Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces
Shevkunov, S. V.
2008-12-15
Monte Carlo simulations of water vapor nucleation on a perfect crystal surface and on a surface with defects are performed. Mass exchange with the vapor phase is modeled by using an open ensemble. Cluster-substrate interaction is described in terms of conventional atom-atom potentials. The Hamiltonian of the system includes expressions for electrostatic, polarization, exchange, and dispersion interactions. The Gibbs free energy and work of adsorption are calculated by Monte Carlo simulation in the bicanoinical ensemble. The microscopic structure of nuclei is analyzed in terms of pair correlation functions. Periodic boundary conditions are used to simulate an infinite substrate surface. Molecule-substrate and molecule-molecule long-range electrostatic interactions are calculated by summing the Fourier harmonics of the electrostatic potential. Dispersion interactions are calculated by direct summation over layers of unit cells. Nucleation on a surface with matching structure follows a layer-by-layer mechanism. The work of adsorption per molecule of a monolayer on the substrate surface has a maximum as a function of nucleus size. The steady rate of nucleation of islands of supercritical size is evaluated. The work of adsorption per molecule for layer-by-layer film growth is an oscillating function of cluster size. As a function of layer number, it has a minimum depending on the vapor pressure. The electric field generated by a microscopic surface protrusion destroys the layered structure of the condensate and eliminates free-energy nucleation barriers. However, point lattice defects do not stimulate explosive nucleation.
Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces
NASA Astrophysics Data System (ADS)
Shevkunov, S. V.
2008-12-01
Monte Carlo simulations of water vapor nucleation on a perfect crystal surface and on a surface with defects are performed. Mass exchange with the vapor phase is modeled by using an open ensemble. Cluster-substrate interaction is described in terms of conventional atom-atom potentials. The Hamiltonian of the system includes expressions for electrostatic, polarization, exchange, and dispersion interactions. The Gibbs free energy and work of adsorption are calculated by Monte Carlo simulation in the bicanoĭnical ensemble. The microscopic structure of nuclei is analyzed in terms of pair correlation functions. Periodic boundary conditions are used to simulate an infinite substrate surface. Molecule-substrate and molecule-molecule long-range electrostatic interactions are calculated by summing the Fourier harmonics of the electrostatic potential. Dispersion interactions are calculated by direct summation over layers of unit cells. Nucleation on a surface with matching structure follows a layer-by-layer mechanism. The work of adsorption per molecule of a monolayer on the substrate surface has a maximum as a function of nucleus size. The steady rate of nucleation of islands of supercritical size is evaluated. The work of adsorption per molecule for layer-by-layer film growth is an oscillating function of cluster size. As a function of layer number, it has a minimum depending on the vapor pressure. The electric field generated by a microscopic surface protrusion destroys the layered structure of the condensate and eliminates free-energy nucleation barriers. However, point lattice defects do not stimulate explosive nucleation.
Buckling of imperfect periodic lattice structures
NASA Technical Reports Server (NTRS)
Anderson, M. S.
1983-01-01
A simplified buckling analysis is presented for a family of periodic lattice structures such as those proposed for large space structures. A transcendental 6 x 6 matrix of eigenvalues is shown to be sufficient for modeling buckling behavior because member stiffnesses are based on an exact solution of the beam-column equation. Exact stiffnesses are derived for a curved member, thus allowing modeling of imperfect lattice structures. Comparisons of predictions of the lattice model with those available from shell and beam theory underscore the inaccuracies introduced by treating the lattice structure as a continuum. Sample calculations are provided for an isogrid cylinder and a three element double-laced truss.
Discrete breathers in hexagonal dusty plasma lattices
Koukouloyannis, V.; Kourakis, I.
2009-08-15
The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.
Ultracold Quantum Gases in Hexagonal Optical Lattices
NASA Astrophysics Data System (ADS)
Sengstock, Klaus
2010-03-01
Hexagonal structures occur in a vast variety of systems, ranging from honeycombs of bees in life sciences to carbon nanotubes in material sciences. The latter, in particular its unfolded two-dimensional layer -- Graphene -- has rapidly grown to one of the most discussed topics in condensed-matter physics. Not only does it show proximity to various carbon-based materials but also exceptional properties owing to its unusual energy spectrum. In quantum optics, ultracold quantum gases confined in periodic light fields have shown to be very general and versatile instruments to mimic solid state systems. However, so far nearly all experiments were performed in cubic lattice geometries only. Here we report on the first experimental realization of ultracold quantum gases in a state-dependent, two-dimensional, Graphene-like optical lattice with hexagonal symmetry. The lattice is realized via a spin-dependent optical lattice structure with alternating σ^+ and σ^- -sites and thus constitutes a so called `magnetic'-lattice with `antiferromagnetic'-structure. Atoms with different spin orientation can be loaded to specific lattice sites or -- depending on the parameters -- to the whole lattice. As a consequence e.g. superpositions of a superfluid spin component with a different spin component in the Mott-insulating phase can be realized as well as spin-dependent transport properties, disorder etc. After preparing an antiferromagnetically ordered state we e.g. measure sustainable changes of the transport properties of the atoms. This manifests in a significant reduction of the tunneling as compared to a single-component system. We attribute this observation to a partial tunneling blockade for one spin component induced by population in another spin component localized at alternating lattice sites. Within a Gutzwiller-Ansatz we calculate the phase diagrams for the mixed spin-states and find very good agreement with our experimental results. Moreover, by state-resolved recording
Instability of vibrational modes in hexagonal lattice
NASA Astrophysics Data System (ADS)
Korznikova, Elena A.; Bachurin, Dmitry V.; Fomin, Sergey Yu.; Chetverikov, Alexander P.; Dmitriev, Sergey V.
2017-02-01
The phenomenon of modulational instability is investigated for all four delocalized short-wave vibrational modes recently found for the two-dimensional hexagonal lattice with the help of a group-theoretic approach. The polynomial pair potential with hard-type quartic nonlinearity ( β-FPU potential with β > 0) is used to describe interactions between atoms. As expected for the hard-type anharmonic interactions, for all four modes the frequency is found to increase with the amplitude. Frequency of the modes I and III bifurcates from the upper edge of the phonon spectrum, while that of the modes II and IV increases from inside the spectrum. It is also shown that the considered model supports spatially localized vibrational mode called discrete breather (DB) or intrinsic localized mode. DB frequency increases with the amplitude above the phonon spectrum. Two different scenarios of the mode decay were revealed. In the first scenario (for modes I and III), development of the modulational instability leads to a formation of long-lived DBs that radiate their energy slowly until thermal equilibrium is reached. In the second scenario (for modes II and IV) a transition to thermal oscillations of atoms is observed with no formation of DBs.
Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices
Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.
2012-01-01
“Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal lattice packing of helices all in one design. The availability of hexagonal close packing of helices extends our ability to build complex structures using DNA nanotechnology. PMID:22187940
sd(2) Graphene: Kagome band in a hexagonal lattice.
Zhou, Miao; Liu, Zheng; Ming, Wenmei; Wang, Zhengfei; Liu, Feng
2014-12-05
Graphene, made of sp^{2} hybridized carbon, is characterized with a Dirac band, representative of its underlying 2D hexagonal lattice. The fundamental understanding of graphene has recently spurred a surge in the search for 2D topological quantum phases in solid-state materials. Here, we propose a new form of 2D material, consisting of sd^{2} hybridized transition metal atoms in hexagonal lattice, called sd^{2} "graphene." The sd^{2} graphene is characterized by bond-centered electronic hopping, which transforms the apparent atomic hexagonal lattice into the physics of a kagome lattice that may exhibit a wide range of topological quantum phases. Based on first-principles calculations, room-temperature quantum anomalous Hall states with an energy gap of ∼0.1 eV are demonstrated for one such lattice made of W, which can be epitaxially grown on a semiconductor surface of 1/3 monolayer Cl-covered Si(111), with high thermodynamic and kinetic stability.
Epitaxy on Substrates with Hexagonal Lattice Symmetry.
NASA Astrophysics Data System (ADS)
Braun, Max Willi Hermann
A general description of epitaxy between thin films and substrates of general symmetry was developed from a model with rigid substrate and overgrowth and extended to include strain of the overgrowth. The overgrowth-substrate interaction was described by Fourier series, usually truncated, defined on the reciprocal lattice of the interface surfaces of the crystals. Energy considerations lead directly to a criterion that epitaxial configurations occur when a pair of surface reciprocal lattice vectors of the substrate and overgrowth coincide, equivalent to atomic row matching. This is analogous to the von Laue criterion and Bragg equations of diffraction theory, with a geometrical realization related to the Ewald construction. When generalized, misfit strain, the spacing, line sense and Burgers vectors of misfit dislocations and misfit verniers are obtained from the reciprocal lattices of crystals with any symmetry and misfit. The most general structures can be described with convenient unit cells by using structure factors. Homogeneous misfit strain, the interfacial atom positions after local relaxation and misfit and elastic (harmonic approximation) strain energies were obtained by direct minimization of the total interfacial energy of a large (1105 atoms), but finite, system. The local relaxation was calculated with a Finite Element formulation. Systems with fcc {111 } or bcc{ 110} overgrowths on fcc {111} or hcp{0001} substrates were studied with respect to substrate symmetry, overgrowth size and anisotropy of the overgrowth elastic constants. Configurations such as Kurdjumov-Sachs (KS), Nishiyama-Wassermann (NW) and a pseudomorphic phase (2DC) were explained, while several other higher order configurations were predicted. The inherent difference in nature between the KS and NW and their relationship to the 2DC were emphasized. Deviations from the ideal orientation of KS linked to anisotropy for systems undergoing misfit strain were discovered. Deviations were also
Algebraic signal processing theory: 2-D spatial hexagonal lattice.
Pünschel, Markus; Rötteler, Martin
2007-06-01
We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.
Lattice-Polarity-Driven Epitaxy of Hexagonal Semiconductor Nanowires.
Wang, Ping; Yuan, Ying; Zhao, Chao; Wang, Xinqiang; Zheng, Xiantong; Rong, Xin; Wang, Tao; Sheng, Bowen; Wang, Qingxiao; Zhang, Yongqiang; Bian, Lifeng; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Li, Xinzheng; Zhang, Xixiang; Shen, Bo
2016-02-10
Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about 2-fold larger in magnitude than those on the (0001̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.
Quantum interference and decoherence in hexagonal antidot lattices
NASA Astrophysics Data System (ADS)
Iye, Yasuhiro; Ueki, Masaaki; Endo, Akira; Katsumoto, Shingo
2003-09-01
The Altshuler-Aronov-Spivak (AAS) oscillations and the Aharonov-Bohm (AB) type oscillations both at low and high magnetic fields were observed in hexagonal antidot lattices fabricated from a GaAs/AlGaAs two-dimensional electron gas sample. The periodicities in the magnetic field and in the gate bias voltage, of the high field AB oscillation furnish information on the edge states localized around the antidots. The temperature dependences of these quantum oscillations are studied.
Ultralow Lattice Thermal Conductivity of the Random Multilayer Structure with Lattice Imperfections.
Chakraborty, Pranay; Cao, Lei; Wang, Yan
2017-08-15
Randomizing the layer thickness of superlattices (SL) can lead to localization of coherent phonons and thereby reduces the lattice thermal conductivity κ l . In this work, we propose strategies that can suppress incoherent phonon transport in the above random multilayer (RML) structure to further reduce κ l . Molecular dynamics simulations are conducted to investigate phonon heat conduction in SLs and RMLs with lattice imperfections. We found that interfacial species mixing enhances thermal transport across single interfaces and few-period SLs through the phonon "bridge" mechanism, while it substantially reduces the κ l of many-period SLs by breaking the phonon coherence. This is a clear manifestation of the transition from incoherent-phonon-dominated to coherent-phonon-dominated heat conduction in SLs when the number of interface increases. In contrast, interfacial species mixing always increases the κ l of RMLs owing to the dominance of incoherent phonons. Moreover, we found that doping a binary RML with impurities can reduce κ l significantly, especially when the impurity atom has an atomic mass lower or higher than both of the two base elements. This work reveals the critical effect of lattice imperfections on thermal transport in SLs and RMLs, and provides a unique strategy to hierachically suppress coherent and incoherent phonon transport concurrently.
Colorings of odd or even chirality on hexagonal lattices
NASA Astrophysics Data System (ADS)
Cépas, O.
2017-02-01
We define two classes of colorings that have odd or even chirality on hexagonal lattices. This parity is an invariant in the dynamics of all loops, and explains why standard Monte Carlo algorithms are nonergodic. We argue that adding the motion of "stranded" loops allows for parity changes. By implementing this algorithm, we show that the even and odd classes have the same entropy. In general, they do not have the same number of states, except for the special geometry of long strips, where a Z2 symmetry between even and odd states occurs in the thermodynamic limit.
Classical Heisenberg spins on a hexagonal lattice with Kitaev couplings.
Chandra, Samarth; Ramola, Kabir; Dhar, Deepak
2010-09-01
We analyze the low temperature properties of a system of classical Heisenberg spins on a hexagonal lattice with Kitaev couplings. For a lattice of 2N sites with periodic boundary conditions, the ground states form an (N+1) dimensional manifold. We show that the ensemble of ground states is equivalent to that of a solid-on-solid model with continuously variable heights and nearest neighbor interactions, at a finite temperature. For temperature T tending to zero, all ground states have equal weight, and there is no order by disorder in this model. We argue that the bond-energy bond-energy correlations at distance R decay as 1/R2 at zero temperature. This is verified by Monte Carlo simulations. We also discuss the relation to the quantum spin- S Kitaev model for large S, and obtain lower and upper bounds on the ground-state energy of the quantum model.
Protein folding in HP model on hexagonal lattices with diagonals
2014-01-01
Three dimensional structure prediction of a protein from its amino acid sequence, known as protein folding, is one of the most studied computational problem in bioinformatics and computational biology. Since, this is a hard problem, a number of simplified models have been proposed in literature to capture the essential properties of this problem. In this paper we introduce the hexagonal lattices with diagonals to handle the protein folding problem considering the well researched HP model. We give two approximation algorithms for protein folding on this lattice. Our first algorithm is a 53-approximation algorithm, which is based on the strategy of partitioning the entire protein sequence into two pieces. Our next algorithm is also based on partitioning approaches and improves upon the first algorithm. PMID:24564789
Proposal for generating synthetic magnetic fields in hexagonal optical lattices
NASA Astrophysics Data System (ADS)
Tian, Binbin; Endres, Manuel; Pekker, David
2015-05-01
We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.
Internal structure of hexagonal skyrmion lattices in cubic helimagnets
NASA Astrophysics Data System (ADS)
McGrouther, D.; Lamb, R. J.; Krajnak, M.; McFadzean, S.; McVitie, S.; Stamps, R. L.; Leonov, A. O.; Bogdanov, A. N.; Togawa, Y.
2016-09-01
We report the most precise observations to date concerning the spin structure of magnetic skyrmions in a nanowedge specimen of cubic B20 structured FeGe. Enabled by our development of advanced differential phase contrast (DPC) imaging (in a scanning transmission electron microscope (STEM)) we have obtained high spatial resolution quantitative measurements of skyrmion internal spin profile. For hexagonal skyrmion lattice cells, stabilised by an out-plane applied magnetic field, mapping of the in-plane component of magnetic induction has revealed precise spin profiles and that the internal structure possesses intrinsic six-fold symmetry. With increasing field strength, the diameter of skyrmion cores was measured to decrease and accompanied by a nonlinear variation of the lattice periodicity. Variations in structure for individual skyrmions across an area of the lattice were also studied utilising a new increased sensitivity DPC detection scheme and a variety of symmetry lowering distortions were observed. To provide insight into fundamental energetics we have constructed a phenomenological model, with which our experimental observations of spin profiles and field induced core diameter variation are in good agreement with predicted structure in the middle of the nanowedge crystal. In the vicinity of the crystal surfaces, our model predicts the existence of in-plane twisting distortions which our current experimental observations were not sensitive to. As an alternative to the requirement for as yet unidentified sources of magnetic anisotropy, we demonstrate that surface states could provide the energetic stabilisation needed for predomination over the conical magnetic phase.
Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices
Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.
2016-01-14
We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilities to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.
Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices
Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.
2016-01-14
We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less
Effects of ultraviolet radiation on lattice imperfections in pyrolytic boron nitride.
NASA Technical Reports Server (NTRS)
Buckley, J. D.; Cooley, J. A.
1971-01-01
Pyrolitic boron nitride was exposed to 310 equivalent sun hours of ultraviolet radiation in a space environment simulator with the objective to evaluate its applicability as a pigment for a thermal control coating and to identify radiation damage using X-ray diffraction techniques. Lattice parameter comparisons show a definite increase in lattice imperfections in the crystal structure resulting from the ultraviolet irradiation. This sensitivity to radiation damage makes pyrolitic boron nitride unsuitable as a pigment for thermal control coating.
Visualization of the hexagonal lattice in the erythrocyte membrane skeleton.
Liu, S C; Derick, L H; Palek, J
1987-03-01
The isolated membrane skeleton of human erythrocytes was studied by high resolution negative staining electron microscopy. When the skeletal meshwork is spread onto a thin carbon film, clear images of a primarily hexagonal lattice of junctional F-actin complexes crosslinked by spectrin filaments are obtained. The regularly ordered network extends over the entire membrane skeleton. Some of the junctional complexes are arranged in the form of pentagons and septagons, approximately 3 and 8%, respectively. At least five forms of spectrin crosslinks are detected in the spread skeleton including a single spectrin tetramer linking two junctional complexes, three-armed Y-shaped spectrin molecules linking three junctional complexes, three-armed spectrin molecules connecting two junctional complexes with two arms bound to one complex and the third arm bound to the adjacent complex, double spectrin filaments linking two junctional complexes, and four-armed spectrin molecules linking two junctional complexes. Of these, the crosslinks of single spectrin tetramers and three-armed molecules are the most abundant and represent 84 and 11% of the total crosslinks, respectively. These observations are compatible with the presence of spectrin tetramers and oligomers in the erythrocyte membrane skeleton. Globular structures (9-12 nm in diameter) are attached to the majority of the spectrin tetramers or higher order oligomer-like molecules, approximately 80 nm from the distal ends of the spectrin tetramers. These globular structures are ankyrinor ankyrin/band 3-containing complexes, since they are absent when ankyrin and residual band 3 are extracted from the skeleton under hypertonic conditions.
NASA Astrophysics Data System (ADS)
Costanza, E. F.; Costanza, G.
2017-02-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a hexagonal lattice which has the particular feature that need four types of dynamical variables. This example shows additional features to the general procedure and some extensions are also suggested in order to provide a wider insight in the present approach.
Optically Induced Lattice Dynamics of hexagonal manganite using Ultrafast X-ray Diffraction
NASA Astrophysics Data System (ADS)
Lee, Hae Ja; Workman, J. B.; Hur, N.
2005-03-01
We have studied the picosecond lattice dynamics of optically pumped hexagonal manganite LuMnO3 using ultrafast x-ray diffraction. The results show a shift and broadening of the diffraction curve due to the stimulated lattice expansion. To understand the transient response of the lattice, the measured time- and angle-resolved diffraction curves are compared with a theoretical calculation based on dynamical diffraction theory modified for the hexagonal crystal structure of LuMnO3. Our simulations reveal that a large coupling coefficient between the a-b plane and the c-axis (c13) is required to the data. We compare this result to our previous coherent phonon studies of LuMnO3 using optical pump-probe spectroscopy.
Self-Assembly of Cubes into 2D Hexagonal and Honeycomb Lattices by Hexapolar Capillary Interactions
NASA Astrophysics Data System (ADS)
Soligno, Giuseppe; Dijkstra, Marjolein; van Roij, René
2016-06-01
Particles adsorbed at a fluid-fluid interface induce capillary deformations that determine their orientations and generate mutual capillary interactions which drive them to assemble into 2D ordered structures. We numerically calculate, by energy minimization, the capillary deformations induced by adsorbed cubes for various Young's contact angles. First, we show that capillarity is crucial not only for quantitative, but also for qualitative predictions of equilibrium configurations of a single cube. For a Young's contact angle close to 90°, we show that a single-adsorbed cube generates a hexapolar interface deformation with three rises and three depressions. Thanks to the threefold symmetry of this hexapole, strongly directional capillary interactions drive the cubes to self-assemble into hexagonal or graphenelike honeycomb lattices. By a simple free-energy model, we predict a density-temperature phase diagram in which both the honeycomb and hexagonal lattice phases are present as stable states.
Dust Lattice Waves in Two-Dimensional Hexagonal Dust Crystals with an External Magnetic Field
Farokhi, B.; Shahmansouri, M.
2008-09-07
The influence of a constant magnetic field on the propagation of dust-lattice (DL) modes in a two-dimensional hexagonal strongly coupled plasma crystal formed by paramagnetic particles is considered. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorentz force acting on the dust particles.
Phase Diagram of an Extended Quantum Dimer Model on the Hexagonal Lattice
NASA Astrophysics Data System (ADS)
Schlittler, Thiago; Barthel, Thomas; Misguich, Grégoire; Vidal, Julien; Mosseri, Rémy
2015-11-01
We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the "devil's staircase" scenario [Eduardo Fradkin et al. Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.
Devil's staircase in a quantum dimer model on the hexagonal lattice
NASA Astrophysics Data System (ADS)
Barthel, Thomas; Misguich, Grégoire; Schlittler, Thiago M.; Vidal, Julien; Mosseri, Rémy
Quantum dimer models appear in different contexts when describing dynamics in constrained low-energy manifolds, such as for frustrated Ising models in weak transverse fields. In this talk, I address a particularly interesting case, where a quantum dimer model on the hexagonal lattice, in addition to the standard Rokhsar-Kivelson Hamiltonian, includes a competing potential term, counting dimer-free hexagons. It has a rich zero-temperature phase diagram that comprises a cascade of rapidly changing flux quantum numbers (tilt in the height language). This cascade is partially of fractal nature and the model provides, in particular, a microscopic realization of the ``devil's staircase'' scenario [E. Fradkin et al. Phys. Rev. B 69, 224415 (2004)]. We have studied the system by means of quantum Monte-Carlo simulations and the results can be explained using perturbation theory, RG, and variational arguments.References: arXiv:1507.04643, arXiv:1501.02242.
NASA Astrophysics Data System (ADS)
Nakata, Yoshiki; Yoshida, Masataka; Osawa, Kazuhito; Miyanaga, Noriaki
2017-09-01
Interference of six countering femtosecond (fs) laser beams at a wavelength of 785 nm has been utilized to fabricate nanostructures in a regular hexagonal lattice. A diffractive-optical element for six-beam splitting was introduced to a beam correlation system. The lattice structure was in accordance with the simulated structure based on the principle of superposition of electric fields. The unit structures fabricated on gold thin films were nanobit, nanodrop, and metallic hole array. The height and diameter of a representative nanodrop were 450 and 210 nm, respectively. Molten structures such as nanodrops are believed to have been fabricated via a solid-liquid-solid (SLS) mechanism, as in the case of previous experiments using four beams. In addition, multi-shot processing is examined to fabricate through-holes at lower fluences.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; ...
2016-01-25
We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. Formore » weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.« less
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; Ma, Yi-Ping
2016-01-25
We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. For weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.
NASA Astrophysics Data System (ADS)
Jugessur, A. S.; Pottier, P.; De La Rue, R. M.; Kirk, A. G.
2005-09-01
Compact photonic crystal (PhC) microcavity filters in a ridge waveguide format could play a useful role for wavelength division multiplexing (WDM) and de-multiplexing functionality in dense integrated photonic circuits. The microcavity filters are embedded in ridge waveguides with high lateral refractive-index contrast because good lateral confinement and efficient coupling of light into the device can be achieved using this established waveguide technology. However, this configuration leads to significant modal mismatch at the interfaces between the PhC and waveguide sections, contributing to reflection losses and reduced transmission over much of the useful spectrum. By the same token, mode-matching features consisting of two rows of PhC holes with a different filling factor and displaced to mirror-image positions with respect to the outer two rows of the main PhC mirrors have been implemented to enhance the optical transmission by more than a factor of two. Furthermore, an increase in Q-factor (more than 100 %) is achieved by the addition of two further rows of PhC holes on either side of the microcavity. Moreover, Bragg-grating concepts have been applied in several other filter designs using the same hexagonal PhC lattice configuration, in an attempt to control the filter response. This work involves the design, fabrication (using electron-beam lithography and reactive ion etching) and characterization of such hexagonal-lattice PhC microcavity filters embedded in ridge waveguides.
Dirac cones in two-dimensional systems: from hexagonal to square lattices.
Liu, Zhirong; Wang, Jinying; Li, Jianlong
2013-11-21
The influence of lattice symmetry on the existence of Dirac cones was investigated for two distinct systems: a general two-dimensional (2D) atomic crystal containing two atoms in each unit cell and a 2D electron gas (2DEG) under a periodic muffin-tin potential. A criterion was derived under a tight-binding approximation for the existence of Dirac cones in the atomic crystal. When the transfer hoppings are assumed to be single functions of the distance between atoms, it was shown that the probability of observing Dirac cones in the atomic crystal gradually decreases before being reduced to zero when the lattice changes from hexagonal to square. For a 2DEG with full square symmetry, a Dirac point exists at the Brillouin zone corners, where the energy dispersion is parabolic not linear. These results suggest that conventional Dirac fermions (such as those in graphene) are difficult to achieve in a square lattice with full symmetry (wallpaper group p4mm).
Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan
2016-01-01
A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity. PMID:27740607
Evolution of the charge density wave order on the two-dimensional hexagonal lattice
NASA Astrophysics Data System (ADS)
Litak, Grzegorz; Wysokiński, Karol Izydor
2017-10-01
Experimental data on the monolayer niobium diselenide show that the single band crosses the Fermi energy. This is in striking contrast to the bulk systems in which at least three bands contribute to the Fermi surface of the material. Together with the fact that the charge density wave (CDW) transition temperature Tc of a bulk system and of a single layer are the same one concludes that it should allow description of the two dimensional system by a single band in the tight-binding approximation. We analyse the development of CDW order of triangular symmetry in two-dimensional lattice of hexagonal symmetry. We assume the existence of four sublattices and calculate the resulting density of states and the formation of CDW gap for systems with varying carrier concentration. The mechanism of CDW instability, most probably related to the strong electron-phonon coupling in the material, is modeled by the local attractive interaction U of the same strength on all sites.
Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan
2016-10-08
A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.
NASA Astrophysics Data System (ADS)
Zou, Jianfei; Tang, Chunmei; Zhang, Aimei
2017-04-01
We study the photo-induced spin current injection in a hexagonal lattice with both intrinsic and Rashba spin-orbit interactions which is irradiated by a polarized light beam. It is found that the spin current injection rate could be enhanced as the graphene lattice is in the topological insulator state. Furthermore, the spin current injection rate could be remarkably modulated by the degree of polarization of light and its frequency.
NASA Astrophysics Data System (ADS)
Sha, X.; Cohen, R. E.
2005-05-01
We performed linear-response Linear-Muffin-Tin-Orbital (LMTO) calculations to understand and predict the lattice dynamical and thermal properties of hexagonal-close-packed iron at high temperatures and pressures. The phonon dispersion and phonon density of states have been calculated at different volumes and various c/a axial ratios, which show good agreements with available experimental data. We also calculated the thermal conductivity and electrical resistivity at different pressure. We derived the Hemlmholtz free energy functionals based on the LMTO calculations, and have further applied to establish the thermal equation of state, bulk modulus K0, dK0/dT, and thermal expansion coefficients at high pressures and temperatures. The variations of c/a ratios with temperature and pressure have been predicted. We also used the particle-in-cell approach to examine the thermal properties based on tight-binding total energy calculations, and made a detailed comparison with lattice dynamics calculations and experiment. The influence of anharmonic effects has been examined. This work was supported by US Department of Energy ASCI/ASAP subcontract to Caltech, Grant DOE W-7405-ENG-48 (to REC).
Inverse protein folding in 3D hexagonal prism lattice under HPC model.
Khodabakhshi, Alireza Hadj; Manuch, Ján; Rafiey, Arash; Gupta, Arvind
2009-06-01
The inverse protein folding problem is that of designing an amino acid sequence which has a prescribed native protein fold. This problem arises in drug design where a particular structure is necessary to ensure proper protein-protein interactions. Previously, tubular structures for a three-dimensional (3D) hexagonal prism lattice were introduced and their stability was formally proved for simple instances under the hydrophobic-polar (HP) model of Dill. In this article, we generalize the design of tubular structures to allow for much larger variety of designable structures by allowing branching of tubes. Our generalized design could be used to roughly approximate given 3D shapes in the considered lattice. Although the generalized tubular structures are not stable under the HP model, we can prove that a simple instance of generalized tubular structures is structurally stable (all native folds have the designed shape) under a refined version of the HP model, called the HPC model. We conjecture that there is a way to choose which hydrophobic monomers are cysteines in all generalized tubular structures such that the designed proteins are structurally stable under the HPC model.
The Calculation of the Band Structure in 3D Phononic Crystal with Hexagonal Lattice
NASA Astrophysics Data System (ADS)
Aryadoust, Mahrokh; Salehi, H.
2015-12-01
In this article, the propagation of acoustic waves in the phononic crystals (PCs) of three dimensions with the hexagonal (HEX) lattice is studied theoretically. The PCs are constituted of nickel (Ni) spheres embedded in epoxy. The calculations of the band structure and the density of states are performed using the plane wave expansion (PWE) method in the irreducible part of the Brillouin zone (BZ). In this study, we analyse the dependence of the band structures inside (the complete band gap width) on c/a and filling fraction in the irreducible part of the first BZ. Also, we have analysed the band structure of the ALHA and MLHKM planes. The results show that the maximum width of absolute elastic band gap (AEBG) (0.045) in the irreducible part of the BZ of HEX lattice is formed for c/a=6 and filling fraction equal to 0.01. In addition, the maximum of the first and second AEBG widths are 0.0884 and 0.0474, respectively, in the MLHKM plane, and the maximum of the first and second AEBG widths are 0.0851 and 0.0431, respectively, in the ALHA plane.
Iwamoto, Hiroyuki; Nishikawa, Yukihiro; Wakayama, Jun'ichi; Fujisawa, Tetsuro
2002-01-01
A striated muscle fiber consists of thousands of myofibrils with crystalline hexagonal myofilament lattices. Because the lattices are randomly oriented, the fiber gives rise to an equatorial x-ray diffraction pattern, which is essentially a rotary-averaged "powder diffraction," carrying only information about the distance between the lattice planes. We were able to record an x-ray diffraction pattern from a single myofilament lattice, very likely originating from a single myofibril from the flight muscle of a bumblebee, by orienting the incident x-ray microbeam along the myofibrillar axis (end-on diffraction). The pattern consisted of a number of hexagonally symmetrical diffraction spots whose originating lattice planes were readily identified. This also held true for some of the weak higher order reflections. The spot-like appearance of reflections implies that the lattice order is extremely well maintained for a distance of millimeters, covering up to a thousand of approximately 2.5-microm-long sarcomeres connected in series. The results open the possibility of applying the x-ray microdiffraction technique to study many other micrometer-sized assemblies of functional biomolecules in the cell. PMID:12124287
Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Liu, Ying; Dong, Lifang; Niu, Xuejiao; Gao, Yenan; Zhang, Chao
2015-10-01
The hexagonal super-lattice pattern with surface discharges (SDs) in dielectric barrier discharge is investigated by intensified charge-coupled device. The pattern is composed of the bright spot and the dim spot which is located at the centroid of surrounding other three bright spots. The phase diagram of the pattern as a function of the gas pressure and the argon concentration is given. The instantaneous images indicate that the bright spot emerging at the front of the current pulse is formed by the volume discharge (VD), and dim spot occurring at the tail of the current pulse is formed by the SD. The above result shows that the SD is induced by the VD. The simulation of the electric fields of wall charges accumulated by VDs confirms that the dim spot is formed by the confluences of the SDs of surrounding other three bright spots. By using optical emission spectrum method, both the molecule vibration temperature and electron density of the SD are larger than that of the VD.
Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge
Liu, Ying; Dong, Lifang Niu, Xuejiao; Gao, Yenan; Zhang, Chao
2015-10-15
The hexagonal super-lattice pattern with surface discharges (SDs) in dielectric barrier discharge is investigated by intensified charge-coupled device. The pattern is composed of the bright spot and the dim spot which is located at the centroid of surrounding other three bright spots. The phase diagram of the pattern as a function of the gas pressure and the argon concentration is given. The instantaneous images indicate that the bright spot emerging at the front of the current pulse is formed by the volume discharge (VD), and dim spot occurring at the tail of the current pulse is formed by the SD. The above result shows that the SD is induced by the VD. The simulation of the electric fields of wall charges accumulated by VDs confirms that the dim spot is formed by the confluences of the SDs of surrounding other three bright spots. By using optical emission spectrum method, both the molecule vibration temperature and electron density of the SD are larger than that of the VD.
NASA Astrophysics Data System (ADS)
Leconte, Nicolas; Martinez-Gordillo, Rafael; MacDonald, Allan; Jung, Jeil
Clear signatures of the Hofstadter butterfly have been experimentally observed in graphene on hexagonal boron nitride (G/BN), thanks to an appropriate balance between the length scale and the quality of the moiré superlattices. During this talk, I will present a methodology to map the continuum moiré pattern of incommensurable G/BN crystals obtained from ab initio calculations onto supercell lattice tight-binding Hamiltonians. Using efficient Lanczos recursion techniques for simulating large scale systems containing millions of atoms, the density of states and the dc conductivity are obtained as a function of energy or carrier density and magnetic field. The calculated Hofstadter butterflies and Landau fan diagrams show that the site potential variations, the mass, and substantial virtual strain contributions that appear even in the absence of real strains in the band Hamiltonian sensitively affect the electron-hole asymmetry, the gaps at the secondary Dirac points, as well as the tertiary features that appear at high-carrier densities.
Heyn, M.P.; Dudda, C.; Otto, H.; Seiff, F.; Wallat, I. )
1989-11-14
X-ray diffraction measurements show that in contrast to the purple membrane, the bacteriorhodopsin molecules are not organized in a hexagonal lattice in the deionized blue membrane. Addition of Ca{sup 2+} restores both the purple color and the normal (63 {angstrom}) hexagonal protein lattice. In the blue state, the circular dichroism spectrum in the visible has the typical exciton features indicating that a trimeric structure is retained. Time-resolved linear dichrosim measurements show that the blue patch rotates in aqueous suspension with a mean correlation time of 11 ms and provide no evidence for rotational mobility of bacteriorhodopsin within the membrane. The circular dichroism spectra of the blue and the Ca{sup 2+}-regenerated purple state in the far-UV are different, indicating a small change in secondary structure. The thermal stability of the blue membrane is much smaller than that of the purple membrane. At pH 5.0, the irreversible denaturation transition of the blue form has a midpoint at 61{degree}C. The photocycle of the blue membrane ({lambda}{sub ex} 590 nm) has an L intermediate around 540 nm whose decay is slowed down into the millisecond time range (5 ms). Light-dark adaptation in the blue membrane is rapid with an exponential decay time of 38 s at 25{degree}C. The purple to blue transition apparently involves a conformational change in the protein leading to a change in the aggregation state from a highly ordered and stable hexagonal lattice to a disordered array of thermally more labile trimers. The conformational change is of a subtle nature, with only a minor effect on the secondary structure but with a major effect on the opsin shift and the photocycle. It is suggested that the transition involves an equilibrium between two states which is shifted by a change in the surface pH.
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2004-01-01
When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.
NASA Astrophysics Data System (ADS)
Stanislavchuk, T. N.; Litvinchuk, A. P.; Hu, Rongwei; Jeon, Young Hun; Ji, Sung Dae; Cheong, S.-W.; Sirenko, A. A.
2015-10-01
Optical properties and lattice dynamics of hexagonal 2 H -BaMn O3 single crystals are studied experimentally in a wide temperature range by means of rotating analyzer ellipsometry and Raman scattering. The magnitude of the direct electronic band gap is found to be Eg=3.2 eV . At room temperature the far-infrared (IR) ellipsometry spectra reveal six IR-active phonons; two of them are polarized along the c axis and four are polarized within the a-b plane. Seven phonon modes are identified in the Raman scattering experiments. Group theoretical mode analysis and complementary density functional theory lattice dynamics calculations are consistent with the 2 H -BaMn O3 structure belonging to the polar P 63m c space group at room temperature. All observed vibrational modes are assigned to specific eigenmodes of the lattice. The neutron diffraction measurements reveal a structural phase transition upon cooling below TC=130 ±5 K , which is accompanied by a lattice symmetry change from P 63m c to P 63c m . Simultaneously, at temperatures below TC several additional IR- and Raman-active modes are detected in experimental spectra. This confirms the occurrence of a structural transition, which is possibly associated with the appearance of electrical polarization along the c axis and a previously known tripling of the primitive cell volume at low temperatures.
NASA Astrophysics Data System (ADS)
Liu, Lu; Kamm, Paul; García-Moreno, Francisco; Banhart, John; Pasini, Damiano
2017-10-01
This paper examines three-dimensional metallic lattices with regular octet and rhombicuboctahedron units fabricated with geometric imperfections via Selective Laser Sintering. We use X-ray computed tomography to capture morphology, location, and distribution of process-induced defects with the aim of studying their role in the elastic response, damage initiation, and failure evolution under quasi-static compression. Testing results from in-situ compression tomography show that each lattice exhibits a distinct failure mechanism that is governed not only by cell topology but also by geometric defects induced by additive manufacturing. Extracted from X-ray tomography images, the statistical distributions of three sets of defects, namely strut waviness, strut thickness variation, and strut oversizing, are used to develop numerical models of statistically representative lattices with imperfect geometry. Elastic and failure responses are predicted within 10% agreement from the experimental data. In addition, a computational study is presented to shed light into the relationship between the amplitude of selected defects and the reduction of elastic properties compared to their nominal values. The evolution of failure mechanisms is also explained with respect to strut oversizing, a parameter that can critically cause failure mode transitions that are not visible in defect-free lattices.
Spin-lattice coupling and frustrated magnetism in Fe-doped hexagonal LuMnO3
NASA Astrophysics Data System (ADS)
Nair, Harikrishnan S.; Fu, Zhendong; Kumar, C. M. N.; Pomjakushin, V. Y.; Xiao, Yinguo; Chatterji, Tapan; Strydom, André M.
2015-05-01
Strong spin-lattice coupling and prominent frustration effects observed in the 50% Fe-doped frustrated hexagonal (h)\\text{LuMnO}3 are reported. A Néel transition at T{N}≈112 \\text{K} and a possible spin re-orientation transition at T{SR}≈55 \\text{K} are observed in the magnetization data. From neutron powder diffraction data, the nuclear structure at and below 300 K was refined in polar P63cm space group. While the magnetic structure of LuMnO3 belongs to the Γ4 (P6'_3c'm) representation, that of LuFe0.5Mn0.5O3 belongs to Γ1 (P6_3cm) which is supported by the strong intensity for the (100) reflection and also judging by the presence of spin-lattice coupling. The refined atomic positions for Lu and Mn/Fe indicate significant atomic displacements at T{N} and T{SR} which confirms strong spin-lattice coupling. Our results complement the discovery of room temperature multiferroicity in thin films of h\\text{LuFeO}3 and would give impetus to study LuFe1-x Mn x O3 systems as potential multiferroics where electric polarization is linked to giant atomic displacements.
Dai, Jian-Qing Zhu, Jian-Hui; Xu, Jie-Wang
2016-07-21
The recently discovered hexagonal ABC-type hyperferroelectrics, in which the polarization persists in the presence of the depolarization filed, exhibit a variety of intriguing and potentially useful properties [Garrity et al., Phys. Rev. Lett. 112, 127601 (2014)]. For the existing prototype of LiBeSb, we present detailed first-principles calculations concerning the lattice dynamics, electronic structure, and optical properties. An unstable longitudinal optic mode in the high-symmetry structure and a large polarization of 0.5 C/m{sup 2} in the polar phase are reported, including the remarkable dependence of Born effective charges on structural distortion. Using the HSE06 hybrid functional, we predict that LiBeSb has a small band-gap of 1.5 eV and shows dominant asymmetric covalent bonding character. Importantly, we find that there are remarkable absorptions in the whole visible spectrum. These features, combined with the enhanced carrier mobility, make LiBeSb as well as the whole family of hexagonal ABC-type hyperferroelectrics as promising candidates for ferroelectric photovoltaic materials with large bulk photovoltaic effect in the visible spectrum.
NASA Astrophysics Data System (ADS)
Dai, Jian-Qing; Zhu, Jian-Hui; Xu, Jie-Wang
2016-07-01
The recently discovered hexagonal ABC-type hyperferroelectrics, in which the polarization persists in the presence of the depolarization filed, exhibit a variety of intriguing and potentially useful properties [Garrity et al., Phys. Rev. Lett. 112, 127601 (2014)]. For the existing prototype of LiBeSb, we present detailed first-principles calculations concerning the lattice dynamics, electronic structure, and optical properties. An unstable longitudinal optic mode in the high-symmetry structure and a large polarization of 0.5 C/m2 in the polar phase are reported, including the remarkable dependence of Born effective charges on structural distortion. Using the HSE06 hybrid functional, we predict that LiBeSb has a small band-gap of 1.5 eV and shows dominant asymmetric covalent bonding character. Importantly, we find that there are remarkable absorptions in the whole visible spectrum. These features, combined with the enhanced carrier mobility, make LiBeSb as well as the whole family of hexagonal ABC-type hyperferroelectrics as promising candidates for ferroelectric photovoltaic materials with large bulk photovoltaic effect in the visible spectrum.
Ordering of Sphere Forming SISO Tetrablock Terpolymers on a Simple Hexagonal Lattice
Zhang, Jingwen; Sides, Scott; Bates, Frank S.
2012-03-15
Hexagonally ordered spherical and cylindrical morphologies (P{sub 6}/mmm and P{sub 6}/mm space group symmetries) have been identified in bulk poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) tetrablock terpolymers. These materials were synthesized by adding up to 32% by volume O blocks to a parent hydroxy-terminated SIS triblock copolymer containing 40% S by volume, and the resulting morphologies were characterized by small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry and dynamic mechanical spectroscopy. Disordered, spherical and cylindrical phases were documented with increasing O content, where both ordered states exhibit hexagonal symmetry. Theoretical calculations based on a numerical self-consistent field theory for polymers provide crucial insights into the molecular configurations associated with these morphologies. These results offer a new approach to independently control domain shape and packing in block copolymer melts through manipulation of the magnitude and sequencing of the binary segment-segment interactions ({chi}{sub SI} {<=} {chi}{sub SO} << {chi}{sub IO}), which dictate core segregation and the effective interdomain interactions.
ROHATGI,U.S.; JO,J.; CHUNG,B.D.; TAKAHASHI,H.
2002-06-09
Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. The tight lattice core has a very narrow flow channels with a hydraulic diameter less than half of the regular BWR core and, thus, presents a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with Isolation Condenser System (ICs). The vessel is placed in containment with Gravity Driven Cooling System (GDCS) and Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's Simplified Boiling Water Reactor (SBWR). The safety systems are similar to SBWR; ICs and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney, since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration resulted in much larger friction in the core than the SBWR. The constitutive relationships for RELAP5 were assessed for narrow channels, and as a result the heat transfer package was modified. The modified RELAP5 was used to simulate and analyze two of the most limiting events for a tight
Shchesnovich, Valery S; Desyatnikov, Anton S; Kivshar, Yuri S
2008-09-01
We study, analytically and numerically, the dynamics of interband transitions in two-dimensional hexagonal periodic photonic lattices. We develop an analytical approach employing the Bragg resonances of different types and derive the effective multi-level models of the Landau-Zener-Majorana type. For two-dimensional periodic potentials without a tilt, we demonstrate the possibility of the Rabi oscillations between the resonant Fourier amplitudes. In a biased lattice, i.e., for a two-dimensional periodic potential with an additional linear tilt, we identify three basic types of the interband transitions or Zener tunnelling. First, this is a quasi-one-dimensional tunnelling that involves only two Bloch bands and occurs when the Bloch index crosses the Bragg planes away from one of the high-symmetry points. In contrast, at the high-symmetry points (i.e., at the M and Gamma points), the Zener tunnelling is essentially two-dimensional, and it involves either three or six Bloch bands being described by the corresponding multi-level Landau-Zener-Majorana systems. We verify our analytical results by numerical simulations and observe an excellent agreement. Finally, we show that phase dislocations, or optical vortices, can tunnel between the spectral bands preserving their topological charge. Our theory describes the propagation of light beams in fabricated or optically-induced two-dimensional photonic lattices, but it can also be applied to the physics of cold atoms and Bose-Einstein condensates tunnelling in tilted two-dimensional optical potentials and other types of resonant wave propagation in periodic media.
NASA Astrophysics Data System (ADS)
Paul, Barnita; Chatterjee, Swastika; Gop, Sumana; Roy, Anushree; Grover, Vinita; Shukla, Rakesh; Tyagi, A. K.
2016-07-01
Rare-earth indates emerge as one of the efficient geometric ferroelectric materials, in which the spontaneous polarization can be tuned by varying their crystal structure along the 4f rare-earth series. We report a systematic study of structural changes in hexagonal REInO3 perovskite (RE = Ho3+, Dy3+, Tb3+, Gd3+, Eu3+, Sm3+) and YInO3 of P63 cm space group by powder x-ray diffraction (XRD) and Raman scattering measurements. The crystal structure of these materials could be investigated by the Rietveld refinement of their XRD patterns. We have calculated density of states of phonons using density functional theory and examined the atomic displacements corresponding to observed Raman modes. The evolution of lattice dynamics of REInO3 has been probed by correlating various Raman modes with the structural distortion of the unit cell and the characteristics of the rare-earth ions. We report the appearance of the coupled mode in the phonon spectra. We have estimated spontaneous polarization from the structural distortion in this system and shown that it can be modulated by varying RE3+ ions in REInO3. We also report the appearance of a ferroelectric soft Raman mode, a unique characteristic of these materials.
NASA Astrophysics Data System (ADS)
Antezza, Mauro; Castin, Yvan
2013-09-01
We study the effects of finite size and of vacancies on the photonic band gap recently predicted for an atomic diamond lattice. Close to a Jg=0→Je=1 atomic transition, and for atomic lattices containing up to N≈3×104 atoms, we show how the density of states can be affected by both the shape of the system and the possible presence of a fraction of unoccupied lattice sites. We numerically predict and theoretically explain the presence of shape-induced border states and of vacancy-induced localized states appearing in the gap. We also investigate the penetration depth of the electromagnetic field which we compare to the case of an infinite system.
Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E; Caird, J A; Barty, C J
2008-02-26
Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.
Tang, D.; Chong, P. L.
1992-01-01
We have examined the effect of 1-palmitoyl-2-(10-pyrenyl)decanoyl-sn-glycerol-3-phosphatidylcholine (Pyr-PC) concentration on the ratio of excimer fluorescence to monomer fluorescence (E/M) in L-alpha-dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles at 30 degrees C, with special attention focussed on the smoothness of the curve. We observed a series of dips, in addition to kinks, in the plot of E/M versus the mole fraction of Pyr-PC (XPyrPC). The observation of dips is a new finding, perhaps unique for Pyr-PC in DMPC since only kinks were observed for Pyr-PC in L-alpha-dipalmitoylphosphatidylcholine (DPPC) and in egg yolk phosphatidylcholine (egg-PC) (Somerharju et al., 1985. Biochemistry. 24: 2773-2781). The dips/kinks observed here are distributed according to a well defined pattern reflecting a lateral order in the membrane, and distributed symmetrically with respect to 50 mol% Pyr-PC. Some of the dips appear at specific concentrations (YPyrPC) according to the hexagonal super-lattice model proposed by Virtanen et al. (1988. J. Mol. Electr. 4: 233-236). However, the observations of dips at XPyrPC > 66.7 mol% and the kink at 33.3 mol% cannot be interpreted by the model of Virtanen et al. (1988). These surprising results can be understood by virtue of an extended hexagonal super-lattice model, in which we have proposed that if the pyrene-containing acyl chains are regularly distributed as a hexagonal super-lattice in the DMPC matrix at a specific concentration YPyrPC, then the acyl chains of DMPC can form a regularly distributed hexagonal super-lattice in the membrane at a critical concentration (1-YPyrPC). The excellent agreement between the calculated and the observed dip/kink positions, except for the dip at 74 mol% and the kink at 40 mol%, provides most compelling evidence that lipids are regularly distributed into hexagonal super-lattices in Pyr-PC/DMPC mixtures at specific concentrations. The physical nature of the dips not only gives us a better
Tang, D; Chong, P L
1992-10-01
We have examined the effect of 1-palmitoyl-2-(10-pyrenyl)decanoyl-sn-glycerol-3-phosphatidylcholine (Pyr-PC) concentration on the ratio of excimer fluorescence to monomer fluorescence (E/M) in L-alpha-dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles at 30 degrees C, with special attention focussed on the smoothness of the curve. We observed a series of dips, in addition to kinks, in the plot of E/M versus the mole fraction of Pyr-PC (XPyrPC). The observation of dips is a new finding, perhaps unique for Pyr-PC in DMPC since only kinks were observed for Pyr-PC in L-alpha-dipalmitoylphosphatidylcholine (DPPC) and in egg yolk phosphatidylcholine (egg-PC) (Somerharju et al., 1985. Biochemistry. 24: 2773-2781). The dips/kinks observed here are distributed according to a well defined pattern reflecting a lateral order in the membrane, and distributed symmetrically with respect to 50 mol% Pyr-PC. Some of the dips appear at specific concentrations (YPyrPC) according to the hexagonal super-lattice model proposed by Virtanen et al. (1988. J. Mol. Electr. 4: 233-236). However, the observations of dips at XPyrPC > 66.7 mol% and the kink at 33.3 mol% cannot be interpreted by the model of Virtanen et al. (1988). These surprising results can be understood by virtue of an extended hexagonal super-lattice model, in which we have proposed that if the pyrene-containing acyl chains are regularly distributed as a hexagonal super-lattice in the DMPC matrix at a specific concentration YPyrPC, then the acyl chains of DMPC can form a regularly distributed hexagonal super-lattice in the membrane at a critical concentration (1-YPyrPC). The excellent agreement between the calculated and the observed dip/kink positions, except for the dip at 74 mol% and the kink at 40 mol%, provides most compelling evidence that lipids are regularly distributed into hexagonal super-lattices in Pyr-PC/DMPC mixtures at specific concentrations. The physical nature of the dips not only gives us a better
Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E; Caird, J A; Barty, C J; Joyce, D B; Schmid, K; Schmid, F
2007-10-09
Ti:sapphire has become the premier lasing medium material for use in solid-state femtosecond high-peak power laser systems because of its wide wavelength tuning range. With a tuneable range from 680 to 1100 nm, peaking at 800 nm, Ti:sapphire lasing crystals can easily be tuned to the required pump wavelength and provide very high pump brightness due to their good beam quality and high output power of typically several watts. Femtosecond lasers are used for precision cutting and machining of materials ranging from steel to tooth enamel to delicate heart tissue and high explosives. These ultra-short pulses are too brief to transfer heat or shock to the material being cut, which means that cutting, drilling, and machining occur with virtually no damage to surrounding material. Furthermore, these lasers can cut with high precision, making hairline cuts of less than 100 microns in thick materials along a computer-generated path. Extension of laser output to higher energies is limited by the size of the amplification medium. Yields of high quality large diameter crystals have been constrained by lattice distortions that may appear in the boule limiting the usable area from which high quality optics can be harvested. Lattice distortions affect the transmitted wavefront of these optics which ultimately limits the high-end power output and efficiency of the laser system, particularly when operated in multi-pass mode. To make matters even more complicated, Ti:sapphire is extremely hard (Mohs hardness of 9 with diamond being 10) which makes it extremely difficult to accurately polish using conventional methods without subsurface damage or significant wavefront error. In this presentation, we demonstrate for the first time that Magnetorheological finishing (MRF) can be used to compensate for the lattice distortions in Ti:sapphire by perturbing the transmitted wavefront. The advanced MRF techniques developed allow for precise polishing of the optical inverse of lattice
NASA Astrophysics Data System (ADS)
Akahama, Y.; Ishihara, D.; Yamashita, H.; Fujihisa, H.; Hirao, N.; Ohishi, Y.
2016-08-01
The pressure-temperature (P -T ) phase diagram of N2-O2 mixture with a composition of N2-48 mol % O2 has been investigated using x-ray diffraction and the phase stability of a hexagonal phase (space group: P 6 /mmm), with the kagome lattice examined under high-pressure and low-temperature conditions. While the phase appears as a low-temperature phase of the cubic phase (P m 3 n ) with the structure of γ -O2 or δ -N2 and is stable in a wide range of pressures and temperatures, it transforms to lower symmetry monoclinic or orthorhombic phases at lower temperature, accompanied with a distortion of the kagome lattice. Based on Rietveld refinements, the monoclinic and orthorhombic phases are found to be in the P 21/a and Cmmm space groups, respectively. In magnetization measurements, a magnetic transition is observed with a relatively large drop of magnetization, corresponding to the cubic-to-hexagonal phase transition. This suggests that the hexagonal phase has a certain magnetic ordered state that arises from the molecular magnetic moment of O2.
NASA Astrophysics Data System (ADS)
Akande, Akinlolu; Sanvito, Stefano
2016-11-01
We perform a numerical study of interacting one-dimensional Hubbard rings with a single impurity potential and pierced by a magnetic flux. Our calculations are carried out at the level of current lattice density functional theory (CLDFT) for the Hubbard model and compared to known results obtained in the thermodynamical limit from the Bethe ansatz. In particular, we investigate the effects of disorder and Coulomb interaction on the persistent current (PC) and the Drude weight. It is found that CLDFT is able to accurately describe qualitative and quantitative features of these ground state properties in the presence of disorder and electronic interaction. When the impurity potential is switched off, the CLDFT approach describes well the velocity of the Luttinger liquid excitations as a function of both interaction strength and electron filling. Then, when the impurity scattering potential is finite, we find the PC to vanish as {{L}-{{α\\text{B}}-1}} for large L and independent on the strength of the scattering potential, in good agreement with Luttinger liquid theory.
NASA Astrophysics Data System (ADS)
Batı, Mehmet; Ertaş, Mehmet
2017-05-01
The hysteresis properties of a kinetic mixed spin (1/2, 1) Ising ferrimagnetic system on a hexagonal lattice are studied by means of the dynamic mean field theory. In the present study, the effects of the nearest-neighbor interaction, temperature, frequency of oscillating magnetic field and the exchange anisotropy on the hysteresis properties of the kinetic system are discussed in detail. A number of interesting phenomena such as the shape of hysteresis loops with one, two, three and inverted-hysteresis/proteresis (butterfly shape hysteresis) have been obtained. Finally, the obtained results are compared with some experimental and theoretical results and a qualitatively good agreement is found.
1984-02-01
RD-A1i~ 272 THE INFLUENCE OF LATTICE IMPERFECTIONS ON THE CHEMICAL i REACTIVITY OF SOI (U) UNIVERSITY OF STRATHCLYDE GLASGOW (SCOTLAND) DEPT OF PURE...M251 11111 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963-A THE INFLUENCE O ATC MEFCIN ON THE CHEMICAL REACTIVITY OF SOLIDS o. THE...on the Chemical Reactivity of Solids. FINAL TECHNICAL ". PERFORMING ORG. REPORT NUMBER 7. AUTHOR(.) S. CONTRACT OR GRANT NUMUER(i,) J. N. Sherwood
Sfyris, D. E-mail: dsfyris@sfyris.net; Koukaras, E. N.; Pugno, N.; Galiotis, C.
2015-08-21
Continuum modeling of free-standing graphene monolayer, viewed as a two dimensional 2-lattice, requires specification of the components of the shift vector that acts as an auxiliary variable. If only in-plane motions are considered, the energy depends on an in-plane strain measure and the shift vector. The assumption of geometrical and material linearity leads to quadratic energy terms with respect to the shift vector, the strain tensor, and their combinations. Graphene's hexagonal symmetry reduces the number of independent moduli then to four. We evaluate these four material parameters using molecular calculations and the adaptive intermolecular reactive empirical bond order potential and compare them with standard linear elastic constitutive modeling. The results of our calculations show that the predicted values are in reasonable agreement with those obtained solely from our molecular calculations as well as those from the literature. To the best of our knowledge, this is the first attempt to measure mechanical properties when graphene is modeled as a hexagonal 2-lattice. This work targets at the continuum scale when the insight measurements come from finer scales using atomistic simulations.
Zhou, Baozeng; Dong, Shengjie; Wang, Xiaocha; Zhang, Kailiang; Mi, Wenbo
2017-03-15
Graphene-like two-dimensional materials have garnered tremendous interest as emerging device materials due to their remarkable properties. However, their applications in spintronics have been limited by the lack of intrinsic magnetism. Here, we perform an ab initio simulation on the structural and electronic properties of several transition-metal (TM) monolayers (TM = Cr, Mo and W) with a honeycomb lattice on a 1/3 monolayer Cl-covered Si(111) surface. Due to the template effect from the halogenated Si substrate, the TM-layers will be maintained in an expanded lattice which is nearly 60% larger than that of the freestanding case. All these isolated TM-layers exhibit ferromagnetic coupling with kagome band structures related to sd(2) hybridization and a strong interfacial interaction may destroy the topological bands. Interestingly, the W-monolayer on the Cl-covered Si substrate shows a half-metallic behavior. A Dirac point formed at the K point in the spin-down channel is located exactly at the Fermi level which is crucial for the realization of a quantum spin Hall state. Moreover, the reconstruction process between the Dirac and kagome bands is discussed in detail, providing an interesting platform to study the interplay between massless Dirac fermions and heavy fermions.
Liu, Ying; Dong, Li-fang; Niu, Xue-jiao; Zhang, Chao
2016-02-01
The hexagonal super-lattice pattern composed of the light spot and the dim spot is firstly observed and investigated in the discharge of gas mixture of air and argon by using the dielectric barrier discharge device with double water electrodes. It is found that the dim spot is located at the center of its surrounding three light spots by observing the discharge image. Obviously, the brightness of the light spot and the dim spot are different, which indicates that the plasma states of the light spot and the dim spot may be different. The optical emission spectrum method is used to further study the several plasma parameters of the light spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³IIg) are measured, from which the molecule vibration temperatures of the light spot and the dim spot are calculated. Based on the relative intensity ratio of the line at 391.4 nm and the N₂ line at 394.1 nm, the average electron energies of the light spot and the dim spot are investigated. The broadening of spectral line 696.57 nm (2P₂-1S₅) is used to study the electron densities of the light spot and the dim spot. The experiment shows that the molecule vibration temperature, average electron energy and the electron density of the dim spot are higher than those of the light spot in the same argon content. The molecule vibration temperature and electron density of the light spot and dim spot increase with the argon content increasing from 70% to 95%, while average electron energies of the light spot and dim spot decrease gradually. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The surface discharge induced by the volume discharge (VD) has the decisive effect on the formation of the dim spot. The experiment above plays an important role in studying the formation mechanism of the hexagonal super-lattice pattern with light spot and
NASA Astrophysics Data System (ADS)
Thorsmolle, Verner; Ignatov, Alexander; Pezzoli, Maria; Haule, Kristjan; Kolchmeyer, David; Lee, Alexander; Simonson, Jack; Aronson, Meigan; Blumberg, Girsh
2013-03-01
CaMn2Sb2 presents a magnetic system with a buckled hexagonal lattice of half-filled d-band Mn2+ ions. AC resistivity and susceptibility exhibit non-monotonic temperature dependence at 85-210 K. Below 85 K it has an antiferromagnetic (AF) phase with an activation energy of 28 meV, and above 210 K a paramagnetic phase. Using Raman spectroscopy we find a mode at 32 meV which develops below the AF transition. We attribute this excitation to the activation energy associated with the motion of spin bipolarons. Here, hybridization between Sb and Mn results in extra electrons for the Mn 3 d-shells. It is energetically favorable for these extra carriers to form spin-singlets. These spin-bipolarons cover two Mn sites with a binding energy of ~80 meV and conduction proceed via photo-assisted hopping with an activation energy of ~32 meV. This spin bipolaron model explains the spectroscopic features providing a self-consistent picture of this conductivity mechanism that also clarifies reported unusual temperature-dependent magnetic and transport data. VKT, AI, DK, AL and GB acknowledge support by NSF DMR-1104884 and by U.S. DOE, Office of BES, Award DE-SC0005463. MEP and JWS acknowledge support by NSSEFF, administrative by the AFOSR.
Sevinçli, Hâldun
2017-04-12
The critical points and the corresponding singularities in the density of states of crystals were first classified by Van Hove with respect to their dimensionality and energy-momentum dispersions. Here, different from saddle-point Van Hove singularities, the occurrence of a continuum of critical points, which give rise to strong singularities in two-dimensional elemental hexagonal lattices, is shown using a minimal tight-binding formalism. The model predicts quartic energy-momentum dispersions despite quadratic or linear ones, which is also the origin of the strong singularity. Starting with this model and using first-principles density functional theory calculations, a family of novel two-dimensional materials that actually display such singularities are identified and their extraordinary features are investigated. The strong singularity gives rise to ferromagnetic instability with an inverse-square-root temperature dependence and the quartic dispersion is responsible for a steplike transmission spectrum, which is a characteristic feature of one-dimensional systems. Because of the abrupt change in transmission at the band edge, these materials have temperature-independent thermopower and enhanced thermoelectric efficiencies. Nitrogene has exceptionally high thermoelectric efficiencies at temperatures down to 50 K, which could make low-temperature thermoelectric applications possible.
AN INVESTIGATION OF CRYSTAL IMPERFECTIONS BY X-RAY DIFFRACTION.
Lattice imperfections studied include dislocations, inclusions, precipitates, impurity layers, and fault surfaces such as stacking faults and twin ... boundaries . Both the direction and sense of dislocation Burgers vectors can be determined. Studies performed on natural diamond include the origin of
Localization oscillation in antidot lattices
NASA Astrophysics Data System (ADS)
Uryu, S.; Ando, T.
1998-06-01
The Anderson localization in square and hexagonal antidot lattices is numerically studied with the use of a Thouless number method. It is revealed that localization is very sensitive to the aspect ratio between the antidot diameter and the lattice constant. In a hexagonal lattice, both the Thouless number and the localization length oscillate with the period equal to the Al’tshuler-Aronov-Spivak oscillation. The oscillation is quite weak in a square lattice.
Hexagonal tessellations in image algebra
NASA Astrophysics Data System (ADS)
Eberly, David H.; Wenzel, Dennis J.; Longbotham, Harold G.
1990-11-01
In image algebra '' the concept of a coordinate set X is general in that such a set is simply a subset of ndimensional Euclidean space . The standard applications in 2-dimensional image processing use coordinate sets which are rectangular arrays X 72 x ZZm. However some applications may require other geometries for the coordinate set. We look at three such related applications in the context of image algebra. The first application is the modeling of photoreceptors in primate retinas. These receptors are inhomogeneously distributed on the retina. The largest receptor density occurs in the center of the fovea and decreases radially outwards. One can construct a hexagonal tessellation of the retina such that each hexagon contains approximately the same number of receptors. The resulting tessellation called a sunflower heart2 consists of concentric rings of hexagons whose sizes increase as the radius of the ring increases. The second application is the modeling of the primary visual . The neurons are assumed to be uniformly distributed as a regular hexagonal lattice. Cortical neural image coding is modeled by a recursive convolution of the retinal neural image using a special set of filters. The third application involves analysis of a hexagonally-tessellated image where the pixel resolution is variable .
Imperfection Insensitive Thin Shells
NASA Astrophysics Data System (ADS)
Ning, Xin
The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century. This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells. Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression
An orthogonal oriented quadrature hexagonal image pyramid
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1987-01-01
An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.
Learning with imperfectly labeled patterns
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of learning in pattern recognition using imperfectly labeled patterns is considered. The performance of the Bayes and nearest neighbor classifiers with imperfect labels is discussed using a probabilistic model for the mislabeling of the training patterns. Schemes for training the classifier using both parametric and non parametric techniques are presented. Methods for the correction of imperfect labels were developed. To gain an understanding of the learning process, expressions are derived for success probability as a function of training time for a one dimensional increment error correction classifier with imperfect labels. Feature selection with imperfectly labeled patterns is described.
Lieffrig, Julien; Jeannin, Olivier; Fourmigué, Marc
2013-04-24
Halogen bonding interactions between halide anions and neutral polyiodinated linkers are used for the elaboration of anion organic frameworks, by analogy with well-known MOF derivatives. The extended, 3-fold symmetry, 1,3,5-tris(iodoethynyl)-2,4,6-trifluorobenzene (1) cocrystallizes with a variety of halide salts, namely, Et3S(+)I(-), Et3MeN(+)I(-), Et4N(+)Br(-), Et3BuN(+)Br(-), Me-DABCO(+)I(-), Bu3S(+)I(-), Bu4N(+)Br(-), Ph3S(+)Br(-), Ph4P(+)Br(-), and PPN(+)Br(-). Salts with 1:1 stoichiometry formulated as (1)·(C(+),X(-)) show recurrent formation of corrugated (6,3) networks, with the large cavities thus generated, filled either by the cations and solvent (CHCl3) molecules and/or by interpenetration (up to 4-fold interpenetration). The 2:1 salt formulated as (1)2·(Et3BuN(+)Br(-)) crystallizes in the cubic Ia3 space group (a = 22.573(5) Å, V = 11502(4) Å(3)), with the Br(-) ion located on 3 site and molecule 1 on a 3-fold axis. The 6-fold, unprecedented octahedral coordination of the bromide anion generates an hexagonal three-dimensional network of Pa3 symmetry, as observed in the pyrite model structure, at variance with the usual, but lower-symmetry, rutile-type topology. In this complex system, the I centering gives rise to a 2-fold interpenetration of class Ia, while the cations and solvent molecules are found disordered within interconnected cavities. Another related cubic structure of comparable unit cell volume (space group Pa3̅, a = 22.4310(15) Å, V = 11286.2(13) Å(3)) is found with (1)2·(Et3S(+)I(-)).
Mirzagholi, Leila; Vikman, Alexander E-mail: alexander.vikman@lmu.de
2015-06-01
We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.
ERIC Educational Resources Information Center
Burkhauser, Beth; Porter, Dave
2010-01-01
This article discusses the international interdependence Hexagon Project for Haiti which invites students, ages five through eighteen, to create an image within a hexagonal template and respond to big questions surrounding a global culture of interdependence. The hexagon is a visual metaphor for interdependence, with its potential to infinitely…
ERIC Educational Resources Information Center
Burkhauser, Beth; Porter, Dave
2010-01-01
This article discusses the international interdependence Hexagon Project for Haiti which invites students, ages five through eighteen, to create an image within a hexagonal template and respond to big questions surrounding a global culture of interdependence. The hexagon is a visual metaphor for interdependence, with its potential to infinitely…
Study of lattice defect vibration
NASA Technical Reports Server (NTRS)
Elliott, R. J.
1969-01-01
Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.
New hexagonal structure for silicon atoms
NASA Astrophysics Data System (ADS)
Naji, S.; Belhaj, A.; Labrim, H.; Benyoussef, A.; El Kenz, A.
2012-11-01
Motivated by recent experimental and theoretical works on silicene and its derived materials and based on the exceptional Lie algebra G2 we propose a new hexagonal symmetry producing the (√3 × √3)R30° superstructure for silicon atoms. The principal hexagonal unit cell contains twelve atoms instead of the usual structure involving only six ones and it is associated with the G2 root system. In this silicon atom configuration appears two hexagons of unequal side length at angle 30°. This atomic structure can be tessellated to exhibit two superstructures (1 × 1) and (√3 × √3)R30° on the same atomic sheet. To test this double hexagonal structure, we perform a numerical study using Ab-initio calculations based on FPLO9.00-34 code. We observe that the usual silicon electronic properties and the lattice parameters of planar geometry are modified. In particular, the corresponding material becomes a conductor rather than zero gaped semi-conductor arising in single hexagonal structure. Although the calculation is done for silicon atoms, we expect that this structure could be adapted to all two dimensional materials having a single hexagonal flat geometry.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Murakami, Takeshi; Naito, Makio
2016-07-01
The Ni-doped lithium manganese oxide, LiNi0.5Mn1.5O4, has received much attention as a cathode active material in high-energy lithium-ion batteries (LIBs). This active material has two different spinel structures depending on the ordering state of the Ni and Mn ions. The ordered LiNi0.5Mn1.5O4 spinel has an inferior cathode performance than the disordered phase because of its poor electronic conductivity. However, the ordered LiNi0.5Mn1.5O4 spinel possesses the potential advantage of avoiding dissolution of the Mn ion, which is an issue for the disordered spinel. The improvement of cathode performance is important for future applications. Here, we report a unique approach to improve the cathode performance of the ordered LiNi0.5Mn1.5O4 spinel. The mechanical treatment using an attrition-type mill successfully inserted lattice strains into the ordered LiNi0.5Mn1.5O4 spinel structure without a phase transformation to the disordered phase. The insertion of lattice strains by mechanical stresses provided an increased discharge capacity and a decreased charge transfer resistance. This limited crystal structure modification improved the cathode performance. The present work has the potential for application of the mechanically treated ordered LiNi0.5Mn1.5O4 spinel as a cathode for high-energy LIBs.
A new hexagonal carbon nitride synthesized at high pressure and high temperature
NASA Astrophysics Data System (ADS)
Sougawa, Masaya; Shima, Yuta; Hirai, Masaaki; Takarabe, Kenichi; Okada, Taku; InstituteSolid State Physics, University of Tokyo Collaboration
2013-06-01
A new hexagonal carbon nitride has been synthesized by subjecting the C3N4Hxprecursor to high pressure and high temperature. The XRD pattern of the new hexagonal carbon nitride is indexed as the hexagonal unit cell with the lattice parameters; a = b = 2.83 Å, c = 9.82 Å (V = 68.10 Å3) . The unit cell of this new hexagonal carbon nitride differs from the several hexagonal carbon nitrides reported so far by the theoretical and experimental studies. Hart et al. proposed the hexagonal CN structure with 1:1 stoichiometry is based on the known GaSe layer with the unit cell parameters of the hexagonal unit a = b = 2.37 Å, c = 11.38 Å (V = 55.36 Å3) , respectively, and the space group is P63/mmc. Bojdys et al. synthesized the graphitic-C3N4 (g-C3N4) with the hexagonal unit cell with the lattice parameters; a = b = 8.43 Å, c = 6.72 Å (V = 414.09 Å3) , and the space group is P63cm. These reported hexagonal lattice constants disagree with the new hexagonal carbon nitrides synthesized in this report. We will report the full analysis of the crystal structure of the new hexagonal carbon nitride at the conference.
Structural and electronic properties of hexagonal yttrium trihydride
Wang, Y.; Chou, M.Y. )
1995-03-15
The structural and electronic properties of yttrium trihydride with metal atoms in the hexagonal-close-packed (hcp) structure are studied by the pseudopotential method within the local-density-functional approximation (LDA). It is found that the hydrogen positions within the metal lattice have a major role in determining these properties. Calculations confirmed that hexagonal YH[sub 3] with unusual wavelike hydrogen displacements (space group [ital D][sub 3[ital d
Rubin, Irwin
1978-01-01
A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.
NASA Technical Reports Server (NTRS)
Rubin, I. (Inventor)
1978-01-01
A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.
Effective elastic properties of two dimensional multiplanar hexagonal nanostructures
NASA Astrophysics Data System (ADS)
Mukhopadhyay, T.; Mahata, A.; Adhikari, S.; Asle Zaeem, M.
2017-06-01
A generalized analytical approach is presented to derive closed-form formulae for the elastic moduli of hexagonal multiplanar nano-structures. Hexagonal nano-structural forms are common for various materials. Four different classes of materials (single layer) from a structural point of view are proposed to demonstrate the validity and prospective application of the developed formulae. For example, graphene, an allotrope of carbon, consists of only carbon atoms to form a honeycomb like hexagonal lattice in a single plane, while hexagonal boron nitride (hBN) consists of boron and nitrogen atoms to form the hexagonal lattice in a single plane. Unlike graphene and hBN, there are plenty of other materials with hexagonal nano-structures that have the atoms placed in multiple planes such as stanene (consists of only Sn atoms) and molybdenum disulfide (consists of two different atoms: Mo and S). The physics based high-fidelity analytical model developed in this article are capable of obtaining the elastic properties in a computationally efficient manner for wide range of such materials with hexagonal nano-structures that are broadly classified in four classes from structural viewpoint. Results are provided for materials belonging to all the four classes, wherein a good agreement between the elastic moduli obtained using the proposed formulae and available scientific literature is observed.
Imperfect fluids and repulsive gravitation
Ponce de Leon, J.
1987-02-01
Imperfect fluid sources to the Schwarzschild exterior solution are studied under the assumption that the metric coefficients g/sub 00/ and g/sub 11/ of the interior solution satisfy the relation g/sub 00/ g/sub 11/ = -1. It was found that the core of such a distribution is gravitationally repulsive provided the energy density is positive.
Macromolecular diffractive imaging using imperfect crystals
NASA Astrophysics Data System (ADS)
Ayyer, Kartik; Yefanov, Oleksandr M.; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.
2016-02-01
The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.
Macromolecular diffractive imaging using imperfect crystals
Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.
2016-01-01
The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980
Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles
NASA Astrophysics Data System (ADS)
Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo
2017-07-01
We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.
Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens
2015-10-09
Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.
Comparison of microfabricated hexagonal and lamellar post arrays for DNA electrophoresis
Chen, Zhen; Dorfman, Kevin D.
2014-01-01
We used Brownian dynamics simulations to compare DNA separations in microfabricated post arrays containing either hexagonal or lamellar lattices. Contrary to intuition, dense hexagonal arrays with frequent DNA-post collisions do not yield the optimal separation. Rather, hexagonal arrays with pore sizes commensurate with the radius of gyration of the DNA lead to increased separation resolution due to a molecular-weight dependent collision probability that increases with molecular weight. However, when the hexagonal array is too sparse, this advantage is lost due to the low number of collisions. Lamellar lattices, such as the DNA nanofence, appear to be superior to a hexagonal array at the same post density, since the lamellar lattice combines regions for DNA relaxation with locally dense post regions for collisions. The relative advantages of different post array designs are explained in terms of the statistics for the number of collisions and the holdup time, providing guidelines for designing post arrays for separating long DNA. PMID:24132597
Spanning trees of lattices embedded on the Klein bottle.
Lu, Fuliang
2014-01-01
The problem of enumerating spanning trees in lattices with Klein bottle boundary condition is considered here. The exact closed-form expressions of the numbers of spanning trees for 4.8.8 lattice, hexagonal lattice, and 3(3) · 4(2) lattice on the Klein bottle are presented.
Two-dimensional electrostatic lattices for indirect excitons
NASA Astrophysics Data System (ADS)
Remeika, M.; Fogler, M. M.; Butov, L. V.; Hanson, M.; Gossard, A. C.
2012-02-01
We report on a method for the realization of two-dimensional electrostatic lattices for excitons using patterned interdigitated electrodes. Lattice structure is set by the electrode pattern and depth of the lattice potential is controlled by applied voltages. We demonstrate square, hexagonal, and honeycomb lattices created by this method.
Harmonic analysis of the AGS Booster imperfection
Shoji, Y.; Gardner, C.
1993-12-31
The harmonic content of magnetic field imperfections in the AGS Booster has been determined through careful measurements of the required field corrections of transverse resonances. An analysis of the required correction yielded amplitude and phase information which points to possible sources of imperfections. Dipole and quadrupole imperfections, which are proportional to the field of bending magnets (B), are mainly driven by any misalignment of the magnets. Quadrupole and sextupole imperfections, which are proportional to dB/dt, are driven by imperfections of the eddy-current correction system. The observations also suggest the presence of a remnant field.
On the Penrose and Taylor–Socolar hexagonal tilings
Lee, Jeong-Yup; Moody, Robert V.
2017-01-01
The intimate relationship between the Penrose and the Taylor–Socolar tilings is studied, within both the context of double hexagon tiles and the algebraic context of hierarchical inverse sequences of triangular lattices. This unified approach produces both types of tilings together, clarifies their relationship and offers straightforward proofs of their basic properties. PMID:28447596
NASA Astrophysics Data System (ADS)
Yan, Weigen; Zhang, Zuhe
2009-04-01
The energy of a simple graph G arising in chemical physics, denoted by E(G), is defined as the sum of the absolute values of eigenvalues of G. As the dimer problem and spanning trees problem in statistical physics, in this paper we propose the energy per vertex problem for lattice systems. In general for a type of lattice in statistical physics, to compute the entropy constant with toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions are different tasks with different hardness and may have different solutions. We show that the energy per vertex of plane lattices is independent of the toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions. In particular, the asymptotic formulae of energies of the triangular, 33.42, and hexagonal lattices with toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions are obtained explicitly.
Bronze-mean hexagonal quasicrystal.
Dotera, Tomonari; Bekku, Shinichi; Ziherl, Primož
2017-10-01
The most striking feature of conventional quasicrystals is their non-traditional symmetry characterized by icosahedral, dodecagonal, decagonal or octagonal axes. The symmetry and the aperiodicity of these materials stem from an irrational ratio of two or more length scales controlling their structure, the best-known examples being the Penrose and the Ammann-Beenker tiling as two-dimensional models related to the golden and the silver mean, respectively. Surprisingly, no other metallic-mean tilings have been discovered so far. Here we propose a self-similar bronze-mean hexagonal pattern, which may be viewed as a projection of a higher-dimensional periodic lattice with a Koch-like snowflake projection window. We use numerical simulations to demonstrate that a disordered variant of this quasicrystal can be materialized in soft polymeric colloidal particles with a core-shell architecture. Moreover, by varying the geometry of the pattern we generate a continuous sequence of structures, which provide an alternative interpretation of quasicrystalline approximants observed in several metal-silicon alloys.
Bronze-mean hexagonal quasicrystal
NASA Astrophysics Data System (ADS)
Dotera, Tomonari; Bekku, Shinichi; Ziherl, Primož
2017-10-01
The most striking feature of conventional quasicrystals is their non-traditional symmetry characterized by icosahedral, dodecagonal, decagonal or octagonal axes. The symmetry and the aperiodicity of these materials stem from an irrational ratio of two or more length scales controlling their structure, the best-known examples being the Penrose and the Ammann-Beenker tiling as two-dimensional models related to the golden and the silver mean, respectively. Surprisingly, no other metallic-mean tilings have been discovered so far. Here we propose a self-similar bronze-mean hexagonal pattern, which may be viewed as a projection of a higher-dimensional periodic lattice with a Koch-like snowflake projection window. We use numerical simulations to demonstrate that a disordered variant of this quasicrystal can be materialized in soft polymeric colloidal particles with a core-shell architecture. Moreover, by varying the geometry of the pattern we generate a continuous sequence of structures, which provide an alternative interpretation of quasicrystalline approximants observed in several metal-silicon alloys.
Peters, Roswell D. M.
1982-01-01
A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.
Dynamics of wet granular hexagons
NASA Astrophysics Data System (ADS)
Baur, Manuel; Huang, Kai
2017-03-01
The collective behavior of vibrated hexagonal disks confined in a monolayer is investigated experimentally. Due to the broken circular symmetry, hexagons prefer to rotate upon sufficiently strong driving. Due to the formation of liquid bridges, short-ranged cohesive interactions are introduced upon wetting. Consequently, a nonequilibrium stationary state with the rotating disks self-organized in a hexagonal structure arises. The bond length of the hexagonal structure is slightly smaller than the circumdiameter of a hexagon, indicating geometric frustration. This investigation provides an example where the collective behavior of granular matter is tuned by the shape of individual particles.
Hexagonalization of correlation functions
NASA Astrophysics Data System (ADS)
Fleury, Thiago; Komatsu, Shota
2017-01-01
We propose a nonperturbative framework to study general correlation functions of single-trace operators in N = 4 supersymmetric Yang-Mills theory at large N . The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.
Mechanism of the body-centered cubic--hexagonal close-packed phase transition in iron.
Bassett, W A; Huang, E
1987-11-06
The transition from body-centered cubic to hexagonal close-packed phase in iron has been studied in a diamond anvil cell with synchrotron radiation. The hexagonal close-packed phase, when it first appears, has a ratio of lattice parameters that is significantly larger than normal. This is attributed to a displacive mechanism that causes a distortion of the hexagonal close-packed structure in a body-centered cubic matrix. The hexagonal close-packed phase adjacent to a boundary with the body-centered cubic phase is stretched in the c direction and compressed in the a direction when it first forms.
Numerical study of localization in antidot lattices
NASA Astrophysics Data System (ADS)
Uryu, Seiji; Ando, Tsuneya
1998-10-01
Localization effects in antidot lattices in weak magnetic fields are numerically studied with the use of a Thouless-number method. In hexagonal antidot lattices, both conductance and inverse localization length oscillate as a function of a magnetic flux with the same period as an Al'tshuler-Aronov-Spivak oscillation, in qualitative agreement with recent experiments.
A developmental perspective on the Imperfective Paradox.
Kazanina, Nina; Phillips, Colin
2007-10-01
Imperfective or progressive verb morphology makes it possible to use the name of a whole event to refer to an activity that is clearly not a complete instance of that event, leading to what is known as the Imperfective Paradox. For example, a sentence like 'John was building a house' does not entail that a house ever got built. The Imperfective Paradox has received a number of different treatments in the philosophical and linguistic literature, but has received less attention from the perspective of language acquisition. This article presents developmental evidence on the nature of the Imperfective Paradox, based on a series of four experiments conducted with Russian-speaking 3 to 6 year olds. Despite the fact that Russian is a language in which the morphological form of imperfectives is highly salient and used appropriately at a very young age, younger children show a clearly non-adultlike pattern of comprehension in our experiments. The results from Experiments 1 and 2 suggest that Russian-speaking children incorrectly ascribe completion entailments to imperfectives. However, Experiments 3 and 4 indicate that the children recognize that imperfectives can describe incomplete events, and that their problem instead concerns their inability to find a suitable temporal interval against which to evaluate imperfective statements. Specifically, children are only willing to accept an imperfective predicate as a description of a past incomplete event when the sentence contains an explicit temporal modifier that highlights a time interval that ends before the failure point of the event. These findings are taken as support for an account of the imperfective that makes use of temporal perspectives in solving the Imperfective Paradox.
Peters, R.D.M.
1982-11-02
A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.
The Discrete Fourier Transform on hexagonal remote sensing image
NASA Astrophysics Data System (ADS)
Li, Yalu; Ben, Jin; Wang, Rui; Du, Lingyu
2016-11-01
Global discrete grid system will subdivide the earth recursively to form a multi-resolution grid hierarchy with no Overlap and seamless which help build global uniform spatial reference datum and multi-source data processing mode which takes the position as the object and in the aspect of data structure supports the organization, process and analysis of the remote sensing big data. This paper adopts the base transform to realize the mutual transformation of square pixel and hexagonal pixel. This paper designs the corresponding discrete Fourier transform algorithm for any lattice. Finally, the paper show the result of the DFT of the remote sensing image of the hexagonal pixel.
Shape-induced frustration of hexagonal order in polyhedral colloids.
Dullens, Roel P A; Mourad, Maurice C D; Aarts, Dirk G A L; Hoogenboom, Jacob P; Kegel, Willem K
2006-01-20
The effect of a nonspherical particle shape and shape polydispersity on the structure of densely packed hard colloidal particles was studied in real space by confocal microscopy. We show that the first layer at the wall of concentrated size-monodisperse but shape-polydisperse polyhedral colloids exhibits significant deviations from a hexagonal lattice. These deviations are identified as bond-orientational fluctuations which lead to percolating "mismatch lines." While the shape-induced geometrical frustration of the hexagonal symmetry suppresses translational order, bond-orientational order is clearly retained, indicating a hexaticlike structure of the polyhedral colloids.
A Developmental Perspective on the Imperfective Paradox
ERIC Educational Resources Information Center
Kazanina, Nina; Phillips, Colin
2007-01-01
Imperfective or progressive verb morphology makes it possible to use the name of a whole event to refer to an activity that is clearly not a complete instance of that event, leading to what is known as the Imperfective Paradox. For example, a sentence like "John was building a house" does not entail that a house ever got built. The Imperfective…
Buckling of conical shell with local imperfections
NASA Technical Reports Server (NTRS)
Cooper, P. A.; Dexter, C. B.
1974-01-01
Small geometric imperfections in thin-walled shell structures can cause large reductions in buckling strength. Most imperfections found in structures are neither axisymmetric nor have the shape of buckling modes but rather occur locally. This report presents the results of a study of the effect of local imperfections on the critical buckling load of a specific axially compressed thin-walled conical shell. The buckling calculations were performed by using a two-dimensional shell analysis program referred to as the STAGS (Structural Analysis of General Shells) computer code, which has no axisymmetry restrictions. Results show that the buckling load found from a bifurcation buckling analysis is highly dependent on the circumferential arc length of the imperfection type studied. As the circumferential arc length of the imperfection is increased, a reduction of up to 50 percent of the critical load of the perfect shell can occur. The buckling load of the cone with an axisymmetric imperfections is nearly equal to the buckling load of imperfections which extended 60 deg or more around the circumference, but would give a highly conservative estimate of the buckling load of a shell with an imperfection of a more local nature.
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
Enhanced physics design with hexagonal repeated structure tools using Monte Carlo methods
Carter, L L; Lan, J S; Schwarz, R A
1991-01-01
This report discusses proposed new missions for the Fast Flux Test Facility (FFTF) reactor which involve the use of target assemblies containing local hydrogenous moderation within this otherwise fast reactor. Parametric physics design studies with Monte Carlo methods are routinely utilized to analyze the rapidly changing neutron spectrum. An extensive utilization of the hexagonal lattice within lattice capabilities of the Monte Carlo Neutron Photon (MCNP) continuous energy Monte Carlo computer code is applied here to solving such problems. Simpler examples that use the lattice capability to describe fuel pins within a brute force'' description of the hexagonal assemblies are also given.
Imperfect information facilitates the evolution of reciprocity.
Kurokawa, Shun
2016-06-01
The existence of cooperation demands explanation since cooperation is costly to the actor. Reciprocity has long been regarded as a potential explanatory mechanism for the existence of cooperation. Reciprocity is a mechanism wherein a cooperator responds to an opponent's behavior by switching his/her own behavior. Hence, a possible problematic case relevant to the theory of reciprocity evolution arises when the mechanism is such that the information regarding an opponent's behavior is imperfect. Although it has been confirmed also by previous theoretical studies that imperfect information interferes with the evolution of reciprocity, this argument is based on the assumption that there are no mistakes in behavior. And, a previous study presumed that it might be expected that when such mistakes occur, reciprocity can more readily evolve in the case of imperfect information than in the case of perfect information. The reason why the previous study considers so is that in the former case, reciprocators can miss defections incurred by other reciprocators' mistakes due to imperfect information, allowing cooperation to persist when such reciprocators meet. However, contrary to this expectation, the previous study has shown that even when mistakes occur, imperfect information interferes with the evolution of reciprocity. Nevertheless, the previous study assumed that payoffs are linear (i.e., that the effect of behavior is additive and there are no synergetic effects). In this study, we revisited the same problem but removed the assumption that payoffs are linear. We used evolutionarily stable strategy analysis to compare the condition for reciprocity to evolve when mistakes occur and information is imperfect with the condition for reciprocity to evolve when mistakes occur and information is perfect. Our study revealed that when payoffs are not linear, imperfect information can facilitate the evolution of reciprocity when mistakes occur; while when payoffs are linear
Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films
NASA Astrophysics Data System (ADS)
Alam, M. T.; Bresnehan, M. S.; Robinson, J. A.; Haque, M. A.
2014-01-01
Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m-1 K-1, is lower than the bulk basal plane value (390 W m-1 K-1) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics.
Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals.
Tenner, V T; de Dood, M J A; van Exter, M P
2016-12-26
We present a systematic experimental study on the optical properties of plasmonic crystals (PlC) with hexagonal symmetry. We compare the dispersion and avoided crossings of surface plasmon modes around the Γ-point of Au-metal hole arrays with a hexagonal, honeycomb and kagome lattice. Symmetry arguments and group theory are used to label the six modes and understand their radiative and dispersive properties. Plasmon-plasmon interaction are accurately described by a coupled mode model, that contains effective scattering amplitudes of surface plasmons on a lattice of air holes under 60°, 120°, and 180°. We determine these rates in the experiment and find that they are dominated by the hole-density and not on the complexity of the unit-cell. Our analysis shows that the observed angle-dependent scattering can be explained by a single-hole model based on electric and magnetic dipoles.
Initial conditions for imperfect dark matter
Ramazanov, Sabir
2015-12-01
We discuss initial conditions for the recently proposed Imperfect Dark Matter (Modified Dust). We show that they are adiabatic under fairly moderate assumptions about the cosmological evolution of the Universe at the relevant times.
Understanding Your Vision: The "Imperfect Eye"
... Navigation Bar Home Current Issue Past Issues Feature: Vision Understanding Your Vision: The "Imperfect Eye" Past Issues / Summer 2008 Table ... are different and so are the types of vision that we have. Understanding how some of us ...
Superstructural planar defects in ordered alloys with hexagonal close packing
Dmitriev, S.V.; Frolov, A.M.; Golobokova, S.I.; Starostenkov, M.D.
1995-03-01
An analysis of superstructural defects in ordered alloys with hexagonal close packing was performed by complementing the packing to form the lattice. An algorithm for determining all energetically equivalent but geometrically different representations of a superstructure is given. The maximum number of super-structural planar defects of the same orientation but different energies is estimated. The method is exemplified on the DO{sub 19} superstructure. 13 refs.
2017-05-08
Saturn hexagonal polar jet stream is the shining feature of almost every view of the north polar region of Saturn. The region, in shadow for the first part of NASA's Cassini mission, now enjoys full sunlight, which enables Cassini scientists to directly image it in reflected light. Although the sunlight falling on the north pole of Saturn is enough to allow us to image and study the region, it does not provide much warmth. In addition to being low in the sky (just like summer at Earth's poles), the sun is nearly ten times as distant from Saturn as from Earth. This results in the sunlight being only about 1 percent as intense as at our planet. This view looks toward Saturn from about 31 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on Jan. 22, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 939 nanometers. The view was obtained at a distance of approximately 560,000 miles (900,000 kilometers) from Saturn. Image scale is 33 miles (54 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21327
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)
2011-01-01
Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.
An Explanation for Saturn's Hexagon
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-08-01
For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a
Electronic Structure of Graphene and Germanene Based on Double Hexagonal Structure
NASA Astrophysics Data System (ADS)
Naji, S.; Belhaj, A.; Labrim, H.; Benyoussef, A.; El Kenz, A.
2013-11-01
In this paper, we study the electronic structure of monolayer materials based on a double hexagonal geometry with (1×1) and (√ 3 × √ 3)R30o superstructures. Inspired from the two-dimensional root system of an exceptional Lie algebra called G2, this hexagonal atomic configuration involves two hexagons of unequal side length at angle 30°. The principal unit hexagonal cell contains twelve atoms instead of the usual configuration involving only six ones relying only on the (1×1) superstructure. Using ab initio calculations based on FPLO9.00-34 code, we investigate numerically the graphene and the germanene with the double hexagonal geometry. In particular, we find that the usual electronic properties and the lattice parameters of such materials are modified. More precisely, the lattice parameters are increased. It has been shown that, in the single hexagonal geometry, the grapheme and the germanene behave as a gapless semiconductor and a semi-metallic, respectively. In double hexagonal geometry however, both materials becomes metallic.
Gravitational focusing of imperfect dark matter
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Ramazanov, Sabir
2017-01-01
Motivated by the projectable Horava-Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from a collection of nonrelativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of imperfect dark matter passing near the Sun. This entails strong amplification of imperfect dark matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of cold dark matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the post-Newtonian parameter βPPN, we deduce a stringent constraint on the unique constant of the model.
Predator cognition permits imperfect coral snake mimicry.
Kikuchi, David W; Pfennig, David W
2010-12-01
Batesian mimicry is often imprecise. An underexplored explanation for imperfect mimicry is that predators might not be able to use all dimensions of prey phenotype to distinguish mimics from models and thus permit imperfect mimicry to persist. We conducted a field experiment to test whether or not predators can distinguish deadly coral snakes (Micrurus fulvius) from nonvenomous scarlet kingsnakes (Lampropeltis elapsoides). Although the two species closely resemble one another, the order of colored rings that encircle their bodies differs. Despite this imprecise mimicry, we found that L. elapsoides that match coral snakes in other respects are not under selection to match the ring order of their model. We suggest that L. elapsoides have evolved only those signals necessary to deceive predators. Generally, imperfect mimicry might suffice if it exploits limitations in predator cognitive abilities.
Imperfect wetting of hydrogen in zeolite
Sullivan, N.S.; Rall, M.
1995-11-01
We have considered the theoretical dependencies of the amount of supercooling of liquid hydrogen as a function of pore size for constrained geometries in order to compare the different mechanisms for supercooling that can be observed: notably the inhibition of nucleation in small geometries and the use of surfaces for which there is imperfect wetting. Analysis of the dependence of the observed supercooling reported elsewhere for molecular hydrogen and hydrogen deuteride on the pore size in zeolites supports the view that imperfect wetting occurs for small pores that have rough surfaces and dimension less than approximately 10{angstrom}.
Generic substitution, financial interests, and imperfect agency.
Rischatsch, Maurus; Trottmann, Maria; Zweifel, Peter
2013-06-01
Policy makers around the world seek to encourage generic substitution. In this paper, the importance of prescribing physicians' imperfect agency is tested using the fact that some Swiss jurisdictions allow physicians to dispense drugs on their own account (physician dispensing, PD) while others disallow it. We estimate a model of physician drug choice with the help of drug claim data, finding a significant positive association between PD and the use of generics. While this points to imperfect agency, generics are prescribed more often to patients with high copayments or low incomes.
Imperfection-sensitivity in the plastic range
NASA Technical Reports Server (NTRS)
Hutchinson, J. W.
1973-01-01
The effect of small imperfections on the buckling of continuous structures loaded into the plastic range is studied. A simple model study is presented and several additional examples are discussed. The role of the load at which elastic unloading first occurs is emphasized, and a general asymptotic analysis is given for the behavior prior to the onset of elastic unloading for a class of elastic-plastic solids subject to loads characterized by a single load parameter. Asymptotic imperfection-sensitivity formulae are obtained whose features are similar to analogous formulae for elastic structures.
Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films
Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki; Mizuhata, Minoru
2009-09-15
Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectra showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted
Epitaxial hexagonal materials on IBAD-textured substrates
Matias, Vladimir; Yung, Christopher
2017-08-15
A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.
On the Structure of a New Superhard Hexagonal Carbon Phase
NASA Astrophysics Data System (ADS)
Zhang, Bin; Liang, Yongcheng; Guo, Zaoyang; Bordas, Stéphane
2010-05-01
Molecular dynamics simulations show that graphite will transform into a superhard phase under cold compression. Recent experiments show that there is a sp3-rich hexagonal carbon polymorph (a0 = 2.496 Å, c0 = 4.123 Å) with a bulk modulus of 447 GPa and average density about 3.6 g/cm3, restricted to the space group of P-62c (No. 190), but the detailed atomic structure was not obtained [Wang et al., P. Natl. Acad. Sci. 101(38), 13699]. Here we set carbon atoms occupying P-62c 4f Wyckoff positions of P-62c, and calculate the total energy of the different structures changing the internal parameter z by first-principles calculations using geometry optimisation algorithm in CASTEP code, which shows that the stable structures in energy (at local minimum points) are hexagonal carbon (z = 1/4) and hexagonal diamond (z = 1/16). The calculated mechanical properties and lattice parameters of the structure P-62c 4f (z = 1/4) are in good agreement with those of the new hexagonal carbon proposed by Wang et al., which indicates that the atomic structure is a possible candidate.
Incentives for Cheating Given Imperfect Detection
Canavan, G.H.
1998-10-01
The incentives for cheating given imperfect detection can be discussed within the context of first strike stability. The cost reduction due to is balanced against the sanctions that would be imposed if cheating was detected. For small political sanctions, the optimum level is at high levels of cheating. For large sanctions, the optimum is at quite low levels, which discourages cheating.
Microcrystalline hexagonal tungsten bronze. 2. Dehydration dynamics.
Luca, Vittorio; Griffith, Christopher S; Hanna, John V
2009-07-06
Low-temperature (25-600 degrees C) thermal transformations have been studied for hydrothermally prepared, microcrystalline hexagonal tungsten bronze (HTB) phases A(x)WO(3+x/2).zH(2)O as a function of temperature, where A is an exchangeable cation (in this case Na(+) or Cs(+)) located in hexagonal structural tunnels. Thermal treatment of the as-prepared sodium- and cesium-exchanged phases in air were monitored using a conventional laboratory-based X-ray diffractometer, while thermal transformations in vacuum were studied using synchrotron X-ray and neutron diffraction. Concurrent thermogravimetric, diffuse reflectance infrared (DRIFT), and (23)Na and (133)Cs magic angle spinning (MAS) NMR spectroscopic studies have also been undertaken. For the cesium variant, cell volume contraction occurred from room temperature to about 350 degrees C, the regime in which water was "squeezed" out of tunnel sites. This was followed by a lattice expansion in the 350-600 degrees C temperature range. Over the entire temperature range, a net thermal contraction was observed, and this was the result of an anisotropic change in the cell dimensions which included a shortening of the A-O2 bond length. These changes explain why Cs(+) ions are locked into tunnel positions at temperatures as low as 400 degrees C, subsequently inducing a significant reduction in Cs(+) extractability under low pH (nitric acid) conditions. The changing Cs(+) speciation as detected by (133)Cs MAS NMR showed a condensation from multiple Cs sites, presumably associated with differing modes of Cs(+) hydration in the tunnels, to a single Cs(+) environment upon thermal transformation and water removal. While similar lattice contraction was observed for the as-prepared sodium variant, the smaller radius of Na(+) caused it to be relatively easily removed with acid in comparison to the Cs(+) variant. From (23)Na MAS NMR studies of the parent material, complex Na(+) speciation was observed with dehydrated and various
Marin, E.; Tomas, R.; Bambade, P.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; Seryi, A.; White, G.; Woodley, M.; /SLAC
2011-12-09
The current status for the ATF2 Nominal and Ultra-low {beta}* lattices are presented in this paper. New lattice designs have been obtained in order to minimise the impact of the last interpretation of multipole measurements that have been included into the model. However, the new ATF2 Ultra-low design is not able to recover the expected vertical beam size at the IP with the current magnet distribution. Therefore, different quadrupole sorting have been studied. A significant gain is evident for the ATF2 Ultra-low lattice when sorting the magnets according to the skew-sextupolar components. The ATF2 Nominal lattice is also expected to benefit from the new sorting. Tuning results of the new ATF2 Ultra-low lattice under realistic imperfections are also reported.
Transitions induced by solubilized fat into reverse hexagonal mesophases.
Amar-Yuli, Idit; Garti, Nissim
2005-06-25
. In addition, it was found that in tricaprylin/GMO/water systems, the increase in temperature caused a decrease in the lattice parameter. The effect of NaCl on the H(II) mesophase revealed interesting results. At low concentration of tricaprylin (5 wt%), the addition of only 0.1 wt% of NaCl was sufficient to cause the formation of well-defined H(II) mesophase, while further addition of electrolyte increased the hexagonal lattice parameters. At higher TAGs concentrations (10 wt%), addition of electrolyte resulted in the formation of H(II) with modifications of the lattice parameter. All the examined effects were more pronounced with increasing water content.
Observing Altshuler--Aronov--Spivak Oscillation in a Hexagonal Antidot Array of Monolayer Graphene
NASA Astrophysics Data System (ADS)
Yagi, Ryuta; Shimomura, Midori; Tahara, Fumiya; Kobara, Hiroaki; Fukada, Seiya
2012-06-01
We show that hexagonal antidot lattices of monolayer graphene exhibited the Altshuler--Aronov--Spivak (AAS) effect in low field magnetoresistance. In higher magnetic fields, Aharonov--Bohm-type oscillations were visible. The phase of AAS oscillation indicated that the chirality effect of graphene is suppressed because of inter-valley scattering due to boundary scatterings.
Hexagonal organization of Moloney murine leukemia virus capsid proteins.
Mayo, Keith; McDermott, Jason; Barklis, Eric
2002-06-20
To help elucidate the mechanisms by which retrovirus structural proteins associate to form virus particles, we have examined membrane-bound assemblies of Moloney murine leukemia virus (M-MuLV) capsid (CA) proteins. Electron microscopy and image reconstruction techniques showed that CA dimers appear to function as organizational subunits of the cage-like, membrane-bound protein arrays. However, new three-dimensional (3D) data also were consistent with hexagonal (p6) assembly models. The p6 3D reconstructions of membrane-bound M-MuLV CA proteins gave unit cells of a = b = 80.3 A, c = 110 A, gamma = 120 degrees, in which six dimer units formed a cage lattice. Neighbor cage hole-to-hole distances were 45 A, while distances between hexagonal cage holes corresponded to unit cell lengths (80.3 A). The hexagonal model predicts two types of cage holes (trimer and hexamer holes), uses symmetric head-to-head dimer building blocks, and permits the introduction of lattice curvature by conversion of hexamer to pentamer units. The M-MuLV CA lattice is similar to those formed in helical tubes by HIV CA in that hexamer units surround cage holes of 25-30 A, but differs in that M-MuLV hexamer units appear to be CA dimers, whereas HIV CA units appear to be monomers. These results suggest that while general assembly principles apply to different retroviruses, clear assembly distinctions exist between these virus types. (c) 2002 Elsevier Science (USA).
Imperfect chimera states for coupled pendula
Kapitaniak, Tomasz; Kuzma, Patrycja; Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri
2014-01-01
The phenomenon of chimera states in the systems of coupled, identical oscillators has attracted a great deal of recent theoretical and experimental interest. In such a state, different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Here, considering the coupled pendula, we find another pattern, the so-called imperfect chimera state, which is characterized by a certain number of oscillators which escape from the synchronized chimera's cluster or behave differently than most of uncorrelated pendula. The escaped elements oscillate with different average frequencies (Poincare rotation number). We show that imperfect chimera can be realized in simple experiments with mechanical oscillators, namely Huygens clock. The mathematical model of our experiment shows that the observed chimera states are controlled by elementary dynamical equations derived from Newton's laws that are ubiquitous in many physical and engineering systems. PMID:25223296
Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho
2014-01-15
A comprehensive study of the effects of structural imperfections in MgB{sub 2} superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB{sub 2} material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB{sub 2}, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB{sub 2}, however, even at low sintering temperature, and thus block current transport paths.
Thermal stability of hexagonal OsB{sub 2}
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.
2014-11-15
The synthesis of novel hexagonal ReB{sub 2}-type OsB{sub 2} ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of {sup 10}B and {sup 11}B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched {sup 11}B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB{sub 2} phase was the main product of synthesis with a small quantity of Os{sub 2}B{sub 3} phase present after synthesis as an intermediate product. In the second case, where coarse crystalline {sup 11}B powder was used as a raw material, only Os{sub 2}B{sub 3} boride was synthesized mechanochemically. The thermal stability of hexagonal OsB{sub 2} powder was studied by heating under argon up to 876 °C and cooling in vacuo down to −225 °C. During the heating, the sacrificial reaction 2OsB{sub 2}+3O{sub 2}→2Os+2B{sub 2}O{sub 3} took place due to presence of O{sub 2}/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B{sub 2}O{sub 3} and precipitation of Os metal out of the OsB{sub 2} lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB{sub 2} changed significantly. The shrinkage of the a lattice parameter was recorded in 276–426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB{sub 2} lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O{sub 2}, the hexagonal OsB{sub 2} ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice
Consistent perturbations in an imperfect fluid
Sawicki, Ignacy; Amendola, Luca; Saltas, Ippocratis D.; Kunz, Martin E-mail: i.saltas@sussex.ac.uk E-mail: martin.kunz@unige.ch
2013-01-01
We present a new prescription for analysing cosmological perturbations in a more-general class of scalar-field dark-energy models where the energy-momentum tensor has an imperfect-fluid form. This class includes Brans-Dicke models, f(R) gravity, theories with kinetic gravity braiding and generalised galileons. We employ the intuitive language of fluids, allowing us to explicitly maintain a dependence on physical and potentially measurable properties. We demonstrate that hydrodynamics is not always a valid description for describing cosmological perturbations in general scalar-field theories and present a consistent alternative that nonetheless utilises the fluid language. We apply this approach explicitly to a worked example: k-essence non-minimally coupled to gravity. This is the simplest case which captures the essential new features of these imperfect-fluid models. We demonstrate the generic existence of a new scale separating regimes where the fluid is perfect and imperfect. We obtain the equations for the evolution of dark-energy density perturbations in both these regimes. The model also features two other known scales: the Compton scale related to the breaking of shift symmetry and the Jeans scale which we show is determined by the speed of propagation of small scalar-field perturbations, i.e. causality, as opposed to the frequently used definition of the ratio of the pressure and energy-density perturbations.
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex.
Watson, A B; Ahumada, A J
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of primary visual cortex employ a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. Despite the presumable importance of this transformation, we lack any comprehensive notion of how it occurs. Here we describe a mathematical model for this transformation. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, employs basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. The three even kernels are rotations of 0, 60, and 120 degrees of a common kernel; likewise for the three odd kernels. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
Graphene on hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Yankowitz, Matthew; Xue, Jiamin; LeRoy, B. J.
2014-07-01
The field of graphene research has developed rapidly since its first isolation by mechanical exfoliation in 2004. Due to the relativistic Dirac nature of its charge carriers, graphene is both a promising material for next-generation electronic devices and a convenient low-energy testbed for intrinsically high-energy physical phenomena. Both of these research branches require the facile fabrication of clean graphene devices so as not to obscure its intrinsic physical properties. Hexagonal boron nitride has emerged as a promising substrate for graphene devices as it is insulating, atomically flat and provides a clean charge environment for the graphene. Additionally, the interaction between graphene and boron nitride provides a path for the study of new physical phenomena not present in bare graphene devices. This review focuses on recent advancements in the study of graphene on hexagonal boron nitride devices from the perspective of scanning tunneling microscopy with highlights of some important results from electrical transport measurements.
Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.
2004-01-01
An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.
Epitaxial Garnets and Hexagonal Ferrites.
1983-12-01
Ferrites Lithium Ferrite Magnetostatic Wave Garnets Epitaxy Yttrium Iron Garnet Liquid Phase Epitaxy Hexagonal Ferrite Microwave Signal Processing...epitaxial ferrit ( materials for use in microwave and millirreter-wave signal processing devices. The major emphasis has been on multiple layer...overall objective of this research is to develop epitaxial single crystal ferrite films suitable for microwave and millimeter-wave signal processing at
Epitaxial Garnets and Hexagonal Ferrites.
1982-04-20
Iron Garnet Liquid Phase Epitaxy Hexagonal Ferrite microwave Signal Processing Millimeter-Wave 20. ABSTRACT (Continue ani revee arde if necoeermy and...le.’uIfy by block rns.) e objective of this research is to develop new and improved epitauial ferrite materials for use in microwave and millimeter... ferrite films suitable for microwave and millimeter-wave signal processing at frequencies above 1 GHz. The specific tasks are: a. Analyze and develop
Bimaterial lattices as thermal adapters and actuators
NASA Astrophysics Data System (ADS)
Toropova, Marina M.; Steeves, Craig A.
2016-11-01
The goal of this paper is to demonstrate how anisotropic biomaterial lattices can be used in thermal actuation. Compared to other lattices with tailored thermal expansion, the anisotropy of these bimaterial lattices makes them uniquely suitable for use as thermal actuators. Each individual cell, and hence lattices consisting of such cells, can be designed with widely different predetermined coefficients of thermal expansion (CTE) in different directions, enabling complex shape changes appropriate for actuation with either passive or active control. The lattices are composed of planar non-identical cells that each consist of a skewed hexagon surrounding an irregular triangle. The cells and all members of any cell are connected to each other by pins so that they have no rotational constraints and are able to expand or contract freely. In this case, the skew angles of the hexagon and the ratio of the CTEs of the two component materials determine the overall performance of the lattice. At its boundaries, the lattice is connected to substrates by pins and configured such that the CTE between two neighboring lattice vertices coincides with the CTE of the adjacent substrate. Provided the boundary behavior of the lattice is matched to the thermal properties of the substrates, temperature changes in the structure produce thermal strains without producing any corresponding stresses. Such lattices can be used in three different ways: as adaptive elements for stress-free connection of components with different CTEs; for fine tuning of structures; and as thermally driven actuators. In this paper, we demonstrate some concepts for lattice configurations that produce thermally-driven displacements that enable several actuators: a switch, a valve and tweezers.
Lipolysis and structure controlled drug release from reversed hexagonal mesophase.
Garti, Nissim; Hoshen, Geut; Aserin, Abraham
2012-06-01
The present work investigates a system composed of a ternary reversed hexagonal mesophase (H(II)) loaded with a lipase for modulating drug delivery capabilities of the system. Thermomyces lanuginosa lipase was solubilized into H(II) mesophase for the benefits of continuing lipolysis of the lipids, consequently disordering and decomposing the hexagonal mesophase and thereby enhancing the diffusion of the encapsulated drug. A single transition from the H(II) structure to a random micellar phase was detected during the lipolysis. In the first lipolysis stage the hexagonal system (glycerol monooleate, tricaprylin, and water) preserved its symmetry within ca. 200 min. During this step about 40-60% molar of the lipids were hydrolyzed, and a gradual shrinking of the H(II) cylinders (decrease of 8 Å in lattice parameter) was detected. In the second lipolysis stage, the H(II) mesophase gradually disintegrated (faster rate) and the release of a model drug (sodium diclofenac) was significantly enhanced, which was assumed to be lipolysis rate-controlled. After about 15 h the H(II) mesophase was disintegrated into two dispersed immiscible phases. The release obeyed two-step Higuchi kinetics with two consecutive linear correlations of the drug release. Copyright © 2012 Elsevier B.V. All rights reserved.
Modeling surface imperfections in thin films and nanostructured surfaces
NASA Astrophysics Data System (ADS)
Hansen, P.-E.; Madsen, J. S.; Jensen, S. A.; Madsen, M. H.; Karamehmedovic, M.
2017-06-01
Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection on the surface. Combining measurement data from several instruments increases the knowledge of non-perfect surfaces. In this paper we investigate how to incorporate this knowledge of surface imperfection into inverse methods used in scatterometry and ellipsometry using the Rigorous Coupled Wave Analysis. Three classes of imperfections are examined. The imperfections are introduced as periodic structures with a super cell periods ten times larger than the simple grating period. Two classes of imperfections concern the grating and one class concern the substrate. It is shown that imperfections of a few nanometers can severely change the reflective response on silicon gratings. Inverse scatterometry analyses of gratings with imperfection using simulated data with white noise have been performed. The results show that scatterometry is a robust technology that is able to characterize grating imperfections provided that the imperfection class is known.
Physical Vapor Deposition of Hexagonal and Tetragonal CuIn5Se8 Thin Films
NASA Astrophysics Data System (ADS)
Kohara, Naoki; Nishiawaki, Shiro; Negami, Takayuki; Wada, Takahiro
2000-11-01
Hexagonal and tetragonal CuIn5Se8 thin films have been successfully prepared by physical vapor deposition. A hexagonal CuIn5Se8 thin film was obtained via the reaction of (Cu+Se) and (In+Se) layers. This hexagonal film had a layered structure with a lattice spacing of approximately 16 Å, corresponding to fivefold close-packed stacking of Se. With an alternative deposition process using (CuInSe2) and (In2Se3) layers, a tetragonal CuIn5Se8 thin film was obtained. The tetragonal film had a columnar structure with a lattice spacing of 3.3 Å, corresponding to the cubic close-packed stacking of Se. As evident from examination of the Cu2Se-In2Se3 pseudo-binary system phase diagram, hexagonal CuIn5Se8 is a stable phase and tetragonal CuIn5Se8 is metastable. The growth mechanism of the hexagonal and tetragonal phase CuIn5Se8 thin films is discussed from a crystallographic point of view.
Trend estimation in populations with imperfect detection
Kery, Marc; Dorazio, Robert M.; Soldaat, Leo; Van Strien, Arco; Zuiderwijk, Annie; Royle, J. Andrew
2009-01-01
1. Trends of animal populations are of great interest in ecology but cannot be directly observed owing to imperfect detection. Binomial mixture models use replicated counts to estimate abundance, corrected for detection, in demographically closed populations. Here, we extend these models to open populations and illustrate them using sand lizard Lacerta agilis counts from the national Dutch reptile monitoring scheme. 2. Our model requires replicated counts from multiple sites in each of several periods, within which population closure is assumed. Counts are described by a hierarchical generalized linear model, where the state model deals with spatio-temporal patterns in true abundance and the observation model with imperfect counts, given that true state. We used WinBUGS to fit the model to lizard counts from 208 transects with 1–10 (mean 3) replicate surveys during each spring 1994–2005. 3. Our state model for abundance contained two independent log-linear Poisson regressions on year for coastal and inland sites, and random site effects to account for unexplained heterogeneity. The observation model for detection of an individual lizard contained effects of region, survey date, temperature, observer experience and random survey effects. 4. Lizard populations increased in both regions but more steeply on the coast. Detectability increased over the first few years of the study, was greater on the coast and for the most experienced observers, and highest around 1 June. Interestingly, the population increase inland was not detectable when the observed counts were analysed without account of detectability. The proportional increase between 1994 and 2005 in total lizard abundance across all sites was estimated at 86% (95% CRI 35–151). 5. Synthesis and applications. Open-population binomial mixture models are attractive for studying true population dynamics while explicitly accounting for the observation process, i.e. imperfect detection. We emphasize the important
Implicit bias, awareness and imperfect cognitions.
Holroyd, Jules
2015-05-01
Are individuals responsible for behaviour that is implicitly biased? Implicitly biased actions are those which manifest the distorting influence of implicit associations. That they express these 'implicit' features of our cognitive and motivational make up has been appealed to in support of the claim that, because individuals lack the relevant awareness of their morally problematic discriminatory behaviour, they are not responsible for behaving in ways that manifest implicit bias. However, the claim that such influences are implicit is, in fact, not straightforwardly related to the claim that individuals lack awareness of the morally problematic dimensions of their behaviour. Nor is it clear that lack of awareness does absolve from responsibility. This may depend on whether individuals culpably fail to know something that they should know. I propose that an answer to this question, in turn, depends on whether other imperfect cognitions are implicated in any lack of the relevant kind of awareness. In this paper I clarify our understanding of 'implicitly biased actions' and then argue that there are three different dimensions of awareness that might be at issue in the claim that individuals lack awareness of implicit bias. Having identified the relevant sense of awareness I argue that only one of these senses is defensibly incorporated into a condition for responsibility, rejecting recent arguments from Washington & Kelly for an 'externalist' epistemic condition. Having identified what individuals should - and can - know about their implicitly biased actions, I turn to the question of whether failures to know this are culpable. This brings us to consider the role of implicit biases in relation to other imperfect cognitions. I conclude that responsibility for implicitly biased actions may depend on answers to further questions about their relationship to other imperfect cognitions.
Bornyakov, V.G.
2005-06-01
Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.
Method for correcting imperfections on a surface
Sweatt, William C.; Weed, John W.
1999-09-07
A process for producing near perfect optical surfaces. A previously polished optical surface is measured to determine its deviations from the desired perfect surface. A multi-aperture mask is designed based on this measurement and fabricated such that deposition through the mask will correct the deviations in the surface to an acceptable level. Various mask geometries can be used: variable individual aperture sizes using a fixed grid for the apertures or fixed aperture sizes using a variable aperture spacing. The imperfections are filled in using a vacuum deposition process with a very thin thickness of material such as silicon monoxide to produce an amorphous surface that bonds well to a glass substrate.
Imperfection, practice and humility in clinical ethics.
Garchar, Kim
2012-10-01
In this essay, I provide a description of the discipline of ethics using the philosophies of Aristotle and the American pragmatist John Dewey. Specifically, I argue that ethics is an active undertaking that is ambiguous and pluralistic. I then normatively prescribe the way in which clinical ethicists ought to approach their work in medicine. Rather than endeavouring to become, or behaving as if they are, experts, clinical ethicists must be humble. They must practise ethics. That is, they must admit ethics is the study and pursuit of the good life but that this study and pursuit occurs imperfectly in the face of problematic situations.
Imperfect relativistic mirrors in the quantum regime
Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.
2014-05-15
The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.
Learning receptor positions from imperfectly known motions
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.
1990-01-01
An algorithm is described for learning image interpolation functions for sensor arrays whose sensor positions are somewhat disordered. The learning is based on failures of translation invariance, so it does not require knowledge of the images being presented to the visual system. Previously reported implementations of the method assumed the visual system to have precise knowledge of the translations. It is demonstrated that translation estimates computed from the imperfectly interpolated images can have enough accuracy to allow the learning process to converge to a correct interpolation.
Learning receptor positions from imperfectly known motions
NASA Astrophysics Data System (ADS)
Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.
1990-10-01
An algorithm is described for learning image interpolation functions for sensor arrays whose sensor positions are somewhat disordered. The learning is based on failures of translation invariance, so it does not require knowledge of the images being presented to the visual system. Previously reported implementations of the method assumed the visual system to have precise knowledge of the translations. We demonstrate here that translation estimates computed from the imperfectly interpolated images can have enough accuracy to allow the learning process to converge to a correct interpolation.
Chaos in an imperfectly premixed model combustor
Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.
2015-02-15
This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.
Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films
Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.
2014-01-06
Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m{sup −1} K{sup −1}, is lower than the bulk basal plane value (390 W m{sup −1} K{sup −1}) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics.
Spin-orbit coupling in a hexagonal ring of pendula
NASA Astrophysics Data System (ADS)
Salerno, Grazia; Berardo, Alice; Ozawa, Tomoki; Price, Hannah M.; Taxis, Ludovic; Pugno, Nicola M.; Carusotto, Iacopo
2017-05-01
We consider the mechanical motion of a system of six macroscopic pendula which are connected with springs and arranged in a hexagonal geometry. When the springs are pre-tensioned, the coupling between neighbouring pendula along the longitudinal (L) and the transverse (T) directions are different: identifying the motion along the L and T directions as the two components of a spin-like degree of freedom, we theoretically and experimentally verify that the pre-tensioned springs result in a tunable spin-orbit coupling. We elucidate the structure of such a spin-orbit coupling in the extended two-dimensional honeycomb lattice, making connections to physics of graphene. The experimental frequencies and the oscillation patterns of the eigenmodes for the hexagonal ring of pendula are extracted from a spectral analysis of the motion of the pendula in response to an external excitation and are found to be in good agreement with our theoretical predictions. We anticipate that extending this classical analogue of quantum mechanical spin-orbit coupling to two-dimensional lattices will lead to exciting new topological phenomena in classical mechanics.
Equivalence of deterministic walks on regular lattices on the plane
NASA Astrophysics Data System (ADS)
Rechtman, Ana; Rechtman, Raúl
2017-01-01
We consider deterministic walks on square, triangular and hexagonal two dimensional lattices. In each case, there is a scatterer at every lattice site that can be in one of two states that forces the walker to turn either to his/her immediate right or left. After the walker is scattered, the scatterer changes state. A lattice with an arrangement of scatterers is an environment. We show that there are only two environments for which the scattering rules are injective, mirrors or rotators, on the three lattices. On hexagonal lattices Webb and Cohen (2014), proved that if a walker with a given initial position and velocity moves through an environment of mirrors (rotators) then there is an environment of rotators (mirrors) through which the walker would move with the same trajectory. We refer to these trajectories on mirror and rotator environments as equivalent walks. We prove the equivalence of walks on square and triangular lattices and include a proof of the equivalence of walks on hexagonal lattices. The proofs are based both on the geometry of the lattice and the structure of the scattering rule.
NASA Astrophysics Data System (ADS)
Barrett, Christopher Duncan
Improving the formability and crashworthiness of wrought magnesium alloys are the two biggest challenges in current magnesium technology. Magnesium is the best material candidate for enabling required improvements in fuel economy of combustion engines and increases in ranges of electric vehicles. In hexagonal closed-packed (HCP) structures, effects of grain size/morphology and crystallographic texture are particularly important. Prior research has established a general understanding of the dependences of strength and strain anisotropy on grain morphology and texture. Unfortunately, deformation, recrystallization, and grain growth strategies that control the microstructures and textures of cubic metals and alloys have not generally worked for HCPs. For example, in Magnesium, the deformation texture induced by primary forming operations (rolling, extrusion, etc.) is not randomized by recrystallization and may strengthen during grain growth. A strong texture reduces formability during secondary forming (stamping, bending, hemming etc.) Thus, the inability to randomize texture has impeded the implementation of magnesium alloys in engineering applications. When rare earth solutes are added to magnesium alloys, distinct new textures are derived. However, `rare earth texture' derivation remains insufficiently explained. Currently, it is hypothesized that unknown mechanisms of alloy processing are at work, arising from the effects of grain boundary intrinsic defect structures on microstructural evolution. This dissertation is a comprehensive attempt to identify formal methodologies of analyzing the behavior of grain boundaries in magnesium. We focus particularly on twin boundaries and asymmetric tilt grain boundaries using molecular dynamics. We begin by exploring twin nucleation in magnesium single crystals, elucidating effects of heterogeneities on twin nucleation and their relationships with concurrent slip. These efforts highlighted the necessity of imperfections to
Imperfection surveys on a 10-ft-diameter shell structure
NASA Technical Reports Server (NTRS)
Arbocz, J.; Williams, J. G.
1977-01-01
The results of an extensive imperfection survey on a 10-ft-diameter integrally stiffened cylindrical shell are presented. The shape of the measured initial imperfections is clearly influenced by details of the shell construction. The modal components of the measured imperfection surface as a function of the circumferential and of the axial wave numbers are calculated. The discrete axial power spectral density functions and the corresponding root-mean-square values of the imperfections are also determined for given circumferential wave numbers. Using the Fourier coefficients of the measured initial imperfections, buckling loads are calculated by solving the nonlinear Donnell-type imperfect shell equations iteratively. The calculated lowest buckling load compares favorably with the values usually recommended for similar shell structures.
Imperfect twinning: a clinical and ethical dilemma
Denardin, Daniela; Telles, Jorge Alberto B.; Betat, Rosilene da Silveira; Fell, Paulo Renato K.; da Cunha, André Campos; Targa, Luciano Vieira; Zen, Paulo Ricardo G.; Rosa, Rafael Fabiano M.
2013-01-01
OBJECTIVE To review the history, epidemiology, etiology, gestational aspects, diagnosis and prognosis of imperfect twinning. DATA SOURCES Scientific articles were searched in PubMed, SciELO and Lilacs databases, using the descriptors "conjoined twins", "multiple pregnancy", "ultrasound", "magnetic resonance imaging" and "prognosis". The research was not delimited to a specific period of time and was supplemented with bibliographic data from books. DATA SYNTHESIS: The description of conjoined twins is legendary. The estimated frequency is 1/45,000-200,000 births. These twins are monozygotic, monochorionic and usually monoamniotic. They can be classified by the most prominent fusion site, by the symmetry between the conjoined twins or by the sharing structure. The diagnosis can be performed in the prenatal period or after birth by different techniques, such as ultrasound, magnetic resonance imaging and echocardiography. These tests are of paramount importance for understanding the anatomy of both fetuses/children, as well as for prognosis and surgical plan determination. CONCLUSIONS Although imperfect twinning is a rare condition, the prenatal diagnosis is very important in order to evaluate the fusion site and its complexity. Hence, the evaluation of these children should be multidisciplinary, involving mainly obstetricians, pediatricians and pediatric surgeons. However, some decisions may constitute real ethical dilemmas, in which different points should be discussed and analyzed with the health team and the family. PMID:24142323
Modeling Being "Lost": Imperfect Situation Awareness
NASA Technical Reports Server (NTRS)
Middleton, Victor E.
2011-01-01
Being "lost" is an exemplar of imperfect Situation Awareness/Situation Understanding (SA/SU) -- information/knowledge that is uncertain, incomplete, and/or just wrong. Being "lost" may be a geo-spatial condition - not knowing/being wrong about where to go or how to get there. More broadly, being "lost" can serve as a metaphor for uncertainty and/or inaccuracy - not knowing/being wrong about how one fits into a larger world view, what one wants to do, or how to do it. This paper discusses using agent based modeling (ABM) to explore imperfect SA/SU, simulating geo-spatially "lost" intelligent agents trying to navigate in a virtual world. Each agent has a unique "mental map" -- its idiosyncratic view of its geo-spatial environment. Its decisions are based on this idiosyncratic view, but behavior outcomes are based on ground truth. Consequently, the rate and degree to which an agent's expectations diverge from ground truth provide measures of that agent's SA/SU.
Imperfect twinning: a clinical and ethical dilemma.
Denardin, Daniela; Telles, Jorge Alberto B; Betat, Rosilene da Silveira; Fell, Paulo Renato K; Cunha, André Campos da; Targa, Luciano Vieira; Zen, Paulo Ricardo G; Rosa, Rafael Fabiano M
2013-09-01
OBJECTIVE To review the history, epidemiology, etiology, gestational aspects, diagnosis and prognosis of imperfect twinning. DATA SOURCES Scientific articles were searched in PubMed, SciELO and Lilacs databases, using the descriptors "conjoined twins", "multiple pregnancy", "ultrasound", "magnetic resonance imaging" and "prognosis". The research was not delimited to a specific period of time and was supplemented with bibliographic data from books. The description of conjoined twins is legendary. The estimated frequency is 1/45,000-200,000 births. These twins are monozygotic, monochorionic and usually monoamniotic. They can be classified by the most prominent fusion site, by the symmetry between the conjoined twins or by the sharing structure. The diagnosis can be performed in the prenatal period or after birth by different techniques, such as ultrasound, magnetic resonance imaging and echocardiography. These tests are of paramount importance for understanding the anatomy of both fetuses/children, as well as for prognosis and surgical plan determination. CONCLUSIONS Although imperfect twinning is a rare condition, the prenatal diagnosis is very important in order to evaluate the fusion site and its complexity. Hence, the evaluation of these children should be multidisciplinary, involving mainly obstetricians, pediatricians and pediatric surgeons. However, some decisions may constitute real ethical dilemmas, in which different points should be discussed and analyzed with the health team and the family.
NASA Astrophysics Data System (ADS)
Teschke, Omar; Soares, David Mendez
2017-10-01
A mother crystal formed from a transient molecular structure of (D+L) aspartic acid in solution is reported. Hexagonal structures with a lattice constant of 1.04 nm were crystallized from a solution in which three aspartic acid species coexist: right- and left-handed enantiomorphs, denoted D-aspartic and L-aspartic, respectively, and transitory (D+L) aspartic acid specie. Atomic force microscopy images of the crystalline deposits reveal domains of the transitory (D+L) aspartic acid crystal forming the substrate deposit on silicon wafers, and on top of this hexagonal lattice only L-aspartic acid is observed to conform and crystallize. A preferential crystallization mechanism is then observed for (D+L) aspartic acid crystals that seed only L-aspartic deposits by the geometrical matching of their multiple hexagonal lattice structures with periodicities of 1.04 nm and 0.52 nm, respectively.
Statistical analysis of imperfection effect on cylindrical buckling response
NASA Astrophysics Data System (ADS)
Ismail, M. S.; Purbolaksono, J.; Muhammad, N.; Andriyana, A.; Liew, H. L.
2015-12-01
It is widely reported that no efficient guidelines for modelling imperfections in composite structures are available. In response, this work evaluates the imperfection factors of axially compressed Carbon Fibre Reinforced Polymer (CFRP) cylinder with different ply angles through finite element (FE) analysis. The sensitivity of imperfection factors were analysed using design of experiment: factorial design approach. From the analysis it identified three critical factors that sensitively reacted towards buckling load. Furthermore empirical equation is proposed according to each type of cylinder. Eventually, critical buckling loads estimated by empirical equation showed good agreements with FE analysis. The design of experiment methodology is useful in identifying parameters that lead to structures imperfection tolerance.
New statistical lattice model with double honeycomb symmetry
NASA Astrophysics Data System (ADS)
Naji, S.; Belhaj, A.; Labrim, H.; Bhihi, M.; Benyoussef, A.; El Kenz, A.
2014-04-01
Inspired from the connection between Lie symmetries and two-dimensional materials, we propose a new statistical lattice model based on a double hexagonal structure appearing in the G2 symmetry. We first construct an Ising-1/2 model, with spin values σ = ±1, exhibiting such a symmetry. The corresponding ground state shows the ferromagnetic, the antiferromagnetic, the partial ferrimagnetic and the topological ferrimagnetic phases depending on the exchange couplings. Then, we examine the phase diagrams and the magnetization using the mean field approximation (MFA). Among others, it has been suggested that the present model could be localized between systems involving the triangular and the single hexagonal lattice geometries.
Method for correcting imperfections on a surface
Sweatt, W.C.; Weed, J.W.
1999-09-07
A process for producing near perfect optical surfaces is disclosed. A previously polished optical surface is measured to determine its deviations from the desired perfect surface. A multi-aperture mask is designed based on this measurement and fabricated such that deposition through the mask will correct the deviations in the surface to an acceptable level. Various mask geometries can be used: variable individual aperture sizes using a fixed grid for the apertures or fixed aperture sizes using a variable aperture spacing. The imperfections are filled in using a vacuum deposition process with a very thin thickness of material such as silicon monoxide to produce an amorphous surface that bonds well to a glass substrate.
Imperfection sensitivity of pressured buckling of biopolymer spherical shells
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ru, C. Q.
2016-06-01
Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.
Imperfection sensitivity of pressured buckling of biopolymer spherical shells.
Zhang, Lei; Ru, C Q
2016-06-01
Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.
Imperfect mimicry and the limits of natural selection.
Kikuchi, David W; Pfennig, David W
2013-12-01
Mimicry--when one organism (the mimic) evolves a phenotypic resemblance to another (the model) due to selective benefits--is widely used to illustrate natural selection's power to generate adaptations. However, many putative mimics resemble their models imprecisely, and such imperfect mimicry represents a specific challenge to mimicry theory and a general one to evolutionary theory. Here, we discuss 11 nonmutually exclusive hypotheses for imperfect mimicry. We group these hypotheses according to whether imperfect mimicry reflects: an artifact of human perception, which is not shared by any naturally occurring predators and therefore is not truly an instance of imperfect mimicry; genetic, developmental or time-lag constraints, which (temporarily) prevent a response to selection for perfect mimicry; relaxed selection, where imperfect mimicry is as adaptive as perfect mimicry; or tradeoffs, where imperfect mimicry is (locally) more adaptive than perfect mimicry. We find that the relaxed selection hypothesis has garnered the most support. However, because only a few study systems have thus far been comprehensively evaluated, the relative contributions of the various hypotheses toward explaining the evolution of imperfect mimicry remain unclear. Ultimately, clarifying why imperfect mimicry exists should provide critical insights into the limits of natural selection in producing complex adaptations.
Oxygen interaction with hexagonal OsB2 at high temperature
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...
2016-08-10
The stability of ReB2-type hexagonal OsB2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure, sintering of OsB2 powdersmore » occurred at a relatively low temperature (900°C). Finally, hexagonal OsB2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less
A planar carbon allotrope with linear bipentagon-octagon and hexagon arrangement
NASA Astrophysics Data System (ADS)
Zheng, Guohui; Jia, Yalei; Gao, Song; Ke, San-Huang
2017-03-01
A two-dimensional (2D) metallic carbon allotrope is proposed, which consists of linearly aligned bipentagon-octagon and hexagon rings in a planar sheet. The relatively high percentage of hexagon and the regular arrangement of the polygons make it energetically more favorable than most of other predicted 2D carbon allotropes. Phonon dispersions without negative frequencies also indicate its stability. Electronic structure calculations show that its metallic nature is mainly due to the atoms shared by the pentagon, hexagon and octagon. Its lattice thermal conductivity is only about one fifth of that of graphene. Armchair- and zigzag-edged nanoribbons of this structure are also studied. The former is metallic while the latter has a small band gap due to the spin-polarized edge states. The appropriate band gap and the significantly reduced thermal conductivity suggest potential applications in thermoelectricity.
Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites.
Ling, Florence T; Post, Jeffrey E; Heaney, Peter J; Kubicki, James D; Santelli, Cara M
2017-05-05
The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from MnO lattice vibrations between 400 and 750cm(-1) yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied to known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~1628cm(-1) may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.
Ballistic Transport in Graphene Antidot Lattices.
Sandner, Andreas; Preis, Tobias; Schell, Christian; Giudici, Paula; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan
2015-12-09
The bulk carrier mobility in graphene was shown to be enhanced in graphene-boron nitride heterostructures. However, nanopatterning graphene can add extra damage and drastically degrade the intrinsic properties by edge disorder. Here we show that graphene embedded into a heterostructure with hexagonal boron nitride (hBN) on both sides is protected during a nanopatterning step. In this way, we can prepare graphene-based antidot lattices where the high mobility is preserved. We report magnetotransport experiments in those antidot lattices with lattice periods down to 50 nm. We observe pronounced commensurability features stemming from ballistic orbits around one or several antidots. Due to the short lattice period in our samples, we can also explore the boundary between the classical and the quantum transport regime, as the Fermi wavelength of the electrons approaches the smallest length scale of the artificial potential.
Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS
Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang
2010-08-06
We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.
Method and apparatus for evaluating multilayer objects for imperfections
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Abedin, M. N. (Inventor)
1992-01-01
A multilayer object where the layers are arranged in a stacking direction is evaluated for imperfections such as voids, delaminations, and microcracks. First, an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by generating pulse echo signals indicative of the received acoustic wave, wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and fitted to an exponential curve, wherein a substantial fit of approximately 80-90 percent indicates the absence of imperfections. Alternatively, the time interval between distinct groups can be measured, wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections.
Structure transition of multiferroic hexagonal TmMnO3 compound under high pressure
NASA Astrophysics Data System (ADS)
Wang, L. J.; Feng, S. M.; Zhu, J. L.; Liu, Q. Q.; Li, Y. C.; Li, X. D.; Liu, J.; Jin, C. Q.
2010-06-01
The high-pressure-induced structure transition in multiferroic hexagonal TmMnO3 (h-TmMnO3) has been investigated using an in situ angle-dispersive synchrotron X-ray diffraction technique in a diamond anvil cell. The experimental results show that the phase transition from ambient hexagonal to orthorhombic structure with space group Pbnm begins around 10.2 GPa. The Rietveld refinement method was used to determine the lattice parameters and lattice compressibility of the h-TmMnO3 compound from 0.8 to 28.6 GPa. The pressure evolution of average bond distances and bond angles between the Mn and O atoms in the ab-plane was obtained. The magnetic properties under different pressures as well as their effect on multiferroic properties are discussed using extrapolations from the empirical relation of magnetic order versus rare-earth ionic radius.
2010-01-01
centered cubic ( FCC ) structure . Interestingly, there have been reports in the literature related to the stabilization of a non-equilibrium hexagonal...crystallite size (~ 4 nm) and changes to the equilibrium FCC structure for larger crystallite sizes [9-10]. Nickel does not form a carbide under equilibrium...a single weak ring corresponding to the face-centered cubic ( FCC ) structure of Ni. The lattice parameter of the HCP phase was determined to be a
Investigation of Hexagonal Ferrite Film Growth Techniques for Millimeter-Wave Systems Applications.
1987-03-15
hexagonal ferrite compounds. The approach was twofold: to synthesize lattice-matched substrate materials and to explore epitaxial growth methods which...poly-crystal garnet or spinel ferrites find widespread use as tunable microwave filters and resonators in applica- tions ranging from test equipment...REFERENCES 1. W. H. von Aulock, ed., Handbook of Microwave Ferrite Materials, Academic Press, NY. 2. R. 0. Savage et al., J. App1. Phys., 36: 873 (1965
Perfect crystals grown from imperfect interfaces
Falub, Claudiu V.; Meduňa, Mojmír; Chrastina, Daniel; Isa, Fabio; Marzegalli, Anna; Kreiliger, Thomas; Taboada, Alfonso G.; Isella, Giovanni; Miglio, Leo; Dommann, Alex; von Känel, Hans
2013-01-01
The fabrication of advanced devices increasingly requires materials with different properties to be combined in the form of monolithic heterostructures. In practice this means growing epitaxial semiconductor layers on substrates often greatly differing in lattice parameters and thermal expansion coefficients. With increasing layer thickness the relaxation of misfit and thermal strains may cause dislocations, substrate bowing and even layer cracking. Minimizing these drawbacks is therefore essential for heterostructures based on thick layers to be of any use for device fabrication. Here we prove by scanning X-ray nanodiffraction that mismatched Ge crystals epitaxially grown on deeply patterned Si substrates evolve into perfect structures away from the heavily dislocated interface. We show that relaxing thermal and misfit strains result just in lattice bending and tiny crystal tilts. We may thus expect a new concept in which continuous layers are replaced by quasi-continuous crystal arrays to lead to dramatically improved physical properties. PMID:23880632
Perfect crystals grown from imperfect interfaces.
Falub, Claudiu V; Meduňa, Mojmír; Chrastina, Daniel; Isa, Fabio; Marzegalli, Anna; Kreiliger, Thomas; Taboada, Alfonso G; Isella, Giovanni; Miglio, Leo; Dommann, Alex; von Känel, Hans
2013-01-01
The fabrication of advanced devices increasingly requires materials with different properties to be combined in the form of monolithic heterostructures. In practice this means growing epitaxial semiconductor layers on substrates often greatly differing in lattice parameters and thermal expansion coefficients. With increasing layer thickness the relaxation of misfit and thermal strains may cause dislocations, substrate bowing and even layer cracking. Minimizing these drawbacks is therefore essential for heterostructures based on thick layers to be of any use for device fabrication. Here we prove by scanning X-ray nanodiffraction that mismatched Ge crystals epitaxially grown on deeply patterned Si substrates evolve into perfect structures away from the heavily dislocated interface. We show that relaxing thermal and misfit strains result just in lattice bending and tiny crystal tilts. We may thus expect a new concept in which continuous layers are replaced by quasi-continuous crystal arrays to lead to dramatically improved physical properties.
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references.
Activated chemoreceptor arrays remain intact and hexagonally packed
Briegel, Ariane; Beeby, Morgan; Thanbichler, Martin; Jensen, Grant J.
2013-01-01
Summary Bacterial chemoreceptors cluster into exquisitively sensitive, tunable, highly ordered, polar arrays. While these arrays serve as paradigms of cell signalling in general, it remains unclear what conformational changes transduce signals from the periplasmic tips, where attractants and repellents bind, to the cytoplasmic signalling domains. Conflicting reports support and contest the hypothesis that activation causes large changes in the packing arrangement of the arrays, up to and including their complete disassembly. Using electron cryotomography, here we show that in Caulobacter crescentus, chemoreceptor arrays in cells grown in different media and immediately after exposure to the attractant galactose all exhibit the same 12 nm hexagonal packing arrangement, array size and other structural parameters. ΔcheB and ΔcheR mutants mimicking attractant- or repellent-bound states prior to adaptation also show the same lattice structure. We conclude that signal transduction and amplification must be accomplished through only small, nanoscale conformational changes. PMID:21992450
Columnar epitaxy of hexagonal and orthorhombic silicides on Si(111)
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin
1990-01-01
Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultrahigh vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840 C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)/Si(111), with PtSi 001 line/Si 110 line type.
Columnar epitaxy of hexagonal and orthorhombic silicides on Si(111)
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin
1990-01-01
Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultrahigh vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840 C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)/Si(111), with PtSi 001 line/Si 110 line type.
Electronic structure of spontaneously strained graphene on hexagonal boron nitride
NASA Astrophysics Data System (ADS)
San-Jose, Pablo; Gutiérrez-Rubio, A.; Sturla, Mauricio; Guinea, Francisco
2014-09-01
Hexagonal boron nitride substrates have been shown to dramatically improve the electric properties of graphene. Recently, it has been observed that when the two honeycomb crystals are close to perfect alignment, strong lattice distortions develop in graphene due to the moiré adhesion landscape. Simultaneously, a gap opens at the Dirac point. Here, we derive a simple low-energy electronic model for graphene aligned with the substrate, taking into account spontaneous strains at equilibrium and pseudogauge fields. We carry out a detailed characterization of the modified band structure, gap, local and global density of states, and band topology in terms of physical parameters. We show that the overall electronic structure is strongly modified by the spontaneous strains.
Thermal conductance of graphene/hexagonal boron nitride heterostructures
NASA Astrophysics Data System (ADS)
Lu, Simon; McGaughey, Alan J. H.
2017-03-01
The lattice-based scattering boundary method is applied to compute the phonon mode-resolved transmission coefficients and thermal conductances of in-plane heterostructures built from graphene and hexagonal boron nitride (hBN). The thermal conductance of all structures is dominated by acoustic phonon modes near the Brillouin zone center that have high group velocity, population, and transmission coefficient. Out-of-plane modes make their most significant contributions at low frequencies, whereas in-plane modes contribute across the frequency spectrum. Finite-length superlattice junctions between graphene and hBN leads have a lower thermal conductance than comparable junctions between two graphene leads due to lack of transmission in the hBN phonon bandgap. The thermal conductances of bilayer systems differ by less than 10% from their single-layer counterparts on a per area basis, in contrast to the strong thermal conductivity reduction when moving from single- to multi-layer graphene.
Half metal in two-dimensional hexagonal organometallic framework.
Hu, Hao; Wang, Zhengfei; Liu, Feng
2014-12-01
Two-dimensional (2D) hexagonal organometallic framework (HOMF) made of triphenyl-metal molecules bridged by metal atoms has been recently shown to exhibit exotic electronic properties, such as half-metallic and topological insulating states. Here, using first-principles calculations, we investigate systematically the structural, electronic, and magnetic properties of such HOMFs containing 3d transition metal (TM) series (Sc to Cu). Two types of structures are found for these HOMFs: a buckled structure for those made of TMs with less half-filled 3d band and a twisted structure otherwise. The HOMFs show both ferromagnetic and antiferromagnetic properties, as well as nonmagnetic properties, due to the electronic configuration of the TM atoms. The V, Mn, and Fe lattices are ferromagnetic half metals with a large band gap of more than 1.5 eV in the insulating spin channel, making them potential 2D materials for spintronics application.
Spatial anisotropy of topological domain structure in hexagonal manganites
NASA Astrophysics Data System (ADS)
Yang, K. L.; Zhang, Y.; Zheng, S. H.; Lin, L.; Yan, Z. B.; Liu, J.-M.; Cheong, S.-W.
2017-01-01
The domain structure of hexagonal manganites is simulated based on the phenomenological Ginzburg-Landau theory, and special attention is paid to the evolution of a topological vortex-antivortex pattern with the varying out-of-plane anisotropies of two stiffness parameters for the in-plane (x y -plane) trimerization amplitude Q and out-of-plane (z -axis) polarization P . It is revealed that the topological domain structure can be remarkably modulated by the stiffness anisotropies. A larger stiffness for Q along the z axis causes the trajectory lines of the vortex nodes and antivortex nodes to be seriously stretched along the z axis, eventually leading to the topological stripelike domain pattern. The larger stiffness for either Q or P along the z axis makes the domain walls perpendicular to the z axis wider, while the domain walls parallel to the z axis remain less affected. The present work suggests that the topological domain structure may be controlled by some approaches (e.g., lattice strain) which can change the trimerization stiffness and polarization stiffness in hexagonal manganites.
DNA-Cationic Lipid Complexes: Lamellar and Inverted Hexagonal Phases
NASA Astrophysics Data System (ADS)
Koltover, I.; Salditt, T.; Raedler, J.; Safinya, C.
1998-03-01
Cationic lipid-DNA (CL-DNA) complexes can be efficient non-viral vectors for gene therapy. However, it is not known why transfection rates vary widely for complexes with different lipid compositions. We have discovered a transition between two distinct liquid crystalline (LC) structures of the complex by varying the lipid composition: a lamellar structure ( J. Raedler, I. Koltover, T. Salditt, C. Safinya, Science 275, 810 (1997)) and a novel LC phase with DNA double-strands surrounded by lipid monolayers arranged on a regular hexagonal lattice. The CL-DNA complexes with the two structures interact differently with giant negatively charged liposomes, which represent the simplest model of cellular membranes. We demonstrate the generality of the lamellar-hexagonal transformation by observing it in complexes of cationic lipid with two other negatively charged biopolymers - polyglutamic acid (PGA), a model polypeptide and poly-thymine (polyT), a model single-stranded oligo-nucleotide. We identify the interactions leading to the transformations between the two complex phases for the three different polyelectrolytes. Supported by NSF DMR-9624091 and a Los Alamos CULAR grant No.STB/UC:95-146.
Flux-Line Lattice Distortion in PrOs4Sb12
NASA Astrophysics Data System (ADS)
Huxley, A. D.; Measson, M.-A.; Izawa, K.; Dewhurst, C. D.; Cubitt, R.; Grenier, B.; Sugawara, H.; Flouquet, J.; Matsuda, Y.; Sato, H.
2004-10-01
We report that the flux-line lattice in the cubic superconductor Pr(Os4Sb12 is strongly distorted from an ideal hexagonal lattice at very low temperatures in a small applied field. We attribute this to the presence of gap nodes in the superconducting state on at least some Fermi-surface sheets.
Influence of imperfections on effective properties of cellular solids
Grenestedt, J.L.
1998-12-31
The mechanical properties of cellular solids, or solid foams, is affected by imperfections such as wavy distortions of cell walls, variations in cell wall thickness, non-uniform cell shape, etc. The present paper is focused mainly on elastic stiffnesses of closed cell cellular solids. A perfect model is first discussed and shown to predict the behavior of PVC foams well. However, this model over-estimates the stiffnesses of aluminum foams. The relatively poor properties of the aluminum foam are believed to be caused by imperfections in the cells. The main body of the paper focuses on modeling different kinds of imperfections, and analyzing their impact on foam properties.
Novel high pressure hexagonal OsB{sub 2} by mechanochemistry
Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.
2014-07-01
Hexagonal OsB{sub 2}, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB{sub 2} begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB{sub 2} crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB{sub 2} phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from −225 °C to 1050 °C. The hexagonal OsB{sub 2} powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB{sub 2} at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. - Graphical abstract: High resolution transmission electron micrograph of hexagonal OsB{sub 2} nanocrystallite with corresponding fast Fourier transform and simulated diffraction pattern. - Highlights: • Hexagonal OsB{sub 2} has been synthesized for the first time by mechanochemical method. • Hexagonal OsB{sub 2} crystallizes in P63/mmc space group (No. 194), a=2.916 Å and c=7.376 Å. • The hexagonal structure was confirmed by a transmission electron microscope. • No phase transformation was observed after being annealed at 1050 °C for 6 days. • 20 wt% of h-OsB{sub 2} was transformed to o-OsB{sub 2} after being sintered at 1500 °C for 5 min.
Noise and compressibility in lattice-gas fluids
NASA Technical Reports Server (NTRS)
Dahlburg, Jill P.; Montgomery, David; Doolen, Gary D.
1987-01-01
Computations are reported in which the hexagonal lattice gas is used to simulate two-dimensional Navier-Stokes shear flows. Limitations associated with noise in the initial loading and compressible effects associated with a velocity-dependent equation of state arise and interact with each other. A relatively narrow window in density and flow speed exhibits physical behavior.
Duality analysis on random planar lattices.
Ohzeki, Masayuki; Fujii, Keisuke
2012-11-01
The conventional duality analysis is employed to identify a location of a critical point on a uniform lattice without any disorder in its structure. In the present study, we deal with the random planar lattice, which consists of the randomized structure based on the square lattice. We introduce the uniformly random modification by the bond dilution and contraction on a part of the unit square. The random planar lattice includes the triangular and hexagonal lattices in extreme cases of a parameter to control the structure. A modern duality analysis fashion with real-space renormalization is found to be available for estimating the location of the critical points with a wide range of the randomness parameter. As a simple test bed, we demonstrate that our method indeed gives several critical points for the cases of the Ising and Potts models and the bond-percolation thresholds on the random planar lattice. Our method leads to not only such an extension of the duality analyses on the classical statistical mechanics but also a fascinating result associated with optimal error thresholds for a class of quantum error correction code, the surface code on the random planar lattice, which is known as a skillful technique to protect the quantum state.
Precision Astronomy with Imperfect Deep Depletion CCDs
NASA Astrophysics Data System (ADS)
Stubbs, Christopher; LSST Sensor Team; PanSTARRS Team
2014-01-01
While thick CCDs do provide definite advantages in terms of increased quantum efficiency at wavelengths 700 nm<λ < 1.1 microns and reduced fringing from atmospheric emission lines, these devices also exhibit undesirable features that pose a challenge to precision determination of the positions, fluxes, and shapes of astronomical objects, and for the precision extraction of features in astronomical spectra. For example, the assumptions of a perfectly rectilinear pixel grid and of an intensity-independent point spread function become increasingly invalid as we push to higher precision measurements. Many of the effects seen in these devices arise from lateral electrical fields within the detector, that produce charge transport anomalies that have been previously misinterpreted as quantum efficiency variations. Performing simplistic flat-fielding therefore introduces systematic errors in the image processing pipeline. One measurement challenge we face is devising a combination of calibration methods and algorithms that can distinguish genuine quantum efficiency variations from charge transport effects. These device imperfections also confront spectroscopic applications, such as line centroid determination for precision radial velocity studies. Given the scientific benefits of improving both the precision and accuracy of astronomical measurements, we need to identify, characterize, and overcome these various detector artifacts. In retrospect, many of the detector features first identified in thick CCDs also afflict measurements made with more traditional CCD detectors, albeit often at a reduced level since the photocharge is subject to the perturbing influence of lateral electric fields for a shorter time interval. I provide a qualitative overview of the physical effects we think are responsible for the observed device properties, and provide some perspective for the work that lies ahead.
Buckling Imperfection Sensitivity of Axially Compressed Orthotropic Cylinders
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Nemeth, Michael P.
2010-01-01
Structural stability is a major consideration in the design of lightweight shell structures. However, the theoretical predictions of geometrically perfect structures often considerably over predict the buckling loads of inherently imperfect real structures. It is reasonably well understood how the shell geometry affects the imperfection sensitivity of axially compressed cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is less well understood. In the present paper, the development of an analytical model for assessing the imperfection sensitivity of axially compressed orthotropic cylinders is discussed. Results from the analytical model for four shell designs are compared with those from a general-purpose finite-element code, and good qualitative agreement is found. Reasons for discrepancies are discussed, and potential design implications of this line of research are discussed.
Quantification of the Forgiveness of Drugs to Imperfect Adherence.
Assawasuwannakit, P; Braund, R; Duffull, S B
2015-03-01
The circumstance of how sensitive therapeutic success is under imperfect adherence is driven by the property known as forgiveness. To date, no studies have considered variability in the pharmacokinetic-pharmacodynamic process in conjunction with imperfect adherence patterns in order to develop a comparative criterion to determine the forgiveness of a drug. In this study, we have proposed a criterion to quantify forgiveness; illustrated the criterion for a theoretical example and evaluated the forgiveness of a motivating example, namely warfarin. A forgiveness criterion, relative forgiveness, is defined as the number of times more likely that a target is successfully attained under perfect adherence compared to imperfect adherence; or when comparing two drugs under a standard setting of imperfect adherence. The relative forgiveness criterion may have important implications for both drug development and clinical practice since the choice of drug can account for the likely influence of its forgiveness.
Interaction-free measurement with an imperfect absorber
Azuma, Hiroo
2006-11-15
We consider interaction-free measurement (IFM) with imperfect interaction. In the IFM proposed by Kwiat et al., we assume that the interaction between an absorbing object and a probe photon is imperfect, so that the photon is absorbed with probability 1-{eta} (0{<=}{eta}{<=}1) and it passes by the object without being absorbed with probability {eta} when it approaches close to the object. We derive the success probability P that we can find the object without the photon absorbed under the imperfect interaction as a power series in 1/N and show the following result: Even if the interaction between the object and photon is imperfect, we can let the success probability P of the IFM get close to unity arbitrarily by making the reflectivity of the beam splitter larger and increasing the number of the beam splitters. Moreover, we obtain an approximating equation of P for large N from the derived power series in 1/N.
Bayesian imperfect information analysis for clinical recurrent data.
Chang, Chih-Kuang; Chang, Chi-Chang
2015-01-01
In medical research, clinical practice must often be undertaken with imperfect information from limited resources. This study applied Bayesian imperfect information-value analysis to realistic situations to produce likelihood functions and posterior distributions, to a clinical decision-making problem for recurrent events. In this study, three kinds of failure models are considered, and our methods illustrated with an analysis of imperfect information from a trial of immunotherapy in the treatment of chronic granulomatous disease. In addition, we present evidence toward a better understanding of the differing behaviors along with concomitant variables. Based on the results of simulations, the imperfect information value of the concomitant variables was evaluated and different realistic situations were compared to see which could yield more accurate results for medical decision-making.
Bayesian imperfect information analysis for clinical recurrent data
Chang, Chih-Kuang; Chang, Chi-Chang
2015-01-01
In medical research, clinical practice must often be undertaken with imperfect information from limited resources. This study applied Bayesian imperfect information-value analysis to realistic situations to produce likelihood functions and posterior distributions, to a clinical decision-making problem for recurrent events. In this study, three kinds of failure models are considered, and our methods illustrated with an analysis of imperfect information from a trial of immunotherapy in the treatment of chronic granulomatous disease. In addition, we present evidence toward a better understanding of the differing behaviors along with concomitant variables. Based on the results of simulations, the imperfect information value of the concomitant variables was evaluated and different realistic situations were compared to see which could yield more accurate results for medical decision-making. PMID:25565853
Quantification of the Forgiveness of Drugs to Imperfect Adherence
Assawasuwannakit, P; Braund, R; Duffull, SB
2015-01-01
The circumstance of how sensitive therapeutic success is under imperfect adherence is driven by the property known as forgiveness. To date, no studies have considered variability in the pharmacokinetic-pharmacodynamic process in conjunction with imperfect adherence patterns in order to develop a comparative criterion to determine the forgiveness of a drug. In this study, we have proposed a criterion to quantify forgiveness; illustrated the criterion for a theoretical example and evaluated the forgiveness of a motivating example, namely warfarin. A forgiveness criterion, relative forgiveness, is defined as the number of times more likely that a target is successfully attained under perfect adherence compared to imperfect adherence; or when comparing two drugs under a standard setting of imperfect adherence. The relative forgiveness criterion may have important implications for both drug development and clinical practice since the choice of drug can account for the likely influence of its forgiveness. PMID:26225235
NASA Technical Reports Server (NTRS)
Wilczek, Frank
1987-01-01
A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.
Analysis and Algorithms for Imperfect Sensor Deployment and Operations
2016-05-23
AFRL-AFOSR-VA-TR-2016-0184 Analysis and Algorithms for Imperfect Sensor Deployment and Operations Joseph Guenes UNIVERSITY OF FLORIDA Final Report 05...SUBTITLE Analysis and Algorithms for Imperfect Sensor Deployment and Operations 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0353 5c. PROGRAM ELEMENT...ABSTRACT The research begins by considering a class of problems in which a set of sensors has been deployed across some theater to monitor a set of
Attenuation characterization of multiple combinations of imperfect polarizers.
Huang, Chong; Zhao, Shuang; Chen, Haiqing; Liao, Zhaoshu
2010-05-01
Malus's law, when used to calculate the attenuation ratio of the combination of two imperfect polarizers (two-CIP), will introduce an error, especially near the crossed-axis orientation. In this paper, first, the Jones matrix of the imperfect polarizer is deduced and an exact algorithm of the attenuation ratio of the two-CIP is proposed as well as its monotonic attenuation interval. Experimental results confirm that our deduced expression is more accurate than Malus's law. Then based on this algorithm, an attenuation-ratio expression of the combination of three imperfect polarizers (three-CIP) is presented. In this three-CIP model, it is found that when the electric field amplitude ratio of the imperfect polarizer is epsilon, the attenuation ratio can change from 1 to epsilon(4) monotonically in a general model when P(1) and P(3) are rotated and P(2) is fixed, which is proved by experiment. Finally, it is deduced that the combination of n imperfect polarizers (n-CIP) can obtain a minimum attenuation ratio of epsilon(2(n-1)), which indicates the number of imperfect polarizers needed to achieve the required attenuation ratio.
Method and Apparatus for Evaluating Multilayer Objects for Imperfections
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Abedin, Nurul (Inventor); Sun, Kuen J. (Inventor)
1999-01-01
A multilayer object having multiple layers arranged in a stacking direction is evaluated for imperfections such as voids, delaminations and microcracks. First. an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by, e.g., generating pulse echo signals indicative of the received acoustic wave. wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and curve fit to an exponential curve. wherein a substantial fit of approximately 80-90% indicates an absence of imperfections and a significant deviation indicates the presence of imperfections. Alternatively, the time interval between distinct groups can be measured. wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections.
Accounting for imperfect detection in ecology: a quantitative review.
Kellner, Kenneth F; Swihart, Robert K
2014-01-01
Detection in studies of species abundance and distribution is often imperfect. Assuming perfect detection introduces bias into estimation that can weaken inference upon which understanding and policy are based. Despite availability of numerous methods designed to address this assumption, many refereed papers in ecology fail to account for non-detection error. We conducted a quantitative literature review of 537 ecological articles to measure the degree to which studies of different taxa, at various scales, and over time have accounted for imperfect detection. Overall, just 23% of articles accounted for imperfect detection. The probability that an article incorporated imperfect detection increased with time and varied among taxa studied; studies of vertebrates were more likely to incorporate imperfect detection. Among articles that reported detection probability, 70% contained per-survey estimates of detection that were less than 0.5. For articles in which constancy of detection was tested, 86% reported significant variation. We hope that our findings prompt more ecologists to consider carefully the detection process when designing studies and analyzing results, especially for sub-disciplines where incorporation of imperfect detection in study design and analysis so far has been lacking.
Method and apparatus for evaluating multilayer objects for imperfections
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Abedin, Nurul (Inventor); Sun, Kuen J. (Inventor)
1997-01-01
A multilayer object having multiple layers arranged in a stacking direction is evaluated for imperfections such as voids, delaminations and microcracks. First, an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by, e.g., generating pulse echo signals indicative of the received acoustic wave, wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and curve fit to an exponential curve, wherein a substantial fit of approximately 80-90% indicates an absence of imperfections and a significant deviation indicates the presence of imperfections. Alternatively, the time interval between distinct groups can be measured, wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections.
Critical phenomena in the majority voter model on two-dimensional regular lattices.
Acuña-Lara, Ana L; Sastre, Francisco; Vargas-Arriola, José Raúl
2014-05-01
In this work we studied the critical behavior of the critical point as a function of the number of nearest neighbors on two-dimensional regular lattices. We performed numerical simulations on triangular, hexagonal, and bilayer square lattices. Using standard finite-size scaling theory we found that all cases fall in the two-dimensional Ising model universality class, but that the critical point value for the bilayer lattice does not follow the regular tendency that the Ising model shows.
Effect of binding of lanthanide ions on the bacteriorhodopsin hexagonal structure: An x-ray study
Griffiths, J.A.; El-Sayed, M.A.; Capel, M.
1996-07-18
The effect of the binding of trivalent lanthanide metal cations (Eu{sup 3+}, Ho{sup 3+}, and Dy{sup 3+}) on the hexagonal structure of bacteriorhodopsin (bR) is investigated at different pH using x-Ray diffraction to examine films made by slow evaporation of the corresponding regenerated bR. It is observed that the lanthanide-regenerated bR (at a ratio of 2:1 metal ion to bR) does not form a 2D structure isomorphous to that of native bR or Ca{sup 2+}-regenerated samples at low sample pH. The native bR hexagonal structure is recovered by titration of the sample with sodium hydroxide. The pH at which the hexagonal structure is recovered depends on the charge density of the lanthanide ion used for the regeneration. The higher the charge density of the ion, the higher pH at which an isomorphous lattice is formed. A model is proposed in which at normal or low pH a complex bidentate and monodentate type binding (which disrupts the lattice hexagonal structure) exists between a lanthanide ion, the O{sup -} of PO{sub 2}{sup -} groups, and/or the amino acid residues. At high pH, complexation with OH{sup -} takes place, which converts this binding to a simple monodentate type complex that leads to the recovery of the lattice structure. An equation is derived for the pH at which this conversion takes place. 48 refs., 4 figs.
Arbitrary lattice symmetries via block copolymer nanomeshes
Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.
2015-01-01
Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566
Lattice Strain Defects in a Ceria Nanolayer
2016-01-01
An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu–O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state. PMID:26988695
Lattice Strain Defects in a Ceria Nanolayer.
Ma, Liying; Doudin, Nassar; Surnev, Svetlozar; Barcaro, Giovanni; Sementa, Luca; Fortunelli, Alessandro; Netzer, Falko P
2016-04-07
An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu-O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state.
Organic topological insulators in organometallic lattices.
Wang, Z F; Liu, Zheng; Liu, Feng
2013-01-01
Topological insulators are a recently discovered class of materials having insulating bulk electronic states but conducting boundary states distinguished by nontrivial topology. So far, several generations of topological insulators have been theoretically predicted and experimentally confirmed, all based on inorganic materials. Here, based on first-principles calculations, we predict a family of two-dimensional organic topological insulators made of organometallic lattices. Designed by assembling molecular building blocks of triphenyl-metal compounds with strong spin-orbit coupling into a hexagonal lattice, this new classes of organic topological insulators are shown to exhibit nontrivial topological edge states that are robust against significant lattice strain. We envision that organic topological insulators will greatly broaden the scientific and technological impact of topological insulators.
Optimal control of Rydberg lattice gases
NASA Astrophysics Data System (ADS)
Cui, Jian; van Bijnen, Rick; Pohl, Thomas; Montangero, Simone; Calarco, Tommaso
2017-09-01
We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimising detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimised preparation of the target state based only on standard measurement techniques. Realistic experimental constraints and imperfections are taken into account by our optimisation procedure making it applicable to ongoing experiments.
Crystal lattice imaging of the silica and alumina faces of kaolinite using atomic force microscopy.
Gupta, Vishal; Hampton, Marc A; Nguyen, Anh V; Miller, Jan D
2010-12-01
The crystal lattice images of the two faces of kaolinite (the silica face and the alumina face) have been obtained using contact-mode atomic force microscopy (AFM) under ambient conditions. Lattice resolution images reveal the hexagonal surface lattice of these two faces of kaolinite. Analysis of the silica face of kaolinite showed that the hexagonal surface lattice ring of oxygen atoms had a periodicity of 0.50±0.04nm between neighboring oxygen atoms, which is in good agreement with the surface lattice structure of the mica basal plane. The center of the hexagonal ring of oxygen atoms is vacant. Analysis of the alumina face of kaolinite showed that the hexagonal surface lattice ring of hydroxyls surround a hydroxyl in the center of the ring. The atomic spacing between neighboring hydroxyls was determined as 0.36±0.04nm. Ordering of the kaolinite particles for examination of the silica and alumina surfaces was accomplished using different substrates, a procedure previously established. Crystal lattice imaging supports previous results and independently confirms that the two faces of kaolinite have been properly identified.
Crystal imperfections and Mott parameters of sprayed nanostructure IrO2 thin films
NASA Astrophysics Data System (ADS)
Hassanien, A. S.; A. Akl, Alaa
2015-09-01
Nano-crystalline iridium oxide thin films were obtained by a spray pyrolysis technique onto preheated glass substrates. X-ray diffraction reveals that IrO2 thin films were polycrystalline in the rutile structure with primitive tetragonal lattice and its preferential orientation were along the <110> and <101> directions. X-ray diffraction line profile analysis (XRDLPA) was used to assign microstructure and crystal imperfections of IrO2 thin films. Some important parameters such as crystallite size, microstrain, average residual stress, number of crystallite/cm2 and dislocation density were studied. The effects of deposition temperatures and solution concentrations on the microstructural and crystal defects were discussed. All estimated values were found to be dependent upon the growth parameters. Mott parameters, trapping state energy and potential barrier were investigated and studied for a defined thin film sample. This sample was selected because it has the suitable conditions for electrochromic applications.
Liu, Xiaomiao; Zhao, Duobiao; Geng, Chong; Zhang, Lijing; Tan, Tianya; Hu, Mingzhe; Yan, Qingfeng
2014-11-15
We describe the transformation of a colloidal photonic crystal into a photonic crystal heterostructure. It was achieved by annealing a polystyrene multilayer colloidal photonic crystal partially immersed in water using a solvent vapor. The floating polystyrene colloidal photonic crystal was divided into two parts by the liquid level, which can be manipulated by the addition of ethanol into the water. The top part protruding out of the water experienced a uniform lattice stretching upon exposure to the solvent vapor. The bottom part that stayed immersed in the water remained unaffected due to the protection by the water. The inconsistent behaviors of the two parts resulted in the formation of a colloidal photonic crystal heterostructure. Such a heterostructure was free of interface imperfection since it was a direct descendant of the original colloidal crystal. Meanwhile, optical measurements demonstrated the presence of a wider photonic band gap along the crystallographic [111] direction in these photonic crystal heterostructures compared with the original colloidal photonic crystals.
Localization and delocalization of ultracold bosonic atoms in finite optical lattices
Luehmann, Dirk-Soeren; Pfannkuche, Daniela; Bongs, Kai; Sengstock, Klaus
2008-02-15
We study bosonic atoms in small optical lattices by exact diagonalization and observe a striking similarity to the superfluid to Mott insulator transition in macroscopic systems. The momentum distribution, the formation of an energy gap, and the pair correlation function show only a weak size dependence. For noncommensurate filling we reveal in deep lattices a mixture of localized and delocalized particles, which is sensitive to lattice imperfections. Breaking the lattice symmetry causes a Bose-glass-like behavior. We discuss the nature of excited states and orbital effects by using an exact diagonalization technique that includes higher bands.
Micropolar dissipative models for the analysis of 2D dispersive waves in periodic lattices
NASA Astrophysics Data System (ADS)
Reda, H.; Ganghoffer, J. F.; Lakiss, H.
2017-03-01
The computation of the dispersion relations for dissipative periodic lattices having the attributes of metamaterials is an actual research topic raising the interest of researchers in the field of acoustics and wave propagation phenomena. We analyze in this contribution the impact of wave damping on the dispersion features of periodic lattices, which are modeled as beam-lattices. The band diagram structure and damping ratio are computed for different repetitive lattices, based on the homogenized continuum response of the initially discrete lattice architecture, modeled as Kelvin-Voigt viscoelastic beams. Three of these lattices (reentrant hexagonal, chiral diamond, hexachiral lattice) are auxetic metamaterials, since they show negative Poisson's ratio. The effective viscoelastic anisotropic continuum behavior of the lattices is first computed in terms of the homogenized stiffness and viscosity matrices, based on the discrete homogenization technique. The dynamical equations of motion are obtained for an equivalent homogenized micropolar continuum evaluated based on the homogenized properties, and the dispersion relation and damping ratio are obtained by inserting an harmonic plane waves Ansatz into these equations. The comparison of the acoustic properties obtained in the low frequency range for the four considered lattices shows that auxetic lattices attenuate waves at lower frequencies compared to the classical hexagonal lattice. The diamond chiral lattice shows the best attenuation properties of harmonic waves over the entire Brillouin zone, and the hexachiral lattice presents better acoustic properties than the reentrant hexagonal lattice. The range of validity of the effective continuum obtained by the discrete homogenization has been assessed by comparing the frequency band structure of this continuum with that obtained by a Floquet-Bloch analysis.
Pin-wheel hexagons: a model for anthraquinone ordering on Cu(111).
Simenas, M; Tornau, E E
2013-10-21
The 4-state model of anthraquinone molecules ordering in a pin-wheel large-pore honeycomb phase on Cu(111) is proposed and solved by Monte Carlo simulation. The model is defined on a rescaled triangular lattice with the lattice constant a being equal to intermolecular distance in the honeycomb phase. The pin-wheel triangle formations are obtained taking into account the elongated shape of the molecules and anisotropic interactions for main two attractive short range (double and single dimeric) H-bond interactions. The long-range intermolecular interactions, corresponding to repulsive dipole-dipole forces, are assumed to be isotropic. Also, a very small (compared to short-range forces) isotropic attractive long-range interaction at the "characteristic" distance of a pore diameter is employed, and its effect carefully studied. This interaction is crucial for a formation of closed porous ordered systems, pin-wheel hexagons in particular. If each side of a pin-wheel hexagon is formed of n parallel molecules, the distance of this characteristic interaction is a√(3n(2)+1). The phase diagrams including different pin-wheel hexagon phases and a variety of other ordered structures are obtained. By changing the distance of characteristic interaction, different ordering routes into the experimental pin-wheel honeycomb phase are explored. The results obtained imply that classical explanation of the origin of the pin-wheel honeycomb phase in terms of some balance of attractive and repulsive forces cannot be totally discounted yet.
Formation of hexagonal and cubic ice during low-temperature growth.
Thürmer, Konrad; Nie, Shu
2013-07-16
From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure--that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ~20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice.
Formation of hexagonal and cubic ice during low-temperature growth
Thürmer, Konrad; Nie, Shu
2013-01-01
From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592
CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals
Braun, P.V.; Stupp, S.I. )
1999-02-01
Growth of CdS was studied in three different liquid crystalline phases demonstrating the versatility of liquid crystal templating of inorganic solids. Semiconductor growth in a hexagonal liquid crystal yielded a nanostructure with hexagonal symmetry, a lamellar liquid crystal yielded a lamellar nanostructure, and a cubic liquid crystal (consisting of spherical micelles) yielded a hollow, spherical product. The product grown in the hexagonal liquid crystal contains rod-like pores of 3 nm diameter, spaced 8 nm apart in a hexagonal lattice. The product grown in the lamellar liquid crystal consists of CdS sheets 5 nm thick, with 2 nm spaces between layers, which presumably contain the organic template. Both these superlattices have virtually identical symmetries and characteristic dimensions as the liquid crystal in which they were formed. The mineralization of the cubic phase yielded hollow spheres of CdS, 20--100 nm in diameter, 1--5 times the diameter of the micelles making up the liquid crystal.
Bio-chemical sensor based on imperfected plastic optical fiber
NASA Astrophysics Data System (ADS)
Babchenko, Anatoly; Chernyak, Valeri; Maryles, Jonathan
2007-05-01
In this paper we report results for an intrinsic evanescent field sensor based on not-regular plastic optical fiber with polymer film containing Malachite Green MG +([PhC(C 6H 4NMe II) 3] +) as an absorption reagent, which coats the fiber's imperfected area. A theoretical model was developed which shows that changes of light in such structure result from the attenuation of light in the strait and bent imperfected fiber. In this model, the imperfected area with malachite green polymer film is replaced by a uniform layer with a complex refractive index. The changes in color and absorption characteristics of the polymer film depend on the acidic and basic environmental properties in the sensing area. Additional increase of the evanescent field interaction can be achieved by decrease the bending radius of the fiber with the coated imperfection area at the middle of the bent fiber. An imperfected plastic optical fiber with Malachite Green coating has been presented for the detection of ammonia vapor. The initial results show that depending on the sensing application demands, it is possible to design a high sensitive sensor with a relatively long response time, while when the demands require fast response times the sensor with less sensitivity can be used. In addition, the sensors' sensitivity can be calibrated in real-time by changing the bending radius.
Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.
2016-01-01
Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.
Topological Properties of Electrons in Honeycomb Lattice with Detuned Hopping Energy
Wu, Long-Hua; Hu, Xiao
2016-01-01
Honeycomb lattice can support electronic states exhibiting Dirac energy dispersion, with graphene as the icon. We propose to derive nontrivial topology by grouping six neighboring sites of honeycomb lattice into hexagons and enhancing the inter-hexagon hopping energies over the intra-hexagon ones. We reveal that this manipulation opens a gap in the energy dispersion and drives the system into a topological state. The nontrivial topology is characterized by the index associated with a pseudo time-reversal symmetry emerging from the C6 symmetry of the hopping texture, where the angular momentum of orbitals accommodated on the hexagonal “artificial atoms” behaves as the pseudospin. The size of topological gap is proportional to the hopping-energy difference, which can be larger than typical spin-orbit couplings by orders of magnitude and potentially renders topological electronic transports available at high temperatures. PMID:27076196
Thermally induced microstrain broadening in hexagonal zinc
Lawson, Andrew C; Valdez, James A; Roberts, Joyce A; Leineweber, Andreas; Mittemeijer, E J; Kreher, W
2008-01-01
Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.
Disclinations in square and hexagonal patterns.
Golovin, A A; Nepomnyashchy, A A
2003-05-01
We report the observation of defects with fractional topological charges (disclinations) in square and hexagonal patterns as numerical solutions of several generic equations describing many pattern-forming systems: Swift-Hohenberg equation, damped Kuramoto-Sivashinsky equation, as well as nonlinear evolution equations describing large-scale Rayleigh-Benard and Marangoni convection in systems with thermally nearly insulated boundaries. It is found that disclinations in square and hexagonal patterns can be stable when nucleated from special initial conditions. The structure of the disclinations is analyzed by means of generalized Cross-Newell equations.
MHD pressure drop in ducts with imperfectly insulating coatings
Malang, S.; Buehler, L.
1994-08-01
Liquid metal cooled blankets in fusion tokamak`s are feasible only with electrically insulating coatings at the coolant channel walls. The requirements of such coatings are investigated and a simple analytical model is developed to determine the influence of imperfections in the coatings on the magneto-hydrodynamic pressure drop. This model is compared with the results of a 3D-MHD code based on the core flow approach. Both methods are in good agreement as long as the imperfections do not increase the pressure drop by more than 20%. The analytical model over-estimates the pressure drop for values larger than 20%. The importance of self-healing of coatings in case of cracking or flaking is quantified and an equation for the equilibrium conditions between the generation of imperfection and the healing of such spots is provided.
Watanabe, Koki; Pištora, Jaromír; Nakatake, Yoshimasa
2012-04-23
This paper considers the electromagnetic scattering problem of periodically corrugated surface with local imperfection of structural periodicity, and presents a formulation based on the coordinate transformation method (C-method). The C-method is originally developed to analyze the plane-wave scattering from perfectly periodic structures, and uses the pseudo-periodic property of the fields. The fields in imperfectly periodic structures are not pseudo-periodic and the C-method cannot be directly applied. This paper introduces the pseudo-periodic Fourier transform to convert the fields in imperfectly periodic structures to pseudo-periodic ones, and the C-method becomes then applicable. © 2012 Optical Society of America
Marginalized Particle Filter for Blind Signal Detection with Analog Imperfections
NASA Astrophysics Data System (ADS)
Yoshida, Yuki; Hayashi, Kazunori; Sakai, Hideaki; Bocquet, Wladimir
Recently, the marginalized particle filter (MPF) has been applied to blind symbol detection problems over selective fading channels. The MPF can ease the computational burden of the standard particle filter (PF) while offering better estimates compared with the standard PF. In this paper, we investigate the application of the blind MPF detector to more realistic situations where the systems suffer from analog imperfections which are non-linear signal distortion due to the inaccurate analog circuits in wireless devices. By reformulating the system model using the widely linear representation and employing the auxiliary variable resampling (AVR) technique for estimation of the imperfections, the blind MPF detector is successfully modified to cope with the analog imperfections. The effectiveness of the proposed MPF detector is demonstrated via computer simulations.
Multiwave diffraction, phase problem, and extinction in imperfect crystals
Dmitrienko, V. E.
2009-11-15
The extinction effects of multiwave diffraction in imperfect crystals have been investigated. It is shown that the presence of extinction in the direct diffraction channel may lead to errors in determining the relative phases of structural amplitudes by the multiwave diffraction method (i.e., by interference with indirect excitation). The reason is that the dependence of the reflection intensity on the structural amplitude in imperfect crystals is generally nonquadratic (as in the kinematic theory), nonlinear (as in the dynamic theory), and is not even somewhat intermediate. These effects open up new possibilities for using multiwave diffraction for the direct study of the extinction and, therefore, quantitatively characterize the imperfection of crystal structures with known values and phases of structural amplitudes.
Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy
NASA Astrophysics Data System (ADS)
Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Smith, Emily F.; Mellor, Christopher J.; Khlobystov, Andrei N.; Foxon, C. Thomas; Eaves, Laurence; Beton, Peter H.; Novikov, Sergei V.
2016-09-01
We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.
Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S; Smith, Emily F; Mellor, Christopher J; Khlobystov, Andrei N; Foxon, C Thomas; Eaves, Laurence; Beton, Peter H; Novikov, Sergei V
2016-09-29
We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp(2)-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.
Thermal expansion of the hexagonal (4H) polytype of SiC
NASA Technical Reports Server (NTRS)
Li, Z.; Bradt, R. C.
1986-01-01
The principal axial coefficients of thermal expansion, alpha(11) and alpha(33), of the (4H) polytype of hexagonal alpha SiC have been determined by X-ray diffraction measurements in the temperature range 20-1000 C. Alpha(11) and alpha(33), derived from the lattice parameter measurements, were expressed as the second-order polynomials in temperature. Alpha(11) was found to be larger than alpha(33) over the entire temperature range, with a thermal expansion anisotropy factor A increasing from 0.04 at room temperature to 0.11 at 1000 C. The thermal expansion results for the (4H) structure were compared with previously published results for the cubic (3C) and the hexagonal (6H) SiC polytypes.
Hexagonal frustrated RMnO3 manganites (R = Y, Lu) under high pressure
NASA Astrophysics Data System (ADS)
Kozlenko, D. P.; Kichanov, S. E.; Lee, S.; Park, J.-G.; Glazkov, V. P.; Savenko, B. N.
2007-05-01
The crystalline and magnetic structures of YMnO3 and LuMnO3 hexagonal manganites under pressures of 0 6 GPa and in the temperature range 10 295 K have been investigated by neutron diffraction. Application of pressure leads to a significant decrease in the ordered magnetic moment of Mn ions (at T = 10 K) from 3.27 (0 GPa) to 1.52 μB (5 GPa) for YMnO3 and from 2.48 (0 GPa) to 1.98 μB (6 GPa) for LuMnO3. Under high pressures, spin reorientation of Mn magnetic moments and a change in the symmetry of the antiferromagnetic structure are observed in YMnO3. The relationship between the triangular lattice distortion parameter and the symmetry of the triangular antiferromagnetic state of RMnO3 hexagonal manganites is discussed.
Kendrick, E.; Slater, P.R.
2008-08-04
Apatite-type lanthanum silicates/germanates have been attracting considerable interest as a new class of oxide ion conductors, whose conductivity is mediated by oxide ion interstitials. For the germanates, it has been shown that, depending on composition, the cell can be either hexagonal or triclinic, with evidence for reduced low-temperature conductivities for the latter, attributed to increased defect trapping in this lower symmetry cell. In this paper we show that site selective doping of Y into the triclinic apatite-type oxide ion conductors, La{sub 9.33+z}(GeO{sub 4}){sub 6}O{sub 2+3z/2} (0.33 {<=} z {<=} 0.67) results in a hexagonal lattice for the complete series with correspondingly enhanced low-temperature conductivity.
Oscillatory long-wave Marangoni convection in a layer of a binary liquid: hexagonal patterns.
Shklyaev, S; Nepomnyashchy, A A; Oron, A
2011-11-01
We consider a long-wave oscillatory Marangoni convection in a layer of a binary liquid in the presence of the Soret effect. A weakly nonlinear analysis is carried out on a hexagonal lattice. It is shown that the derived set of cubic amplitude equations is degenerate. A three-parameter family of asynchronous hexagons (AH), representing a superposition of three standing waves with the amplitudes depending on their phase shifts, is found to be stable in the framework of this set of equations. To determine a dominant stable pattern within this family of patterns, we proceed to the inclusion of the fifth-order terms. It is shown that depending on the Soret number, either wavy rolls 2 (WR2), which represents a pattern descendant of wavy rolls (WR) family, are selected or no stable limit cycles exist. A heteroclinic cycle emerges in the latter case: the system is alternately attracted to and repelled from each of three unstable solutions.
Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy
Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Smith, Emily F.; Mellor, Christopher J.; Khlobystov, Andrei N.; Foxon, C. Thomas; Eaves, Laurence; Beton, Peter H.; Novikov, Sergei V.
2016-01-01
We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate. PMID:27681943
Defect properties of cobalt-doped hexagonal barium titanate ceramics
NASA Astrophysics Data System (ADS)
Langhammer, H. T.; Böttcher, R.; Müller, T.; Walther, T.; Ebbinghaus, S. G.
2015-07-01
X-ray diffraction (XRD) patterns, electron paramagnetic resonance (EPR) powder spectra (9 and 34 GHz) and the magnetic susceptibility of BaTiO3 + 0.04 BaO + x/2 Co2O3 (0.001 ⩽ x ⩽ 0.02) ceramics were studied to investigate the incorporation of Co ions in the BaTiO3 lattice and their valence states as well as the development of the hexagonal phase (6H modification) in dependence on doping level x and sintering temperature Ts. At Ts = 1400 °C the 6H modification begins to occur at a nominal Co concentration x of about 0.001 and for x > 0.005 the samples are completely hexagonal at room temperature. Two different EPR spectra were observed in the 6H modification of BaTiO3, which were both assigned to paramagnetic Co2+ ions located at the two crystallographically non-equivalent Ti sites in 6H-BaTiO3. The EPR g tensor values as well as the molar paramagnetic susceptibility, measured in the temperature range 5 K-300 K at a magnetic field of 9 T, were analyzed in the framework of the ligand field theory using the program CONCORD. The combination of EPR and magnetic measurements reveals that in air-sintered 6H BaTiO3, the incorporated Co occurs as a mixture of paramagnetic Co2+ and diamagnetic Co3+ ions, whereas in samples annealed in reducing atmosphere the majority of Co is in the divalent state. The occurrence of Co4+ can be excluded for all investigated samples. The sample color caused by Co2+ and Co3+ ions is beige/light yellow and dark grey/black, respectively. The majority of the Co2+ ions substitutes Ti in the exclusively corner-sharing oxygen octahedra possessing nearly cubic symmetry. The corresponding ligand field parameter B04(3) amounts to about -28 000 cm-1 (Wybourne notation, 10Dq ≈ 20 000 cm-1). In the reduced samples nearly 5% of the detected Co2+ ions occupy the Ti site in the face-sharing oxygen octahedra, which are significantly trigonally distorted. The negative sign of the obtained ligand field parameter B02 ≈ -7300 cm-1
A composite nodal finite element for hexagons
Hennart, J.P.; Mund, E.H. |; Valle, E. Del
1997-10-01
A nodal algorithm for the solution of the multigroup diffusion equations in hexagonal arrays is analyzed. Basically, the method consists of dividing each hexagon into four quarters and mapping the hexagon quarters onto squares. The resulting boundary value problem on a quadrangular domain is solved in primal weak formulation. Nodal finite element methods like the Raviart-Thomas RTk schemes provide accurate analytical expansions of the solution in the hexagons. Transverse integration cannot be performed on the equations in the quadrangular domain as simply as it is usually done on squares because these equations have essentially variable coefficients. However, by considering an auxiliary problem with constant coefficients (on the same quadrangular domain) and by using a preconditioning approach, transverse integration can be performed as for rectangular geometry. A description of the algorithm is given for a one-group diffusion equation. Numerical results are presented for a simple model problem with a known analytical solution and for k{sub eff} evaluations of some benchmark problems proposed in the literature. For the analytical problem, the results indicate that the theoretical convergence orders of RTk schemes (k = 0,1) are obtained, yielding accurate solutions at the expense of a few preconditioning iterations.
Hexagonal ferrites for millimeter wave applications
NASA Astrophysics Data System (ADS)
Polk, Donald E.; Hathaway, Kristl B.
1993-01-01
A review of the work accomplished on this contract is presented. A review of the physics of hexagonal ferrite materials and the effective linewidth concept and the detailed overall research plan are contained in the original proposal document. The focus of the program was on the effective linewidth in millimeter wave materials, including planar hexagonal ferrite Y-type materials, uniaxial M-type materials, and thin ferromagnetic transition metal and alloy films. The key idea in the original proposal was that the ferromagnetic resonance (FMR) linewidth in hexagonal ferrites is dominated by inhomogeneous and two-magnon scattering losses and that off-resonance measurements of the effective linewidth would (1) show that the FMR losses do not represent the intrinsic losses, and (2) that the intrinsic losses are significantly lower. This basic idea was verified. Results were obtained on the off-resonance far-field effective linewidth in planar Zn-Y hexagonal ferrite single crystal platelets, single crystal spheres of Ba- and Sr-hexaferrite materials, and permalloy thin films. Three papers on these results were published.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets.
Si, M S; Gao, Daqiang; Yang, Dezheng; Peng, Yong; Zhang, Z Y; Xue, Desheng; Liu, Yushen; Deng, Xiaohui; Zhang, G P
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
NASA Astrophysics Data System (ADS)
Si, M. S.; Gao, Daqiang; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.
2014-05-01
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.
Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear
NASA Astrophysics Data System (ADS)
Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.
2013-05-01
A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.
Hexagonal and Pentagonal Fractal Multiband Antennas
NASA Technical Reports Server (NTRS)
Tang, Philip W.; Wahid, Parveen
2005-01-01
Multiband dipole antennas based on hexagonal and pentagonal fractals have been analyzed by computational simulations and functionally demonstrated in experiments on prototypes. These antennas are capable of multiband or wide-band operation because they are subdivided into progressively smaller substructures that resonate at progressively higher frequencies by virtue of their smaller dimensions. The novelty of the present antennas lies in their specific hexagonal and pentagonal fractal configurations and the resonant frequencies associated with them. These antennas are potentially applicable to a variety of multiband and wide-band commercial wireless-communication products operating at different frequencies, including personal digital assistants, cellular telephones, pagers, satellite radios, Global Positioning System receivers, and products that combine two or more of the aforementioned functions. Perhaps the best-known prior multiband antenna based on fractal geometry is the Sierpinski triangle antenna (also known as the Sierpinski gasket), shown in the top part of the figure. In this antenna, the scale length at each iteration of the fractal is half the scale length of the preceding iteration, yielding successive resonant frequencies related by a ratio of about 2. The middle and bottom parts of the figure depict the first three iterations of the hexagonal and pentagonal fractals along with typical dipole-antenna configuration based on the second iteration. Successive resonant frequencies of the hexagonal fractal antenna have been found to be related by a ratio of about 3, and those of the pentagonal fractal antenna by a ratio of about 2.59.
Temperature and field dependence of the flux-line-lattice symmetry in V{sub 3}Si
Yethiraj, M.; Christen, D.K.; Gapud, A.A.; Paul, D. McK.; Crowe, S.J.; Dewhurst, C.D.; Cubitt, R.; Porcar, L.; Gurevich, A.
2005-08-01
In V{sub 3}Si, a first-order structural phase transition from hexagonal to square flux-line lattice occurs at approximately 1 T with H parallel to the a axis. In this paper, we demonstrate the reentrant structural transition in the flux-line lattice, which reverts to hexagonal symmetry as the magnetic field approached H{sub c2}(T). This behavior is described very well by a nonlocal London theory with thermal fluctuations. The phase diagram of the flux lattice topology is mapped out for this geometry.
NASA Astrophysics Data System (ADS)
Maharjan, N. B.; Paudyal, D. D.; Mishra, D. R.; Byahut, S.; Aryal, M. M.; Cho, Hwa-Suck; Scheicher, R. H.; Chow, Lee; Jeong, Junho; Das, T. P.
2006-03-01
The electron structures of Selenium chains and rings with Te impurities in hexagonal and monoclinic structures respectively and Se impurities in Te chains in hexagonal lattice have been studied using Hartree-Fock cluster model including many-body effects, including lattice relaxation effects. The calculated electronic wave-functions are utilized to obtain ^77Se and ^125Te nuclear quadrupole coupling constants e^2qQ and asymmetry parameters η and compared with available experimental data from Mossbauer and perturbed angular correlation measurements. From our results, the expected nature of nuclear quadrupole interactions associated with Sb impurities will be discussed. *Supported by NSF US-Nepal Program and UGC Nepal **Also at UCF, Orlando
Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy
NASA Astrophysics Data System (ADS)
Lužnik, J.; Koželj, P.; Vrtnik, S.; Jelen, A.; Jagličić, Z.; Meden, A.; Feuerbacher, M.; Dolinšek, J.
2015-12-01
Rare earth based equimolar Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy (HEA) is a prototype of an ideal HEA, stabilized by the entropy of mixing at any temperature with random mixing of elements on the hexagonal close-packed lattice. In order to determine intrinsic properties of an ideal HEA characterized by the enormous chemical (substitutional) disorder on a weakly distorted simple lattice, we have performed measurements of its magnetic and electrical response and the specific heat. The results show that the Ho-Dy-Y-Gd-Tb hexagonal HEA exhibits a rich and complex magnetic field-temperature (H ,T ) phase diagram, as a result of competition among the periodic potential arising from the electronic band structure that favors periodic magnetic ordering, the disorder-induced local random potential that favors spin glass-type spin freezing in random directions, the Zeeman interaction with the external field that favors spin alignment along the field direction, and the thermal agitation that opposes any spin ordering. Three characteristic temperature regions were identified in the (H ,T ) phase diagram between room temperature and 2 K. Within the upper temperature region I (roughly between 300 and 75 K), thermal fluctuations average out the effect of local random pinning potential and the spin system behaves as a pure system of compositionally averaged spins, undergoing a thermodynamic phase transition to a long-range ordered helical antiferromagnetic state at the Néel temperature TN=180 K that is a compositional average of the Néel temperatures of pure Tb, Dy, and Ho metals. Region II (between 75 and 20 K) is an intermediate region where the long-range periodic spin order "melts" and the random ordering of spins in the local random potential starts to prevail. Within the low-temperature region III (below 20 K), the spins gradually freeze in a spin glass configuration. The spin glass phase appears to be specific to the rare earths containing hexagonal HEAs, sharing
An X-ray scattering study of flow-aligned samples of a lyotropic liquid-crystalline hexagonal phase
NASA Astrophysics Data System (ADS)
Impéror-Clerc, M.; Davidson, P.
Large flow-aligned samples of the hexagonal mesophase of the (sodium dodecylsulfate, pentanol, water) ternary system were produced by merely sucking the material into flat glass capillaries. These samples were examined by polarized light microscopy and X-ray scattering. In the plane of the hexagonal lattice, the `` -mosaic'' is only because the dense (10) hexagonal planes lie parallel to the flat glass plates of the capillaries. In contrast, the `` -mosaic'' of the C6 axis reaches 5-10 because the samples undergo a thermomechanical instability of the columns already investigated by Oswald et al. in detail on the (C12EO6, H2O) system. Anisotropic thermal diffuse scattering is observed around the Bragg peaks and its description in the frame of an elastic continuum model provides estimates of the elastic constants. On heating the samples, we observed a clear splitting of four of the (10) hexagonal lattice reflections. This splitting is the defining signature of the thermomechanical instability by which the columns form zig-zags. The fact that two of the (10) reflections are not affected by the instability demonstrates that it is confined to the plane of the capillary. The influence of temperature on the thermomechanical instability was also studied in detail.
Lysozyme entrapped within reverse hexagonal mesophases: physical properties and structural behavior.
Mishraki, Tehila; Libster, Dima; Aserin, Abraham; Garti, Nissim
2010-01-01
A model protein (lysozyme) was incorporated into monoolein-based reverse hexagonal (H(II)) mesophase and its structure effects were characterized by small angle X-ray scattering, ATR-FTIR spectroscopy, and rheological measurements. Modifications in molecular organization of the H(II) mesophases as well as the conformational stability of lysozyme (LSZ) as a function of pH and denaturating agent (urea) were clarified. Up to 3 wt.% LSZ can be solubilized into the H(II). The vibration FTIR analysis revealed that LSZ interacted with OH groups of glycerol monooleate (GMO) in the outer interface region, resulting in strong hydrogen bonding between the surfactant and its environment. Simultaneously, the decrease in the hydrogen-bonded carbonyl population of GMO was monitored, indicating dehydration of the monoolein carbonyls. These molecular interactions yielded a minor decrease in the lattice parameter of the systems, as detected by small angle X-ray scattering. Furthermore, LSZ was crystallized within the medium of the hexagonal structures in a single crystal form. The alpha-helix conformation of lysozyme was stabilized at high pH conditions, demonstrating greater helical structure content, compared to D(2)O solution. Moreover, the hexagonal phase decreased the unfavorable alpha-->beta transition in lysozyme, thereby increasing the stability of the protein under chemical denaturation. The rheological behavior of the hexagonal structures varied with the incorporation of LSZ, reflected in stronger elastic properties and pronounced solid-like response of the systems. The hydrogen bonding enhancement in the interface region of the structures was most likely responsible for these phenomena. The results of this study provided valuable information on the use of hexagonal systems as a carrier for incorporation and stabilization of proteins for various applications.
Stability of the laminar boundary layer for an imperfect gas
NASA Astrophysics Data System (ADS)
Gasperas, G.
The linear perturbation equations are derived for the general case of a compressible imperfect gas characterized by an equation of state utilizing a compressibility factor. The specific case of the Beattie-Bridgeman gas is chosen for calculation. Amplification curves calculated using the Beattie-Bridgeman equation of state for two representative flat plate boundary layers are presented.
Information Imperfections: The Achilles' Heel of Entitlement Plans
ERIC Educational Resources Information Center
Bridge, Gary
1978-01-01
Discusses some crucial questions about voucher systems in education and examines the major weakness of the voucher and entitlement proposals, i.e., information imperfections that limit the ability of individuals, especially low-income and less educated people, to choose intelligently among competing alternatives. (BR)
Imperfect two-dimensional topological insulator field-effect transistors
Vandenberghe, William G.; Fischetti, Massimo V.
2017-01-01
To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059
Imperfect two-dimensional topological insulator field-effect transistors
NASA Astrophysics Data System (ADS)
Vandenberghe, William G.; Fischetti, Massimo V.
2017-01-01
To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators.
Imperfect two-dimensional topological insulator field-effect transistors.
Vandenberghe, William G; Fischetti, Massimo V
2017-01-20
To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators.
A Review of Imperfection Sensitivity of Stiffened Shells.
1984-02-01
permit response in all Fourier har- monics, then a minimum imperfection-sensitive calculation could be acoplished. If discrete response Fourier ... harmonics or limited models are used, then the minimum response harmonics and all. irriportant coupled modes must be known a priori. The use of the direct
Evaluation Strategies in Financial Education: Evaluation with Imperfect Instruments
ERIC Educational Resources Information Center
Robinson, Lauren; Dudensing, Rebekka; Granovsky, Nancy L.
2016-01-01
Program evaluation often suffers due to time constraints, imperfect instruments, incomplete data, and the need to report standardized metrics. This article about the evaluation process for the Wi$eUp financial education program showcases the difficulties inherent in evaluation and suggests best practices for assessing program effectiveness. We…
Evaluation Strategies in Financial Education: Evaluation with Imperfect Instruments
ERIC Educational Resources Information Center
Robinson, Lauren; Dudensing, Rebekka; Granovsky, Nancy L.
2016-01-01
Program evaluation often suffers due to time constraints, imperfect instruments, incomplete data, and the need to report standardized metrics. This article about the evaluation process for the Wi$eUp financial education program showcases the difficulties inherent in evaluation and suggests best practices for assessing program effectiveness. We…
Coherent detection of multiamplitude MSK under imperfect phase synchronisation
NASA Astrophysics Data System (ADS)
Goncalves, V.; Gusmao, A.; Esteves, N.
1991-04-01
Simple formulas for the BER performance achieved through coherent detection of MAMSK signals, under a carrier phase error, are presented. It is shown that MAMSK schemes are much less sensitive to imperfect carrier recovery than the corresponding QAM schemes, this advantage being especially clear when serial detection is employed. Possible applications to future TDMA satellite systems are emphasized.
First Brillouin Polytope and Band Structure of Diamond Lattice in Four Dimensions
NASA Astrophysics Data System (ADS)
Kato, Yuichi; Yamanaka, Masanori
2017-03-01
We study the diamond lattice in four dimensions — a descendant of the three-dimensional diamond lattice. As a four-dimensional polytope, we determine the first Brillouin zone and draw the band structure of the corresponding tight-binding model on two-dimensional paper in the usual manner. In the polyhedral decomposition, we find the zone boundary of the first Brillouin zone in four dimensions to be the omnitruncated 5-cell, which comprises ten truncated octahedra glued to 20 hexagonal prisms. We find Dirac line nodes inside the hexagonal prisms.
Chain hexagonal cacti with the extremal eccentric distance sum.
Qu, Hui; Yu, Guihai
2014-01-01
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.
Chain Hexagonal Cacti with the Extremal Eccentric Distance Sum
Qu, Hui
2014-01-01
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti. PMID:24741365
Formation of Hexagonal-Close Packed (HCP) Rhodium as a Size Effect.
Huang, Jing Lu; Li, Zhi; Duan, Hao Hong; Cheng, Zhi Ying; Li, Ya Dong; Zhu, Jing; Yu, Rong
2017-01-18
Previous studies on the structural and functional properties of rhodium are based on the face-centered-cubic (fcc) structure in the bulk form. Here we report the first discovery of the hexagonal-close packed (hcp) rhodium in the nanoparticle form. The hcp Rh can be directly synthesized by solvothermal reaction or by electron-beam induced decomposition of Rh monolayers. The hcp Rh nanoparticles are stable under electron beam irradiation. Compared with the fcc structure, the hcp Rh nanoparticles show a large lattice expansion (6% larger atomic volume). The first-principles calculations suggest that the lower surface energy of hcp Rh leads to the size effect in the crystal structure.
Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators
Gaskell, J.; Fromhold, T. M.; Greenaway, M. T.; Eaves, L.; Novoselov, K. S.; Mishchenko, A.; Geim, A. K.
2015-09-07
We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.
Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators
NASA Astrophysics Data System (ADS)
Fallahi, Vahid; Seifouri, Mahmood; Olyaee, Saeed; Alipour-Banaei, Hamed
2017-08-01
In this paper, photonic crystal ring resonators with hexagonal lattice structure are used to design a four-channel optical demultiplexer. The structure size, the average transfer coefficient, the quality factor, and the channel spacing are equal to 424.5 µm2, 95.8%, 1943, and 2 nm, respectively. The average crosstalk is also computed to be -18.11 dB. In this study, the plane wave expansion (PWE) and finite-difference time-domain (FDTD) methods are used, respectively, to characterize the photonic bandgap and to investigate the optical behavior of the structure. The proposed design can be used in dense wavelength division multiplexing (DWDM) systems.
Nodal equivalence theory for hexagonal geometry, thermal reactor analysis
Zika, M.; Downar, T. )
1992-01-01
An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory.
Hart, W.E.; Istrail, S.
1996-08-09
This paper considers the protein structure prediction problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven extremely useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. The authors consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to explicitly represent side chains on the cubic lattice, and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. They describe algorithms for both of these models with mathematically guaranteed error bounds. In particular, the authors describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 865 of optimal in a face centered cubic lattice, and they demonstrate how this provides a 70% performance guarantee for the HP-TSSC model. This is the first algorithm in the literature for off-lattice protein structure prediction that has a rigorous performance guarantee. The analysis of the HP-TSSC model builds off of the work of Dancik and Hannenhalli who have developed a 16/30 approximation algorithm for the HP model on the hexagonal close packed lattice. Further, the analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Karplus et al. concerning the complexity of protein folding models that include side chains.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Ningthoujam, R. S.; Mittal, R.; Vatsa, R. K.; Zbiri, M.; Sharma, K. Shitaljit; Singh, B. P.; Sastry, P. U.; Hansen, T.; Schober, H.; Chaplot, S. L.
2017-09-01
We provide experimental evidence for confinement of water molecules in the pores of hexagonal structure of YPO4 at elevated temperatures up to 600 K using powder neutron diffraction. In order to avoid the large incoherent scattering from the hydrogen, deuterated samples of doped YPO4:Ce-Eu were used for diffraction measurements. The presence of water molecules in the triangular and hexagonal pores in the hexagonal structure was established by detailed simulation of the diffraction pattern and Rietveld refinement of the experimental data. It was observed that the presence of water leads specifically to suppression of the intensity of a peak around Q = 1.04 Å-1 while the intensity of peaks around Q = 1.83 Å-1 is enhanced in the neutron-diffraction pattern. We estimate the number of water molecules as 2.36 (6) per formula units at 300 K and the sizes of the hexagonal and triangular pores as 7.2 (1) and 4.5 (1) Å, respectively. With an increase in temperature, the water content in both pores decreases above 450 K and vanishes around 600 K. Analysis of the powder-diffraction data reveals that the hexagonal structure with the pores persist up to 1273 K, and transforms to another structure at 1323 K. The high-temperature phase is not found to have the zircon- or monazite-type structure, but a monoclinic structure (space group P 2 /m ) with lattice parameters am= 6.826 (4 ) Å ,bm= 6.645 (4 ) Å ,cm= 10.435 (9 ) Å , and β = 107.21 (6) ∘ . The monoclinic structure has about 14% smaller volume than the hexagonal structure which essentially reflects the collapse of the pores. The phase transition and the change in the volume are also confirmed by x-ray-diffraction measurements. The hexagonal-to-monoclinic phase transition is found to be irreversible on cooling to room temperature.
Multilayer hexagonal silicon forming in slit nanopore.
He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying
2015-10-05
The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties.
Synthesis of silicon carbide hexagonal nanoprisms
NASA Astrophysics Data System (ADS)
Wu, R. B.; Yang, G. Y.; Pan, Y.; Chen, J. J.
2007-02-01
SiC hexagonal nanoprisms have been prepared by a reaction of multiwall carbon nanotubes and Si vapor in an Astro furnace at 1450 °C for 3 h. The polytype, morphology, crystal structure of the nanoprisms were studied by X-ray powder diffraction, scanning electron microscopy and high resolution transmission electron microscopy, showing their hexagonal nanoprism shapes with a 3C-SiC single crystal structure with a diameter of about 100 nm and 2 μm in length. The photoluminescence spectrum of the nanoprisms exhibits a significant blue-shift relative to bulk 3C-SiC and other nanostructured SiC. The possible growth mechanism that controls the nanostructure formation is also analysed.
Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation
NASA Technical Reports Server (NTRS)
Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.
2014-01-01
Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.
Chen, Zhen; Dorfman, Kevin D
2014-02-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device.
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-01-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices. PMID:27892963
Stress Wave Propagation in Two-dimensional Buckyball Lattice
NASA Astrophysics Data System (ADS)
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
Thermodynamic properties of the magnetized Coulomb crystal lattices
NASA Astrophysics Data System (ADS)
Kozhberov, A. A.
2016-08-01
It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.
Hexagonal Ferrites for Millimeter Wave Applications
1993-01-07
single crystal platelets, single crystal spheres of Ba- and Sr- hexaferrite materials, and permalloy thin films. Three papers on these results have been...effective linewidth in planar Zn-Y hexagonal ferrite single crystal platelets, single crystal spheres of Ba- and Sr- hexaferrite materials, and...basic thesis of the original proposal - that the measured linewidth in single crystal hexaferrites (1) may contain significant contributions related to
Non-abelian gauge fields and topological insulators in shaken optical lattices.
Hauke, Philipp; Tieleman, Olivier; Celi, Alessio; Olschläger, Christoph; Simonet, Juliette; Struck, Julian; Weinberg, Malte; Windpassinger, Patrick; Sengstock, Klaus; Lewenstein, Maciej; Eckardt, André
2012-10-05
Time-periodic driving like lattice shaking offers a low-demanding method to generate artificial gauge fields in optical lattices. We identify the relevant symmetries that have to be broken by the driving function for that purpose and demonstrate the power of this method by making concrete proposals for its application to two-dimensional lattice systems: We show how to tune frustration and how to create and control band touching points like Dirac cones in the shaken kagome lattice. We propose the realization of a topological and a quantum spin Hall insulator in a shaken spin-dependent hexagonal lattice. We describe how strong artificial magnetic fields can be achieved for example in a square lattice by employing superlattice modulation. Finally, exemplified on a shaken spin-dependent square lattice, we develop a method to create strong non-abelian gauge fields.
The reconstructed edges of the hexagonal BN.
Zhao, Ruiqi; Gao, Junfeng; Liu, Zhongfan; Ding, Feng
2015-06-07
As an important two-dimensional material which shows exceptional mechanical and chemical stability, superior electronic properties, along with broad applications, the hexagonal-BN (h-BN) has drawn great attention recently. Here we report a systematic study on the structural stability, electronic and magnetic properties of various h-BN edges, including both bare and hydrogen-terminated ones. It is found that along the armchair (AC) direction, the pristine edge is the most stable one because of the formation of a triple B≡N bond, while, along the zigzag (ZZ) directions, the reconstructed ones, ZZB + N and ZZN57 are more stable. The pristine edges are more stable in bare BN in most cases if saturated with hydrogen. By applying the theory of Wulff construction, we predicted that an unpassivated BN domain prefers the hexagonal shape enclosed with bare AC edges i.e., AC-Ns, AC, AC-Bs if the feedstock varies from N-rich to B-rich. However, the evolution from ZZN edged triangular domain, to hexagonal domain enclosed with AC edges, and ZZB edged triangle may occur if the edges are terminated by hydrogen atoms. Further calculation shows that these edges present rich type-dependent properties and thus are important for various applications. This theoretical study showed that controlling the morphologies of BN domains and BN edges is crucial for various applications.
A Discourse Analysis of the Periphrastic Imperfect in the Greek New Testament Writings of Luke
ERIC Educational Resources Information Center
Johnson, Carl E.
2010-01-01
Motivated by Bloomfield's belief that linguistic variation is not without motivation, this paper seeks to determine the distinction between the morphological imperfect and periphrastic imperfect of Koine Greek within the New Testament writings of Luke. This study suggests that: (1) The periphrastic imperfect occurs only within narrative…
A Discourse Analysis of the Periphrastic Imperfect in the Greek New Testament Writings of Luke
ERIC Educational Resources Information Center
Johnson, Carl E.
2010-01-01
Motivated by Bloomfield's belief that linguistic variation is not without motivation, this paper seeks to determine the distinction between the morphological imperfect and periphrastic imperfect of Koine Greek within the New Testament writings of Luke. This study suggests that: (1) The periphrastic imperfect occurs only within narrative…
Resonant Zener tunneling in two-dimensional periodic photonic lattices.
Desyatnikov, Anton S; Kivshar, Yuri S; Shchesnovich, Valery S; Cavalcanti, Solange B; Hickmann, Jandir M
2007-02-15
We study Zener tunneling in two-dimensional photonic lattices and derive, for the case of hexagonal symmetry, the generalized Landau-Zener-Majorana model describing resonant interaction between high-symmetry points of the photonic spectral bands. We demonstrate that this effect can be employed for the generation of Floquet-Bloch modes and verify the model by direct numerical simulations of the tunneling effect.
Clusters in irregular areas and lattices.
Wieczorek, William F; Delmerico, Alan M; Rogerson, Peter A; Wong, David W S
2012-01-01
Geographic areas of different sizes and shapes of polygons that represent counts or rate data are often encountered in social, economic, health, and other information. Often political or census boundaries are used to define these areas because the information is available only for those geographies. Therefore, these types of boundaries are frequently used to define neighborhoods in spatial analyses using geographic information systems and related approaches such as multilevel models. When point data can be geocoded, it is possible to examine the impact of polygon shape on spatial statistical properties, such as clustering. We utilized point data (alcohol outlets) to examine the issue of polygon shape and size on visualization and statistical properties. The point data were allocated to regular lattices (hexagons and squares) and census areas for zip-code tabulation areas and tracts. The number of units in the lattices was set to be similar to the number of tract and zip-code areas. A spatial clustering statistic and visualization were used to assess the impact of polygon shape for zip- and tract-sized units. Results showed substantial similarities and notable differences across shape and size. The specific circumstances of a spatial analysis that aggregates points to polygons will determine the size and shape of the areal units to be used. The irregular polygons of census units may reflect underlying characteristics that could be missed by large regular lattices. Future research to examine the potential for using a combination of irregular polygons and regular lattices would be useful.
Noncontacting thermoelectric detection of material imperfections in metals
Peter B. Nagy; Adnan H. Nayfeh; Waseem I. Faidi; Hector Carreon; Balachander Lakshminaraya; Feng Yu; Bassam Abu-Nabah
2005-06-17
This project was aimed at developing a new noncontacting thermoelectric method for nondestructive detection of material imperfections in metals. The method is based on magnetic sensing of local thermoelectric currents around imperfections when a temperature gradient is established throughout a conducting specimen by external heating and cooling. The surrounding intact material serves as the reference electrode therefore the detection sensitivity could be very high if a sufficiently sensitive magnetometer is used in the measurements. This self-referencing, noncontacting, nondestructive inspection technique offers the following distinct advantages over conventional methods: high sensitivity to subtle variations in material properties, unique insensitivity to the size, shape, and other geometrical features of the specimen, noncontacting nature with a substantial stand-off distance, and the ability to probe relatively deep into the material. The potential applications of this method cover a very wide range from detection metallic inclusions and segregations, inhomogeneities, and tight cracks to characterization of hardening, embrittlement, fatigue, texture, and residual stresses.
Stability, vibration and passive damping of partially restrained imperfect columns
NASA Technical Reports Server (NTRS)
Razzaq, Z.; Voland, R. T.; Bush, H. G.; Mikulas, M. M., Jr.
1983-01-01
A theoretical and experimental study of slender tubular columns for possible use in space structures is conducted in the presence of partial rotational end restraints. Explicit formulas are derived for computing the buckling load and the lowest natural frequency of perfectly straight uniform elastic members with rotational end restraints possessing linear moment-rotation characteristics. An exact solution in the form of a transcendental equation, and a numerical solution using second-order finite-differences are also presented. The presence of an initial imperfection is also incorporated into the numerical procedure. Vibration tests are conducted on an imperfect tubular steel member in the absence of an axial load. A damping concept consisting of a string-mass assembly is explored. Three passive damping configurations involving combinations of three lead shots were investigated. The three lead shot configurations provided considerably greater damping than the single lead shot.
Interplay of imperfections and surface states in topological crystalline insulators
NASA Astrophysics Data System (ADS)
Plekhanov, Evgeny; Weber, Cedric
The conducting states, recently discovered at the surface of a special class of insulators - topological insulators - are distinguished for their insensitivity to local and non-magnetic surface defects. Their behavior in the presence of magnetic impurities and macroscopic imperfections of the surface is puzzling and hard to analyze quantitatively. Here, we present a systematic study of the imperfections (magnetic impurities and deviations from perfect surface cleavage) in topological crystalline insulators of the tin telluride family by using realistic first-principles-derived tight-binding models. The theoretical framework proposed is quite general and easily permits the extensions to other TI families and impurity types. The influence of the strong local correlations of the impurity atoms on the topological states stability is also discussed within the frame of the Dynamical Mean Field Theory.
Radiation and scattering from imperfect cylindrical electromagnetic cloaks.
Isic, G; Gajic, R; Novakovic, B; Popovic, Z V; Hingerl, K
2008-02-04
The design of electromagnetic invisibility cloaks is based on singular mappings prescribing zero or infinite values for material parameters on the inner surface of the cloak. Since this is only approximately feasible, an asymptotic analysis is necessary for a sound description of cloaks. We adopt a simple and effective approach for analyzing electromagnetic cloaks - instead of the originally proposed singular mapping, nonsingular mappings asymptotically approaching the ideal one are considered. Scattering and radiation from this type of imperfect cylindrical cloaks is solved analytically and the results are confirmed by full-wave finite element simulations. Our analysis sheds more light on the influence of this kind of imperfection on the cloaking performance and further explores the physics of cloaking devices.
Parametric Multi-Level Tiling of Imperfectly Nested Loops
Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy
2009-05-18
Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.
Evidences of global bifurcations of an imperfect circular plate
NASA Astrophysics Data System (ADS)
Yeo, M. H.; Lee, W. K.
2006-05-01
The global bifurcations in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of the third-order subharmonic resonance, in which an excitation frequency is near triple natural frequencies, is considered. The equations governing nonlinear oscillations of an imperfect circular plate are reduced to a system of non-autonomous ordinary differential equations via Galerkin's procedure. The method of multiple scales is used to obtain a system of autonomous ordinary differential equations, and then Kovačič and Wiggins' method is used to investigate the global dynamics of the plate. Having found a sufficient condition under which Silnikov-type homoclinic orbit can exist, we failed to observe any numerical evidences of global bifurcation.
Effects of instrument imperfections on quantitative scanning transmission electron microscopy.
Krause, Florian F; Schowalter, Marco; Grieb, Tim; Müller-Caspary, Knut; Mehrtens, Thorsten; Rosenauer, Andreas
2016-02-01
Several instrumental imperfections of transmission electron microscopes are characterized and their effects on the results of quantitative scanning electron microscopy (STEM) are investigated and quantified using simulations. Methods to either avoid influences of these imperfections during acquisition or to include them in reference calculations are proposed. Particularly, distortions inflicted on the diffraction pattern by an image-aberration corrector can cause severe errors of more than 20% if not accounted for. A procedure for their measurement is proposed here. Furthermore, afterglow phenomena and nonlinear behavior of the detector itself can lead to incorrect normalization of measured intensities. Single electrons accidentally impinging on the detector are another source of error but can also be exploited for threshold-less calibration of STEM images to absolute dose, incident beam current determination and measurement of the detector sensitivity. Copyright © 2015 Elsevier B.V. All rights reserved.
Distribution of radiative crystal imperfections through a silicon ingot
Flø, A. Burud, I.; Kvaal, K.; Olsen, E.; Søndenå, R.
2013-11-15
Crystal imperfections limit the efficiency of multicrystalline silicon solar cells. Recombination through traps is more prominent in areas with high density of crystal imperfections. A method to visualize the distribution of radiative emission from Shockley Read Hall recombination in silicon is demonstrated. We use hyperspectral photoluminescence, a fast non-destructive method, to image radiatively active recombination processes on a set of 50 wafers through a silicon block. The defect related emission lines D1 and D2 may be detected together or alone. The D3 and D4 seem to be correlated if we assume that an emission at the similar energy as D3 (VID3) is caused by a separate mechanism. The content of interstitial iron (Fe{sub i}) correlates with D4. This method yields a spectral map of the inter band gap transitions, which opens up for a new way to characterize mechanisms related to loss of efficiency for solar cells processed from the block.
Oxygen interaction with hexagonal OsB_{2} at high temperature
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Kata, Dariusz; Rutkowski, Pawel; Lis, Jerzy; Qin, Nan; T-Raissi, Ali
2016-08-10
The stability of ReB_{2}-type hexagonal OsB_{2} powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB_{2} ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB_{2} lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure, sintering of OsB_{2} powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB_{2} ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.
Oxygen interaction with hexagonal OsB_{2} at high temperature
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Kata, Dariusz; Rutkowski, Pawel; Lis, Jerzy; Qin, Nan; T-Raissi, Ali
2016-08-10
The stability of ReB_{2}-type hexagonal OsB_{2} powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB_{2} ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB_{2} lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure, sintering of OsB_{2} powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB_{2} ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.
Buckling of structures with uncertain imperfections - Personal perspective
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac
1998-01-01
The previous review on stochastic buckling of structures was written by Amazigo in 1976. This review summarizes some of the developments which took place in recent two decades. A brief overview is given of the effect on uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation. For the benefit of the thinking reader, the review has a critical nature. It should be noted that this manuscript has yet to be completed.
Buckling of structures with uncertain imperfections - Personal perspective
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac
1998-01-01
The previous review on stochastic buckling of structures was written by Amazigo in 1976. This review summarizes some of the developments which took place in recent two decades. A brief overview is given of the effect on uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation. For the benefit of the thinking reader, the review has a critical nature. It should be noted that this manuscript has yet to be completed.
Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses.
Afkhami, Michelle E; Rudgers, Jennifer A
2008-09-01
Vertically transmitted symbionts associate with some of the most ecologically dominant species on Earth, and their fixation has led to major evolutionary transitions (e.g., the development of mitochondria). Theory predicts that exclusive vertical transmission should favor mutualism and generate high frequencies of symbiosis in host populations. However, host populations often support lower-than-expected symbiont frequencies. Imperfect transmission (i.e., symbiont is not transmitted to all offspring) can reduce symbiont frequency, but for most beneficial symbionts it is unknown whether vertical transmission can be imperfect or during which life-history stage the symbiont is lost. Using quantitative natural history surveys of fungal endophytes in grasses, we show that transmission was imperfect in at least one stage for all seven host species examined. Endophytes were lost at all possible stages: within adult plants, from adult tillers to seeds, and from seeds to seedlings. Despite this loss, uninfected seeds failed to germinate in some species, resulting in perfect transmission to seedlings. The type and degree of loss differed among host populations and species and between endophyte genera. Populations with lower endophyte frequencies had higher rates of loss. Our results indicate new directions for understanding cooperation and conflict in symbioses and suggest mechanisms for host sanctions against costly symbionts.
Accounting for hardware imperfections in EIT image reconstruction algorithms.
Hartinger, Alzbeta E; Gagnon, Hervé; Guardo, Robert
2007-07-01
Electrical impedance tomography (EIT) is a non-invasive technique for imaging the conductivity distribution of a body section. Different types of EIT images can be reconstructed: absolute, time difference and frequency difference. Reconstruction algorithms are sensitive to many errors which translate into image artefacts. These errors generally result from incorrect modelling or inaccurate measurements. Every reconstruction algorithm incorporates a model of the physical set-up which must be as accurate as possible since any discrepancy with the actual set-up will cause image artefacts. Several methods have been proposed in the literature to improve the model realism, such as creating anatomical-shaped meshes, adding a complete electrode model and tracking changes in electrode contact impedances and positions. Absolute and frequency difference reconstruction algorithms are particularly sensitive to measurement errors and generally assume that measurements are made with an ideal EIT system. Real EIT systems have hardware imperfections that cause measurement errors. These errors translate into image artefacts since the reconstruction algorithm cannot properly discriminate genuine measurement variations produced by the medium under study from those caused by hardware imperfections. We therefore propose a method for eliminating these artefacts by integrating a model of the system hardware imperfections into the reconstruction algorithms. The effectiveness of the method has been evaluated by reconstructing absolute, time difference and frequency difference images with and without the hardware model from data acquired on a resistor mesh phantom. Results have shown that artefacts are smaller for images reconstructed with the model, especially for frequency difference imaging.
Solution of an associating lattice-gas model with density anomaly on a Husimi lattice.
Oliveira, Tiago J; Stilck, Jürgen F; Barbosa, Marco Aurélio A
2010-11-01
We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.
Solution of an associating lattice-gas model with density anomaly on a Husimi lattice
NASA Astrophysics Data System (ADS)
Oliveira, Tiago J.; Stilck, Jürgen F.; Barbosa, Marco Aurélio A.
2010-11-01
We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.
High Precision Calculations of the Lennard-Jones Lattice Constants for Five Lattices
NASA Astrophysics Data System (ADS)
Stein, Matthew
2017-01-01
The total potential energy of a crystal as described by the Lennard-Jones (L-J) potential depends in part upon the calculation of lattice constants. Knowing these constants to high precision is useful for prediction of the lattice type and simulation of crystals such as rare-gas solids or germanium detectors, but reaching higher precision is computationally costly and challenging. Presented here is the extension of the precision of the lattice constants, Lp, up to 32 decimal digits, and in some cases corrections from previous publication. The Lp terms are given for 4 <= p <= 30 in the simple cubic, face-centered cubic, body-centered cubic, hexagonal-close-pack, and diamond lattices. This precision was obtained through the use of careful parallelization technique, exploitation of the symmetries of each lattice, and the ``onionization'' of the simulated crystal. The results of this computation, along with the tools and algorithm strategies to make this computation possible, are explained in detail graphically.
Hexagonal OsB2 reduction upon heating in H2 containing environment
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...
2014-10-23
The stability of hexagonal ReB2 type OsB2 powder upon heating under reforming gas was investigated. Pure Os metal particles were detected by powder X-ray diffraction starting at 375⁰ C and complete transformation of OsB2 to metallic Os was observed at 725⁰ C. The mechanisms of precipitation of metallic Os is proposed and changes in the lattice parameters of OsB2 upon heating are analysed in terms of the presence of oxygen or water vapour in the heating chamber. Previous studies suggested that Os atoms possess (0) valence, while B atoms possess both (+3) and ( 3) valences in the alternating boron/osmiummore » sheet structure of hexagonal (P63/mmc, No. 194) OsB2; if controllable method for Os removal from the lattice could be found, the opportunity would arise to form two-dimensional (2D) layers consisting of pure B atoms.« less
Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
Lim, Sung-Hwan; Lee, Taehoon; Oh, Younghoon; Narayanan, Theyencheri; Sung, Bong June; Choi, Sung-Min
2017-08-25
Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar system and demonstrate that binary one-dimensional nanoparticle superlattices of two different symmetries can be obtained by tuning particle diameter and mixing ratios. The hexagonal arrays of one-dimensional nanoparticles are embedded in the honeycomb lattices (for AB2 type) or kagome lattices (for AB3 type) of micellar cylinders. The maximization of free volume entropy is considered as the main driving force for the formation of superlattices, which is well supported by our theoretical free energy calculations. Our approach provides a route for fabricating binary one-dimensional nanoparticle superlattices and may be applicable for inorganic one-dimensional nanoparticle systems.Binary mixtures of 1D particles are rarely observed to cooperatively self-assemble into binary superlattices, as the particle types separate into phases. Here, the authors design a system that avoids phase separation, obtaining binary superlattices with different symmetries by simply tuning the particle diameter and mixture composition.
Uchida, Yuki; Iwaizako, Tasuku; Mizuno, Seigi; Tsuji, Masaharu; Ago, Hiroki
2017-03-22
Hexagonal boron nitride (h-BN), an atomically thin insulating material, shows a large band gap, mechanical flexibility, and optical transparency. It can be stacked with other two-dimensional (2D) materials through van der Waals interactions to form layered heterostructures. These properties promise its application as an insulating layer of novel 2D electronic devices due to its atomically smooth surface with a large band gap. Herein, we demonstrated the ambient-pressure chemical vapour deposition (CVD) growth of high-quality, large-area monolayer h-BN on a Cu(111) thin film deposited on a c-plane sapphire using ammonia borane (BH3NH3) as the feedstock. Highly oriented triangular h-BN grains grow on Cu(111), which finally coalescence to cover the entire Cu surface. Low-energy electron diffraction (LEED) measurements indicated that the hexagonal lattice of the monolayer h-BN is well-oriented along the underlying Cu(111) lattice, thus implying the epitaxial growth of h-BN, which can be applied in various 2D electronic devices.
NASA Astrophysics Data System (ADS)
Tie, B.; Tian, B. Y.; Aubry, D.
2013-12-01
The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave propagation are highlighted in high frequency domains. One important result presented herein is the comparison between the first Bloch wave modes to the membrane and bending/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homogenized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retropropagating Bloch wave modes with a negative group velocity, and of the corresponding "retro-propagating" frequency bands.
Realignment of the flux-line lattice by a change in the symmetry of superconductivity in UPt3
Huxley; Rodiere; Paul; van Dijk N; Cubitt; Flouquet
2000-07-13
In 1957, Abrikosov described how quanta of magnetic flux enter the interior of a bulk type II superconductor. It was subsequently predicted that, in an isotropic superconductor, the repulsive forces between the flux lines would cause them to order in two dimensions, forming a hexagonal lattice. Flux-line lattices with different geometry can also be found in conventional (type II) superconductors; however, the ideal hexagonal lattice structure should always occur when the magnetic field is applied along a hexagonal crystal direction. Here we report measurements of the orientation of the flux-line lattice in the heavy-fermion superconductor UPt3, for this special case. As the temperature is increased, the hexagonal lattice, which is initially aligned along the crystal symmetry directions, realigns itself with the anisotropic superconducting gap. The superconductivity in UPt3 is unusual (even compared to unconventional oxide superconductors) because the superconducting gap has a lower rotational symmetry than the crystal structure. This special feature enables our data to demonstrate clearly the link between the microscopic symmetry of the superconductivity and the mesoscopic physics of the flux-line lattice. Moreover, our observations provide a stringent test of the theoretical description of the unconventional superconductivity in UPt3.
Realignment of the flux-line lattice by a change in the symmetry of superconductivity in UPt3
NASA Astrophysics Data System (ADS)
Huxley, Andrew; Rodière, Pierre; Paul, Donald M. K.; van Dijk, Niels; Cubitt, Robert; Flouquet, Jacques
2000-07-01
In 1957, Abrikosov described how quanta of magnetic flux enter the interior of a bulk type II superconductor. It was subsequently predicted that, in an isotropic superconductor, the repulsive forces between the flux lines would cause them to order in two dimensions, forming a hexagonal lattice. Flux-line lattices with different geometry can also be found in conventional (type II) superconductors; however, the ideal hexagonal lattice structure should always occur when the magnetic field is applied along a hexagonal crystal direction. Here we report measurements of the orientation of the flux-line lattice in the heavy-fermion superconductor UPt3, for this special case. As the temperature is increased, the hexagonal lattice, which is initially aligned along the crystal symmetry directions, realigns itself with the anisotropic superconducting gap. The superconductivity in UPt3 is unusual (even compared to unconventional oxide superconductors) because the superconducting gap has a lower rotational symmetry than the crystal structure. This special feature enables our data to demonstrate clearly the link between the microscopic symmetry of the superconductivity and the mesoscopic physics of the flux-line lattice. Moreover, our observations provide a stringent test of the theoretical description of the unconventional superconductivity in UPt3.
Solubilization of nutraceuticals into reverse hexagonal mesophases.
Amar-Yuli, Idit; Aserin, Abraham; Garti, Nissim
2008-08-21
The solubilization of four bioactive molecules with different polarities, in three reverse hexagonal (HII) systems has been investigated. The three HII systems were a typical reverse hexagonal composed of glycerol monooleate (GMO)/tricaprylin/water and two fluid hexagonal systems containing either 2.75 wt % Transcutol or ethanol as a fourth component. The phase behavior of the liquid crystalline phases in the presence of ascorbic acid, ascorbyl palmitate, D-alpha-tocopherol and D-alpha-tocopherol acetate were determined by small-angle X-ray scattering (SAXS) and optical microscopy. Differential scanning calorimetry (DSC) and Fourier-transform infrared (FT-IR) techniques were utilized to follow modifications in the thermal behavior and in the vibrations of different functional groups upon solubilizing the bioactive molecules. The nature of each guest molecule (in both geometry and polarity) together with the different HII structures (typical and fluids) determined the corresponding phase behavior, swelling or structural transformations and its location in the HII structures. Ascorbic acid was found to act as a chaotropic guest molecule, localized in the water-rich core and at the interface. The AP was also a chaotropic guest molecule with its head located in the vicinity of the GMO headgroup while its tail embedded close to the surfactant tail. D-alpha-tocopherol and D-alpha-tocopherol acetate were incorporated between the GMO tails; however, the D-alpha-tocopherol was located closer to the interface. Once Transcutol or ethanol was present and upon guest molecule incorporation, partial migration was detected.
Wargaming in Both Rectilinear and Hexagonal Spaces
NASA Technical Reports Server (NTRS)
Hoover, Alex
2012-01-01
There are two main approaches to managing wargame entity interactions (movement, line of sight, area of effect, etc) freespace and gridded In the freespace approach, the units exist as entities in a continuous volume of (usually) Cartesian 3D space. They move in any direction (based on interaction with "terrain" that occupies the same space) and interact with each other based on references and displacements from their position in that space. In the gridded approach, space is broken up into (usually regular) shaped pieces. Units are considered to occupy the entire volume of one of these pieces, movement, line of sight, and other interactions are based on the relationships among the spaces rather than the absolute positions of the units themselves. Both approaches have advantages and drawbacks. The general issue that this discussion has addressed is that there is no "perfect" approach to implementing a wargaming battlespace. Each of them (and this extends to others not discussed) has different sets of advantages and disadvantages. Nothing will change that basic nature of the various approaches, nor would it be desirable to do so. Along with the advantages, the challenges define the feel of the game and focus the thinking of the players on certain aspects and away from others. The proposed approach to combining square and hexagonal approaches, which we will call the rhombus interface, leverages rhombuses constructed from equilateral triangles into which the hexagon can be decomposed to bridge the gap between the approaches, maintain relative consistency between the two as much as possible, and provide most of the feel of the hexagonal approach.
Graphite and Hexagonal Boron-Nitride have the Same Interlayer Distance. Why?
Hod, Oded
2012-04-10
Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice structure. While graphite has nonpolar homonuclear C-C intralayer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in the bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other, suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences, both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation Kohn-Sham contributions are found to be very similar in both materials and to almost completely cancel out by the kinetic energy term, which partly represents the effects of Pauli repulsions, at physically relevant interlayer distances, resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities, the heteroatomic B-N C6 coefficient is very similar to the homoatomic C-C coefficient in the hexagonal bulk form, resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar, predicting practically the same interlayer distance and very similar binding energies. The conclusions drawn here regarding the role of electrostatic interactions between partially charged atomic centers for the interlayer binding of h-BN are of a general nature and are expected to hold true for many
NASA Astrophysics Data System (ADS)
Cokelaer, T.
2007-11-01
Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is overefficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely, stationary phase approximation, we show that it can be used successfully with other template families (e.g., Padé resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for nonspinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO).
Method for exfoliation of hexagonal boron nitride
NASA Technical Reports Server (NTRS)
Lin, Yi (Inventor); Connell, John W. (Inventor)
2012-01-01
A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.
Lichty, L.R.; Han, J.; Ibanez-Meier, R.; Torgeson, D.R.; Barnes, R.G.; Seymour, E.F.W.; Sholl, C.A.
1989-02-01
We report nuclear magnetic resonance (NMR) measurements of the proton (/sup 1/H) spin-lattice relaxation rate (R/sub 1/) in the hexagonal-close-packed (hcp) solid solution (..cap alpha..) phase of the Sc-H system over the temperature range 10--300 K in which hydrogen pairs are known to form. At low temperatures (10--120 K), fast localized motion of hydrogen between closely spaced tetrahedral interstitial sites in the lattice gives rise to a peak in the relaxation rate. Both the temperature and frequency dependences of the relaxation rate peak exhibit characteristics typical of amorphous and disordered systems, suggesting the formation of hydrogen pairs with little long-range order results effectively in a ''proton glass'' within the metal lattice. The measurements reveal an electronic structure transition near 170 K where the unpaired electron spin density at the proton sites decreases with increasing temperature.
Palmer, R.B.
1987-05-01
This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.
Elasto-static micropolar behavior of a chiral auxetic lattice
NASA Astrophysics Data System (ADS)
Spadoni, A.; Ruzzene, M.
2012-01-01
Auxetic materials expand when stretched, and shrink when compressed. This is the result of a negative Poisson's ratio ν. Isotropic configurations with ν≈-1 have been designed and are expected to provide increased shear stiffness G. This assumes that Young's modulus and ν can be engineered independently. In this article, a micropolar-continuum model is employed to describe the behavior of a representative auxetic structural network, the chiral lattice, in an attempt to remove the indeterminacy in its constitutive law resulting from ν=-1. While this indeterminacy is successfully removed, it is found that the shear modulus is an independent parameter and, for certain configurations, it is equal to that of the triangular lattice. This is remarkable as the chiral lattice is subject to bending deformation of its internal members, and thus is more compliant than the triangular lattice which is stretch dominated. The derived micropolar model also indicates that this unique lattice has the highest characteristic length scale lc of all known lattice topologies, as well as a negative first Lamé constant without violating bounds required for thermodynamic stability. We also find that hexagonal arrangements of deformable rings have a coupling number N=1. This is the first lattice reported in the literature for which couple-stress or Mindlin theory is necessary rather than being adopted a priori.
A quest for 2D lattice materials for actuation
NASA Astrophysics Data System (ADS)
Pronk, T. N.; Ayas, C.; Tekõglu, C.
2017-08-01
In the last two decades, most of the studies in shape morphing technology have focused on the Kagome lattice materials, which have superior properties such as in-plane isotropy, high specific stiffness and strength, and low energy requirement for actuation of its members. The Kagome lattice is a member of the family of semi-regular tessellations of the plane. Two fundamental questions naturally arise: i-) What makes a lattice material suitable for actuation? ii-) Are there other tessellations more effective than the Kagome lattice for actuation? The present paper tackles both questions, and provides a clear answer to the first one by comparing an alternative lattice material, the hexagonal cupola, with the Kagome lattice in terms of mechanical/actuation properties. The second question remains open, but, hopefully easier to challenge owing to a newly-discovered criterion: for an n-dimensional (n = 2 , 3) in-plane isotropic lattice material to be suitable for actuation, its pin-jointed equivalent must obey the generalised Maxwell's rule, and must possess M = 3(n - 1) non strain-producing finite kinematic mechanisms.
Nanocrystalline hexagonal diamond formed from glassy carbon
NASA Astrophysics Data System (ADS)
Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.; Haberl, Bianca; Boehler, Reinhard; McKenzie, David. R.
2016-11-01
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to significant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defined material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100 GPa and 400 °C. The nanocrystalline material was recovered at ambient and analysed using diffraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic flow under compression in the diamond anvil cell, which lowers the energy barrier by “locking in” favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by first principles calculations of transformation pathways and explains why the new phase is found in an annular region. Our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.
Nanocrystalline hexagonal diamond formed from glassy carbon.
Shiell, Thomas B; McCulloch, Dougal G; Bradby, Jodie E; Haberl, Bianca; Boehler, Reinhard; McKenzie, David R
2016-11-29
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to significant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defined material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100 GPa and 400 °C. The nanocrystalline material was recovered at ambient and analysed using diffraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic flow under compression in the diamond anvil cell, which lowers the energy barrier by "locking in" favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by first principles calculations of transformation pathways and explains why the new phase is found in an annular region. Our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.
Nanocrystalline hexagonal diamond formed from glassy carbon
Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.; Haberl, Bianca; Boehler, Reinhard; McKenzie, David. R.
2016-11-29
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline material was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.
Nanocrystalline hexagonal diamond formed from glassy carbon
Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.; Haberl, Bianca; Boehler, Reinhard; McKenzie, David. R.
2016-01-01
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to significant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defined material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100 GPa and 400 °C. The nanocrystalline material was recovered at ambient and analysed using diffraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic flow under compression in the diamond anvil cell, which lowers the energy barrier by “locking in” favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by first principles calculations of transformation pathways and explains why the new phase is found in an annular region. Our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts. PMID:27897174
Nanocrystalline hexagonal diamond formed from glassy carbon
Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.; ...
2016-11-29
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline materialmore » was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.« less
Two-dimensional hexagonal semiconductors beyond graphene
NASA Astrophysics Data System (ADS)
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Robust light transport in non-Hermitian photonic lattices
NASA Astrophysics Data System (ADS)
Longhi, Stefano; Gatti, Davide; Valle, Giuseppe Della
2015-08-01
Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure.
Robust light transport in non-Hermitian photonic lattices
Longhi, Stefano; Gatti, Davide; Valle, Giuseppe Della
2015-01-01
Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure. PMID:26314932
Weisemoeller, T.; Bertram, F.; Gevers, S.; Greuling, A.; Deiter, C.; Tobergte, H.; Neumann, M.; Wollschlaeger, J.; Giussani, A.; Schroeder, T.
2009-06-15
Films of hexagonal praseodymium sesquioxide (h-Pr{sub 2}O{sub 3}) were deposited on Si(111) by molecular beam epitaxy and thereafter annealed in 1 atm oxygen at different temperatures, ranging from 100 to 700 deg. C. The films of the samples annealed at 300 deg. C or more were transformed to PrO{sub 2} with B-oriented Fm3m structure, while films annealed at lower temperatures kept the hexagonal structure. The films are composed of PrO{sub 2} and PrO{sub 2-d}elta species, which coexist laterally and are tetragonally distorted due to the interaction at the interface between oxide film and Si substrate. Compared to PrO{sub 2}, PrO{sub 2-d}elta has the same cubic structure but with oxygen vacancies. The oxygen vacancies are partly ordered and increase the vertical lattice constant of the film, whereas the lateral lattice constant is almost identical for both species and on all samples. The latter lattice constant matches the lattice constant of the originally crystallized hexagonal praseodymium sesquioxide. That means that no long range reordering of the praseodymium atoms takes place during the phase transformation.
B{sub 27}{sup −}: Appearance of the smallest planar boron cluster containing a hexagonal vacancy
Li, Wei-Li; Piazza, Zachary A.; Wang, Lai-Sheng; Pal, Rhitankar; Zeng, Xiao Cheng
2015-05-28
Photoelectron spectroscopy and ab initio calculations have been carried out to probe the structures and chemical bonding of the B{sub 27}{sup −} cluster. Comparison between the experimental spectrum and the theoretical results reveals a two-dimensional (2D) global minimum with a triangular lattice containing a tetragonal defect (I) and two low-lying 2D isomers (II and III), each with a hexagonal vacancy. All three 2D isomers have 16 peripheral boron atoms and 11 inner boron atoms. Isomer I is shown to be mainly responsible for the observed photoelectron spectrum with isomers II and III as minor contributors. Chemical bonding analyses of these three isomers show that they all feature 16 localized peripheral B–B σ-bonds. Additionally, isomer I possesses 16 delocalized σ bonds and nine delocalized π bonds, while isomers II and III each contain 17 delocalized σ bonds and eight delocalized π bonds. It is found that the hexagonal vacancy is associated generally with an increase of delocalized σ bonds at the expense of delocalized π bonds in 2D boron clusters. The hexagonal vacancy, characteristic of borophenes, is found to be a general structural feature for mid-sized boron clusters. The current study shows that B{sub 27}{sup −} is the first boron cluster, where a hexagonal vacancy appears among the low-lying isomers accessible experimentally.
NASA Astrophysics Data System (ADS)
Sisira, S.; Alexander, Dinu; Thomas, Kukku; Vimal, G.; Mani, Kamal P.; Biju, P. R.; Unnikrishnan, N. V.; Joseph, Cyriac
2017-02-01
Green emitting CePO4:Tb3+ nanocrystals with hexagonal and monoclinic structures were successfully synthesized through microwave assisted sol gel method. The variation observed in the powder XRD pattern from that of bulk is explained using HRTEM analysis in relation with the preferential growth in distinct directions to form nanorods. The results obtained from the microstructural characterization of the hexagonal and monoclinic CePO4:Tb3+nanocrystals are successfully correlated with the single crystal data of CePO4 for the first time in accordance with the single crystal growth theory. FTIR spectrum of the CePO4 nanocrystals evidenced the splitting of fundamental vibrations of phosphate group in the nine fold coordination of lanthanide atoms and confirmed the low symmetry of monoclinic structure than the hexagonal system. The diminishing intensity of terbium emission in the hexagonal structure than the monoclinic structured CePO4:Tb3+ nanocrystals is explained in relation with the lattice symmetry. The high intensity green emission due to the strong 5D4-7F5 transition in monoclinic CePO4:Tb3+ nanocrystals make it as a potential candidate for optoelectronic applications.
Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial.
Dai, S; Ma, Q; Liu, M K; Andersen, T; Fei, Z; Goldflam, M D; Wagner, M; Watanabe, K; Taniguchi, T; Thiemens, M; Keilmann, F; Janssen, G C A M; Zhu, S-E; Jarillo-Herrero, P; Fogler, M M; Basov, D N
2015-08-01
Hexagonal boron nitride (h-BN) is a natural hyperbolic material, in which the dielectric constants are the same in the basal plane (ε(t) ≡ ε(x) = ε(y)) but have opposite signs (ε(t)ε(z) < 0) in the normal plane (ε(z)). Owing to this property, finite-thickness slabs of h-BN act as multimode waveguides for the propagation of hyperbolic phonon polaritons--collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show, by direct nano-infrared imaging, that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon-phonon polaritons. The hyperbolic plasmon-phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5-2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon-phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN can be classified as an electromagnetic metamaterial as the resulting properties of these devices are not present in its constituent elements alone.
Large-area monolayer hexagonal boron nitride on Pt foil.
Park, Ji-Hoon; Park, Jin Cheol; Yun, Seok Joon; Kim, Hyun; Luong, Dinh Hoa; Kim, Soo Min; Choi, Soo Ho; Yang, Woochul; Kong, Jing; Kim, Ki Kang; Lee, Young Hee
2014-08-26
Hexagonal boron nitride (h-BN) has recently been in the spotlight due to its numerous applications including its being an ideal substrate for two-dimensional electronics, a tunneling material for vertical tunneling devices, and a growth template for heterostructures. However, to obtain a large area of h-BN film while maintaining uniform thickness is still challenging and has not been realized. Here, we report the systematical study of h-BN growth on Pt foil by using low pressure chemical vapor deposition with a borazine source. The monolayer h-BN film was obtained over the whole Pt foil (2 × 5 cm(2)) under <100 mTorr, where the size is limited only by the Pt foil size. A borazine source was catalytically decomposed on the Pt surface, leading to the self-limiting growth of the monolayer without the associating precipitation, which is very similar to the growth of graphene on Cu. The orientation of the h-BN domains was largely confined by the Pt domain, which is confirmed by polarizing optical microscopy (POM) assisted by the nematic liquid crystal (LC) film. The total pressure and orientation of the Pt lattice plane are crucial parameters for thickness control. At high pressure (∼0.5 Torr), thick film was grown on Pt (111), and in contrast, thin film was grown on Pt (001). Our advances in monolayer h-BN growth will play an important role to further develop a high quality h-BN film that can be used for vertical tunneling, optoelectronic devices and growth templates for a variety of heterostructures.
Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
NASA Astrophysics Data System (ADS)
Dai, S.; Ma, Q.; Liu, M. K.; Andersen, T.; Fei, Z.; Goldflam, M. D.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Janssen, G. C. A. M.; Zhu, S.-E.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N.
2015-08-01
Hexagonal boron nitride (h-BN) is a natural hyperbolic material, in which the dielectric constants are the same in the basal plane (ɛt ≡ ɛx = ɛy) but have opposite signs (ɛtɛz < 0) in the normal plane (ɛz). Owing to this property, finite-thickness slabs of h-BN act as multimode waveguides for the propagation of hyperbolic phonon polaritons—collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show, by direct nano-infrared imaging, that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon-phonon polaritons. The hyperbolic plasmon-phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5-2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon-phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN can be classified as an electromagnetic metamaterial as the resulting properties of these devices are not present in its constituent elements alone.
Analysis of resonance-driving imperfections in the AGS Booster
Gardner, C.; Shoji, Y.; Danby, G.; Glenn, J.W.; Jackson, G.J.; Soukas, A.; van Asselt, W.; Whalen, C.
1994-08-01
At the design intensity of 1.5 {times} 10{sup 13} ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. The beam tunes are therefore spread over many lower order resonance lines and the associated stopbands must be corrected in order to minimize the amplitude growth due to resonance excitation. This requires proper compensation of the resonance-driving harmonics which result from random magnetic field errors. The observation and correction of second and third order resonance stopbands in the AGS Booster is reviewed, and an analysis of magnetic field imperfections based on the required corrections is given.
Reliability with imperfect diagnostics. [flight-maintenance sequence
NASA Technical Reports Server (NTRS)
White, A. L.
1983-01-01
A reliability estimation method for systems that continually accumulate faults because of imperfect diagnostics is developed and an application for redundant digital avionics is presented. The present method assumes that if a fault does not appear in a short period of time, it will remain hidden until a majority of components are faulty and the system fails. A certain proportion of a component's faults are detected in a short period of time, and a description of their detection is included in the reliability model. A Markov model of failure during flight for a nonreconfigurable five-plex is presented for a sequence of one-hour flights followed by maintenance.
Characterizing the curvature and its first derivative for imperfect fluids
NASA Astrophysics Data System (ADS)
Machado Ramos, Maria da Piedade
2017-04-01
The curvature tensor and its derivatives up to any order can be covariantly characterized by a minimal set of spinor quantities. On the other hand it might be useful, particularly in cosmology, to describe the geometry of a spacetime in a (1+3) formalism, based on an invariantly defined fluid velocity. In this work, we consider an imperfect fluid possessing both isotropic and anisotropic pressure. For these fluids, we determine the (1+3) matter terms of the curvature as well as the parts of the first order covariant derivative of the curvature (\
NASA Astrophysics Data System (ADS)
Nakata, Yosuke; Urade, Yoshiro; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo Wada; Kitano, Masao
2016-04-01
We investigate the supersymmetry (SUSY) structures for inductor-capacitor circuit networks on a simple regular graph and its line graph. We show that their eigenspectra must coincide (except, possibly, for the highest eigenfrequency) due to SUSY, which is derived from the topological nature of the circuits. To observe this spectra correspondence in the high-frequency range, we study spoof plasmons on metallic hexagonal and kagomé lattices. The band correspondence between them is predicted by a simulation. Using terahertz time-domain spectroscopy, we demonstrate the band correspondence of fabricated metallic hexagonal and kagomé lattices.
Yao, Xiaoyan; Dong, Shuai
2016-05-27
The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings.
Yao, Xiaoyan; Dong, Shuai
2016-01-01
The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings. PMID:27229486
Thermodynamic functions of the hcp Coulomb crystal lattice
NASA Astrophysics Data System (ADS)
Kozhberov, A. A.; Baiko, D. A.
2015-10-01
One-component Coulomb crystals of ions with hexagonal close-packed (hcp) lattice likely form in the crust of strongly-magnetized neutron stars (magnetars). In this work we present a detailed study of vibration modes and thermodynamic properties of such crystals in a wide range of temperatures at zero magnetic field. In contrast to typically considered lattices, the phonon spectrum of the system exhibits a peculiar crossing of the acoustic modes near the Brillouin zone center in certain directions of the wavevector. It is demonstrated that in the field-free regime the Helmholtz free energy of the hcp Coulomb crystal is always higher than those of the Coulomb crystals with body-centered cubic and face-centered cubic lattices. The results of our numerical calculations are fitted by simple analytic expressions.
Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice
NASA Astrophysics Data System (ADS)
Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig
2016-05-01
We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.
Hexagonal boron nitride and water interaction parameters.
Wu, Yanbin; Wagner, Lucas K; Aluru, Narayana R
2016-04-28
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.
The hexagon hypothesis: Six disruptive scenarios.
Burtles, Jim
2015-01-01
This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity.
Hexagonal boron nitride and water interaction parameters
NASA Astrophysics Data System (ADS)
Wu, Yanbin; Wagner, Lucas K.; Aluru, Narayana R.
2016-04-01
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.
Quantum emission from hexagonal boron nitride monolayers
NASA Astrophysics Data System (ADS)
Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor
2016-01-01
Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.
Quantum emission from hexagonal boron nitride monolayers
NASA Astrophysics Data System (ADS)
Aharonovich, Igor; Tran, Toantrong; Bray, Kerem; Ford, Michael J.; Toth, Milos; MTEE Collaboration
Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Here, we demonstrate room-temperature, polarized single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. The emitters emit at the red and the near infrared spectral range and exhibit narrowband ultra bright emission (~full width at half maximum of below 10 nm with more than three million counts/s). Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.
Structural domain walls in polar hexagonal manganites
NASA Astrophysics Data System (ADS)
Kumagai, Yu
2014-03-01
The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.
Formation of hexagonal 9R silicon polytype by ion implantation
NASA Astrophysics Data System (ADS)
Korolev, D. S.; Nikolskaya, A. A.; Krivulin, N. O.; Belov, A. I.; Mikhaylov, A. N.; Pavlov, D. A.; Tetelbaum, D. I.; Sobolev, N. A.; Kumar, M.
2017-08-01
Transmission electron-microscopy examination revealed the appearance of a hexagonal silicon (9R polytype) inclusions in the subsrface silicon layer upon ion implantation and subsequent heat treatment of the SiO2/Si structure. The formation of this hexagonal phase is stimulated by mechanical stresses arising in the heterophase system in the course of ion implantation.
Adjustment of Design Limited Imperfections for Transportation Vehicles
NASA Astrophysics Data System (ADS)
Voges-Schwieger, Kathrin; Hübner, Sven; Behrens, Bernd-Arno
2011-05-01
The realization of light weight-construction without loss of passive safety in transportation vehicles is a big challenge for the next years. Considering the requirements on an automobile from consumer view a modern car should combine a high quality of comfort and standard with low operating expenses and a high safety standard. The use of lightweight design enables reductions in fuel consumption and CO2 emissions which are leading to a decrease of operating costs. The increase in passive safety is mainly characterized by an increase in strength and weight due to a concerted material selection, an enhancement of sheet metal thickness and additional compensating elements, e.g. patches. Especially for limited imperfections like cataphoretic drain holes or accesses for joining operations the strength adjustment without additional compensating elements and increasing weight possesses very much potential. The presented research investigate the possibility to reinforce local imperfections considering the material TRIP780 by combining different approaches on light-weight design. The reinforcements are realized by additional forming elements and enhance the moment of inertia. Different investigations were carried out to assess the placement and arrangement of the reinforcements in the deep drawing parts
One-dimensional flows of an imperfect diatomic gas
NASA Technical Reports Server (NTRS)
1959-01-01
With the assumptions that Berthelot's equation of state accounts for molecular size and intermolecular force effects, and that changes in the vibrational heat capacities are given by a Planck term, expressions are developed for analyzing one-dimensional flows of a diatomic gas. The special cases of flow through normal and oblique shocks in free air at sea level are investigated. It is found that up to a Mach number 10 pressure ratio across a normal shock differs by less than 6 percent from its ideal gas value; whereas at Mach numbers above 4 the temperature rise is considerable below and hence the density rise is well above that predicted assuming ideal gas behavior. It is further shown that only the caloric imperfection in air has an appreciable effect on the pressures developed in the shock process considered. The effects of gaseous imperfections on oblique shock-flows are studied from the standpoint of their influence on the life and pressure drag of a flat plate operating at Mach numbers of 10 and 20. The influence is found to be small. (author)
Pull-in instability tuning in imperfect nonlinear circular microplates under electrostatic actuation
NASA Astrophysics Data System (ADS)
Jallouli, A.; Kacem, N.; Bourbon, G.; Le Moal, P.; Walter, V.; Lardies, J.
2016-12-01
Dynamic range improvement based on geometric nonlinearity and initial deflection is demonstrated with imperfect circular microplates under electrostatic actuation. Depending on design parameters, we prove how the von Kármán nonlinearity and the plate imperfections lead to a significant delay in pull-in occurrence. These promising results open the way towards an accurate identification of static parameters of circular microplates and the development of a predictive model for the nonlinear dynamics of imperfect capacitive micromachined ultrasonic transducers.
Comparison of presumptive blood test kits including hexagon OBTI.
Johnston, Emma; Ames, Carole E; Dagnall, Kathryn E; Foster, John; Daniel, Barbara E
2008-05-01
Four presumptive blood tests, Hexagon OBTI, Hemastix(R), Leucomalachite green (LMG), and Kastle-Meyer (KM) were compared for their sensitivity in the identification of dried bloodstains. Stains of varying blood dilutions were subjected to each presumptive test and the results compared. The Hexagon OBTI buffer volume was also reduced to ascertain whether this increased the sensitivity of the kit. The study found that Hemastix(R) was the most sensitive test for trace blood detection. Only with the reduced buffer volume was the Hexagon OBTI kit as sensitive as the LMG and KM tests. However, the Hexagon OBTI kit has the advantage of being a primate specific blood detection kit. This study also investigated whether the OBTI buffer within the kit could be utilized for DNA profiling after presumptive testing. The results show that DNA profiles can be obtained from the Hexagon OBTI kit buffer directly.
Elastic and mechanical properties of hexagonal diamond under pressure
NASA Astrophysics Data System (ADS)
Güler, E.; Güler, M.
2015-05-01
Hexagonal diamond is the harder and stiffer alternative of traditional cubic diamond for today's technology. Although several theoretical attempts have been performed to understand the ground-state elastic properties of hexagonal diamond, little is known about the high-pressure elastic properties of this key material. Unlike previous theoretical methods, we report the application of second-generation reactive bond order potential for the first time to elaborate the pressure-dependent properties of hexagonal diamond in conjunction with geometry optimization calculations up to 500 GPa. Pressure dependency of density, five independent elastic constants, bulk, shear and Young moduli, Poisson ratio, elastic wave velocities, anisotropy parameter, Kleinman parameter, and stability conditions of hexagonal diamond were evaluated. Overall, considered properties of hexagonal diamond display evident increments under pressure, and their ground-state values are in reasonable agreement with available theoretical data.
Phase transitions and rare-earth magnetism in hexagonal and orthorhombic DyMnO(3) single crystals.
Harikrishnan, S; Rößler, S; Naveen Kumar, C M; Bhat, H L; Rößler, U K; Wirth, S; Steglich, F; Elizabeth, Suja
2009-03-04
The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO(3) single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO(3) shows magnetic ordering of Mn(3+) (S = 2) spins on a triangular Mn lattice at T(N)(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy(3+) (S = 9/2) spins. At T(N)(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO(3) display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn(3+) spins at T(N)(Mn) = 39 K, a lock-in transition at T(lock-in) = 16 K and a second antiferromagnetic transition at T(N)(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.
Janse Van Rensburg, E.J.
1996-12-31
The geometry of polygonal knots in the cubic lattice may be used to define some knot invariants. One such invariant is the minimal edge number, which is the minimum number of edges necessary (and sufficient) to construct a lattice knot of given type. In addition, one may also define the minimal (unfolded) surface number, and the minimal (unfolded) boundary number; these are the minimum number of 2-cells necessary to construct an unfolded lattice Seifert surface of a given knot type in the lattice, and the minimum number of edges necessary in a lattice knot to guarantee the existence of an unfolded lattice Seifert surface. In addition, I derive some relations amongst these invariants. 8 refs., 5 figs., 2 tabs.
Interaction of multiferroic properties and interfaces in hexagonal LuMnO3 ceramics
NASA Astrophysics Data System (ADS)
Baghizadeh, A.; Vieira, J. M.; Stroppa, D. G.; Mirzadeh Vaghefi, P.; Graça, M. P.; Amaral, J. S.; Willinger, M.-G.; Amaral, V. S.
2017-02-01
A study on the underlying interaction mechanisms between lattice constants, magnetic and dielectric properties with inhomogeneities or internal interfaces in hexagonal, off-stoichiometric LuMnO3 oxide is presented. By increasing Mn content the a-axis constant and volume of the unit cell, the antiferromagnetic (AFM) Néel temperature, T N, and frustration factor of the frustrated Mn3+ trimmers in basal plane show decreasing trends. It was found that increasing the annealing time improves the properties of the lattices and progressively eliminates secondary phases for compositions within the solid solution stability limits. A magnetic contribution below T N is observed for all samples. Two regimes of magnetization below and above 45 K were observed in the AFM state. The magnetic contribution below T N is assigned to either the secondary phase or internal interfaces like ferroelectric (FE) domain walls. Magneto-dielectric coupling at T N is preserved in off-stoichiometric ceramics. The presence of a low temperature anomaly of the dielectric constant is correlated to the composition of the solid solution in off-stoichiometric ceramics. Large FE domains are observed in piezoresponse force microscopy (PFM) images of doped and un-doped ceramics, whereas atomic structure analysis indicates the parallel formation of nano-sized FE domains. A combination of measured properties and microscopy images of micron- and nano-sized domains ascertain the role of lattice distortion and stability of solid solution on multiferroic properties.
On the Wiener Polarity Index of Lattice Networks
Chen, Lin; Li, Tao; Liu, Jinfeng; Shi, Yongtang; Wang, Hua
2016-01-01
Network structures are everywhere, including but not limited to applications in biological, physical and social sciences, information technology, and optimization. Network robustness is of crucial importance in all such applications. Research on this topic relies on finding a suitable measure and use this measure to quantify network robustness. A number of distance-based graph invariants, also known as topological indices, have recently been incorporated as descriptors of complex networks. Among them the Wiener type indices are the most well known and commonly used such descriptors. As one of the fundamental variants of the original Wiener index, the Wiener polarity index has been introduced for a long time and known to be related to the cluster coefficient of networks. In this paper, we consider the value of the Wiener polarity index of lattice networks, a common network structure known for its simplicity and symmetric structure. We first present a simple general formula for computing the Wiener polarity index of any graph. Using this formula, together with the symmetric and recursive topology of lattice networks, we provide explicit formulas of the Wiener polarity index of the square lattices, the hexagonal lattices, the triangular lattices, and the 33 ⋅ 42 lattices. We also comment on potential future research topics. PMID:27930705
Triangular and honeycomb lattices of cold atoms in optical cavities
NASA Astrophysics Data System (ADS)
Safaei, Shabnam; Miniatura, Christian; Grémaud, BenoÃ®t.
2015-10-01
We consider a two-dimensional homogeneous ensemble of cold bosonic atoms loaded inside two optical cavities and pumped by a far-detuned external laser field. We examine the conditions for these atoms to self-organize into triangular and honeycomb lattices as a result of superradiance. By collectively scattering the pump photons, the atoms feed the initially empty cavity modes. As a result, the superposition of the pump and cavity fields creates a space-periodic light-shift external potential and atoms self-organize into the potential wells of this optical lattice. Depending on the phase of the cavity fields with respect to the pump laser, these minima can either form a triangular or a hexagonal lattice. By numerically solving the dynamical equations of the coupled atom-cavity system, we have shown that the two stable atomic structures at long times are the triangular lattice and the honeycomb lattice with equally populated sites. We have also studied how to drive atoms from one lattice structure to another by dynamically changing the phase of the cavity fields with respect to the pump laser.
NASA Astrophysics Data System (ADS)
Berg, J. Scott
2008-02-01
EMMA is a 10 to 20 MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear non-scaling fixed field alternating gradient accelerator (FFAG). I will give a basic review of the EMMA lattice parameters. Then I will review the different lattice configurations that we would like to have for EMMA. Finally, I will briefly discuss the process of commissioning each lattice configuration.
Electron compound nature in a surface atomic layer of a two-dimensional hexagonal lattice
NASA Astrophysics Data System (ADS)
Matsuda, Iwao; Nakamura, Fumitaka; Kubo, Keisuke; Hirahara, Toru; Yamazaki, Shiro; Choi, Won Hoon; Yeom, Han Woong; Narita, Hisashi; Fukaya, Yuki; Hashimoto, Mie; Kawasuso, Atsuo; Ono, Masanori; Hasegawa, Yukio; Hasegawa, Shuji; Kobayashi, Katsuyoshi
2010-10-01
The two-dimensional (2D) ordered phase of monovalent metal alloy, 21×21 , is formed on the Si(111) surface with the constant electron/atom ratio, indicating electron compound nature. Two conventional theories of the Hume-Rothery compounds, Jones model (nearly-free-electron model), and pseudopotential model (interionic interaction model), were applied to examine stability of the 2D phase. We found breakdown of the former and confirmation of the latter approaches with importance of medium-range interatomic interaction, mediated by the 2D surface-state electrons, in the latter approach.
Exploiting imperfections in the bulk to direct assembly of surface colloids
Cavallaro, Marcello; Gharbi, Mohamed A.; Beller, Daniel A.; Čopar, Simon; Shi, Zheng; Baumgart, Tobias; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.
2013-01-01
We exploit the long-ranged elastic fields inherent to confined nematic liquid crystals (LCs) to assemble colloidal particles trapped at the LC interface into reconfigurable structures with complex symmetries and packings. Spherical colloids with homeotropic anchoring trapped at the interface between air and the nematic LC 4-cyano-4′-pentylbiphenyl create quadrupolar distortions in the director field causing particles to repel and consequently form close-packed assemblies with a triangular habit. Here, we report on complex open structures organized via interactions with defects in the bulk. Specifically, by confining the nematic LC in an array of microposts with homeotropic anchoring conditions, we cause defect rings to form at well-defined locations in the bulk of the sample. These defects source elastic deformations that direct the assembly of the interfacially trapped colloids into ring-like assemblies, which recapitulate the defect geometry even when the microposts are completely immersed in the nematic. When the surface density of the colloids is high, they form a ring near the defect and a hexagonal lattice far from it. Because topographically complex substrates are easily fabricated and LC defects are readily reconfigured, this work lays the foundation for a versatile, robust mechanism to direct assembly dynamically over large areas by controlling surface anchoring and associated bulk defect structure. PMID:24191037
Mandal, R.; Barman, S.; Saha, S.; Barman, A.; Otani, Y.
2015-08-07
Ferromagnetic antidot lattices are important systems for magnetic data storage and magnonic devices, and understanding their magnetization dynamics by varying their structural parameters is an important problems in magnetism. Here, we investigate the variation in spin wave spectrum in two-dimensional nanoscale Ni{sub 80}Fe{sub 20} antidot lattices with lattice symmetry. By varying the bias magnetic field values in a broadband ferromagnetic resonance spectrometer, we observed a stark variation in the spin wave spectrum with the variation of lattice symmetry. The simulated mode profiles showed further difference in the spatial nature of the modes between different lattices. While for square and rectangular lattices extended modes are observed in addition to standing spin wave modes, all modes in the hexagonal, honeycomb, and octagonal lattices are either localized or standing waves. In addition, the honeycomb and octagonal lattices showed two different types of modes confined within the honeycomb (octagonal) units and between two such consecutive units. Simulated internal magnetic fields confirm the origin of such a wide variation in the frequency and spatial nature of the spin wave modes. The tunability of spin waves with the variation of lattice symmetry is important for the design of future magnetic data storage and magnonic devices.
Saturn's Hexagon as Summer Solstice Approaches
2017-05-24
These natural color views from NASA's Cassini spacecraft compare the appearance of Saturn's north-polar region in June 2013 and April 2017. In both views, Saturn's polar hexagon dominates the scene. The comparison shows how clearly the color of the region changed in the interval between the two views, which represents the latter half of Saturn's northern hemisphere spring. In 2013, the entire interior of the hexagon appeared blue. By 2017, most of the hexagon's interior was covered in yellowish haze, and only the center of the polar vortex retained the blue color. The seasonal arrival of the sun's ultraviolet light triggers the formation of photochemical aerosols, leading to haze formation. The general yellowing of the polar region is believed to be caused by smog particles produced by increasing solar radiation shining on the polar region as Saturn approached the northern summer solstice on May 24, 2017. Scientists are considering several ideas to explain why the center of the polar vortex remains blue while the rest of the polar region has turned yellow. One idea is that, because the atmosphere in the vortex's interior is the last place in the northern hemisphere to be exposed to spring and summer sunlight, smog particles have not yet changed the color of the region. A second explanation hypothesizes that the polar vortex may have an internal circulation similar to hurricanes on Earth. If the Saturnian polar vortex indeed has an analogous structure to terrestrial hurricanes, the circulation should be downward in the eye of the vortex. The downward circulation should keep the atmosphere clear of the photochemical smog particles, and may explain the blue color. Images captured with Cassini's wide-angle camera using red, green and blue spectral filters were combined to create these natural-color views. The 2013 view (left in the combined view), was captured on June 25, 2013, when the spacecraft was about 430,000 miles (700,000 kilometers) away from Saturn. The
Hexagonal voids and the formation of micropipes during SiC sublimation growth
NASA Astrophysics Data System (ADS)
Kuhr, Thomas A.; Sanchez, Edward K.; Skowronski, Marek; Vetter, William M.; Dudley, Michael
2001-04-01
Hexagonal voids observed in sublimation grown SiC boules were examined using optical microscopy, atomic force microscopy (AFM), scanning electron microscopy, KOH etching, and synchrotron white-beam x-ray topography. Voids formed at imperfections in the attachment layer between the seed and crucible cap. They are platelet-like in shape with lateral sizes between 50 and 750 μm and thickness along the c axis between 5 and 25 μm. Growth steps were observed on the void facets closest to the seed and evaporation steps were observed on void facets closest to the growth surface, providing evidence for void movement during crystal growth. AFM images revealed that growth steps nucleate at a void sidewall, flow across the bottom of the void, and terminate in a trench-like depression. KOH etching of waters between the void and seed revealed dislocations lining up along the trace of the void path, often with higher densities corresponding to the location of the trench. X-ray topographs showed a random distribution of screw dislocations in the crystal volume above the void, and an absence of screw dislocations in the volume directly below the void. Hollow-core superscrew dislocations, called micropipes, were found at the corners of the void trace. Image forces associated with growth steps and void sidewalls are used to explain the formation of micropipes.
Farokhi, B.; Shahmansouri, M.; Shukla, P. K.
2009-06-15
The influence of a constant magnetic field on the propagation of dust-lattice waves in a two-dimensional hexagonal strongly coupled dusty plasma crystal is considered. The expression for the wave dispersion relation clearly shows that high- and low-frequency dust lattice vibrations exist as a result of the coupling between the longitudinal and transverse dust lattice modes due to the Lorentz force acting on the charged dust particles. It is found that in an external magnetic field the damping rate of the high-frequency (low-frequency) dust lattice wave is increased (decreased). For special values of the wave number and the direction of the wave propagation, the imaginary part of low-frequency is zero and the imaginary part of high-frequency attains a maximum value. The present investigation indicates that the damping rates depend on direction of the external magnetic field. The polarization of dust lattice wave modes is found for different magnetic field strengths and for different directions.
On bond percolation threshold bounds for Archimedean lattices with degree three
NASA Astrophysics Data System (ADS)
Wierman, John C.
2017-07-01
Improved bounds are proved for bond percolation thresholds for certain Archimedean lattices using the substitution method with new comparisons between models and more efficient computational techniques. Results obtained are 0.667 100 < p_c(4, 6, 12) < 0.708 921 and 0.653 204 < p_c(4, 8^2) < 0.696 118 . These bounds provide positive bounds on the difference between the site and bond percolation thresholds of these lattices, and prove that the bond percolation thresholds of the (4, 6, 12) and (4, 8^2) lattices are both strictly greater than that of the hexagonal lattice. In the process of obtaining these results, bounds for the kagome lattice bond percolation threshold were improved to 0.522 551 < p_c(kagome) < 0.526 490 .
Wen, Zhenchao; Sukegawa, Hiroaki; Furubayashi, Takao; Koo, Jungwoo; Inomata, Koichiro; Mitani, Seiji; Hadorn, Jason Paul; Ohkubo, Tadakatsu; Hono, Kazuhiro
2014-10-08
A 4-fold-symmetry hexagonal Ru emerging in epitaxial MgO/Ru/Co2 FeAl/MgO heterostructures is reported, in which an approximately Ru(022¯3) growth attributes to the lattice matching between MgO, Ru, and Co2 FeAl. Perpendicular magnetic anisotropy of the Co2 FeAl/MgO interface is substantially enhanced. The magnetic tunnel junctions (MTJs) incorporating this structure give rise to the largest tunnel magnetoresistance for perpendicular MTJs using low damping Heusler alloys.
NASA Astrophysics Data System (ADS)
Suetin, D. V.; Shein, I. R.; Ivanovskii, A. L.
2009-07-01
First-principles FLAPW-GGA calculations have been performed to predict the structural, electronic, cohesive and magnetic properties for hexagonal tungsten monocarbide ( h-WC) doped with all 3 d metals. The optimized lattice parameters, density of states, cohesive and formation energies have been obtained and analyzed for ternary solid solutions with nominal compositions W 0.875M 0.125C (where M=Sc, Ti…Ni, Cu). In addition, the magnetic properties of these solid solutions have been examined, and magnetization has been established for W 0.875Co 0.125C.
Imperfect traveling chimera states induced by local synaptic gradient coupling.
Bera, Bidesh K; Ghosh, Dibakar; Banerjee, Tanmoy
2016-07-01
In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.
Imperfect information on physical activity and caloric intake.
Harris, Matthew C
2017-08-01
Using the National Health and Nutrition Examination Survey Data, I find that individuals who overestimate their activity level by one standard deviation consume 40-60 extra calories per day, or enough to gain five pounds per year. These extra calories are composed mainly of sugar and carbohydrate, and are concentrated among individuals in the 75th and 90th percentiles of caloric intake. The link between overeating and inaccurate estimation of physical activity is strongest among less educated individuals and individuals with high variance in their physical activity, suggesting that imperfect recall or information gaps explain at least part of the relationship of interest. These results imply the existence of a necessary condition for physical activity-based information treatments to be effective in changing health behaviors and obesity rates. Copyright © 2017 Elsevier B.V. All rights reserved.
Collectives for the Optimal Combination of Imperfect Objects
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Wolpert, David
2003-01-01
In this letter we summarize some recent theoretical work on the design of collectives, i.e., of systems containing many agents, each of which can be viewed as trying to maximize an associated private utility, where there is also a world utility rating the behavior of that overall system that the designer of the collective wishes to optimize. We then apply algorithms based on that work on a recently suggested testbed for such optimization problems. This is the problem of finding the combination of imperfect nano-scale objects that results in the best aggregate object. We present experimental results showing that these algorithms outperform conventional methods by more than an order of magnitude in this domain.
Imperfect traveling chimera states induced by local synaptic gradient coupling
NASA Astrophysics Data System (ADS)
Bera, Bidesh K.; Ghosh, Dibakar; Banerjee, Tanmoy
2016-07-01
In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.
Magnetic field effects in electron systems with imperfect nesting
NASA Astrophysics Data System (ADS)
Sboychakov, A. O.; Rakhmanov, A. L.; Kugel, K. I.; Rozhkov, A. V.; Nori, Franco
2017-01-01
We analyze the effects of an applied magnetic field on the phase diagram of a weakly correlated electron system with imperfect nesting. The Hamiltonian under study describes two bands: electron and hole ones. Both bands have spherical Fermi surfaces, whose radii are slightly mismatched due to doping. These types of models are often used in the analysis of magnetic states in chromium and its alloys, superconducting iron pnictides, AA-type bilayer graphene, borides, etc. At zero magnetic field, the uniform ground state of the system turns out to be unstable against electronic phase separation. The applied magnetic field affects the phase diagram in several ways. In particular, the Zeeman term stabilizes new antiferromagnetic phases. It also significantly shifts the boundaries of inhomogeneous (phase-separated) states. At sufficiently high fields, the Landau quantization gives rise to oscillations of the order parameters and of the Néel temperature as a function of the magnetic field.
Loss-tolerant quantum cryptography with imperfect sources
NASA Astrophysics Data System (ADS)
Tamaki, Kiyoshi; Curty, Marcos; Kato, Go; Lo, Hoi-Kwong; Azuma, Koji
2014-11-01
In principle, quantum key distribution (QKD) offers unconditional security based on the laws of physics. Unfortunately, all previous QKD experiments assume perfect state preparation in their security analysis. Therefore, the generated key is not proven to be secure in the presence of unavoidable modulation errors. The key reason that modulation errors are not considered in previous QKD experiments lies in a crucial weakness of the standard Gottesman-Lo-Lütkenhaus-Preskill (GLLP) model, namely, it is not loss tolerant and Eve may in principle enhance imperfections through losses. Here, we propose a QKD protocol that is loss tolerant to state preparation flaws. Importantly, we show conclusively that the state preparation process in QKD can be much less precise than initially thought. Our method can also be applied to other quantum cryptographic protocols.
Casimir force induced by an imperfect Bose gas.
Napiórkowski, Marek; Piasecki, Jarosław
2011-12-01
We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential law diverges with critical exponent ν(IMP) = 1, which differs from the perfect gas case where ν(P) = 1/2. In the two-phase region, the Casimir force is long range and decays following the power law D(-3), with the same amplitude as in the perfect gas.
Long-distance quantum key distribution with imperfect devices
Lo Piparo, Nicoló; Razavi, Mohsen
2014-12-04
Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, R{sub QKD}. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.
Modeling Steady Acoustic Fields Bounded in Cavities with Geometrical Imperfections
NASA Astrophysics Data System (ADS)
Albo, P. A. Giuliano; Gavioso, R. M.; Benedetto, G.
2010-07-01
A mathematical method is derived within the framework of classical Lagrangian field theory, which is suitable for the determination of the eigenstates of acoustic resonators of nearly spherical shape. The method is based on the expansion of the Helmholtz differential operator and the boundary condition in a power series of a small geometrical perturbation parameter {ɛ} . The method extends to orders higher than {ɛ^2} the calculation of the perturbed acoustic eigenvalues, which was previously limited by the use of variational formalism and the methods of Morse and Ingard. A specific example is worked out for radial modes of a prolate spheroid, with the frequency perturbation calculated to order {ɛ^3} . A possible strategy to tackle the problem of calculating the acoustic eigenvalues for cavities presenting non-smooth geometrical imperfections is also described.
Hydrodynamics, electroosmosis, and electrokinetic instability in imperfect electric membranes
NASA Astrophysics Data System (ADS)
Kiriy, V. A.; Shelistov, V. S.; Kalaidin, E. N.; Demekhin, E. A.
2017-04-01
For the first time within the framework of the Nernst-Planck-Poisson-Stokes set, the behavior of an electrolytic solution in imperfect electric membranes is investigated numerically. The distributions of the electric potential, fluid velocities, charge density, and other values in the zones of the depleted and enriched solution and a porous membrane for all current modes are obtained: prelimit, limit, and superlimit. The dependence of selectivity of a membrane on the density of its space charge is obtained. The boundaries of superlimit modes, when the one-dimensional solution loses stability, are found and replaced by the twodimensional solution with the formation of microvortices in both the desalination and enriched-solution zones. The basic types of current arising at supercritical currents are investigated.
Modes of electrokinetic instability for imperfect electric membranes
NASA Astrophysics Data System (ADS)
Ganchenko, G. S.; Kalaydin, E. N.; Schiffbauer, J.; Demekhin, E. A.
2016-12-01
The direct transition to overlimiting current bypassing the stage of limiting currents is considered for imperfect membranes. Instability of the quiescent steady-state one-dimensional solution, which is the result of a balance of diffusion and electromigration, is investigated on the basis of the full Nernst-Planck-Poisson-Stokes system and a simplified quasielectroneutral system. A three-layer geometry, electrolyte-porous membrane-electrolyte, is considered. The usual assumption of a constant electrochemical potential along the membrane surface is removed from consideration. The effect of bulk and surface effects on the instability and transition to the overlimiting currents is evaluated for a different membrane selectivity. It becomes clear that for sufficiently small fixed charge concentration (large ion concentration in the electrolyte), the monotonic instability is replaced by an oscillatory one. The dependence of instability on the membrane porosity is found to be weak.
Modes of electrokinetic instability for imperfect electric membranes.
Ganchenko, G S; Kalaydin, E N; Schiffbauer, J; Demekhin, E A
2016-12-01
The direct transition to overlimiting current bypassing the stage of limiting currents is considered for imperfect membranes. Instability of the quiescent steady-state one-dimensional solution, which is the result of a balance of diffusion and electromigration, is investigated on the basis of the full Nernst-Planck-Poisson-Stokes system and a simplified quasielectroneutral system. A three-layer geometry, electrolyte-porous membrane-electrolyte, is considered. The usual assumption of a constant electrochemical potential along the membrane surface is removed from consideration. The effect of bulk and surface effects on the instability and transition to the overlimiting currents is evaluated for a different membrane selectivity. It becomes clear that for sufficiently small fixed charge concentration (large ion concentration in the electrolyte), the monotonic instability is replaced by an oscillatory one. The dependence of instability on the membrane porosity is found to be weak.
Memory imperfections in atomic-ensemble-based quantum repeaters
NASA Astrophysics Data System (ADS)
Brask, Jonatan Bohr; Sørensen, Anders Søndberg
2008-07-01
Quantum repeaters promise to deliver long-distance entanglement overcoming loss in realistic quantum channels. A promising class of repeaters, based on atomic ensemble quantum memories and linear optics, follows the proposal by L.-M. Duan , Nature (London) 414, 413 (2001). Here we analyze this protocol in terms of a very general model for the quantum memories employed. We derive analytical expressions for scaling of entanglement with memory imperfections, dark counts, loss, and distance, and we apply our results to two specific quantum memory protocols. Our methods apply to any quantum memory with an interaction Hamiltonian at most quadratic in the mode operators and are in principle extendible to more recent modifications of the original proposal of Duan, Lukin, Cirac, and Zoller.
Cycles of cooperation and defection in imperfect learning
NASA Astrophysics Data System (ADS)
Galla, Tobias
2011-08-01
We investigate a model of learning the iterated prisoner's dilemma game. Players have the choice between three strategies: always defect (ALLD), always cooperate (ALLC) and tit-for-tat (TFT). The only strict Nash equilibrium in this situation is ALLD. When players learn to play this game convergence to the equilibrium is not guaranteed, for example we find cooperative behaviour if players discount observations in the distant past. When agents use small samples of observed moves to estimate their opponent's strategy the learning process is stochastic, and sustained oscillations between cooperation and defection can emerge. These cycles are similar to those found in stochastic evolutionary processes, but the origin of the noise sustaining the oscillations is different and lies in the imperfect sampling of the opponent's strategy. Based on a systematic expansion technique, we are able to predict the properties of these learning cycles, providing an analytical tool with which the outcome of more general stochastic adaptation processes can be characterised.
How to Introduce the Imperfection Sensitivity Concept into Design 2
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac
1998-01-01
The previous review on stochastic buckling of structures was written by Amazigo in 1976. The present review summarizes some of the developments which took place in recent two decades. A brief overview is given of the effect on uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation. For the benefit of the thinking reader, the review has a critical nature. Present essay should be viewed as a direct continuation of our previous paper (1983) with the same title. In order not to repeat what was covered there, it appears instructive to read it although not necessarily prior to dwelling on this article. Accordingly the title is appended with the serial number. It is not promised that the third review will follow since the university science, both fortunately and unfortunately, stands on three things: relevance, interest, and grants.
How to Introduce the Imperfection Sensitivity Concept into Design 2
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac
1998-01-01
The previous review on stochastic buckling of structures was written by Amazigo in 1976. The present review summarizes some of the developments which took place in recent two decades. A brief overview is given of the effect on uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation. For the benefit of the thinking reader, the review has a critical nature. Present essay should be viewed as a direct continuation of our previous paper (1983) with the same title. In order not to repeat what was covered there, it appears instructive to read it although not necessarily prior to dwelling on this article. Accordingly the title is appended with the serial number. It is not promised that the third review will follow since the university science, both fortunately and unfortunately, stands on three things: relevance, interest, and grants.
Simultaneous characterization of detector and source imperfections in infrared ellipsometry.
Wormeester, Herbert; Kole, Pepijn R; Poelsema, Bene
2009-05-20
Optical components required for infrared (IR) ellipsometry have distinctly worse characteristics compared to those available for the visible spectrum. The calibration of the optical components used is therefore essential for obtaining reliable results. Here a powerful method is outlined to calibrate simultaneously the polarization characteristics of a source and detector through the synchronous rotation of two polarizers. The performance of this method is to a large degree independent of the quality of (commercially available) polarizers. This renders this method robust and highly suitable for the IR range. Moreover, it is also inherently insensitive toward a nonlinear response of the detector. This enables us to use this method as the first step in the quantification of component imperfections.
Plastic buckling. [post-bifurcation and imperfection sensitivity
NASA Technical Reports Server (NTRS)
Hutchinson, J. W.
1974-01-01
The present article is concerned mainly with the post-bifurcation and imperfection-sensitivity aspects of plastic buckling. A simple two-degree-of-freedom model is used to introduce post-bifurcation behavior and a second model illustrates features of the behavior of continuous solids and structures. Hill's bifurcation criterion for a class of three-dimensional solids is applied to the Donnell-Mushtari-Vlasov (DMV) theory of plates and shells. A general treatment of the initial post-bifurcation behavior of plates and shells is given within the context of the DMV theory. This is illustrated by problems involving columns and circular plates under radial compression. Numerical results are given for a column under axial compression, a circular plate under radial compression, and spherical and cylindrical shells.
Transport properties of multigrained nanocomposites with imperfect interfaces
NASA Astrophysics Data System (ADS)
Palla, Pier Luca; Giordano, Stefano
2016-11-01
Multigrained or polycrystalline composite materials have attracted a considerable attention due to their potential applications as advanced materials with outstanding thermal, mechanical, and electromagnetic properties. When the grains' morphology is displayed at the nanoscopic scale, the presence of imperfect interfaces plays a central role in determining the effective transport properties. Therefore, we develop here a self-consistent effective medium theory able to evaluate the influence of real contacts between the different phases of multigrained composite materials. This approach takes into account the classical interface schemes that have been introduced in literature, namely, the low and the high conducting interface models. The theoretical results have been compared with numerical and experimental data concerning the thermal conductivity of ( 1 - x ) Si : x Ge mixtures and the electrical conductivity of ( 1 - x ) Li 2 O : x B 2 O 3 composites.
Computation of supersonic jet noise under imperfectly expanded conditions
NASA Technical Reports Server (NTRS)
Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas
1993-01-01
The turbulent mixing noise of supersonic jet under imperfectly expanded conditions is calculated for convergent and convergent-divergent (CD) axisymmetric nozzle geometries. The noise prediction incorporates CFD solution of Navier-Stokes equations. The effect of grid resolution on shock structure computation is demonstrated. Mixing noise spectra predicted from fine and coarse grid solutions exhibit little sensitivity to the grid resolution. A proper grid resolution, however, results in a significant improvement in shock capturing capability and helps predictions agree favorably with experimental data. Good agreement between predicted noise spectra and data shows that the CFD-incorporated noise prediction scheme, which was demonstrated for shock-free conditions, works as well for shock-containing flow conditions.
Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance.
Speed, Michael P; Ruxton, Graeme D
2010-07-01
We apply signal detection methodology to make predictions about the evolution of Batesian mimicry. Our approach is novel in three ways. First, we applied a deterministic evolutionary modeling system that allows a large number of alternative mimetic morphs to coexist and compete. Second, we considered that there may be natural boundaries to phenotypic expression. Finally, we allowed increasing conspicuousness to impose an increasing detection cost on mimics. In some instances, the model predicts widespread variation in mimetic forms at evolutionary stability. In other situations, rather than a polymorphism the model predicts dimorphisms in which some prey were maximally cryptic and had minimal resemblance to the model, whereas many others were more conspicuous than the model. The biological implications of these results, particularly for our understanding of imperfect mimicry, are discussed.
Long-distance quantum key distribution with imperfect devices
NASA Astrophysics Data System (ADS)
Lo Piparo, Nicoló; Razavi, Mohsen
2014-12-01
Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, RQKD. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.
Collectives for the Optimal Combination of Imperfect Objects
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Wolpert, David
2003-01-01
In this letter we summarize some recent theoretical work on the design of collectives, i.e., of systems containing many agents, each of which can be viewed as trying to maximize an associated private utility, where there is also a world utility rating the behavior of that overall system that the designer of the collective wishes to optimize. We then apply algorithms based on that work on a recently suggested testbed for such optimization problems. This is the problem of finding the combination of imperfect nano-scale objects that results in the best aggregate object. We present experimental results showing that these algorithms outperform conventional methods by more than an order of magnitude in this domain.
Plastic buckling. [post-bifurcation and imperfection sensitivity
NASA Technical Reports Server (NTRS)
Hutchinson, J. W.
1974-01-01
The present article is concerned mainly with the post-bifurcation and imperfection-sensitivity aspects of plastic buckling. A simple two-degree-of-freedom model is used to introduce post-bifurcation behavior and a second model illustrates features of the behavior of continuous solids and structures. Hill's bifurcation criterion for a class of three-dimensional solids is applied to the Donnell-Mushtari-Vlasov (DMV) theory of plates and shells. A general treatment of the initial post-bifurcation behavior of plates and shells is given within the context of the DMV theory. This is illustrated by problems involving columns and circular plates under radial compression. Numerical results are given for a column under axial compression, a circular plate under radial compression, and spherical and cylindrical shells.
Correcting length-frequency distributions for imperfect detection
Breton, André R.; Hawkins, John A.; Winkelman, Dana L.
2013-01-01
Sampling gear selects for specific sizes of fish, which may bias length-frequency distributions that are commonly used to assess population size structure, recruitment patterns, growth, and survival. To properly correct for sampling biases caused by gear and other sources, length-frequency distributions need to be corrected for imperfect detection. We describe a method for adjusting length-frequency distributions when capture and recapture probabilities are a function of fish length, temporal variation, and capture history. The method is applied to a study involving the removal of Smallmouth Bass Micropterus dolomieu by boat electrofishing from a 38.6-km reach on the Yampa River, Colorado. Smallmouth Bass longer than 100 mm were marked and released alive from 2005 to 2010 on one or more electrofishing passes and removed on all other passes from the population. Using the Huggins mark–recapture model, we detected a significant effect of fish total length, previous capture history (behavior), year, pass, year×behavior, and year×pass on capture and recapture probabilities. We demonstrate how to partition the Huggins estimate of abundance into length frequencies to correct for these effects. Uncorrected length frequencies of fish removed from Little Yampa Canyon were negatively biased in every year by as much as 88% relative to mark–recapture estimates for the smallest length-class in our analysis (100–110 mm). Bias declined but remained high even for adult length-classes (≥200 mm). The pattern of bias across length-classes was variable across years. The percentage of unadjusted counts that were below the lower 95% confidence interval from our adjusted length-frequency estimates were 95, 89, 84, 78, 81, and 92% from 2005 to 2010, respectively. Length-frequency distributions are widely used in fisheries science and management. Our simple method for correcting length-frequency estimates for imperfect detection could be widely applied when mark–recapture data
Improving Aquatic Warbler Population Assessments by Accounting for Imperfect Detection
Oppel, Steffen; Marczakiewicz, Piotr; Lachmann, Lars; Grzywaczewski, Grzegorz
2014-01-01
Monitoring programs designed to assess changes in population size over time need to account for imperfect detection and provide estimates of precision around annual abundance estimates. Especially for species dependent on conservation management, robust monitoring is essential to evaluate the effectiveness of management. Many bird species of temperate grasslands depend on specific conservation management to maintain suitable breeding habitat. One such species is the Aquatic Warbler (Acrocephalus paludicola), which breeds in open fen mires in Central Europe. Aquatic Warbler populations have so far been assessed using a complete survey that aims to enumerate all singing males over a large area. Because this approach provides no estimate of precision and does not account for observation error, detecting moderate population changes is challenging. From 2011 to 2013 we trialled a new line transect sampling monitoring design in the Biebrza valley, Poland, to estimate abundance of singing male Aquatic Warblers. We surveyed Aquatic Warblers repeatedly along 50 randomly placed 1-km transects, and used binomial mixture models to estimate abundances per transect. The repeated line transect sampling required 150 observer days, and thus less effort than the traditional ‘full count’ approach (175 observer days). Aquatic Warbler abundance was highest at intermediate water levels, and detection probability varied between years and was influenced by vegetation height. A power analysis indicated that our line transect sampling design had a power of 68% to detect a 20% population change over 10 years, whereas raw count data had a 9% power to detect the same trend. Thus, by accounting for imperfect detection we increased the power to detect population changes. We recommend to adopt the repeated line transect sampling approach for monitoring Aquatic Warblers in Poland and in other important breeding areas to monitor changes in population size and the effects of habitat management
Improving aquatic warbler population assessments by accounting for imperfect detection.
Oppel, Steffen; Marczakiewicz, Piotr; Lachmann, Lars; Grzywaczewski, Grzegorz
2014-01-01
Monitoring programs designed to assess changes in population size over time need to account for imperfect detection and provide estimates of precision around annual abundance estimates. Especially for species dependent on conservation management, robust monitoring is essential to evaluate the effectiveness of management. Many bird species of temperate grasslands depend on specific conservation management to maintain suitable breeding habitat. One such species is the Aquatic Warbler (Acrocephalus paludicola), which breeds in open fen mires in Central Europe. Aquatic Warbler populations have so far been assessed using a complete survey that aims to enumerate all singing males over a large area. Because this approach provides no estimate of precision and does not account for observation error, detecting moderate population changes is challenging. From 2011 to 2013 we trialled a new line transect sampling monitoring design in the Biebrza valley, Poland, to estimate abundance of singing male Aquatic Warblers. We surveyed Aquatic Warblers repeatedly along 50 randomly placed 1-km transects, and used binomial mixture models to estimate abundances per transect. The repeated line transect sampling required 150 observer days, and thus less effort than the traditional 'full count' approach (175 observer days). Aquatic Warbler abundance was highest at intermediate water levels, and detection probability varied between years and was influenced by vegetation height. A power analysis indicated that our line transect sampling design had a power of 68% to detect a 20% population change over 10 years, whereas raw count data had a 9% power to detect the same trend. Thus, by accounting for imperfect detection we increased the power to detect population changes. We recommend to adopt the repeated line transect sampling approach for monitoring Aquatic Warblers in Poland and in other important breeding areas to monitor changes in population size and the effects of habitat management.
Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal
NASA Astrophysics Data System (ADS)
Nath, R.; Dalmonte, M.; Glaetzle, A. W.; Zoller, P.; Schmidt-Kaler, F.; Gerritsma, R.
2015-06-01
We propose a trapped ion scheme en route to realize spin Hamiltonians on a Kagome lattice which, at low energies, are described by emergent {{{Z}}}2 gauge fields, and support a topological quantum spin liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin-spin interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrum of the crystal is engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal. These tailored modes can mediate spin-spin interactions between ion-qubits on a hexagonal plaquette when subject to state-dependent optical dipole forces. We discuss how these interactions can be employed to emulate a generalized Balents-Fisher-Girvin model in minimal instances of one and two plaquettes. This model is an archetypical Hamiltonian in which gauge fields are the emergent degrees of freedom on top of the classical ground state manifold. Under realistic situations, we show the emergence of a discrete Gauss’s law as well as the dynamics of a deconfined charge excitation on a gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed scheme in principle allows further scaling in a future trapped ion quantum simulator, and we conclude that our work will pave the way towards the simulation of emergent gauge theories and quantum spin liquids in trapped ion systems.
Synthesis and oxygen content dependent properties of hexagonal DyMnO[subscript 3+delta
Remsen, S.; Dabrowski, B.; Chmaissem, O.; Mais, J.; Szewczyk, A.
2011-10-28
Oxygen deficient polycrystalline samples of hexagonal P6{sub 3}cm (space group No.185) DyMnO{sub 3+{delta}} ({delta} < 0) were synthesized in Ar by intentional decomposition of its perovskite phase obtained in air. The relative stability of these phases is in accord with our previous studies of the temperature and oxygen vacancy dependent tolerance factor. Thermogravimetric measurements have shown that hexagonal samples of DyMnO{sub 3+{delta}} (0 {le} {delta} {le} 0.4) exhibit unusually large excess oxygen content, which readily incorporates on heating near 300 C in various partial-pressures of oxygen atmospheres. Neutron and synchrotron diffraction data show the presence of two new structural phases at {delta} {approx} 0.25 (Hex{sub 2}) and {delta} {approx} 0.40 (Hex{sub 3}). Rietveld refinements of the Hex{sub 2} phase strongly suggest it is well modeled by the R3 space group (No.146). These phases were observed to transform back to P6{sub 3}cm above {approx} 350 C when material becomes stoichiometric in oxygen content ({delta} = 0). Chemical expansion of the crystal lattice corresponding to these large changes of oxygen was found to be 3.48 x 10{sup -2} mol{sup -1}. Thermal expansion of stoichiometric phases were determined to be 11.6 x 10{sup -6} and 2.1 x 10{sup -6} K{sup -1} for the P6{sub 3}cm and Hex{sub 2} phases, respectively. Our measurements also indicate that the oxygen non-stoichiometry of hexagonal RMnO{sub 3+{delta}} materials may have important influence on their multiferroic properties.
Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.
Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi
2017-08-09
The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO3) with a special thermomechanical treatment (TMT), where BaTiO3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.
Dissipative photonic lattice solitons.
Ultanir, Erdem A; Stegeman, George I; Christodoulides, Demetrios N
2004-04-15
We show that discrete dissipative optical lattice solitons are possible in waveguide array configurations that involve periodically patterned semiconductor optical amplifiers and saturable absorbers. The characteristics of these low-power soliton states are investigated, and their propagation constant eigenvalues are mapped on Floquet-Bloch band diagrams. The prospect of observing such low-power dissipative lattice solitons is discussed in detail.
Hexagonal boron-nitride nanomesh magnets
NASA Astrophysics Data System (ADS)
Ohata, C.; Tagami, R.; Nakanishi, Y.; Iwaki, R.; Nomura, K.; Haruyama, J.
2016-09-01
The formation of magnetic and spintronic devices using two-dimensional (2D) atom-thin layers has attracted attention. Ferromagnetisms (FMs) arising from zigzag-type atomic structure of edges of 2D atom-thin materials have been experimentally observed in graphene nanoribbons, hydrogen (H)-terminated graphene nanomeshes (NMs), and few-layer oxygen (O)-terminated black phosphorus NMs. Herein, we report room-temperature edge FM in few-layer hexagonal boron-nitride (hBN) NMs. O-terminated hBNNMs annealed at 500 °C show the largest FM, while it completely disappears in H-terminated hBNNMs. When hBNNMs are annealed at other temperatures, amplitude of the FM significantly decreases. These are highly in contrast to the case of graphene NMs but similar to the cases of black phosphorus NM and suggest that the hybridization of the O atoms with B(N) dangling bonds of zigzag pore edges, formed at the 500 °C annealing, strongly contribute to this edge FM. Room-temperature FM realizable only by exposing hBNNMs into air opens the way for high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.
Mathematical Foundation for Plane Covering Using Hexagons
NASA Technical Reports Server (NTRS)
Johnson, Gordon G.
1999-01-01
This work is to indicate the development and mathematical underpinnings of the algorithms previously developed for covering the plane and the addressing of the elements of the covering. The algorithms are of interest in that they provides a simple systematic way of increasing or decreasing resolution, in the sense that if we have the covering in place and there is an image superimposed upon the covering, then we may view the image in a rough form or in a very detailed form with minimal effort. Such ability allows for quick searches of crude forms to determine a class in which to make a detailed search. In addition, the addressing algorithms provide an efficient way to process large data sets that have related subsets. The algorithms produced were based in part upon the work of D. Lucas "A Multiplication in N Space" which suggested a set of three vectors, any two of which would serve as a bases for the plane and also that the hexagon is the natural geometric object to be used in a covering with a suggested bases. The second portion is a refinement of the eyeball vision system, the globular viewer.
Bootstrapping the Three-Loop Hexagon
Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP
2011-11-08
We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.
Hyperbolic phonon polaritons in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Dai, Siyuan
2015-03-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.
Ab-initio study of hexagonal apatites
NASA Astrophysics Data System (ADS)
Calderin, Lazaro; Stott, Malcom J.
2001-03-01
A silicon stabilized mixture of calcium phosphate phases has been recognized as playing an important role in actively resorbable coatings and in ceramics as bone materials. The nature of this material is being investigated using a variety of techniques including a combination of crystallographic analysis of measured x-ray diffraction spectra, and ab initio quantum mechanics simulations. We have used all-electron, density functional based calculations to investigate a group of hexagonal apatites. The fully relaxed crystallographic structures of hydroxyapatite, and related apatites have been obtained. We will present the results and discuss the nature of the bonding in these materials. The x-ray diffraction pattern and the infra-red spectra have also been obtained and will be compared with experiment. Acknowledgments:This work is part of a collaboration with the Applied Ceramics group of M.Sayer, and with Millenium Biologix Inc. Support of the NSERC of Canada through the award of a Co-operative R & D grant to the collaboration is acknowledged.
Dirac plasmons in bipartite lattices of metallic nanoparticles
NASA Astrophysics Data System (ADS)
Jebb Sturges, Thomas; Woollacott, Claire; Weick, Guillaume; Mariani, Eros
2015-03-01
We study theoretically ‘graphene-like’ plasmonic metamaterials constituted by two-dimensional arrays of metallic nanoparticles, including perfect honeycomb structures with and without inversion symmetry, as well as generic bipartite lattices. The dipolar interactions between localized surface plasmons (LSPs) in different nanoparticles gives rise to collective plasmons (CPs) that extend over the whole lattice. We study the band structure of CPs and unveil its tunability with the orientation of the dipole moments associated with the LSPs. Depending on the dipole orientation, we identify a phase diagram of gapless or gapped phases in the CP dispersion. We show that the gapless phases in the phase diagram are characterized by CPs behaving as massless chiral Dirac particles, in analogy with electrons in graphene. When the inversion symmetry of the honeycomb structure is broken, CPs are described as gapped chiral Dirac modes with an energy-dependent Berry phase. We further relax the geometric symmetry of the honeycomb structure by analysing generic bipartite hexagonal lattices. In this case we study the evolution of the phase diagram and unveil the emergence of a sequence of topological phase transitions when one hexagonal sublattice is progressively shifted with respect to the other.
Theoretical prediction of low-density hexagonal ZnO hollow structures
Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi; Tuan, Le Manh
2016-10-14
Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.
Theoretical prediction of low-density hexagonal ZnO hollow structures
NASA Astrophysics Data System (ADS)
Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi; Tuan, Le Manh
2016-10-01
Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.
Cheng, Jianpeng; Yang, Xuelin; Zhang, Jie; Hu, Anqi; Ji, Panfeng; Feng, Yuxia; Guo, Lei; He, Chenguang; Zhang, Lisheng; Xu, Fujun; Tang, Ning; Wang, Xinqiang; Shen, Bo
2016-12-14
Understanding the semiconductor surface and its properties including surface stability, atomic morphologies, and even electronic states is of great importance not only for understanding surface growth kinetics but also for evaluating the degree to which they affect the devices' performance. Here, we report studies on the nanoscale fissures related surface instability in AlGaN/GaN heterostructures. Experimental results reveal that edge dislocations are actually the root cause of the surface instability. The nanoscale fissures are initially triggered by the edge dislocations, and the subsequent evolution is associated with tensile lattice-mismatch stress and hydrogen etching. Our findings resolve a long-standing problem on the surface instability in AlGaN/GaN heterostructures and will also lead to new understandings of surface growth kinetics in other hexagonal semiconductor systems.
Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene
NASA Astrophysics Data System (ADS)
Song, Yangxi; Zhang, Changrui; Li, Bin; Ding, Guqiao; Jiang, Da; Wang, Haomin; Xie, Xiaoming
2014-07-01
Graphene is highly sensitive to environmental influences, and thus, it is worthwhile to deposit protective layers on graphene without impairing its excellent properties. Hexagonal boron nitride (h-BN), a well-known dielectric material, may afford the necessary protection. In this research, we demonstrated the van der Waals epitaxy of h-BN nanosheets on mechanically exfoliated graphene by chemical vapor deposition, using borazine as the precursor to h-BN. The h-BN nanosheets had a triangular morphology on a narrow graphene belt but a polygonal morphology on a larger graphene film. The h-BN nanosheets on graphene were highly crystalline, except for various in-plane lattice orientations. Interestingly, the h-BN nanosheets preferred to grow on graphene than on SiO2/Si under the chosen experimental conditions, and this selective growth spoke of potential promise for application to the preparation of graphene/h-BN superlattice structures fabricated on SiO2/Si.
Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene.
Song, Yangxi; Zhang, Changrui; Li, Bin; Ding, Guqiao; Jiang, Da; Wang, Haomin; Xie, Xiaoming
2014-01-01
Graphene is highly sensitive to environmental influences, and thus, it is worthwhile to deposit protective layers on graphene without impairing its excellent properties. Hexagonal boron nitride (h-BN), a well-known dielectric material, may afford the necessary protection. In this research, we demonstrated the van der Waals epitaxy of h-BN nanosheets on mechanically exfoliated graphene by chemical vapor deposition, using borazine as the precursor to h-BN. The h-BN nanosheets had a triangular morphology on a narrow graphene belt but a polygonal morphology on a larger graphene film. The h-BN nanosheets on graphene were highly crystalline, except for various in-plane lattice orientations. Interestingly, the h-BN nanosheets preferred to grow on graphene than on SiO2/Si under the chosen experimental conditions, and this selective growth spoke of potential promise for application to the preparation of graphene/h-BN superlattice structures fabricated on SiO2/Si.
NASA Astrophysics Data System (ADS)
Giloan, M.; Astilean, S.
2014-03-01
Nanostructures made of two layers of metallic triangular nanoprisms arranged in hexagonal lattice separated by a dielectric layer are theoretically analyzed as chiral metamaterial slabs. Transmitted and reflected electromagnetic field of normally incident circular polarized plane waves are computed using a tri-dimensional (3D) finite-difference time domain (FDTD) algorithm. Chirality and effective constitutive parameters are calculated using the modified S-parameter retrieval method for chiral metamaterials. Different hybridized plasmon modes are induced by the left and right circularly polarized light leading to a chiral behavior of the asymmetric type metamaterials. Negative refractive index due to chirality is obtained in the near infrared range of the spectrum for either left or right polarization.
NASA Astrophysics Data System (ADS)
Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z.-L.; Kwok, W.-K.; Glatz, A.
2017-02-01
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.
Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.; ...
2017-02-07
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less
A study of the magnetic after-effect in w-hexagonal compounds
Francisco, C. de; Munoz, J.M.; Torres, R. . Dept. Electricidad y Electronica); Torres, L.; Iniguez, J.; Zazo, M. . Dept. Fisica Aplicada)
1993-11-01
The relaxation of the initial permeability is measured in barium ferrite samples with W-hexagonal structure. In the temperature range between 80 and 420 K three clear relaxation processes are found which features are Influenced by sintering temperature and atmosphere. Peak C (370 K) seems to arise from long range cation diffusion processes via vacancies, with activation energies around 1.1 eV. Peak B (300 K) can be attributed to local rearrangements of ferrous cations in octahedral position via lattice vacancies and can be fitted by the superposition of two Debye processes with activation energies close to 0.80 and 0.84 eV. Peak A exhibits the characteristics of a single Debye process with activation energy of the order of 0.48 eV and its origin is not yet clear.
Pyramidal Image-Processing Code For Hexagonal Grid
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1990-01-01
Algorithm based on processing of information on intensities of picture elements arranged in regular hexagonal grid. Called "image pyramid" because image information at each processing level arranged in hexagonal grid having one-seventh number of picture elements of next lower processing level, each picture element derived from hexagonal set of seven nearest-neighbor picture elements in next lower level. At lowest level, fine-resolution of elements of original image. Designed to have some properties of image-coding scheme of primate visual cortex.
Nylon flocked swab severely reduces Hexagon Obti sensibility.
Frippiat, Christophe; De Roy, Gilbert; Fontaine, Louis-Marie; Dognaux, Sophie; Noel, Fabrice; Heudt, Laeticia; Lepot, Laurent
2015-02-01
Hexagon Obti immunological blood test and flocked swab are widely used in forensic laboratories. Nevertheless, up to now, no compatibility tests have been published between sampling with the ethylene oxide treated flocked swab and the Hexagon Obti blood detection strip. In this study, we investigated this compatibility. Our work shows that sampling with ethylene oxide treated flocked swab reduces by a factor of at least 100 the detection threshold of blood using the Hexagon Obti immunological test. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Pyramidal Image-Processing Code For Hexagonal Grid
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1990-01-01
Algorithm based on processing of information on intensities of picture elements arranged in regular hexagonal grid. Called "image pyramid" because image information at each processing level arranged in hexagonal grid having one-seventh number of picture elements of next lower processing level, each picture element derived from hexagonal set of seven nearest-neighbor picture elements in next lower level. At lowest level, fine-resolution of elements of original image. Designed to have some properties of image-coding scheme of primate visual cortex.
Calculation of refractive-index distribution of hexagonal GRIN lenses
NASA Astrophysics Data System (ADS)
Zhou, Zigang; Zhang, Ren; Chen, Kai
2007-12-01
The GRIN lens is widely used in optical communication and imaging systems. Its array can be used to design integrated optic imaging system, especially for hexagonal GRIN. In this paper, the analytic solution of refractive-index distribution of regularly hexagonal GRIN was obtained by separating variables and transforming coordinate. Having been simulated and compared, the correctness of this analytic solution was proved qualitatively and quantitatively. It has great benefit for further research of regular hexagonal GRIN lens and compound eye imaging system. Furthermore, a universal solution of the refractive-index distribution of a regular N-gon (N is even) lens was obtained by this method.
Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin
Saxena, Sumit; Chaudhary, Raghvendra Pratap; Shukla, Shobha
2016-01-01
Stanene is one of most important of 2D materials due to its potential to demonstrate room temperature topological effects due to opening of spin-orbit gap. In this pursuit we report synthesis and investigation of optical properties of stanene up to few layers, a two-dimensional hexagonal structural analogue of graphene. Atomic scale morphological and elemental characterization using HRTEM equipped with SAED and EDAX detectors confirm the presence of hexagonal lattice of Sn atoms. The position of Raman peak along with the inter-planar ‘d’ spacing obtained from SAED for prepared samples are in good agreement with that obtained from first principles calculations and confirm that the sheets are not (111) α-Sn sheets. Further, the optical signature calculated using density functional theory at ~191 nm and ~233 nm for low buckled stanene are in qualitative agreement with the measured UV-Vis absorption spectrum. AFM measurements suggest interlayer spacing of ~0.33 nm in good agreement with that reported for epitaxial stanene sheets. No traces of oxygen were observed in the EDAX spectrum suggesting the absence of any oxidized phases. This is also confirmed by Raman measurements by comparing with oxidized stanene sheets. PMID:27492139
Structural, electronic and optical properties of hexagonal TaN compound
NASA Astrophysics Data System (ADS)
Chen, Zhongjun; Yan, Jungan; Kuang, Zhong; Chen, Taihong; Li, Dehua
2016-01-01
Structural and electronic properties of hexagonal Tantalum nitride (TaN) in CoSn and WC structures are studied using the first-principle calculations. Lattice constants and electronic band structures are in an excellent agreement with the available experimental and other theoretical values. TaN in both structures studied has a metallic nature and a strong hybridization of Ta 5d and N 2p are found from the spin density of states (DOS). Meanwhile, our LSDA+U calculations predicted a strong ferromagnetic state for CoSn-type structure and an obvious paramagnetic nature for WC-type structure. No phase transition are observed within cubic and hexagonal CoSn and WC structures under high pressures. Our results show WC-type TaN is the calculated ground-state structure among the three crystallographic structures studied under 120 GPa. Optical properties show that TaN in CoSn-type structure is a better dielectric material.
Factors controlling phase formation of novel Sr-based Y-type hexagonal ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Tholkappiyan, R.; Vishista, K.; Hamed, Fathalla
2017-02-01
New Sr-based Y-type nanocrystalline hexagonal ferrites with a nominal chemical composition of Sr 2Mg 2Fe 12 O 22 (Sr 2Y) were prepared by autocombustion from mixtures of Sr(NO 3) 2, Mg(NO 3) 2ṡ6H 2O and Fe(NO 3) 3ṡ9H 2O. The newly prepared Sr 2Y nanocrystalline particles were characterized by powder X-ray diffraction (XRD). A well crystalline phase of Sr 2Y with hexagonal crystal structure was observed. Fourier transform infrared spectroscopy (FTIR) studies revealed the information about the positions of the ions and their bonds within the lattice structure of the Sr 2Y. The chemical elements and their oxidation states in the Sr 2Y hexaferrites were determined using X-ray photoelectron spectroscopy (XPS). The XRD, FTIR and XPS studies confirmed the formation of Sr 2Mg 2Fe 12 O 22 hexaferrites. The morphology and porosity of the prepared Sr 2Y nanocrystalline Sr 2Y hexaferrite particles were studied by field emission scanning electron microscopy. The magnetic properties of Sr 2Y hexaferrites showed dependence on the methods of preparation conditions and calcination treatments. The values of coercivity, saturation magnetization and retentivity were in the range of 21.33-19.66 kA m -1, 42.44- 38.72 emu g -1 and 10.05-13.19 emu g -1 respectively.
Growth and characterization of Cl-doped ZnO hexagonal nanodisks
NASA Astrophysics Data System (ADS)
Yousefi, Ramin; Zak, A. K.; Mahmoudian, M. R.
2011-10-01
Cl-doped ZnO nanodisks were grown on a Si(111) substrate using a thermal evaporation method. The prepared nanodisks exhibited a hexagonal shape with an average thickness of 50 nm and average diagonal of 270 nm. In addition, undoped ZnO disks with hexagonal shape were grown under the same conditions, but the sizes of these undoped ZnO disks were on the micrometer order. A possible mechanism was proposed for the growth of the Cl-doped ZnO nanodisks, and it was shown that the Cl 1- anions play a crucial role in controlling the size. X-ray diffraction and Raman spectroscopy clearly showed an extension in the crystal lattice of ZnO because of the presence of chlorine. In addition, these nanodisks produced a strong photoluminescence emission peak in the ultraviolet (UV) region and a weak peak in the green region of the electromagnetic spectrum. Furthermore, the UV peak of the Cl-doped ZnO nanodisks was blueshifted with respect to that of the undoped ZnO disks.
NASA Astrophysics Data System (ADS)
Vuong, T. Q. P.; Cassabois, G.; Valvin, P.; Jacques, V.; Cuscó, R.; Artús, L.; Gil, B.
2017-01-01
We address the intrinsic optical properties of hexagonal boron nitride in deep ultraviolet. We show that the fine structure of the phonon replicas arises from overtones involving up to six low-energy interlayer shear modes. These lattice vibrations are specific to layered compounds since they correspond to the shear rigid motion between adjacent layers, with a characteristic energy of about 6-7 meV. We obtain a quantitative interpretation of the multiplet observed in each phonon replica under the assumption of a cumulative Gaussian broadening as a function of the overtone index, and with a phenomenological line broadening taken identical for all phonon types. We show from our quantitative interpretation of the full emission spectrum above 5.7 eV that the energy of the involved phonon mode is 6.8 ±0.5 meV, in excellent agreement with temperature-dependent Raman measurements of the low-energy interlayer shear mode in hexagonal boron nitride. We highlight the unusual properties of this material where the optical response is tailored by the phonon group velocities in the middle of the Brillouin zone.
Epitaxial hexagonal boron nitride on Ir(111): A work function template
NASA Astrophysics Data System (ADS)
Schulz, Fabian; Drost, Robert; Hämäläinen, Sampsa K.; Demonchaux, Thomas; Seitsonen, Ari P.; Liljeroth, Peter
2014-06-01
Hexagonal boron nitride (h-BN) is a prominent member in the growing family of two-dimensional materials with potential applications ranging from being an atomically smooth support for other two-dimensional materials to templating growth of molecular layers. We have studied the structure of monolayer h-BN grown by chemical vapor deposition on Ir(111) by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments and state-of-the-art density functional theory (DFT) calculations. The lattice mismatch between the h-BN and Ir(111) surface results in the formation of a moiré superstructure with a periodicity of ˜29 Å and a corrugation of ˜0.4 Å. By measuring the field emission resonances above the h-BN layer, we find a modulation of the work function within the moiré unit cell of ˜0.5 eV. DFT simulations for a 13-on-12 h-BN/Ir(111) unit cell confirm our experimental findings and allow us to relate the change in the work function to the subtle changes in the interaction between boron and nitrogen atoms and the underlying substrate atoms within the moiré unit cell. Hexagonal boron nitride on Ir(111) combines weak topographic corrugation with a strong work function modulation over the moiré unit cell. This makes h-BN/Ir(111) a potential substrate for electronically modulated thin film and heterosandwich structures.
Fabrication of hexagonal ZnO nanorods on porous carbon matrix by microwave irradiation.
Suresh, P; Vijaya, J Judith; Kennedy, L John
2013-04-01
The hexagonal ZnO nanorods supported activated carbon (ZSAC) was successfully prepared using zinc nitrate hexahydrate and urea through microwave irradiation. The method of preparation is simple and cost effective. The activated carbon (AC) with high surface area (446.44 m2/g), pore volume (00.21 cm3/g) and average pore diameter (01.89 nm) was employed as a matrix support for the growth of ZnO nanorods. The XRD results affirm the formation of wurtzite ZnO nanostructures. The FT-IR studies disclose the presence of varied functional groups present in ZSAC. The HR-SEM images reveal the pore morphology of AC and hexagonal shape of ZnO nanorods formed. The E(g) value obtained from Kubelka-Munk transformed reflectance spectra is about 3.43 eV. The photoluminescence emissions reveal the defects in the crystal lattice. The ZSAC thus prepared would perform substantial role in the area of catalysis.
Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy.
Kim, Do-Hyun; Kim, Hag-Soo; Song, Min Woo; Lee, Seunghyun; Lee, Sang Yun
2017-01-01
Hexagonal boron nitride (h-BN) is an electrical insulator with a large band gap of 5 eV and a good thermal conductor of which melting point reaches about 3000 °C. Due to these properties, much attention was given to the thermal stability rather than the electrical properties of h-BN experimentally and theoretically. In this study, we report calculations that the electronic structure of monolayer h-BN can be influenced by the presence of a vacancy defect which leads to a geometric deformation in the hexagonal lattice structure. The vacancy was varied from mono- to tri-vacancy in a supercell, and different defective structures under the same vacancy density were considered in the case of an odd number of vacancies. Consequently, all cases of vacancy defects resulted in a geometric distortion in monolayer h-BN, and new energy states were created between valence and conduction band with the Fermi level shift. Notably, B atoms around vacancies attracted one another while repulsion happened between N atoms around vacancies, irrespective of vacancy density. The calculation of formation energy revealed that multi-vacancy including more B-vacancies has much lower formation energy than vacancies with more N-vacancies. This work suggests that multi-vacancy created in monolayer h-BN will have more B-vacancies and that the presence of multi-vacancy can make monolayer h-BN electrically conductive by the new energy states and the Fermi level shift.
Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures
NASA Astrophysics Data System (ADS)
Toropova, Marina M.; Steeves, Craig A.
2015-08-01
Earth-orbiting satellites regularly pass from sunlight to shade and back; these transitions are typically accompanied by significant temperature changes. When adjoining parts of a satellite that are made of different materials are subjected to large temperature changes, thermal mismatch stresses arise that are a function of the temperature change and the difference in coefficients of thermal expansion (CTEs) between the two materials. These thermal stresses are linked to undesirable deformation and, through long-term cycling, fatigue and failure of the structure. This paper describes a type of anisotropic lattice that can serve as a stress-free adaptor between two materials, eliminating thermal mismatch stresses and their concomitant consequences. The lattices consist of planar nonidentical anisotropic bimaterial cells, each designed based on a virtual triangle. Physically the cells consist of a triangle made of material with higher CTE surrounded by a hexagon made of material with lower CTE. Different skew angles of the hexagon make a particular cell and the whole lattice anisotropic. The cells can be designed and combined in a lattice in such a way that one edge of the lattice has CTE that coincides with the CTE of the first part of the structure (substrate 1), while the other edge of the lattice has CTE equal to the CTE of the second part of the structure (substrate 2). If all joints between the parts of each cell, neighbouring cells, and the lattice and the substrates are pinned, the whole structure will be free of thermal stresses. This paper will discuss the fundamental principles governing such lattices, their refinement for special circumstances, and opportunities for improving the structural performance of the lattices. This will be presented coupled to a rational strategy for lattice design.
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Permanent field repair of imperfections and damages. 192.713 Section 192.713 Transportation Other Regulations Relating to Transportation... Maintenance § 192.713 Transmission lines: Permanent field repair of imperfections and damages. (a)...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Permanent field repair of imperfections and damages. 192.713 Section 192.713 Transportation Other Regulations Relating to Transportation... Maintenance § 192.713 Transmission lines: Permanent field repair of imperfections and damages. (a)...
Effects of the Interfering Harmonics Caused by Imperfect Data Streams on BPSK and QPSK Receivers
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Yeh, H-G.
1994-01-01
One of the most pernicious cause for spurious emission and performance degradation in space telemetry systems is the imperfect data stream at the input of the modulator. The imperfection of the data stream can be caused by impalance between -1s and +1s (unbalanced data) and/or by data asymmetry.
Dis How It Does Go: The Organisation of Imperfective Aspect in Urban Bahamian Creole English
ERIC Educational Resources Information Center
Seymour, Kendra Chanti Nicolette
2009-01-01
This dissertation examines the Imperfective aspectual system of urban Bahamian Creole English (BahE), a mesolectal creole spoken in The Bahamas. Specifically, following Comrie (1976) I examine three Imperfective aspectual categories in the creole--continuous progressiveness (variable auxiliary "be" use with V- "ing" verbs and…
Analysis of magnetic aftereffects in strontium hexagonal ferrites with W-type stoichiometry
NASA Astrophysics Data System (ADS)
Hernández-Gómez, P.; Torres, C.; de Francisco, C.; Muñoz, J. M.; Hisatake, K.
2003-05-01
The relaxation of the initial permeability has been measured in polycrystalline Sr hexaferrites with the initial composition of W phase (SrOṡ9Fe2O3). The samples have been prepared by means of standard ceramic techniques at different temperatures in the 1250 °C
Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface
NASA Astrophysics Data System (ADS)
Zhang, Ziyin; Nagy, Peter B.; Hassan, Waled
2016-02-01
Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the excess nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation.
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2004-01-01
The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.
ScGaN alloy growth by molecular beam epitaxy: Evidence for a metastable layered hexagonal phase
Constantin, Costel; Al-Brithen, Hamad; Haider, Muhammad B.; Ingram, David; Smith, Arthur R.
2004-11-15
Alloy formation in ScGaN is explored using rf molecular beam epitaxy over the Sc fraction range x=0-100%. Optical and structural analysis show separate regimes of growth, namely (I) wurtzitelike but having local lattice distortions in the vicinity of the Sc{sub Ga} substitutions for small x (x{<=}0.17) (II) a transitional regime for intermediate x, and (III) cubic, rocksaltlike for large x(x{>=}0.54). In regimes I and III, the direct optical transition decreases approximately linearly with increasing x but with an offset over region II. Importantly, it is found that for regime I, an anisotropic lattice expansion occurs with increasing x in which a increases much more than c. These observations support the prediction of Farrer and Bellaiche [Phys. Rev. B 66, 201203-1 (2002)] of a metastable layered hexagonal phase of ScN, denoted h-ScN.
Percolation in spatial evolutionary prisoner's dilemma game on two-dimensional lattices.
Choi, Woosik; Yook, Soon-Hyung; Kim, Yup
2015-11-01
We study the spatial evolutionary prisoner's dilemma game with updates of imitation max on triangular, hexagonal, and square lattices. We use the weak prisoner's dilemma game with a single parameter b. Due to the competition between the temptation value b and the coordination number z of the base lattice, a greater variety of percolation properties is expected to occur on the lattice with the larger z. From the numerical analysis, we find six different regimes on the triangular lattice (z=6). Regardless of the initial densities of cooperators and defectors, cooperators always percolate in the steady state in two regimes for small b. In these two regimes, defectors do not percolate. In two regimes for the intermediate value of b, both cooperators and defectors undergo percolation transitions. The defector always percolates in two regimes for large b. On the hexagonal lattice (z=3), there exist two distinctive regimes. For small b, both the cooperators and the defectors undergo percolation transitions while only defectors always percolate for large b. On the square lattice (z=4), there exist three regimes. Combining with the finite-size scaling analyses, we show that all the observed percolation transitions belong to the universality class of the random percolation. We also show how the detailed growth mechanism of cooperator and defector clusters decides each regime.
Percolation in spatial evolutionary prisoner's dilemma game on two-dimensional lattices
NASA Astrophysics Data System (ADS)
Choi, Woosik; Yook, Soon-Hyung; Kim, Yup
2015-11-01
We study the spatial evolutionary prisoner's dilemma game with updates of imitation max on triangular, hexagonal, and square lattices. We use the weak prisoner's dilemma game with a single parameter b . Due to the competition between the temptation value b and the coordination number z of the base lattice, a greater variety of percolation properties is expected to occur on the lattice with the larger z . From the numerical analysis, we find six different regimes on the triangular lattice (z =6 ). Regardless of the initial densities of cooperators and defectors, cooperators always percolate in the steady state in two regimes for small b . In these two regimes, defectors do not percolate. In two regimes for the intermediate value of b , both cooperators and defectors undergo percolation transitions. The defector always percolates in two regimes for large b . On the hexagonal lattice (z =3 ), there exist two distinctive regimes. For small b , both the cooperators and the defectors undergo percolation transitions while only defectors always percolate for large b . On the square lattice (z =4 ), there exist three regimes. Combining with the finite-size scaling analyses, we show that all the observed percolation transitions belong to the universality class of the random percolation. We also show how the detailed growth mechanism of cooperator and defector clusters decides each regime.
14. DETAIL OF ROOF SUPPORT BEAMS BRACED AGAINST HEXAGONAL WOODEN ...
14. DETAIL OF ROOF SUPPORT BEAMS BRACED AGAINST HEXAGONAL WOODEN COMPRESSION RING AT TOP OF CENTRAL ROOF TRUSS. - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY
Quasicrystallography from Bn lattices
NASA Astrophysics Data System (ADS)
Koca, M.; Koca, N. O.; Al-Mukhaini, A.; Al-Qanabi, A.
2014-11-01
We present a group theoretical analysis of the hypercubic lattice described by the affine Coxeter-Weyl group Wa (Bn). An h-fold symmetric quasicrystal structure follows from the hyperqubic lattice whose point group is described by the Coxeter-Weyl group W (Bn) with the Coxeter number h=2n. Higher dimensional cubic lattices are explicitly constructed for n = 4,5,6 by identifying their rank-3 Coxeter subgroups and maximal dihedral subgroups. Decomposition of their Voronoi cells under the respective rank-3 subgroups W (A3), W (H2)×W (A1) and W (H3)lead to the rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron respectively. Projection of the lattice B4 describes a quasicrystal structure with 8-fold symmetry. The B5 lattice leads to quasicrystals with both 5fold and 10 fold symmetries. The lattice B6 projects on a 12-fold symmetric quasicrystal as well as a 3D icosahedral quasicrystal depending on the choice of subspace of projections. The projected sets of lattice points are compatible with the available experimental data.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Nathal, M. V.; Hebsur, M. G.; Kraus, D. L.
2003-01-01
In their simplest form, lattice block panels are produced by direct casting and result in lightweight, fully triangulated truss-like configurations which provide strength and stiffness [2]. The earliest realizations of lattice block were made from A1 and steels, primarily under funding from the US Navy [3]. This work also showed that the mechanical efficiency (eg., specific stiffness) of lattice block structures approached that of honeycomb structures [2]. The lattice architectures are also less anisotropic, and the investment casting route should provide a large advantage in cost and temperature capability over honeycombs which are limited to alloys that can be processed into foils. Based on this early work, a program was initiated to determine the feasibility of extending the high temperature superalloy lattice block [3]. The objective of this effort was to provide an alternative to intermetallics and composites in achieving a lightweight high temperature structure without sacrificing the damage tolerance and moderate cost inherent in superalloys. To establish the feasibility of the superalloy lattice block concept, work was performed in conjunction with JAMCORP, Inc. Billerica, MA, to produce a number of lattice block panels from both IN71 8 and Mar-M247.
Courant, E.D.; Garren, A.A.
1985-10-01
A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.
Hydrogen bonding in the hexagonal ice surface.
Barnett, Irene Li; Groenzin, Henning; Shultz, Mary Jane
2011-06-16
A recently developed technique in sum frequency generation spectroscopy, polarization angle null (or PAN-SFG), is applied to two orientations of the prism face of hexagonal ice. It is found that the vibrational modes of the surface are similar in different faces. As in the basal face, the prism face of ice contains five dominant resonances: 3096, 3146, 3205, 3253, and 3386 cm(-1). On the basal face, the reddest resonance occurs at 3098 cm(-1); within the bandwidth, the same as the prism face. On both the prism and basal faces, this mode contains a significant quadrupole component and is assigned to the bilayer stitching hydrogen bonds. The bluest of the resonances, 3386 cm(-1), occurs slightly blue-shifted at 3393 cm(-1) in the basal face. The prism face has two orientations: one with the optic or c axis in the input plane (the plane formed by the surface normal and the interrogating beam propagation) and one with the c axis perpendicular to the input plane. The 3386 cm(-1) mode has significant intensity only with the c axis in the input plane. On the basis of these orientation characteristics, the 3386 cm(-1) mode is assigned to double-donor molecules in either the top half bilayer or in the lower half bilayer. On the basis of frequency considerations, it is assigned to double-donor molecules in the top half bilayer. These are water molecules containing a nonbonded lone pair. In addition to identification of the components of the broad hydrogen-bonded region, PAN-SFG measures the tangential vs longitudinal content of the vibrational modes. In accord with previous suggestions, the lower frequency modes are predominantly tangential, whereas the higher frequency modes are mainly longitudinal. On the prism face, the 3386 cm(-1) mode is entirely longitudinal.
Optoelectronic properties of hexagonal boron nitride epilayers
NASA Astrophysics Data System (ADS)
Cao, X. K.; Majety, S.; Li, J.; Lin, J. Y.; Jiang, H. X.
2013-01-01
This paper summarizes recent progress primarily achieved in authors' laboratory on synthesizing hexagonal boron nitride (hBN) epilayers by metal organic chemical vapor deposition (MCVD) and studies of their structural and optoelectronic properties. The structural and optical properties of hBN epilayers have been characterized by x-ray diffraction (XRD) and photoluminescence (PL) studies and compared to the better understood wurtzite AIN epilayers with a comparable energy bandgap. These MOCVD grown hBN epilayers exhibit highly efficient band-edge PL emission lines centered at around 5.5 eVat room temperature. The band-edge emission of hBN is two orders of magnitude higher than that of high quality AlN epilayers. Polarization-resolved PL spectroscopy revealed that hEN epilayers are predominantly a surface emission material, in which the band-edge emission with electric field perpendicular to the c-axis (Eemi⊥c) is about 1.7 times stronger than the component along the c-axis (Eemillc). This is in contrast to AIN, in which the band edge emission is known to be polarized along the c-axis, (Eemillc). Based on the graphene optical absorption concept, the estimated band-edge absorption coefficient of hBN is about 7x105 cm-1, which is more than 3 times higher than the value for AlN (~2x105 cm-1 . The hBN epilayer based photodetectors exhibit a sharp cut-off wavelength around 230 nm, which coincides with the band-edge PL emission peak and virtually no responses in the long wavelengths. The dielectric strength of hBN epilayers exceeds that of AlN and is greater than 4.5 MV/cm based on the measured result for an hBN epilayer released from the host sapphire substrate.
Electrical contact to carbon nanotubes encapsulated in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Huang, Jhao-Wun; Pan, Cheng; Tran, Son; Taniguchi, Takashi; Bockrath, Marc; Lau, Jeanie
2015-03-01
Hexagonal boron nitride has been an excellent platform for low dimensional materials. We have fabricated ultra clean single-walled carbon nanotube(SWNT) devices encapsulated in hexagonal boron nitride by a dry transfer technique. Contacts to the SWNTs were made by reactive ion etching to expose the ends of SWNTs, followed by metal deposition. Ohmic contacts to SWNTs were achieved. We will discuss the quality of the contacts using different combinations of metals and present latest transport data.
Synthesis and Characterization of Hexagonal Boron Nitride (h- BN) Films
2014-01-09
Synthesis 1. Diborane- ammonia (B2H6-NH3- gases): Early results with these precursors were published in 2012. 5 Briefly, LPCVD growth of h-BN in a hot-wall...Approved for public release; distribution is unlimited. Synthesis and Characterization of Hexagonal Boron Nitride (h- BN) Films. The views, opinions and...1 ABSTRACT Number of Papers published in peer-reviewed journals: Synthesis and Characterization of Hexagonal Boron Nitride (h-BN) Films. Report Title
The charge and spin transport properties in hexagonal silicene nanorings
NASA Astrophysics Data System (ADS)
Xu, N.; Zhang, H. Y.; Wu, X. Q.; Chen, Q.; Ding, J. W.
2017-09-01
Based on the tight-binding model, charge and spin transport properties of hexagonal silicene rings are investigated within the nonequilibrium Green’s function technique. The effects of external electric, magnetic and exchange fields are taken into account. The calculated results reveal that the hexagonal silicene nanorings act as a controllable spin filter. The near-perfect spin polarization can be achieved by adjusting the electric, magnetic and exchange fields. The calculated results offer new possibilities for silicene ring based spin nanodevices.
Solar concentrating properties of truncated hexagonal, pyramidal and circular cones
NASA Technical Reports Server (NTRS)
Burkhard, D. G.; Strobel, G. L.; Shealy, D. L.
1978-01-01
The solar concentrating properties of specularly reflecting truncated pyramidal, hexagonal, and circular cones are evaluated. Pyramidal and hexagonal configurations are discussed with reference to the concentration factor as a function of half apex angle and the length of the side over the width, and to the irradiance distribution. Expressions are derived for the concentration factor and the irradiance at the base of a circular cone when the sunlight is incident normal to the aperture and for oblique incidence.
Epitaxial Hexagonal Ferrites for Millimeter Wave Tunable Filters.
1982-12-13
anisotropy fields which, in effect, provide built-in biasing. The result is that ferrite components, similar to those used in microwave systems, can operate... method for growing hexagonal ferrites in the form of single crystal layers on non-magnetic, trAnsparmat subsrates - . The LPE method circumvents... method , single crystal hexagonal ferrites which are superior in quality to those grown by conventional methods . In order to have a more specific goal
Hexagonal Organic Nanopillar Array from Melamine-Cyanuric Acid Complex
Ji, Hai-Feng; Xu, Xiaohe
2010-01-01
We report a well-defined, organic, hexagonal nanopillar array on gold surface. The array was prepared from a cyanuric acid-melamine complex by mean of a sequential mixing on a gold surface. These nanopillars had uniform diameters of 200–400 nm and 1 µm in length. They were well facetted with hexagonal cross-sections. The nanopillars had a crystalline structure, and the pillars exhibited a layered texture in the longitudinal direction. PMID:20205460
Graphene antidot lattices as potential electrode materials for supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Lizhao; Yue, Xin; Zhao, Jijun; Cheng, Qian; Tang, Jie
2015-05-01
Thermodynamic stabilities and electronic properties of graphene antidot lattices with hexagonal holes were examined using density functional theory calculations and several crucial factors related to the applications of supercapacitors were discussed. For the graphene antidot lattices with different hole sizes, the formation energy per edge length is about 0.50∼0.60 eV/nm, which is comparable to that of graphene nanoribbon edges. Within a hole density of 10%, the graphene antidot lattices can maintain the excellent electronic properties of perfect graphene due to negligible intervalley scattering. Further increasing the hole density will open a band gap. Taking the potassium chloride (KCl) electrolyte as an example, we further investigated the diffusion behaviors of potassium (K) and chlorine (Cl) atoms through the graphene antidot lattices. It was shown that K and Cl atoms can go through the holes with nearly no barrier at an appropriate hole size of 0.54 nm, which gives an optimum pore diameter of ∼0.86 nm. Therefore, the excellent graphene-like electronic properties and good penetrability for ions suggest promising applications of graphene antidot lattices in the field of supercapacitors.
Jammed lattice sphere packings
NASA Astrophysics Data System (ADS)
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Computation of shock induced noise in imperfectly expanded supersonic jets
NASA Astrophysics Data System (ADS)
Imamoglu, Bulent
Screech noise exists only in imperfectly expanded jets. The exit pressure of imperfectly expanded jets does not match ambient pressure, so expansion or compression waves appear out of the nozzle and generate shock cell patterns. Screech is generated by the interaction of shock cells and instability waves. Many experiments and computations have been done to model screech noise, but it is not yet a very well known subject. A numerical study is performed to understand screech generation mechanisms and to compare with latest experiments. A supersonic underexpanded jet of 25.4 mm diameter is modeled for cases of Mach numbers of 1.19 and 1.43 in axisymmetric two-dimensions. Then the computation is extended to three-dimensions, and Mach numbers of 1.43 again and 1.80 are solved. Full Navier-Stokes equations are solved in cylindrical coordinates, and large eddy simulation (LES) turbulence modeling is added for axisymmetric cases. For spatial discretizations, fifth order Weighted Essentially Non Oscillatory (WENO) scheme is used because it is a suitable method for capturing shocks. Time discretization is third order time total variation diminishing (TVD) scheme, which is accurate enough, and needs considerably lower storage than fourth order schemes. These methods do not require any artificial viscosity or tune up parameters. The experimental results have predicted that the solution is in axisymmetric mode for Mach 1.19 and in helical (three-dimensional) mode for 1.43. However, our solution for Mach 1.43 has produced satisfactory results. Frequency analysis has been done by taking fast Fourier transforms of pressure history data. The experimental screech frequencies of 8400 Hz for Mach 1.19 and 5400 Hz for Mach 1.43 have been verified with computational results. Computed shock cell structure is in agreement with experiments and other computations in all cases. The screech waves emerge from the second and third shock cells, like in the experiments. The screech wavelength can
Zhang, Wei-Bing; Li, Jie; Tang, Bi-Yu
2013-06-28
The structural, electronic, magnetic, and elastic properties of hexagonal nickel sulfide (NiS) have been investigated comparatively by Density Functional theory (DFT) and DFT plus correction for on-site Coulomb interaction (DFT+U), in which two different exchange correlation functionals local density approximations (LDA) and general gradient approximations (GGA) in the form of Perdew-Burke-Ernzerhof (PBE) are used. Our results indicate LDA and PBE methods predict hexagonal NiS to be a paramagnetic metal whereas LDA(PBE)+U calculations with reasonable on-site Coulomb interaction energy give the antiferromagnetic insulating state of low temperature hexagonal NiS successfully. Meanwhile, compared with LDA(PBE) results, LDA(PBE)+U methods give larger lattice parameters, crystal volume, and shear constant c44, consistent with the experimental picture during high-low temperature phase transition of hexagonal NiS, in which an increase of the shear constant c44 and lattice parameters were found in the low-temperature antiferromagnetic phase. The present DFT and DFT+U calculations provide a reasonable description for the properties of high temperature and low temperature hexagonal NiS respectively, which indicates that electronic correlation is responsible for this high-low temperature phase transition.
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Dynamics of simply supported fluid-conveying pipes with geometric imperfections
NASA Astrophysics Data System (ADS)
Wang, L.; Dai, H. L.; Qian, Q.
2012-02-01
In this paper, the dynamics of simply supported fluid-conveying pipes with geometric imperfections is examined, by considering the integral-partial-differential equation of motion. The effect of sinusoidal wave or parabolic variations of imperfections is investigated for the four-degree-of-freedom (N=4) model of the system. Linear analysis shows that each type of imperfections affects the natural frequency of only one single mode. For half-sinusoidal wave or parabolic variation of imperfections, the critical flow velocity at which buckling instability occurs is higher than that for a pipe without imperfections. In all cases, the pipe remains in its undeformed static equilibrium state at low flow velocity. At high flow velocity; however, nonlinear analysis predicts that the pipe would be attracted to one of two other nontrivial equilibria, which, more importantly, may be asymmetric due to the presence of imperfections. For pipes with imperfection in the form of half-sinusoidal wave or parabolic variation, interestingly, the nonlinear theory predicts that a small buckling displacement would occur at flow velocities slightly lower than the critical flow velocity predicted by the linear theory.
Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2002-01-01
The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The results identify the effects of traditional and non-traditional initial imperfections on the non-linear response and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfect ions that are commonly discussed in the literature on thin shell buckling. The non-traditional imperfections include shell-wall thickness variations local shell-wall ply-gaps associated with the fabrication process, sheltered geometric imperfections, non-uniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity non-linear shell analysis procedure that accurately accounts for the effects of these traditional and non-traditional imperfections on the nonlinear response, and buckling loads of the shells is described. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable response characteristics.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
The extended family of hexagonal molybdenum oxide
Hartl, Monika; Daemen, Luke; Lunk, J H; Hartl, H; Frisk, A T; Shendervich, I; Mauder, D; Feist, M; Eckelt, R
2009-01-01
Over the last 40 years, a large number of isostructural compounds in the system MoO{sub 3}-NH{sub 3}-H{sub 2}O have been published. The reported molecular formulae of 'hexagonal molybdenum oxide' (HEMO) varied from MoO{sub 3}, MoO{sub 3} {center_dot} 0.33NH{sub 3}, MoO{sub 3} {center_dot} nH{sub 2}O (0.09 {le} n {le} 0.69) to MoO{sub 3} {center_dot} mNH{sub 3} {center_dot} nH{sub 2}O (0.09 {le} m {le} 0.20; 0.18 {le} n {le} 0.60). Samples, prepared by the acidification route, were investigated using thermal analysis coupled on-line to a mass spectrometer for evolved gas analysis; X-ray powder diffraction; Fourier Transform Infrared, Raman and Magic-Angle-Spinning {sup 1}H-NMR spectroscopy; Incoherent Inelastic Neutron Scattering. The X-ray study of a selected monocrystal confirmed the presence of the well-known framework of edge-sharing MoO{sub 6} octahedra: Space group P6{sub 3}/m, a = 10.527(1), c =3.7245(7) {angstrom}, {gamma} = 120{sup o}. The structure of the synthesized samples can best be described by the structural formula (NH{sub 4})[Mo{sub x}{open_square}{sub 1/2+p/2}(O{sub 3x + 1/2-p/2})(OH){sub p}] {center_dot} yH{sub 2}O (x 5.9-7.1; p {approx} 0.1; y = 1.2-2.6), which is consistent with the existence of one vacancy for 12-15 molybdenum sites. The 'chimie douce' reaction of MoO{sub 3} {center_dot} 0.155NH{sub 3} {center_dot} 0.440H{sub 2}O with a 1:1 mixture of NO/NO{sub 2} at 100 C resulted in the synthesis of MoO{sub 3} {center_dot} 0.539H{sub 2}O. Tailored nano-sized molybdenum powders can be produced using HEMO as precursor.
Modeling species occurrence dynamics with multiple states and imperfect detection
MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.
2009-01-01
Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.
Is imperfection becoming easier to live with for doctors?
Aasland, Olaf G
2017-01-01
Objective Being involved in serious patient injury is devastating for most doctors. During the last two decades, several efforts have been launched to improve Norwegian doctors’ coping with adverse events and complaints. Methods The method involved survey to a representative sample of 1792 Norwegian doctors in 2012. The questions on adverse events and its effects were previously asked in 2000. Results Response rate was 71%. More doctors reported to have been involved in episodes with serious patient harm in 2012 (35%) than in 2000 (28%), and more of the episodes were reported as required by law. Doctors below age 50 report better support from colleagues, more collegial retrospective discussion on the event and less patient/family blame. In all, 27% of the doctors had been reported to the Norwegian Board of Health Supervision; 79% of these complaints were rejected; 73% of the doctors who had received a reaction from the health authorities found the reaction reasonable, but almost one out of five practiced more testing and referrals after a complaint and 25% claimed that the complaint had made them into a more fearful doctor. Conclusion Our results indicate that adverse events are being met more openly in 2012 than in 2000, and that coping with imperfection and patient complaints is less devastating for new generations of doctors.
Imperfect supercritical bifurcation in a three-dimensional turbulent wake.
Cadot, Olivier; Evrard, Antoine; Pastur, Luc
2015-06-01
The turbulent wake of a square-back body exhibits a strong bimodal behavior. The wake randomly undergoes symmetry-breaking reversals between two mirror asymmetric steady modes [reflectional symmetry-breaking (RSB) modes]. The characteristic time for reversals is about 2 or 3 orders of magnitude larger than the natural time for vortex shedding. Studying the effects of the proximity of a ground wall together with the Reynolds number, it is shown that the bimodal behavior is the result of an imperfect pitchfork bifurcation. The RSB modes correspond to the two stable bifurcated branches resulting from an instability of the stable symmetric wake. An attempt to stabilize the unstable symmetric wake is investigated using a passive control technique. Although the controlled wake still exhibits strong fluctuations, the bimodal behavior is suppressed and the drag reduced. This promising experiment indicates the possible existence of an unstable solution branch corresponding to a reflectional symmetry preserved (RSP) mode. This work is encouraging to develop a control strategy based on a stabilization of this RSP mode to reduce mean drag and lateral force fluctuations.
Effect of Surface Imperfections and Excrescences on the Crossflow Instability
NASA Astrophysics Data System (ADS)
Tufts, Matthew; Duncan, Glen, Jr.; Crawford, Brian; Reed, Helen; Saric, William
2012-11-01
Presented is analysis of the planned SWIFTER experiment to be flown on Texas A&M University's O-2A aircraft. Simultaneous control of the crossflow and streamwise boundary-layer instabilities is a challenge for laminar flow control on swept wings. Solving this problem is an active area of research, with a specific need to quantify the effect of surface imperfections and outer mold line excrescences on crossflow instabilities. The SWIFTER test article is a modification of a prior-tested flight model, with the additional capability of creating controlled excrescences in flight. Using a finite-element Navier-Stokes solution and a spectrally accurate boundary-layer solver, coupled with linear and nonlinear stability analyses, we show that the flow field over the test article is well suited to this study. Results are compared with flight data. The work is supported by the Air Force Research Laboratory through General Dynamics Information Technology, Inc. under sub Agreement No USAF-3446-11-50-SC-01 and the Texas A&M Supercomputing Facility.
Imperfections, impacts, and the singularity of Euler's disk
NASA Astrophysics Data System (ADS)
Baranyai, Tamás; Várkonyi, Péter L.
2017-09-01
The motion of a rigid, spinning disk on a flat surface ends with a dissipation-induced finite-time singularity. The problem of finding the dominant energy absorption mechanism during the last phase of the motion generated a lively debate during the past two decades. Various candidates including air drag and different types of friction have been considered, nevertheless impacts have not been examined until now. We investigate the effect of impacts caused by geometric imperfections of the disk and of the underlying flat surface, through analyzing the dynamics of polygonal disks with unilateral point contacts. Similarly to earlier works, we determine the rate of energy absorption under the assumption of a regular pattern of motion analogous to precession-free motion of a rolling disk. In addition, we demonstrate that the asymptotic stability of this motion depends on parameters of the impact model. In the case of instability, the emerging irregular motion is investigated numerically. We conclude that there exists a range of model parameters (small radii of gyration or small restitution coefficients) in which absorption by impacts dominates all previously investigated mechanisms during the last phase of motion. Nevertheless the parameter values associated with a homogeneous disk on a hard surface are typically not in this range, hence the effect of impacts is in that case not dominant.
Modeling species occurrence dynamics with multiple states and imperfect detection.
MacKenzie, Darryl I; Nichols, James D; Seamans, Mark E; Gutiérrez, R J
2009-03-01
Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics.
Many-body localization in imperfectly isolated quantum systems.
Johri, Sonika; Nandkishore, Rahul; Bhatt, R N
2015-03-20
We use numerical exact diagonalization to analyze which aspects of the many-body localization phenomenon survive in an imperfectly isolated setting, when the system of interest is weakly coupled to a thermalizing environment. We show that widely used diagnostics (such as many-body level statistics and expectation values in exact eigenstates) cease to show signatures of many-body localization above a critical coupling that is exponentially small in the size of the environment. However, we also identify alternative diagnostics for many-body localization, in the spectral functions of local operators. Diagnostics include a discrete spectrum and a hierarchy of energy gaps, including a universal gap at zero frequency. These alternative diagnostics are shown to be robust, and continue to show signatures of many-body localization as long as the coupling to the bath is weaker than the characteristic energy scales in the system. We also examine how these signatures disappear when the coupling to the environment becomes larger than the characteristic energy scales of the system.
A comparative analysis of the evolution of imperfect mimicry.
Penney, Heather D; Hassall, Christopher; Skevington, Jeffrey H; Abbott, Kevin R; Sherratt, Thomas N
2012-03-21
Although exceptional examples of adaptation are frequently celebrated, some outcomes of natural selection seem far from perfect. For example, many hoverflies (Diptera: Syrphidae) are harmless (Batesian) mimics of stinging Hymenoptera. However, although some hoverfly species are considered excellent mimics, other species bear only a superficial resemblance to their models and it is unclear why this is so. To evaluate hypotheses that have been put forward to explain interspecific variation in the mimetic fidelity of Palearctic Syrphidae we use a comparative approach. We show that the most plausible explanation is that predators impose less selection for mimetic fidelity on smaller hoverfly species because they are less profitable prey items. In particular, our findings, in combination with previous results, allow us to reject several key hypotheses for imperfect mimicry: first, human ratings of mimetic fidelity are positively correlated with both morphometric measures and avian rankings, indicating that variation in mimetic fidelity is not simply an illusion based on human perception; second, no species of syrphid maps out in multidimensional space as being intermediate in appearance between several different hymenopteran model species, as the multimodel hypothesis requires; and third, we find no evidence for a negative relationship between mimetic fidelity and abundance, which calls into question the kin-selection hypothesis. By contrast, a strong positive relationship between mimetic fidelity and body size supports the relaxed-selection hypothesis, suggesting that reduced predation pressure on less profitable prey species limits the selection for mimetic perfection.
CD271 is an imperfect marker for melanoma initiating cells
Cheli, Yann; Bonnazi, Vanessa F.; Jacquel, Arnaud; Allegra, Maryline; Donatis, Gian Marco De; Bahadoran, Philippe; Bertolotto, Corine; Ballotti, Robert
2014-01-01
Understanding the molecular and cellular processes underlying melanoma plasticity and heterogeneity is of paramount importance to improve the efficiency of current treatment and to overcome resistance to chemotherapy drugs. The notion of plasticity and heterogeneity implies the existence of melanoma cell populations with different phenotypic and tumorigenic properties. Using melanoma cell lines and melanoma cells freshly isolated from patient biopsies, we investigated the relationship between ABCB5+, CD271+ and low-MITF, expressing populations that were reported to display melanoma initiating cell properties. Here, we showed that ABCB5+ and CD271+ populations poorly overlap. However, we found that the CD271+ population is enriched in low-MITF cells and expresses a higher level of stemness genes, such as OCT4, NANOG and NES. These features could explain the increased tumorigenicity of the CD271+ cells. The rapid conversion of CD271+ to CD271− cells in vitro demonstrates the plasticity ability of melanoma cells. Finally, we observed that the transient slow-growing population contains only CD271+ cells that are highly tumorigenic. However, the fast growing/CD271+ population exhibits a poor tumorigenic ability. Taking together, our data show that CD271 is an imperfect marker for melanoma initiating cells, but may be useful to identify melanoma cells with an increased stemness and tumorigenic potential. PMID:25105565
CD271 is an imperfect marker for melanoma initiating cells.
Cheli, Yann; Bonnazi, Vanessa F; Jacquel, Arnaud; Allegra, Maryline; De Donatis, Gian Marco; Bahadoran, Philippe; Bertolotto, Corine; Ballotti, Robert
2014-07-30
Understanding the molecular and cellular processes underlying melanoma plasticity and heterogeneity is of paramount importance to improve the efficiency of current treatment and to overcome resistance to chemotherapy drugs. The notion of plasticity and heterogeneity implies the existence of melanoma cell populations with different phenotypic and tumorigenic properties. Using melanoma cell lines and melanoma cells freshly isolated from patient biopsies, we investigated the relationship between ABCB5+, CD271+ and low-MITF, expressing populations that were reported to display melanoma initiating cell properties. Here, we showed that ABCB5+ and CD271+ populations poorly overlap. However, we found that the CD271+ population is enriched in low-MITF cells and expresses a higher level of stemness genes, such as OCT4, NANOG and NES. These features could explain the increased tumorigenicity of the CD271+ cells. The rapid conversion of CD271+ to CD271- cells in vitro demonstrates the plasticity ability of melanoma cells. Finally, we observed that the transient slow-growing population contains only CD271+ cells that are highly tumorigenic. However, the fast growing/CD271+ population exhibits a poor tumorigenic ability. Taking together, our data show that CD271 is an imperfect marker for melanoma initiating cells, but may be useful to identify melanoma cells with an increased stemness and tumorigenic potential.
NASA Astrophysics Data System (ADS)
Gong, Pu; Yu, Hongyi; Wang, Yong; Yao, Wang
2017-03-01
We investigate the optical transition selection rules for excitonic Rydberg series formed in massive Dirac cones. The entanglement of the exciton envelop function with the pseudospin texture leads to anomalous selection rules for one-photon generation of excitons, where d orbitals can be excited with the opposite helicity selection rule from the s orbitals in a given valley. The trigonal warping effects in realistic hexagonal lattices further renders more excited states bright, where p orbitals can also be accessed by one-photon excitation with the opposite valley selection rules to the s orbitals. The one-photon generation of exciton in the various states and the intraexcitonic transition between these states are both dictated by the discrete in-plane rotational symmetry of the lattices, and our results show that in hexagonal 2D materials the symmetry allowed transitions are enabled when trigonal warping effects are included in the massive Dirac fermion model. In monolayer transition metal dichalcogenides where excitons can be generated by visible light and intraexcitonic transitions can be induced by infrared light, we give the strength of these optical transitions, estimated using modified hydrogenlike envelope functions combined with the optical transition matrix elements between the Bloch states calculated at various k points.
Hexagonal OsB_{2} reduction upon heating in H_{2} containing environment
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Payzant, E. Andrew
2014-10-23
The stability of hexagonal ReB_{2} type OsB_{2} powder upon heating under reforming gas was investigated. Pure Os metal particles were detected by powder X-ray diffraction starting at 375⁰ C and complete transformation of OsB_{2} to metallic Os was observed at 725⁰ C. The mechanisms of precipitation of metallic Os is proposed and changes in the lattice parameters of OsB_{2} upon heating are analysed in terms of the presence of oxygen or water vapour in the heating chamber. Previous studies suggested that Os atoms possess (0) valence, while B atoms possess both (+3) and ( 3) valences in the alternating boron/osmium sheet structure of hexagonal (P63/mmc, No. 194) OsB_{2}; if controllable method for Os removal from the lattice could be found, the opportunity would arise to form two-dimensional (2D) layers consisting of pure B atoms.
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.
2016-01-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822
Legless locomotion in lattices
NASA Astrophysics Data System (ADS)
Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.
2015-03-01
By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.
Enhancement of hydrogen storage capacity in hydrate lattices
NASA Astrophysics Data System (ADS)
Willow, Soohaeng Yoo; Xantheas, Sotiris S.
2012-02-01
First principles electronic structure calculations of the pentagonal dodecahedron (H2O)20 (D-cage) and tetrakaidecahedron (H2O)24 (T-cage), building blocks of structure I (sI) hydrate lattice, suggest that these can accommodate up to a maximum of 5 and 7 guest hydrogen molecules, respectively. For the pure hydrogen hydrate, Born-Oppenheimer molecular dynamics (BOMD) simulations of periodic (sI) hydrate lattices indicate that the guest molecules are released into the vapor phase via the hexagonal faces of the larger T-cages. The presence of methane in the larger T-cages was found to block this release, therefore suggesting possible scenarios for the stabilization of these coated clathrate hydrates and the potential enhancement of their hydrogen storage capacity.
Spontaneous Symmetry-Breaking Vortex Lattice Transitions in Pure Niobium
Laver, M.; Forgan, E.M.; Brown, S.P.; Bowell, C.; Ramos, S.; Lycett, R.J.; Charalambous, D.; Fort, D.; Christen, D.K.; Kohlbrecher, J.; Dewhurst, C.D.; Cubitt, R.
2006-04-28
We report an extensive investigation of magnetic vortex lattice (VL) structures in single crystals of pure niobium with the magnetic field applied parallel to a fourfold symmetry axis, so as to induce frustration between the cubic crystal symmetry and hexagonal VL coordination expected in an isotropic situation. We observe new VL structures and phase transitions; all the VL phases observed (including those with an exactly square unit cell) spontaneously break some crystal symmetry. One phase even has the lowest possible symmetry of a two-dimensional Bravais lattice. This is quite unlike the situation in high-T{sub c} or borocarbide superconductors, where VL structures orient along particular directions of high crystal symmetry. The causes of this behavior are discussed.
Solitons in spiraling Vogel lattices.
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2013-01-15
We address light propagation in Vogel optical lattices and show that such lattices support a variety of stable soliton solutions in both self-focusing and self-defocusing media, whose propagation constants belong to domains resembling gaps in the spectrum of a truly periodic lattice. The azimuthally rich structure of Vogel lattices allows generation of spiraling soliton motion.
Analysis and testing of axial compression in imperfect slender truss struts
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Georgiadis, Nicholas
1990-01-01
The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.
NASA Astrophysics Data System (ADS)
Muc, A.
The paper deals with the static buckling and postbuckling behavior of clamped elastic imperfect laminated shallow spherical shells subjected to uniform external pressure. Three types of initial geometrical imperfections are analyzed: two local described by a convex or a concave curve, and one global in the form of the Legendre polynomial. Applying the Rayleigh-Ritz procedure to Marguerre's equations combined with the precise prebuckling numerical analysis, reasonably accurate solutions are obtained for upper and lower buckling pressures. The effects of fiber orientations on pre- and postbuckling behavior, imperfection sensitivity, buckling loads, and modes are considered. The results for composite shells are compared with those calculated for quasi-isotropic ones.
Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation?
Craddock, Travis J. A.; Tuszynski, Jack A.; Hameroff, Stuart
2012-01-01
Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and ‘hard-wired’ elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP), a cellular and molecular model for memory, post-synaptic calcium ion (Ca2+) flux activates the hexagonal Ca2+-calmodulin dependent kinase II (CaMKII), a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit). Thus each set of extended CaMKII kinases can potentially encode synaptic Ca2+ information via phosphorylation as ordered arrays of binary ‘bits’. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs), cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six “bits”, and thus “bytes”, with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells. PMID:22412364
Unveiling the physics of the doped phase of the t - J model on the kagome lattice.
Guertler, Siegfried; Monien, Hartmut
2013-08-30
We investigate the ground state properties of the kagome lattice t - J model at low doping by variational Monte Carlo calculations. The resulting state possesses an interesting balance of spin exchange and kinetic exchange through the building blocks of stars which are linked by triangles and their internal hexagons. While the spin exchange is taking place mainly on the stars, hopping is favored on the hexagons. There is a density modulation, resulting in the holes having an effective static contribution. From this observation, how holes lead to dimerization in this model and why a particular valence bond crystal pattern is formed can be understood. Furthermore, we argue the optimal doping for this state. We discuss our result in connection with static impurities, and show the likely relevance to the diluted kagome lattice Heisenberg model, describing actual compounds.
Spin-orbital short-range order on a honeycomb-based lattice.
Nakatsuji, S; Kuga, K; Kimura, K; Satake, R; Katayama, N; Nishibori, E; Sawa, H; Ishii, R; Hagiwara, M; Bridges, F; Ito, T U; Higemoto, W; Karaki, Y; Halim, M; Nugroho, A A; Rodriguez-Rivera, J A; Green, M A; Broholm, C
2012-05-04
Frustrated magnetic materials, in which local conditions for energy minimization are incompatible because of the lattice structure, can remain disordered to the lowest temperatures. Such is the case for Ba(3)CuSb(2)O(9), which is magnetically anisotropic at the atomic scale but curiously isotropic on mesoscopic length and time scales. We find that the frustration of Wannier's Ising model on the triangular lattice is imprinted in a nanostructured honeycomb lattice of Cu(2+) ions that resists a coherent static Jahn-Teller distortion. The resulting two-dimensional random-bond spin-1/2 system on the honeycomb lattice has a broad spectrum of spin-dimer-like excitations and low-energy spin degrees of freedom that retain overall hexagonal symmetry.
Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; McDonald, A.E.; Bieber, A.E.
1996-06-01
Using infrared light scattering microscopy, the authors have directly observed the inhibition of photon propagation in a 2-dimensional photonic lattice fabricated as a hexagonal array of AlGaAs posts. The lattice was formed by reactive ion etching of {approximately}400 nm diameter posts defined by electron beam lithography. The lattice design parameters correspond to a photonic bandgap near 1.5 {micro}m as calculated by Meade et al. This hexagonal array of posts is an improvement over early honeycomb lattices because it is easier to fabricate. The photonic lattice of 1.4 {micro}m high posts was incorporated into waveguide designed for single mode at 1.5 {micro}m. Several waveguide/lattice combinations were fabricated, including M-bar and K-bar lattice orientations aligned parallel to the waveguide and different numbers of lattice periods. The waveguide/lattice structures were fabricated on GaAs substrates that were subsequently thinned and cleaved to couple light into the waveguide facets. Using a specially designed triple infrared microscope system, they simultaneously imaged the input and output facets and the top surface of the waveguide as laser light was focused onto the input facet. Because of internal scattering in the waveguide, light is scattered upward outward and can be imaged with an infrared camera. Images for reflected input, waveguide scattered light, and transmitted output light for the waveguide with (left images) and without the photonic lattice (right images) are shown. The lefthand image shows how the lattice interrupts the transport of light through the waveguide.
Metasurfaces inner symmetries: from square lattices to quasicrystalline layouts (presentation video)
NASA Astrophysics Data System (ADS)
Kruk, Sergey S.; Poddubny, Alexander; Helgert, Christian; Decker, Manuel; Staude, Isabelle; Menzel, Christoph; Etrich, Christoph; Rockstuhl, Carsten; Powell, David A.; Pertsch, Thomas; Neshev, Dragomir N.; Kivshar, Yuri S.
2014-09-01
We systematically study both experimentally and theoretically the links between the lattice symmetries of metasurfaces and their optical properties at both normal and oblique illumination. We attribute different symmetry elements to number of polarization phenomena. In particular, we predict analytically and verify experimentally the influence of rotational axes, mirror planes and inversion centres on optical activity, circular dichroism and asymmetric transmission. We fabricate and test nanostructured optical metasurfaces with four different inner structures: square and hexagonal lattices, quasicrystalline layout, and amorphous arrangement. We demonstrate the ability to enhance/suppress particular optical response by appropriate choice of the metasurface's symmetry.
Monitoring programs need to take into account imperfect species detectability
Kery, M.; Schmid, Hans
2004-01-01
Biodiversiry monitoring is important to identify biological units in need of conservation and to check the effectiveness of conservation actions. Programs generally monitor species richness and its changes (trend). Usually, no correction is made for imperfect species detectability. Instead, it is assumed that each species present has the same probability of being recorded and that there is no difference in this detectability across space and time, e.g. among observers and habitats. Consequently, species richness is determined by enumeration as the sum of species recorded. In Switzerland, the federal government has recently launched a comprehensive program that aims at detecting changes in biodiversity at all levels of biological integration. Birds are an important part of that program. Since 1999, 23 visits per breeding season are made to each of >250 1 km2 squares to map the territories of all detected breeding bird species. Here, we analyse data from three squares to illustrate the use of capture-recapture models in monitoring to obtain detectability-corrected estimates of species richness and trend. Species detectability averaged only 85%. Hence an estimated 15% of species present remained overlooked even after three visits. Within a square, changes in detectability for different years were of the same magnitude when surveys were conducted by the same observer as when they were by different observers. Estimates of trend were usually biased and community turnover was overestimated when based on enumeration. Here we use bird data as an illustration of methods. However, species detectability for any taxon is unlikely ever to be perfect or even constant across categories to be compared. Therefore, monitoring programs should correct for species detectability.
Quantum state tomography with noninstantaneous measurements, imperfections, and decoherence
NASA Astrophysics Data System (ADS)
Six, P.; Campagne-Ibarcq, Ph.; Dotsenko, I.; Sarlette, A.; Huard, B.; Rouchon, P.
2016-01-01
Tomography of a quantum state is usually based on a positive-operator-valued measure (POVM) and on their experimental statistics. Among the available reconstructions, the maximum-likelihood (MaxLike) technique is an efficient one. We propose an extension of this technique when the measurement process cannot be simply described by an instantaneous POVM. Instead, the tomography relies on a set of quantum trajectories and their measurement records. This model includes the fact that, in practice, each measurement could be corrupted by imperfections and decoherence, and could also be associated with the record of continuous-time signals over a finite amount of time. The goal is then to retrieve the quantum state that was present at the start of this measurement process. The proposed extension relies on an explicit expression of the likelihood function via the effective matrices appearing in quantum smoothing and solutions of the adjoint quantum filter. It allows us to retrieve the initial quantum state as in standard MaxLike tomography, but where the traditional POVM operators are replaced by more general ones that depend on the measurement record of each trajectory. It also provides, aside from the MaxLike estimate of the quantum state, confidence intervals for any observable. Such confidence intervals are derived, as the MaxLike estimate, from an asymptotic expansion of multidimensional Laplace integrals appearing in Bayesian mean estimation. A validation is performed on two sets of experimental data: photon(s) trapped in a microwave cavity subject to quantum nondemolition measurements relying on Rydberg atoms, and heterodyne fluorescence measurements of a superconducting qubit.
Dynamic diffraction and interband transitions in two-dimensional photonic lattices.
Terhalle, Bernd; Desyatnikov, Anton S; Neshev, Dragomir N; Krolikowski, Wieslaw; Denz, Cornelia; Kivshar, Yuri S
2011-02-25
We reveal a direct link between two fundamental wave phenomena in periodic media, Pendellösung oscillations and resonant coupling between spectral bands. We experimentally measure the power transfer between laser beams associated with the high-symmetry points in periodic and biased hexagonal photonic lattices. As a result, we demonstrate that Pendellösung oscillations dominate the dynamics of resonant interband transitions on a short propagation scale. © 2011 American Physical Society
Thermodynamic equivalence of two-dimensional imperfect attractive Fermi and repulsive Bose gases
NASA Astrophysics Data System (ADS)
Napiórkowski, Marek; Piasecki, Jarosław
2017-06-01
We consider two-dimensional imperfect attractive Fermi and repulsive Bose gases consisting of spinless point particles whose total interparticle interaction energy is represented by a N2/2 V with a =-aF≤0 for fermions and a =aB≥0 for bosons. We show that, in spite of the attraction, the thermodynamics of a d =2 imperfect Fermi gas remains well defined for 0 ≤aF≤a0=h2/2 π m , and is exactly the same as the one of the repulsive imperfect Bose gas with aB=a0-aF . In particular, for aF=a0 one observes the thermodynamic equivalence of the attractive imperfect Fermi gas and the ideal Bose gas.
Understanding Your Vision: The “Imperfect Eye” | NIH MedlinePlus the Magazine
... of this page please turn Javascript on. Feature: Vision Understanding Your Vision: The “Imperfect Eye” Past Issues / Winter 2012 Table ... are different and so are the types of vision that we have. Understanding how some of us ...
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2004-01-01
The results of an experimental and numerical study of the effects of initial imperfections on the buckling response and failure of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have six different orthotropic or quasi-isotropic shell-wall laminates and two different shell-radius-to-thickness ratios. The numerical results include the effects of geometric shell-wall mid-surface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform end loads, and the effects of elastic boundary conditions. Selected cylinder parameter uncertainties were also considered. Results that illustrate the effects of imperfections and uncertainties on the nonlinear response characteristics, buckling loads and failure the shells are presented. In addition, a common failure analysis is used to predict material failures in the shells.
Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice
Matsumoto, Takao; So, Yeong-Gi; Kohno, Yuji; Sawada, Hidetaka; Ikuhara, Yuichi; Shibata, Naoya
2016-01-01
Skyrmions are topologically protected nanoscale magnetic spin entities in helical magnets. They behave like particles and tend to form hexagonal close-packed lattices, like atoms, as their stable structure. Domain boundaries in skyrmion lattices are considered to be important as they affect the dynamic properties of magnetic skyrmions. However, little is known about the fine structure of such skyrmion domain boundaries. We use differential phase contrast scanning transmission electron microscopy to directly visualize skyrmion domain boundaries in FeGe1−xSix induced by the influence of an “edge” of a crystal grain. Similar to hexagonal close-packed atomic lattices, we find the formation of skyrmion “Σ7” domain boundary, whose orientation relationship is predicted by the coincidence site lattice theory to be geometrically stable. On the contrary, the skyrmion domain boundary core structure shows a very different structure relaxation mode. Individual skyrmions can flexibly change their size and shape to accommodate local coordination changes and free volumes formed at the domain boundary cores. Although atomic rearrangement is a common structural relaxation mode in crystalline grain boundaries, skyrmions show very unique and thus different responses to such local lattice disorders. PMID:26933690