regime shifts under forcing of non-stationary attractors: Conceptual model and case studies in hydrologic systems.

    PubMed

    Park, Jeryang; Rao, P Suresh C

    2014-11-15

    We present here a conceptual model and analysis of complex systems using hypothetical cases of regime shifts resulting from temporal non-stationarity in attractor strengths, and then present selected published cases to illustrate such regime shifts in hydrologic systems (shallow aquatic ecosystems; water table shifts; soil salinization). Complex systems are dynamic and can exist in two or more stable states (or regimes). Temporal variations in state variables occur in response to fluctuations in external forcing, which are modulated by interactions among internal processes. Combined effects of external forcing and non-stationary strengths of alternative attractors can lead to shifts from original to alternate regimes. In systems with bi-stable states, when the strengths of two competing attractors are constant in time, or are non-stationary but change in a linear fashion, regime shifts are found to be temporally stationary and only controlled by the characteristics of the external forcing. However, when attractor strengths change in time non-linearly or vary stochastically, regime shifts in complex systems are characterized by non-stationary probability density functions (pdfs). We briefly discuss implications and challenges to prediction and management of hydrologic complex systems.

  6. Regime shifts in coastal lagoons: Evidence from free-living marine nematodes

    PubMed Central

    2017-01-01

    We test the validity of using the regime shift theory to account for differences in environmental state of coastal lagoons as a response to variation in connectivity with the sea, using free-living nematodes as a surrogate. The study is based on sediment samples from the inner and outer portions of 15 coastal lagoons (5 open to the sea, 5 intermittently open/closed, and 5 permanently closed lakes) along the southern coast of Brazil. Environmental data suggested that there are two contrasting environmental conditions, with coastal lakes being significantly different from open and intermittent lagoons. Marine nematode assemblages corroborate these two mutually exclusive alternative stable states (open vs. closed systems), but assemblages from the intermittently open/closed lagoons showed a gradual change in species composition between both systems independently of the environmental conditions. The gradient in the structural connectivity among lagoons and the sea, due to their regime shifts, changes the movement of resources and consumers and the internal physico-chemical gradients, directly affecting regional species diversity. Whereas openness to the sea increased similarity in nematode assemblage composition among connected lagoons, isolation increased dissimilarity among closed lagoons. Our results from a large-scale sampling program indicated that as lagoons lose connectivity with the sea, shifting the environmental state, local processes within individual intermittently open/closed lagoons and particularly within coastal lakes become increasingly more important in structuring these communities. The main implication of these findings is that depending on the local stable state we may end up with alternative regional patterns of biodiversity. PMID:28235030

  7. Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America.

    PubMed

    Gennaretti, Fabio; Arseneault, Dominique; Nicault, Antoine; Perreault, Luc; Bégin, Yves

    2014-07-15

    Dated records of ice-cap growth from Arctic Canada recently suggested that a succession of strong volcanic eruptions forced an abrupt onset of the Little Ice Age between A.D. 1275 and 1300 [Miller GH, et al. (2012) Geophys Res Lett 39(2):L02708, 10.1029/2011GL050168]. Although this idea is supported by simulation experiments with general circulation models, additional support from field data are limited. In particular, the Northern Hemisphere network of temperature-sensitive millennial tree-ring chronologies, which principally comprises Eurasian sites, suggests that the strongest eruptions only caused cooling episodes lasting less than about 10 y. Here we present a new network of millennial tree-ring chronologies from the taiga of northeastern North America, which fills a wide gap in the network of the Northern Hemisphere's chronologies suitable for temperature reconstructions and supports the hypothesis that volcanoes triggered both the onset and the coldest episode of the Little Ice Age. Following the well-expressed Medieval Climate Anomaly (approximately A.D. 910-1257), which comprised the warmest decades of the last millennium, our tree-ring-based temperature reconstruction displays an abrupt regime shift toward lower average summer temperatures precisely coinciding with a series of 13th century eruptions centered around the 1257 Samalas event and closely preceding ice-cap expansion in Arctic Canada. Furthermore, the successive 1809 (unknown volcano) and 1815 (Tambora) eruptions triggered a subsequent shift to the coldest 40-y period of the last 1100 y. These results confirm that series of large eruptions may cause region-specific regime shifts in the climate system and that the climate of northeastern North America is especially sensitive to volcanic forcing.

  8. Regime shifts in coastal lagoons: Evidence from free-living marine nematodes.

    PubMed

    Netto, Sergio A; Fonseca, Gustavo

    2017-01-01

    We test the validity of using the regime shift theory to account for differences in environmental state of coastal lagoons as a response to variation in connectivity with the sea, using free-living nematodes as a surrogate. The study is based on sediment samples from the inner and outer portions of 15 coastal lagoons (5 open to the sea, 5 intermittently open/closed, and 5 permanently closed lakes) along the southern coast of Brazil. Environmental data suggested that there are two contrasting environmental conditions, with coastal lakes being significantly different from open and intermittent lagoons. Marine nematode assemblages corroborate these two mutually exclusive alternative stable states (open vs. closed systems), but assemblages from the intermittently open/closed lagoons showed a gradual change in species composition between both systems independently of the environmental conditions. The gradient in the structural connectivity among lagoons and the sea, due to their regime shifts, changes the movement of resources and consumers and the internal physico-chemical gradients, directly affecting regional species diversity. Whereas openness to the sea increased similarity in nematode assemblage composition among connected lagoons, isolation increased dissimilarity among closed lagoons. Our results from a large-scale sampling program indicated that as lagoons lose connectivity with the sea, shifting the environmental state, local processes within individual intermittently open/closed lagoons and particularly within coastal lakes become increasingly more important in structuring these communities. The main implication of these findings is that depending on the local stable state we may end up with alternative regional patterns of biodiversity.

  9. Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America

    PubMed Central

    Gennaretti, Fabio; Arseneault, Dominique; Nicault, Antoine; Perreault, Luc; Bégin, Yves

    2014-01-01

    Dated records of ice-cap growth from Arctic Canada recently suggested that a succession of strong volcanic eruptions forced an abrupt onset of the Little Ice Age between A.D. 1275 and 1300 [Miller GH, et al. (2012) Geophys Res Lett 39(2):L02708, 10.1029/2011GL050168]. Although this idea is supported by simulation experiments with general circulation models, additional support from field data are limited. In particular, the Northern Hemisphere network of temperature-sensitive millennial tree-ring chronologies, which principally comprises Eurasian sites, suggests that the strongest eruptions only caused cooling episodes lasting less than about 10 y. Here we present a new network of millennial tree-ring chronologies from the taiga of northeastern North America, which fills a wide gap in the network of the Northern Hemisphere's chronologies suitable for temperature reconstructions and supports the hypothesis that volcanoes triggered both the onset and the coldest episode of the Little Ice Age. Following the well-expressed Medieval Climate Anomaly (approximately A.D. 910–1257), which comprised the warmest decades of the last millennium, our tree-ring-based temperature reconstruction displays an abrupt regime shift toward lower average summer temperatures precisely coinciding with a series of 13th century eruptions centered around the 1257 Samalas event and closely preceding ice-cap expansion in Arctic Canada. Furthermore, the successive 1809 (unknown volcano) and 1815 (Tambora) eruptions triggered a subsequent shift to the coldest 40-y period of the last 1100 y. These results confirm that series of large eruptions may cause region-specific regime shifts in the climate system and that the climate of northeastern North America is especially sensitive to volcanic forcing. PMID:24982132

  10. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.

    PubMed

    Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik

    2012-03-01

    Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.

  11. Geographic variation in Pacific herring growth in response to regime shifts in the North Pacific Ocean.

    NASA Astrophysics Data System (ADS)

    Ito, S. I.; Rose, K.; Schweigert, J.; Hay, D.; Werner, F.; Aita, M. N.

    2016-02-01

    Pacific herring populations at eight North Pacific Rim locations were simulated to compare basin-wide geographic variations in age-specific growth due to environmental influences on marine productivity and population-specific responses to regime shifts. Temperature and zooplankton abundance from a 3D lower-trophic level ecosystem model (NEMURO) simulation were used as inputs to a herring bioenergetics growth model. Herring in California, the west coast of Vancouver Island (WCVI), Prince William Sound (PWS), Togiak, Alaska, the western Bering Sea (WBS), the Sea of Okhotsk (SO), Sakhalin, and Peter the Great Bay (PGB) were examined. The half-saturation coefficients of herring feeding were calibrated to climatological conditions at each of the eight locations to reproduce averaged size-at-age data. Using the calibrated half-saturation coefficients, the 1948 to 2002 period was then simulated. The detected shifts of herring age-5 growth showed a close match (69%) to the climate regime shift years (1957/58, 1970/71, 1976/77, 1988/89, 1998/99). The first principal component of herring growth rate showed decreased growth at the SO, PWS, WCVI and California locations and increased growth at the Sakhalin, WBS and Togiak locations after 1977. The calibrated half-saturation coefficients affected the degree to which growth was sensitive to interannual variation in water temperature versus zooplankton. For sustainable use of marine resources, knowledge of the local and regional responses of the marine resources is essential. The model results demonstrate how geographic specificity of bioenergetics parameters, coupled with location-specific variation in temperature and food, can combine to determine local and regional responses of a marine resource to climate forcing. The contents are in press on Progress in Oceanography.

  12. Moderate drop in water table increases peatland vulnerability to post-fire regime shift.

    PubMed

    Kettridge, N; Turetsky, M R; Sherwood, J H; Thompson, D K; Miller, C A; Benscoter, B W; Flannigan, M D; Wotton, B M; Waddington, J M

    2015-01-27

    Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon.

  13. Modeling abrupt cultural regime shifts during the Palaeolithic and Stone Age.

    PubMed

    Aoki, Kenichi

    2014-12-07

    The coupled dynamics of the size and the mean cultural/technological level of a population, with positive feedback between these two variables, is modeled in the Malthusian-Boserupian framework. Bifurcation diagrams, with innovativeness or the cultureless carrying capacity as the parameter, show that abrupt transitions in the mean cultural level are possible. For example, a gradual evolutionary change toward greater innate innovativeness would produce an associated gradual increase in mean cultural level, until a threshold is crossed that triggers an abrupt cultural regime shift. Hence, the model may help explain the apparently sudden and dramatic efflorescences of Palaeolithic/Stone Age culture during the Late Pleistocene, without having to invoke major contemporaneous genetic changes in cognition. The results of statistical studies on the association between population size and toolkit diversity among ethnographic societies are also discussed.

  14. Probe-controlled soliton frequency shift in the regime of optical event horizon.

    PubMed

    Gu, Jie; Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2015-08-24

    In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self-compression. In particular, in the dispersion landscape with multiple zero dispersion wavelengths, bi-directional soliton spectral tunneling effects is possible. Moreover, we propose a mid-infrared soliton self-compression to the generation of few-cycle ultrashort pulses, in a bulk of quadratic nonlinear crystals in contrast to optical fibers or cubic nonlinear media, which could contribute to the community with a simple and flexible method to experimental implementations.

  15. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes.

    PubMed

    Pardini, Renata; Bueno, Adriana de Arruda; Gardner, Toby A; Prado, Paulo Inácio; Metzger, Jean Paul

    2010-10-27

    Ecological systems are vulnerable to irreversible change when key system properties are pushed over thresholds, resulting in the loss of resilience and the precipitation of a regime shift. Perhaps the most important of such properties in human-modified landscapes is the total amount of remnant native vegetation. In a seminal study Andrén proposed the existence of a fragmentation threshold in the total amount of remnant vegetation, below which landscape-scale connectivity is eroded and local species richness and abundance become dependent on patch size. Despite the fact that species patch-area effects have been a mainstay of conservation science there has yet to be a robust empirical evaluation of this hypothesis. Here we present and test a new conceptual model describing the mechanisms and consequences of biodiversity change in fragmented landscapes, identifying the fragmentation threshold as a first step in a positive feedback mechanism that has the capacity to impair ecological resilience, and drive a regime shift in biodiversity. The model considers that local extinction risk is defined by patch size, and immigration rates by landscape vegetation cover, and that the recovery from local species losses depends upon the landscape species pool. Using a unique dataset on the distribution of non-volant small mammals across replicate landscapes in the Atlantic forest of Brazil, we found strong evidence for our model predictions--that patch-area effects are evident only at intermediate levels of total forest cover, where landscape diversity is still high and opportunities for enhancing biodiversity through local management are greatest. Furthermore, high levels of forest loss can push native biota through an extinction filter, and result in the abrupt, landscape-wide loss of forest-specialist taxa, ecological resilience and management effectiveness. The proposed model links hitherto distinct theoretical approaches within a single framework, providing a powerful tool

  16. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  17. Distinct zooplankton regime shift patterns across ecoregions of the U.S. Northeast continental shelf Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Morse, R. E.; Friedland, K. D.; Tommasi, D.; Stock, C.; Nye, J.

    2017-01-01

    We investigated regime shifts in seasonal zooplankton communities of the Northeast continental shelf Large Marine Ecosystem (NES) and its subcomponent ecoregions over a multi-decadal period (1977-2013). Our cross ecoregion analysis shows that regime shifts in different ecoregions often exhibited very distinct characteristics, emphasizing more granular fluctuations in NES plankton communities relative to previous work. Shifts early in the time series generally reflected an increase in abundance levels. The response of zooplankton abundance within fall communities was more similar among ecoregions than for spring communities. The Gulf of Maine exhibited highly distinct patterns from other ecoregions, with regime shifts identified in the early 1980s, early 2000s, and mid-2000s for spring communities. Regime shifts were identified in the early to mid-1990s for the NES, Georges Bank, and the Mid-Atlantic Bight ecoregions, while the fall communities experienced shifts in the early 1990s and late 1980s for the NES and Georges Bank, but in the late 1990s in the Mid-Atlantic Bight. A constrained correspondence analysis of zooplankton community against local and basin-scale climatological indices suggests that water temperature, stratification, and the Atlantic multidecadal oscillation (AMO) were the predominant factors in driving the zooplankton community composition.

  18. Shifts of regional hydro-climatic regimes in the warmer future

    NASA Astrophysics Data System (ADS)

    Kim, H.; Morishita, S.

    2016-12-01

    It is well known that the global climate is projected to be significantly warmer than pre-industrial period, and, in 2015, it was indicated as 1-degreen increase of global mean temperature that was unprecedented previously. Human-induced additional radiative forcing causes global and regional mean temperature increase and alters energy and water partitioning in the heterogeneous pathway. Budyko proposed a conceptual equation to estimate a climate-induced dryness relating available energy and precipitation, and it has been used broadly in hydrology communities to determine regional hydro-climatic characteristics. In this study, a diagnosis framework is proposed to traced how the regional hydro-climatic regimes are shifted under the warming condition with 4 °C increase of global mean temperature. A database for Policy Decision making for Future climate change (d4PDF) based on a super-ensemble AMIP-style experiment (11,400 model years, totally) with sea surface temperature patterns extracted from six CMIP5 models is used to estimate the probability distribution of the regime shifts maximizing signal-to-noise. It was found that the global future hydro-climate condition shifts slightly to more humid condition comparing to the historical condition, since the increase of precipitation is greater and the increate of net radiation, globally. Very humid regions including tropics and semi-arid regions tend to expand, and Semi-humid and arid-regions tend to shrink. Although the change of global mean state between historical and future climate is not considerable, temporal variability under the warming climate is amplified significantly, and it induces more frequent occurrence of once-in-a-century level drought over large terrestrial regions including Africa, South America, East and Central Asia, Australia, and United States. This analysis will be extended up to the availability (expected as October 2016) of a similar database being produced under the Half a degree Additional

  19. The Demise of the Circumboreal Mammoth Steppe as an Ecological Regime Shift: Drivers and Consequences

    NASA Astrophysics Data System (ADS)

    Mann, D. H.; Groves, P.; Grosse, G.; Gaglioti, B.; Kunz, M.

    2011-12-01

    abundance grass and sedges, firm substrates, and unusual mixtures of steppe and tundra vegetation. What caused the demise of the Mammoth Steppe is unclear, however understanding what maintained it over space and time would greatly aid this discussion. The habitat shift began ca. 12,500 14C yr BP and continued for approximately 2000 years. It coincided with a shift from well-drained, mineral soils to poorly drained, organic-rich ones. This regime shift may have been more significant than changes during previous interglacial climatic shifts as most megafaunal species adapted to life in the Mammoth Steppe experienced radical range reductions and, in some cases, global extinction during this period.

  20. Regime shift in sandy beach microbial communities following Deepwater Horizon oil spill remediation efforts.

    PubMed

    Engel, Annette Summers; Gupta, Axita A

    2014-01-01

    Sandy beaches support a wide variety of underappreciated biodiversity that is critical to coastal ecosystems. Prior to the 2010 Deepwater Horizon oil spill, the diversity and function of supratidal beach sediment microbial communities along Gulf of Mexico coastlines were not well understood. As such, it was unclear if microbial community compositional changes would occur following exposure to beached oil, if indigenous communities could biodegrade oil, or how cleanup efforts, such as sand washing and sediment redistribution, would impact microbial ecosystem resiliency. Transects perpendicular to the shoreline were sampled from public beaches on Grand Isle, Louisiana, and Dauphin Island, Alabama, over one year. Prior to oil coming onshore, elevated levels of bacteria associated with fecal contamination were detected (e.g., Enterobacteriales and Campylobacterales). Over time, significant shifts within major phyla were identified (e.g., Proteobacteria, Firmicutes, Actinobacteria) and fecal indicator groups were replaced by taxa affiliated with open-ocean and marine systems (e.g., Oceanospirillales, Rhodospirillales, and Rhodobacterales). These new bacterial groups included putative hydrocarbon degraders, similar to those identified near the oil plume offshore. Shifts in the microbial community composition strongly correlated to more poorly sorted sediment and grain size distributional changes. Natural oceanographic processes could not account for the disrupted sediment, especially from the backshore well above the maximum high-tide levels recorded at these sites. Sand washing and tilling occurred on both open beaches from August through at least December 2010, which were mechanisms that could replace fecal indicator groups with open-ocean groups. Consequently, remediation efforts meant to return beaches to pre-spill compositions caused a regime shift that may have added potential ecosystem function, like hydrocarbon degradation, to the sediment. Future research will

  1. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    PubMed

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  2. Regime Shift in Sandy Beach Microbial Communities following Deepwater Horizon Oil Spill Remediation Efforts

    PubMed Central

    Engel, Annette Summers; Gupta, Axita A.

    2014-01-01

    Sandy beaches support a wide variety of underappreciated biodiversity that is critical to coastal ecosystems. Prior to the 2010 Deepwater Horizon oil spill, the diversity and function of supratidal beach sediment microbial communities along Gulf of Mexico coastlines were not well understood. As such, it was unclear if microbial community compositional changes would occur following exposure to beached oil, if indigenous communities could biodegrade oil, or how cleanup efforts, such as sand washing and sediment redistribution, would impact microbial ecosystem resiliency. Transects perpendicular to the shoreline were sampled from public beaches on Grand Isle, Louisiana, and Dauphin Island, Alabama, over one year. Prior to oil coming onshore, elevated levels of bacteria associated with fecal contamination were detected (e.g., Enterobacteriales and Campylobacterales). Over time, significant shifts within major phyla were identified (e.g., Proteobacteria, Firmicutes, Actinobacteria) and fecal indicator groups were replaced by taxa affiliated with open-ocean and marine systems (e.g., Oceanospirillales, Rhodospirillales, and Rhodobacterales). These new bacterial groups included putative hydrocarbon degraders, similar to those identified near the oil plume offshore. Shifts in the microbial community composition strongly correlated to more poorly sorted sediment and grain size distributional changes. Natural oceanographic processes could not account for the disrupted sediment, especially from the backshore well above the maximum high-tide levels recorded at these sites. Sand washing and tilling occurred on both open beaches from August through at least December 2010, which were mechanisms that could replace fecal indicator groups with open-ocean groups. Consequently, remediation efforts meant to return beaches to pre-spill compositions caused a regime shift that may have added potential ecosystem function, like hydrocarbon degradation, to the sediment. Future research will

  3. Evidence for Pacific Climate Regime Shifts as Preserved in a Southeast Alaska Ice Core

    NASA Astrophysics Data System (ADS)

    Porter, S. E.; Mosley-Thompson, E. S.; Thompson, L. G.

    2012-12-01

    Climate modes emanating from the Pacific sector have far-reaching effects across the globe. The El Niño/Southern Oscillation (ENSO) reflects anomalies in the sea surface temperature and pressure fields over the tropical Pacific, but climate implications from these anomalies extend to monsoon regions of Asia to North America and even Europe. The Pacific Decadal Oscillation (PDO) explains sea surface temperature anomalies in the North Pacific sector and influences the long-term behavior of the ENSO cycle as well as the storm track over North America expressed as the Pacific/North American Pattern (PNA). The impacts of both climate change and drastically reduced Arctic sea ice cover on these teleconnection patterns are poorly understood, and with little knowledge about their past behavior, predicting the changes in these climate modes is extremely difficult. An ice core from the col between Mt. Bona and Mt. Churchill in southeast Alaska provides an opportunity to examine the PDO prior to both the start of instrumental records and the more recent effects of anthropogenic climate change. The Bona-Churchill records of isotopic, dust, and chemical composition are compared to nearby meteorological station and 20th century reanalysis data to evaluate their strength as climate recorders. Climate indices such as the PDO and PNA, along with indices created to describe the strength and position of the Aleutian Low and Siberian High, are incorporated into the analysis to determine if proxy relationships are altered under different climate regimes. Satellite records of sea ice extent within the Sea of Okhotsk and the Bering Sea, when compared to the Bona-Churchill data, show a distinct change in behavior in the mid-1990s possibly in response to the temporary negative shift in the PDO. This behavioral shift is explored and placed into a broader climate context to determine whether similar events have occurred in the past or if this shift is unique to a rapidly warming Arctic.

  4. Retrospective analysis of Bering Sea bottom trawl surveys: regime shift and ecosystem reorganization

    NASA Astrophysics Data System (ADS)

    Conners, M. E.; Hollowed, A. B.; Brown, E.

    2002-10-01

    This paper compiles data from bottom trawl surveys using variations on a 400-mesh eastern trawl gear into a 38-year time series (1963-2000), using a robust index of median catch per unit effort (CPUE) as an indicator of regional abundance. Time series are presented for three index sites in the southeastern Bering Sea: the inner shelf in Bristol Bay, the middle shelf north of Unimak Island, and the outer shelf near the Pribilof Islands. All three sites show strong evidence of a shift in benthic biomass and community structure in the early to mid-1980s. During this period, all three sites showed substantial increases in the abundances of walleye pollock, Pacific cod, rock sole, flathead sole, cartilaginous fishes (skates) and non-crab benthic invertebrates. Species composition, especially of flatfish, differs at the three sites, but the trend for groundfish abundance to increase was consistent at all three sites. The similarity in trends both across the region and across both commercial and unexploited groups suggests to us that a complete reorganization of benthic and demersal food webs may have taken place. The timing of change in trawl catch weight is consistent with effects of the strong regime shift observed in climate indices in 1976-1977. There is little evidence of similar biological responses to subsequent, less pronounced changes in climate. Our data are also consistent with recently documented shifts in ecosystem dynamics resulting from changes in ice cover and thermal structure in the eastern Bering Sea. Our analysis indicates that there was a much higher biomass of groundfish at all three sites during 1980-2000 than in 1960-1980. This result provides evidence against the hypothesis that the overall productivity of the eastern Bering Sea has decreased. The precipitous decline of the endangered Steller sea lion in this region from 1975-1985 was concurrent with an overall increase in abundance of groundfish prey.

  5. Regime Shift by an Exotic Nitrogen-Fixing Shrub Mediates Plant Facilitation in Primary Succession

    PubMed Central

    Stinca, Adriano; Chirico, Giovanni Battista; Incerti, Guido; Bonanomi, Giuliano

    2015-01-01

    Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv.) DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy). Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years), has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can limit the spread and

  6. Regime shift by an exotic nitrogen-fixing shrub mediates plant facilitation in primary succession.

    PubMed

    Stinca, Adriano; Chirico, Giovanni Battista; Incerti, Guido; Bonanomi, Giuliano

    2015-01-01

    Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv.) DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy). Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years), has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can limit the spread and

  7. From Regime Shifts to Planetary Boundaries: How Non-Linear System Behavior is Manifest from Local to Global Scales.

    NASA Astrophysics Data System (ADS)

    Foley, J. A.

    2011-12-01

    Although they have been building for decades, changes in the environment are not always smooth and gradual. In fact, the most important changes - such as those to our ecosystems and natural resources - are often sudden and large. Recent research suggests that instead of following a predictable linear path along existing trends, environmental systems often exhibit highly non-linear behavior, including very abrupt shifts in condition. In fact, the complex, non-linear workings of the planet's biological, physical and human systems can give rise to sudden, often catastrophic, environmental disasters. Recent scientific advances have shown can exhibit "tipping points" or "regime shifts". Examples of regime shifts range from lake eutrophication, desertification, and forest die-back, across many regions of the world. But do such regime shifts exist at the global scale? A recent synthesis of global environmental research (published by Rockstrom et al., in Nature, 2010) suggested that there may be "Planetary Boundaries", beyond which the global environment would enter conditions not seen in the Holocene era. In this presentation, I will review case studies of environmental regime shifts at regional scales, and show how they may or may not operate at global scales. Managing such complex systems, across regional and global scales, will be a fundamental challenge as humanity charts attempts to chart a more sustainability path.

  8. Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific

    USGS Publications Warehouse

    Hatch, Scott A.

    2013-01-01

    I examined ~2700 food samples collected from adult and nestling black-legged kittiwakes Rissa tridactyla from 1978 through 2011 on Middleton Island in the Gulf of Alaska. The kittiwake diet was composed chiefly of fish, but invertebrates were taken in appreciable quantities in April and May. Upon spring arrival at the colony, adult kittiwakes foraged regularly at night on vertically migrating mesopelagic prey—lanternfishes (Myctophidae), squids, crustaceans, and polychaetes—a behavior they largely discontinued by egg-laying. During incubation and chick-rearing, food samples contained mostly (~85% by weight) Pacific sand lance Ammodytes hexapterus, capelin Mallotus villosus, Pacific herring Clupea pallasii, sablefish Anopoploma fimbria, krill (Euphausiidae), and juvenile salmon Onchorynchus gorboscha and O. keta. A salient finding over the longitudinal study was the emergence, twice, of capelin as a dominant forage species—once in 2000 to 2003, and again in 2008 through 2011. Kittiwakes responded to capelin availability by producing markedly higher numbers of fledged young. The 2000 to 2003 event corresponded to a previously documented shift to cooler conditions in the NE Pacific, which apparently was relatively limited in magnitude or duration. The more recent transition appears stronger and may be more lasting. I submit that 2008 was an important turning point, marking a substantive reversal of warm conditions that began with the well-documented regime shift of 1977. That interpretation is consistent with the existence of a ~60 yr cycle in ocean and atmospheric conditions in the North Pacific. All else being equal, it predicts the next 20 to 30 yr will be favorable for species such as kittiwakes and Steller sea lions, which seemed to respond negatively to the 1977 to 2007 warm phase of the Pacific Decadal Oscillation.

  9. North and South Atlantic Bidecadal SL variability: Rossby Waves, AMOC fingerprints and Regime Shifts

    NASA Astrophysics Data System (ADS)

    Vianna, M. L.; Menezes, V. V.

    2014-12-01

    The relationship between the North and South Atlantic bidecadal sea level (SL) oscillations in the twentieth century (1908-2008) is investigated using SODA 2.2.4 reanalysis and 102 monthly mean SL time series from TG stations provided by PSMSL. Bidecadal SL signal extraction was done using our method of subjectively choosing groupings of space-time data into non-overlapping period bands by use of Singular Spectrum Analysis (SSA)/ Maximum Entropy Method (MEM) analysis. A CEOF analysis of the SODA bidecadal band shows dominance of 22-24 year periods. Propagating bidecadal mode expansions were then determined through this analysis, which gives two principal modes. The first mode is dominant from 1915 to 1965 and the second from 1970 onward. The amplitude variabilities obtained suggests the presence of regime shifts, which coincide in time with shifts actually observed in European climate and South African lobster fisheries. The first mode is characterized by states with North and South Atlantic subtropical gyres in phase, while tropical and subpolar regions are in opposite phase relative to them. The second mode is characterized by the subpolar gyre and North subtropical gyre almost in quadrature, with North and South subtropical gyres out of phase. The evolution mechanism of this latter mode is related to east-west density contrasts and westward propagating Rossby waves. These waves show phase speeds dominated by geostrophic self-advection of density anomalies relative to the mean meridional density gradient as known from previous studies, but are shown to be additionally influenced by bottom topography. The oscillations caused by these waves are shown to have phase differences (quadrature in the North Atlantic) with regional indices of bidecadal AMOC oscillations. A number of SL-AMOC fingerprints are also reviewed, and a new eastern equatorial fingerprint is proposed.

  10. Man-induced regime shifts in small estuaries—I: theory

    NASA Astrophysics Data System (ADS)

    Winterwerp, Johan C.; Wang, Zheng Bing

    2013-12-01

    This is Part I of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. In this part, a simple linear analytical model is derived, solving the linearized shallow water equations in exponentially converging tidal rivers. Distinguishing reflecting and non-reflecting conditions, a non-dimensional dispersion equation is derived which yields the real and imaginary wave numbers as a function of the estuarine convergence number and effective hydraulic drag. The estuarine convergence number describes the major geometrical features of a tidal river, e.g., intertidal area, convergence length, and water depth. This model is used in Part II analyzing the historical development of the tide in four rivers. Part I also presents a conceptual model on the response of tidal rivers to narrowing and deepening. It is argued that, upon the loss of intertidal area, flood-dominant conditions prevail, upon which fine sediments are pumped into the river, reducing its effective hydraulic drag. Then a snowball effect may be initiated, bringing the river into a hyper-turbid state. This state is self-maintaining because of entrainment processes, and favorable from an energetic point of view, and therefore highly stable. We may refer to an alternative steady state.

  11. How do copper contamination pulses shape the regime shifts of phytoplankton-zooplankton dynamics?

    NASA Astrophysics Data System (ADS)

    Camara, B. I.; Yamapi, R.; Mokrani, H.

    2017-07-01

    The presence of pollutants in waters, particularly from heavy metals, is of grave concern worldwide due to its cytotoxicity to organisms. Fish and aquatic organisms are very sensitive to the increasing Cu concentrations in water. Therefore, Cu toxicity partly depends on water quality. To address the effects of impulsive copper contamination of the phytoplankton-zooplankton population dynamics, we've built a model that focuses on the interaction between algae and Daphnia with deterministic and stochastic impulse copper. In fact the Results have shown three types of outcomes depending on copper concentration. In low (4.4 μgL-1) copper concentration, deterministic and stochastic pulses may promote the persistence of Daphnia and algae populations unlike the absence of pulses. Whereas, in high (28 μgL-1) concentration, it accelerates deficiency and toxicity processes, leads to the extinction of all populations and in intermediate concentrations. Deterministic and stochastic pulses may transform population dynamics in complex oscillations. Numerical results show that the system that has been considered has more complex dynamics including bifurcation, period-doubling oscillations and chaos. Depending on minimum copper concentration in the environment, the bifurcation diagram has highlighted the resilience or the regime shifts of the system in occurrence of pulse contamination.

  12. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia

    PubMed Central

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A.; Niklasson, Mats

    2016-01-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone. PMID:26940995

  13. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia.

    PubMed

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A; Niklasson, Mats

    2016-03-04

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.

  14. The 3000-4000 cal. BP anthropogenic shift in fire regime in the French Pyrenees.

    NASA Astrophysics Data System (ADS)

    Rius, D.; Vannière, B.; Galop, D.; Richard, H.

    2009-04-01

    Fire is a key disturbing agent in a wide range of ecosystems: boreal biome (Pitkanen, 2000), Mediterranean area (Colombaroli et al., 2008) as well as temperate European mountain zones (Tinner et al., 1999). During the Holocene, climate may control fire regime by both ignition and fire spread-favouring conditions (i.e. composition, structure and moisture of biomass) whereas man may change charcoal accumulation patterns through type and intensity of agro-pastoral activities. In western and Mediterranean Europe, single sites charcoal analysis recorded the anthropogenic forcing over fire regime broadly between the mid and the late-Holocene. Turner et al (2008) showed that climate and fire had been disconnected since 1700 cal. BP in Turkey. In central Swiss, Mean Fire Interval decreased by two times 2000 years ago due to increasing human impact (Stahli et al., 2006). In Italy, climate and man have had a combined influence on fire-hazard since ca 4000 cal. BP (Vannière et al., 2008). In the Pyrenees Mountains, the linkage between agro-pastoral practices and fire could be dated back to ca 4000-3000 cal. BP with a clear succession of a clearance phase (high fire frequency) followed by a quite linear trend throughout Middle Ages and Modern times corresponding to a change in fire use (Vanniere et al., 2001; Galop et al., 2002, Rius et al., in press). The quantification of fire regimes parameters such as frequency with robust methodological tools (Inferred Fire Frequency, Mean Fire Interval) is needed to understand and characterise such shifts. Here we present two sequences from the Lourdes basin (col d'Ech peat bog) and from the occidental Pyrenees (Gabarn peat bog), which cover the last 9000 years with high temporal resolution. The main goals of this study were to (1) assess control factors of fire regime throughout the lateglacial and Holocene (climate and/or man) on the local scale, (2) evidence the local/regional significance of these control factors , (3) discuss the

  15. Complex Dynamics in Models of Peat Accumulation lead to Dramatic Regime Shifts under a Steady Climate

    NASA Astrophysics Data System (ADS)

    Morris, P. J.; Baird, A. J.; Belyea, L. R.

    2009-12-01

    . Model peat profiles after 5,000 simulated years are suggestive of abrupt changes in hydrological regime, despite a steady climatic influence (in the form of constant net rainfall rate). We extended our 1-D model into an extra (horizontal) spatial dimension and modelled the development of a 2-D peat profile for a growing bog. Rates of peat accumulation were quantitatively and qualitatively different between the 1-D and 2-D models. Differences partly reflect the numerical integration methods used, but the inclusion of horizontal space clearly had a significant effect upon model behaviour. More so than for the 1-D model, peat profiles for the 2-D model after 5,000 years very clearly show abrupt shifts in water-table depth and peat accumulation regime. The shifts represent autogenic changes in hydrological regime which occur under a constant climatic influence, and are likely natural stages in peatland spatio-temporal development. The possibility of abrupt transitions such as these occurring under a constant climate fits with existing reports, and has both theoretical and practical implications for the use of peat records as indicators of palaeoclimatic change.

  16. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic.

    PubMed

    Bjorndal, Karen A; Bolten, Alan B; Chaloupka, Milani; Saba, Vincent S; Bellini, Cláudio; Marcovaldi, Maria A G; Santos, Armando J B; Bortolon, Luis Felipe Wurdig; Meylan, Anne B; Meylan, Peter A; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E; van Dam, Robert P; Willis, Sue; Nava, Mabel; Hart, Kristen M; Cherkiss, Michael S; Crowder, Andrew G; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M; Foley, Allen M; Bailey, Rhonda; Carthy, Raymond R; Scarpino, Russell; McMichael, Erin; Provancha, Jane A; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M; Boulon, Ralf H; Collazo, Jaime A; Wershoven, Robert; Guzmán Hernández, Vicente; Stringell, Thomas B; Sanghera, Amdeep; Richardson, Peter B; Broderick, Annette C; Phillips, Quinton; Calosso, Marta; Claydon, John A B; Metz, Tasha L; Gordon, Amanda L; Landry, Andre M; Shaver, Donna J; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J; McGowan, Andrew; Witt, Matthew J; Campbell, Cathi L; Lagueux, Cynthia J; Bethel, Thomas L; Kenyon, Lory

    2017-11-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the

  17. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic

    USGS Publications Warehouse

    Bjorndal, Karen A.; Bolten, Alan B.; Chaloupka, Milani; Saba, Vincent S.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Santos, Armando J.B.; Bortolon, Luis Felipe Wurdig; Meylan, Anne B.; Meylan, Peter A.; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C.; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E.; van Dam, Robert P.; Willis, Sue; Nava, Mabel; Hart, Kristen M.; Cherkiss, Michael S.; Crowder, Andrew; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A.; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M.; Foley, Allen M.; Bailey, Rhonda; Carthy, Raymond R.; Scarpino, Russell; McMichael, Erin; Provancha, Jane A.; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M.; Boulon, Ralf H.; Collazo, Jaime; Wershoven, Robert; Hernández, Vicente Guzmán; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Metz, Tasha L.; Gordon, Amanda L.; Landry, Andre M.; Shaver, Donna J.; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J.; McGowan, Andrew; Witt, Matthew J.; Campbell, Cathi L.; Lagueux, Cynthia J.; Bethel, Thomas L.; Kenyon, Lory

    2017-01-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles – hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta – exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO) – the strongest on record – combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -0.94) and the Multivariate ENSO Index (MEI) for all years (r = 0.74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study

  18. The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins

    PubMed Central

    Conversi, Alessandra; Fonda Umani, Serena; Peluso, Tiziana; Molinero, Juan Carlos; Santojanni, Alberto; Edwards, Martin

    2010-01-01

    Background Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. Principal Findings In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Conclusions Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key

  19. Shifting Regimes and Changing Interactions in the Lake Washington, U.S.A., Plankton Community from 1962–1994

    PubMed Central

    Francis, Tessa B.; Wolkovich, Elizabeth M.; Scheuerell, Mark D.; Katz, Stephen L.; Holmes, Elizabeth E.; Hampton, Stephanie E.

    2014-01-01

    Understanding how changing climate, nutrient regimes, and invasive species shift food web structure is critically important in ecology. Most analytical approaches, however, assume static species interactions and environmental effects across time. Therefore, we applied multivariate autoregressive (MAR) models in a moving window context to test for shifting plankton community interactions and effects of environmental variables on plankton abundance in Lake Washington, U.S.A. from 1962–1994, following reduced nutrient loading in the 1960s and the rise of Daphnia in the 1970s. The moving-window MAR (mwMAR) approach showed shifts in the strengths of interactions between Daphnia, a dominant grazer, and other plankton taxa between a high nutrient, Oscillatoria-dominated regime and a low nutrient, Daphnia-dominated regime. The approach also highlighted the inhibiting influence of the cyanobacterium Oscillatoria on other plankton taxa in the community. Overall community stability was lowest during the period of elevated nutrient loading and Oscillatoria dominance. Despite recent warming of the lake, we found no evidence that anomalous temperatures impacted plankton abundance. Our results suggest mwMAR modeling is a useful approach that can be applied across diverse ecosystems, when questions involve shifting relationships within food webs, and among species and abiotic drivers. PMID:25338087

  20. Shifting regimes and changing interactions in the Lake Washington, U.S.A., plankton community from 1962-1994.

    PubMed

    Francis, Tessa B; Wolkovich, Elizabeth M; Scheuerell, Mark D; Katz, Stephen L; Holmes, Elizabeth E; Hampton, Stephanie E

    2014-01-01

    Understanding how changing climate, nutrient regimes, and invasive species shift food web structure is critically important in ecology. Most analytical approaches, however, assume static species interactions and environmental effects across time. Therefore, we applied multivariate autoregressive (MAR) models in a moving window context to test for shifting plankton community interactions and effects of environmental variables on plankton abundance in Lake Washington, U.S.A. from 1962-1994, following reduced nutrient loading in the 1960s and the rise of Daphnia in the 1970s. The moving-window MAR (mwMAR) approach showed shifts in the strengths of interactions between Daphnia, a dominant grazer, and other plankton taxa between a high nutrient, Oscillatoria-dominated regime and a low nutrient, Daphnia-dominated regime. The approach also highlighted the inhibiting influence of the cyanobacterium Oscillatoria on other plankton taxa in the community. Overall community stability was lowest during the period of elevated nutrient loading and Oscillatoria dominance. Despite recent warming of the lake, we found no evidence that anomalous temperatures impacted plankton abundance. Our results suggest mwMAR modeling is a useful approach that can be applied across diverse ecosystems, when questions involve shifting relationships within food webs, and among species and abiotic drivers.

  1. Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains, U.S.A.

    PubMed

    Elliott, Grant P

    2012-07-01

    Given the widespread and often dramatic influence of climate change on terrestrial ecosystems, it is increasingly common for abrupt threshold changes to occur, yet explicitly testing for climate and ecological regime shifts is lacking in climatically sensitive upper treeline ecotones. In this study, quantitative evidence based on empirical data is provided to support the key role of extrinsic, climate-induced thresholds in governing the spatial and temporal patterns of tree establishment in these high-elevation environments. Dendroecological techniques were used to reconstruct a 420-year history of regeneration dynamics within upper treeline ecotones along a latitudinal gradient (approximately 44-35 degrees N) in the Rocky Mountains. Correlation analysis was used to assess the possible influence of minimum and maximum temperature indices and cool-season (November-April) precipitation on regional age-structure data. Regime-shift analysis was used to detect thresholds in tree establishment during the entire period of record (1580-2000), temperature variables significantly Correlated with establishment during the 20th century, and cool-season precipitation. Tree establishment was significantly correlated with minimum temperature during the spring (March-May) and cool season. Regime-shift analysis identified an abrupt increase in regional tree establishment in 1950 (1950-1954 age class). Coincident with this period was a shift toward reduced cool-season precipitation. The alignment of these climate conditions apparently triggered an abrupt increase in establishment that was unprecedented during the period of record. Two main findings emerge from this research that underscore the critical role of climate in governing regeneration dynamics within upper treeline ecotones. (1) Regional climate variability is capable of exceeding bioclimatic thresholds, thereby initiating synchronous and abrupt changes in the spatial and temporal patterns of tree establishment at broad

  2. Early Detection of Regime Shifts in Complex Systems from Fisher Information

    EPA Science Inventory

    The central goal of sustainability is the maintenance of environmental conditions, which are favorable to human existence. A critically important element then is the resilience of the dynamic regime that one wishes to sustain. Resilient systems are able to withstand perturbations...

  3. Analog-based fire regime and vegetation shifts in mountainous regions of the western US

    Treesearch

    Sean A. Parks; Lisa M. Holsinger; Carol Miller; Marc-Andre Parisien

    2017-01-01

    Climate change is expected to result in substantial ecological impacts across the globe. These impacts are uncertain but there is strong consensus that they will almost certainly affect fire regimes and vegetation. In this study, we evaluated how climate change may influence fire frequency, fire severity, and broad classes of vegetation in mountainous ecoregions of the...

  4. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes

    PubMed Central

    Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy

    2016-01-01

    Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime. PMID:27074883

  5. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes.

    PubMed

    Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy

    2016-04-14

    Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime.

  6. Early Detection of Regime Shifts in Complex Systems from Fisher Information

    EPA Science Inventory

    The central goal of sustainability is the maintenance of environmental conditions, which are favorable to human existence. A critically important element then is the resilience of the dynamic regime that one wishes to sustain. Resilient systems are able to withstand perturbations...

  7. Regime Shifts in Shallow Lakes: Responses of Cyanobacterial Blooms to Watershed Agricultural Phosphorus Loading Over the Last ~100 Years.

    NASA Astrophysics Data System (ADS)

    Vermaire, J. C.; Taranu, Z. E.; MacDonald, G. K.; Velghe, K.; Bennett, E.; Gregory-Eaves, I.

    2015-12-01

    Rapid changes in ecosystem states have occurred naturally throughout Earth's history. However, environmental changes that have taken place since the start of the Anthropocene may be destabilizing ecosystems and increasing the frequency of regime shifts in response to abrupt changes in external drivers or local intrinsic dynamics. To evaluate the relative influence of these forcers and improve our understanding of the impact of future change, we examined the effects of historical catchment phosphorus loading associated with agricultural land use on lake ecosystems, and whether this caused a shift from a stable, clear-water, regime to a turbid, cyanobacteria-dominated, state. The sedimentary pigments, diatom, and zooplankton (Cladocera) records from a currently clear-water shallow lake (Roxton Pond) and a turbid-water shallow lake (Petit lac Saint-François; PSF) were examined to determine if a cyanobacteria associated pigment (i.e. echinenone) showed an abrupt non-linear response to continued historical phosphorus load index (determined by phosphorus budget) over the last ~100 years. While PSF lake is presently in the turbid-water state, pigment and diatom analyses indicated that both lakes were once in the clear-water state, and that non-linear increases in catchment phosphorus balance resulted in an abrupt transition to cyanobacteria dominated states in each record. These results show that phosphorus loading has resulted in state shifts in shallow lake ecosystems that has been recorded across multiple paleolimnological indicators preserved in the sedimentary record.

  8. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts

    PubMed Central

    Lade, Steven J.; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J.; Orach, Kirill; Quaas, Martin F.; Österblom, Henrik; Schlüter, Maja

    2015-01-01

    Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social–ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social–ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social–ecological models. PMID:26283344

  9. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts.

    PubMed

    Lade, Steven J; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J; Orach, Kirill; Quaas, Martin F; Österblom, Henrik; Schlüter, Maja

    2015-09-01

    Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social-ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social-ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social-ecological models.

  10. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake.

    PubMed

    Kong, Xiangzhen; He, Qishuang; Yang, Bin; He, Wei; Xu, Fuliu; Janssen, Annette B G; Kuiper, Jan J; van Gerven, Luuk P A; Qin, Ning; Jiang, Yujiao; Liu, Wenxiu; Yang, Chen; Bai, Zelin; Zhang, Min; Kong, Fanxiang; Janse, Jan H; Mooij, Wolf M

    2017-02-01

    Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when

  11. Resilience and Alternative Stable States of Tropical Forest Landscapes under Shifting Cultivation Regimes

    PubMed Central

    2015-01-01

    Shifting cultivation is a traditional agricultural practice in most tropical regions of the world and has the potential to provide for human livelihoods while hosting substantial biodiversity. Little is known about the resilience of shifting cultivation to increasing agricultural demands on the landscape or to unexpected disturbances. To investigate these issues, we develop a simple social-ecological model and implement it with literature-derived ecological parameters for six shifting cultivation landscapes from three continents. Analyzing the model with the tools of dynamical systems analysis, we show that such landscapes exhibit two stable states, one characterized by high forest cover and agricultural productivity, and another with much lower values of these traits. For some combinations of agricultural pressure and ecological parameters both of these states can potentially exist, and the actual state of the forest depends critically on its historic state. In many cases, the landscapes’ ‘ecological resilience’, or amount of forest that could be destroyed without shifting out of the forested stability domain, declined substantially at lower levels of agricultural pressure than would lead to maximum productivity. A measure of ‘engineering resilience’, the recovery time from standardized disturbances, was independent of ecological resilience. These findings suggest that maximization of short-term agricultural output may have counterproductive impacts on the long-term productivity of shifting cultivation landscapes and the persistence of forested areas. PMID:26406907

  12. Analyzing sustainability transitions as a shift between socio-metabolic regimes

    PubMed Central

    Fischer-Kowalski, Marina

    2011-01-01

    This essay seeks to specify the theoretical choices and assumptions involved in studying sociometabolic transitions, such as sustainability transitions, in a way that distinguishes them from mere “changes”. These generalizations draw on experiences with the empirical analysis of historical transitions on various scale levels. This perspective is illustrated by using material and energy flow data to demonstrate global sociometabolic regime transitions during the 20th century. PMID:27066392

  13. Precipitation regime shift enhanced the rain pulse effect on soil respiration in a semi-arid steppe.

    PubMed

    Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi

    2014-01-01

    The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m(-2)) and 39.6% (61.7 g C m(-2)) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953-2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953-2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change.

  14. Precipitation Regime Shift Enhanced the Rain Pulse Effect on Soil Respiration in a Semi-Arid Steppe

    PubMed Central

    Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi

    2014-01-01

    The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change. PMID:25093573

  15. Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security

    PubMed Central

    Elser, James J.; Elser, Timothy J.; Carpenter, Stephen R.; Brock, William A.

    2014-01-01

    Recent human population increase has been enabled by a massive expansion of global agricultural production. A key component of this “Green Revolution” has been application of inorganic fertilizers to produce and maintain high crop yields. However, the long-term sustainability of these practices is unclear given the eutrophying effects of fertilizer runoff as well as the reliance of fertilizer production on finite non-renewable resources such as mined phosphate- and potassium-bearing rocks. Indeed, recent volatility in food and agricultural commodity prices, especially phosphate fertilizer, has raised concerns about emerging constraints on fertilizer production with consequences for its affordability in the developing world. We examined 30 years of monthly prices of fertilizer commodities (phosphate rock, urea, and potassium) for comparison with three food commodities (maize, wheat, and rice) and three non-agricultural commodities (gold, nickel, and petroleum). Here we show that all commodity prices, except gold, had significant change points between 2007–2009, but the fertilizer commodities, and especially phosphate rock, showed multiple symptoms of nonlinear critical transitions. In contrast to fertilizers and to rice, maize and wheat prices did not show significant signs of nonlinear dynamics. From these results we infer a recent emergence of a scarcity price in global fertilizer markets, a result signaling a new high price regime for these essential agricultural inputs. Such a regime will challenge on-going efforts to establish global food security but may also prompt fertilizer use practices and nutrient recovery strategies that reduce eutrophication. PMID:24787624

  16. Regime shift in fertilizer commodities indicates more turbulence ahead for food security.

    PubMed

    Elser, James J; Elser, Timothy J; Carpenter, Stephen R; Brock, William A

    2014-01-01

    Recent human population increase has been enabled by a massive expansion of global agricultural production. A key component of this "Green Revolution" has been application of inorganic fertilizers to produce and maintain high crop yields. However, the long-term sustainability of these practices is unclear given the eutrophying effects of fertilizer runoff as well as the reliance of fertilizer production on finite non-renewable resources such as mined phosphate- and potassium-bearing rocks. Indeed, recent volatility in food and agricultural commodity prices, especially phosphate fertilizer, has raised concerns about emerging constraints on fertilizer production with consequences for its affordability in the developing world. We examined 30 years of monthly prices of fertilizer commodities (phosphate rock, urea, and potassium) for comparison with three food commodities (maize, wheat, and rice) and three non-agricultural commodities (gold, nickel, and petroleum). Here we show that all commodity prices, except gold, had significant change points between 2007-2009, but the fertilizer commodities, and especially phosphate rock, showed multiple symptoms of nonlinear critical transitions. In contrast to fertilizers and to rice, maize and wheat prices did not show significant signs of nonlinear dynamics. From these results we infer a recent emergence of a scarcity price in global fertilizer markets, a result signaling a new high price regime for these essential agricultural inputs. Such a regime will challenge on-going efforts to establish global food security but may also prompt fertilizer use practices and nutrient recovery strategies that reduce eutrophication.

  17. Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine ▿†

    PubMed Central

    Bürgmann, Helmut; Jenni, Sarina; Vazquez, Francisco; Udert, Kai M.

    2011-01-01

    The microbial population and physicochemical process parameters of a sequencing batch reactor for nitrogen removal from urine were monitored over a 1.5-year period. Microbial community fingerprinting (automated ribosomal intergenic spacer analysis), 16S rRNA gene sequencing, and quantitative PCR on nitrogen cycle functional groups were used to characterize the microbial population. The reactor combined nitrification (ammonium oxidation)/anammox with organoheterotrophic denitrification. The nitrogen elimination rate initially increased by 400%, followed by an extended period of performance degradation. This phase was characterized by accumulation of nitrite and nitrous oxide, reduced anammox activity, and a different but stable microbial community. Outwashing of anammox bacteria or their inhibition by oxygen or nitrite was insufficient to explain reactor behavior. Multiple lines of evidence, e.g., regime-shift analysis of chemical and physical parameters and cluster and ordination analysis of the microbial community, indicated that the system had experienced a rapid transition to a new stable state that led to the observed inferior process rates. The events in the reactor can thus be interpreted to be an ecological regime shift. Constrained ordination indicated that the pH set point controlling cycle duration, temperature, airflow rate, and the release of nitric and nitrous oxides controlled the primarily heterotrophic microbial community. We show that by combining chemical and physical measurements, microbial community analysis and ecological theory allowed extraction of useful information about the causes and dynamics of the observed process instability. PMID:21724875

  18. Persistent millennial-scale shifts in moisture regimes in western Canada during the past six millennia.

    PubMed

    Cumming, Brian F; Laird, Kathleen R; Bennett, Joseph R; Smol, John P; Salomon, Anne K

    2002-12-10

    Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansionrecession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions.

  19. Changes in soil thermal regime lead to substantial shifts in carbon and energy fluxes in drained Arctic tundra

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Kwon, M. J.; Kittler, F.; Heimann, M.; Zimov, N.; Zimov, S. A.

    2016-12-01

    Climate change impacts in the Arctic will not only depend on future temperature trajectories in this region. In particular, potential shifts in hydrologic regimes, e.g. linked to altered precipitation patterns or changes in topography following permafrost degradation, can dramatically modify ecosystem feedbacks to warming. Here, we analyze how severe drainage affects both biogeochemical and biogeophysical processes within a formerly wet Arctic tundra, with a special focus on the interactions between hydrology and soil temperatures, and related effects on the fluxes of carbon and energy. Our findings are based on year-round observations from a decade-long drainage experiment conducted near Chersky, Northeast Siberia. Through our multi-disciplinary observations we can document that the drainage triggered a suite of secondary changes in ecosystem properties, including e.g. adaptation processes in the vegetation community structure, or shifts in snow cover regime. Most profoundly, a combination of low heat capacity and reduced heat conductivity in dry organic soils lead to warmer soil temperatures near the surface, while deeper soil layers remained colder. These changes in soil thermal regime reduced the contribution of deeper soil layers with older carbon pools to overall ecosystem respiration, as documented through radiocarbon signals. Regarding methane, the observed steeper temperature gradient along the vertical soil profile slowed down methane production in deep layers, while promoting CH4 oxidation near the surface. Taken together, both processes contributed to a reduction in CH4 emissions up to a factor of 20 following drainage. Concerning the energy budget, we observed an intensification of energy transfer to the lower atmosphere, particularly in form of sensible heat, but the reduced energy transfer into deeper soil layers also led to systematically shallower thaw depths. Summarizing, drainage may contribute to slow down decomposition of old carbon from deep

  20. Intra-annual rainfall regime shifts competitive interactions between coastal sage scrub and invasive grasses.

    PubMed

    Goldstein, Leah J; Suding, Katharine N

    2014-02-01

    Changes in rainfall distribution, generally predicted by many climate models, can affect resource dynamics and ecosystem function. While little studied, intra-annual rainfall distribution may have particularly strong effects on competitive interactions. Here, we test whether increased rainfall event size and decreased frequency within a growing season can influence competitive dynamics related to the invasion of exotic annual grasses in California coastal sage scrub (CSS). We hypothesized that larger rainfall events and decreased frequency will increase the competitive ability of native CSS species: a deeper root system will permit greater water use during dry periods between pulses and enhance their resource depletion effect on more shallow-rooted grasses. We planted grass and CSS seedlings in an additive competition design under three rainfall treatments: frequent small events, infrequent large events, and infrequent small events. The first two treatments had the same total rainfall but different frequency, while the second and third treatments had the same frequency but different total rainfall. Rainfall treatment altered the competitive interactions between CSS and grasses. In the first year, the competitive effect of annual grasses on shrub seedlings was strongest under the frequent small rainfall regime where they reduced deep soil moisture and light. In year two, the established shrubs began to exert strong competitive effects on grasses, and these effects were strongest under the infrequent small rainfall regime (low total rain) where they reduced shallow soil moisture and decreased grass stomatal conductance. Results suggest that reductions in both rainfall frequency and total rainfall may be important to competitive interactions, and can alter plant community composition and invasion when species have different rooting depths and different responses to soil moisture.

  1. Climate change-related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea.

    PubMed

    Defriez, Emma J; Sheppard, Lawrence W; Reid, Philip C; Reuman, Daniel C

    2016-06-01

    During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959-1980 and 1989-2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.

  2. Phytoliths as a tool to track plant community changes after fire regime shift

    NASA Astrophysics Data System (ADS)

    Kirchholtes, R.; van Mourik, J. M.; Johnson, B. R.

    2016-12-01

    Anthropogenically induced changes to the historical fire regime are excellent analogues to study the dynamics of terrestrial ecosystem responses to present-day environmental changes. Fire suppression and loss of indigenous burning practices in the Willamette Valley, Oregon (USA) has led to near disappearance of the Oregon white oak savanna. The specific goal of this study was to better understand the pace and character with which the Oregon oak savannas are disappearing. Under suppressed fire regimes the shade-intolerant Garry oaks (Quercus garryana) are outcompeted by Douglas-fir (Pseudotsuga menziesii). As a consequence, the Oregon white oak savanna has been reduced to <5% of its former extent. While detrimental to the regional biodiversity due to habitat loss and fragmentation of the many savanna-dependent plant and animal species, this system does capture a long-term continuous record of the plant community response to ecological disturbances. Because conventional indicators used in floristic reconstructions (pollen, spores etc.) are seldom preserved in the dry, oxidized sediments of savannas, we used phytoliths to establish the change in plant communities. Phytoliths are small yet robust silica particles produced by most plants. Many phytoliths take on cell shapes diagnostic of specific plant lineages, acting as indicators of their past presence. By reconstructing the vegetation patterns at the Jim's Creek Research Area using phytoliths, we confirm the pattern of rapid tree encroachment. In addition to grasses, the phytolith assemblages which represent the landscape from about 150 years ago, also document the presence of pines and firs. This suggests that (1) the Willamette Valley savannas did not exclusively consist of grass and oaks and (2) it took less than 150 years to change from and open landscape to a densely forested one. Under a warming climate and changing precipitation patterns, reducing fire risk, fire intensity and fuel loading is critical

  3. Abrupt regime shifts in the North Atlantic atmospheric circulation over the last deglaciation

    NASA Astrophysics Data System (ADS)

    Löfverström, Marcus; Lora, Juan M.

    2017-08-01

    We analyze modeling results of the North Atlantic atmospheric winter circulation from a transient climate simulation over the last 21,000 years. In agreement with previous studies, we find that the midlatitude jet stream assumes a strong, stable, and zonal disposition so long as the North American ice sheets remain in their continent-wide Last Glacial Maximum (LGM) configuration. However, when the Laurentide ice sheet (LIS) and Cordilleran ice sheet separate (˜14,000 years ago), the jet stream abruptly changes to a tilted circulation regime, similar to modern. The proposed explanation is that the dominant stationary wave source in the North Atlantic sector changes from the LIS to the Cordilleran mountain range during the saddle collapse. As long as the LIS dominates, the circulation retains the zonal LGM state characterized by prevalent stationary wave reflection in the subtropical North Atlantic. When the Cordillera takes over, the circulation acquires its modern disposition with a weak and meridionally tilted jet stream and storm track.

  4. Immune boosting explains regime-shifts in prevaccine-era pertussis dynamics.

    PubMed

    Lavine, Jennie S; King, Aaron A; Andreasen, Viggo; Bjørnstad, Ottar N

    2013-01-01

    Understanding the biological mechanisms underlying episodic outbreaks of infectious diseases is one of mathematical epidemiology's major goals. Historic records are an invaluable source of information in this enterprise. Pertussis (whooping cough) is a re-emerging infection whose intermittent bouts of large multiannual epidemics interspersed between periods of smaller-amplitude cycles remain an enigma. It has been suggested that recent increases in pertussis incidence and shifts in the age-distribution of cases may be due to diminished natural immune boosting. Here we show that a model that incorporates this mechanism can account for a unique set of pre-vaccine-era data from Copenhagen. Under this model, immune boosting induces transient bursts of large amplitude outbreaks. In the face of mass vaccination, the boosting model predicts larger and more frequent outbreaks than do models with permanent or passively-waning immunity. Our results emphasize the importance of understanding the mechanisms responsible for maintaining immune memory for pertussis epidemiology.

  5. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover.

    PubMed

    Guo, Hongyu; Weaver, Carolyn; Charles, Sean P; Whitt, Ashley; Dastidar, Sayantani; D'Odorico, Paolo; Fuentes, Jose D; Kominoski, John S; Armitage, Anna R; Pennings, Steven C

    2017-03-01

    Global changes are causing broad-scale shifts in vegetation communities worldwide, including coastal habitats where the borders between mangroves and salt marsh are in flux. Coastal habitats provide numerous ecosystem services of high economic value, but the consequences of variation in mangrove cover are poorly known. We experimentally manipulated mangrove cover in large plots to test a set of linked hypotheses regarding the effects of changes in mangrove cover. We found that changes in mangrove cover had strong effects on microclimate, plant community, sediment accretion, soil organic content, and bird abundance within 2 yr. At higher mangrove cover, wind speed declined and light interception by vegetation increased. Air and soil temperatures had hump-shaped relationships with mangrove cover. The cover of salt marsh plants decreased at higher mangrove cover. Wrack cover, the distance that wrack was distributed from the water's edge, and sediment accretion decreased at higher mangrove cover. Soil organic content increased with mangrove cover. Wading bird abundance decreased at higher mangrove cover. Many of these relationships were non-linear, with the greatest effects when mangrove cover varied from zero to intermediate values, and lesser effects when mangrove cover varied from intermediate to high values. Temporal and spatial variation in measured variables often peaked at intermediate mangrove cover, with ecological consequences that are largely unexplored. Because different processes varied in different ways with mangrove cover, the "optimum" cover of mangroves from a societal point of view will depend on which ecosystem services are most desired.

  6. Immune Boosting Explains Regime-Shifts in Prevaccine-Era Pertussis Dynamics

    PubMed Central

    Lavine, Jennie S.; King, Aaron A.; Andreasen, Viggo; Bjørnstad, Ottar N.

    2013-01-01

    Understanding the biological mechanisms underlying episodic outbreaks of infectious diseases is one of mathematical epidemiology’s major goals. Historic records are an invaluable source of information in this enterprise. Pertussis (whooping cough) is a re-emerging infection whose intermittent bouts of large multiannual epidemics interspersed between periods of smaller-amplitude cycles remain an enigma. It has been suggested that recent increases in pertussis incidence and shifts in the age-distribution of cases may be due to diminished natural immune boosting. Here we show that a model that incorporates this mechanism can account for a unique set of pre-vaccine-era data from Copenhagen. Under this model, immune boosting induces transient bursts of large amplitude outbreaks. In the face of mass vaccination, the boosting model predicts larger and more frequent outbreaks than do models with permanent or passively-waning immunity. Our results emphasize the importance of understanding the mechanisms responsible for maintaining immune memory for pertussis epidemiology. PMID:23991047

  7. Shift in precipitation regime promotes interspecific hybridization of introduced Coffea species.

    PubMed

    Gomez, Céline; Despinoy, Marc; Hamon, Serge; Hamon, Perla; Salmon, Danyela; Akaffou, Doffou Sélastique; Legnate, Hyacinthe; de Kochko, Alexandre; Mangeas, Morgan; Poncet, Valérie

    2016-05-01

    . However, a precipitation regime different from those in Africa was directly involved in generating partial flowering overlap between species and thus in allowing hybridization and interspecific gene flow. Interspecific hybrids accounted for 4% of the mature individuals in the sympatric population and occurred between each pair of species with various level of introgression. Adaptation to new environmental conditions following introduction of Coffea species to New Caledonia has resulted in a secondary contact between three related species, which would not have happened in their native ranges, leading to hybridization and gene flow.

  8. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, Efi; Takbiri, Zeinab; Czuba, Jonathan A.; Schwenk, Jon

    2015-08-01

    Hydrology in many agricultural landscapes around the world is changing in unprecedented ways due to the development of extensive surface and subsurface drainage systems that optimize productivity. This plumbing of the landscape alters water pathways, timings, and storage, creating new regimes of hydrologic response and driving a chain of environmental changes in sediment dynamics, nutrient cycling, and river ecology. In this work, we nonparametrically quantify the nature of hydrologic change in the Minnesota River Basin, an intensively managed agricultural landscape, and study how this change might modulate ecological transitions. During the growing season when climate effects are shown to be minimal, daily streamflow hydrographs exhibit sharper rising limbs and stronger dependence on the previous-day precipitation. We also find a changed storage-discharge relationship and show that the artificial landscape connectivity has most drastically affected the rainfall-runoff relationship at intermediate quantiles. Considering the whole year, we show that the combined climate and land use change effects reduce the inherent nonlinearity in the dynamics of daily streamflow, perhaps reflecting a more linearized engineered hydrologic system. Using a simplified dynamic interaction model that couples hydrology to river ecology, we demonstrate how the observed hydrologic change and/or the discharge-driven sediment generation dynamics may have modulated a regime shift in river ecology, namely extirpation of native mussel populations. We posit that such nonparametric analyses and reduced complexity modeling can provide more insight than highly parameterized models and can guide development of vulnerability assessments and integrated watershed management frameworks.

  9. Long-term trends and regime shifts in sea surface temperature on the continental shelf of the northeast United States

    NASA Astrophysics Data System (ADS)

    Friedland, Kevin D.; Hare, Jonathan A.

    2007-11-01

    We investigated sea surface temperature (SST) variability over large spatial and temporal scales for the continental shelf region located off the northeast coast of the United States between Cape Hatteras, North Carolina, and the Gulf of Maine using the extended reconstruction sea surface temperature (ERSST) dataset. The ERSST dataset consists of 2°×2° (latitude and longitude) monthly mean values computed from in situ data derived from the International Comprehensive Ocean Atmosphere Data Set (ICOADS). Nineteen 2°×2° bins were chosen that cover the shelf region of interest between the years of 1854 and 2005. Mean annual and range of SST were examined using dynamic factor analysis to estimate trends in both parameters, while chronological clustering was used to determine temporal SST patterns and breakpoints in the time series that are believed to signal regime shifts in SST. Both SST and SST trend analysis show that interannual variability of SST fluctuations shows strong coherence between bins, with declining SST at the beginning of the last century, followed by increasing SST through 1950, and then rapidly decreasing between 1950 and mid-1960s, with somewhat warmer SST thereafter to present. Annual SST range decreases in a seaward direction for all bins, with strong coherence for interannual variability of range fluctuations between bins. The trend in SST range shows a decreasing range at the beginning of the last century followed by an increase in range from 1920 to the late-1980s, remaining high through present with some spatial variability. A more detailed spatial analysis was conducted by grouping the data into 7 regions using principal component analysis. We analyzed regional trends in mean annual SST, seasonal SST range (summer SST-winter SST), and normalized SST minima and maxima. Both the summer and winter seasons were also analyzed using the length of each season and amplitude of the warming and cooling season, respectively, along with the spring

  10. Landscape response to climate change: quantifying a regime shift in transport processes at the onset of re-organization

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Tejedor, Alejandro; Densmore, Alexander; Foufoula-Georgiou, Efi

    2016-04-01

    Quantifying the ways in which landscapes are reorganized under changing allogenic forcing, including changes in the patterns, rates, and processes of erosion and deposition, is still an open question. Data at the time scales and resolutions required to undertake such a question are typically not available for real landscapes, making physical experiments attractive and powerful means for studying the dynamics of landscape evolution. To this aim, we capitalize on a series of controlled laboratory experiments conducted at the St. Anthony Falls laboratory at the University of Minnesota. The eXperimental Landscape Evolution (XLE) facility consists of an erosion box (0.5 x 0.5 x 0.3 m3) wherein two main variables can be controlled: uplift rate and rainfall intensity. Topographic data were collected at a temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (under constant uplift and precipitation rate), and during the transient state following an increase in the precipitation rate by a factor of 5. In order to quantify the changes observed during the onset of reorganization in the transient state, we perform a connectivity and clustering analysis of the erosional and depositional events, showing strikingly different spatial patterns on landscape evolution under steady-state (SS) and transient-state (TS) conditions, even when the time under SS is renormalized to match the total volume of eroded and deposited sediment in TS. Our results suggest a regime shift in the behavior of transport processes within the fluvial regime of the landscape, from supply-limited to transport-limited, during the onset of the TS. Results on the evolution of the spatial patterns of erosional and depositional events when the time advances within the TS are also discussed.

  11. Impacts of extensive driftnet fishery and late 1990s climate regime shift on dominant epipelagic nekton in the Transition Region and Subtropical Frontal Zone: Implications for fishery management

    NASA Astrophysics Data System (ADS)

    Ichii, T.; Nishikawa, H.; Igarashi, H.; Okamura, H.; Mahapatra, K.; Sakai, M.; Wakabayashi, T.; Inagake, D.; Okada, Y.

    2017-01-01

    We investigated the impacts of extensive anthropogenic (high seas driftnet squid fishery) and natural (late 1990s major climate regime shift) events on dominant epipelagic fish, squid, and shark in the central North Pacific Transition Region based on a driftnet survey covering the years 1979-2006. Fishing was conducted by Japan, Korea and Taiwan to target neon flying squid in the period 1979-1992, resulting in a decline in stocks of the target species and non-target species (Pacific pomfret and juvenile blue shark), which were by-catch of this fishery. The catch was found to be at the maximum sustainable yield (MSY) level for neon flying squid, the underfished level for juvenile blue shark, but the overfished level for Pacific pomfret. The MSY of Pacific pomfret indicated that this species is more susceptible to exploitation than previously considered. In response to the late 1990s regime shift, neon flying squid and Pacific saury showed low stock levels in 1999-2002 and 1998-2002, respectively, as a result of reduced productivity in their nursery grounds (the Subtropical Frontal Zone and Kuroshio Extension Bifurcation Region, respectively). On the other hand, Pacific pomfret showed no decreasing trend in stock during the low- and intermediate-productivity regimes because of the high productivity of their main spawning/nursery ground (Transition Zone Chlorophyll Front), which was independent of the regime shifts. Thus, squid and saury appear to be more susceptible to the regime shift than pomfret. We discuss the implications for stock management of the species-specific responses to the fishery and the regime shift.

  12. Regime shifts in exploited marine food webs: detecting mechanisms underlying alternative stable states using size-structured community dynamics theory

    PubMed Central

    Gårdmark, Anna; Casini, Michele; Huss, Magnus; van Leeuwen, Anieke; Hjelm, Joakim; Persson, Lennart; de Roos, André M.

    2015-01-01

    Many marine ecosystems have undergone ‘regime shifts’, i.e. abrupt reorganizations across trophic levels. Establishing whether these constitute shifts between alternative stable states is of key importance for the prospects of ecosystem recovery and for management. We show how mechanisms underlying alternative stable states caused by predator–prey interactions can be revealed in field data, using analyses guided by theory on size-structured community dynamics. This is done by combining data on individual performance (such as growth and fecundity) with information on population size and prey availability. We use Atlantic cod (Gadus morhua) and their prey in the Baltic Sea as an example to discuss and distinguish two types of mechanisms, ‘cultivation-depensation’ and ‘overcompensation’, that can cause alternative stable states preventing the recovery of overexploited piscivorous fish populations. Importantly, the type of mechanism can be inferred already from changes in the predators' body growth in different life stages. Our approach can thus be readily applied to monitored stocks of piscivorous fish species, for which this information often can be assembled. Using this tool can help resolve the causes of catastrophic collapses in marine predatory–prey systems and guide fisheries managers on how to successfully restore collapsed piscivorous fish stocks.

  13. Climate regime shifts in paleoclimate time series from the Yucatán Peninsula: from the Preclassic to Classic period

    NASA Astrophysics Data System (ADS)

    Polanco Martínez, Josue M.; Medina-Elizalde, Martin; Burns, Stephen J.; Jiang, Xiuyang; Shen, Chuan-Chou

    2015-04-01

    It has been widely accepted by the paleoclimate and archaeology communities that extreme climate events (especially droughts) and past climate change played an important role in the cultural changes that occurred in at least some parts of the Maya Lowlands, from the Pre-Classic (2000 BC to 250 AD) to Post-Classic periods (1000 to 1521 AD) [1, 2]. In particular, a large number of studies suggest that the decline of the Maya civilization in the Terminal Classic Period was greatly influenced by prolonged severe drought events that probably triggered significant societal disruptions [1, 3, 4, 5]. Going further on these issues, the aim of this work is to detect climate regime shifts in several paleoclimate time series from the Yucatán Peninsula (México) that have been used as rainfall proxies [3, 5, 6, 7]. In order to extract information from the paleoclimate data studied, we have used a change point method [8] as implemented in the R package strucchange, as well as the RAMFIT method [9]. The preliminary results show for all the records analysed a prominent regime shift between 400 to 200 BCE (from a noticeable increase to a remarkable fall in precipitation), which is strongest in the recently obtained stalagmite (Itzamna) delta18-O precipitation record [7]. References [1] Gunn, J. D., Matheny, R. T., Folan, W. J., 2002. Climate-change studies in the Maya area. Ancient Mesoamerica, 13(01), 79-84. [2] Yaeger, J., Hodell, D. A., 2008. The collapse of Maya civilization: assessing the interaction of culture, climate, and environment. El Niño, Catastrophism, and Culture Change in Ancient America, 197-251. [3] Hodell, D. A., Curtis, J. H., Brenner, M., 1995. Possible role of climate in the collapse of Classic Maya civilization. Nature, 375(6530), 391-394. [4] Aimers, J., Hodell, D., 2011. Societal collapse: Drought and the Maya. Nature 479(7371), 44-45 (2011). [5] Medina-Elizalde, M., Rohling, E. J., 2012. Collapse of Classic Maya civilization related to modest reduction

  14. Shifts in dynamic regime of an invasive lady beetle are linked to the invasion and insecticidal management of its prey.

    PubMed

    Bahlai, Christine A; van der Werf, Wopke; vander Werf, Wopke; O'Neal, Matthew; Hemerik, Lia; Landis, Douglas A

    2015-10-01

    The spread and impact of invasive species may vary over time in relation to changes in the species itself, the biological community of which it is part, or external controls on the system. We investigate whether there have been changes in dynamic regimes over the last 20 years of two invasive species in the midwestern United States, the multicolored Asian lady beetle Harmonia axyridis and the soybean aphid Aphis glycines. We show by model selection that after its 1993 invasion into the American Midwest, the year-to-year population dynamics of H. axyridis were initially governed by a logistic rule supporting gradual rise to a stable carrying capacity. After invasion of the soybean aphid in 2000, food resources at the landscape level became abundant, supporting a higher year-to-year growth rate and a higher but unstable carrying capacity, with two-year cycles in both aphid and lady beetle abundance as a consequence. During 2005-2007, farmers in the Midwest progressively increased their use of insecticides for managing A. glycines, combining prophylactic seed treatment with curative spraying based on thresholds. This human intervention dramatically reduced the soybean aphid as a major food resource for H. axyridis at landscape level and corresponded to a reverse shift towards the original logistic rule for year-to-year dynamics. Thus, we document a short episode of major predator-prey fluctuations in an important agricultural system resulting from two biological invasions that were apparently damped by widespread insecticide use. Recent advances in development of plant resistance to A. glycines in soybeans may mitigate the need for pesticidal control and achieve the same stabilization of pest and predator populations at lower cost and environmental burden.

  15. Long-term trends in carbon, nutrients and stoichiometry in Norwegian coastal waters: Evidence of a regime shift

    NASA Astrophysics Data System (ADS)

    Frigstad, Helene; Andersen, Tom; Hessen, Dag O.; Jeansson, Emil; Skogen, Morten; Naustvoll, Lars-Johan; Miles, Martin W.; Johannessen, Truls; Bellerby, Richard G. J.

    2013-04-01

    A 20-year time series from the Norwegian Coastal Current was explored to examine the effects of advected nutrient supply from the southern North Sea and of large-scale climate variability on hydrography, nutrients and particulate organic matter (seston), focusing on trends in the January to April period in the upper layers (0-30 m). The interannual variability in hydrography, nutrients and seston was correlated with the NAO index, mostly through the inflow of nutrient-rich waters from the southern North Sea. There was a long-term decrease in nutrient concentrations, which according to a water mass analysis followed a reduction in nutrients advected from the German Bight and southern North Sea. The concentrations of carbon and nitrogen in seston, dissolved organic nitrogen and the estimated fraction of non-autotrophic material increased significantly and non-linearly through a sharp transition between 1998 and 2000, and have remained at this level since. Humic coagulation was suggested as the mechanism behind the increase in the non-autotrophic fraction of seston, which could be connected with the reported “darkening” of the coastal Skagerrak and Baltic Sea. Concurrent with the thresholds in suspended material, a decimation of the sugar kelp forest and recruitment failure of key carnivorous fish was reported for the same region, suggesting that a regime shift took place in the early 2000s in the coastal waters of the Norwegian Skagerrak. Our data suggests that the effects of increased freshwater runoff, especially the increased inputs of terrestrial-derived, humic material, could play an important role in the observed, coastal responses.

  16. The late 1980s regime shift in the ecosystem of Tsushima warm current in the Japan/East Sea: Evidence from historical data and possible mechanisms

    NASA Astrophysics Data System (ADS)

    Tian, Yongjun; Kidokoro, Hideaki; Watanabe, Tatsuro; Iguchi, Naoki

    2008-05-01

    A climatic regime shift, an abrupt change from cooling to warming in the Japan/East Sea (JES), particularly in the Tsushima warm current (TWC) region, occurred in the late 1980s. The ecosystem of the JES responded strongly to the changing thermal regime. Many, but not all biological components of the ecosystem, spanning from plankton to predatory fishes, and including both warm-water pelagic and cold-water demersal species responded to this late 1980s climatic regime shift in the JES. Diatom abundance (cell number) in spring from a monitoring line located in the central part of JES showed decadal variations with a step change from positive to negative anomalies in 1991. Zooplankton biomass in spring and autumn was high in the 1970s, declined during the 1980s, and returned to higher, but quite variable levels during the 1990s. Japanese sardine catch increased after 1974 to its peak level in 1989 and then declined dramatically to 1974 levels by 1997 with step changes in 1979 and 1994. Conversely, catches of other small pelagic species such as Japanese anchovy and common squid, and several higher-trophic fishes, such as yellowtail and tunas increased markedly in the 1990s compared to the early-mid 1980s. Step changes were detected in these pelagic species during 1989-1992. Catch of demersal species (crab, pink shrimp, Pacific cod and walleye pollock) were high during most of the 1970-1980s, but declined at various times in the late 1980s to generally low catches in the 1990s. Detailed analysis of the demersal fish assemblage composition, abundance and distribution indicated a shift in the late 1980s with several years lag in the time of change. Cold-water species (e.g., walleye pollock, Pacific cod) decreased in abundance and the regions in which their abundances remained high became greatly reduced in extent. Conversely, warm-water species (e.g., pointhead flounder, shotted halibut) increased in abundance and/or extended their spatial range (as indicated by trawl

  17. Evidence for a non-linear regime shift in the North Atlantic ocean circulation at the onset of the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Schleussner, Carl-Friedrich; Divine, Dmitry; Donges, Jonathan F.; Miettinen, Arto; Donner, Reik V.; Feulner, Georg

    2014-05-01

    The mechanisms behind the transition from the Medieval Climate Anomaly to the Little Ice Age are still unclear although it is one of the most prominent climate signals of the pre-industrial last millennium. We applied a novel time series irreversibility test to high-resolution ocean sediment August sea-surface temperature records and report evidence for a non-linear regime shift in North Atlantic ocean circulation during this period. We performed ensemble simulations with the model of intermediate complexity CLIMBER-3α and find a persistent regime shift and an AMOC weakening as a result of a volcanically triggered sea-ice ocean feedback cascade. The sediment record from the central subpolar basin shows an anomalous warming during the Little Ice Age period that is reproduced by the model. Our results suggest that such a regional multi-stability in the North Atlantic can affect regional climate on centennial time-scales.

  18. Three-dimensional assemblies built up by quantum dots in size-quantization regime: Band gap shifts due to size-distribution of cadmium selenide nanoparticles

    SciTech Connect

    Pejova, Biljana

    2013-11-15

    In the present study, it is predicted that the band gap energy of a three-dimensional quantum dot assembly exhibits a red shift when the dispersion of the crystal size distribution is enlarged, even at a fixed average value thereof. The effect is manifested when the size quantization regime in individual quantum dots constituting the assembly has been entered. Under the same conditions, the sub-band gap absorption tails are characterized with large Urbach energies, which could be one or two orders of magnitude larger than the value characteristic for the non-quantized case. - Graphical abstract: Band gap shifts due to size-distribution of nanoparticles in 3D assemblies built up by quantum dots in size-quantization regime. Display Omitted - Highlights: • Optical absorption of 3D QD assemblies in size-quantization regime is modeled. • Band gap energy of the QD solid depends on the size-distribution of the nanoparticles. • QD solid samples with same 〈R〉 exhibit band gap shift depending on size distribution. • QD size distribution leads to large Urbach energies.

  19. Diversity components of impending primate extinctions.

    PubMed

    Jernvall, J; Wright, P C

    1998-09-15

    Many extant species are at risk to go extinct. This impending loss of species is likely to cause changes in future ecosystem functions. Ecological components of diversity, such as dietary or habitat specializations, can be used to estimate the impact of extinctions on ecosystem functions. As an approach to estimate the impact of future extinctions, we tested interdependency between ecological and taxonomic change based on current predictions of extinction rates in primates. We analyzed the ecological characteristics of extant primate faunas having species in various categories of endangerment of extinction and forecasted the future primate faunas as if they were paleontological faunas. Predicting future faunas combines the wealth of ecological information on living primates with large, fossil record-like changes in diversity. Predicted extinction patterns of living primates in Africa, Asia, Madagascar, and South America show that changes in ecology differ among the regions in ways that are not reducible to taxonomic measures. The ecological effects of primate extinctions are initially least severe in South America and larger in Asia and Africa. Disproportionately larger ecological changes are projected for Madagascar. The use of taxonomy as a proxy for ecology can mislead when estimating competence of future primate ecosystems.

  20. Teleconnection, Regime Shift, and Predictability of Climate Extremes: A Case Study for the Russian Heat Wave and Pakistan Flood in Summer 2010

    NASA Technical Reports Server (NTRS)

    Lau, W. K.; Reale, O.; Kim, K.

    2011-01-01

    In this talk, we present observational evidence showing that the two major extremes events of the summer of 2010, i.e., the Russian heat wave and the Pakistan flood were physically connected. We find that the Pakistan flood was contributed by a series of unusually heavy rain events over the upper Indus River Basin in July-August. The rainfall regimes shifted from an episodic heavy rain regime in mid-to-late July to a steady heavy rain regime in August. An atmospheric Rossby wave associated with the development of the Russian heat wave was instrumental in spurring the episodic rain events , drawing moisture from the Bay of Bengal and the northern Arabian Sea. The steady rain regime was maintained primarily by monsoon moisture surges from the deep tropics. From experiments with the GEOS-5 forecast system, we assess the predictability of the heavy rain events associated with the Pakistan flood. Preliminary results indicate that there are significantly higher skills in the rainfall forecasts during the episodic heavy rain events in July, compared to the steady rain period in early to mid-August. The change in rainfall predictability may be related to scale interactions between the extratropics and the tropics resulting in a modulation of rainfall predictability by the circulation regimes.

  1. Limnological regime shifts caused by climate warming and Lesser Snow Goose population expansion in the western Hudson Bay Lowlands (Manitoba, Canada).

    PubMed

    MacDonald, Lauren A; Farquharson, Nicole; Merritt, Gillian; Fooks, Sam; Medeiros, Andrew S; Hall, Roland I; Wolfe, Brent B; Macrae, Merrin L; Sweetman, Jon N

    2015-02-01

    Shallow lakes are dominant features in subarctic and Arctic landscapes and are responsive to multiple stressors, which can lead to rapid changes in limnological regimes with consequences for aquatic resources. We address this theme in the coastal tundra region of Wapusk National Park, western Hudson Bay Lowlands (Canada), where climate has warmed during the past century and the Lesser Snow Goose (LSG; Chen caerulescens caerulescens) population has grown rapidly during the past ∽40 years. Integration of limnological and paleolimnological analyses documents profound responses of productivity, nutrient cycling, and aquatic habitat to warming at three ponds ("WAP 12", "WAP 20", and "WAP 21″), and to LSG disturbance at the two ponds located in an active nesting area (WAP 20, WAP 21). Based on multiparameter analysis of (210)Pb-dated sediment records from all three ponds, a regime shift occurred between 1875 and 1900 CE marked by a transition from low productivity, turbid, and nutrient-poor conditions of the Little Ice Age to conditions of higher productivity, lower nitrogen availability, and the development of benthic biofilm habitat as a result of climate warming. Beginning in the mid-1970s, sediment records from WAP 20 and WAP 21 reveal a second regime shift characterized by accelerated productivity and increased nitrogen availability. Coupled with 3 years of limnological data, results suggest that increased productivity at WAP 20 and WAP 21 led to atmospheric CO2 invasion to meet algal photosynthetic demand. This limnological regime shift is attributed to an increase in the supply of catchment-derived nutrients from the arrival of LSG and their subsequent disturbance to the landscape. Collectively, findings discriminate the consequences of warming and LSG disturbance on tundra ponds from which we identify a suite of sensitive limnological and paleolimnological measures that can be utilized to inform aquatic ecosystem monitoring.

  2. Limnological regime shifts caused by climate warming and Lesser Snow Goose population expansion in the western Hudson Bay Lowlands (Manitoba, Canada)

    PubMed Central

    MacDonald, Lauren A; Farquharson, Nicole; Merritt, Gillian; Fooks, Sam; Medeiros, Andrew S; Hall, Roland I; Wolfe, Brent B; Macrae, Merrin L; Sweetman, Jon N

    2015-01-01

    Shallow lakes are dominant features in subarctic and Arctic landscapes and are responsive to multiple stressors, which can lead to rapid changes in limnological regimes with consequences for aquatic resources. We address this theme in the coastal tundra region of Wapusk National Park, western Hudson Bay Lowlands (Canada), where climate has warmed during the past century and the Lesser Snow Goose (LSG; Chen caerulescens caerulescens) population has grown rapidly during the past ∽40 years. Integration of limnological and paleolimnological analyses documents profound responses of productivity, nutrient cycling, and aquatic habitat to warming at three ponds (“WAP 12”, “WAP 20”, and “WAP 21″), and to LSG disturbance at the two ponds located in an active nesting area (WAP 20, WAP 21). Based on multiparameter analysis of 210Pb-dated sediment records from all three ponds, a regime shift occurred between 1875 and 1900 CE marked by a transition from low productivity, turbid, and nutrient-poor conditions of the Little Ice Age to conditions of higher productivity, lower nitrogen availability, and the development of benthic biofilm habitat as a result of climate warming. Beginning in the mid-1970s, sediment records from WAP 20 and WAP 21 reveal a second regime shift characterized by accelerated productivity and increased nitrogen availability. Coupled with 3 years of limnological data, results suggest that increased productivity at WAP 20 and WAP 21 led to atmospheric CO2 invasion to meet algal photosynthetic demand. This limnological regime shift is attributed to an increase in the supply of catchment-derived nutrients from the arrival of LSG and their subsequent disturbance to the landscape. Collectively, findings discriminate the consequences of warming and LSG disturbance on tundra ponds from which we identify a suite of sensitive limnological and paleolimnological measures that can be utilized to inform aquatic ecosystem monitoring. PMID:25750718

  3. The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins.

    PubMed

    Filbee-Dexter, Karen; Scheibling, Robert E

    2017-01-01

    Understanding processes that drive sudden shifts in ecosystem structure and function has become an important research focus for coastal management. In kelp bed ecosystems, regime shifts occur when high densities of sea urchins destructively graze kelp and create coralline algal barrens. While the importance of predation and disease in mediating shifts between kelp beds and barrens on shallow rocky reefs has been well documented, little is known about the role of deep-living urchins in these alternative stable-state dynamics. In this study, we test the hypothesis that deep-living urchins along the central Atlantic coast of Nova Scotia move onshore and trigger shifts from kelp beds to barrens on shallow rocky reefs. We documented urchin distribution and abundance using tow-camera surveys down to 140 m depth and spanning 140 km of coast and created a predictive species-distribution model using these observations and spatial data on environmental factors that likely delineate suitable habitat for urchins. We used a random forest model to generate our predictions, which correctly classified 91% of observations into a positive or negative occurrence of urchins. Sea urchins predominantly occurred within 1.5 km of shore, in depressions and flat habitats between 40 and 85 m depth. We found that shallow regions where destructive grazing fronts have been documented over the past four decades were closer to deep-living sea urchin habitats compared to regions that remained in a kelp bed state during the same period. This supports our prediction that deep-living urchins play an important role in driving shallow regime shift dynamics, and indicates that their distribution can help identify areas of coast that are most vulnerable to a collapse to barrens.

  4. Long term variability of the annual hydrological regime and sensitivity to temperature phase shifts in Saxony/Germany

    NASA Astrophysics Data System (ADS)

    Renner, M.; Bernhofer, C.

    2011-01-01

    The timing of the seasons strongly effects ecosystems and human activities. Recently, there is increasing evidence of changes in the timing of the seasons, such as earlier spring seasons detected in phenological records, advanced seasonal timing of surface temperature, earlier snow melt or streamflow timing. For water resources management there is a need to quantitatively describe the variability in the timing of hydrological regimes and to understand how climatic changes control the seasonal water budget of river basins on the regional scale. In this study, changes of the annual cycle of hydrological variables are analysed for 27 river basins in Saxony/Germany. Thereby monthly series of basin runoff ratios, the ratio of runoff and basin precipitation are investigated for changes and variability of their annual periodicity over the period 1930-2009. Approximating the annual cycle by the means of harmonic functions gave acceptable results, while only two parameters, phase and amplitude, are required. It has been found that the annual phase of runoff ratio, representing the timing of the hydrological regime, is subject to considerable year-to-year variability, being concurrent with basins in similar hydro-climatic conditions. Two distinct basin classes have been identified, whereby basin elevation has been found to be the delimiting factor. An increasing importance of snow on the basin water balance with elevation is apparent and mainly governs the temporal variability of the annual timing of hydrological regimes. Further there is evidence of coincident changes in trend direction (change points in 1971 and 1988) in snow melt influenced basins. In these basins the timing of the runoff ratio is significantly correlated with the timing of temperature, and effects on runoff by temperature phase changes are even amplified. Interestingly, temperature effects may explain the low frequent variability of the second change point until today. However, the first change point can

  5. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis.

    PubMed

    Lamsdell, James C; Selden, Paul A

    2017-01-01

    Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  6. From climate regime shifts to lower-trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific

    NASA Astrophysics Data System (ADS)

    Chiba, Sanae; Aita, Maki N.; Tadokoro, Kazuaki; Saino, Toshiro; Sugisaki, Hiroya; Nakata, Kaoru

    2008-05-01

    Pelagic ecosystems of the western North Pacific have experienced dramatic changes in recent decades. Prior retrospective analysis of several regions has shown that ecosystem or population changes have occurred coincident with or shortly following significant changes in ocean climate and atmospheric forcing. Here, we summarize these changes and attempt to identify specific mechanisms responsible for the changes in three regions in the western North Pacific: the Oyashio (OY), the subtropical water (ST), and the southern Japan/East Sea (JES). A cooling condition after the climate regime shift of 1976-1977 deepened the winter mixed layer depth (MLD) in both the OY and ST, but influenced lower-trophic level productivity differently between these regions. The deep MLD reduced winter phytoplankton and zooplankton biomass in the subarctic OY, presumably due to a decrease in wintertime light availability. Concurrently, it increased spring plankton biomass in the ST, presumably due to the replenishment of springtime nutrients. When a warming condition became prevalent after the 1988-1989 regime shift, the shallow winter MLD increased the winter plankton biomass in the OY, but decreased the spring plankton biomass in the ST through the same mechanism controlling light and nutrient availability. In the JES, with a complex water column structure consisting of the surface warm current and dense subsurface cold water, the hydrographic conditions and ecosystem responses could not be explained by the mechanisms for the OY and ST. We also detected cooling and warming phase shifts induced a phenological change in the OY. A model hindcast for the OY estimated an average 5-day (max. 20-day) delay in the timing of the primary production peak during the cool phase after the mid-1970s. This timing became earlier after the mid-1990s, several years after the 1988-1989 regime shift, reaching the level before the mid-1970s. The observed increase and decrease in winter and spring phytoplankton

  7. The altered ecology of Lake Christina: a record of regime shifts, land-use change, and management from a temperate shallow lake.

    PubMed

    Theissen, Kevin M; Hobbs, William O; Hobbs, Joy M Ramstack; Zimmer, Kyle D; Domine, Leah M; Cotner, James B; Sugita, Shinya

    2012-09-01

    We collected two sediment cores and modern submerged aquatic plants and phytoplankton from two sub-basins of Lake Christina, a large shallow lake in west-central Minnesota, and used stable isotopic and elemental proxies from sedimentary organic matter to explore questions about the pre- and post-settlement ecology of the lake. The two morphologically distinct sub-basins vary in their sensitivities to internal and external perturbations offering different paleoecological information. The record from the shallower and much larger western sub-basin reflects its strong response to internal processes, while the smaller and deeper eastern sub-basin record primarily reflects external processes including important post-settlement land-use changes in the area. A significant increase in organic carbon accumulation (3-4 times pre-settlement rates) and long-term trends in δ(13)C, organic carbon to nitrogen ratios (C/N), and biogenic silica concentrations shows that primary production has increased and the lake has become increasingly phytoplankton-dominated in the post-settlement period. Significant shifts in δ(15)N values reflect land-clearing and agricultural practices in the region and support the idea that nutrient inputs have played an important role in triggering changes in the trophic status of the lake. Our examination of hydroclimatic data for the region over the last century suggests that natural forcings on lake ecology have diminished in their importance as human management of the lake increased in the mid-1900s. In the last 50 years, three chemical biomanipulations have temporarily shifted the lake from the turbid, algal-dominated condition into a desired clear water regime. Two of our proxies (δ(13)C and BSi) measured from the higher resolution eastern basin record responded significantly to these known regime shifts.

  8. ENSO regimes and the late 1970's climate shift: The role of synoptic weather and South Pacific ocean spiciness

    SciTech Connect

    O'Kane, Terence J.; Matear, Richard J.; Chamberlain, Matthew A.; Oke, Peter R.

    2014-08-15

    South Pacific subtropical density compensated temperature and salinity (spiciness) anomalies are known to be associated with decadal equatorial variability, however, the mechanisms by which such disturbances are generated, advect and the degree to which they modulate the equatorial thermocline remains controversial. During the late 1970's a climate regime transition preceded a period of strong and sustained El Nino events. Using an ocean general circulation model forced by the constituent mechanical and thermodynamic components of the reanalysed atmosphere we show that the late 1970's transition coincided with the arrival of a large-scale, subsurface cold and fresh water anomaly in the central tropical Pacific. An ocean reanalysis for the period 1990–2007 that assimilates subsurface Argo, XBT and CTD data, reveals that disturbances occur due to the subduction of negative surface salinity anomalies from near 30° S, 100° W which are advected along the σ=25–26 kgm{sup −3} isopycnal surfaces. These anomalies take, on average, seven years to reach the central equatorial Pacific where they may substantially perturb the thermocline before the remnants ultimately ventilate in the region of the western Pacific warm pool. Positive (warm–salty) disturbances, known to occur due to late winter diapycnal mixing and isopycnal outcropping, arise due to both subduction of subtropical mode waters and subsurface injection. On reaching the equatorial band (10° S–0° S) these disturbances tend to deepen the thermocline reducing the model's ENSO. In contrast the emergence of negative (cold–fresh) disturbances at the equator are associated with a shoaling of the thermocline and El Nino events. Process studies are used to show that the generation and advection of anomalous density compensated thermocline disturbances critically depend on stochastic forcing of the intrinsic ocean by weather. We further show that in the absence of the inter-annual component of the atmosphere

  9. Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s

    NASA Astrophysics Data System (ADS)

    Hong, Chi-Cherng; Wu, Yi-Kai; Li, Tim

    2016-10-01

    In this study, a new interpretation is proposed for the abrupt decrease in tropical cyclone (TC) activity in the western North Pacific (WNP) after the late 1990s. We hypothesize that this abrupt change constitutes a part of the phenomenon of interdecadal change in TC activity in the Pacific Basin, including the WNP, western South Pacific (WSP), and eastern North Pacific. Our analysis revealed that the climate-regime shift (CRS) in the Pacific during the middle to late 1990s resulted in a La Niña-like mean state, which was responsible for the interdecadal change in TC activity in the late 1990s. Analyses of the TC genesis potential index and numerical experiments revealed that the decline in TC activity in both the WNP and WSP was primarily attributable to the increase of vertical wind shear in the central Pacific due to the La Niña-like associated cold sea surface temperature (SST). Conversely, the La Niña-like associated warm SST in the western Pacific produced anomalous vertical transport of water vapor, increasing moisture levels in the mid-troposphere and TC activity in the western WNP. Furthermore, the CRS modified the mean TC genesis position and shifted the steering flow to the west, resulting in the increased frequency of TC landfalls in Taiwan, southeastern China, and northern Australia after the late 1990s.

  10. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift.

    PubMed

    North, Ryan P; North, Rebecca L; Livingstone, David M; Köster, Oliver; Kipfer, Rolf

    2014-03-01

    The (Lower) Lake of Zurich provides an ideal system for studying the long-term impact of environmental change on deep-water hypoxia because of its sensitivity to climatic forcing, its history of eutrophication and subsequent oligotrophication, and the quality and length of its data set. Based on 39 years (1972-2010) of measured profiles of temperature, oxygen concentration and phosphorus (P) concentration, the potentially confounding effects of oligotrophication and climatic forcing on the occurrence and extent of deep-water hypoxia in the lake were investigated. The time-series of Nürnberg's hypoxic factor (HF) for the lake can be divided into three distinct segments: (i) a segment of consistently low HF from 1972 to the late-1980s climate regime shift (CRS); (ii) a transitional segment between the late-1980s CRS and approximately 2000 within which the HF was highly variable; and (iii) a segment of consistently high HF thereafter. The increase in hypoxia during the study period was not a consequence of a change in trophic status, as the lake underwent oligotrophication as a result of reduced external P loading during this time. Instead, wavelet analysis suggests that changes in the lake's mixing regime, initiated by the late-1980s CRS, ultimately led to a delayed but abrupt decrease in the deep-water oxygen concentration, resulting in a general expansion of the hypoxic zone in autumn. Even after detrending to remove long-term effects, the concentration of soluble reactive P in the bottom water of the lake was highly correlated with various measures of hypoxia, providing quantitative evidence supporting the probable effect of hypoxia on internal P loading. Such climate-induced, ecosystem-scale changes, which may result in undesirable effects such as a decline in water quality and a reduction in coldwater fish habitats, provide further evidence for the vulnerability of large temperate lakes to predicted increases in global air temperature.

  11. Clinical signs of impending death in cancer patients.

    PubMed

    Hui, David; dos Santos, Renata; Chisholm, Gary; Bansal, Swati; Silva, Thiago Buosi; Kilgore, Kelly; Crovador, Camila Souza; Yu, Xiaoying; Swartz, Michael D; Perez-Cruz, Pedro Emilio; Leite, Raphael de Almeida; Nascimento, Maria Salete de Angelis; Reddy, Suresh; Seriaco, Fabiola; Yennu, Sriram; Paiva, Carlos Eduardo; Dev, Rony; Hall, Stacy; Fajardo, Julieta; Bruera, Eduardo

    2014-06-01

    The physical signs of impending death have not been well characterized in cancer patients. A better understanding of these signs may improve the ability of clinicians to diagnose impending death. We examined the frequency and onset of 10 bedside physical signs and their diagnostic performance for impending death. We systematically documented 10 physical signs every 12 hours from admission to death or discharge in 357 consecutive patients with advanced cancer admitted to two acute palliative care units. We examined the frequency and median onset of each sign from death backward and calculated their likelihood ratios (LRs) associated with death within 3 days. In total, 203 of 357 patients (52 of 151 in the U.S., 151 of 206 in Brazil) died. Decreased level of consciousness, Palliative Performance Scale ≤20%, and dysphagia of liquids appeared at high frequency and >3 days before death and had low specificity (<90%) and positive LR (<5) for impending death. In contrast, apnea periods, Cheyne-Stokes breathing, death rattle, peripheral cyanosis, pulselessness of radial artery, respiration with mandibular movement, and decreased urine output occurred mostly in the last 3 days of life and at lower frequency. Five of these signs had high specificity (>95%) and positive LRs for death within 3 days, including pulselessness of radial artery (positive LR: 15.6; 95% confidence interval [CI]: 13.7-17.4), respiration with mandibular movement (positive LR: 10; 95% CI: 9.1-10.9), decreased urine output (positive LR: 15.2; 95% CI: 13.4-17.1), Cheyne-Stokes breathing (positive LR: 12.4; 95% CI: 10.8-13.9), and death rattle (positive LR: 9; 95% CI: 8.1-9.8). We identified highly specific physical signs associated with death within 3 days among cancer patients. ©AlphaMed Press.

  12. Clinical Signs of Impending Death in Cancer Patients

    PubMed Central

    dos Santos, Renata; Chisholm, Gary; Bansal, Swati; Silva, Thiago Buosi; Kilgore, Kelly; Crovador, Camila Souza; Yu, Xiaoying; Swartz, Michael D.; Perez-Cruz, Pedro Emilio; Leite, Raphael de Almeida; Nascimento, Maria Salete de Angelis; Reddy, Suresh; Seriaco, Fabiola; Yennu, Sriram; Paiva, Carlos Eduardo; Dev, Rony; Hall, Stacy; Fajardo, Julieta; Bruera, Eduardo

    2014-01-01

    Background. The physical signs of impending death have not been well characterized in cancer patients. A better understanding of these signs may improve the ability of clinicians to diagnose impending death. We examined the frequency and onset of 10 bedside physical signs and their diagnostic performance for impending death. Methods. We systematically documented 10 physical signs every 12 hours from admission to death or discharge in 357 consecutive patients with advanced cancer admitted to two acute palliative care units. We examined the frequency and median onset of each sign from death backward and calculated their likelihood ratios (LRs) associated with death within 3 days. Results. In total, 203 of 357 patients (52 of 151 in the U.S., 151 of 206 in Brazil) died. Decreased level of consciousness, Palliative Performance Scale ≤20%, and dysphagia of liquids appeared at high frequency and >3 days before death and had low specificity (<90%) and positive LR (<5) for impending death. In contrast, apnea periods, Cheyne-Stokes breathing, death rattle, peripheral cyanosis, pulselessness of radial artery, respiration with mandibular movement, and decreased urine output occurred mostly in the last 3 days of life and at lower frequency. Five of these signs had high specificity (>95%) and positive LRs for death within 3 days, including pulselessness of radial artery (positive LR: 15.6; 95% confidence interval [CI]: 13.7–17.4), respiration with mandibular movement (positive LR: 10; 95% CI: 9.1–10.9), decreased urine output (positive LR: 15.2; 95% CI: 13.4–17.1), Cheyne-Stokes breathing (positive LR: 12.4; 95% CI: 10.8–13.9), and death rattle (positive LR: 9; 95% CI: 8.1–9.8). Conclusion. We identified highly specific physical signs associated with death within 3 days among cancer patients. PMID:24760709

  13. Socio-ecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, CA, 1600-2015 CE

    NASA Astrophysics Data System (ADS)

    Trouet, V.; Taylor, A. H.; Skinner, C. N.; Stephens, S.

    2016-12-01

    In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections. In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio

  14. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.

    PubMed

    Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J

    2014-01-01

    In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology

  15. Regime shifts in the Arctic North Atlantic during the Neoglacial revealed by seabirds and precipitation isotopes on Bjørnøya, Svalbard

    NASA Astrophysics Data System (ADS)

    D'Andrea, William J.; Hormes, Anne; Bakke, Jostein; Nicolaisen, Line

    2016-04-01

    The northeastern North Atlantic Ocean, and the Norwegian and Greenland Seas are subject to large hydrographic changes. These variations can influence oceanic heat transport to the Arctic, meridional overturning circulation, and atmospheric circulation patterns and thereby impact global climate patterns. Marine records suggest that numerous large-scale changes in the hydrography of the northern North Atlantic took place during the middle to late Holocene. We report a record of nitrogen and hydrogen isotope measurements from a lake sediment core from Bjørnøya, Svalbard (74.38°N, 19.02°E) that documents major regime shifts in the climate of the northern North Atlantic during the past 6,000 years. Bjørnøya is the nesting ground for one of the largest seabird populations in the North Atlantic. As top predators in the marine ecosystem, seabirds (and their guano) are enriched in 15N; during spring and summer months they deliver isotopically enriched nitrogen to nesting areas. We developed a record of seabird population changes on Bjørnøya based on the nitrogen isotope composition of sediments in a core collected from lake Ellasjøen. The record reveals multiple multicentennial scale changes in δ15N values (varying between ~8-12‰) that track past changes in the size of seabird populations. From the same sediment core, we also developed a record of δD of precipitation, using δD values of sedimentary n-alkanes. Past intervals with the largest inferred bird populations correspond with the most enriched δD of precipitation, which we interpret to represent a more Atlantic climate. Periods with reduced seabird populations correspond with intervals with more negative δD of precipitation and representing a more Arctic climate. Together, the nitrogen and hydrogen isotope records signify regime shifts in the oceanography, marine ecosystem, and atmospheric circulation of the northern North Atlantic that are related to variations in the strength of the subpolar gyre.

  16. Shifts in the hydrodynamic regime determine patterns of regional changes of the Arctic Ocean carbon cycle in future climate change projections

    NASA Astrophysics Data System (ADS)

    Ilyina, T.; Heinze, M.; Li, H.; Jungclaus, J. H.; Six, K. D.

    2015-12-01

    In future projections the Arctic Ocean carbon cycle is a hotspot for changes driven by rising CO2 emissions. Concomitantly, the Arctic Ocean hydrodynamic regime undergoes substantial shifts so the net effect on the carbon cycle is not intuitively clear. In the high CO2 scenario RCP8.5 extended until 2300 in projections of the Max Planck Institute's Earth System Model, the averaged Arctic Ocean surface temperature rises by 4°C in 2100 and by 10°C in 2300, respectively. The Arctic becomes free of summer sea ice in the second half of the 21st century, whereas winter sea ice disappears at the beginning of the 23rd century. Owing to increased sea ice melting and runoff, fresh water content increases gradually until the end of the 22nd century and then drops abruptly as a result of an intensification of the saline Atlantic water inflow. Accumulation of Atlantic water collapses the halocline in the central basin of the Arctic Ocean by the first half of the 23rd century. Ongoing warming enhances thermal stratification and the mixed layer shoales. In contrast, halocline erosion and the cooling of the ice free water act in concert to favor formation of convection cells in the central basin. Freshening in the Canada basin and transport of salty water into the Eurasian basin generate a dipole structure in the anomalies of surface salinity. Driven by the rising CO2, the averaged dissolved inorganic carbon (DIC) is growing. Changes in the averaged total alkalinity (TA) go along with the fresh water content evolution and decreasing carbonate ion concentration so that TA drops below preindustrial values. Yet, along with salinity, the Eurasian basin receives waters with higher DIC and TA from the Atlantic. As a result, the distributions of TA and DIC anomalies resemble the dipole pattern projected for salinity. We show that while future changes in the Arctic Ocean carbon cycle proceed at rates determined by atmospheric CO2 levels, the regional patterns are driven by shifts in the

  17. Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960 2000: Evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations

    NASA Astrophysics Data System (ADS)

    Oguz, Temel; Gilbert, Denis

    2007-02-01

    Functioning of the Black Sea ecosystem has profoundly changed since the early 1970s under cumulative effects of excessive nutrient enrichment, strong cooling/warming, over-exploitation of pelagic fish stocks, and population outbreak of gelatinous carnivores. Applying a set of criteria to the long-term (1960-2000) ecological time-series data, the present study demonstrates that the Black Sea ecosystem was reorganised during this transition phase in different forms of top-down controlled food web structure through successive regime-shifts of distinct ecological properties. The Secchi disc depth, oxic-anoxic interface zone, dissolved oxygen and hydrogen sulphide concentrations also exhibit abrupt transition between their alternate regimes, and indicate tight coupling between the lower trophic food web structure and the biogeochemical pump in terms of regime-shift events. The first shift, in 1973-1974, marks a switch from large predatory fish to small planktivore fish-controlled system, which persisted until 1989 in the form of increasing small pelagic and phytoplankton biomass and decreasing zooplankton biomass. The increase in phytoplankton biomass is further supported by a bottom-up contribution due to the cumulative response to high anthropogenic nutrient load and the concurrent shift of the physical system to the "cold climate regime" following its ˜20-year persistence in the "warm climate regime". The end of the 1980s signifies the depletion of small planktivores and the transition to a gelatinous carnivore-controlled system. By the end of the 1990s, small planktivore populations take over control of the system again. Concomitantly, their top-down pressure when combined with diminishing anthropogenic nutrient load and more limited nutrient supply into the surface waters due to stabilizing effects of relatively warm winter conditions switched the "high production" regime of phytoplankton to its background "low production" regime. The Black Sea regime-shifts

  18. Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: Evidence of a fishery-induced regime shift?

    NASA Astrophysics Data System (ADS)

    Savenkoff, Claude; Castonguay, Martin; Chabot, Denis; Hammill, Mike O.; Bourdages, Hugo; Morissette, Lyne

    2007-07-01

    Mass-balance models have been constructed using inverse methodology for the northern Gulf of St. Lawrence for the mid-1980s, the mid-1990s, and the early 2000s to describe ecosystem structure, trophic group interactions, and the effects of fishing and predation on the ecosystem for each time period. Our analyses indicate that the ecosystem structure shifted dramatically from one previously dominated by demersal (cod, redfish) and small-bodied forage (e.g., capelin, mackerel, herring, shrimp) species to one now dominated by small-bodied forage species. Overfishing removed a functional group in the late 1980s, large piscivorous fish (primarily cod and redfish), which has not recovered 14 years after the cessation of heavy fishing. This has left only marine mammals as top predators during the mid-1990s, and marine mammals and small Greenland halibut during the early 2000s. Predation by marine mammals on fish increased from the mid-1980s to the early 2000s while predation by large fish on fish decreased. Capelin and shrimp, the main prey in each period, showed an increase in biomass over the three periods. A switch in the main predators of capelin from cod to marine mammals occurred, while Greenland halibut progressively replaced cod as shrimp predators. Overfishing influenced community structure directly through preferential removal of larger-bodied fishes and indirectly through predation release because larger-bodied fishes exerted top-down control upon other community species or competed with other species for the same prey. Our modelling estimates showed that a change in predation structure or flows at the top of the trophic system led to changes in predation at all lower trophic levels in the northern Gulf of St. Lawrence. These changes represent a case of fishery-induced regime shift.

  19. Reprint of “Atlantic Multidecadal Oscillation (AMO) modulates dynamics of small pelagic fishes and ecosystem regime shifts in the eastern North and Central Atlantic”

    NASA Astrophysics Data System (ADS)

    Alheit, Jürgen; Licandro, Priscilla; Coombs, Steve; Garcia, Alberto; Giráldez, Ana; Santamaría, Maria Teresa Garcia; Slotte, Aril; Tsikliras, Athanassios C.

    2014-05-01

    Dynamics of abundance and migrations of populations of small pelagic clupeoid fish such as anchovy (Engraulis encrasicolus), sardine (Sardina pilchardus), sardinella (Sardinella aurita), sprat (Sprattus sprattus) and herring (Clupea harengus) in the eastern North and Central Atlantic between Senegal and Norway vary in synchrony with the warm and cool phases of the Atlantic Multidecadal Oscillation (AMO). This is shown by compiling retrospective data on fish catches and anecdotal observations, which in some cases date back to the mid-19th century. The AMO is defined as the de-trended mean of North Atlantic (0-60°N) sea surface temperature anomalies. However, it is not primarily the temperature which drives the dynamics of the small pelagic fish populations. Instead, the AMO seems to be a proxy for complex processes in the coupled atmosphere-ocean system of the North Atlantic. This is manifested in large-scale changes in strength and direction of the current system that move water masses around the North Atlantic and likely involves the North Atlantic Oscillation (NAO), the Atlantic Meridional Overturning Circulation (AMOC), the Mediterranean Overflow Water (MOW) and the subpolar gyre (SPG). The contractions and expansions of the SPG apparently play a key role. This was particularly obvious in the mid-1990s, when the SPG abruptly contracted with the result that warm subtropical water masses moved to the north and east. Small pelagic fish populations in the eastern North and Central Atlantic, including those in the Mediterranean responded quickly by changing abundances and migrating northwards. It seems that the complex ocean-atmosphere changes in the mid-1990s, which are described in the text in detail, caused a regime shift in the ecosystems of the eastern North and Central Atlantic and the small pelagic clupeoid fish populations are the sentinels of this shift.

  20. Atlantic Multidecadal Oscillation (AMO) modulates dynamics of small pelagic fishes and ecosystem regime shifts in the eastern North and Central Atlantic

    NASA Astrophysics Data System (ADS)

    Alheit, Jürgen; Licandro, Priscilla; Coombs, Steve; Garcia, Alberto; Giráldez, Ana; Santamaría, Maria Teresa Garcia; Slotte, Aril; Tsikliras, Athanassios C.

    2014-03-01

    Dynamics of abundance and migrations of populations of small pelagic clupeoid fish such as anchovy (Engraulis encrasicolus), sardine (Sardina pilchardus), sardinella (Sardinella aurita), sprat (Sprattus sprattus) and herring (Clupea harengus) in the eastern North and Central Atlantic between Senegal and Norway vary in synchrony with the warm and cool phases of the Atlantic Multidecadal Oscillation (AMO). This is shown by compiling retrospective data on fish catches and anecdotal observations, which in some cases date back to the mid-19th century. The AMO is defined as the de-trended mean of North Atlantic (0-60°N) sea surface temperature anomalies. However, it is not primarily the temperature which drives the dynamics of the small pelagic fish populations. Instead, the AMO seems to be a proxy for complex processes in the coupled atmosphere-ocean system of the North Atlantic. This is manifested in large-scale changes in strength and direction of the current system that move water masses around the North Atlantic and likely involves the North Atlantic Oscillation (NAO), the Atlantic Meridional Overturning Circulation (AMOC), the Mediterranean Overflow Water (MOW) and the subpolar gyre (SPG). The contractions and expansions of the SPG apparently play a key role. This was particularly obvious in the mid-1990s, when the SPG abruptly contracted with the result that warm subtropical water masses moved to the north and east. Small pelagic fish populations in the eastern North and Central Atlantic, including those in the Mediterranean responded quickly by changing abundances and migrating northwards. It seems that the complex ocean-atmosphere changes in the mid-1990s, which are described in the text in detail, caused a regime shift in the ecosystems of the eastern North and Central Atlantic and the small pelagic clupeoid fish populations are the sentinels of this shift.

  1. Intercomparison of the temperature contrast between the arctic and equator in the pre- and post periods of the 1976/1977 regime shift

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxi; Xu, Jianjun; Powell, Alfred M.; Guan, Zhaoyong; Li, Li

    2017-02-01

    Based on the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis temperature dataset in the period of 1948-2014, the temperature contrast between the Arctic and equator in the pre- and post periods of the 1976/1977 regime shift is compared. An index measuring the temperature contrast is defined as the difference between the Arctic zone (70° N-90° N) and the equatorial region (10° S-10° N). The variations of the temperature contrast can be mainly explained by the local sea ice variations through sea ice-albedo-temperature feedback before 1976/1977 and the energy transportation to the Arctic together with the local sea ice after 1976/1977. The impacts of the Arctic minus equator (AmE) temperature contrast on the high-level westerly jet, and the polar easterlies show a significant difference during the two periods. A strong temperature anomaly associated with the temperature contrast in the two periods is found in the high latitude, but different patterns are observed at the high and low levels. The correlated water vapor appeared in the Indian Ocean and Maritime Continent before 1976/1977 and moved to northeastern Canada and eastern North America after 1976/1977.

  2. Climate Change-Induced Shifts in the Hydrological Regime of the Upper Amazon Basin and Its Impacts on Local Eco-Hydrology

    NASA Astrophysics Data System (ADS)

    Zulkafli, Z. D.; Buytaert, W.; Veliz, C.

    2014-12-01

    The potential impact of a changing climate on Andean-Amazonian hydrology is an important question for scientists and policymakers alike, because of its implications for local ecosystem services such as water resources availability, river flow regulation, and eco-hydrology. This study presents new projections of climate change impacts on the hydrological regime of the upper Amazon river in Peru, and the consequent effect on two vulnerable species of freshwater turtle populations Podocnemis expansa (Amazon turtle) and Podocnemis unilis (yellow-spotted side neck turtle), which nest on its banks. To do this, the global climate model outputs of radiation, temperature, precipitation, wind, and humidity data from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) are propagated through a hydrological model to simulate changes in river flow. The model consists of a land surface scheme called the Joint-UK Land Environment Simulator (JULES) that is coupled to a distributed river flow routing routine, which also accounts for floodplain attenuation of flood peaks. It is parameterized using a combination of remote sensing (TRMM, MODIS, an Landsat) and ground observational data to reproduce reliably the historical floodplain regime. The climate-induced shifts are inferred from a comparison between the RCP 4.5 and 8.5 projections against the historical scenario. Changes in the 10th and 95th percentile of flows, as well as the distributions in the length of the dry and wet seasons are analysed. These parameters are then used to construct probability models of biologically significant events (BSEs - extreme dry year, extreme wet year and repiquete), which are negative drivers of the turtle-egg ovipositioning, nesting and hatching. The results indicate that the projected increase in wet-season precipitation overcome the increase in evapotranspirative demand from an increase in temperature, resulting in more frequent and longer term flooding that causes a net loss of total

  3. Stonefish envenomation of hand with impending compartment syndrome.

    PubMed

    Tay, Terence Khai Wei; Chan, Han Zhe; Ahmad, Tunku Sara Tunku; Teh, Kok Kheng; Low, Tze Hau; Wahab, Nuraliza Ab

    2016-01-01

    Marine stings and envenomation are fairly common in Malaysia. Possible contact to various marine life occurs during diving, fishing and food handling. Even though majority of fish stings are benign, there are several venomous species such as puffer fish, scorpion fish, lionfish, stingray and stonefish that require urgent medical treatment. Stonefish is one of the most venomous fish in the world with potential fatal local and systemic toxicity effects to human. We reported a case of stonefish sting complicated with impending compartment syndrome. Medical staff should be alert about the possibility of this potential emergency in standard management of stonefish stings.

  4. Resilience, rapid transitions and regime shifts: fingerprinting the responses of Lake Żabińskie (NE Poland) to climate variability and human disturbance since 1000 AD

    NASA Astrophysics Data System (ADS)

    Tylmann, Wojciech; Hernández-Almeida, Iván; Grosjean, Martin; José Gómez Navarro, Juan; Larocque-Tobler, Isabelle; Bonk, Alicja; Enters, Dirk; Ustrzycka, Alicja; Piotrowska, Natalia; Przybylak, Rajmund; Wacnik, Agnieszka; Witak, Małgorzata

    2016-04-01

    Rapid ecosystem transitions and adverse effects on ecosystem services as responses to combined climate and human impacts are of major concern. Yet few quantitative observational data exist, particularly for ecosystems that have a long history of human intervention. Here, we combine quantitative summer and winter climate reconstructions, climate model simulations and proxies for three major environmental pressures (land use, nutrients and erosion) to explore the system dynamics, resilience, and the role of disturbance regimes in varved eutrophic Lake Żabińskie since AD 1000. Comparison between regional and global climate simulations and quantitative climate reconstructions indicate that proxy data capture noticeably natural forced climate variability, while internal variability appears as the dominant source of climate variability in the climate model simulations during most parts of the last millennium. Using different multivariate analyses and change point detection techniques, we identify ecosystem changes through time and shifts between rather stable states and highly variable ones, as expressed by the proxies for land-use, erosion and productivity in the lake. Prior to AD 1600, the lake ecosystem was characterized by a high stability and resilience against considerable observed natural climate variability. In contrast, lake-ecosystem conditions started to fluctuate at high frequency across a broad range of states after AD 1600. The period AD 1748-1868 represents the phase with the strongest human disturbance of the ecosystem. Analyses of the frequency of change points in the multi-proxy dataset suggests that the last 400 years were highly variable and flickering with increasing vulnerability of the ecosystem to the combined effects of climate variability and anthropogenic disturbances. This led to significant rapid ecosystem transformations.

  5. Fine sediment transport by tidal asymmetry in the high-concentrated Ems River: indications for a regime shift in response to channel deepening

    NASA Astrophysics Data System (ADS)

    Winterwerp, Johan C.

    2011-03-01

    This paper describes an analysis of the observed up-river transport of fine sediments in the Ems River, Germany/Netherlands, using a 1DV POINT MODEL, accounting for turbulence-induced flocculation and sediment-induced buoyancy destruction. From this analysis, it is inferred that the net up-river transport is mainly due to an asymmetry in vertical mixing, often referred to as internal tidal asymmetry. It is argued that the large stratification observed during ebb should be attributed to a profound interaction between turbulence-induced flocculation and sediment-induced buoyancy destruction, as a result of which the river became an efficient trap for fine suspended sediment. Moreover, an asymmetry in flocculation processes was found, such that during flood relative large flocs are transported at relative large flow velocity high in the water column, whereas during ebb, the larger flocs are transported at smaller velocities close to the bed—this asymmetry contributes to the large trapping mentioned above. The internal tidal asymmetry and asymmetry in flocculation processes are both driven by the pronounced asymmetry in flow velocities, with flood velocities almost twice the ebb values. It is further argued that this efficient trapping is the result of a continuous deepening of the river, and occurs when concentrations in the river become typically a few hundred mg/l; this was the case during the 1990 survey analyzed in this paper. We also speculate that a second regime shift did occur in the river when fluid mud layers become so thick that net transport rates are directly related to the asymmetry in flow velocity itself, probably still in conjunction with internal asymmetry as well. This would yield an efficient mechanism to transport large amounts of fine sediment far up-river, as currently observed.

  6. Using time-varying asymptotic length and body condition of top piscivores to indicate ecosystem regime shift in the main basin of Lake Huron: a Bayesian hierarchical modeling approach

    USGS Publications Warehouse

    He, Ji X.; Bence, James R.; Roseman, Edward F.; Fielder, David G.; Ebener, Mark P.

    2015-01-01

    We evaluated the ecosystem regime shift in the main basin of Lake Huron that was indicated by the 2003 collapse of alewives, and dramatic declines in Chinook salmon abundance thereafter. We found that the period of 1995-2002 should be considered as the early phase of the final regime shift. We developed two Bayesian hierarchical models to describe time-varying growth based on the von Bertalanffy growth function and the length-mass relationship. We used asymptotic length as an index of growth potential, and predicted body mass at a given length as an index of body condition. Modeling fits to length and body mass at age of lake trout, Chinook salmon, and walleye were excellent. Based on posterior distributions, we evaluated the shifts in among-year geometric means of the growth potential and body condition. For a given top piscivore, one of the two indices responded to the regime shift much earlier than the 2003 collapse of alewives, the other corresponded to the 2003 changes, and which index provided the early signal differed among the three top piscivores.

  7. Biological response to the global climate regime shift in the Bering Sea and the central subarctic Pacific: Synthesis of multi-decadal long time series sinking particle study

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Kanematsu, Y.; Asahi, H.; Onodera, J.; Okazaki, Y.; Tanaka, S.; Tsutsui, H.

    2011-12-01

    It is fundamental importance to understand the roles of oceanic biological export production and its response to the long-term global climate regime. Since 1990, we have continued observation of sinking particle using by T/S sediment trap at the Bering Sea Station AB: 53° 30 N, 177° W, sea- floor depth: 3788 m, trap depth: 3198m) and the central subarctic Pacific (Station SA: 49° N, 174° W, sea- floor depth: 5406 m, trap depth: 4812 m). Our multi-discipline approach including geochemical analyses (%biogenic opal, %calcium carbonate, %total organic carbon, and %total nitrogen), and micropaleontological taxon-quantitative analyses (diatoms, radiolarians, calcareous nanoplankton, and planktic foraminifers) showed substantial seasonal and annual variations along the climate changes. In order to test biological response to the environmental changes, we have compared our sinking particle records with various climate data sets (e.g., temperature, salinity and global climate indices). In general, total mass flux at hemipelagic Station AB is approximately two times higher than that at pelagic Station SA. This mainly owes to the production difference in siliceous frustule/skeleton bearing plankton (diatoms and radiolarians). Presence of seasonal flux maxima appeared during spring and fall at both stations, suggesting that seasonal mixing due to surface cooling is a primary controlling factor for biological production in the northern Pacific. As annual variations, these sinking particle data had coherent trend against global climate regimes. One of the noteworthy cycles is the biennial cycles found at Station AB. This cycles is expressed as fluctuation of spring flux maxima during 1990-1999. This cycle is coherent with the Arctic Oscillation (AO) and the Quasi-biennial Oscillation (QBO) that affects northern hemisphere winter climate. These global oscillations have influenced winter surface cooling, therefore changes in the degree of seasonal mixing may impact on the

  8. The influence of climate regime shifts on the marine environment and ecosystems in the East Asian Marginal Seas and their mechanisms

    NASA Astrophysics Data System (ADS)

    Kun Jung, Hae; Rahman, SM Mustafizur; Kang, Chang-Keun; Park, Se-Young; Heon Lee, Sang; Je Park, Hyun; Kim, Hyun-Woo; Il Lee, Chung

    2017-09-01

    Step changes to seawater temperature (SWT) in the East Asian marginal seas (EAMS) are associated with three recent climate regime shifts (CRS) occurring in the mid-1970s, late 1980s, and late 1990s, but the responses of the ocean conditions and marine ecosystems had regional differences. A step change in SWT in the East China Sea (ECS) was detected after the CRS of the 1970s as were step changes in the North Pacific Index (NPI), Pacific Decadal Oscillation Index (PDOI), and East Asian Winter Monsoon Index (EAWMI). SWT in the ECS decreased with decreasing warm water volume transport into the EAMS and a strong monsoon, but step changes in SWT in other regions were not detected as clearly. After the CRS of the 1980s, SWT in all EAMS increased rapidly with step changes detected in all five climate indices examined. These changes were associated with a weak winter monsoon, increasing surface air temperature (SAT), and increasing warm water volume transport into the EAMS. However, after the CRS of the 1990s, a decrease in SWT around the EAMS was detected in the northern part of East China Sea (NECS), and the ECS with step changes also in the EAWMI and the Arctic Oscillation Index (AOI). In contrast, SWT in the East Sea/Sea of Japan (EJS) and the Yellow Sea (YS) continuously increased during this time. Long-term changes in zooplankton biomass were affected by regional differences in the responses of atmospheric and oceanic variability to CRSs. Specifically, long-term changes in the timing of peaks in zooplankton abundances exhibited differences. During warm periods (e.g. after the 1980s CRS) in the EJS, the amount of zooplankton biomass in October increased, while in February it decreased. On the contrary, in the YS and the NECS, the peaks of October and June in zooplankton biomass occurred during cold periods (after the 1970s and 1990s CRS). Major fisheries resources also responded to the three CRSs, although warm and cold water species responded differently to changes

  9. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Farley, Ed; Nielsen, Jennifer L.; Hagen, Peter

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1 smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.

  10. Percutaneous Stabilization of Impending Pathological Fracture of the Proximal Femur

    SciTech Connect

    Deschamps, Frederic Farouil, Geoffroy Hakime, Antoine Teriitehau, Christophe Barah, Ali Baere, Thierry de

    2012-12-15

    Objective: Percutaneous osteosynthesis plus cementoplasty (POPC) is a minimally invasive technique that has never been reported before and that we have prospectively evaluated for patients with impending pathological fracture of the proximal femur. Methods: We performed POPC in 12 patients (3 males, 9 females) with metastasis of the proximal femur with a high risk of fracture (Mirels' score {>=}8) between February 2010 and July 2011. Patients were not candidates for standard surgical stabilization. We analyzed the feasibility, duration, and complication of the procedure, the risk of fracture, the decrease in pain (Visual Analog Scale, VAS), and length of stay in hospital. Data were prospectively collected in all patients. Results: The mean Mirels' score was 9.8 {+-} 1.2 (range, 8-11). The technical success was 100%. POPC was performed under general anesthesia (n = 6) or conscious sedation (n = 6). The mean duration was 110 {+-} 43 (range, 60-180) minutes. All patients stood up and walked the second day after the procedure. The average length of stay in the hospital was 4 {+-} 1.6 (range, 2-7) days. We experienced two hematomas in two patients and no thromboembolic complication. For symptomatic patients (n = 8), VAS decreased from 6.5/10 (range, 2-9) before treatment to 1/10 (range, 0-3) 1 month after. No fracture occurred after a median follow-up of 145 (range, 12-608) days. Conclusions: POPC for impending pathological fracture of the proximal femur seems to be a promising alternative for cancer patients who are not candidates for surgical stabilization. Further studies are required to confirm this preliminary experience.

  11. Impending aortic aneurysm rupture – a case report and review of the warning signs

    PubMed Central

    Gish, David S.; Baer, J. Austin; Crabtree, Gordon S.; Shaikh, Bilal; Fareedy, Shoaib B.

    2016-01-01

    Abdominal aortic aneurysm (AAA) may present with subtle clinical findings. Recognition of the imaging features of an impending rupture is key for timely diagnosis. This report reviews the classic computed tomography findings of impending AAA rupture and presents a recent case which illustrates the key features. PMID:27802850

  12. Impending malunions of the hand. Treatment of subacute, malaligned fractures.

    PubMed

    Lester, B; Mallik, A

    1996-06-01

    Malunions of the hand present a challenging problem to the orthopaedic surgeon. Angular and rotational deformities, and shortening and articular incongruity, can lead to significant functional impairment or dysesthetic appearance. The prevention of malunion should remain a primary goal. When displaced fractures of the metacarpals or phalanges present within the first or second weeks, properly performed closed or open reduction with percutaneous pinning or internal fixation are excellent options with predictable results. Malaligned fractures that present later frequently cannot be readily reduced. Once fully united, treatment options have included corrective osteotomy if function is significantly impaired or if appearance is objectionable; for patients who are not suitable for surgery for medical or other reasons, or for whom appearance is acceptable, intensive occupational therapy to maximize function may yield sufficiently serviceable clinical results. During the past several years, the senior author (BL) has chosen to be more proactive in the prevention of malunions of the hand. In the authors' experience, results of aggressive surgical treatment of subacute, malaligned fractures in selected patients have produced results comparable with or superior to those reported for later reconstructive procedures. With the proliferation of managed care, there has been an increasing frequency of delayed referral patterns for fracture treatment by hand specialists. Definitive treatment of these "impending malunions" is preferable to passive treatment delay and secondary reconstructive procedures, offering both earlier correction of alignment and earlier opportunity for return of function.

  13. Going Lean: Impending Money Woes Force Tough Choices, Forecast Fundamental Shift in Community College Funding

    ERIC Educational Resources Information Center

    Joch, Alan

    2011-01-01

    The numbers were already bad, and they keep getting worse, for the Dallas County Community College District (DCCCD). Given the weak economy, administrators planned for a 5 percent reduction in state funding in the 2010-11 academic year. The actual reduction ballooned to more than 7.5 percent, an additional $13 million that DCCCD would be forced to…

  14. Going Lean: Impending Money Woes Force Tough Choices, Forecast Fundamental Shift in Community College Funding

    ERIC Educational Resources Information Center

    Joch, Alan

    2011-01-01

    The numbers were already bad, and they keep getting worse, for the Dallas County Community College District (DCCCD). Given the weak economy, administrators planned for a 5 percent reduction in state funding in the 2010-11 academic year. The actual reduction ballooned to more than 7.5 percent, an additional $13 million that DCCCD would be forced to…

  15. Vegetation maps at the passage of the Taylor Grazing Act (1934): A baseline to evaluate rangeland change after a regime shift

    USDA-ARS?s Scientific Manuscript database

    Data from New Mexico range survey maps created shortly after the passage of the Taylor Grazing Act in 1934 have been preserved and are being used to document changes in vegetation. The range survey data were collected at the time of a critical shift in rangeland policy and practice in federal lands...

  16. Tectonic Deep Anterior Lamellar Keratoplasty in Impending Corneal Perforation Using Cryopreserved Cornea

    PubMed Central

    Jang, Ji Hye

    2011-01-01

    We report a case of tectonic corneal transplantation for impending corneal perforation to preserve anatomic integrity using cryopreserved donor tissue. An 82-year-old woman exhibiting impending corneal perforation suffered from moderate ocular pain in the left eye for one week. After abnormal tissues around the impending perforation area were carefully peeled away using a Crescent blade and Vannas scissors, the patient received tectonic deep anterior lamellar keratoplasty using a cryopreserved cornea stored in Optisol GS® solution at -70℃ for four weeks. At six months after surgery, the cornea remained transparent and restored the normal corneal thickness. There were no complications such as corneal haze or scars, graft rejection, recurrent corneal ulcer, and postoperative rise of intraocular pressure. Cryopreserved donor lamellar tissue is an effective substitute in emergency tectonic lamellar keratoplasty, such as impending corneal perforation and severe necrotic corneal keratitis. PMID:21461227

  17. Tectonic deep anterior lamellar keratoplasty in impending corneal perforation using cryopreserved cornea.

    PubMed

    Jang, Ji Hye; Chang, Sung Dong

    2011-04-01

    We report a case of tectonic corneal transplantation for impending corneal perforation to preserve anatomic integrity using cryopreserved donor tissue. An 82-year-old woman exhibiting impending corneal perforation suffered from moderate ocular pain in the left eye for one week. After abnormal tissues around the impending perforation area were carefully peeled away using a Crescent blade and Vannas scissors, the patient received tectonic deep anterior lamellar keratoplasty using a cryopreserved cornea stored in Optisol GS® solution at -70℃ for four weeks. At six months after surgery, the cornea remained transparent and restored the normal corneal thickness. There were no complications such as corneal haze or scars, graft rejection, recurrent corneal ulcer, and postoperative rise of intraocular pressure. Cryopreserved donor lamellar tissue is an effective substitute in emergency tectonic lamellar keratoplasty, such as impending corneal perforation and severe necrotic corneal keratitis.

  18. Synchronous climate-driven regime shifts at the onset of the Holocene inferred from diatom records in lakes of the Greater Yellowstone region

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Stone, J.; Fritz, S. C.

    2013-12-01

    Diatom records covering the late-glacial and early Holocene periods were recovered from three lakes in different areas of Yellowstone National Park to investigate the impacts of large-scale climatic change on aquatic ecosystem evolution following deglaciation. All lakes show synchronous diatom community shifts from the dominance of tychoplanktic Fragilaria species to benthic species in the interval of 11,300-11500 cal yr BP, indicating a regional decrease in effective moisture. The synchroneity of changes in diatom community structure suggests the influence of overlying large-scale climatic change on lacustrine ecosystems. A major shift in the same interval also is evident in other proxy records, such as pollen and charcoal, throughout the Yellowstone region at the late-glacial/early-Holocene transition. This suggests that the summer insolation maximum induced a widespread and rapid reorganization of ecosystem structure and function.

  19. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE

    PubMed Central

    Taylor, Alan H.; Trouet, Valerie; Skinner, Carl N.; Stephens, Scott

    2016-01-01

    Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire activity by merging a tree-ring–based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire–climate relationships were strongest after Native American depopulation—following mission establishment (ca. 1775 CE)—reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire–climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire–climate models for addressing the increasing fire risk in California. PMID:27849589

  20. Historical shifts in oxygenation regime as recorded in the laminated sediments of lake Montcortès (Central Pyrenees) support hypoxia as a continental-scale phenomenon.

    PubMed

    Vegas-Vilarrúbia, Teresa; Corella, Juan Pablo; Pérez-Zanón, Núria; Buchaca, Teresa; Trapote, M Carmen; López, Pilar; Sigró, Javier; Rull, Valentí

    2017-09-27

    Recent expansion of anoxia has become a global issue and there is potential for worsening under global warming. At the same time, obtaining proper long-term instrumental oxygen records is difficult, thus reducing the possibility of recording long-term changes in oxygen shifts that can be related with climate or human influence. Varved lake sediments provide the better time frame to study this phenomenon at high resolution. We tracked the oxic/anoxic shifts of the varved Lake Montcortès since 1500CE, and tried to recognise anthropogenic and climatic influences combining biological and geochemical proxies. Four main scenarios emerged: 1) years with abrupt sediment inputs (A); 2) years with outstanding mixing and oxygenation of the water column (B); 3) years with strong stratification, anoxia, intense sulfur bacterial activity and increased biomass production (C); 4) years with stratification and anoxia, but relatively less biomass production (D). In line with current limnologic trends, high supra-annual variability in the occurrence of oxygenation events was observed. Interestingly, at least 45.3% of the years were mixing years and, like the meromictic ones, were mostly clustered into groups of consecutive years, thus alternating years of monomixis with years of meromixis. Most years of D belong to the period 1500-1820CE, when human activities were the most intense. Most years of A belonged to the climatic unstable period of 1850-1899CE. Years of B were irregularly distributed but were best represented in the period 1820-1849CE. Most years of C belonged to the 20th century. More than 90% of the years with climatic instrumental records belonged to B and C. Current climate warming seems to be taking control over the oxygenation capacity of the lake, especially since the second half of the 20th century. Our results support recent findings related to hypoxia spreading at the global scale. Copyright © 2017. Published by Elsevier B.V.

  1. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE.

    PubMed

    Taylor, Alan H; Trouet, Valerie; Skinner, Carl N; Stephens, Scott

    2016-11-29

    Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire-climate relationships in the Sierra Nevada. We developed a 415-y record (1600-2015 CE) of fire activity by merging a tree-ring-based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation-following mission establishment (ca. 1775 CE)-reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire-climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire-climate models for addressing the increasing fire risk in California.

  2. Dietary habits of polar bears in Foxe Basin, Canada: possible evidence of a trophic regime shift mediated by a new top predator.

    PubMed

    Galicia, Melissa P; Thiemann, Gregory W; Dyck, Markus G; Ferguson, Steven H; Higdon, Jeff W

    2016-08-01

    Polar bear (Ursus maritimus) subpopulations in several areas with seasonal sea ice regimes have shown declines in body condition, reproductive rates, or abundance as a result of declining sea ice habitat. In the Foxe Basin region of Nunavut, Canada, the size of the polar bear subpopulation has remained largely stable over the past 20 years, despite concurrent declines in sea ice habitat. We used fatty acid analysis to examine polar bear feeding habits in Foxe Basin and thus potentially identify ecological factors contributing to population stability. Adipose tissue samples were collected from 103 polar bears harvested during 2010-2012. Polar bear diet composition varied spatially within the region with ringed seal (Pusa hispida) comprising the primary prey in northern and southern Foxe Basin, whereas polar bears in Hudson Strait consumed equal proportions of ringed seal and harp seal (Pagophilus groenlandicus). Walrus (Odobenus rosmarus) consumption was highest in northern Foxe Basin, a trend driven by the ability of adult male bears to capture large-bodied prey. Importantly, bowhead whale (Balaena mysticetus) contributed to polar bear diets in all areas and all age and sex classes. Bowhead carcasses resulting from killer whale (Orcinus orca) predation and subsistence harvest potentially provide an important supplementary food source for polar bears during the ice-free period. Our results suggest that the increasing abundance of killer whales and bowhead whales in the region could be indirectly contributing to improved polar bear foraging success despite declining sea ice habitat. However, this indirect interaction between top predators may be temporary if continued sea ice declines eventually severely limit on-ice feeding opportunities for polar bears.

  3. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals

    PubMed Central

    Sherwood, Owen A.; Lehmann, Moritz F.; Schubert, Carsten J.; Scott, David B.; McCarthy, Matthew D.

    2011-01-01

    Despite the importance of the nitrogen (N) cycle on marine productivity, little is known about variability in N sources and cycling in the ocean in relation to natural and anthropogenic climate change. Beyond the last few decades of scientific observation, knowledge depends largely on proxy records derived from nitrogen stable isotopes (δ15N) preserved in sediments and other bioarchives. Traditional bulk δ15N measurements, however, represent the combined influence of N source and subsequent trophic transfers, often confounding environmental interpretation. Recently, compound-specific analysis of individual amino acids (δ15N-AA) has been shown as a means to deconvolve trophic level versus N source effects on the δ15N variability of bulk organic matter. Here, we demonstrate the first use of δ15N-AA in a paleoceanographic study, through analysis of annually secreted growth rings preserved in the organic endoskeletons of deep-sea gorgonian corals. In the Northwest Atlantic off Nova Scotia, coral δ15N is correlated with increasing presence of subtropical versus subpolar slope waters over the twentieth century. By using the new δ15N-AA approach to control for variable trophic processing, we are able to interpret coral bulk δ15N values as a proxy for nitrate source and, hence, slope water source partitioning. We conclude that the persistence of the warm, nutrient-rich regime since the early 1970s is largely unique in the context of the last approximately 1,800 yr. This evidence suggests that nutrient variability in this region is coordinated with recent changes in global climate and underscores the broad potential of δ15N-AA for paleoceanographic studies of the marine N cycle. PMID:21199952

  4. Impending Challenges for the Use of Big Data

    PubMed Central

    Huser, Vojtech; Cimino, James J

    2015-01-01

    Big Data in healthcare promise to answer real world questions that can be difficult to address with randomized clinical trials. In this perspective article, we analyze five current Big Data informatics challenges of (1) data volume, (2) research oversight by Institutional Review Boards, (3) semantic data integration (4) data formats, and (5) access to knowledge bases from a biomedical informatics perspective. After briefly describing each challenge, we discuss examples of how are being addressed today. With the ever increasing number of Big Data healthcare repositories, the emphasis is shifting from mere data aggregation to advanced data transformation and analysis. PMID:26797535

  5. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades

    NASA Astrophysics Data System (ADS)

    Tian, Yongjun; Kidokoro, Hideaki; Watanabe, Tatsuro

    2006-02-01

    climatic regime shifts in the North Pacific. These results strongly suggest that the structure of the fish community in the Japan/East Sea was largely affected by climatic and oceanic regime shifts rather than by fishing. There is no evidence showing “fishing down food webs” in the Japan/East Sea. However, in addition to the impacts of abrupt shifts that occurred in the late 1980s, the large predatory and demersal fishes seem to be facing stronger fishing pressure with the collapse of the Japanese sardine.

  6. A Study of Community College Leadership Practices in Response to the Impending Leadership Crisis

    ERIC Educational Resources Information Center

    Corbett, Jane

    2012-01-01

    The literature attests to a leadership crisis that is predicted to impact leadership pipelines in just about every industry imaginable, including community colleges. This impending crisis is thought to be a result of baby boomer retirements plus the lack of next generation workers equipped with the skills to replace them. Community colleges are…

  7. How a Faculty Made Sense of the Impending Succession of Its Principal. Revised.

    ERIC Educational Resources Information Center

    Fauske, Janice R.; Ogawa, Rodney T.

    This study sought to describe how an elementary school faculty made sense of the impending succession of its principal, and to extend Gephart's effort to develop a grounded theory of leader succession by examining an unforced succession in an organization whose members exerted little if any influence on the selection process. On the basis of…

  8. A Study of Community College Leadership Practices in Response to the Impending Leadership Crisis

    ERIC Educational Resources Information Center

    Corbett, Jane

    2012-01-01

    The literature attests to a leadership crisis that is predicted to impact leadership pipelines in just about every industry imaginable, including community colleges. This impending crisis is thought to be a result of baby boomer retirements plus the lack of next generation workers equipped with the skills to replace them. Community colleges are…

  9. Climate change in Australian tropical rainforests: an impending environmental catastrophe.

    PubMed Central

    Williams, Stephen E; Bolitho, Elizabeth E; Fox, Samantha

    2003-01-01

    It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of northeastern Australia have the potential to result in many extinctions. We develop bioclimatic models of spatial distribution for the regionally endemic rainforest vertebrates and use these models to predict the effects of climate warming on species distributions. Increasing temperature is predicted to result in significant reduction or complete loss of the core environment of all regionally endemic vertebrates. Extinction rates caused by the complete loss of core environments are likely to be severe, nonlinear, with losses increasing rapidly beyond an increase of 2 degrees C, and compounded by other climate-related impacts. Mountain ecosystems around the world, such as the Australian Wet Tropics bioregion, are very diverse, often with high levels of restricted endemism, and are therefore important areas of biodiversity. The results presented here suggest that these systems are severely threatened by climate change. PMID:14561301

  10. Climate change in Australian tropical rainforests: an impending environmental catastrophe.

    PubMed

    Williams, Stephen E; Bolitho, Elizabeth E; Fox, Samantha

    2003-09-22

    It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of northeastern Australia have the potential to result in many extinctions. We develop bioclimatic models of spatial distribution for the regionally endemic rainforest vertebrates and use these models to predict the effects of climate warming on species distributions. Increasing temperature is predicted to result in significant reduction or complete loss of the core environment of all regionally endemic vertebrates. Extinction rates caused by the complete loss of core environments are likely to be severe, nonlinear, with losses increasing rapidly beyond an increase of 2 degrees C, and compounded by other climate-related impacts. Mountain ecosystems around the world, such as the Australian Wet Tropics bioregion, are very diverse, often with high levels of restricted endemism, and are therefore important areas of biodiversity. The results presented here suggest that these systems are severely threatened by climate change.

  11. Randomized controlled trial of subconjunctival bevacizumab injection in impending recurrent pterygium: a pilot study.

    PubMed

    Lekhanont, Kaevalin; Patarakittam, Thanikan; Thongphiew, Prakairut; Suwan-apichon, Olan; Hanutsaha, Prut

    2012-02-01

    To investigate the efficacy and safety of subconjunctival bevacizumab injection for the treatment of impending recurrent pterygium. A prospective, randomized, single-masked, controlled trial was conducted in 80 patients with impending recurrent pterygium. Patients were randomized into 4 groups using random tables: 20 patients served as a control and treatment groups received a single intralesional injection of 1.25 mg (20 patients, group 1), 2.5 mg (20 patients, group 2), or 3.75 mg (20 patients, group 3) of bevacizumab. Topical 0.1% fluorometholone and ocular lubricant were administered 4 times daily for 1 month in all groups. Severity of impending recurrent pterygium graded by photographic assessment (at baseline, 3 days, 1 week, and 2, 4, 8, and 12 weeks after treatment) and true recurrence were the main outcome measures. At 3 days, the conjunctival injection significantly decreased in all treatment groups (P < 0.01). A significant decrease in the conjunctival injection was still observed until 2 and 4 weeks in only groups 2 and 3, respectively (P < 0.05). The conjunctival hyperemia appeared to increase back to baseline at later time points. No significant difference in the mean severity score among the groups was observed. True recurrence was found in 62 patients with no statistically significant difference among the groups. No serious ocular or systemic adverse events were seen. A single subconjunctival bevacizumab injection seems to only partially and transiently decrease conjunctival vascularization in impending recurrent pterygium in a dose-dependent manner. This treatment does not cause regression or reduce the recurrent rate of impending recurrent pterygium.

  12. A diagnostic model for impending death in cancer patients: Preliminary report.

    PubMed

    Hui, David; Hess, Kenneth; dos Santos, Renata; Chisholm, Gary; Bruera, Eduardo

    2015-11-01

    Several highly specific bedside physical signs associated with impending death within 3 days for patients with advanced cancer were recently identified. A diagnostic model for impending death based on these physical signs was developed and assessed. Sixty-two physical signs were systematically documented every 12 hours from admission to death or discharge for 357 patients with advanced cancer who were admitted to acute palliative care units (APCUs) at 2 tertiary care cancer centers. Recursive partitioning analysis was used to develop a prediction model for impending death within 3 days with admission data. The model was validated with 5 iterations of 10-fold cross-validation, and the model was also applied to APCU days 2 to 6. For the 322 of 357 patients (90%) with complete data for all signs, the 3-day mortality rate was 24% on admission. The final model was based on 2 variables (Palliative Performance Scale [PPS] and drooping of nasolabial folds) and had 4 terminal leaves: PPS score ≤ 20% and drooping of nasolabial folds present, PPS score ≤ 20% and drooping of nasolabial folds absent, PPS score of 30% to 60%, and PPS score ≥ 70%. The 3-day mortality rates were 94%, 42%, 16%, and 3%, respectively. The diagnostic accuracy was 81% for the original tree, 80% for cross-validation, and 79% to 84% for subsequent APCU days. Based on 2 objective bedside physical signs, a diagnostic model was developed for impending death within 3 days. This model was applicable to both APCU admission and subsequent days. Upon further external validation, this model may help clinicians to formulate the diagnosis of impending death. © 2015 American Cancer Society.

  13. Asynchronous responses of fish assemblages to climate-driven ocean regime shifts between the upper and deep layer in the Ulleung basin of the East Sea from 1986 to 2010

    NASA Astrophysics Data System (ADS)

    Jung, Sukgeun

    2014-03-01

    Past studies suggested that a basin-wide regime shift occurred in 1988-1989, impacting marine ecosystem and fish assemblages in the western North Pacific. However, the detailed mechanisms involved in this phenomenon are still yet unclear. In the Ulleung basin of the East Sea, filefish, anchovy and sardine dominated the commercial fish catches in 1986-1992, but thereafter common squid comprised > 60% of the total catch in 1993-2010. To illuminate the mechanisms causing this dramatic shift in dominant fisheries species, I related changes in depth-specific oceanographic conditions from 0 to 500 m to inter-annual changes in the fish assemblage structure from 1986 to 2010. In the upper layer of 50-100 m depths, water temperature suddenly increased in 1987-1989, and consequently warm-water epi-pelagic species (anchovy, chub mackerel, and common squid) became dominant, while sardine, relatively cold-water epi-pelagic species, nearly disappeared. An annual index of the volume transport by the Korea Strait Bottom Cold Water, originating from the deep water of the Ulleung Basin, displayed a sudden intensification in 1992-1993, accompanied by decreased water temperature and increased water density in the deep water and replacement of dominant bentho-pelagic species from filefish, warm-water species, to herring and cod, cold-water species. The results suggest that climate-driven oceanic changes and the subsequent ecological impacts can occur asynchronously, often with time lags of several years, between the upper and the deep layer, and between epi-pelagic and deepwater fish assemblages.

  14. FISHER INFORMATION AND ECOSYSTEM REGIME CHANGES

    EPA Science Inventory

    Following Fisher’s work, we propose two different expressions for the Fisher Information along with Shannon Information as a means of detecting and assessing shifts between alternative ecosystem regimes. Regime shifts are a consequence of bifurcations in the dynamics of an ecosys...

  15. FISHER INFORMATION AND ECOSYSTEM REGIME CHANGES

    EPA Science Inventory

    Following Fisher’s work, we propose two different expressions for the Fisher Information along with Shannon Information as a means of detecting and assessing shifts between alternative ecosystem regimes. Regime shifts are a consequence of bifurcations in the dynamics of an ecosys...

  16. Anomalous pre-seismic transmission of VHF-band radio waves resulting from large earthquakes, and its statistical relationship to magnitude of impending earthquakes

    NASA Astrophysics Data System (ADS)

    Moriya, T.; Mogi, T.; Takada, M.

    2010-02-01

    To confirm the relationship between anomalous transmission of VHF-band radio waves and impending earthquakes, we designed a new data-collection system and have documented the anomalous VHF-band radio-wave propagation beyond the line of sight prior to earthquakes since 2002 December in Hokkaido, northern Japan. Anomalous VHF-band radio waves were recorded before two large earthquakes, the Tokachi-oki earthquake (Mj = 8.0, Mj: magnitude defined by the Japan Meteorological Agency) on 2003 September 26 and the southern Rumoi sub-prefecture earthquake (Mj = 6.1) on 2004 December 14. Radio waves transmitted from a given FM radio station are considered to be scattered, such that they could be received by an observation station beyond the line of sight. A linear relationship was established between the logarithm of the total duration time of anomalous transmissions (Te) and the magnitude (M) or maximum seismic intensity (I) of the impending earthquake, for M4-M5 class earthquakes that occurred at depths of 48-54 km beneath the Hidaka Mountains in Hokkaido in 2004 June and 2005 August. Similar linear relationships are also valid for earthquakes that occurred at different depths. The relationship was shifted to longer Te for shallower earthquakes and to shorter Te for deeper ones. Numerous parameters seem to affect Te, including hypocenter depths and surface conditions of epicentral area (i.e. sea or land). This relationship is important because it means that pre-seismic anomalous transmission of VHF-band waves may be useful in predicting the size of an impending earthquake.

  17. Differentiating full thickness macular holes from impending macular holes and macular pseudoholes

    PubMed Central

    Tsujikawa, M.; Ohji, M.; Fujikado, T.; Saito, Y.; Motokura, M.; Ishimoto, I.; Tano, Y.

    1997-01-01

    AIMS—The reliability of scanning laser ophthalmoscope (SLO) microperimetry in differentiating full thickness macular holes from macular pseudoholes and impending macular holes was evaluated.
METHODS—106 eyes with the clinical diagnosis of full thickness macular holes, macular pseudoholes, and impending (stage 1) macular holes were examined for the presence of deep or relative scotoma using SLO microperimetry. The relation between these scotomas and the clinical diagnosis was studied.
RESULTS—Deep and relative scotomas were detected in all 57 eyes with clinically defined full thickness macular holes. In contrast, among 49 eyes diagnosed with macular pseudoholes or impending macular holes, no deep and only one relative scotoma was observed. The sensitivity of the presence of a deep scotoma as an indicator of the clinical diagnosis of a full thickness macular hole was 100% (57 of 57), and the specificity was 100% (49 of 49). The sensitivity of the presence of a relative scotoma was 100% (57 of 57) and the specificity was 98.0% (48 of 49).
CONCLUSION—With SLO microperimetry, full thickness macular holes can be precisely and objectively distinguished from other conditions that mimic macular holes.

 PMID:9059244

  18. Impending Crisis.

    ERIC Educational Resources Information Center

    Herman, Roger E.; Olivo, Thomas G.; Gioia, Joyce L.

    Filled with evidence and advice for corporate leaders in for-profit, not-for-profit, governmental, and education organizations, this book addresses how to evaluate one's organization's vulnerability and take action. An introduction is followed by a section on the new roles of the chief executive officer, chief operating officer, chief financial…

  19. Experimental Study of Thermal Field Evolution in the Short-Impending Stage Before Earthquakes

    NASA Astrophysics Data System (ADS)

    Ren, Yaqiong; Ma, Jin; Liu, Peixun; Chen, Shunyun

    2017-08-01

    Phenomena at critical points are vital for identifying the short-impending stage prior to earthquakes. The peak stress is a critical point when stress is converted from predominantly accumulation to predominantly release. We call the duration between the peak stress and instability "the meta-instability stage", which refers to the short-impending stage of earthquakes. The meta-instability stage consists of a steady releasing quasi-static stage and an accelerated releasing quasi-dynamic stage. The turning point of the above two stages is the remaining critical point. To identify the two critical points in the field, it is necessary to study the characteristic phenomena of various physical fields in the meta-instability stage in the laboratory, and the strain and displacement variations were studied. Considering that stress and relative displacement can be detected by thermal variations and peculiarities in the full-field observations, we employed a cooled thermal infrared imaging system to record thermal variations in the meta-instability stage of stick slip events generated along a simulated, precut planer strike slip fault in a granodiorite block on a horizontally bilateral servo-controlled press machine. The experimental results demonstrate the following: (1) a large area of decreasing temperatures in wall rocks and increasing temperatures in sporadic sections of the fault indicate entrance into the meta-instability stage. (2) The rapid expansion of regions of increasing temperatures on the fault and the enhancement of temperature increase amplitude correspond to the turning point from the quasi-static stage to the quasi-dynamic stage. Our results reveal thermal indicators for the critical points prior to earthquakes that provide clues for identifying the short-impending stage of earthquakes.

  20. Salvage of impending replant failure by temporary ectopic replantation: a case report.

    PubMed

    Cavadas, Pedro C; Landin, Luis; Navarro-Monzones, Angel; Soler-Nomdedeu, Santiago

    2006-03-01

    Temporary ectopic replantation of amputated parts has been reported previously as an alternative to orthotopic replantation in difficult cases. We report a case in which the left arm initially was replanted orthotopically with subsequent development of extensive infection. The impending vascular failure of the replanted arm was salvaged by reamputation and temporary ectopic transfer of the arm to the groin region. Nine days later the arm was transferred back to the clean humeral stump. The functional result was similar to that of a standard transhumeral replantation, with 30 degrees to 120 degrees of active range of elbow motion, basic grip pattern, and S3 sensibility.

  1. Mechanical perturbations applied during impending movement evoke startle-like responses

    PubMed Central

    Ravichandran, Vengateswaran J.; Shemmell, Jonathan B.; Perreault, Eric J.

    2010-01-01

    Stretch reflexes have been considered one of the simplest circuits in the human nervous system. Yet, their role is controversial given that they assist or resist an imposed perturbation depending on the task instruction. Evidence shows that a loud acoustic stimulus applied prior to an impending movement elicits a movement-direction dependent muscle activity. In our study, we found that a perturbation can also trigger this early onset of movement, if applied during movement preparation. These responses were also perturbation direction dependent. This suggests an interaction of between the limb-stabilizing stretch reflexes and the voluntary activity. PMID:19963543

  2. The role of internal fixation for long bone metastasis prior to impending fracture: an experimental model.

    PubMed

    Ibrahim, Mohammad; Terai, Hidetomi; Yamada, Kentaro; Suzuki, Akinobu; Toyoda, Hiromitsu; Nakamura, Hiroaki

    2013-07-01

    Patients with long bone metastasis have many therapeutic options, including surgery. However, the appropriate time for surgical intervention and the use of internal fixation prior to impending fracture remains controversial. The purpose of this study was to establish a long bone metastatic model with internal fixation, and to determine whether prophylactic internal fixation for long bone metastasis prior to impending fracture would affect bone destruction, tumor progression, and mortality. We implanted VX2 tumor cells into the tibiae of 45 rabbits divided equally into three groups: internal fixation, control, and sham groups. Rabbits were monitored by X-ray and computed tomography, and blood serum levels were examined every 2 weeks. Computed tomography data revealed significantly higher bone destruction in rabbit tibiae in the sham and control groups compared with those in the fixation group; there were volumetric bone losses of 0.2, 0.4, and 2.3% in the fixation, sham, and control groups, respectively, at 3 weeks, which increased to 1.2, 2.5, and 6.1% at 5 weeks. Rabbits in the fixation group showed significantly prolonged survival (64.5 ± 13.5 days) in comparison with rabbits in the sham group (50.3 ± 11.6 days) and control group (38.2 ± 4.9 days). Our results suggest that prophylactic internal fixation may hinder bone destruction and tumor progression, thus extending the survival period for patients with long bone metastasis.

  3. Impending anterior ischemic optic neuropathy with elements of retinal vein occlusion in a patient on interferon for polycythemia vera.

    PubMed

    Rue, Kelly S; Hirsch, Louis K; Sadun, Alfredo A

    2012-01-01

    We describe the course and likely pathophysiology of impending anterior ischemic optic neuropathy (AION) and retinal vein occlusion in a 56-year-old man with polycythemia vera managed with interferon alpha for 2 years. Our patient presented with decreased vision, scintillating scotomata, and floaters. Fundus examination findings and results of a fluorescein angiogram led to the diagnosis of impending AION and retinal vein occlusion. Considering that both polycythemia vera and interferon have possible influences on vascular occlusion and optic disc edema, we stopped interferon treatment and immediately attempted to treat the polycythemia vera empirically with pentoxifylline and any interferon-associated inflammation with prednisone. Our patient experienced complete resolution of fundus abnormalities and return of normal vision within 3 weeks, which may be attributed to our successful treatment of both etiologies. Thus, further study is warranted to elucidate the treatment of both polycythemia vera and interferon-induced impending AION.

  4. Impending status epilepticus and anxiety in a pregnant woman treated with levetiracetam.

    PubMed

    Novy, Jan; Hubschmid, Monica; Michel, Patrik; Rossetti, Andrea O

    2008-10-01

    Levetiracetam (LEV) has been considered to undergo no significant change in bioavailability during pregnancy; however, it was recently demonstrated to display modifications leading to a drop in its serum level. We describe a patient who displayed impending status epilepticus following a fall in her LEV level during the first trimester. The oral LEV dosage was increased, and phenytoin and benzodiazepines were transiently prescribed. She experienced severe anxiety and an unbearable fear over the deleterious consequences for her baby despite repeated, reassuring explanations. Her anxiety was so strong that she aborted electively shortly after leaving the hospital. This observation emphasizes the need for LEV level monitoring during pregnancy to prevent unexpected seizure relapses. The rapid increase in levetiracetam dosage in parallel with the loss of seizure control is suspected of facilitating the induction of significant psychiatric changes.

  5. Case Report: Frontalis sign for early bedside consideration of impending uncal herniation

    PubMed Central

    Munakomi, Sunil; Mohan Kumar, Bijoy

    2016-01-01

    It is prudent to have early diagnosis and timely management of uncal herniation for better management of neurosurgical patients. There are several clinical and radiological armamentariums that aid in early recognition of the condition. Through this case report, we try to highlight a simple bedside clinical sign that can be a valuable adjunct in early recognition of the impending uncal herniation especially in scenarios wherein it is difficult to assess the pupillary size and reactivity correctly. The improvement in the sign also confirms the resolution of the mass effect in the postoperative period. This is especially helpful for doctors working in the periphery or in resource restrained areas, for a timely referral of the patient to tertiary centre. PMID:27635220

  6. Ethical dilemmas related to predictions and warnings of impending natural disaster.

    PubMed

    Phua, Kai-Lit; Hue, J W

    2013-01-01

    Scientists and policy makers issuing predictions and warnings of impending natural disaster are faced with two major challenges, that is, failure to warn and issuing a false alarm. The consequences of failure to warn can be serious for society overall, for example, significant economic losses, heavy infrastructure and environmental damage, large number of human casualties, and social disruption. Failure to warn can also have serious for specific individuals, for example, legal proceedings against disaster research scientists, as in the L'Aquila earthquake affair. The consequences of false alarms may be less serious. Nevertheless, false alarms may violate the principle of nonmaleficence (do no harm), affect individual autonomy (eg, mandatory evacuations), and may result in the "cry wolf" effect. Other ethical issues associated with natural disasters include the promotion of global justice through international predisaster technical assistance and postdisaster aid. Social justice within a particular country is promoted through greater postdisaster aid allocation to the less privileged.

  7. Loss of Weight in Obese Older Adults: A Biomarker of Impending Expansion of Multimorbidity?

    PubMed Central

    Fabbri, Elisa; Tanaka, Toshiko; An, Yang; Zoli, Marco; Bandinelli, Stefania; Guralnik, Jack M.; Simonsick, Eleanor M.; Boyd, Cynthia M.; Studenski, Stephanie A.; Harris, Tamara B.; Ferrucci, Luigi

    2017-01-01

    OBJECTIVES To determine whether weight loss in older adults may be a marker of impending burden of multimorbidity regardless of initial weight, testing the hypotheses that obesity but not overweight in elderly adults is associated with greater number of diseases than normal weight and that obese older adults who lose weight over time have the greatest burden of multimorbidity. DESIGN Longitudinal cohort study (Invecchiare in Chianti Study). SETTING Community. PARTICIPANTS Individuals aged 60 and older at baseline followed for an average of 4 years (N = 1,025). MEASUREMENTS Multimorbidity was measured as number of diagnosed diseases. Baseline body mass index (BMI) was categorized as normal weight (<25.0 kg/m2), overweight (25.0–29.9 kg/m2), and obese (≥30.0 kg/m2). Loss of weight was defined as decrease over time in BMI of at least 0.15 kg/m2 per year. Age, sex, and education were covariates. RESULTS Baseline obesity was cross-sectionally associated with high multimorbidity and greater longitudinal increase of multimorbidity than normal weight (P = .005) and overweight (P < .001). Moreover, obese participants who lost weight over follow-up had a significantly greater increase in multimorbidity than other participants, including obese participants who maintained or gained weight over time (P = .005). In nonobese participants, changes in weight had no effect on changes in multimorbidity over time. Sensitivity analyses confirmed that one specific disease did not drive the association and that competing mortality did not bias the association. CONCLUSION Loss of weight in obese older persons is a strong biomarker of impending expansion of multimorbidity. Older obese individuals who lose weight should receive thoughtful medical attention. PMID:26311068

  8. Loss of Weight in Obese Older Adults: A Biomarker of Impending Expansion of Multimorbidity?

    PubMed

    Fabbri, Elisa; Tanaka, Toshiko; An, Yang; Zoli, Marco; Bandinelli, Stefania; Guralnik, Jack M; Simonsick, Eleanor M; Boyd, Cynthia M; Studenski, Stephanie A; Harris, Tamara B; Ferrucci, Luigi

    2015-09-01

    To determine whether weight loss in older adults may be a marker of impending burden of multimorbidity regardless of initial weight, testing the hypotheses that obesity but not overweight in elderly adults is associated with greater number of diseases than normal weight and that obese older adults who lose weight over time have the greatest burden of multimorbidity. Longitudinal cohort study (Invecchiare in Chianti Study). Community. Individuals aged 60 and older at baseline followed for an average of 4 years (N = 1,025). Multimorbidity was measured as number of diagnosed diseases. Baseline body mass index (BMI) was categorized as normal weight (<25.0 kg/m(2)), overweight (25.0-29.9 kg/m(2)), and obese (≥30.0 kg/m(2)). Loss of weight was defined as decrease over time in BMI of at least 0.15 kg/m(2) per year. Age, sex, and education were covariates. Baseline obesity was cross-sectionally associated with high multimorbidity and greater longitudinal increase of multimorbidity than normal weight (P = .005) and overweight (P < .001). Moreover, obese participants who lost weight over follow-up had a significantly greater increase in multimorbidity than other participants, including obese participants who maintained or gained weight over time (P = .005). In nonobese participants, changes in weight had no effect on changes in multimorbidity over time. Sensitivity analyses confirmed that one specific disease did not drive the association and that competing mortality did not bias the association. Loss of weight in obese older persons is a strong biomarker of impending expansion of multimorbidity. Older obese individuals who lose weight should receive thoughtful medical attention. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  9. Cognition and balance control: does processing of explicit contextual cues of impending perturbations modulate automatic postural responses?

    PubMed

    Coelho, Daniel Boari; Teixeira, Luis Augusto

    2017-08-01

    Processing of predictive contextual cues of an impending perturbation is thought to induce adaptive postural responses. Cueing in previous research has been provided through repeated perturbations with a constant foreperiod. This experimental strategy confounds explicit predictive cueing with adaptation and non-specific properties of temporal cueing. Two experiments were performed to assess those factors separately. To perturb upright balance, the base of support was suddenly displaced backwards in three amplitudes: 5, 10 and 15 cm. In Experiment 1, we tested the effect of cueing the amplitude of the impending postural perturbation by means of visual signals, and the effect of adaptation to repeated exposures by comparing block versus random sequences of perturbation. In Experiment 2, we evaluated separately the effects of cueing the characteristics of an impending balance perturbation and cueing the timing of perturbation onset. Results from Experiment 1 showed that the block sequence of perturbations led to increased stability of automatic postural responses, and modulation of magnitude and onset latency of muscular responses. Results from Experiment 2 showed that only the condition cueing timing of platform translation onset led to increased balance stability and modulation of onset latency of muscular responses. Conversely, cueing platform displacement amplitude failed to induce any effects on automatic postural responses in both experiments. Our findings support the interpretation of improved postural responses via optimized sensorimotor processes, at the same time that cast doubt on the notion that cognitive processing of explicit contextual cues advancing the magnitude of an impending perturbation can preset adaptive postural responses.

  10. Pathways of impending disease flare in African-American systemic lupus erythematosus patients.

    PubMed

    Munroe, Melissa E; Vista, Evan S; Merrill, Joan T; Guthridge, Joel M; Roberts, Virginia C; James, Judith A

    2017-03-01

    Immune dysregulation in systemic lupus erythematosus (SLE) contributes to increased disease activity. African-American (AA) SLE patients have an increased prevalence of complications from disease flares and end-organ damage that leads to increased morbidity and early mortality. We previously reported alterations in inflammatory and regulatory immune mediator levels prior to disease flare in European American (EA) SLE patients. In the current study, we assessed baseline and follow-up plasma levels of 52 soluble mediators, including innate, adaptive, chemokine, and TNF superfamily members, in AA SLE patients who developed SELENA-SLEDAI defined flare 6 or 12 weeks after baseline assessment. These patients were compared to themselves during a comparable, clinically stable period (SNF, n = 18), or to demographically matched SLE patients without impending disease flare (NF, n = 13 per group). We observed significant (q < 0.05) alterations in 34 soluble mediators at baseline, with increased levels of both innate (IL-1α and type I interferons [IFN]) and adaptive cytokines (Th1-, Th2-, and Th17-type), as well as IFN-associated chemokines and soluble TNF superfamily members weeks before clinical disease flare. In contrast, stable SLE patients exhibited increased levels of the regulatory mediators IL-10 (q ≤ 0.0045) and TGF-β (q ≤ 0.0004). Because heterogeneous immune pathways were altered prior to clinical disease flare, we developed a soluble mediator score that encapsulates all mediators tested. This score is the sum of all log transformed, standardized soluble mediator levels assessed at baseline (pre-flare), weighted by their Spearman correlation coefficients for association with the SELENA-SLEDAI score at time of concurrent flare. While baseline SELENA-SLEDAI scores were similar between flare vs. NF (p = 0.7214) and SNF (p = 0.5387), the SMS was significantly higher in pre-flare SLE patients (Flare vs NF or SNF, p < 0.0001). By capturing

  11. Impact of neural noise on a sensory-motor pathway signaling impending collision

    PubMed Central

    Jones, Peter W.

    2012-01-01

    Noise is a major concern in circuits processing electrical signals, including neural circuits. There are many factors that influence how noise propagates through neural circuits, and there are few systems in which noise levels have been studied throughout a processing pathway. We recorded intracellularly from multiple stages of a sensory-motor pathway in the locust that detects approaching objects. We found that responses are more variable and that signal-to-noise ratios (SNRs) are lower further from the sensory periphery. SNRs remain low even with the use of stimuli for which the pathway is most selective and for which the neuron representing its final sensory level must integrate many synaptic inputs. Modeling of this neuron shows that variability in the strength of individual synaptic inputs within a large population has little effect on the variability of the spiking output. In contrast, jitter in the timing of individual inputs and spontaneous variability is important for shaping the responses to preferred stimuli. These results suggest that neural noise is inherent to the processing of visual stimuli signaling impending collision and contributes to shaping neural responses along this sensory-motor pathway. PMID:22114160

  12. Subliminal Impending Collision Increases Perceived Object Size and Enhances Pupillary Light Reflex

    PubMed Central

    Chen, Lihong; Yuan, Xiangyong; Xu, Qian; Wang, Ying; Jiang, Yi

    2016-01-01

    Fast detection of ambient danger is crucial for the survival of biological entities. Previous studies have shown that threatening information can bias human visual perception and enhance physiological reactions. It remains to be delineated whether the modulation of threat on human perceptual and physiological responses can take place below awareness. To probe this issue, we adopted visual looming stimuli and created two levels of threat by varying their motion trajectories to the observers, such that the stimuli could move in a path that either collided with the observers’ heads or just nearly missed. We found that when the observers could not explicitly discriminate any difference between the collision and the near-miss stimuli, the visual stimuli on the collision course appeared larger and evoked greater pupil constrictions than those on the near-miss course. Furthermore, the magnitude of size overestimation was comparable to when the impending collision was consciously perceived. Our findings suggest that threatening information can bias human visual perception and strengthen pupil constrictions independent of conscious representation of the threat, and imply the existence of the subcortical visual pathway dedicated to automatically processing threat-related signals in humans. PMID:27994567

  13. Treatment of Hyaluronic Acid Filler-Induced Impending Necrosis With Hyaluronidase: Consensus Recommendations.

    PubMed

    Cohen, Joel L; Biesman, Brian S; Dayan, Steven H; DeLorenzi, Claudio; Lambros, Val S; Nestor, Mark S; Sadick, Neil; Sykes, Jonathan

    2015-09-01

    Injection-induced necrosis is a rare but dreaded consequence of soft tissue augmentation with filler agents. It usually occurs as a result of injection of filler directly into an artery, but can also result from compression or injury. We provide recommendations on the use of hyaluronidase when vascular compromise is suspected. Consensus recommendations were developed by thorough discussion and debate amongst the authors at a roundtable meeting on Wednesday June 18, 2014 in Las Vegas, NV as well as significant ongoing written and verbal communications amongst the authors in the months prior to journal submission. All authors are experienced tertiary care providers. A prompt diagnosis and immediate treatment with high doses of hyaluronidase (at least 200 U) are critically important. It is not felt necessary to do a skin test in cases of impending necrosis. Some experts recommend dilution with saline to increase dispersion or lidocaine to aid vasodilation. Additional hyaluronidase should be injected if improvement is not seen within 60 minutes. A warm compress also aids vasodilation, and massage has been shown to help. Some experts advocate the use of nitroglycerin paste, although this area is controversial. Introducing an oral aspirin regimen should help prevent further clot formation due to vascular compromise. In our experience, patients who are diagnosed promptly and treated within 24 hours will usually have the best outcomes.

  14. Quantized beam shifts in graphene

    SciTech Connect

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  15. Eluding catastrophic shifts.

    PubMed

    Villa Martín, Paula; Bonachela, Juan A; Levin, Simon A; Muñoz, Miguel A

    2015-04-14

    Transitions between regimes with radically different properties are ubiquitous in nature. Such transitions can occur either smoothly or in an abrupt and catastrophic fashion. Important examples of the latter can be found in ecology, climate sciences, and economics, to name a few, where regime shifts have catastrophic consequences that are mostly irreversible (e.g., desertification, coral reef collapses, and market crashes). Predicting and preventing these abrupt transitions remains a challenging and important task. Usually, simple deterministic equations are used to model and rationalize these complex situations. However, stochastic effects might have a profound effect. Here we use 1D and 2D spatially explicit models to show that intrinsic (demographic) stochasticity can alter deterministic predictions dramatically, especially in the presence of other realistic features such as limited mobility or spatial heterogeneity. In particular, these ingredients can alter the possibility of catastrophic shifts by giving rise to much smoother and easily reversible continuous ones. The ideas presented here can help further understand catastrophic shifts and contribute to the discussion about the possibility of preventing such shifts to minimize their disruptive ecological, economic, and societal consequences.

  16. Eluding catastrophic shifts

    PubMed Central

    Villa Martín, Paula; Bonachela, Juan A.; Levin, Simon A.; Muñoz, Miguel A.

    2015-01-01

    Transitions between regimes with radically different properties are ubiquitous in nature. Such transitions can occur either smoothly or in an abrupt and catastrophic fashion. Important examples of the latter can be found in ecology, climate sciences, and economics, to name a few, where regime shifts have catastrophic consequences that are mostly irreversible (e.g., desertification, coral reef collapses, and market crashes). Predicting and preventing these abrupt transitions remains a challenging and important task. Usually, simple deterministic equations are used to model and rationalize these complex situations. However, stochastic effects might have a profound effect. Here we use 1D and 2D spatially explicit models to show that intrinsic (demographic) stochasticity can alter deterministic predictions dramatically, especially in the presence of other realistic features such as limited mobility or spatial heterogeneity. In particular, these ingredients can alter the possibility of catastrophic shifts by giving rise to much smoother and easily reversible continuous ones. The ideas presented here can help further understand catastrophic shifts and contribute to the discussion about the possibility of preventing such shifts to minimize their disruptive ecological, economic, and societal consequences. PMID:25825772

  17. Successful surgical treatment of impending rupture of thoracoabdominal aortic aneurysm in an elderly patient with severe pulmonary emphysema.

    PubMed

    Uezu, T; Koja, K; Kuniyoshi, Y; Akasaki, M; Miyagi, K; Shimoji, M

    1999-08-01

    In a case of successful surgery for impending thoracoabdominal aortic aneurysmic rupture, an 83-year-old man with severe pulmonary emphysema was transferred to our hospital diagnosed with impending aneurysmic rupture. The aneurysm had been pointed out 2.5 years ago but surgical repair was not undertaken due to the patient's severe pulmonary emphysema. After admission, computed tomography showed an enlarging saccular thoracoabdominal aortic aneurysm. Emergency surgery was conducted because of severe pain below the left costal margin. We resected the wall of the saccular aortic aneurysm and reconstructed the aorta with an on-lay patch under femoro-femoral bypass and selective visceral organ perfusion. Tracheostomy provided respiratory care on the day following surgery. The patient was weaned from respiratory support 6 days after surgery. Postoperative aortography showed that the reconstructed thoracoabdominal aorta functioned satisfactorily. The patient remains in good health 18 months after surgery.

  18. Community adaptations to an impending food desert in rural Appalachia, USA.

    PubMed

    Miller, Wayne C; Rogalla, Denver; Spencer, Dustin; Zia, Nida; Griffith, Brian N; Heinsberg, Haylee B

    2016-01-01

    The United States Department of Agriculture (USDA) describes a food desert as an urban neighborhood or rural town without ready access to fresh, healthy, and affordable food. An estimated 2.3 million rural Americans live in food deserts. One goal of the USDA is to eliminate food deserts. However, at a time when some food deserts are being eliminated, hundreds of grocery stores are closing, causing other food deserts to arise. The literature is scarce on how a community adapts to an impending food desert. Alderson, West Virginia, USA (population 1184) rallied to face an impending food desert when the only grocery store in town closed in December 2014. This study investigated how this small rural community adapted to its oncoming food desert. A community member survey was administered to 155 Alderson families (49%) to determine how the new food desert affected family food acquisition and storage behaviors. A restaurant survey was given to the town's four restaurants to determine how the food desert affected their businesses. Sales data for a new food hub (Green Grocer) was obtained to see if this new initiative offset the negative effects of the food desert. ANOVA and t-tests were used to compare group numerical data. Two group response rates were compared by testing the equality of two proportions. Categorical data were analyzed with the χ2 or frequency distribution analysis. Group averages are reported as mean ± standard error of the mean. Significance for all analyses was set at p<0.05. Even though 86% of the population shopped at the new Green Grocer, 77% did most of their shopping at a store at least 17.7 km (11 miles) from home. The number of long-distance monthly shopping trips made after the food desert (3.3±0.4) did not change significantly (p=0.16) from the number before the food desert (2.8±0.3). Price comparisons among the Green Grocer and three distant supermarkets showed a 30% savings by traveling to distant supermarkets

  19. Neutrophil Functions and Cytokines Expression Profile in Buffaloes with Impending Postpartum Reproductive Disorders

    PubMed Central

    Patra, Manas Kumar; Kumar, Harendra; Nandi, Sukdeb

    2013-01-01

    The study was conducted to correlate the periparturient immune status in terms of neutrophil functions and cytokine expression in peripheral blood mononuclear cell culture with impending postpartum reproductive disorders in buffaloes. Forty pregnant buffaloes were observed for occurrence of postpartum reproductive disorders (PRD), i.e., metritis, endometritis and delayed uterine involution etc., during one week prepartum to four weeks postpartum period. A representative number (n = 6) of buffaloes that did not develop any PRD were included in group I (healthy, control), while the animals which experienced PRD were assigned into group II (PRD, n = 8). The blood samples were collected at weekly interval from one week prepartum to four weeks postpartum period considering the day of calving as ‘d 0’. Differential leucocytes counts, superoxide and hydrogen peroxide production activity in isolated neutrophils and the mRNA expression profile of cytokines i.e., IL-2, IL-4 and IFN-γ in PBMC culture were studied in all the samples. A higher total leucocytes, neutrophil and band cells count along with impaired neutrophil functions i.e., lowered level of production of superoxide and hydrogen peroxide before parturition and during early postpartum period were observed in buffaloes developing PRD. Further, a lower expression of IL-2, IFN-γ and IL-4 mRNA in PBMC culture was observed at calving in buffaloes that subsequently developed PRD at later postpartum. Thus, suppression in neutrophil function and cytokine expression at prepartum to early postpartum period predisposes the buffaloes to develop postpartum reproductive disorders. Hence, monitoring of neutrophils function and cytokine expression profile would be effective to predict certain reproductive disorders at late pregnancy or immediately after parturition in buffaloes. In future, this may be a novel approach for determining suitable management and therapeutic decisions for prevention of commonly occurring

  20. Shifting Attention

    ERIC Educational Resources Information Center

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  1. Shifting Attention

    ERIC Educational Resources Information Center

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  2. Searching for early-warning signals of impending dieback and death in Mediterranean oaks

    NASA Astrophysics Data System (ADS)

    Colangelo, Michele; Ripullone, Francesco; Julio Camarero, Jesus; De Micco, Veronica; Gazol, Antonio; Gentilesca, Tiziana; Borghetti, Marco

    2017-04-01

    than taller conspecifics. Further, irrespective of differences in drought sensitivity, dead trees showed lower radial-growth rates than surviving trees from 10 to 20 years prior to tree death. Contrastingly, differences in wood anatomical traits (vessel lumen size, vessel density) between dead and living trees were not always significant, being species-dependent. Our findings indicate that: (i) tree height is a proxy of the probability of drought-induced death, and (ii) recent growth trends constitute valuable early-warning signals of impending dieback and death in Mediterranean oak species.

  3. Manual Aspiration Thrombectomy with Stent Placement: Rapid and Effective Treatment for Phlegmasia Cerulea Dolens with Impending Venous Gangrene

    SciTech Connect

    Oguzkurt, Levent Tercan, Fahri; Ozkan, Ugur

    2008-01-15

    Phlegmasia cerulea dolens is an uncommon but potentially life-threatening complication of acute deep vein thrombosis. It is an emergency and delay in treatment may cause death or loss of the patient's limb. Surgical thrombectomy is the recommended treatment in venous gangrene. Catheter-directed intrathrombus thrombolysis has been reported as successful, but it may require a lengthy infusion. Manual aspiration thrombectomy may clear the entire thrombus with no need for thrombolytic administration and provide rapid and effective treatment for patients with phlegmasia cerulea dolens with impending venous gangrene.

  4. Bedside clinical signs associated with impending death in patients with advanced cancer: preliminary findings of a prospective, longitudinal cohort study.

    PubMed

    Hui, David; Dos Santos, Renata; Chisholm, Gary; Bansal, Swati; Souza Crovador, Camila; Bruera, Eduardo

    2015-03-15

    Five highly specific physical signs associated with death within 3 days among cancer patients were recently reported that may aid in the diagnosis of impending death. In this study, the frequency and onset of another 52 bedside physical signs and their diagnostic performance for impending death were examined. Three hundred fifty-seven consecutive patients with advanced cancer who had been admitted to acute palliative care units at 2 tertiary care cancer centers were enrolled. Fifty-two physical signs were systematically documented every 12 hours from admission to death or discharge. The frequency and median time of onset of each sign from death backwards were examined, and the likelihood ratios (LRs) associated with death within 3 days were calculated. Two hundred three of the 357 patients (57%) died at the end of the admission. Eight physical signs that were highly diagnostic of impending death were identified. These signs occurred in 5% to 78% of the patients within the last 3 days of life, had a late onset, and had a high specificity (>95%) and a high positive LR for death within 3 days. They included nonreactive pupils (positive LR, 16.7; 95% confidence interval [CI], 14.9-18.6), a decreased response to verbal stimuli (positive LR, 8.3; 95% CI, 7.7-9), a decreased response to visual stimuli (positive LR, 6.7; 95% CI, 6.3-7.1), an inability to close eyelids (positive LR, 13.6; 95% CI, 11.7-15.5), drooping of the nasolabial fold (positive LR, 8.3; 95% CI, 7.7-8.9), hyperextension of the neck (positive LR, 7.3; 95% CI, 6.7-8), grunting of vocal cords (positive LR, 11.8; 95% CI, 10.3-13.4), and upper gastrointestinal bleeding (positive LR, 10.3; 95% CI, 9.5-11.1). Eight highly specific physical signs associated with death within 3 days among cancer patients were identified. These signs may inform the diagnosis of impending death. © 2015 American Cancer Society.

  5. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  6. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; hide

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  7. Comparison of Percutaneous Cementoplasty with and Without Interventional Internal Fixation for Impending Malignant Pathological Fracture of the Proximal Femur

    SciTech Connect

    Tian, Qing-Hua He, Cheng-Jian Wu, Chun-Gen Li, Yong-Dong Gu, Yi-Feng Wang, Tao Xiao, Quan-Ping Li, Ming-Hua

    2016-01-15

    PurposeTo compare the efficacy of percutaneous cementoplasty (PCP) with and without interventional internal fixation (IIF) on malignant impending pathological fracture of proximal femur.MethodsA total of 40 patients with malignant impending pathological fracture of proximal femur were selected for PCP and IIF (n = 19, group A) or PCP alone (n = 21, group B) in this non-randomized prospective study. Bone puncture needles were inserted into the proximal femur, followed by sequential installation of the modified trocar inner needles through the puncture needle sheath. Then, 15–45 ml cement was injected into the femur lesion.ResultsThe overall excellent and good pain relief rate during follow-ups were significantly higher in group A than that in group B (89 vs. 57 %, P = 0.034). The average change of VAS, ODI, KPS, and EFES in group A were significantly higher than those in group B at 1-, 3-, 6-month, 1-year (P < 0.05). Meanwhile, The stability of the treated femur was significantly higher in group A than that in group B (P < 0.05).ConclusionPCP and IIF were not only a safe and effective procedure, but resulted in greater pain relief, bone consolidation, and also reduced the risk of fracture than the currently recommended approach of PCP done on malignant proximal femoral tumor.

  8. Paradigm Shifts in the Treatment of Appendicitis.

    PubMed

    Mak, Grace Zee; Loeff, Deborah S

    2016-07-01

    Acute appendicitis is the most common cause of emergent surgery in children. Historically, surgical dogma dictated emergent appendectomy due to concern for impending perforation. Recently, however, there has been a paradigm shift in both the understanding of its pathophysiology as well as its treatment to more nonoperative management. No longer is it considered a spectrum from uncomplicated appendicitis inevitably progressing to complicated appendicitis over time. Rather, uncomplicated and complicated appendicitis are now considered two distinct pathophysiologic entities. This change requires not only educating the patients and their families but also the general practitioners who will be managing treatment expectations and caring for patients long term. In this article, we review the pathophysiology of appendicitis, including the differentiation between uncomplicated and complicated appendicitis, as well as the new treatment paradigms. [Pediatr Ann. 2016;45(7):e235-e240.].

  9. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; hide

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  10. The precursory fault width formation and critical stress state of impending large earthquakes: The observation and deterministic forecasting

    NASA Astrophysics Data System (ADS)

    Takeda, F.

    2009-12-01

    Dividing Japan into meshes of about 5 degrees, we collect earthquakes (EQs) for each mesh-area from an on-line JMA focus catalog of Japan with a regionally dependent magnitude window of M ≥ 3-3.5. The time history of each mesh-collection is a string of EQ events, which draw a zigzagged trajectory in a physical space. The space coordinates are the EQ epicenter, focal depth (DEP), inter-EQ time interval (INT), and magnitude (MAG). Thus, each coordinate component of the trajectory is the time series of the corresponding EQ source parameter where time is the chronological event index. The zigzagged motion appears random like Brownian motion; however, it is a deterministic chaos. The evidence is that the largest Lyapunov exponents of each trajectory are all positive, statistically distinct from those surrogated by randomly shuffling only the event index. Thus, the deterministic chaos suggests that any impending large EQ does not rupture randomly and that some deterministic seismogenesis controls the rupture process. Namely, some short-term deterministic forecasting is theoretically possible. Therefore, we first take a moving-average of 15-25 events on each series to reduce the zigzagged motion. We further take its second order difference at the interval of 20-35 events to find its acceleration (seismogenic force) acting on each averaged series. We then find only two unique different triple phase couplings of the acceleration on source parameter DEP, INT, and MAG precursory to every impending large EQs (M > about 6) throughout Japan [Takeda, 2003; Takeda and Takeo, 2004]. Each triple phase coupling begins the MAG with medium MAG of about 4.1 at either small (shallow) DEP and large INT or large (deep) DEP and small INT, then change it to small MAG of about 3.8 at either deep DEP and small INT or shallow DEP and large INT. The transition of the EQ state creates a large linear DEP variation (W) on its series, which is found comparable to the fault width of large EQs

  11. Atmospheric weather regimes over tropical South America

    NASA Technical Reports Server (NTRS)

    Connors, Vickie S.; Garstang, Michael; Nolf, Scott R.

    1991-01-01

    Infrared radiance measurements by the GOES-6 satellite during April 1986 through April 1987 were used to characterize and identify distinct regimes of persistent large-scale cloudiness patterns over the Amazon Basin. It is suggested that the energetics of the tropical troposphere over the Amazon Basin can be directly related to the GOES large-scale cloudiness patterns. The geometry and persistence of the cloud patterns are influenced by shifts in general circulation features and are likely modulated by 4- to 5-day and 40- to 60-day waves. Diurnal forcing effects are more pronounced during weather regimes characterized by prominently clear skies over land areas.

  12. Gender and Shifts in Higher Education Managerial Regimes

    ERIC Educational Resources Information Center

    Carvalho, Teresa; Machado, Maria de Lurdes

    2010-01-01

    While Portugal is one of the European countries with a high representation of women in higher education, there is both horizontal and vertical segregation. The way universities and especially managerial positions are culturally embedded by masculinity is one of the obstacles women have traditionally faced. Recently, higher education institutions…

  13. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; hide

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  14. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  15. Shifting Plasma

    NASA Image and Video Library

    2017-05-09

    Strands of plasma at the sun edge shifted and twisted back and forth over a 22-hour period, May 2-3, 2017. In this close-up from NASA Solar Dynamics Observatory, the strands are being manipulated by strong magnetic forces associated with active region. This kind of activity is not at all uncommon, but best viewed in profile. The images were taken in a wavelength of extreme ultraviolet light. To give a sense of scale, the strands hover above the sun more than several times the size of Earth. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21632

  16. Feasibility of percutaneous cementoplasty combined with interventional internal fixation for impending pathologic fracture of the proximal femur.

    PubMed

    He, Chengjian; Tian, Qinghua; Wu, Chun-gen; Gu, Yifeng; Wang, Tao; Li, Minghua

    2014-07-01

    To evaluate the feasibility of percutaneous cementoplasty and interventional internal fixation for stabilization of impending pathologic fracture of the proximal femur. From May 2012 to August 2013, six consecutive patients (three men and three women; median age, 58.33 y ± 21.45; age range, 18-78 y) who underwent percutaneous cementoplasty plus interventional internal fixation for the treatment of metastases to the proximal femur were retrospectively analyzed. The Karnofsky performance status (KPS) and visual analog scale (VAS) score for pain were assessed before and 1 week after the procedure; moreover, the procedure duration, length of hospital stay, risk of fracture at the procedural site, and complications were assessed. The KPS increased from 66.67 ± 12.11 (range, 60-90) before the procedure to 76.67 ± 13.66 (range, 60-100) 1 week after the procedure. For symptomatic patients (n = 5), the VAS score decreased from 6.80 ± 2.39 (range, 3-9) before the procedure to 1.80 ± 0.84 (range, 1-3) at 1 week after the procedure. The mean procedure duration was 90.00 minutes ± 10.56 (range, 72-102 min). The average length of hospital stay was 7 days ± 2 (range, 4-10 d). The only complication noted consisted of thrombophlebitis in one patient, on the operative side, at 15 days after the procedure. No cases of procedural site fracture during follow-up were noted (median, 192 d; range, 30-365 d). Percutaneous cementoplasty plus interventional internal fixation is a feasible technique for stabilization of impending pathologic fracture of the femur. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  17. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  18. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  19. Regimes of Helium Burning

    NASA Astrophysics Data System (ADS)

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-01

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Döring (ZND) detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of ~108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than ~106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at ~107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below ~107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than ~104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at ~5×104 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction.

  20. Regimes of Helium Burning

    SciTech Connect

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-10

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Doering [ZND] detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of {approx}108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at {approx}107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below {approx}107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at {approx}5x10{sup 4} g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. (c) 2000 The American Astronomical Society.

  1. Proximal tibial fractures with impending compartment syndrome managed by fasciotomy and internal fixation: A retrospective analysis of 15 cases

    PubMed Central

    Sharma, Naveen; Singh, Varun; Agrawal, Ashish; Bhargava, Rakesh

    2015-01-01

    Background: Proximal tibia fractures with compartment syndrome present a challenge for orthopedic surgeons. More often than not these patients are subjected to multiple surgeries and are complicated by infection osteomyelitis and poor rehabilitation. There is no consensus in the management of these fractures. Most common mode is to do early fasciotomy with external fixation, followed by second stage definitive fixation. We performed a retrospective study of proximal tibia fractures with impending compartment syndrome treated by single stage fasciotomy and internal fixation. Results in terms of early fracture union, minimum complications and early patient mobilization were very good. Materials and Methods: Fifteen patients who were operated between July 2011 and June 2012 were selected for the study. All documents from their admission until the last followup in December 2013 were reviewed, data regarding complications collected and results were evaluated using Oxford Knee scoring system. Results: At the final outcome, there was anatomical or near anatomical alignment with no postoperative problems with range of motion of near complete flexion (>120) in all patients within 3 months. 13 patients started full weight bearing walking at 3 months. Delayed union in two patients and skin necrosis in one patient was observed. Conclusions: Since the results are encouraging and the rehabilitation time is much less when compared to conventional approaches, it is recommended using this protocol to perform early fasciotomy with the definitive internal fixation as single stage surgery to obtain excellent followup results and to reduce rehabilitation time, secondary trauma, expense of treatment and infection rate. PMID:26538755

  2. Use of negative pressure wound therapy as an adjunct to the treatment of extremity soft-tissue sarcoma with ulceration or impending ulceration.

    PubMed

    Chen, Y U; Xu, Song-Feng; Xu, Ming; Yu, Xiu-Chun

    2016-07-01

    Major wound complications of the extremities, following wide tumor resection and reconstruction for soft-tissue sarcomas (STSs), remain a challenge for limb-sparing surgery. Furthermore, STSs with ulceration or impending ulceration predispose patients to an increased risk of post-operative infection. The present study was conducted to assess the efficacy of negative pressure wound therapy (NPWT) in preventing wound complications associated with surgical treatment of STSs with ulceration or impending ulceration, in patients treated between February 2012 and January 2013. A total of 5 patients, with a mean age of 48 years (range, 24-68 years), were enrolled in the present study. The diagnoses consisted of undifferentiated pleomorphic sarcoma (n=2), leiomyosarcoma (n=1), synovial sarcoma (n=1) and epithelioid sarcoma (n=1). According to American Joint Committee on Cancer criteria, 3 cases were stage III tumors, and the remaining 2 cases were of stages IIA and IIB, respectively. A total of 3 patients exhibited ulceration at diagnosis, and the remaining patients demonstrated impending ulceration. The mean wound area following wide resection of the tumor was 73 cm(2) (range, 45-110 cm(2)). A continuous suction mode, with pressures measuring -200 to -300 mmHg, was used for 7-10 days on the soft-tissue defects as preparation for wound closure. Soft-tissue reconstruction included muscle flaps (n=2) and skin grafts (n=5). No major wound complications occurred. Post-operative functional and cosmetic outcomes were acceptable. A single patient demonstrated local recurrence 12 months after surgery and re-excision of the tumor was performed. All patients remained alive at the conclusion of follow-up, with a mean follow-up time of 26 months (range, 12-36 months). The present study demonstrated that NPWT is effective and safe when used as an adjunct to wound closure following resection of extremity STS with ulceration/impending ulceration.

  3. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect

    Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.

    2014-05-15

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  4. Impending ionospheric anomaly preceding the Iquique Mw8.2 earthquake in Chile on 2014 April 1

    NASA Astrophysics Data System (ADS)

    Guo, Jinyun; Li, Wang; Yu, Hongjuan; Liu, Zhimin; Zhao, Chunmei; Kong, Qiaoli

    2015-12-01

    To investigate the coupling relationship between great earthquake and ionosphere, the GPS-derived total electron contents (TECs) by the Center for Orbit Determination in Europe and the foF2 data from the Space Weather Prediction Center were used to analyse the impending ionospheric anomalies before the Iquique Mw8.2 earthquake in Chile on 2014 April 1. Eliminating effects of the solar and geomagnetic activities on ionosphere by the sliding interquartile range with the 27-day window, the TEC analysis results represent that there were negative anomalies occurred on 15th day prior to the earthquake, and positive anomalies appeared in 5th day before the earthquake. The foF2 analysis results of ionosonde stations Jicamarca, Concepcion and Ramey show that the foF2 increased by 40, 50 and 45 per cent, respectively, on 5th day before the earthquake. The TEC anomalous distribution indicates that there was a widely TEC decrement over the epicentre with the duration of 6 hr on 15th day before the earthquake. On 5th day before the earthquake, the TEC over the epicentre increased with the amplitude of 15 TECu, and the duration exceeded 6 hr. The anomalies occurred on the side away from the equator. All TEC anomalies in these days were within the bounds of equatorial anomaly zone where should be the focal area to monitor ionospheric anomaly before strong earthquakes. The relationship between ionospheric anomalies and geomagnetic activity was detected by the cross wavelet analysis, which implied that the foF2 was not affected by the magnetic activities on 15th day and 5th day prior to the earthquake, but the TECs were partially affected by anomalous magnetic activity during some periods of 5th day prior to the earthquake.

  5. Clinical symptoms, signs and tests for identification of impending and current water-loss dehydration in older people.

    PubMed

    Hooper, Lee; Abdelhamid, Asmaa; Attreed, Natalie J; Campbell, Wayne W; Channell, Adam M; Chassagne, Philippe; Culp, Kennith R; Fletcher, Stephen J; Fortes, Matthew B; Fuller, Nigel; Gaspar, Phyllis M; Gilbert, Daniel J; Heathcote, Adam C; Kafri, Mohannad W; Kajii, Fumiko; Lindner, Gregor; Mack, Gary W; Mentes, Janet C; Merlani, Paolo; Needham, Rowan A; Olde Rikkert, Marcel G M; Perren, Andreas; Powers, James; Ranson, Sheila C; Ritz, Patrick; Rowat, Anne M; Sjöstrand, Fredrik; Smith, Alexandra C; Stookey, Jodi J D; Stotts, Nancy A; Thomas, David R; Vivanti, Angela; Wakefield, Bonnie J; Waldréus, Nana; Walsh, Neil P; Ward, Sean; Potter, John F; Hunter, Paul

    2015-04-30

    There is evidence that water-loss dehydration is common in older people and associated with many causes of morbidity and mortality. However, it is unclear what clinical symptoms, signs and tests may be used to identify early dehydration in older people, so that support can be mobilised to improve hydration before health and well-being are compromised. To determine the diagnostic accuracy of state (one time), minimally invasive clinical symptoms, signs and tests to be used as screening tests for detecting water-loss dehydration in older people by systematically reviewing studies that have measured a reference standard and at least one index test in people aged 65 years and over. Water-loss dehydration was defined primarily as including everyone with either impending or current water-loss dehydration (including all those with serum osmolality ≥ 295 mOsm/kg as being dehydrated). Structured search strategies were developed for MEDLINE (OvidSP), EMBASE (OvidSP), CINAHL, LILACS, DARE and HTA databases (The Cochrane Library), and the International Clinical Trials Registry Platform (ICTRP). Reference lists of included studies and identified relevant reviews were checked. Authors of included studies were contacted for details of further studies. Titles and abstracts were scanned and all potentially relevant studies obtained in full text. Inclusion of full text studies was assessed independently in duplicate, and disagreements resolved by a third author. We wrote to authors of all studies that appeared to have collected data on at least one reference standard and at least one index test, and in at least 10 people aged ≥ 65 years, even where no comparative analysis has been published, requesting original dataset so we could create 2 x 2 tables. Diagnostic accuracy of each test was assessed against the best available reference standard for water-loss dehydration (serum or plasma osmolality cut-off ≥ 295 mOsm/kg, serum osmolarity or weight change) within each study. For

  6. Ecohydrology by thinking outside the bog: Shifting paradigms in an era of shifting peatland ecosystems

    NASA Astrophysics Data System (ADS)

    Waddington, James; Moore, Paul

    2016-04-01

    Large shifts in vegetation distributions are occurring worldwide and at unprecedented rates. The most extreme of these regime shifts are expected to occur at ecosystem boundaries of both semi-arid and semi-humid landscapes. Despite extensive hydrological research on the interactions between water and semi-arid ecosystems, research in peatlands on the wet end of ecosystem continuum has been "bogged down" (pun fully intended) by the traditional conceptual models (paradigms?) of peatland hydrology and ecology. The consequences of this "thinking" are large given that northern peatlands provide important global and regional ecosystem services (carbon storage, water storage, and biodiversity). This is especially true because peatlands face increases in the severity, areal extent, and frequency of climate-mediated (e.g., wildfire, drought) and land-use change (e.g., drainage, flooding, and mining) disturbances placing the future security of these critical ecosystem services in doubt. We use the word doubt because while numerical modelling studies predict peatland regime shifts and the demise of global peat stocks, there is growing evidence that peatlands are self-regulating ecosystems dominated by negative ecohydrological feedbacks that stabilize the aforementioned ecosystem services through high ecosystem resilience to disturbance. This raises several important hydrological questions? "Is there field evidence of peatland regime shifts? If so, what are the potential impacts of these shifts on water resources and watershed management? If not, are researchers actually looking in the right places (or times)? In this presentation we explore the need for a "thinking outside the bog" in order to understand the ecohydrological consequences of transformative landscape change caused by peatland regime shifts. With reference to over two decades of field research, recent advances with our Peatland Hydrological Impacts model and recent research examining primary peat formation, we

  7. Regime Dependant Microphysical Variability in Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Dolan, B.; Rutledge, S. A.; Lang, T. J.

    2010-12-01

    Of utmost importance for global precipitation estimates from satellites such as TRMM and the upcoming Global Precipitation Measurement (GPM) is to understand processes that lead to variability in precipitation on sub-seasonal, seasonal, and climatological scales. Many studies have linked differences in rainfall characteristics such as mean diameter (D0) to sub-seasonal regime variability forced by large scale wind shifts, topography, and continental and maritime convection, across various regions of the globe. Several analyses have tied differences between regimes to differing microphysical processes that drive changes in the drop-size distributions occurring in convective rainfall. For example, decreased ice mass aloft and smaller mean diameters are indicative of warm rain processes, while vigorous ice formation leads to large, melting ice to create large drops. If the microphysical variability in different regimes is characterized and understood, the results could be used to improve satellite precipitation algorithms. The polarimetric, Doppler C-band radar, CPOL, located near Darwin, Australia provides a unique platform to study differences in microphysics between land and ocean, as well as variability between monsoon and break periods. The focus of this study is to examine the microphysical processes occurring in four distinct regimes around Darwin (monsoon-land, monsoon-ocean, break-land, break-ocean), using polarimetric data from CPOL. Analyses such as contoured frequency by altitude (CFADs) diagrams, cumulative distribution functions, and mean profiles of precipitation water mass, precipitation ice mass, reflectivity, differential reflectivity and specific differential phase will aide in understanding the physics of precipitation in these regimes. The formation of precipitation ice aloft, warm rain processes, and the contributions of warm rain and cold cloud processes including melting of ice into large drops, will be linked to differences in D0, rain

  8. Evolutionary consequences of climate-induced range shifts in insects.

    PubMed

    Sánchez-Guillén, Rosa A; Córdoba-Aguilar, Alex; Hansson, Bengt; Ott, Jürgen; Wellenreuther, Maren

    2016-11-01

    Range shifts can rapidly create new areas of geographic overlap between formerly allopatric taxa and evidence is accumulating that this can affect species persistence. We review the emerging literature on the short- and long-term consequences of these geographic range shifts. Specifically, we focus on the evolutionary consequences of novel species interactions in newly created sympatric areas by describing the potential (i) short-term processes acting on reproductive barriers between species and (ii) long-term consequences of range shifts on the stability of hybrid zones, introgression and ultimately speciation and extinction rates. Subsequently, we (iii) review the empirical literature on insects to evaluate which processes have been studied, and (iv) outline some areas that deserve increased attention in the future, namely the genomics of hybridisation and introgression, our ability to forecast range shifts and the impending threat from insect vectors and pests on biodiversity, human health and crop production. Our review shows that species interactions in de novo sympatric areas can be manifold, sometimes increasing and sometimes decreasing species diversity. A key issue that emerges is that climate-induced hybridisations in insects are much more widespread than anticipated and that rising temperatures and increased anthropogenic disturbances are accelerating the process of species mixing. The existing evidence only shows the tip of the iceberg and we are likely to see many more cases of species mixing following range shifts in the near future. © 2015 Cambridge Philosophical Society.

  9. ShiftDetector: detection of shift mutations.

    PubMed

    Seroussi, Eyal; Ron, Micha; Kedra, Darek

    2002-08-01

    Sequencing of a bi-allelic PCR product, which contains an allele with a deletion/insertion mutation results in a superimposed tracefile following the site of this shift mutation. A trace file of this type hampers the use of current computer programs for base calling. ShiftDetector analyses a sequencing trace file in order to discover if it is a superimposed sequence of two molecules that differ in a shift mutation of 1 to 25 bases. The program calculates a probability score for the existence of such a shift and reconstructs the sequence of the original molecule. ShiftDetector is available from http://cowry.agri.huji.ac.il

  10. Prediction of Impending Type 1 Diabetes through Automated Dual-Label Measurement of Proinsulin:C-Peptide Ratio

    PubMed Central

    Balti, Eric V.; Keymeulen, Bart; Gillard, Pieter; Lapauw, Bruno; De Block, Christophe; Abrams, Pascale; Weber, Eric; Vermeulen, Ilse; De Pauw, Pieter; Pipeleers, Daniël; Weets, Ilse; Gorus, Frans K.

    2016-01-01

    Background The hyperglycemic clamp test, the gold standard of beta cell function, predicts impending type 1 diabetes in islet autoantibody-positive individuals, but the latter may benefit from less invasive function tests such as the proinsulin:C-peptide ratio (PI:C). The present study aims to optimize precision of PI:C measurements by automating a dual-label trefoil-type time-resolved fluorescence immunoassay (TT-TRFIA), and to compare its diagnostic performance for predicting type 1 diabetes with that of clamp-derived C-peptide release. Methods Between-day imprecision (n = 20) and split-sample analysis (n = 95) were used to compare TT-TRFIA (AutoDelfia, Perkin-Elmer) with separate methods for proinsulin (in-house TRFIA) and C-peptide (Elecsys, Roche). High-risk multiple autoantibody-positive first-degree relatives (n = 49; age 5–39) were tested for fasting PI:C, HOMA2-IR and hyperglycemic clamp and followed for 20–57 months (interquartile range). Results TT-TRFIA values for proinsulin, C-peptide and PI:C correlated significantly (r2 = 0.96–0.99; P<0.001) with results obtained with separate methods. TT-TRFIA achieved better between-day %CV for PI:C at three different levels (4.5–7.1 vs 6.7–9.5 for separate methods). In high-risk relatives fasting PI:C was significantly and inversely correlated (rs = -0.596; P<0.001) with first-phase C-peptide release during clamp (also with second phase release, only available for age 12–39 years; n = 31), but only after normalization for HOMA2-IR. In ROC- and Cox regression analysis, HOMA2-IR-corrected PI:C predicted 2-year progression to diabetes equally well as clamp-derived C-peptide release. Conclusions The reproducibility of PI:C benefits from the automated simultaneous determination of both hormones. HOMA2-IR-corrected PI:C may serve as a minimally invasive alternative to the more tedious hyperglycemic clamp test. PMID:27907006

  11. Psychopathology of Shift Work.

    ERIC Educational Resources Information Center

    Akinnawo, Ebenezer Olutope

    1989-01-01

    Examined incidence and nature of general psychopathology among Nigerian shift workers (N=320). Found shift workers more significantly psychopathological than non-shift workers (p<0.001). Prominent disorders among shift workers were intellectual, sleep, mood, and general somatic disorders. No significant difference could be attributed to gender…

  12. Psychopathology of Shift Work.

    ERIC Educational Resources Information Center

    Akinnawo, Ebenezer Olutope

    1989-01-01

    Examined incidence and nature of general psychopathology among Nigerian shift workers (N=320). Found shift workers more significantly psychopathological than non-shift workers (p<0.001). Prominent disorders among shift workers were intellectual, sleep, mood, and general somatic disorders. No significant difference could be attributed to gender…

  13. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network

    Treesearch

    Ashley E. Steel; Colin Sowder; Erin E. Peterson

    2016-01-01

    Although mean temperatures change annually and are highly correlated with elevation, the entire thermal regime on the Snoqualmie River, Washington, USA does not simply shift with elevation or season. Particular facets of the thermal regime have unique spatial patterns on the river network and at particular times of the year. We used a spatially and temporally dense...

  14. Examination Regimes and Student Achievement

    ERIC Educational Resources Information Center

    Cosentino de Cohen, Clemencia

    2010-01-01

    Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…

  15. Chapter 5. Borderlands fire regimes

    Treesearch

    Margot Wilkinson-Kaye; Thomas Swetnam; Christopher R. Baisan

    2006-01-01

    Fire is a keystone process in most natural, terrestrial ecosystems. The vital role that fire plays in controlling the structure of an ecosystem underscores the need for us to increase our knowledge of past and current fire regimes (Morgan and others 1994). Dendrochronological reconstructions of fire histories provide descriptions of past fire regimes across a range of...

  16. Impending Atypical Femoral Fracture in Patients With Medullary Thyroid Cancer With Skeletal Metastasis Treated With Long-term Bisphosphonate and Denosumab.

    PubMed

    Koizumi, Mitsuru; Gokita, Tabu; Toda, Kazuhisa

    2017-02-24

    Atypical femoral fractures (AFFs) occur in osteoporosis patients receiving long-term bisphosphonate. Atypical femoral fractures also occur in cancer patients receiving long-term bisphosphonate or denosumab, but the prevalence is low. We describe a 53-year-old woman with a history of medullary thyroid cancer and skull metastasis who was prescribed bisphosphonate for 6 years and denosumab for 1.5 years, consecutively. Bone scintigraphy performed because of spontaneous groin pain showed uptake in the lateral aspect of the left femur, which was confirmed as impending AFF. In oncological patients receiving long-term bisphosphonate or denosumab, AFF should be included as a differential diagnosis with focal femoral findings.

  17. Gear shift control mechanism

    SciTech Connect

    Janson, D.A.

    1987-03-10

    A gear shift control mechanism is described comprising: multiple shift rods directed substantially parallel to one another, each rod carrying a shift fork for axial movement; a shift lever supported for pivotal movement about a first axis directed parallel to the axes of the shift rods and for pivotal movement about a second axis directed substantially perpendicular to the axes of the shift rods. The lever is moveable about the first axis and the second axis into engagement with a selected shift fork; interlock means located on each lateral side of the shift lever and mounted for pivotal movement about the first axis for blocking engagement with the shift forks; detent means for holding the shift lever in multiple predetermined angular positions about the second axis; and spring means located on a lateral side of the shift lever and mounted for pivotal movement about the first axis into interference contact with the shift forks for producing a force tending to resiliently bias the shift lever out of engagement with the selected shift fork.

  18. Quality assurance evaluation of a simple linear protocol for the treatment of impending status epilepticus in a pediatric emergency department 2 years postimplementation.

    PubMed

    Tourigny-Ruel, Geneviève; Diksic, Dubravka; Mok, Elise; McGillivray, David

    2014-07-01

    To evaluate the efficacy and safety of a simple linear midazolam-based protocol for the management of impending status epilepticus in children up to 18 years of age. This is a descriptive, quality assessment, retrospective chart review of children presenting with the chief complaint of seizure disorder in the emergency department (ED) of a tertiary care pediatric hospital and a triage category of resuscitation or urgent from April 1, 2009, to August 31, 2011. In children with at least one seizure episode in the ED treated according to the linear protocol, three main outcomes were assessed: compliance, effectiveness, and complications. Of the 128 children meeting the above study criteria, 68 had at least one seizure episode in the ED, and treatment was required to terminate at least one seizure episode in 46 of 68 patients (67.6%). Fifty-five seizure episodes were treated in the 46 patients: 51 of 55 seizure episodes were treated with midazolam (92.7%) and 4 of 55 with lorazepam or diazepam (7.3%). Of those treated with midazolam, 86.3% (44 of 51) were successfully treated with one or two doses of midazolam. The median seizure duration for all treated patients was 6 minutes. Of the 42 patients treated with midazolam, 7 required either continuous positive airway pressure or intubation, and two patients were treated for hypotension. One patient died of pneumococcal meningitis. This simple linear protocol is an effective and safe regimen for the treatment of impending status epilepticus in children.

  19. Regime Switching State-Space Models Applied to Psychological Processes: Handling Missing Data and Making Inferences

    ERIC Educational Resources Information Center

    Hamaker, E. L.; Grasman, R. P. P. P.

    2012-01-01

    Many psychological processes are characterized by recurrent shifts between distinct regimes or states. Examples that are considered in this paper are the switches between different states associated with premenstrual syndrome, hourly fluctuations in affect during a major depressive episode, and shifts between a "hot hand" and a…

  20. Regime Switching State-Space Models Applied to Psychological Processes: Handling Missing Data and Making Inferences

    ERIC Educational Resources Information Center

    Hamaker, E. L.; Grasman, R. P. P. P.

    2012-01-01

    Many psychological processes are characterized by recurrent shifts between distinct regimes or states. Examples that are considered in this paper are the switches between different states associated with premenstrual syndrome, hourly fluctuations in affect during a major depressive episode, and shifts between a "hot hand" and a…

  1. Detecting spatial regimes in ecosystems

    EPA Science Inventory

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological ...

  2. Detecting spatial regimes in ecosystems

    EPA Science Inventory

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological ...

  3. Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul

    2016-04-01

    We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.

  4. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  5. Foreknowledge of an impending startling stimulus does not affect the proportion of startle reflexes or latency of StartReact responses.

    PubMed

    Drummond, Neil M; Leguerrier, Alexandra; Carlsen, Anthony N

    2017-02-01

    During a simple reaction time (RT) task, movements can be initiated early and involuntarily through presentation of a loud startling acoustic stimulus (SAS), a phenomenon termed the StartReact effect. In order to infer that activity in startle-related structures led to the early response triggering, it is important to observe a concurrent startle reflex in sternocleidomastoid. It is generally accepted that to consistently elicit a startle reflex, the SAS must be both intense and unpredictable. However, it remains unclear what effect explicit foreknowledge of an impending SAS has on the effectiveness of a SAS to elicit a startle reflex when preparing a motor response. To test this, participants completed two separate blocks of a simple RT task (counterbalanced order), where the control auditory go-signal was replaced with a SAS on 20 % of trials. In an unwarned block, knowledge of the trial type (SAS vs. control) was not provided in advance, while in a warned block, the trial type was forewarned. Results revealed that while foreknowledge of an impending SAS reduced the magnitude of the startle reflex, it did not affect the proportion of startle reflexes elicited or the magnitude of the StartReact effect. An increase in control trial RT was observed during the unwarned block, but only when it was performed first. These results indicate that preparation of a motor response leads to sufficiently increased activation in startle-related neural structures such that even with explicit knowledge of an upcoming SAS, participants are unable to proactively gate the upcoming sensory input.

  6. The political use of psychiatry: A comparison between totalitarian regimes.

    PubMed

    Buoli, Massimiliano; Giannuli, Aldo Sabino

    2017-03-01

    After the end of Second World War, the recent experience of the Nazi horrors stimulated a debate about the political use of psychiatry. Over the years, the focus shifted on major dictatorships of the time and especially on Soviet Union. This article aims to provide a critical review of the ways in which psychiatry was used by totalitarian regimes of the 20th century. We summarized relevant literature about political use of psychiatry in totalitarian regimes of the 20th century, with particular focus on Fascism, Nazism, Argentina dictatorship, Soviet Union and China. One of the features that are common to most of the dictatorships is that the use of psychiatry has become more prominent when the regimes have had the need to make more acceptable the imprisonment of enemies in the eyes of the world. This for example happened in the Nazi regime when sterilization and killing of psychiatric patients was explained as a kind of euthanasia, or in the Soviet Union after the formal closure of the corrective labor camps and the slow resumption of relations with the capitalistic world, or in China to justify persecution of religious minorities and preserve economic relations with Western countries. Psychiatry has been variously used by totalitarian regimes as a means of political persecution and especially when it was necessary to make acceptable to public opinion the imprisonment of political opponents.

  7. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago

    PubMed Central

    Jouffray, Jean-Baptiste; Nyström, Magnus; Norström, Albert V.; Williams, Ivor D.; Wedding, Lisa M.; Kittinger, John N.; Williams, Gareth J.

    2015-01-01

    Loss of coral reef resilience can lead to dramatic changes in benthic structure, often called regime shifts, which significantly alter ecosystem processes and functioning. In the face of global change and increasing direct human impacts, there is an urgent need to anticipate and prevent undesirable regime shifts and, conversely, to reverse shifts in already degraded reef systems. Such challenges require a better understanding of the human and natural drivers that support or undermine different reef regimes. The Hawaiian archipelago extends across a wide gradient of natural and anthropogenic conditions and provides us a unique opportunity to investigate the relationships between multiple reef regimes, their dynamics and potential drivers. We applied a combination of exploratory ordination methods and inferential statistics to one of the most comprehensive coral reef datasets available in order to detect, visualize and define potential multiple ecosystem regimes. This study demonstrates the existence of three distinct reef regimes dominated by hard corals, turf algae or macroalgae. Results from boosted regression trees show nonlinear patterns among predictors that help to explain the occurrence of these regimes, and highlight herbivore biomass as the key driver in addition to effluent, latitude and depth.

  8. Land degradation and property regimes

    Treesearch

    Paul M. Beaumont; Robert T. Walker

    1996-01-01

    This paper addresses the relationship between property regimes and land degradation outcomes, in the context of peasant agriculture. We consider explicitly whether private property provides for superior soil resource conservation, as compared to common property and open access. To assess this we implement optimization algorithms on a supercomputer to address resource...

  9. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction

  10. Style Shift in Translation

    ERIC Educational Resources Information Center

    Al-Qinai, Jamal

    2009-01-01

    The phenomenon of style shift in translated texts is ascribed mainly to textual incompatibility in terms of rhetorical asymmetry and divergence at the formality level. Mandatory shifts result from a systematic dissimilarity between the source language and the target language in terms of the underlying system of syntax, semantics and rhetorical…

  11. Making Shifts toward Proficiency

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  12. Making Shifts toward Proficiency

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  13. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  14. Changes in precipitation regime in the Baltic countries in 1966-2015

    NASA Astrophysics Data System (ADS)

    Jaagus, Jaak; Briede, Agrita; Rimkus, Egidijus; Sepp, Mait

    2016-11-01

    The aim of the study was to analyse trends and regime shifts in time series of monthly, seasonal and annual precipitation in the eastern Baltic countries (Lithuania, Latvia, Estonia) during 1966-2015. Data from 54 stations with nearly homogeneous series were used. The Mann-Kendall test was used for trend analysis and the Rodionov test for the analysis of regime shifts. Rather few statistically significant trends (p < 0.05) and regime shifts were determined. The highest increase (by approximately 10 mm per decade) was observed in winter precipitation when a significant trend was found at the large majority of stations. For monthly precipitation, increasing trends were detected at many stations in January, February and June. Weak negative trends revealed at few stations in April and September. Annual precipitation has generally increased, but the trend is mostly insignificant. The analysis of regime shifts revealed some significant abrupt changes, the most important of which were upward shifts in winter, in January and February precipitation at many stations since 1990 or in some other years (1989, 1995). A return shift in the time series of February precipitation occurred since 2003. The most significant increase in precipitation was determined in Latvia and the weakest increase in Lithuania.

  15. Projecting the risk of future climate shifts

    NASA Astrophysics Data System (ADS)

    Enfield, David B.; Cid-Serrano, Luis

    2006-06-01

    Recent research has shown that decadal-to-multidecadal (D2M) climate variability is associated with environmental changes that have important consequences for human activities, such as public health, water availability, frequency of hurricanes, and so forth. As scientists, how do we convert these relationships into decision support products useful to water managers, insurance actuaries, and others, whose principal interest lies in knowing when future climate regime shifts will likely occur that affect long-horizon decisions? Unfortunately, numerical models are far from being able to make deterministic predictions for future D2M climate shifts. However, the recent development of paleoclimate reconstructions of the Atlantic Multidecadal Oscillation (AMO) (Gray et al., [2004]) and Pacific Decadal Oscillation (PDO); (MacDonald and Case, [2005]) give us a viable alternative: to estimate probability distribution functions from long climate index series that allow us to calculate the probability of future D2M regime shifts. In this paper, we show how probabilistic projections can be developed for a specific climate mode - the AMO as represented by the Gray et al. ([2004]) tree-ring reconstruction. The methods are robust and can be applied to any D2M climate mode for which a sufficiently long index series exists, as well as to the growing body of paleo-proxy reconstructions that have become available. The target index need not be a paleo-proxy calibrated against a climate index; it may profitably be calibrated against a specific resource of interest, such as stream flow or lake levels.

  16. Instantaneous phase shifting deflectometry.

    PubMed

    Trumper, Isaac; Choi, Heejoo; Kim, Dae Wook

    2016-11-28

    An instantaneous phase shifting deflectometry measurement method is presented and implemented by measuring a time varying deformable mirror with an iPhone ® 6. The instantaneous method is based on multiplexing phase shifted fringe patterns with color, and decomposing them in x and y using Fourier techniques. Along with experimental data showing the capabilities of the instantaneous deflectometry system, a quantitative comparison with the Fourier transform profilometry method, which is a distinct phase measuring method from the phase shifting approach, is presented. Sources of error, nonlinear color-multiplexing induced error correction, and hardware limitations are discussed.

  17. Demystifying optimal dynamic treatment regimes.

    PubMed

    Moodie, Erica E M; Richardson, Thomas S; Stephens, David A

    2007-06-01

    A dynamic regime is a function that takes treatment and covariate history and baseline covariates as inputs and returns a decision to be made. Murphy (2003, Journal of the Royal Statistical Society, Series B 65, 331-366) and Robins (2004, Proceedings of the Second Seattle Symposium on Biostatistics, 189-326) have proposed models and developed semiparametric methods for making inference about the optimal regime in a multi-interval trial that provide clear advantages over traditional parametric approaches. We show that Murphy's model is a special case of Robins's and that the methods are closely related but not equivalent. Interesting features of the methods are highlighted using the Multicenter AIDS Cohort Study and through simulation.

  18. Hall effect in hopping regime

    NASA Astrophysics Data System (ADS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-02-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO.

  19. Superresolved phase-shifting Gabor holography by CCD shift

    NASA Astrophysics Data System (ADS)

    Micó, V.; Granero, L.; Zalevsky, Z.; García, J.

    2009-12-01

    Holography in the Gabor regime is restricted to weak diffraction assumptions. Otherwise, diffraction prevents an accurate recovery of the object's complex wavefront. We have recently proposed a modified Gabor-like setup to extend Gabor's concept to any sample provided that it be non-diffusive. However, the resolution of the final image becomes limited as a consequence of the additional elements considered in the proposed setup. In this paper we present an experimental approach to overcome such a limitation in which the former configuration is used while the CCD camera is shifted to different off-axis positions in order to generate a synthetic aperture. Thus, once the whole image set is recorded and digitally processed for each camera position, we merge the resulting band-pass images into one image by assembling a synthetic aperture. Finally, a superresolved image is recovered by Fourier transformation of the information contained in the generated synthetic aperture. Experimental results validate our concepts for a gain in resolution of close to 2.

  20. Clock Shifts of Optical Transitions in Ultracold Atomic Gases

    SciTech Connect

    Yu Zhenhua; Pethick, C. J.

    2010-01-08

    We calculate the shift, due to interatomic interactions, of an optical transition in an atomic Fermi gas trapped in an optical lattice, as in recent experiments of Campbell et al.[Science 324, 360 (2009)]. Using a pseudospin formalism to describe the density matrix of atoms, we derive a Bloch equation which incorporates both spatial inhomogeneity of the probe laser field and interatomic interactions. Expressions are given for the frequency shift as a function of pulse duration, detuning of the probe laser, and the spatial dependence of the electric field of the probe beam. In the low temperature semiclassical regime, we find that the magnitude of the shift is proportional to the temperature.

  1. Antiresonance phase shift in strongly coupled cavity QED.

    PubMed

    Sames, C; Chibani, H; Hamsen, C; Altin, P A; Wilk, T; Rempe, G

    2014-01-31

    We investigate phase shifts in the strong coupling regime of single-atom cavity quantum electrodynamics. On the light transmitted through the system, we observe a phase shift associated with an antiresonance and show that both its frequency and width depend solely on the atom, despite the strong coupling to the cavity. This shift is optically controllable and reaches 140°--the largest ever reported for a single emitter. Our result offers a new technique for the characterization of complex integrated quantum circuits.

  2. Detecting spatial regimes in ecosystems

    USGS Publications Warehouse

    Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.

    2017-01-01

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.

  3. Shape-Shifting Plastic

    SciTech Connect

    2015-05-20

    A new plastic developed by ORNL and Washington State University transforms from its original shape through a series of temporary shapes and returns to its initial form. The shape-shifting process is controlled through changes in temperature

  4. Our World: Fluid Shift

    NASA Image and Video Library

    Learn about the circulatory system and how gravity aids blood flow in our bodies here on Earth. Find out how NASA flight surgeons help the astronauts deal with the fluid shift that happens during s...

  5. Shift Verification and Validation

    SciTech Connect

    Pandya, Tara M.; Evans, Thomas M.; Davidson, Gregory G; Johnson, Seth R.; Godfrey, Andrew T.

    2016-09-07

    This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over a burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.

  6. Improved feedback shift register

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1972-01-01

    Design of feedback shift register with three tap feedback decoding scheme is described. Application for obtaining sequence synchronization patterns is examined. Operation of the circuitry is described and drawings of the systems are included.

  7. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  8. Straddling a paradigm shift

    SciTech Connect

    Landgren, D.

    1995-05-01

    Paul Meagher made a big mistake when he asked me about my speech. I asked him what I should talk about. He reiterated the title of the conference {open_quotes}Forecasting and DSM: Organizing for Success,{close_quotes} and said that whatever issues I wanted to cover were fine with him. As a result I will cover those areas I`ve been thinking about recently. It is hard for me to extract either Forecasting or Demand-Side Management out from the broader issues unwinding in the industry today. I`ve been around long enough to be involved in two major shifts in the industry. I call these paradigm shifts because as a planner I tend to build models in my mind to represent business or regulatory structure. Since a paradigm is defined as a clear model of something, I tend to talk about structural shifts in the industry as paradigm shifts. The first paradigm shift was brought about by the rapid escalation of energy prices in the 1970s. The second paradigm shift, brought about in part because of the first and because of growing concerns about the environment, ushered in the era of utility conservation and load management programs (components of a broader DSM concept - unfortunately today many people limit DSM to only these two pieces). The third paradigm shift is just starting, driven by partial deregulation and the subsequent increase in competition. My talk today will focus on issues related to the second paradigm, particularly in terms of utility planners getting more organized to deal with the synergies in the fields of forecasting, demand-side planning, and evaluation. I will also reflect on two new issues within the existing paradigm that influence these functional areas, namely beneficial electrification and integration of DSM into T&D planning. Finally I will talk about what I see coming as we go through another paradigm shift, particularly as it impacts forecasting and DSM.

  9. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  10. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity

    NASA Astrophysics Data System (ADS)

    Brodbeck, S.; De Liberato, S.; Amthor, M.; Klaas, M.; Kamp, M.; Worschech, L.; Schneider, C.; Höfling, S.

    2017-07-01

    The dipole coupling strength g between cavity photons and quantum well excitons determines the regime of light matter coupling in quantum well microcavities. In the strong coupling regime, a reversible energy transfer between exciton and cavity photon takes place, which leads to the formation of hybrid polaritonic resonances. If the coupling is further increased, a hybridization of different single exciton states emerges, which is referred to as the very strong coupling regime. In semiconductor quantum wells such a regime is predicted to manifest as a photon-mediated electron-hole coupling leading to different excitonic wave functions for the two polaritonic branches when the ratio of the coupling strength to exciton binding energy g /EB approaches unity. Here, we verify experimentally the existence of this regime in magneto-optical measurements on a microcavity characterized by g /EB≈0.64 , showing that the average electron-hole separation of the upper polariton is significantly increased compared to the bare quantum well exciton Bohr radius. This yields a diamagnetic shift around 0 detuning that exceeds the shift of the lower polariton by 1 order of magnitude and the bare quantum well exciton diamagnetic shift by a factor of 2. The lower polariton exhibits a diamagnetic shift smaller than expected from the coupling of a rigid exciton to the cavity mode, which suggests more tightly bound electron-hole pairs than in the bare quantum well.

  11. Changes in cold region flood regimes inferred from long-record reference gauging stations

    NASA Astrophysics Data System (ADS)

    Burn, Donald H.; Whitfield, Paul H.

    2017-04-01

    Variability and nonstationarity in flood regimes of cold regions are examined using data from hydrometric reference streamflow gauging stations from 27 natural watersheds in Canada and adjacent areas of the United States. Choosing stations from reference networks with nearly 100 years of data allows for the investigation of changes that span several phases of some of the atmospheric drivers that may influence flood behavior. The reference hydrologic networks include only stations considered to have good quality data and were screened to avoid the influences of regulation, diversions, or land use change. Changes and variations in flood regimes are complex and require a multifaceted approach to properly characterize the types of changes that have occurred and are likely to occur in the future. Peaks over threshold (POT) data are extracted from daily flow data for each watershed, and changes to the magnitude, timing, frequency, volume, and duration of threshold exceedences are investigated. Seasonal statistics are used to explore changes in the nature of the flood regime based on changes in the timing of flood threshold exceedences. A variety of measures are developed to infer flood regime shifts including from a nival regime to a mixed regime and a mixed regime to a more pluvial-dominated regime. The flood regime at many of the watersheds demonstrates increased prominence of rainfall floods and decreased prevalence of snowmelt contributions to flood responses. While some individual stations show a relationship between flood variables and climate indices, these relationships are generally weak.

  12. THE TWO REGIMES OF PHOTOSPHERIC MOTIONS IN {alpha} HYDRA

    SciTech Connect

    Gray, David F.

    2013-02-10

    High-resolution spectroscopic observations of {alpha} Hya were acquired between 2003 and 2010. Analysis of line shifts, differential shifts, line widths, and line bisectors points to two regimes of velocity fields in the photosphere of {alpha} Hya: (1) normal granulation embedded in (2) large convection cells. Variations occur on a wide range of timescales, from several years on down. Radial velocity variations, which are irregular and span 786 m s{sup -1}, have a distribution consistent with a true mean rise velocity of the large cells of {approx}725 m s{sup -1} and a dispersion of {approx}220 m s{sup -1}. The distribution of granulation velocities, as measured from the widths of spectral lines, shows only small variations, consistent with the two regime concepts. On the multi-year timescale, radial velocity changes, small temperature variations ({approx}10 K), and small line-width variations ({approx}<0.8%) track each other, possibly with phase shifts. The granulation velocity gradient for {alpha} Hya is about half as large as the Sun's and no variation with time was seen, implying that any variation in velocity gradient from one large cell to the next must be less than a few percent. The asymmetry in the granulation velocity distribution, as specified in the flux deficit, is smaller than expected for {alpha} Hya's position in the HR diagram and appears to be variable.

  13. Flow regimes during immiscible displacement

    DOE PAGES

    Armstrong, Ryan T.; Mcclure, James; Berrill, Mark A.; ...

    2017-02-01

    Fractional ow of immiscible phases occurs at the pore scale where grain surfaces and phases interfaces obstruct phase mobility. However, the larger scale behavior is described by a saturation-dependent phenomenological relationship called relative permeability. As a consequence, pore-scale parameters, such as phase topology and/ or geometry, and details of the flow regime cannot be directly related to Darcy-scale flow parameters. It is well understood that relative permeability is not a unique relationship of wetting-phase saturation and rather depends on the experimental conditions at which it is measured. Herein we use fast X-ray microcomputed tomography to image pore-scale phase arrangements duringmore » fractional flow and then forward simulate the flow regimes using the lattice-Boltzmann method to better understand the underlying pore-scale flow regimes and their influence on Darcy-scale parameters. We find that relative permeability is highly dependent on capillary number and that the Corey model fits the observed trends. At the pore scale, while phase topologies are continuously changing on the scale of individual pores, the Euler characteristic of the nonwetting phase (NWP) averaged over a sufficiently large field of view can describe the bulk topological characteristics; the Euler characteristic decreases with increasing capillary number resulting in an increase in relative permeability. Lastly, we quantify the fraction of NWP that flows through disconnected ganglion dynamics and demonstrate that this can be a significant fraction of the NWP flux for intermediate wetting-phase saturation. Furthermore, rate dependencies occur in our homogenous sample (without capillary end effect) and the underlying cause is attributed to ganglion flow that can significantly influence phase topology during the fractional flow of immiscible phases.« less

  14. Dyslexia and attentional shifting.

    PubMed

    Stoet, Gijsbert; Markey, Hayley; López, Beatriz

    2007-10-29

    Dyslexia is a neurocognitive deficit primarily expressed in reading difficulties, but also affecting non-linguistic performance. Several studies report that dyslexics perform differently in the attentional blink paradigm, which indicates an impaired capacity to rapidly shift visual attention. However, attentional shifting can occur at different levels of cognitive processing, and it is unclear whether dyslexic attentional shifting is impaired at all levels, or only at the peripheral levels. We studied performance on a task-switching paradigm by dyslexics and normal readers to test whether the difficulty with attentional shifting occurs at the level of central cognitive processing. We found no specific impairments in task-switching in dyslexics. However, dyslexics performed generally much more slowly across all conditions than normal readers. We conclude that while dyslexics have a problem with attentional switching at a perceptual level, their capacity to rapidly switch between tasks is normal. Our findings add to previous studies indicating that dyslexic problems with shifting visual attention are caused by anomalies in more peripheral neural pathways, such as the magnocellular layers in the lateral geniculate nucleus.

  15. Overview of the regimes: CWC

    SciTech Connect

    1995-12-31

    The Chemical Weapons Convention`s (CWC) seeks to eradicate an entire category of catastrophic weapons and to ensure their continued non-production. Unlike the Non-Proliferation Treaty`s (NPT), the CWC requires disarmament. States Parties having chemical weapons (CW) must destroy them. The CWC has not adopted the NPT distinction between weapons and non-weapons states; the CWC`s prohibitions and obligations will apply identically to all States parties. In most other respects, the two treaties establish similar regimes with similar approaches. Included are objectives and primary obligations, legal bases, institutional oversight, trade restrictions, protection of information, penal consequences, and role of the United Nations.

  16. The New English Quality Assurance Regime

    ERIC Educational Resources Information Center

    Brown, Roger

    2011-01-01

    England is developing a new quality assurance regime that will come into effect in October 2011. A new funding regime will operate from the following year, together with new rules to ease the participation of private higher education providers. This article describes and analyses the new quality and funding regimes. It argues that the greater…

  17. The New English Quality Assurance Regime

    ERIC Educational Resources Information Center

    Brown, Roger

    2011-01-01

    England is developing a new quality assurance regime that will come into effect in October 2011. A new funding regime will operate from the following year, together with new rules to ease the participation of private higher education providers. This article describes and analyses the new quality and funding regimes. It argues that the greater…

  18. Adaptation in Collaborative Governance Regimes

    NASA Astrophysics Data System (ADS)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  19. Adaptation in collaborative governance regimes.

    PubMed

    Emerson, Kirk; Gerlak, Andrea K

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  20. Sensitivity to spatial and temporal scale and fire regime inputs in deriving fire regime condition class

    Treesearch

    Linda Tedrow; Wendel J. Hann

    2015-01-01

    The Fire Regime Condition Class (FRCC) is a composite departure measure that compares current vegetation structure and fire regime to historical reference conditions. FRCC is computed as the average of: 1) Vegetation departure (VDEP) and 2) Regime (frequency and severity) departure (RDEP). In addition to the FRCC rating, the Vegetation Condition Class (VCC) and Regime...

  1. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  2. Trophic shift, not collapse

    USGS Publications Warehouse

    Madenjian, Charles P.; Rutherford, Edward S.; Stow, Craig A.; Roseman, Edward F.; He, Ji X.

    2013-01-01

    scientists who are closely monitoring Lake Huron’s food web, we believe that the ongoing changes are more accurately characterized as a trophic shift in which benthic pathways have become more prominent. While decreases in abundance have occurred for some species, others are experiencing improved reproduction resulting in the restoration of several important native species.

  3. Fire regime in Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in

  4. Fire regime zonation under current and future climate over eastern Canada.

    PubMed

    Boulanger, Yan; Gauthier, Sylvie; Gray, David R; Le Goff, Héloïse; Lefort, Patrick; Morissette, Jacques

    2013-06-01

    Fire is a major disturbance in Canadian forests. Along with fuel and ignition characteristics, climatic conditions are seen as one of the main drivers of fire regimes. Projected changes in climate are expected to significantly influence fire regimes in Canada. As fire regime greatly shapes large-scale patterns in biodiversity, carbon, and vegetation, as well as forest and fire management strategies, it becomes necessary to define regions where current and future fire regimes are homogeneous. Random Forests (RF) modeling was used to relate fire regime attributes prevailing between 1961 and 1990 in eastern Canada with climatic/fire-weather and environmental variables. Using climatic normals outputs from the Canadian Regional Climate Model (CRCM), we delineated current (1961-1990) and future (2011-2040, 2040-2070, 2071 2100) homogeneous fire regime (HFR) zones. Heterogeneous response of fire regime to climate changes is projected for eastern Canada with some areas (e.g., western Quebec) experiencing very small alterations while others (e.g., southeastern Ontario) are facing great shifts. Overall, models predicted a 2.2- and 2.4-fold increase in the number of fires and the annual area burned respectively mostly as a result of an increase in extreme fire-weather normals and mean drought code. As extreme fire danger would occur later in the fire season on average, the fire season would shift slightly later (5-20 days) in the summer for much of the study area while remaining relatively stable elsewhere. Although fire regime values would change significantly over time, most zone boundaries would remain relatively stable. The information resulting from HFR zonations is clearly of interest for forest and fire management agencies as it reveals zones with peculiar fire regimes that would have been hidden otherwise using predefined administrative or ecological stratifications.

  5. Shift in Indian summer monsoon onset during 1976/1977

    NASA Astrophysics Data System (ADS)

    Sahana, A. S.; Ghosh, Subimal; Ganguly, Auroop; Murtugudde, Raghu

    2015-05-01

    The Indian summer monsoon rainfall (ISMR) contributes nearly 80% of the annual rainfall over India and has a significant influence on the country’s gross domestic product through the agricultural sector. Onset of the ISMR displays substantial interannual variability and controls the crop calendar and hence the agricultural output. This variability is traditionally linked to sea surface temperature (SST) anomalies over the tropical Pacific Ocean. The tropical Pacific SST underwent a regime shift during 1976/77. We report a prominent delay in the Indian summer monsoon (ISM) onset following the regime shift. The onset dates are computed with the Hydrologic Onset and Withdrawal Index, based on vertically integrated moisture transport over the Arabian Sea (AS). The shift in onset is found to be due to the change in moisture availability over the AS. A delay in the development of easterly vertical shear reduces northward-propagating intraseasonal variability during May-June, limiting the moisture supply from the equatorial Indian Ocean (IO) to the AS. This, along with enhanced precipitation over the IO during the pre-monsoon, drives a reduction in moisture availability over the AS region from pre- to post-1976/77, delaying the ISM onset in recent decades. Our findings highlight the need for the re-assessment of the crop calendar in India, which is now based on the mean onset date computed from long-term data, without considering the regime shift or trends in onset.

  6. Boundary-layer moisture regimes

    NASA Technical Reports Server (NTRS)

    Mahrt, L.

    1991-01-01

    Boundary-layer moisture fluctuations are estimated by analyzing HAPEX and FIFE data collected on 52 aircraft flight legs. Moisture fluctuations were given considerable attention in the HAPEX flights, which were 120 km long, and flew 150 m over one area of homogeneous terrain. The repetitions permit statistical consideration of motion characteristics on horizontal scales. Two prototypical boundary layer regimes are discovered: the entrainment-drying boundary layer, and the moistening boundary layer. The latter demonstrates positive moisture skewness close to the surface related to high surface evaporation. The former is characterized by boundary-layer instability, weak surface evaporation, and drier air aloft, leading to unexpected negative moisture skewness. It is noted that 10 km moisture variations with horizontal gradients are often found in narrow zones of horizontal convergence, called mesoscale moisture fronts. A negative moisture to temperature correlation, due to surface energy budget inhomogeneity, is shown to incur large mesoscale variations of relative humidity.

  7. Fault Interactions in Extensional Regimes

    NASA Astrophysics Data System (ADS)

    Streepey, M.; Lithgow-Bertelloni, C.

    2001-12-01

    Fault Interactions in Extensional Regimes M. Streepey and C. Lithgow-Bertelloni Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 Studies have shown that faults generally tend to reactivate over long histories of deformation, often in spite of less favorable orientations or changing stress regimes in the region. Reactivation of faults suggests that rheology is a key determining factor in the localization of intense deformation in orogenic belts. It is evident in these studies that stresses are preferentially partitioned into pre-existing weak zones of the crust. This is shown commonly in orogenic belts, where thrust faults reactivate as normal faults during syn- to post-orogenic extension. Therefore, the interaction of faults might be an important element in the deformation of the lithosphere during pre- and post-orogenic tectonics. On shorter timescales, it has been suggested that fault interactions are commonplace in areas of active seismicity, and that those interactions can be related to earthquake triggering and therefore may be critically important in assessing the behavior of the lithosphere during deformation. We investigate this problem concentrating on the time evolution of faults in extensional regimes. Geologic evidence in ancient orogenic belts shows periods of protracted normal fault motion over timescales of hundreds of millions of years after orogenesis. This motion is likely episodic rather than continuous; however, this is not constrained by field and geochronological studies. Fault evolution on these timescales is modeled using the finite element code ABAQUS. Our elastic results show, as expected from dislocation theory, that stress shadows produced by motion along faults can be linearly superposed and that faults do not have a high degree of interaction. We have constructed new models of two-dimensional finite elements that represent a block of crust under extensional stresses. Sited in these blocks are weak zones

  8. The fault width formation of impending large earthquakes: Its observation near the base of the crustal seismogenic zone by the time series analysis of seismicity.

    NASA Astrophysics Data System (ADS)

    Takeda, F.; Takeo, M.

    2008-12-01

    Dividing Japan into meshes of about 5°, we collect earthquakes (EQ's) for each mesh-area from a focus catalog of Japan with a regionally dependent magnitude window of M >= 3-3.5. The time history of each mesh-collection is a string of EQ events, which draw a trajectory in a physical space. The space coordinates are the EQ epicenter, focal depth (DEP), inter-EQ time interval (INT), and magnitude (MAG). Thus, each coordinate component of the trajectory is the time series of the corresponding EQ source parameter where time is the chronological event index. Taking a moving-average of the series over 15-25 events, we find only two different triple phase couplings of the averaged DEP, INT, and MAG fluctuations precursory to every large EQ (M >= about 6) throughout Japan [Takeda, 2003; Takeda and Takeo, 2004]. Each triple phase coupling begins the MAG with medium MAG of about 4.1 at either small (shallow) DEP and large INT or large (deep) DEP and small INT, then change it to small MAG of about 3.8 at either deep DEP and small INT or shallow DEP and large INT. The transition of the EQ state creates a large linear DEP variation (W) on its series, which becomes comparable to the fault width of large EQ's except for only a very few cases. Thus, the precursory variation W appears to load the corresponding stress into the local region to prepare for an impending large EQ whose fault width becomes W. With the assumption of the fault length (L in km) being L = 2W, we can successfully forecast the M of the impending large EQ by an empirical relation given by Utsu [2002], log L = 0.5M - 1.8 for 6 =< M =< 8.5, [Takeda and Takeo, 2007]. Each triple phase coupling can draw its own physical picture of the seismogenic process in the earth lithosphere consisting of the brittle (B), brittle ductile transition (B-D) and ductile (D) layers. The B-D layer is at the base of the crustal seismogenic zone. The plate driving force of about 3x1012 Nm-1 creates steady state creep in the D part

  9. Control of a haptic gear shifting assistance device utilizing a magnetorheological clutch

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Choi, Seung-Bok

    2014-10-01

    This paper proposes a haptic clutch driven gear shifting assistance device that can help when the driver shifts the gear of a transmission system. In order to achieve this goal, a magnetorheological (MR) fluid-based clutch is devised to be capable of the rotary motion of an accelerator pedal to which the MR clutch is integrated. The proposed MR clutch is then manufactured, and its transmission torque is experimentally evaluated according to the magnetic field intensity. The manufactured MR clutch is integrated with the accelerator pedal to transmit a haptic cue signal to the driver. The impending control issue is to cue the driver to shift the gear via the haptic force. Therefore, a gear-shifting decision algorithm is constructed by considering the vehicle engine speed concerned with engine combustion dynamics, vehicle dynamics and driving resistance. Then, the algorithm is integrated with a compensation strategy for attaining the desired haptic force. In this work, the compensator is also developed and implemented through the discrete version of the inverse hysteretic model. The control performances, such as the haptic force tracking responses and fuel consumption, are experimentally evaluated.

  10. Auditory Attention Shifting

    DTIC Science & Technology

    2008-02-05

    the time needed to focus attention on a cue frequency followed the same frequency- dependent time -course as did the thresholds (Scharf, Reeves, & Suciu...JASA, 2007.) However, in Experiments 3 and 9, we attempted to measure the time course of an attention shift from one cued frequency to another...as it takes time to focus, only with long-duration (300 ms) tones is the attention band optimally narrow for every listener. We also

  11. Preparing for the "Impending Storm."

    ERIC Educational Resources Information Center

    Dodd, Julie

    1979-01-01

    Reports on an address by Richard Johns, director of Quill and Scroll, in which he suggests that the continuing existence of high school journalism programs is threatened by reduced funding and by the "back to the basics" movement. Johns offers some ideas for how to prepare for threatened cutbacks. (TJ)

  12. Impending United States energy crisis.

    PubMed

    Hirsch, R L

    1987-03-20

    The U.S. oil and gas industry has been dramatically weakened by the recent oil price collapse. Domestic drilling activity reached a new post-World War II low during the summer of 1986. Given a weak, unstable oil price outlook, U.S. capability will continue to deteriorate. In the last year U.S. imports of foreign oil have risen significantly, and if market forces alone dominate, U.S. dependence is expected to rise from 32% in 1983 to the 50 to 70% level in the not-too-distant future. The 1973 oil embargo and the subsequent attempts to improve U.S. energy security vividly demonstrated the huge costs and long periods of time required to change our energy system. These facts, coupled with the nation's generally short-term orientation, suggest a strong likelihood of a new U.S. energy crisis in the early to middle 1990s.

  13. The Impending Oral Health Crisis.

    PubMed

    Tegtmeier, Carl H; Miller, David J; Shub, Judith L

    2016-04-01

    Last May, the New York State Dental Association and the New York State Dental Foundation convened the first "Oral Health Stakeholders' Summit on the Future of Special Needs Dentistry, Hospital Dentistry and Dental Education." The summit was chaired by David J. Miller, then NYSDA President Elect, and Carl H. Tegtmeier, then chair of the NYSDA Council on Dental Health Planning and Hospital Dentistry. It brought together experts, called to frame the issues and provide information necessary for a reasoned response. And it sought input from attendees to develop recommendations to ensure that patients with intellectual and developmental disabilities, as well as an aging population with Alzheimer's disease and dementia, have access to appropriate oral health care in the years ahead. Over 100 participants, representing dentistry, hospital training programs, third-party payers, state government offices and related patient support associations, attended the two-day event in Albany. They focused on the impact of reductions in funding, the transition of Medicaid services into a managed care model, a loss of service providers and the need for expanded training programs. They heard from speakers epresenting a broad spectrum of those involved in he oral health care of patients with intellectual and evelopmental disabilities, the Alzheimer's Association, dental educators and researchers, hospital dentistry and the benefits industry, whose presentations focused on a looming oral health crisis threatening access to dental care for patients with disabilities.

  14. Propagation Regime of Iron Dust Flames

    NASA Technical Reports Server (NTRS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.

    2012-01-01

    A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.

  15. Cooperative Lamb shift in a mesoscopic atomic array.

    PubMed

    Meir, Z; Schwartz, O; Shahmoon, E; Oron, D; Ozeri, R

    2014-11-07

    According to quantum electrodynamics, the exchange of virtual photons in a system of identical quantum emitters causes a shift of its energy levels. Such shifts, known as cooperative Lamb shifts, have been studied mostly in the near-field regime. However, the resonant electromagnetic interaction persists also at large distances, providing coherent coupling between distant atoms. Here, we report a direct spectroscopic observation of the cooperative Lamb shift of an optical electric-dipole transition in an array of Sr(+) ions suspended in a Paul trap at inter-ion separations much larger than the resonance wavelength. By controlling the precise positions of the ions, we studied the far-field resonant coupling in chains of up to eight ions, extending to a length of 40  μm. This method provides a novel tool for experimental exploration of cooperative emission phenomena in extended mesoscopic atomic arrays.

  16. Changes in forest productivity across Alaska consistent with biome shift.

    PubMed

    Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J

    2011-04-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline.

  17. Background and mass extinctions: the alternation of macroevolutionary regimes.

    PubMed

    Jablonski, D

    1986-01-10

    Comparison of evolutionary patterns among Late Cretaceous marine bivalves and gastropods during times of normal, background levels of extinction and during the end-Cretaceous mass extinction indicates that mass extinctions are neither an intensification of background patterns nor an entirely random culling of the biota. During background times, traits such as planktotrophic larval development, broad geographic range of constituent species, and high species richness enhanced survivorship of species and genera. In contrast, during the, end-Cretaceous and other mass extinctions these factors were ineffectual, but broad geographic deployment of an entire lineage, regardless of the ranges of its constituent species, enhanced survivorship. Large-scale evolutionary patterns are evidently shaped by the alternation of these two macroevolutionary regimes, with rare but important mass extinctions driving shifts in the composition of the biota that have little relation to success during the background regime. Lineages or adaptations can be lost during mass extinctions for reasons unrelated to their survival values for organisms or species during background times, and long-term success would require the chance occurrence within a single lineage of sets of traits conducive to survivorship under both regimes.

  18. A Shifted Double-Diamond Titania Scaffold.

    PubMed

    Li, Hong; Liu, Ye; Cao, Xin; Han, Lu; Jiang, Chun; Che, Shunai

    2017-01-16

    Photonic crystals are expected to be metamaterials because of their potential to control the propagation of light in the linear and nonlinear regimes. Biological single-network, triply periodic constant mean curvature surface structures are considered excellent candidates owing to their large complete band gap. However, the chemical construction of these relevant structures is rare and developing new structures from thermodynamically stable double-network self-organizing systems is challenging. Herein, we reveal that the shifted double-diamond titania scaffold can achieve a complete band gap. The largest (7.71 %) band gap is theoretically obtained by shifting 0.332 c with the dielectric contrast of titania (6.25). A titania scaffold with similar shifted double-diamond structure was fabricated using a reverse core-shell microphase-templating system with an amphiphilic diblock copolymer and a titania source in a mixture of tetrahydrofuran and water, which could result in a 2.05-3.78 % gap.

  19. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime

    NASA Astrophysics Data System (ADS)

    Suen, Jian-Ping; Eheart, J. Wayland

    2006-03-01

    The history of environmental flow analysis shows a shift from an emphasis on a flat line minimum flow requirement to the development of a holistic, regime-based, approach to flow management. The ecological flow regime determines environmental flow by embracing the multitude of species within an ecosystem rather than emphasizing a single species. Moreover, this paradigm recognizes that flow magnitude, duration, frequency, timing, and predictability must be incorporated into any flow management strategy. In this study, the ecological flow regime paradigm is used to establish such comprehensive and complex management targets for operating a reservoir to satisfy a downstream aquatic ecosystem. The new paradigm incorporates the intermediate disturbance hypothesis, which holds that ecosystems are healthier under disturbances that are neither too small nor too large. The nondominated sorting genetic algorithm is used to find the Pareto set of operating rules that provides decision makers with the optimal trade-off between human needs and ecological flow regime maintenance.

  20. Who cares in Nicaragua? A care regime in an exclusionary social policy context.

    PubMed

    Franzoni, Juliana Martínez; Voorend, Koen

    2011-01-01

    In Latin American countries with historically strong social policy regimes (such as those in the Southern Cone), neoliberal policies are usually blamed for the increased burden of female unpaid work. However, studying the Nicaraguan care regime in two clearly defined periods — the Sandinista and the neoliberal eras — suggests that this argument may not hold in the case of countries with highly familialist social policy regimes. Despite major economic, political and policy shifts, the role of female unpaid work, both within the family and in the community, remains persistent and pivotal, and was significant long before the onset of neoliberal policies. Nicaragua's care regime has been highly dependent on the ‘community’ or ‘voluntary’ work of mostly women. This has also been, and continues to be, vital for the viability of many public social programmes.

  1. The shifting beverage landscape.

    PubMed

    Storey, Maureen

    2010-04-26

    STOREY, M.L. The shifting beverage landscape. PHYSIOL BEHAV, 2010. - Simultaneous lifestyle changes have occurred in the last few decades, creating an imbalance in energy intake and energy expenditure that has led to overweight and obesity. Trends in the food supply show that total daily calories available per capita increased 28% since 1970. Total energy intake among men and women has also increased dramatically since that time. Some have suggested that intake of beverages has had a disproportional impact on obesity. Data collected by the Beverage Marketing Corporation between 1988-2008 demonstrate that, in reality, fewer calories per ounce are being produced by the beverage industry. Moreover, data from the National Cancer Institute show that soft drink intake represents 5.5% of daily calories. Data from NHANES 1999-2003 vs. 2003-06 may demonstrate a shift in beverage consumption for age/gender groups, ages 6 to>60years. The beverages provided in schools have significantly changed since 2006 when the beverage industry implemented School Beverage Guidelines. This voluntary action has removed full-calorie soft drinks from participating schools across the country. This shift to lower-calorie and smaller-portion beverages in school has led to a significant decrease in total beverage calories in schools. These data support the concept that to prevent and treat obesity, public health efforts should focus on energy balance and that a narrow focus on sweetened beverages is unlikely to have any meaningful impact on this complex problem. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Atlantic weather regimes as preferred locations of the eddy-driven jetstream

    NASA Astrophysics Data System (ADS)

    Woollings, T.

    2009-04-01

    Much of the low-frequency atmospheric variability over the North Atlantic arises because of north-south shifts of the eddy-driven jetstream. With this in mind a method is developed to identify the latitude of the jetstream on any given day from the low-level wind field. In winter the distribution of jetstream latitude exhibits marked multimodality, suggesting that there are three preferred locations of the jetstream, or regimes. These three regimes are in good agreement with the results of several previous studies which attempt to identify flow regimes from maps of geopotential height or pressure. The emergence of these regimes in such different methods of analysis is testament to their robustness. Furthermore the method used here is motivated by dynamical considerations, and provides clear physical insight into the mechanisms underlying regime behaviour. Output data from a coupled GCM is analysed and shown to exhibit the same basic regime structure, although with startling errors in the relative loading of regimes.

  3. Emergent Hydrological Regimes in Amazonia Determine Vegetation Productivity and Structure.

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Canadell, J.; Schurgers, G.; Berry, J. A.; Guan, K.; Jackson, R. B.

    2016-12-01

    The Amazon rain forest has a disproportionate significance for global CO2 storage and biodiversity. Earth system models (ESMs) that estimate future climate and vegetation show little agreement in simulations in Amazonia. Here we show that evapotranspiration (ET), gross primary productivity (GPP) and above ground biomass in both models and empirical data align on an emergent hydrologically determined relationship that describes a functional relationship with annual precipitation (P). The physical relationship describes the potential for plant productivity and has a breakpoint at 2000 mm annual precipitation, where the system transitions between water and radiation limitation of annual ET. While ESM GPP is generally underestimated due to a low-bias in their internally generated P, their response to annual precipitation generally matches empirical data. It is different for biomass: ESMs show some ability in capturing biomass levels in the energy-limited wet hydrological regime above 2000 mm annual precipitation but they do not fully capture the biomass structure tipping point found in empirical data at the hydrological regime breakpoint that coincide with the forest-savanna transition. This discrepancy is likely due to the relatively simple representation of disturbances, primarily fires, and vegetation dynamics found in ESMs, and implies that ESMs likely overestimate the resilience to a potential future drying of the Amazon. Future elevated CO2 may increase plant water use efficiency and shift GPP upwards, but it will not affect the breakpoint between the regimes or the susceptibility of the forest which are both determined by precipitation and its role in determining the hydrological regime. This analysis reconciles and explains the findings of many studies on the Amazon. Our results suggests that future Amazonian biomass is governed by changes in precipitation, vegetation dynamics and disturbances, none of which are well predicted and represented by ESMs

  4. Coupled Tectonic and Climatic Shifts in Planetary Evolution

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.; Jellinek, M.

    2016-12-01

    Growing evidence suggests that the tectonic mode of the Earth has changed over its geologic lifetime. During a tectonic regime shift, the planet will be very far from any dynamic equilibrium point and, as such, standard thermal history modelling will not be applicable. A regime shift will also be associated with changes that can effect the large scale climate of a planet. Recently it has been shown that significant feedbacks are possible between planetary tectonics and the climate of a planet [e.g., 1, 2, and references therein]. How those feedbacks operate during a tectonic regime shift (e.g., the initiation of plate-tectonics) has, to date, not been fully explored. To explore linked tectonic-climate effects, during transitions between tectonic states, we couple 3D mantle convection and planetary tectonics simulations to climate models. A planet initially in a single plate state can transition to a plate-tectonic like mode as it cools. Initial lithosphere yielding, for systems with moderate convective vigor, results in an increase of pCO2 by a factor of 50 - 100 (from increased melt production), indicating that the onset of global subduction, may be significant driver of the atmospheric, in addition to the tectonic evolution. All else being held equal, the initiation time of yielding as well as the planetary position within the Solar System allow for results ranging from a climatic shutdown of an incipient mode of plate-tectonics, to a buffered atmosphere and long lived plate-tectonics, to a final 'dead snowball state'. These results illustrate the need to think of tectonics and habitably within a temporal framework in which tectonic regime shifts can be a first order control on the long term habitability potential of a planet. [1] Foley et al., (2012) EPSL; [2] Weller et al., (2015) EPSL

  5. Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs

    Treesearch

    Susan J. Prichard; Camille S. Stevens-Rumann; Paul F. Hessburg

    2017-01-01

    Across the globe, rising temperatures and altered precipitation patterns have caused persistent regional droughts, lengthened fire seasons, and increased the number of weather-driven extreme fire events. Because wildfires currently impact an increasing proportion of the total area burned, land managers need to better understand reburns – in which previously burned...

  6. Regime shifts and weakened environmental gradients in open oak and pine ecosystems

    Treesearch

    Brice B. Hanberry; Dan C. Dey; Hong S. He

    2012-01-01

    Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition,...

  7. Evidence for a Drought-driven (pre-industrial) Regime Shift in an Australian Shallow Lake

    NASA Astrophysics Data System (ADS)

    Mills, K.; Gell, P.; Doan, P.; Kershaw, P.; McKenzie, M.; Lewis, T.; Tyler, J. J.

    2015-12-01

    We present a 750-year record of ecosystem response to long-term drought history from Lake Colac, Victoria. Using multiple lines of evidence, we test the sensitivity and resilience of Lake Colac to independently reconstructed drought history. The sedimentary archive shows that Lake Colac appears to be sensitive to periods of drought. Following drought conditions c. CE 1390, the lake ecosystem indicates signs of recovery. A succession of droughts in the early 1500s initiates a change in the diatom flora, with freshwater species declining and replaced by saline tolerant species, though there is little interpretable change in aquatic palynomorphs. An inferred drought, around CE 1720 appears to precede a major switch in the lake's ecosystem. The lake became increasingly turbid and saline and there is a distinct switch from a macrophyte-dominated system to an algal-dominated system. The arrival of Europeans in Victoria (CE1840) appears to have little effect on the lake's ecosystem, but the terrestrial vegetation indicates regionally established changes including declines in native trees, especially Casuarina, and arrival and expansion of exotic shade or plantation trees Pinus and Cupressus as well as native and introduced weeds. As European impact in the catchment increases, nutrients appear to play a role in the modification of the lake's ecosystem. A long-term drying trend from c. CE 1975 is evident, culminating in the Millennium Drought, which suggests unprecedented conditions in the ecological history of the Lake.

  8. Base flow-driven shifts in tropical stream temperature regimes across a mean annual rainfall gradient

    Treesearch

    Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley

    2017-01-01

    Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...

  9. Early warning signals of regime shifts from cross-scale connectivity of land-cover patterns

    Treesearch

    Giovanni Zurlini; Kenneth Bruce Jones; Kurt Hans Riitters; Bai-Lian Li; Irene Petrosillo

    2014-01-01

    Increasing external pressures from human activities and climate change can lead to desertification, affecting the livelihood of more than 25% of the world’s population. Thus, determining proximity to transition to desertification is particularly central for arid regions before they may convert into deserts, and recent research has focused on devising early warning...

  10. Regime Shifts and Weakened Environmental Gradients in Open Oak and Pine Ecosystems

    PubMed Central

    Hanberry, Brice B.; Dey, Dan C.; He, Hong S.

    2012-01-01

    Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and conservation that rely on historical relationships and ecological principles based on disturbance across the landscape will need to incorporate modern interactions among species for resources into management plans and projections. PMID:22848467

  11. Palaeoecological signatures of vegetation change induced by herbivory regime shifts on subantarctic Enderby Island

    NASA Astrophysics Data System (ADS)

    Wood, Jamie R.; Wilmshurst, Janet M.; Turney, Chris S. M.; Fogwill, Christopher J.

    2016-02-01

    The stratigraphic relationships of palaeoecological proxies and use of changepoint analyses to determine the cause and effect relationships between past events has allowed a better understanding of the relative contributions of humans and environmental drivers to Late Quaternary extinctions and of their effects on terrestrial ecosystems. Few studies, however, have validated these approaches at localities where past interactions between vegetation communities and large herbivores are well-documented. Here, we use a peat core from subantarctic Enderby Island to present the first study tracing the spores of dung fungi alongside pollen at a site where the history of mammalian herbivore introductions (and subsequent eradication), and their effects on the vegetation, are precisely known. We find a strong connection between spore influx rates of the dung-fungus Sporormiella and PCA axis 1 of the pollen assemblages, suggesting that past vegetation change caused by herbivore introductions and eradications at the core site can be readily deduced from the palaeoecological record. The response of the vegetation community to the removal of herbivores was so rapid, however, that a difference in timing between changepoints relating to specific pollen taxa, the overall pollen community, and the decline of Sporormiella spores, could not be resolved in our record, despite a sampling resolution of <5 years. We suggest that further case-studies, spanning different vegetation and herbivore communities, are required to provide increased confidence in inferences drawn about cause-and-effect relationships using proxy changepoint offsets in palaeoecological records.

  12. Climate-driven regime shifts in the biological communities of arctic lakes

    PubMed Central

    Smol, John P.; Wolfe, Alexander P.; Birks, H. John B.; Douglas, Marianne S. V.; Jones, Vivienne J.; Korhola, Atte; Pienitz, Reinhard; Rühland, Kathleen; Sorvari, Sanna; Antoniades, Dermot; Brooks, Stephen J.; Fallu, Marie-Andrée; Hughes, Mike; Keatley, Bronwyn E.; Laing, Tamsin E.; Michelutti, Neal; Nazarova, Larisa; Nyman, Marjut; Paterson, Andrew M.; Perren, Bianca; Quinlan, Roberto; Rautio, Milla; Saulnier-Talbot, Émilie; Siitonen, Susanna; Solovieva, Nadia; Weckström, Jan

    2005-01-01

    Fifty-five paleolimnological records from lakes in the circumpolar Arctic reveal widespread species changes and ecological reorganizations in algae and invertebrate communities since approximately anno Domini 1850. The remoteness of these sites, coupled with the ecological characteristics of taxa involved, indicate that changes are primarily driven by climate warming through lengthening of the summer growing season and related limnological changes. The widespread distribution and similar character of these changes indicate that the opportunity to study arctic ecosystems unaffected by human influences may have disappeared. PMID:15738395

  13. Regime shifts and panarchies in regional scale social-ecological water systems

    EPA Science Inventory

    In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive gove...

  14. Regime Shifts in Productivity off Baja California During the Late Pleistocene?

    NASA Astrophysics Data System (ADS)

    Ortiz, J. D.; O'Connell, S. E.; Delviscio, J.; van Geen, A.; Beaufort, L.

    2003-12-01

    The eastern subtropical Pacific is a region of the surface ocean influenced strongly by ENSO but characterized by generally low sedimentation rates. Core MD02-2508 raised from ~700m depth on the Magdelana Margin near the southern tip of Baja California during the IMAGES VIII MONA cruise exhibits high sedimentation rates and appears to extend beyond 100 ka based on a preliminary age model. Work on a piston core collected during a prior cruise to the same location (MV99-PC08) demonstrates a clear correlation between the GISP-2 d18O record, and sedimentary records of diffuse spectral reflectance, organic carbon, calcium carbonate, and benthic foraminifers per gram sediment during the past 52 kyrs. Peaks in organic carbon content, which occur during warm interstadial events, correspond to maxima in benthic foraminiferal absolute abundance that are as much as two order of magnitude greater than those observed during cool stadial events. Although the age model of the core MD02-2508 is preliminary, data from this new core appears to extend this correlation back beyond 100 ka. From 2400 cm to 0 cm, sediment in core MD02-2508, is only laminated during the strongest of the interstadial events and exhibits an inverse linear correlation between calcium carbonate content and organic carbon content. Sediment deposited below 2400 cm are radically different. The base of core MD02-2508 is more distinctly and continuously laminated, exhibiting greater variance in organic carbon and calcium carbonate content. Of perhaps greater significance, there is a positive, exponential relationship between calcium carbonate and organic carbon content off Baja California during this interval, except for brief periods of lower organic carbon and calcium carbonate that exhibit the negative correlation which dominates at the site from 2400-0 cm. These results suggest greatly enhanced marine productivity prior to 100 ka off Baja California than at any time in the past 100 kyrs. One potential way to explain this result is to invoke stronger La Nina-like conditions in response to the enhanced northern hemisphere solar forcing at that time.

  15. Persistent Drought Social-Ecological Regime Shift and Migration among Agricultural Communities in Bundelkhand Region India

    NASA Astrophysics Data System (ADS)

    Alam, Parvej

    2017-04-01

    Drought is a hydro-meteorological syndrome of 'prolonged period of water scarcity affecting natural resources, environment and, thereby, the people'. Different parts of India suffer from drought incidences of varying periodicity, with all 13 districts of Bundelkhand region repeatedly declared as drought-prone. Spread over the states of Uttar Pradesh and Madhya Pradesh, Bundelkhand falls in the rain shadow, semi-arid zone of the northern extreme of Peninsular India. In recent years, because of changing pattern of monsoons across India, rainfall in Bundelkhand in addition to being deficient has also become unpredictable. Such unpredictability has made agriculture in Bundelkhand region a risky and less attractive proposition and farmers are increasingly forgoing agriculture in villages in favour of livelihood opportunities in urban areas. Thus, there has been a constant flow of rural to urban migration in towns and cities in Bundelkhand. The present study analyses the changing land use pattern of Bundelkhand with the help of land use classification and explores the trend of rural-urban migration in Bundelkhand in the light of Galor's Model of Migration. In the current work, Climate Change is taken as a major driver behind migration decision and with the help of primary survey, a two-generational, inter regional model based on Galor's model has been developed. Keywords: Bundelkhand, Drought, Migration, Galor's Model

  16. Massive regime shifts and high activity of heterotrophic bacteria in an ice-covered lake.

    PubMed

    Bižić-Ionescu, Mina; Amann, Rudolf; Grossart, Hans-Peter

    2014-01-01

    In winter 2009/10, a sudden under-ice bloom of heterotrophic bacteria occurred in the seasonally ice-covered, temperate, deep, oligotrophic Lake Stechlin (Germany). Extraordinarily high bacterial abundance and biomass were fueled by the breakdown of a massive bloom of Aphanizomenon flos-aquae after ice formation. A reduction in light resulting from snow coverage exerted a pronounced physiological stress on the cyanobacteria. Consequently, these were rapidly colonized, leading to a sudden proliferation of attached and subsequently of free-living heterotrophic bacteria. Total bacterial protein production reached 201 µg C L(-1) d(-1), ca. five times higher than spring-peak values that year. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis at high temporal resolution showed pronounced changes in bacterial community structure coinciding with changes in the physiology of the cyanobacteria. Pyrosequencing of 16S rRNA genes revealed that during breakdown of the cyanobacterial population, the diversity of attached and free-living bacterial communities were reduced to a few dominant families. Some of these were not detectable during the early stages of the cyanobacterial bloom indicating that only specific, well adapted bacterial communities can colonize senescent cyanobacteria. Our study suggests that in winter, unlike commonly postulated, carbon rather than temperature is the limiting factor for bacterial growth. Frequent phytoplankton blooms in ice-covered systems highlight the need for year-round studies of aquatic ecosystems including the winter season to correctly understand element and energy cycling through aquatic food webs, particularly the microbial loop. On a global scale, such knowledge is required to determine climate change induced alterations in carbon budgets in polar and temperate aquatic systems.

  17. Massive Regime Shifts and High Activity of Heterotrophic Bacteria in an Ice-Covered Lake

    PubMed Central

    Bižić-Ionescu, Mina; Amann, Rudolf; Grossart, Hans-Peter

    2014-01-01

    In winter 2009/10, a sudden under-ice bloom of heterotrophic bacteria occurred in the seasonally ice-covered, temperate, deep, oligotrophic Lake Stechlin (Germany). Extraordinarily high bacterial abundance and biomass were fueled by the breakdown of a massive bloom of Aphanizomenon flos-aquae after ice formation. A reduction in light resulting from snow coverage exerted a pronounced physiological stress on the cyanobacteria. Consequently, these were rapidly colonized, leading to a sudden proliferation of attached and subsequently of free-living heterotrophic bacteria. Total bacterial protein production reached 201 µg C L−1 d−1, ca. five times higher than spring-peak values that year. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis at high temporal resolution showed pronounced changes in bacterial community structure coinciding with changes in the physiology of the cyanobacteria. Pyrosequencing of 16S rRNA genes revealed that during breakdown of the cyanobacterial population, the diversity of attached and free-living bacterial communities were reduced to a few dominant families. Some of these were not detectable during the early stages of the cyanobacterial bloom indicating that only specific, well adapted bacterial communities can colonize senescent cyanobacteria. Our study suggests that in winter, unlike commonly postulated, carbon rather than temperature is the limiting factor for bacterial growth. Frequent phytoplankton blooms in ice-covered systems highlight the need for year-round studies of aquatic ecosystems including the winter season to correctly understand element and energy cycling through aquatic food webs, particularly the microbial loop. On a global scale, such knowledge is required to determine climate change induced alterations in carbon budgets in polar and temperate aquatic systems. PMID:25419654

  18. Body size distributions signal a regime shift in a lake ecosystem

    EPA Science Inventory

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this st...

  19. Smart social adaptation prevents catastrophic ecological regime shifts in networks of myopic harvesters

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan; Lucht, Wolfgang; Wiedermann, Marc; Heitzig, Jobst; Kurths, Jürgen

    2015-04-01

    In the anthropocene, the rise of global social and economic networks with ever increasing connectivity and speed of interactions, e.g., the internet or global financial markets, is a key challenge for sustainable development. The spread of opinions, values or technologies on these networks, in conjunction with the coevolution of the network structures themselves, underlies nexuses of current concern such as anthropogenic climate change, biodiversity loss or global land use change. To isolate and quantitatively study the effects and implications of network dynamics for sustainable development, we propose an agent-based model of information flow on adaptive networks between myopic harvesters that exploit private renewable resources. In this conceptual model of a network of socio-ecological systems, information on management practices flows between agents via boundedly rational imitation depending on the state of the resource stocks involved in an interaction. Agents can also adapt the structure of their social network locally by preferentially connecting to culturally similar agents with identical management practices and, at the same time, disconnecting from culturally dissimilar agents. Investigating in detail the statistical mechanics of this model, we find that an increasing rate of information flow through faster imitation dynamics or growing density of network connectivity leads to a marked increase in the likelihood of environmental resource collapse. However, we show that an optimal rate of social network adaptation can mitigate this negative effect without loss of social cohesion through network fragmentation. Our results highlight that seemingly immaterial network dynamics of spreading opinions or values can be of large relevance for the sustainable management of socio-ecological systems and suggest smartly conservative network adaptation as a strategy for mitigating environmental collapse. Hence, facing the great acceleration, these network dynamics should be more routinely incorporated in standard models of economic development or integrated assessment models used for evaluating anthropogenic climate change.

  20. Dynamic Analytical Capability to Better Understand and Anticipate Extremist Shifts Within Populations under Authoritarian Regimes.

    SciTech Connect

    Bernard, Michael Lewis

    2015-11-01

    The purpose of this work is to create a generalizable data- and theory-supported capability to better understand and anticipate (with quantifiable uncertainty): 1) how the dynamics of allegiance formations between various groups and society are impacted by active conflict and by third-party interventions and 2) how/why extremist allegiances co-evolve over time due to changing geopolitical, sociocultural, and military conditions.

  1. Regime, phase and paradigm shifts: making community ecology the basic science for fisheries

    PubMed Central

    Mangel, Marc; Levin, Phillip S.

    2005-01-01

    Modern fishery science, which began in 1957 with Beverton and Holt, is ca. 50 years old. At its inception, fishery science was limited by a nineteenth century mechanistic worldview and by computational technology; thus, the relatively simple equations of population ecology became the fundamental ecological science underlying fisheries. The time has come for this to change and for community ecology to become the fundamental ecological science underlying fisheries. This point will be illustrated with two examples. First, when viewed from a community perspective, excess production must be considered in the context of biomass left for predators. We argue that this is a better measure of the effects of fisheries than spawning biomass per recruit. Second, we shall analyse a simple, but still multi-species, model for fishery management that considers the alternatives of harvest regulations, inshore marine protected areas and offshore marine protected areas. Population or community perspectives lead to very different predictions about the efficacy of reserves. PMID:15713590

  2. Transmission shift control assembly

    SciTech Connect

    Dzioba, D.L.

    1989-04-18

    This patent describes a transmission shift control assembly mounted on a steering column having a longitudinal axis comprising: bracket means secured to the steering column; transmission shift cable means having a portion secured to the bracket means and a portion linearly movable relative to the secured portion; mounting means on the bracket cable drive arm means having an axis and being rotatably mounted on the rotary axis on the mounting means oblique to the longitudinal axis and including a cable connecting portion secured to the movable portion of the cable means and lever mounting means adjacent the mounting means; operator control means including lever means, pin means for pivotally mounting the lever means on the lever mounting means on an axis substantially perpendicular to the rotary axis and positioning arm means formed on the lever means and extending from the pin means; and detent gate means disposed on the bracket means in position to abut the positioning arm means for limiting the extent of pivotal movement of the lever means.

  3. Superfluid regimes in degenerate atomic Fermi gases

    SciTech Connect

    Shlyapnikov, G.V.

    2005-05-05

    We give a brief overview of recent studies of quantum degenerate regimes in ultracold Fermi gases. The attention is focused on the regime of Bose-Einstein condensation of weakly bound molecules of fermionic atoms, formed at a large positive scattering length for the interspecies atom-atom interaction. We analyze remarkable collisional stability of these molecules and draw prospects for future studies.

  4. Regimes of DNA confined in a nanochannel

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Doyle, Patrick

    2014-03-01

    Scaling regimes for polymers confined to tubular channels are well established when the channel cross-sectional dimension is either very small (Odjik regime) or large (classic de Gennes regime) relative to the polymer Kuhn length. In the literature, there is no clear consensus regarding the intermediate region and if subregimes even exist to connect these two classic bounding regimes. The confluence of emerging single DNA mapping technologies and a resurged interest in the fundamental properties of confined polymers has led to extensive research in this area using DNA as a model system. Due to the DNA molecule's properties and limitations of nanofabrication, most experiments are performed in this intermediate regime with channel dimensions of a few Kuhn lengths. Here we use simulations and theory to reconcile conflicting theories and show that there are indeed extended de Gennes, partial alignment and hairpin regimes located between the two classic regimes. Simulations results for both chain extension and free energy support the existence of these regimes. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (CBET-1335938).

  5. Three regimes of relativistic beam - plasma interaction

    NASA Astrophysics Data System (ADS)

    Muggli, P.; Allen, B.; Fang, Y.; Yakimenko, V.; Babzien, M.; Kusche, K.; Fedurin, M.; Vieira, J.; Martins, J.; Silva, L.

    2012-12-01

    Three regimes of relativistic beam - plasma interaction can in principle be reached at the ATF depending on the relative transverse and longitudinal size of the electron bunch when compared to the cold plasma collisionless skin depth c?ωpe: the plasma wakefield accelerator (PWFA), the self-modulation instability (SMI), and the current filamentation instability (CFI) regime. In addition, by choosing the bunch density, the linear, quasi-nonlinear and non linear regime of the PWFA can be reached. In the case of the two instabilities, the bunch density determines the growth rate and therefore the occurrence or not of the instability. We briefly describe these three regimes and outline results demonstrating that all these regime have or will be reached experimentally. We also outline planned and possible follow-on experiments.

  6. Three regimes of relativistic beam - plasma interaction

    SciTech Connect

    Muggli, P.; Allen, B.; Fang, Y.; Yakimenko, V.; Babzien, M.; Kusche, K.; Fedurin, M.; Vieira, J.; Martins, J.; Silva, L.

    2012-12-21

    Three regimes of relativistic beam - plasma interaction can in principle be reached at the ATF depending on the relative transverse and longitudinal size of the electron bunch when compared to the cold plasma collisionless skin depth c?{omega}{sub pe}: the plasma wakefield accelerator (PWFA), the self-modulation instability (SMI), and the current filamentation instability (CFI) regime. In addition, by choosing the bunch density, the linear, quasi-nonlinear and non linear regime of the PWFA can be reached. In the case of the two instabilities, the bunch density determines the growth rate and therefore the occurrence or not of the instability. We briefly describe these three regimes and outline results demonstrating that all these regime have or will be reached experimentally. We also outline planned and possible follow-on experiments.

  7. Colonization dynamics of ciliate morphotypes modified by shifting sandy sediments.

    PubMed

    Risse-Buhl, Ute; Felsmann, Katja; Mutz, Michael

    2014-08-01

    Sandy stream-bed sediments colonized by a diverse ciliate community are subject to various disturbance regimes. In microcosms, we investigated the effect of sediment shifting on the colonization dynamics of 3 ciliate morphotypes differing in morphology, behavior and feeding strategy. The dynamics of the ciliate morphotypes inhabiting sediment pore water and overlying water were observed at 3 sediment shifting frequencies: (1) stable sediments, (2) periodically shifting sediments such as migrating ripples, and (3) continuously shifting sediments as occurring during scour events of the uppermost sediment. Sediment shifting significantly affected the abundance and growth rate of the ciliate morphotypes. The free-swimming filter feeder Dexiostoma campylum was vulnerable to washout by sediment shifting since significantly higher numbers occurred in the overlying water than in pore water. Abundance of D. campylum only increased in pore water of stable sediments. On the contrary, the vagile grasper feeder Chilodonella uncinata and the sessile filter feeder Vorticella convallaria had positive growth rates and successfully colonized sediments that shifted periodically and continuously. Thus, the spatio-temporal pattern of sediment dynamics acts as an essential factor of impact on the structure, distribution and function of ciliate communities in sand-bed streams. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Identifying and Investigating the Late-1960s Interhemispheric SST Shift

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Lee, S. Y.; Liu, Y.; Chiang, J. C. H.

    2014-12-01

    The global north-south interhemispheric sea surface temperature (SST) difference experienced a pronounced and rapid decrease in the late 1960s, which has been linked to drying in the Sahel, South Asia, and East Asia. However, some basic questions about the interhemispheric SST shift remain unresolved, including its scale and whether the constituent changes in different basins were coordinated. In this study, we systematically investigate the spatial and temporal behavior of the late-1960s interhemispheric SST shift using ocean surface and subsurface observations. We also evaluate potential mechanisms using control and specific-forcing CMIP5 simulations. Using a regime shift detection technique, we identify the late-1960s shift as the most prominent in the historical observational SST record. We additionally examine the corresponding changes in upper-ocean heat content and salinity associated with the shift. We find that there were coordinated upper-ocean cooling and freshening in the subpolar North Atlantic, the region of the largest-magnitude SST decrease during the interhemispheric shift. These upper-ocean changes correspond to a weakened North Atlantic thermohaline circulation (THC). However, the THC decrease does not fully account for the rapid global interhemispheric SST shift, particularly the warming in the extratropical Southern Hemisphere.

  9. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  10. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  11. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  12. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  13. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  14. Distinct Turbulence Saturation Regimes in Stellarators

    NASA Astrophysics Data System (ADS)

    Plunk, G. G.; Xanthopoulos, P.; Helander, P.

    2017-03-01

    In the complex 3D magnetic fields of stellarators, ion-temperature-gradient turbulence is shown to have two distinct saturation regimes, as revealed by petascale numerical simulations and explained by a simple turbulence theory. The first regime is marked by strong zonal flows and matches previous observations in tokamaks. The newly observed second regime, in contrast, exhibits small-scale quasi-two-dimensional turbulence, negligible zonal flows, and, surprisingly, a weaker heat flux scaling. Our findings suggest that key details of the magnetic geometry control turbulence in stellarators.

  15. Hydrological regime modifications induced by climate change in Mediterranean area

    NASA Astrophysics Data System (ADS)

    Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Valerio Noto, Leonardo

    2015-04-01

    The knowledge of river flow regimes has a capital importance for a variety of practical applications, in water resource management, including optimal and sustainable use. Hydrological regime is highly dependent on climatic factors, among which the most important is surely the precipitation, in terms of frequency, seasonal distribution and intensity of rainfall events. The streamflow frequency regime of river basins are often summarized by flow duration curves (FDCs), that offer a simple and comprehensive graphical view of the overall historical variability associated with streamflow, and characterize the ability of the basin to provide flows of various magnitudes. Climate change is likely to lead shifts in the hydrological regime, and, consequently, in the FDCs. Staring from this premise, the primary objective of the present study is to explore the effects of potential climate changes on the hydrological regime of some small Mediterranean basins. To this aim it is here used a recent hydrological model, the ModABa model (MODel for Annual flow duration curves assessment in ephemeral small BAsins), for the probabilistic characterization of the daily streamflows in small catchments. The model has been calibrated and successively validated in a unique small catchment, where it has shown a satisfactory accuracy in reproducing the empirical FDC starting from easily derivable parameters arising from basic ecohydrological knowledge of the basin and commonly available climatic data such as daily precipitation and temperatures. Thus, this work also represents a first attempt to apply the ModABa to basins different from that used for its preliminary design in order to testing its generality. Different case studies are selected within the Sicily region; the model is first calibrated at the sites and then forced by future climatic scenarios, highlighting the principal differences emerging from the current scenario and future FDCs. The future climate scenarios are generated using

  16. Observation of the Phononic Lamb Shift with a Synthetic Vacuum

    NASA Astrophysics Data System (ADS)

    Rentrop, T.; Trautmann, A.; Olivares, F. A.; Jendrzejewski, F.; Komnik, A.; Oberthaler, M. K.

    2016-10-01

    In contrast to classical empty space, the quantum vacuum fundamentally alters the properties of embedded particles. This paradigm shift allows one to explain the discovery of the celebrated Lamb shift in the spectrum of the hydrogen atom. Here, we engineer a synthetic vacuum, building on the unique properties of ultracold atomic gas mixtures, offering the ability to switch between empty space and quantum vacuum. Using high-precision spectroscopy, we observe the phononic Lamb shift, an intriguing many-body effect originally conjectured in the context of solid-state physics. We find good agreement with theoretical predictions based on the Fröhlich model. Our observations establish this experimental platform as a new tool for precision benchmarking of open theoretical challenges, especially in the regime of strong coupling between the particles and the quantum vacuum.

  17. Antiretroviral therapy: Shifting sands

    PubMed Central

    Sashindran, V.K.; Chauhan, Rajeev

    2016-01-01

    HIV/AIDS has been an extremely difficult pandemic to control. However, with the advent of antiretroviral therapy (ART), HIV has now been transformed into a chronic illness in patients who have continued treatment access and excellent long-term adherence. Existing indications for ART initiation in asymptomatic patients were based on CD4 levels; however, recent evidence has broken the shackles of CD4 levels. Early initiation of ART in HIV patients irrespective of CD4 counts can have profound positive impact on morbidity and mortality. Early initiation of ART has been found not only beneficial for patients but also to community as it reduces the risk of transmission. There have been few financial concerns about providing ART to all HIV-positive people but various studies have proven that early initiation of ART not only proves to be cost-effective but also contributes to economic and social growth of community. A novel multidisciplinary approach with early initiation and availability of ART at its heart can turn the tide in our favor in future. Effective preexposure prophylaxis and postexposure prophylaxis can also lower transmission risk of HIV in community. New understanding of HIV pathogenesis is opening new vistas to cure and prevention. Various promising candidate vaccines and drugs are undergoing aggressive clinical trials, raising optimism for an ever-elusive cure for HIV. This review describes various facets of tectonic shift in management of HIV. PMID:26900224

  18. Integrated modelling of DEMO-FNS current ramp-up scenario and steady-state regime

    NASA Astrophysics Data System (ADS)

    Dnestrovskij, A. Yu.; Kuteev, B. V.; Bykov, A. S.; Ivanov, A. A.; Lukash, V. E.; Medvedev, S. Yu.; Sergeev, V. Yu.; Sychugov, D. Yu.; Khayrutdinov, R. R.

    2015-06-01

    An approach to the integrated modelling of plasma regimes in the projected neutron source DEMO-FNS based on different codes is developed. The consistency check of the steady-state regime is carried out, namely, the possibility of the plasma current ramp-up, acceptance of growth rates of MHD modes in the steady-state regime, heat loads to the wall and divertor plates and neutron yield value. The following codes are employed for the integrated modelling. ASTRA transport code for calculation of plasma parameters in the steady-state regime, NUBEAM Monte Carlo code for NBI incorporated into the ASTRA code, DINA free boundary equilibrium and evolution code, SPIDER free boundary equilibrium and equilibrium reconstruction code, KINX ideal MHD stability code, TOKSTAB rigid shift vertical stability code, edge and divertor plasma B2SOLPS5.2 code and Semi-analytic Hybrid Model (SHM) code for self-consistent description of the core, edge and divertor plasmas based on the experimental scaling laws. The consistent steady-state regime for the DEMO-FNS plasma and the plasma current ramp-up scenario are developed using the integrated modelling approach. Passive copper coils are suggested to reduce the plasma vertical instability growth rate to below ˜30 s-1.The outer divertor operation in the ‘high-recycling’ regime is numerically demonstrated with a maximal heat flux density of 7-9 MW m-2 that is technically acceptable.

  19. Two regimes of the Arctic's circulation from ocean models with ice and contaminants.

    PubMed

    Proshutinsky, A Y; Johnson, M

    2001-01-01

    A two-dimensional barotropic, coupled, ocean-ice model with a space resolution of 55.5 km and driven by atmospheric forces, river run-off, and sea-level slope between the Pacific and the Arctic Oceans, has been used to simulate the vertically averaged currents and ice drift in the Arctic Ocean. Results from 43 years of numerical simulations of water and ice motions demonstrate that two wind-driven circulation regimes are possible in the Arctic, a cyclonic and an anti-cyclonic circulation. These two regimes appear to alternate at 5-7 year intervals with the 10-15 year period. It is important to pollution studies to understand which circulation regime prevails at any time. It is anticipated that 1995 is a year with a cyclonic regime, and during this cyclonic phase and possibly during past cyclonic regimes as well, pollutants may reach the Alaskan shelf. The regime shifts demonstrated in this paper are fundamentally important to understanding the Arctic's general circulation and particularly important for estimating pollution transport.

  20. Earth Regime Network Evolution Study (ERNESt)

    NASA Technical Reports Server (NTRS)

    Menrad, Bob

    2016-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).

  1. Transition from linear- to nonlinear-focusing regime in filamentation

    PubMed Central

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  2. Spin-torque driven ferromagnetic resonance in a nonlinear regime

    NASA Astrophysics Data System (ADS)

    Chen, W.; de Loubens, G.; Beaujour, J.-M. L.; Sun, J. Z.; Kent, A. D.

    2009-10-01

    Spin-valve based nanojunctions incorporating Co form="infix">∣Ni multilayers with perpendicular anisotropy were used to study spin-torque driven ferromagnetic resonance (ST-FMR) in a nonlinear regime. Perpendicular field swept resonance lines were measured under a large amplitude microwave current excitation, which produces a large angle precession of the Co form="infix">∣Ni layer magnetization. With increasing rf power the resonance lines broaden and become asymmetric, with their peak shifting to lower applied field. A nonhysteretic step jump in ST-FMR voltage signal was also observed at high powers. The results are analyzed in terms of the foldover effect of a forced nonlinear oscillator and compared to macrospin simulations. The ST-FMR nonhysteretic step response may have applications in frequency and amplitude tunable nanoscale field sensors.

  3. Excitonic correlation in the Mott crossover regime in Ge

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Fumiya; Shimano, Ryo

    2015-04-01

    Exciton Mott transition (EMT) in Ge was investigated by using optical-pump and terahertz-probe spectroscopy. From the quantitative analysis of optical conductivity and dielectric function, we evaluated the densities of unbound electron-hole pairs and excitons after the photoexcitation, from which we determined the ionization ratio of excitons α. The Mott crossover density region in Ge was elucidated from the density dependence of α in the temperature range above the critical temperature of electron-hole droplets. The 1 s -2 p excitonic transition energy hardly shifted with increasing density toward the EMT. Combined with the similar results recently observed in bulk Si, we suggest that the robustness of excitonic correlation against the Coulomb screening is a universal feature in bulk semiconductors in the Mott crossover regime.

  4. Cooperative Lamb shift in a quantum emitter array

    NASA Astrophysics Data System (ADS)

    Schwartz, Osip; Meir, Ziv; Shahmoon, Ephraim; Oron, Dan; Ozeri, Roee

    2014-05-01

    Whenever several quantum light emitters are brought in proximity with one another, their interaction with common electromagnetic fields couples them, giving rise to cooperative shifts in their resonance frequency. Such collective line shifts are central to modern atomic physics, being closely related to superradiance on one hand and the Lamb shift on the other. Although collective shifts have been theoretically predicted more than fifty years ago, the effect has not been observed yet in a controllable system of a few isolated emitters. Here, we report a direct spectroscopic observation of the cooperative shift of an optical electric dipole transition in a system of up to eight Sr ions suspended in a Paul trap. We study collective resonance shift in the previously unexplored regime of far-field coupling, and provide the first observation of cooperative effects in an array of quantum emitters. These results pave the way towards experimental exploration of cooperative emission phenomena in mesoscopic systems. Z. Meir and O. Schwartz contributed equally to this work.

  5. Prediction Rules for Regime Changes and Length in a New Regime for the Lorenz Model.

    NASA Astrophysics Data System (ADS)

    Shankar Yadav, Rama; Dwivedi, Suneet; Mittal, Ashok Kumar

    2005-07-01

    Despite the widespread use of the Lorenz model as a conceptual model for predictability studies in meteorology, only Evans et al. seem to have studied the prediction of occurrence of regime changes and their duration. In this paper, simpler rules are presented for forecasting regime changes and their lengths, with near-perfect forecasting accuracy. It is found that when |x(t)| is greater than a critical value xc, the current regime will end after it completes the current orbit. Moreover, the length n of the new regime increases monotonically with the maximum value xm of |x(t)| in the previous regime. A best-fit cubic expression provides a very good estimate of n for the next regime, given xm for the previous regime.Similar forecasting rules are also obtained for regime changes in the forced Lorenz model. This model was introduced by Palmer and used as a conceptual model to explore the effects of sea surface temperature on seasonal mean rainfall. It was found that for the forced Lorenz model, the critical value xc changed linearly with the forcing parameter providing bias to one of the regimes. Similar regime prediction rules have been found in some other two-regime attractors. It seems these forecasting rules are a generic property of a large class of two-regime attractors. Although as a conceptual model, the Lorenz model cannot be taken very literally, these results suggest a relationship between magnitudes of maximum anomaly in one regime, for example, the active spell, and duration of the subsequent break spell.

  6. Iranian Regime Reform: Opportunities and Consequences

    DTIC Science & Technology

    2010-12-01

    formal political access to mitigate the adverse effects of . . . the deterioration of quality of life .”70 Three broad sets of factors outlined by...demanding changes in the Iranian regime that mesh with U.S.. national interests. However, the Green Movement may not be successful in effecting change...viable threat to the Iranian regime. This thesis used game theory as a tool because game theory outcomes very often reflect real- life outcomes

  7. Electron transport fluxes in potato plateau regime

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1997-12-01

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}

  8. Electron plasma wave filamentation in the kinetic regime

    NASA Astrophysics Data System (ADS)

    Lushnikov, Pavel; Rose, Harvey; Silantyev, Denis

    2016-10-01

    We consider nonlinear electron plasma wave (EPW) dynamics in the kinetic wavenumber regime, 0.25 < kλD < 0.45 , which is typical for current high temperature laser-plasma interaction experiments, where k is the EPW wavenumber and λD is the electron Debye length. In this kinetic regime, EPW frequency reduction due to electron trapping may dominate the ponderomotive frequency shift. Previous 3D PIC simulations showed that the trapped electron EPW filamentation instability can saturate stimulated Raman backscatter by reducing the EPWs coherence but multidimensional Vlasov simulations [1] are needed to address that saturation in details. We performed nonlinear, non-equilibrium 2D Vlasov simulations to study the EPW filamentation. The initial conditions are created either by external forcing or by constructing the appropriate 1D travelling Bernstein-Greene-Kruskal (BGK) mode. Transverse perturbations of any of these initial conditions grow with time eventually producing strongly nonlinear filamentation followed by plasma turbulence. We compared these simulations with the theoretical results on growth rates of the transverse instability BGK mode showing the satisfactory agreement. Supported by the New Mexico Consortium and NSF DMS-1412140.

  9. Available Climate Regimes Drive Niche Diversification during Range Expansion.

    PubMed

    Wüest, Rafael O; Antonelli, Alexandre; Zimmermann, Niklaus E; Linder, H Peter

    2015-05-01

    Climate is a main predictor of biodiversity on a global scale, yet how climate availability affects niche evolution remains poorly explored. Here we assess how intercontinental climate differences may affect the evolution of climate niches and suggest three possible processes: niche truncation along major environmental gradients, intercontinental differences in available climate causing differences in selective regimes, and niche shifts associated with long-distance dispersals leading to a pattern of punctuated evolution. Using the globally distributed danthonioid grasses, we show significant niche differentiation among continents and several instances of niche truncation. The comparison of inferred selective regimes with differences in available climatic space among continents demonstrates adaptation resulting from opportunistic evolution toward available climatic space. Our results suggest that niche evolution in this clade is punctuated, consistent with accelerated niche evolution after long-distance dispersal events. Finally, we discuss how intrinsic constraints (genetic, developmental, or functional) and biotic interactions could have interacted with these three processes during range expansion. Integrating these mechanisms could improve predictions for invasive taxa and long-term evolutionary responses of expanding clades to climate change.

  10. Global patterns of change in discharge regimes for 2100

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, F. C.; van Beek, L. P. H.; Kwadijk, J. C. J.; Bierkens, M. F. P.

    2012-04-01

    This study makes a thorough global assessment of the effects of climate change on hydrological regimes and their accompanying uncertainties. Meteorological data from twelve GCMs (SRES scenarios A1B and control experiment 20C3M) are used to drive the global hydrological model PCR-GLOBWB. This reveals in which regions of the world changes in hydrology can be detected that have a high likelihood and are consistent amongst the ensemble of GCMs. New compared to existing studies is: (1) the comparison of spatial patterns of regime changes and (2) the quantification of notable consistent changes calculated relative to the GCM specific natural variability. The resulting consistency maps indicate in which regions the likelihood of hydrological change is large. Projections of different GCMs diverge widely. This underscores the need of using a multi-model ensemble. Despite discrepancies amongst models, consistent results are revealed: by 2100 the GCMs project consistent decreases in discharge for southern Europe, southern Australia, parts of Africa and southwestern South-America. Discharge decreases strongly for most African rivers, the Murray and the Danube while discharge of monsoon influenced rivers slightly increases. In the Arctic regions river discharge increases and a phase-shift towards earlier peaks is observed. Results are comparable to previous global studies, with a few exceptions. Globally we calculated an ensemble mean discharge increase of more than ten percent. This increase contradicts previously estimated decreases, which is amongst others caused by the use of smaller GCM ensembles and different reference periods.

  11. Global patterns of change in discharge regimes for 2100

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, F. C.; van Beek, L. P. H.; Kwadijk, J. C. J.; Bierkens, M. F. P.

    2011-12-01

    This study makes a thorough global assessment of the effects of climate change on hydrological regimes and their accompanying uncertainties. Meteorological data from twelve GCMs (SRES scenarios A1B, and control experiment 20C3M) are used to drive the global hydrological model PCR-GLOBWB. We reveal in which regions of the world changes in hydrology can be detected that are significant and consistent amongst the ensemble of GCMs. New compared to existing studies is: (1) the comparison of spatial patterns of regime changes and (2) the quantification of consistent significant change calculatesd relative to both the natural variability and the inter-model spread. The resulting consistency maps indicate in which regions likelihood of hydrological change is large. Projections of different GCMs diverge widely. This underscores the need of using a multi-model ensemble. Despite discrepancies amongst models, consistent results are revealed: by 2100 the GCMs project consistent decreases in discharge for southern Europe, southern Australia, parts of Africa and southwestern South-America. Discharge decreases are large for most African rivers, the Murray and the Danube. While discharge of Monsoon influenced rivers slightly increases. In the Arctic regions river discharge increases and a phase-shift towards earlier peaks is observed. Results are comparable to previous global studies, with a few exceptions. Globally we calculated an ensemble mean discharge increase of more than ten percent. This increase contradicts previously estimated decreases, which is amongst others caused by the use of smaller GCM ensembles and different reference periods.

  12. Zero-shifted accelerometer outputs

    NASA Astrophysics Data System (ADS)

    Galef, Arnold

    1986-08-01

    It is claimed that the commonly appearing zero-shift in pyroshock data is usually a symptom of a malfunctioning measurement system, so that the data can not be repaired (by high-pass filtering or equivalent) unless tests can be devised that permit the demonstration that the system is operating in a linear mode in all respects other than the shift. The likely cause of the zero-shift and its prevention are discussed.

  13. Phase-shift coherence holography.

    PubMed

    Naik, Dinesh N; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo

    2010-05-15

    We propose and experimentally demonstrate a new reconstruction scheme for coherence holography using computer-generated phase-shift coherence holograms. A 3D object encoded into the spatial coherence function is reconstructed directly from a set of incoherently illuminated computer-generated holograms with numerically introduced phase shifts. Although a rotating ground glass is used to introduce spatially incoherent illumination, the phase-shifting portion of the system is simple and free from mechanically moving components.

  14. Thermochromic shifts in supercritical fluids

    SciTech Connect

    Yonker, C.R.; Smith, R.D. )

    1989-02-23

    Thermochromic shifts of organic solute molecules in supercritical CO{sub 2} under conditions of both constant pressure and density are compared to previous studies of solvatochromic shifts at isothermal conditions. Similar solvatochromic and thermochromic shifts are seen as a function of density for supercritical CO{sub 2}. At constant density a small thermochromic shift ({approx}400 cm{sup {minus}1}) for supercritical CO{sub 2} was seen for both 2-nitroanisole and 4-ethylnitrobenzene. The excited-state dipole moments for 2-nitroanisole, as calculated from the thermochromic and solvatochromic data, were in agreement.

  15. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  16. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  17. Fast online learning of control regime transitions for adaptive robotic mobility

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian

    2012-06-01

    We introduce a new framework, Model Transition Control (MTC), that models robot control problems as sets of linear control regimes linked by nonlinear transitions, and a new learning algorithm, Dynamic Threshold Learning (DTL), that learns the boundaries of these control regimes in real-time. We demonstrate that DTL can learn to prevent understeer and oversteer while controlling a simulated high-speed vehicle. We also show that DTL can enable an iRobot PackBot to avoid rollover in rough terrain and to actively shift its center-of-gravity to maintain balance when climbing obstacles. In all cases, DTL is able to learn control regime boundaries in a few minutes, often with single-digit numbers of learning trials.

  18. Piping Regimes in Cohesive Mud Layers

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.

    2016-12-01

    Piping is commonly encountered in the highly saturated cohesive muds of estuarine and coastal environments, where tidal and wave action builds up excess pore water pressure. Once the built-up pressure is released, the upwelling pore water locally fluidizes and forms pipes through the mud layer. These pipes propagate through the mud layer and erupt at its surface. Herein, we investigate the mechanisms and conditions that promote piping in cohesive mud layers, which to date remain largely unknown, in parts because of the inherent difficulty in collecting field data. A fluidization column was carefully designed for replicating pipe formation in the laboratory by injecting pressurized water at the base of an overlaying kaolin mud layer through a nozzle. The kaolin mud concentration, C, and flow rate, q, through the nozzle were varied systematically to elucidate their effects on pipe formation. Localized pore water pressure measurements revealed that the pipe formation is accompanied by a pressure wave with magnitude comparable to the kaolin mud yield strength. Pressure measurements across the mud layer combined with visual observations indicated the presence of two fluidization regimes, dubbed advective and diffusive. Under the advective regime, a single vertical channel formed above the nozzle. In contrast, under the diffusive regime, a channel network formed within the mud layer and multiple channels erupted on the mud layer surface. The C and q conditions corresponding to each regime were delineated in a fluidization regime diagram. In parallel to the experiments, a numerical model was developed from a quasi-steady form of the 1D momentum equation, for predicting the flow velocity in the vertical pipe for the advective regime. Future work is focused on developing a probabilistic numerical model for predicting the pipe network configuration and hydraulics under the diffusive regime.

  19. Greenland Meltwater and Arctic Circulation Regimes

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, D. S.; Proshutinsky, A. Y.; Timmermans, M. L.; Myers, P. G.; Platov, G.

    2015-12-01

    Between 1948 and 1996, wind-driven components of ice drift and surface ocean currents experienced a well-pronounced decadal variability alternating between anticyclonic and cyclonic circulation regimes. During cyclonic regimes, low sea level atmospheric pressure dominated over the Arctic Ocean driving sea ice and the upper ocean clockwise; the Arctic atmosphere was relatively warm and humid and freshwater flux from the Arctic Ocean toward the sub-Arctic seas was intensified. During anticylonic circulation regimes, high sea level pressure dominated over the Arctic driving sea ice and ocean counter-clockwise; the atmosphere was cold and dry and the freshwater flux from the Arctic to the sub-Arctic seas was reduced. Since 1997, however, the Arctic system has been dominated by an anticyclonic circulation regime with a set of environmental parameters that are atypical for these regimes. Of essential importance is to discern the causes and consequences of the apparent break-down in the natural decadal variability of the Arctic climate system, and specifically: Why has the well-pronounced decadal variability observed in the 20th century been replaced by relatively weak interannual changes under anticyclonic circulation regime conditions in the 21st century? We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from Greenland impact environmental conditions and interrupt their decadal variability. In order to test this hypothesis, numerical experiments with several FAMOS (Forum for Arctic Modeling & Observational Synthesis) ice-ocean coupled models have been conducted. In these experiments, Greenland melt freshwater is tracked by passive tracers being constantly released along the Greenland coast. Propagation pathways and time scales of Greenland meltwater within the sub-Arctic seas are discussed.

  20. Identifying natural flow regimes using fish communities

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.

    2011-10-01

    SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.

  1. Spectral transformations in the regime of pulse self-trapping in a nonlinear photonic crystal

    SciTech Connect

    Novitsky, Denis V.

    2011-11-15

    We consider the interaction of a femtosecond light pulse with a one-dimensional photonic crystal with relaxing cubic nonlinearity in the regime of self-trapping. By use of numerical simulations, it is shown that, under certain conditions, the spectra of reflected and transmitted light possess the properties of narrowband (quasimonochromatic) or wideband (continuumlike) radiation. It is remarkable that these spectral features appear due to a significant frequency shift and occur inside a photonic band gap of the structure under investigation.

  2. Bragg-scattering conversion at telecom wavelengths towards the photon counting regime.

    PubMed

    Krupa, Katarzyna; Tonello, Alessandro; Kozlov, Victor V; Couderc, Vincent; Di Bin, Philippe; Wabnitz, Stefan; Barthélémy, Alain; Labonté, Laurent; Tanzilli, Sébastien

    2012-11-19

    We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.

  3. Predicting range-shift success potential for tropical marine fishes using external morphology.

    PubMed

    Smith, Shannen M; Fox, Rebecca J; Donelson, Jennifer M; Head, Megan L; Booth, David J

    2016-09-01

    With global change accelerating the rate of species' range shifts, predicting which are most likely to establish viable populations in their new habitats is key to understanding how biological systems will respond. Annually, in Australia, tropical fish larvae from the Great Barrier Reef (GBR) are transported south via the East Australian Current (EAC), settling into temperate coastal habitats for the summer period, before experiencing near-100% mortality in winter. However, within 10 years, predicted winter ocean temperatures for the southeast coast of Australia will remain high enough for more of these so-called 'tropical vagrants' to survive over winter. We used a method of morphological niche analysis, previously shown to be an effective predictor of invasion success by fishes, to project which vagrants have the greatest likelihood of undergoing successful range shifts under these new climatic conditions. We find that species from the family of butterflyfishes (Chaetodontidae), and the moorish idol, Zanclus cornutus, are most likely to be able to exploit new niches within the ecosystem once physiological barriers to overwintering by tropical vagrant species are removed. Overall, the position of vagrants within the morphospace was strongly skewed, suggesting that impending competitive pressures may impact disproportionately on particular parts of the native community.

  4. Precipitation regime classification for the Mojave Desert: Implications for fire occurrence

    USGS Publications Warehouse

    Tagestad, Jerry; Brooks, Matthew L.; Cullinan, Valerie; Downs, Janelle; McKinley, Randy

    2016-01-01

    Long periods of drought or above-average precipitation affect Mojave Desert vegetation condition, biomass and susceptibility to fire. Changes in the seasonality of precipitation alter the likelihood of lightning, a key ignition source for fires. The objectives of this study were to characterize the relationship between recent, historic, and future precipitation patterns and fire. Classifying monthly precipitation data from 1971 to 2010 reveals four precipitation regimes: low winter/low summer, moderate winter/moderate summer, high winter/low summer and high winter/high summer. Two regimes with summer monsoonal precipitation covered only 40% of the Mojave Desert ecoregion but contain 88% of the area burned and 95% of the repeat burn area. Classifying historic precipitation for early-century (wet) and mid-century (drought) periods reveals distinct shifts in regime boundaries. Early-century results are similar to current, while the mid-century results show a sizeable reduction in area of regimes with a strong monsoonal component. Such a shift would suggest that fires during the mid-century period would be minimal and anecdotal records confirm this. Predicted precipitation patterns from downscaled global climate models indicate numerous epochs of high winter precipitation, inferring higher fire potential for many multi-decade periods during the next century.

  5. Flexible Schedules and Shift Work.

    ERIC Educational Resources Information Center

    Beers, Thomas M.

    2000-01-01

    Flexible work hours have gained prominence, as more than 25 million workers (27.6% of all full-time workers) can now vary their schedules. However, there has been little change since the mid-1980s in the proportion who work a shift other than a regular daytime shift. (JOW)

  6. Climate effects on future runoff regimes of Pacific mountain tributaries

    SciTech Connect

    Rango, A.; Roberts, R.; Martinec, J.

    1995-12-31

    Because most Pacific mountain tributaries are situated in the Northern hemisphere, the runoff regime is characterized by high river flows in April-September and low river flows in October--March. With regard to global warming, a partial shift of inflows into the Pacific Ocean from the summer to the winter has to be expected. For quantitative evaluations, the SRM snowmelt runoff model is applied in several basins in the Pacific rim, ranging from 57{degree} North (west coast of Canada) to 45{degree} South (east coast of New Zealand). In the Kings River basin of California (4,000 km{sup 2}, 171--4,341 m a.s.l.) with the envisaged rise of temperature, runoff in October--March is significantly increased at the expense of snow accumulation in winter and summer runoff. Also, summer runoff peaks are shifted to earlier dates. Similar redistribution of runoff is evaluated for the Illecillewaet River basin of British Columbia (1,155 km{sup 2}, 509--3,150 m a.s.l.), a tributary to the Columbia River. However, an additional effect is observed: because nearly 10% of the surface is covered with permanent snowfields and glaciers, runoff would be temporarily increased from these frozen reserves. A quantitative analysis reveals that in the Illecillewaet basin, even a moderate increase of precipitation would not offset a gradual disappearance of glaciers due to increased melting.

  7. Dynamic treatment regimes: technical challenges and applications

    PubMed Central

    Lizotte, Daniel J.; Qian, Min; Pelham, William E.; Murphy, Susan A.

    2014-01-01

    Dynamic treatment regimes are of growing interest across the clinical sciences because these regimes provide one way to operationalize and thus inform sequential personalized clinical decision making. Formally, a dynamic treatment regime is a sequence of decision rules, one per stage of clinical intervention. Each decision rule maps up-to-date patient information to a recommended treatment. We briefly review a variety of approaches for using data to construct the decision rules. We then review a critical inferential challenge that results from nonregularity, which often arises in this area. In particular, nonregularity arises in inference for parameters in the optimal dynamic treatment regime; the asymptotic, limiting, distribution of estimators are sensitive to local perturbations. We propose and evaluate a locally consistent Adaptive Confidence Interval (ACI) for the parameters of the optimal dynamic treatment regime. We use data from the Adaptive Pharmacological and Behavioral Treatments for Children with ADHD Trial as an illustrative example. We conclude by highlighting and discussing emerging theoretical problems in this area. PMID:25356091

  8. Dispersive Regimes of the Dicke Model.

    PubMed

    Barberena, Diego; Lamata, Lucas; Solano, Enrique

    2017-08-18

    We study two dispersive regimes of the Dicke model in the dynamics of N two-level atoms interacting with a bosonic mode for long interaction times. Firstly, we analyze the model for the regime in which the qubit frequencies are equal and smaller than the mode frequency, and for values of the coupling strength similar or larger than the mode frequency, namely, the deep strong coupling regime. Secondly, we address an interaction that is dependent on the photon number, where the coupling strength is comparable to the geometric mean of the qubit and mode frequencies. We show that the associated dynamics is analytically tractable and provide useful frameworks with which to analyze the system behavior. In the deep strong coupling regime, we unveil the structure of unexpected resonances for specific values of the coupling, present for N ≥ 2, and in the photon-number-dependent regime we demonstrate that all the nontrivial dynamical behavior occurs in the atomic degrees of freedom for a given Fock state. We verify these assertions with numerical simulations of the qubit population and photon-statistic dynamics.

  9. Metabolic impact of shift work.

    PubMed

    Zimberg, Ioná Zalcman; Fernandes Junior, Silvio A; Crispim, Cibele Aparecida; Tufik, Sergio; de Mello, Marco Tulio

    2012-01-01

    In developing countries, shift work represents a considerable contingent workforce. Recently, studies have shown that overweight and obesity are more prevalent in shift workers than day workers. In addition, shift work has been associated with a higher propensity for the development of many metabolic disorders, such as insulin resistance, diabetes, dislipidemias and metabolic syndrome. Recent data have pointed that decrease of the sleep time, desynchronization of circadian rhythm and alteration of environmental aspects are the main factors related to such problems. Shortened or disturbed sleep is among the most common health-related effects of shift work. The plausible physiological and biological mechanisms are related to the activation of the autonomic nervous system, inflammation, changes in lipid and glucose metabolism, and related changes in the risk for atherosclerosis, metabolic syndrome, and type II diabetes. The present review will discuss the impact of shift work on obesity and metabolic disorders and how disruption of sleep and circadian misalignment may contribute to these metabolic dysfunctions.

  10. Adding Fuel to the Fire: The Contribution of Perennial Bunchgrasses in Altering Fire Regimes in the Great Basin

    USDA-ARS?s Scientific Manuscript database

    The historic fire return interval in Wyoming sagebrush ecosystems has been estimated in the hundreds of years; however, the current fire regime has shifted to short fire return intervals with some areas burning six times in the past 60 years. Invasive annual grasses (e.g. Bromus tectorum) are freque...

  11. Rainbow trout versus brook trout biomass and production under varied climate regimes in small southern Appalachian streams

    Treesearch

    Bonnie. J.E. Myers; C. Andrew Dolloff; Andrew L. Rypel

    2014-01-01

    Many Appalachian streams historically dominated by Brook Trout Salvelinus fontinalis have experienced shifts towards fish communities dominated by Rainbow Trout Onchorhynchus mykiss. We used empirical estimates of biomass and secondary production of trout conspecifics to evaluate species success under varied thermal regimes. Trout...

  12. Sagebrush steppe and pinyon-juniper ecosystems: effects of changing fire regimes, increased fuel loads, and invasive species

    Treesearch

    Jeanne C. Chambers; E. Durant McArthur; Steven B. Monson; Susan E. Meyer; Nancy L. Shaw; Robin J. Tausch; Robert R. Blank; Steve Bunting; Richard R. Miller; Mike Pellant; Bruce A. Roundy; Scott C. Walker; Alison Whittaker

    2005-01-01

    Pinyon-juniper woodlands and Wyoming big sagebrush ecosystems have undergone major changes in vegetation structure and composition since settlement by European Americans. These changes are resulting in dramatic shifts in fire frequency, size and severity. Effective management of these systems has been hindered by lack of information on: (1) presettlement fire regimes...

  13. Determination of the Hall Thruster Operating Regimes

    SciTech Connect

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-04-09

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile.

  14. Massive superstring scatterings in the Regge regime

    SciTech Connect

    He Song; Lee, Jen-Chi; Takahashi, Keijiro; Yang Yi

    2011-03-15

    We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. Based on the summation algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge expansion of all high-energy fermionic string scattering amplitudes.

  15. Planning for regime change and its aftermath

    DTIC Science & Technology

    2017-06-09

    countries’ governing regimes since 9/11–Afghanistan, Iraq, and Libya–and U.S. policy at time of writing supports two more. Despite this experience...Iraq, and Libya–and U.S. policy at time of writing supports two more. Despite this experience, and the likely future need, the U.S. has no...time of writing , U.S. policy publicly supports regime change in Syria and North Korea. President Obama’s decision not to militarily intervene to

  16. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  17. Light focusing in the Anderson regime

    NASA Astrophysics Data System (ADS)

    Leonetti, Marco; Karbasi, Salman; Mafi, Arash; Conti, Claudio

    2014-07-01

    Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibres in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation-invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibres allow a more efficient focusing action with respect to standard fibres in a way independent of their length, because of the propagation-invariant features and cooperative action of transverse localizations.

  18. Supercurrent in the quantum Hall regime.

    PubMed

    Amet, F; Ke, C T; Borzenets, I V; Wang, J; Watanabe, K; Taniguchi, T; Deacon, R S; Yamamoto, M; Bomze, Y; Tarucha, S; Finkelstein, G

    2016-05-20

    A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.

  19. On the regimes of charge reversal.

    PubMed

    Jiménez-Angeles, Felipe; Lozada-Cassou, Marcelo

    2008-05-07

    Charge reversal of the planar electrical double layer is studied by means of a well known integral equation theory. By a numerical analysis, a diagram is constructed with the onset points of charge reversal in the space of the fundamental variables of the system. Within this diagram, two regimes of charge reversal are identified, which are referred to as oscillatory and nonoscillatory. We found that these two regimes can be distinguished through a simple formula. Furthermore, a symmetry between electrostatic and size correlations in charge reversal is exhibited. Agreement of our results with other theories and molecular simulations data is discussed.

  20. Statistical regimes of random laser fluctuations

    SciTech Connect

    Lepri, Stefano; Cavalieri, Stefano; Oppo, Gian-Luca; Wiersma, Diederik S.

    2007-06-15

    Statistical fluctuations of the light emitted from amplifying random media are studied theoretically and numerically. The characteristic scales of the diffusive motion of light lead to Gaussian or power-law (Levy) distributed fluctuations depending on external control parameters. In the Levy regime, the output pulse is highly irregular leading to huge deviations from a mean-field description. Monte Carlo simulations of a simplified model which includes the population of the medium demonstrate the two statistical regimes and provide a comparison with dynamical rate equations. Different statistics of the fluctuations helps to explain recent experimental observations reported in the literature.

  1. Supercurrent in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Amet, F.; Ke, C. T.; Borzenets, I. V.; Wang, J.; Watanabe, K.; Taniguchi, T.; Deacon, R. S.; Yamamoto, M.; Bomze, Y.; Tarucha, S.; Finkelstein, G.

    2016-05-01

    A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.

  2. Comparative climatology of four marine stratocumulus regimes

    NASA Technical Reports Server (NTRS)

    Hanson, Howard P.

    1990-01-01

    The climatology of marine stratocumulus (MSc) cloud regimes off the west coasts of California, Peru, Morocco, and Angola are examined. Long-term, annual averages are presented for several quantities of interest in the four MSc regimes. The climatologies were constructed using the Comprehensive Ocean-Atmosphere Data Set (COADS). A 40 year time series of observations was extracted for 32 x 32 deg analysis domains. The data were taken from the monthly-averaged, 2 deg product. The resolution of the analysis is therefore limited to scales of greater than 200 km with submonthly variability not resolved. The averages of total cloud cover, sea surface temperature, and surface pressure are presented.

  3. Markovian quantum master equation beyond adiabatic regime.

    PubMed

    Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo

    2017-01-01

    By introducing a temporal change time scale τ_{A}(t) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τ_{A}(t) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.

  4. Markovian quantum master equation beyond adiabatic regime

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo

    2017-01-01

    By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.

  5. Health Effects of Shift Work

    PubMed Central

    LaDou, Joseph

    1982-01-01

    More than 13.5 million American workers, close to 20 percent of the work force, are assigned to evening or night shifts. In some industries such as automobile, petrochemical and textile manufacturing the proportion of shift workers is greater than 50 percent. As the popularity of shift work and other “alternative work schedules” grows, concern is increasing over the disturbance created in the lives of workers and their families by these economically and socially useful innovations. Twenty percent of workers are unable to tolerate shift work. Daily physiologic variations termed circadian rhythms are interactive and require a high degree of phase relationship to produce subjective feelings of wellbeing. Disturbance of these activities, circadian desynchronization, whether from passage over time zones or from shift rotation, results in health effects such as disturbance of the quantity and quality of sleep, disturbance of gastrointestinal and other organ system activities, and aggravation of diseases such as diabetes mellitus, epilepsy and thyrotoxicosis. Worker selection can reduce the number of health problems resulting from shift work. The periodic examination of shift workers is recommended. PMID:6962577

  6. Different substrate regimes determine transcriptional profiles and gene co-expression in Methanosarcina barkeri (DSM 800).

    PubMed

    Lin, Qiang; Fang, Xiaoyu; Ho, Adrian; Li, Jiaying; Yan, Xuefeng; Tu, Bo; Li, Chaonan; Li, Jiabao; Yao, Minjie; Li, Xiangzhen

    2017-08-21

    Methanosarcina barkeri (DSM 800) is a metabolically versatile methanogen and shows distinct metabolic status under different substrate regimes. However, the mechanisms underlying distinct transcriptional profiles under different substrate regimes remain elusive. In this study, based on transcriptional analysis, the growth performances and gene expressions of M. barkeri fed on acetate, H2 + CO2, and methanol, respectively, were investigated. M. barkeri showed higher growth performances under methanol, followed by H2 + CO2 and acetate, which corresponded well with the variations of gene expressions. The α diversity (evenness) of gene expressions was highest under the acetate regime, followed by H2 + CO2 and methanol, and significantly and negatively correlated with growth performances. The gene co-expression analysis showed that "Energy production and conversion," "Coenzyme transport and metabolism," and "Translation, ribosomal structure, and biogenesis" showed deterministic cooperation patterns of intra- and inter-functional classes. However, "Posttranslational modification, protein turnover, chaperones" showed exclusion with other functional classes. The gene expressions and especially the relationships among them potentially drove the shifts of metabolic status under different substrate regimes. Consequently, this study revealed the diversity-related ecological strategies that a high α diversity probably provided more fitness and tolerance under natural environments and oppositely a low α diversity strengthened some specific physiological functions, as well as the co-responses of gene expressions to different substrate regimes.

  7. Transformative Shifts in Art History Teaching: The Impact of Standards-Based Assessment

    ERIC Educational Resources Information Center

    Ormond, Barbara

    2011-01-01

    This article examines pedagogical shifts in art history teaching that have developed as a response to the implementation of a standards-based assessment regime. The specific characteristics of art history standards-based assessment in the context of New Zealand secondary schools are explained to demonstrate how an exacting form of assessment has…

  8. Transformative Shifts in Art History Teaching: The Impact of Standards-Based Assessment

    ERIC Educational Resources Information Center

    Ormond, Barbara

    2011-01-01

    This article examines pedagogical shifts in art history teaching that have developed as a response to the implementation of a standards-based assessment regime. The specific characteristics of art history standards-based assessment in the context of New Zealand secondary schools are explained to demonstrate how an exacting form of assessment has…

  9. Delinating Thermohaline Double-Diffusive Rayleigh Regimes

    NASA Astrophysics Data System (ADS)

    Graf, T.; Walther, M.; Kolditz, O.; Liedl, R.

    2013-12-01

    In natural systems, convective flow induced from density differences may occur in near-coastal aquifers, atmospheric boundary layers, oceanic streams or within the earth crust. Whether an initially stable, diffusive regime evolves into a convective (stable or chaotic) regime, or vice versa, depends on the system's framing boundary conditions. A conventional parameter to express the relation between diffusive and convective forces of such a density-driven regime is Rayleigh number (Ra). While most systems are mainly dominated by only a single significant driving force (i.e. only temperature or salinity), some systems need to consider two boundary processes (e.g. deep, thus warm, haline flow in porous media). In that case, a two-dimensional, 'double-diffusive' Rayleigh system can be defined. Nield (1998) postulated a boundary between diffusive and convective regime at RaT + RaC = 4pi^2 in the first quadrant (Q1), with Rayleigh numbers for temperature and concentration respectively. The boundary in the forth quadrant (Q4) could not exactly be determined, yet the approximate position estimated. Simulations with HydroGeoSphere (Therrien, 2010) using a vertical, quadratic, homogeneous, isotropic setup confirmed the existence of the 4pi^2-boundary and revealed additional regimes (diffusive, single-roll, double-roll, chaotic) in Q1. Also, non-chaotic, oscillating patterns could be identified in Q4. More detailed investigations with OpenGeoSys (Kolditz, 2012) confirmed the preceding HGS results, and, using a 1:10-scaled domain (height:length), uncovered even more distinctive regimes (diffusive, minimum ten roles, supposely up to 25 roles, and chaotic?) in Q1, while again, oscillating patterns were found in the transition zone between diffusive and chaotic regimes in Q4. Output of numerical simulations from Q1 and Q4 show the mentioned regimes (diffusive, stable-convective, stable-oscillatory, chaotic) while results are displayed in context of a possible delination between

  10. Characteristics of Whipple Shield Performance in the Shatter Regime

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Bjorkman, Michael; Christiansen, Eric L.

    2009-01-01

    Between the onset of projectile fragmentation and the assumption of rear wall failure due to an impulsive load, multi-wall ballistic limit equations are linearly interpolated to provide reasonable yet conservative predictions of perforation thresholds with conveniently simple mathematics. Although low velocity and hypervelocity regime predictions are based on analytical expressions, there is no such scientific foundation for predictions in the intermediate (or shatter) regime. As the debris flux in low earth orbit (LEO) becomes increasingly dominated by manmade pollution, the profile of micrometeoroid and orbital debris (MMOD) risk shifts continually towards lower velocities. For the International Space Station (ISS), encounter velocities below 7 km/s now constitute approximately 50% of the penetration risk. Considering that the transition velocity from shatter to hypervelocity impact regimes described by common ballistic limit equations (e.g. new non-optimum Whipple shield equation [1]) occurs at 7 km/s, 50% of station risk is now calculated based on failure limit equations with little analytical foundation. To investigate projectile and shield behavior for impact conditions leading to projectile fragmentation and melt, a series of hypervelocity impact tests have been performed on aluminum Whipple shields. In the experiments projectile diameter, bumper thickness, and shield spacing were kept constant, while rear wall thickness was adjusted to determine spallation and perforation limits at various impact velocities and angles. The results, shown in Figure 1 for normal and 45 impacts, demonstrated behavior that was not sufficiently described by the simplified linear interpolation of the NNO equation (also shown in Figure 1). Hopkins et al. [2] investigated the performance of a nominally-identical aluminum Whipple shield, identifying the effects of phase change in the shatter regime. The results (conceptually represented in Figure 2) were found to agree well with

  11. Regimes of turbulence without an energy cascade

    NASA Astrophysics Data System (ADS)

    Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.

    2016-10-01

    Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics.

  12. Drag-force regimes in granular impact.

    PubMed

    Tiwari, Mukesh; Mohan, T R Krishna; Sen, Surajit

    2014-12-01

    We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences.

  13. Cross-scale analysis of fire regimes

    Treesearch

    Donald A. Falk; Carol Miller; Donald McKenzie; Anne E. Black

    2007-01-01

    Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire...

  14. Regimes of turbulence without an energy cascade

    PubMed Central

    Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.

    2016-01-01

    Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics. PMID:27761005

  15. Ignitability of materials in transitional heating regimes

    Treesearch

    Mark A. Dietenberger

    2004-01-01

    Piloted ignition behavior of materials, particularly wood products, during transitions between heating regimes is measured and modeled in a cone calorimetry (ISO 5660) heating environment. These include (1) effect of material thickness, density, moisture content, and paint coating variations on thermal response characteristics, (2) effect of fire retardant treatment...

  16. Chapter 3: Plant invasions and fire regimes

    Treesearch

    Matthew L. Brooks

    2008-01-01

    The alteration of fire regimes is one of the most significant ways that plant invasions can affect ecosystems (Brooks and others 2004; D'Antonio 2000; D'Antonio and Vitousek 1992; Vitousek 1990). The suites of changes that can accompany an invasion include both direct effects of invaders on native plants through competitive interference, and indirect effects...

  17. Radiative Effects of Global MODIS Cloud Regimes

    NASA Technical Reports Server (NTRS)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  18. A Global Classification of Contemporary Fire Regimes

    NASA Astrophysics Data System (ADS)

    Norman, S. P.; Kumar, J.; Hargrove, W. W.; Hoffman, F. M.

    2014-12-01

    Fire regimes provide a sensitive indicator of changes in climate and human use as the concept includes fire extent, season, frequency, and intensity. Fires that occur outside the distribution of one or more aspects of a fire regime may affect ecosystem resilience. However, global scale data related to these varied aspects of fire regimes are highly inconsistent due to incomplete or inconsistent reporting. In this study, we derive a globally applicable approach to characterizing similar fire regimes using long geophysical time series, namely MODIS hotspots since 2000. K-means non-hierarchical clustering was used to generate empirically based groups that minimized within-cluster variability. Satellite-based fire detections are known to have shortcomings, including under-detection from obscuring smoke, clouds or dense canopy cover and rapid spread rates, as often occurs with flashy fuels or during extreme weather. Such regions are free from preconceptions, and the empirical, data-mining approach used on this relatively uniform data source allows the region structures to emerge from the data themselves. Comparing such an empirical classification to expectations from climate, phenology, land use or development-based models can help us interpret the similarities and differences among places and how they provide different indicators of changes of concern. Classifications can help identify where large infrequent mega-fires are likely to occur ahead of time such as in the boreal forest and portions of the Interior US West, and where fire reports are incomplete such as in less industrial countries.

  19. Climatic regimes of tropical convection and rainfall

    SciTech Connect

    Wang, Bin )

    1994-07-01

    Annual distribution and phase propagation of tropical convection are delineated using harmonic and amplitude-phase characteristics analysis of climatological pentad mean outgoing longwave radiation and monthly frequencies of highly reflective cloud. An annual eastward propagation of peak rainy season along the equator from the central Indian Ocean (60[degrees]E) to Arafura Sea (130[degrees]E) is revealed. This indicates a transition from the withdrawal of the Indian summer monsoon to the onset of the Australian summer monsoon. Significant bimodal variations are found around major summer monsoon regions. These variations originate from the interference of two adjacent regimes. The convergence zones over the eastern North Pacific, the South Pacific, and the southwest Indian Ocean are identified as a marine monsoon regime that is characterized by a unimodal variation with a concentrated summer rainfall associated with the development of surface westerlies equatorward of a monsoon trough. Conversely, the central North Pacific and North Atlantic convergence zones between persistent northeast and southeast trades are classified as trade-wind convergence zones; which differ from the marine monsoon regime by their persistent rainy season and characteristic bimodal variation with peak rainy seasons occurring in late spring and fall. The roles of the annual march of sea surface temperature in the phase propagation and formation of various climatic regimes of tropical convection are also discussed. 34 refs., 8 figs., 1 tab.

  20. Proliferation Control Regimes: Background and Status

    DTIC Science & Technology

    2012-10-25

    1984 OPCW U.N. Conference on Disarmament EAA, 1979 AECA, 1976 Biological Weapons Anti- Terrorism Act Chem- Bio Weapons Control Warfare...Deauville, France. They reaffirmed the goals set out at the 2010 Summit for future Global Partnership activities: nuclear and radiological security, bio ... herbicides and riot control agents. Proliferation Control Regimes: Background and Status Congressional Research Service 44 Author Contact