Hexagonal structure of baby Skyrmion lattices
Hen, Itay; Karliner, Marek
2008-03-01
We study the zero-temperature crystalline structure of baby Skyrmions by applying a full-field numerical minimization algorithm to baby Skyrmions placed inside different parallelogramic unit cells and imposing periodic boundary conditions. We find that within this setup, the minimal energy is obtained for the hexagonal lattice, and that in the resulting configuration the Skyrmion splits into quarter Skyrmions. In particular, we find that the energy in the hexagonal case is lower than the one obtained on the well-studied rectangular lattice, in which splitting into half Skyrmions is observed.
Discrete breathers in hexagonal dusty plasma lattices
Koukouloyannis, V.; Kourakis, I.
2009-08-15
The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.
Ultracold Quantum Gases in Hexagonal Optical Lattices
NASA Astrophysics Data System (ADS)
Sengstock, Klaus
2010-03-01
Hexagonal structures occur in a vast variety of systems, ranging from honeycombs of bees in life sciences to carbon nanotubes in material sciences. The latter, in particular its unfolded two-dimensional layer -- Graphene -- has rapidly grown to one of the most discussed topics in condensed-matter physics. Not only does it show proximity to various carbon-based materials but also exceptional properties owing to its unusual energy spectrum. In quantum optics, ultracold quantum gases confined in periodic light fields have shown to be very general and versatile instruments to mimic solid state systems. However, so far nearly all experiments were performed in cubic lattice geometries only. Here we report on the first experimental realization of ultracold quantum gases in a state-dependent, two-dimensional, Graphene-like optical lattice with hexagonal symmetry. The lattice is realized via a spin-dependent optical lattice structure with alternating σ^+ and σ^- -sites and thus constitutes a so called `magnetic'-lattice with `antiferromagnetic'-structure. Atoms with different spin orientation can be loaded to specific lattice sites or -- depending on the parameters -- to the whole lattice. As a consequence e.g. superpositions of a superfluid spin component with a different spin component in the Mott-insulating phase can be realized as well as spin-dependent transport properties, disorder etc. After preparing an antiferromagnetically ordered state we e.g. measure sustainable changes of the transport properties of the atoms. This manifests in a significant reduction of the tunneling as compared to a single-component system. We attribute this observation to a partial tunneling blockade for one spin component induced by population in another spin component localized at alternating lattice sites. Within a Gutzwiller-Ansatz we calculate the phase diagrams for the mixed spin-states and find very good agreement with our experimental results. Moreover, by state-resolved recording
Multilayer DNA origami packed on hexagonal and hybrid lattices.
Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M
2012-01-25
"Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. PMID:22187940
Lattice-Polarity-Driven Epitaxy of Hexagonal Semiconductor Nanowires.
Wang, Ping; Yuan, Ying; Zhao, Chao; Wang, Xinqiang; Zheng, Xiantong; Rong, Xin; Wang, Tao; Sheng, Bowen; Wang, Qingxiao; Zhang, Yongqiang; Bian, Lifeng; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Li, Xinzheng; Zhang, Xixiang; Shen, Bo
2016-02-10
Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about 2-fold larger in magnitude than those on the (0001̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices. PMID:26694227
Beyond the simple hexagonal Abrikosov vortex lattice in layered superconductors
NASA Astrophysics Data System (ADS)
Feinberg, D.; Ettouhami, A. M.
1993-01-01
In layered superconductors as high-Tc materials but also organic superconductors, chalcogenides and superlattices, the simple concept of an distorted hexagonal lattice of straight vortices becomes unsufficient. Due to anisotropy and short coherence lengths, quite new vortex structures may arise. Some of them, as staircase vortices, simply add a modulation in the direction of vortex lines. This phenomenon is reviewed, together with the resulting lock-in transition, especially when the effects of the layered structure are weak. More exotic structures like a decomposed vortex lattice can also occur in specific situations: they involve two perpendicular sublattices, one parallel and one normal to the layers. We propose that extended defects as twin boundaries or irradiation tracks can trigger such a structure even in moderately anisotropic compounds as Y:123.
Proposal for generating synthetic magnetic fields in hexagonal optical lattices
NASA Astrophysics Data System (ADS)
Tian, Binbin; Endres, Manuel; Pekker, David
2015-05-01
We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.
Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices
NASA Astrophysics Data System (ADS)
Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.
2016-02-01
In the present work, we consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. We quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilities to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. For weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.
Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices
Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.
2016-01-14
We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less
Effects of ultraviolet radiation on lattice imperfections in pyrolytic boron nitride.
NASA Technical Reports Server (NTRS)
Buckley, J. D.; Cooley, J. A.
1971-01-01
Pyrolitic boron nitride was exposed to 310 equivalent sun hours of ultraviolet radiation in a space environment simulator with the objective to evaluate its applicability as a pigment for a thermal control coating and to identify radiation damage using X-ray diffraction techniques. Lattice parameter comparisons show a definite increase in lattice imperfections in the crystal structure resulting from the ultraviolet irradiation. This sensitivity to radiation damage makes pyrolitic boron nitride unsuitable as a pigment for thermal control coating.
Self-Assembly of Cubes into 2D Hexagonal and Honeycomb Lattices by Hexapolar Capillary Interactions
NASA Astrophysics Data System (ADS)
Soligno, Giuseppe; Dijkstra, Marjolein; van Roij, René
2016-06-01
Particles adsorbed at a fluid-fluid interface induce capillary deformations that determine their orientations and generate mutual capillary interactions which drive them to assemble into 2D ordered structures. We numerically calculate, by energy minimization, the capillary deformations induced by adsorbed cubes for various Young's contact angles. First, we show that capillarity is crucial not only for quantitative, but also for qualitative predictions of equilibrium configurations of a single cube. For a Young's contact angle close to 90°, we show that a single-adsorbed cube generates a hexapolar interface deformation with three rises and three depressions. Thanks to the threefold symmetry of this hexapole, strongly directional capillary interactions drive the cubes to self-assemble into hexagonal or graphenelike honeycomb lattices. By a simple free-energy model, we predict a density-temperature phase diagram in which both the honeycomb and hexagonal lattice phases are present as stable states.
Self-Assembly of Cubes into 2D Hexagonal and Honeycomb Lattices by Hexapolar Capillary Interactions.
Soligno, Giuseppe; Dijkstra, Marjolein; van Roij, René
2016-06-24
Particles adsorbed at a fluid-fluid interface induce capillary deformations that determine their orientations and generate mutual capillary interactions which drive them to assemble into 2D ordered structures. We numerically calculate, by energy minimization, the capillary deformations induced by adsorbed cubes for various Young's contact angles. First, we show that capillarity is crucial not only for quantitative, but also for qualitative predictions of equilibrium configurations of a single cube. For a Young's contact angle close to 90°, we show that a single-adsorbed cube generates a hexapolar interface deformation with three rises and three depressions. Thanks to the threefold symmetry of this hexapole, strongly directional capillary interactions drive the cubes to self-assemble into hexagonal or graphenelike honeycomb lattices. By a simple free-energy model, we predict a density-temperature phase diagram in which both the honeycomb and hexagonal lattice phases are present as stable states. PMID:27391753
Analysis of photonic logic gates based on single hexagonal-lattice photonic crystal ring resonator
NASA Astrophysics Data System (ADS)
Jiang, Junzhen; Qiang, Zexuan; Xu, Xiaofu; Chen, Xiyao
2011-01-01
We devised a new configuration of optical logic gates based on a single hexagonal-lattice photonic crystal ring resonator (PCRR) composed of two-dimensional (2D) cylindrical silicon rods in air. The modal behavior of the proposed logic gates was comprehensively analyzed with a topology optimization technique based on the principle of beam interference and perturbation theory. It was then numerically verified by using a 2D finite-difference time-domain technique. The predictions have a very good agreement with the numerical results. This new single PCRR can really function as NOT and NOR gates. And the logic ``0'' and ``1'' of the hexagonal ring can be defined as less than 8% and greater than 86%, respectively, much better than earlier reported square-lattice results.
Effect of large deformation pre-loads on the wave properties of hexagonal lattices
NASA Astrophysics Data System (ADS)
Pal, Raj Kumar; Rimoli, Julian; Ruzzene, Massimo
2016-05-01
We study linear wave propagation in nonlinear hexagonal lattices capable of undergoing large deformations, under different levels of pre-load. The lattices are composed of a set of masses connected by linear axial and angular springs, with the nonlinearity arising solely from geometric effects. By applying different levels of pre-load, the small amplitude linear wave propagation response can be varied from isotropic to highly directional. Analytical expressions for the stiffness of a unit cell in the deformed configuration are derived and they are used to analyze the dispersion surfaces and group velocity variation with pre-load. Numerical simulations on finite lattices demonstrate the validity of our unit cell predictions and illustrate the wave steering potential of our lattice.
Dust Lattice Waves in Two-Dimensional Hexagonal Dust Crystals with an External Magnetic Field
Farokhi, B.; Shahmansouri, M.
2008-09-07
The influence of a constant magnetic field on the propagation of dust-lattice (DL) modes in a two-dimensional hexagonal strongly coupled plasma crystal formed by paramagnetic particles is considered. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorentz force acting on the dust particles.
Single pentagon in a hexagonal carbon lattice revealed by scanning tunneling microscopy
An, B.; Fukuyama, S.; Yokogawa, K.; Yoshimura, M.; Egashira, M.; Korai, Y.; Mochida, I.
2001-06-04
The electronic structure of a single pentagon in a hexagonal carbon lattice has been revealed on an atomic scale by scanning tunneling microscopy. The pentagon is located at the apex of the conical protuberance of the graphitic particle. The enhanced charge density localized at each carbon atom in the pentagon is identified, and the ringlike pattern of the ({radical}3{times}{radical}3)R30{degree} superstructure of graphite is clearly observed around the pentagon. {copyright} 2001 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Venderbos, J. W. F.
2016-03-01
In this work we introduce a symmetry classification for electronic density waves which break translational symmetry due to commensurate wave-vector modulations. The symmetry classification builds on the concept of extended point groups: symmetry groups which contain, in addition to the lattice point group, translations that do not map the enlarged unit cell of the density wave to itself, and become "nonsymmorphic"-like elements. Multidimensional representations of the extended point group are associated with degenerate wave vectors. Electronic properties such as (nodal) band degeneracies and topological character can be straightforwardly addressed, and often follow directly. To further flesh out the idea of symmetry, the classification is constructed so as to manifestly distinguish time-reversal invariant charge (i.e., site and bond) order, and time-reversal breaking flux order. For the purpose of this work, we particularize to spin-rotation invariant density waves. As a first example of the application of the classification we consider the density waves of a simple single- and two-orbital square lattice model. The main objective, however, is to apply the classification to two-dimensional (2D) hexagonal lattices, specifically the triangular and the honeycomb lattices. The multicomponent density waves corresponding to the commensurate M -point ordering vectors are worked out in detail. To show that our results generally apply to 2 D hexagonal lattices, we develop a general low-energy SU(3 ) theory of (spinless) saddle-point electrons.
NASA Astrophysics Data System (ADS)
Alexandrov, Y. V.; Batanova, A. A.; Gladkova, E. V.; Dyshlovenko, P. E.; Nagatkin, A. N.; Nizametdinov, A. F.
2016-02-01
Two-dimensional charge-stabilized colloidal crystal with a hexagonal crystal lattice and constant electric potential on the particles is studied numerically. The properties of the crystal are described by the theory based on the Poisson-Boltzmann non-linear differential equation. The force constants and the equilibrium pressure in the crystals are calculated for a broad range of the lattice parameters. The numerical procedures of the force constant and pressure determination is briefly described. Elastic constants of the first and second order are also calculated on the base of the force constants to obtain information about the many-body effective interactions in the system. It was shown that the Cauchy relation between the elastic constants breaks down in the whole range of the lattice parameter especially at higher densities. This can be interpreted as an effect of the many-body effective interaction between the particles in the crystal.
Nematic Liquid Crystal on a Two Dimensional Hexagonal Lattice and its Application
Arslan Shehzad, Muhammad; Hoang Tien, Dung; Waqas Iqbal, M; Eom, Jonghwa; Park, J. H.; Hwang, Chanyong; Seo, Yongho
2015-01-01
We have studied the alignment of liquid crystal adsorbed onto graphene and hexagonal boron nitride by using a polarized optical microscope. From the experimental data, it was found that there were 6 different alignment orientations of the liquid crystal molecules on a single crystal substrate. This result has never been reported and is quite different from other previous results. As the hexagonal lattice has a threefold rotational symmetry, three different alignment orientations were expected, but our result seems counter-intuitive. We explain this result considering the bending of the tail of the liquid crystal molecules. Using this anchoring effect with six accurate discrete angles, a novel non-volatile display can be developed with micron-scale pixel size, due to the molecular level accuracy of the alignment. PMID:26290037
Nematic Liquid Crystal on a Two Dimensional Hexagonal Lattice and its Application
NASA Astrophysics Data System (ADS)
Arslan Shehzad, Muhammad; Hoang Tien, Dung; Waqas Iqbal, M.; Eom, Jonghwa; Park, J. H.; Hwang, Chanyong; Seo, Yongho
2015-08-01
We have studied the alignment of liquid crystal adsorbed onto graphene and hexagonal boron nitride by using a polarized optical microscope. From the experimental data, it was found that there were 6 different alignment orientations of the liquid crystal molecules on a single crystal substrate. This result has never been reported and is quite different from other previous results. As the hexagonal lattice has a threefold rotational symmetry, three different alignment orientations were expected, but our result seems counter-intuitive. We explain this result considering the bending of the tail of the liquid crystal molecules. Using this anchoring effect with six accurate discrete angles, a novel non-volatile display can be developed with micron-scale pixel size, due to the molecular level accuracy of the alignment.
Devil's staircase in a quantum dimer model on the hexagonal lattice
NASA Astrophysics Data System (ADS)
Barthel, Thomas; Misguich, Grégoire; Schlittler, Thiago M.; Vidal, Julien; Mosseri, Rémy
Quantum dimer models appear in different contexts when describing dynamics in constrained low-energy manifolds, such as for frustrated Ising models in weak transverse fields. In this talk, I address a particularly interesting case, where a quantum dimer model on the hexagonal lattice, in addition to the standard Rokhsar-Kivelson Hamiltonian, includes a competing potential term, counting dimer-free hexagons. It has a rich zero-temperature phase diagram that comprises a cascade of rapidly changing flux quantum numbers (tilt in the height language). This cascade is partially of fractal nature and the model provides, in particular, a microscopic realization of the ``devil's staircase'' scenario [E. Fradkin et al. Phys. Rev. B 69, 224415 (2004)]. We have studied the system by means of quantum Monte-Carlo simulations and the results can be explained using perturbation theory, RG, and variational arguments.References: arXiv:1507.04643, arXiv:1501.02242.
Phase Diagram of an Extended Quantum Dimer Model on the Hexagonal Lattice
NASA Astrophysics Data System (ADS)
Schlittler, Thiago; Barthel, Thomas; Misguich, Grégoire; Vidal, Julien; Mosseri, Rémy
2015-11-01
We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the "devil's staircase" scenario [Eduardo Fradkin et al. Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.
Nematic Liquid Crystal on a Two Dimensional Hexagonal Lattice and its Application.
Arslan Shehzad, Muhammad; Hoang Tien, Dung; Waqas Iqbal, M; Eom, Jonghwa; Park, J H; Hwang, Chanyong; Seo, Yongho
2015-01-01
We have studied the alignment of liquid crystal adsorbed onto graphene and hexagonal boron nitride by using a polarized optical microscope. From the experimental data, it was found that there were 6 different alignment orientations of the liquid crystal molecules on a single crystal substrate. This result has never been reported and is quite different from other previous results. As the hexagonal lattice has a threefold rotational symmetry, three different alignment orientations were expected, but our result seems counter-intuitive. We explain this result considering the bending of the tail of the liquid crystal molecules. Using this anchoring effect with six accurate discrete angles, a novel non-volatile display can be developed with micron-scale pixel size, due to the molecular level accuracy of the alignment. PMID:26290037
Magnetic structure and resonance properties of a hexagonal lattice of antidots
NASA Astrophysics Data System (ADS)
Marchenko, A. I.; Krivoruchko, V. N.
2012-02-01
Static and resonance properties of ferromagnetic films with a hexagonal lattice of antidots (pores in the film) were studied. The description of the system is based on micromagnetic modeling and analytical solutions of the Landau-Lifshitz equation. The dependences of ferromagnetic resonance spectra on the in-plane direction of applied magnetic field and on the lattice parameters were investigated. The nature of the dependences of a dynamic system response on the frequency at fixed magnetic fields and on the field at fixed frequency when the field changes were explored. They cause the static magnetic order to change. It was found that the specific peculiarities of the system dynamics remain unchanged for both of these experimental conditions. Namely, for low damping the resonance spectra contain three quasi-homogeneous modes which are due to the resonance of different regions (domains) of the antidot lattice cell. It is shown that the angular field dependences of each mode are characterized by a twofold symmetry, and the related easy axes are mutually rotated by 60 °. As a result, a hexagonal symmetry of the system's static and dynamic magnetic characteristics is realized. The existence in the resonance spectrum of several quasi-homogeneous modes related to different regions of the unit cell could be fundamental for the function of the working elements of magnonics devices.
Multi-component quantum gases in spin-dependent hexagonal lattices
NASA Astrophysics Data System (ADS)
Soltan-Panahi, P.; Struck, J.; Hauke, P.; Bick, A.; Plenkers, W.; Meineke, G.; Becker, C.; Windpassinger, P.; Lewenstein, M.; Sengstock, K.
2011-05-01
In solid-state materials, the static and dynamic properties as well as the magnetic and electronic characteristics are crucially influenced by the crystal symmetry. Hexagonal structures play a particularly important role and lead to novel physics, such as that of carbon nanotubes or graphene. Here we report on the realization of ultracold atoms in a spin-dependent optical lattice with hexagonal symmetry. We show how the combined effects of the lattice and interactions between atoms lead to a forced antiferromagnetic Néel order when two spin-components localize at different lattice sites. We also demonstrate that the coexistence of two components--one Mott-insulating and the other one superfluid--leads to an interaction-induced modulation of the superfluid density, which is observed spectroscopically. Our studies reveal the vast impact of the interaction-induced modulation on the superfluid-to-Mott-insulator transition. The observations are consistent with theoretical predictions using Gutzwiller mean-field theory.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
NASA Astrophysics Data System (ADS)
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; Ma, Yi-Ping
2016-01-01
Linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices are explored in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. For weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. The transition between these two types of propagation is explored.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; Ma, Yi-Ping
2016-01-25
We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. Formore » weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.« less
Hexagonal RMnO3: a model system for two-dimensional triangular lattice antiferromagnets.
Sim, Hasung; Oh, Joosung; Jeong, Jaehong; Le, Manh Duc; Park, Je Geun
2016-02-01
The hexagonal RMnO3(h-RMnO3) are multiferroic materials, which exhibit the coexistence of a magnetic order and ferroelectricity. Their distinction is in their geometry that both results in an unusual mechanism to break inversion symmetry and also produces a two-dimensional triangular lattice of Mn spins, which is subject to geometrical magnetic frustration due to the antiferromagnetic interactions between nearest-neighbor Mn ions. This unique combination makes the h-RMnO3 a model system to test ideas of spin-lattice coupling, particularly when both the improper ferroelectricity and the Mn trimerization that appears to determine the symmetry of the magnetic structure arise from the same structure distortion. In this review we demonstrate how the use of both neutron and X-ray diffraction and inelastic neutron scattering techniques have been essential to paint this comprehensive and coherent picture of h-RMnO3. PMID:26830792
NASA Astrophysics Data System (ADS)
Kim, Hyun-Jung; Li, Chaokai; Feng, Ji; Cho, Jun-Hyung; Zhang, Zhenyu
2016-01-01
The exploration of topological states is of significant fundamental and practical importance in contemporary condensed matter physics, for which the extension to two-dimensional (2D) organometallic systems is particularly attractive. Using first-principles calculations, we show that a 2D hexagonal triphenyl-lead lattice composed of only main group elements is susceptible to a magnetic instability, characterized by a considerably more stable antiferromagnetic (AFM) insulating state rather than the topologically nontrivial quantum spin Hall state proposed recently. Even though this AFM phase is topologically trivial, it possesses an intricate emergent degree of freedom, defined by the product of spin and valley indices, leading to Berry curvature-induced spin and valley currents under electron or hole doping. Furthermore, such a trivial band insulator can be tuned into a topologically nontrivial matter by the application of an out-of-plane electric field, which destroys the AFM order, favoring instead ferrimagnetic spin ordering and a quantum anomalous Hall state with a nonzero topological invariant. These findings further enrich our understanding of 2D hexagonal organometallic lattices for potential applications in spintronics and valleytronics.
NASA Astrophysics Data System (ADS)
Zeller, Patrick; Günther, Sebastian
2014-08-01
We present a systematic investigation of two coinciding lattices and their spatial beating frequencies that lead to the formation of moiré patterns. A mathematical model was developed and applied for the case of a hexagonally arranged adsorbate on a hexagonal support lattice. In particular, it describes the moiré patterns observed for graphene grown on a hexagonally arranged transition metal surface, a system that serves as one of the promising synthesis routes for the formation of this highly wanted material. The presented model uses a geometric construction that derives analytic expressions for first and higher order beating frequencies occurring for arbitrarily oriented graphene on the underlying substrate lattice. By solving the corresponding equations, we predict the size and orientation of the resulting moiré pattern. Adding the constraints for commensurability delivers further solvable analytic equations that predict whether or not first or higher order commensurable phases occur. We explicitly treat the case for first, second and third order commensurable phases. The universality of our approach is tested by comparing our data with moiré patterns that are experimentally observed for graphene on Ir(111) and on Pt(111). Our analysis can be applied for graphene, hexagonal boron nitride (h-BN), or other sp2-networks grown on any hexagonally packed support surface predicting the size, orientation and properties of the resulting moiré patterns. In particular, we can determine which commensurate phases are expected for these systems. The derived information can be used to critically discuss the moiré phases reported in the literature.
Size dependence of bandgaps in a two-dimensional plasmonic crystal with a hexagonal lattice.
Saito, Hikaru; Yamamoto, Naoki
2015-02-01
The optical properties of surface plasmon polaritons (SPPs) are investigated at the Г point in a two-dimensional plasmonic crystal with a hexagonal lattice (Hex-PlC). The cathodoluminescence (CL) technique combined with a scanning transmission electron microscope (STEM) are used to produce spectral images of the SPP standing waves at the Г point and identify the four types of band-edge modes predicted by group theory. The systematic measurement of the band-edge energies employed here is used to determine the characteristic dependence of each band-edge mode on the structure parameters, which provides some criteria for the design of plasmonic devices with Hex-PlCs. PMID:25836118
Chiral phonons at high-symmetry points in monolayer hexagonal lattices.
Zhang, Lifa; Niu, Qian
2015-09-11
In monolayer hexagonal lattices, the intravalley and intervalley scattering of electrons can involve chiral phonons at Brillouin-zone center and corners, respectively. At these high-symmetry points, there is a threefold rotational symmetry endowing phonon eigenmodes with a quantized pseudoangular momentum, which includes orbital and spin parts. Conservation of pseudoangular momentum yields selection rules for intravalley and intervalley scattering of electrons by phonons. Concrete predictions of helicity-resolved optical phenomena are made on monolayer molybdenum disulfide. The chiral phonons at Brillouin-zone corners excited by polarized photons can be detected by a valley phonon Hall effect. The chiral phonons, together with phonon circular polarization, phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will extend the basis for valley-based electronics and phononics applications in the future. PMID:26406841
Chiral Phonons at High-Symmetry Points in Monolayer Hexagonal Lattices
NASA Astrophysics Data System (ADS)
Zhang, Lifa; Niu, Qian
2015-09-01
In monolayer hexagonal lattices, the intravalley and intervalley scattering of electrons can involve chiral phonons at Brillouin-zone center and corners, respectively. At these high-symmetry points, there is a threefold rotational symmetry endowing phonon eigenmodes with a quantized pseudoangular momentum, which includes orbital and spin parts. Conservation of pseudoangular momentum yields selection rules for intravalley and intervalley scattering of electrons by phonons. Concrete predictions of helicity-resolved optical phenomena are made on monolayer molybdenum disulfide. The chiral phonons at Brillouin-zone corners excited by polarized photons can be detected by a valley phonon Hall effect. The chiral phonons, together with phonon circular polarization, phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will extend the basis for valley-based electronics and phononics applications in the future.
Validation of KENO-VI: A comparison with hexagonal lattice light-water-reactor critical experiments
Lichtenwalter, J.J.
1998-06-01
The KENO-VI Monte Carlo code, released with Version 4.3 of the SCALE Code System, provides the capability to model more complex geometries than previously allowed by KENO-V.a. One significant improvement is the simplistic specification of hexprism unit cells and hexagonal arrays, an arduous task to complete in KENO-V.a. This report documents the validation of KENO-VI against 30 critical experiments consisting of low enriched uranium, light water reactor (LWR) fuel rods in hexagonal lattices with no poisons. The reference, enrichment, pitch, cladding, and core identification of the experiments are given. The results indicate that KENO-VI accurately calculates these critical experiments, with a bias of {minus}0.51% for the 238 group cross section library and {minus}0.24% for the 44 group cross section library. If these biases are properly taken into account, the KENO-VI code can be used with confidence for the design and safety analysis of storage and transportation systems of similar LWR type fuels.
NASA Astrophysics Data System (ADS)
Rodrigues, Clóves G.
2016-06-01
In this work we investigate the interatomic correlation moments in two-dimensional model of a weakly anharmonic crystal (i.e., not very high temperatures) with hexagonal lattice, using the Correlative Method of Unsymmetrized Self-Consistent Field (CUSF). The numerical results are obtained (and compared) by using the Morse and Lenard-Jones potentials.
Two-dimensional XXZ -Ising model on a square-hexagon lattice
NASA Astrophysics Data System (ADS)
Valverde, J. S.; Rojas, Onofre; de Souza, S. M.
2009-04-01
We study a two-dimensional XXZ -Ising model on a square-hexagon (denoted for simplicity by 4-6) lattice with spin 1/2. The phase diagram at zero temperature is discussed, where five states are found, two types of ferrimagnetic states, two types of antiferromagnetic states, and one ferromagnetic state. To solve this model, we have mapped onto the eight-vertex model with union Jack interaction term, and it was verified that the model cannot be completely mapped onto eight-vertex model. However, by imposing an exact solution condition, we have found the region where the XXZ -Ising model on 4-6 lattice is exactly soluble with one free parameter, particularly for the case of symmetric eight-vertex model condition. In this manner we have explored the properties of the system and have analyzed the interacting competition parameters which preserve the region where there is an exact solution. Unfortunately the present model does not satisfy the free fermion condition of the eight-vertex model, unless for a trivial solution. Even so, we are able to discuss the critical point region, beyond the region of exact resolvability.
NASA Astrophysics Data System (ADS)
Ma, Yandong; Kou, Liangzhi; Li, Xiao; Dai, Ying; Heine, Thomas
2016-01-01
So far, several transition metal dichalcogenide (TMDC)-based two-dimensional (2D) topological insulators (TIs) have been discovered, all of them based on a tetragonal lattice. However, in 2D crystals, the hexagonal rather than the tetragonal symmetry is the most common motif. Here, based on first principles calculations, we propose a class of stable 2D TMDCs of composition MX2(M =Mo ,W ;X =S ,Se ,Te ) with a hexagonal lattice. They are all in the same stability range as other 2D TMDC allotropes that have been demonstrated experimentally, and they are identified to be practical 2D TIs with large band gaps ranging from 41 to 198 meV, making them suitable for applications at room temperature. Besides, in contrast to tetragonal 2D TMDCs, their hexagonal lattice will greatly facilitate the integration of theses novel TI state van der Waals crystals with other hexagonal or honeycomb materials and thus provide a route for 2D material-based devices for wider nanoelectronic and spintronic applications. The nontrivial band gaps of both WS e2 and WT e2 2D crystals are 198 meV, which are larger than that in any previously reported TMDC-based TIs. These large band gaps entirely stem from the strong spin orbit coupling strength within the d orbitals of Mo/W atoms near the Fermi level. Our findings broaden the scientific and technological impact of both 2D TIs and TMDCs.
NASA Astrophysics Data System (ADS)
Leconte, Nicolas; Martinez-Gordillo, Rafael; MacDonald, Allan; Jung, Jeil
Clear signatures of the Hofstadter butterfly have been experimentally observed in graphene on hexagonal boron nitride (G/BN), thanks to an appropriate balance between the length scale and the quality of the moiré superlattices. During this talk, I will present a methodology to map the continuum moiré pattern of incommensurable G/BN crystals obtained from ab initio calculations onto supercell lattice tight-binding Hamiltonians. Using efficient Lanczos recursion techniques for simulating large scale systems containing millions of atoms, the density of states and the dc conductivity are obtained as a function of energy or carrier density and magnetic field. The calculated Hofstadter butterflies and Landau fan diagrams show that the site potential variations, the mass, and substantial virtual strain contributions that appear even in the absence of real strains in the band Hamiltonian sensitively affect the electron-hole asymmetry, the gaps at the secondary Dirac points, as well as the tertiary features that appear at high-carrier densities.
Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge
Liu, Ying; Dong, Lifang Niu, Xuejiao; Gao, Yenan; Zhang, Chao
2015-10-15
The hexagonal super-lattice pattern with surface discharges (SDs) in dielectric barrier discharge is investigated by intensified charge-coupled device. The pattern is composed of the bright spot and the dim spot which is located at the centroid of surrounding other three bright spots. The phase diagram of the pattern as a function of the gas pressure and the argon concentration is given. The instantaneous images indicate that the bright spot emerging at the front of the current pulse is formed by the volume discharge (VD), and dim spot occurring at the tail of the current pulse is formed by the SD. The above result shows that the SD is induced by the VD. The simulation of the electric fields of wall charges accumulated by VDs confirms that the dim spot is formed by the confluences of the SDs of surrounding other three bright spots. By using optical emission spectrum method, both the molecule vibration temperature and electron density of the SD are larger than that of the VD.
Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Liu, Ying; Dong, Lifang; Niu, Xuejiao; Gao, Yenan; Zhang, Chao
2015-10-01
The hexagonal super-lattice pattern with surface discharges (SDs) in dielectric barrier discharge is investigated by intensified charge-coupled device. The pattern is composed of the bright spot and the dim spot which is located at the centroid of surrounding other three bright spots. The phase diagram of the pattern as a function of the gas pressure and the argon concentration is given. The instantaneous images indicate that the bright spot emerging at the front of the current pulse is formed by the volume discharge (VD), and dim spot occurring at the tail of the current pulse is formed by the SD. The above result shows that the SD is induced by the VD. The simulation of the electric fields of wall charges accumulated by VDs confirms that the dim spot is formed by the confluences of the SDs of surrounding other three bright spots. By using optical emission spectrum method, both the molecule vibration temperature and electron density of the SD are larger than that of the VD.
James, R.B.; Geist, G.A.; Young, R.T.; Christie, W.H.; Greulich, F.A.
1987-10-01
The high-temperature diffusion of phosphorus into crystalline silicon causes the formation of electrically inactive phosphorus-rich precipitates near the surface. These precipitates decrease the carrier lifetime and mobility in the diffused layer, and thus lead to less than optimal diode characteristics of electrical junctions formed by diffusion of phosphorus into a p-type substrate. We show that the free-carrier absorption of a CO/sub 2/ laser pulse can be used to completely dissolve the precipitates and remove dislocations in the diffused layer. Furthermore, we find that there are distinct advantages in depositing the pulse energy by way of free-carrier transitions, since the energy can be preferentially deposited in either confined doped layers or diffusion wells that are surrounded by lightly doped material. Our transmission electron microscopy results show that the annealing of the extended lattice defects is caused by melting of the near-surface region and subsequent liquid-phase epitaxial regrowth. Van der Pauw measurements are used to study the carrier concentration, mobility, and sheet resistivity of the samples before and after laser irradiation. The results of the electrical measurements show that there is a large increase in the carrier concentrations and a corresponding drop in the sheet resistivities of the laser irradiated samples. Using a Fourier transform
NASA Astrophysics Data System (ADS)
Gräfe, Joachim; Weigand, Markus; Stahl, Claudia; Träger, Nick; Kopp, Michael; Schütz, Gisela; Goering, Eberhard J.; Haering, Felix; Ziemann, Paul; Wiedwald, Ulf
2016-01-01
The magnetization reversal in nanoscaled antidot lattices is widely investigated to understand the tunability of the magnetic anisotropy and the coercive field through nanostructuring of thin films. By investigating highly ordered focused ion beam milled antidot lattices with a combination of first-order reversal curves and magnetic x-ray microscopy, we fully elucidate the magnetization reversal along the distinct orientations of a hexagonal antidot lattice. This combination proves especially powerful as all partial steps of this complex magnetization reversal can be identified and subsequently imaged. Through this approach we discovered several additional steps that were neglected in previous studies. Furthermore, by imaging the microscopic magnetization state during each reversal step, we were able to link the coercive and interaction fields determined by the first-order reversal curve method to true microscopic magnetization configurations and determine their origin.
ERIC Educational Resources Information Center
McCarthy, Katherine
This unit provides visual activities to engage students in learning the imperfect tense in Spanish. Upon completion of the unit, students will be able to do the following: identify imperfect tense conjugation in children's books; conjugate verbs in the imperfect tense; list uses of the imperfect tense; discriminate between the imperfect tense and…
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2004-01-01
When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.
NASA Astrophysics Data System (ADS)
Sharma, Basant Lal
2015-12-01
Diffraction problems, associated with waves scattered by a semi-infinite crack and rigid constraint, in a hexagonal (honeycomb) lattice model, with nearest neighbor interactions, are solved exactly using the method of Wiener and Hopf. Asymptotic expressions for the scattered waves in far field are provided for both problems, by application of the method of stationary phase to corresponding diffraction integrals. Additionally, for the crack diffraction problem, bond lengths on the semi-infinite row complementing the crack, as well as the crack opening displacement, are provided in closed form except for the presence of concomitant Fourier coefficients of the Wiener-Hopf kernel. For the rigid constraint diffraction problem, the solution on the semi-infinite row complementing the constrained lattice sites, as well as that adjacent to the constrained row, are provided in similar closed form. The amplitude, as well as phase, of waves in far field is compared, through graphical plots, with that of a numerical solution on finite grid. Also, the analytical solution for few sites near the tip of each defect is compared with numerical solution. Both discrete Sommerfeld diffraction problems and their solutions are also relevant to numerical solution of the two-dimensional Helmholtz equation using a 4-point hexagonal grid, besides having applications inherent to the scattering of waves on a honeycomb structure.
NASA Astrophysics Data System (ADS)
Dai, Jian-Qing; Zhu, Jian-Hui; Xu, Jie-Wang
2016-07-01
The recently discovered hexagonal ABC-type hyperferroelectrics, in which the polarization persists in the presence of the depolarization filed, exhibit a variety of intriguing and potentially useful properties [Garrity et al., Phys. Rev. Lett. 112, 127601 (2014)]. For the existing prototype of LiBeSb, we present detailed first-principles calculations concerning the lattice dynamics, electronic structure, and optical properties. An unstable longitudinal optic mode in the high-symmetry structure and a large polarization of 0.5 C/m2 in the polar phase are reported, including the remarkable dependence of Born effective charges on structural distortion. Using the HSE06 hybrid functional, we predict that LiBeSb has a small band-gap of 1.5 eV and shows dominant asymmetric covalent bonding character. Importantly, we find that there are remarkable absorptions in the whole visible spectrum. These features, combined with the enhanced carrier mobility, make LiBeSb as well as the whole family of hexagonal ABC-type hyperferroelectrics as promising candidates for ferroelectric photovoltaic materials with large bulk photovoltaic effect in the visible spectrum.
Ordering of Sphere Forming SISO Tetrablock Terpolymers on a Simple Hexagonal Lattice
Zhang, Jingwen; Sides, Scott; Bates, Frank S.
2012-03-15
Hexagonally ordered spherical and cylindrical morphologies (P{sub 6}/mmm and P{sub 6}/mm space group symmetries) have been identified in bulk poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) tetrablock terpolymers. These materials were synthesized by adding up to 32% by volume O blocks to a parent hydroxy-terminated SIS triblock copolymer containing 40% S by volume, and the resulting morphologies were characterized by small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry and dynamic mechanical spectroscopy. Disordered, spherical and cylindrical phases were documented with increasing O content, where both ordered states exhibit hexagonal symmetry. Theoretical calculations based on a numerical self-consistent field theory for polymers provide crucial insights into the molecular configurations associated with these morphologies. These results offer a new approach to independently control domain shape and packing in block copolymer melts through manipulation of the magnitude and sequencing of the binary segment-segment interactions ({chi}{sub SI} {<=} {chi}{sub SO} << {chi}{sub IO}), which dictate core segregation and the effective interdomain interactions.
ROHATGI,U.S.; JO,J.; CHUNG,B.D.; TAKAHASHI,H.
2002-06-09
Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. The tight lattice core has a very narrow flow channels with a hydraulic diameter less than half of the regular BWR core and, thus, presents a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with Isolation Condenser System (ICs). The vessel is placed in containment with Gravity Driven Cooling System (GDCS) and Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's Simplified Boiling Water Reactor (SBWR). The safety systems are similar to SBWR; ICs and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney, since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration resulted in much larger friction in the core than the SBWR. The constitutive relationships for RELAP5 were assessed for narrow channels, and as a result the heat transfer package was modified. The modified RELAP5 was used to simulate and analyze two of the most limiting events for a tight
NASA Astrophysics Data System (ADS)
Akahama, Y.; Ishihara, D.; Yamashita, H.; Fujihisa, H.; Hirao, N.; Ohishi, Y.
2016-08-01
The pressure-temperature (P -T ) phase diagram of N2-O2 mixture with a composition of N2-48 mol % O2 has been investigated using x-ray diffraction and the phase stability of a hexagonal phase (space group: P 6 /mmm), with the kagome lattice examined under high-pressure and low-temperature conditions. While the phase appears as a low-temperature phase of the cubic phase (P m 3 n ) with the structure of γ -O2 or δ -N2 and is stable in a wide range of pressures and temperatures, it transforms to lower symmetry monoclinic or orthorhombic phases at lower temperature, accompanied with a distortion of the kagome lattice. Based on Rietveld refinements, the monoclinic and orthorhombic phases are found to be in the P 21/a and Cmmm space groups, respectively. In magnetization measurements, a magnetic transition is observed with a relatively large drop of magnetization, corresponding to the cubic-to-hexagonal phase transition. This suggests that the hexagonal phase has a certain magnetic ordered state that arises from the molecular magnetic moment of O2.
NASA Astrophysics Data System (ADS)
Sfyris, D.; Koukaras, E. N.; Pugno, N.; Galiotis, C.
2015-08-01
Continuum modeling of free-standing graphene monolayer, viewed as a two dimensional 2-lattice, requires specification of the components of the shift vector that acts as an auxiliary variable. If only in-plane motions are considered, the energy depends on an in-plane strain measure and the shift vector. The assumption of geometrical and material linearity leads to quadratic energy terms with respect to the shift vector, the strain tensor, and their combinations. Graphene's hexagonal symmetry reduces the number of independent moduli then to four. We evaluate these four material parameters using molecular calculations and the adaptive intermolecular reactive empirical bond order potential and compare them with standard linear elastic constitutive modeling. The results of our calculations show that the predicted values are in reasonable agreement with those obtained solely from our molecular calculations as well as those from the literature. To the best of our knowledge, this is the first attempt to measure mechanical properties when graphene is modeled as a hexagonal 2-lattice. This work targets at the continuum scale when the insight measurements come from finer scales using atomistic simulations.
Sfyris, D. E-mail: dsfyris@sfyris.net; Koukaras, E. N.; Pugno, N.; Galiotis, C.
2015-08-21
Continuum modeling of free-standing graphene monolayer, viewed as a two dimensional 2-lattice, requires specification of the components of the shift vector that acts as an auxiliary variable. If only in-plane motions are considered, the energy depends on an in-plane strain measure and the shift vector. The assumption of geometrical and material linearity leads to quadratic energy terms with respect to the shift vector, the strain tensor, and their combinations. Graphene's hexagonal symmetry reduces the number of independent moduli then to four. We evaluate these four material parameters using molecular calculations and the adaptive intermolecular reactive empirical bond order potential and compare them with standard linear elastic constitutive modeling. The results of our calculations show that the predicted values are in reasonable agreement with those obtained solely from our molecular calculations as well as those from the literature. To the best of our knowledge, this is the first attempt to measure mechanical properties when graphene is modeled as a hexagonal 2-lattice. This work targets at the continuum scale when the insight measurements come from finer scales using atomistic simulations.
Liu, Ying; Dong, Li-fang; Niu, Xue-jiao; Zhang, Chao
2016-02-01
The hexagonal super-lattice pattern composed of the light spot and the dim spot is firstly observed and investigated in the discharge of gas mixture of air and argon by using the dielectric barrier discharge device with double water electrodes. It is found that the dim spot is located at the center of its surrounding three light spots by observing the discharge image. Obviously, the brightness of the light spot and the dim spot are different, which indicates that the plasma states of the light spot and the dim spot may be different. The optical emission spectrum method is used to further study the several plasma parameters of the light spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³IIg) are measured, from which the molecule vibration temperatures of the light spot and the dim spot are calculated. Based on the relative intensity ratio of the line at 391.4 nm and the N₂ line at 394.1 nm, the average electron energies of the light spot and the dim spot are investigated. The broadening of spectral line 696.57 nm (2P₂-1S₅) is used to study the electron densities of the light spot and the dim spot. The experiment shows that the molecule vibration temperature, average electron energy and the electron density of the dim spot are higher than those of the light spot in the same argon content. The molecule vibration temperature and electron density of the light spot and dim spot increase with the argon content increasing from 70% to 95%, while average electron energies of the light spot and dim spot decrease gradually. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The surface discharge induced by the volume discharge (VD) has the decisive effect on the formation of the dim spot. The experiment above plays an important role in studying the formation mechanism of the hexagonal super-lattice pattern with light spot and
Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems
Björkman, Torbjörn; Kurasch, Simon; Lehtinen, Ossi; Kotakoski, Jani; Yazyev, Oleg V.; Srivastava, Anchal; Skakalova, Viera; Smet, Jurgen H.; Kaiser, Ute; Krasheninnikov, Arkady V.
2013-01-01
By combining first-principles and classical force field calculations with aberration-corrected high-resolution transmission electron microscopy experiments, we study the morphology and energetics of point and extended defects in hexagonal bilayer silica and make comparison to graphene, another two-dimensional (2D) system with hexagonal symmetry. We show that the motifs of isolated point defects in these 2D structures with otherwise very different properties are similar, and include Stone-Wales-type defects formed by structural unit rotations, flower defects and reconstructed double vacancies. The morphology and energetics of extended defects, such as grain boundaries have much in common as well. As both sp2-hybridised carbon and bilayer silica can also form amorphous structures, our results indicate that the morphology of imperfect 2D honeycomb lattices is largely governed by the underlying symmetry of the lattice. PMID:24336488
NASA Astrophysics Data System (ADS)
Paul, Barnita; Chatterjee, Swastika; Gop, Sumana; Roy, Anushree; Grover, Vinita; Shukla, Rakesh; Tyagi, A. K.
2016-07-01
Rare-earth indates emerge as one of the efficient geometric ferroelectric materials, in which the spontaneous polarization can be tuned by varying their crystal structure along the 4f rare-earth series. We report a systematic study of structural changes in hexagonal REInO3 perovskite (RE = Ho3+, Dy3+, Tb3+, Gd3+, Eu3+, Sm3+) and YInO3 of P63 cm space group by powder x-ray diffraction (XRD) and Raman scattering measurements. The crystal structure of these materials could be investigated by the Rietveld refinement of their XRD patterns. We have calculated density of states of phonons using density functional theory and examined the atomic displacements corresponding to observed Raman modes. The evolution of lattice dynamics of REInO3 has been probed by correlating various Raman modes with the structural distortion of the unit cell and the characteristics of the rare-earth ions. We report the appearance of the coupled mode in the phonon spectra. We have estimated spontaneous polarization from the structural distortion in this system and shown that it can be modulated by varying RE3+ ions in REInO3. We also report the appearance of a ferroelectric soft Raman mode, a unique characteristic of these materials.
Irregularities in Imperfective Derivation
ERIC Educational Resources Information Center
Levin, Maurice I.
1977-01-01
This article discusses presentation of Russian conjugation via the one-stem system advocated by Lipson and Townsend, and attempts a more unified and complete presentation of irregularities in imperfect derivation. Two major irregularities are occurrence of an unexpected suffix and unpredictable alternation in the root of the derived imperfective.…
Imperfection Insensitive Thin Shells
NASA Astrophysics Data System (ADS)
Ning, Xin
The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century. This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells. Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression
Learning with imperfectly labeled patterns
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of learning in pattern recognition using imperfectly labeled patterns is considered. The performance of the Bayes and nearest neighbor classifiers with imperfect labels is discussed using a probabilistic model for the mislabeling of the training patterns. Schemes for training the classifier using both parametric and non parametric techniques are presented. Methods for the correction of imperfect labels were developed. To gain an understanding of the learning process, expressions are derived for success probability as a function of training time for a one dimensional increment error correction classifier with imperfect labels. Feature selection with imperfectly labeled patterns is described.
NASA Astrophysics Data System (ADS)
Mirzagholi, Leila; Vikman, Alexander
2015-06-01
We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.
ERIC Educational Resources Information Center
Burkhauser, Beth; Porter, Dave
2010-01-01
This article discusses the international interdependence Hexagon Project for Haiti which invites students, ages five through eighteen, to create an image within a hexagonal template and respond to big questions surrounding a global culture of interdependence. The hexagon is a visual metaphor for interdependence, with its potential to infinitely…
Equivalent Imperfections In Arched Structures
NASA Astrophysics Data System (ADS)
Dallemule, Marian
2015-09-01
There are currently three design methods to verify the in-plane buckling of an arched structure: substitute member method, the method of equivalent imperfection with recommendations for arched bridges, and the equivalent unique global and local initial imperfection method (EUGLI), which uses the critical elastic buckling mode as an imperfection. The latter method is included in the EN 1993-1-1 cl. 5.3.2 (11) since 2002; however, to this day it is neither utilized in the design practice nor is it incorporated in ordinary structural analysis software. The main purpose of this article is to show the application of the proposed methods in a step-by-step manner to the numerical example considered and to compare these design methods for various arched structures. Verification of the in-plane buckling of an arch is explained in detail.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Murakami, Takeshi; Naito, Makio
2016-07-01
The Ni-doped lithium manganese oxide, LiNi0.5Mn1.5O4, has received much attention as a cathode active material in high-energy lithium-ion batteries (LIBs). This active material has two different spinel structures depending on the ordering state of the Ni and Mn ions. The ordered LiNi0.5Mn1.5O4 spinel has an inferior cathode performance than the disordered phase because of its poor electronic conductivity. However, the ordered LiNi0.5Mn1.5O4 spinel possesses the potential advantage of avoiding dissolution of the Mn ion, which is an issue for the disordered spinel. The improvement of cathode performance is important for future applications. Here, we report a unique approach to improve the cathode performance of the ordered LiNi0.5Mn1.5O4 spinel. The mechanical treatment using an attrition-type mill successfully inserted lattice strains into the ordered LiNi0.5Mn1.5O4 spinel structure without a phase transformation to the disordered phase. The insertion of lattice strains by mechanical stresses provided an increased discharge capacity and a decreased charge transfer resistance. This limited crystal structure modification improved the cathode performance. The present work has the potential for application of the mechanically treated ordered LiNi0.5Mn1.5O4 spinel as a cathode for high-energy LIBs.
Competing structures in two dimensions: Square-to-hexagonal transition
NASA Astrophysics Data System (ADS)
Gränz, Barbara; Korshunov, Sergey E.; Geshkenbein, Vadim B.; Blatter, Gianni
2016-08-01
We study a system of particles in two dimensions interacting via a dipolar long-range potential D /r3 and subject to a square-lattice substrate potential V (r ) with amplitude V and lattice constant b . The isotropic interaction favors a hexagonal arrangement of the particles with lattice constant a , which competes against the square symmetry of the underlying substrate lattice. We determine the minimal-energy states at fixed external pressure p generating the commensurate density n =1 /b2=(4/3 ) 1 /2/a2 in the absence of thermal and quantum fluctuations, using both analytical techniques based on the harmonic and continuum elastic approximations as well as numerical relaxation of particle configurations. At large substrate amplitude V >0.2 eD, with eD=D /b3 the dipolar energy scale, the particles reside in the substrate minima and hence arrange in a square lattice. Upon decreasing V , the square lattice turns unstable with respect to a zone-boundary shear mode and deforms into a period-doubled zigzag lattice. Analytic and numerical results show that this period-doubled phase in turn becomes unstable at V ≈0.074 eD towards a nonuniform phase developing an array of domain walls or solitons; as the density of solitons increases, the particle arrangement approaches that of a rhombic (or isosceles triangular) lattice. At a yet smaller substrate value estimated as V ≈0.046 eD, a further solitonic transition establishes a second nonuniform phase which smoothly approaches the hexagonal (or equilateral triangular) lattice phase with vanishing amplitude V . At small but finite amplitude V , the hexagonal phase is distorted and hexatically locked at an angle of φ ≈3 .8∘ with respect to the substrate lattice. The square-to-hexagonal transformation in this two-dimensional commensurate-incommensurate system thus involves a complex pathway with various nontrivial lattice- and modulated phases.
Rubin, Irwin
1978-01-01
A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.
Macromolecular diffractive imaging using imperfect crystals.
Ayyer, Kartik; Yefanov, Oleksandr M; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R; Schmidt, Marius; Sarrou, Iosifina; Spence, John C H; Weierstall, Uwe; White, Thomas A; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S; Robinson, Joseph S; Koglin, Jason E; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N
2016-02-11
The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing. PMID
Macromolecular diffractive imaging using imperfect crystals
Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.
2016-01-01
The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980
Macromolecular diffractive imaging using imperfect crystals
NASA Astrophysics Data System (ADS)
Ayyer, Kartik; Yefanov, Oleksandr M.; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.
2016-02-01
The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.
Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens
2015-10-01
Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition. PMID:26550724
Critical Surface of the Hexagonal Polygon Model
NASA Astrophysics Data System (ADS)
Grimmett, Geoffrey R.; Li, Zhongyang
2016-05-01
The hexagonal polygon model arises in a natural way via a transformation of the 1-2 model on the hexagonal lattice, and it is related to the high temperature expansion of the Ising model. There are three types of edge, and three corresponding parameters α ,β ,γ >0. By studying the long-range order of a certain two-edge correlation function, it is shown that the parameter space (0,∞)^3 may be divided into subcritical and supercritical regions, separated by critical surfaces satisfying an explicitly known formula. This result complements earlier work on the Ising model and the 1-2 model. The proof uses the Pfaffian representation of Fisher, Kasteleyn, and Temperley for the counts of dimers on planar graphs.
Seismic response of LMFBR tanks with imperfections
Gvildys, J.; Ma, D.C.; Chang, Y.W.
1985-01-01
This paper deals with seismic responses of imperfect circular tanks. Physical imperfection due to manufacturing tolerances and numerical imperfection due to finite element spatial discretization are described. Numerical imperfections produced by 4-node and 9-node Lagrangian shell elements are examined. A convergence study is performed in which the number of the shell elements required to capture the dominant ''out-of-roundness'' modes under seismic excitations is determined. The response of a shell with a cos4theta imperfection due to manufacturing tolerances is compared with that of a perfect circular shell to demonstrate the effects of imperfection on the axial stresses of the shell under seismic conditions. 3 refs., 4 figs., 2 tabs.
Imperfect Cloning Operations in Algebraic Quantum Theory
NASA Astrophysics Data System (ADS)
Kitajima, Yuichiro
2015-01-01
No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.
Peters, Roswell D. M.
1982-01-01
A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.
Buckling of conical shell with local imperfections
NASA Technical Reports Server (NTRS)
Cooper, P. A.; Dexter, C. B.
1974-01-01
Small geometric imperfections in thin-walled shell structures can cause large reductions in buckling strength. Most imperfections found in structures are neither axisymmetric nor have the shape of buckling modes but rather occur locally. This report presents the results of a study of the effect of local imperfections on the critical buckling load of a specific axially compressed thin-walled conical shell. The buckling calculations were performed by using a two-dimensional shell analysis program referred to as the STAGS (Structural Analysis of General Shells) computer code, which has no axisymmetry restrictions. Results show that the buckling load found from a bifurcation buckling analysis is highly dependent on the circumferential arc length of the imperfection type studied. As the circumferential arc length of the imperfection is increased, a reduction of up to 50 percent of the critical load of the perfect shell can occur. The buckling load of the cone with an axisymmetric imperfections is nearly equal to the buckling load of imperfections which extended 60 deg or more around the circumference, but would give a highly conservative estimate of the buckling load of a shell with an imperfection of a more local nature.
A Developmental Perspective on the Imperfective Paradox
ERIC Educational Resources Information Center
Kazanina, Nina; Phillips, Colin
2007-01-01
Imperfective or progressive verb morphology makes it possible to use the name of a whole event to refer to an activity that is clearly not a complete instance of that event, leading to what is known as the Imperfective Paradox. For example, a sentence like "John was building a house" does not entail that a house ever got built. The Imperfective…
Methodological imperfection and formalizations in scientific activity
Svetlichny, G.
1987-03-01
Any mathematical formalization of scientific activity allows for imperfections in the methodology that is formalized. These can be of three types, dirty, rotten, and dammed. Restricting mathematical attention to those methods that cannot be construed to be imperfect drastically reduces the class of objects that must be analyzed, and related all other objects to these more regular ones. Examples are drawn from empirical logic.
Turing patterns beyond hexagons and stripes.
Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R
2006-09-01
The best known Turing patterns are composed of stripes or simple hexagonal arrangements of spots. Until recently, Turing patterns with other geometries have been observed only rarely. Here we present experimental studies and mathematical modeling of the formation and stability of hexagonal and square Turing superlattice patterns in a photosensitive reaction-diffusion system. The superlattices develop from initial conditions created by illuminating the system through a mask consisting of a simple hexagonal or square lattice with a wavelength close to a multiple of the intrinsic Turing pattern's wavelength. We show that interaction of the photochemical periodic forcing with the Turing instability generates multiple spatial harmonics of the forcing patterns. The harmonics situated within the Turing instability band survive after the illumination is switched off and form superlattices. The square superlattices are the first examples of time-independent square Turing patterns. We also demonstrate that in a system where the Turing band is slightly below criticality, spatially uniform internal or external oscillations can create oscillating square patterns. PMID:17014248
Hexagonal uniformly redundant arrays for coded-aperture imaging
NASA Technical Reports Server (NTRS)
Finger, M. H.; Prince, T. A.
1985-01-01
Uniformly redundant arrays are used in coded-aperture imaging, a technique for forming images without mirrors or lenses. The URAs constructed on hexagonal lattices, are outlined. Details are presented for the construction of a special class of URAs, the skew-Hadamard URAs, which have the following properties: (1) nearly half open and half closed (2) antisymmetric upon rotation by 180 deg except for the central cell and its repetitions. Some of the skew-Hadamard URAs constructed on a hexagonal lattice have additional symmetries. These special URAs that have a hexagonal unit pattern, and are antisymmetric upon rotation by 60 deg, called hexagonal uniformly redundant arrays (HURAs). The HURAs are particularly suited to gamma-ray imaging in high background situations. In a high background situation the best sensitivity is obtained with a half open and half closed mask. The hexagonal symmetry of an HURA is more appropriate for a round position-sensitive detector or a closed-packed array of detectors than a rectangular symmetry.
Peters, R.D.M.
1982-11-02
A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.
Room-Temperature Multiferroic Hexagonal LuFeO3
Cheng, Xuemei; Balke, Nina; Chi, Miaofang; Gai, Zheng; Keavney, David; Lee, Ho Nyung; Shen, Jian; Snijders, Paul C; Wang, Wenbin; Ward, Thomas Z; Xu, Xiaoshan; Yi, Jieyu; Zhu, Leyi; Christen, Hans M; Zhao, Jun
2013-01-01
We observed the coexistence of ferroelectricity and weak ferromagnetism at room temperature in the hexagonal phase of LuFeO3 stabilized by epitaxial thin film growth. While the ferroelectricity in hexagonal LuFeO3 can be understood as arising from its polar structure, the observation of weak ferromagnetism at room temperature is remarkable considering the frustrated triangular spin structure. An explanation of the room temperature weak ferromagnetism is proposed in terms of a subtle lattice distortion revealed by the structural characterization. The combination of ferroelectricity and weak ferromagnetism in epitaxial films at room temperature offers great potential for the application of this novel multiferroic material in next generation devices.
Constrained Clustering With Imperfect Oracles.
Zhu, Xiatian; Loy, Chen Change; Gong, Shaogang
2016-06-01
While clustering is usually an unsupervised operation, there are circumstances where we have access to prior belief that pairs of samples should (or should not) be assigned with the same cluster. Constrained clustering aims to exploit this prior belief as constraint (or weak supervision) to influence the cluster formation so as to obtain a data structure more closely resembling human perception. Two important issues remain open: 1) how to exploit sparse constraints effectively and 2) how to handle ill-conditioned/noisy constraints generated by imperfect oracles. In this paper, we present a novel pairwise similarity measure framework to address the above issues. Specifically, in contrast to existing constrained clustering approaches that blindly rely on all features for constraint propagation, our approach searches for neighborhoods driven by discriminative feature selection for more effective constraint diffusion. Crucially, we formulate a novel approach to handling the noisy constraint problem, which has been unrealistically ignored in the constrained clustering literature. Extensive comparative results show that our method is superior to the state-of-the-art constrained clustering approaches and can generally benefit existing pairwise similarity-based data clustering algorithms, such as spectral clustering and affinity propagation. PMID:25622327
Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films
NASA Astrophysics Data System (ADS)
Alam, M. T.; Bresnehan, M. S.; Robinson, J. A.; Haque, M. A.
2014-01-01
Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m-1 K-1, is lower than the bulk basal plane value (390 W m-1 K-1) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics.
Teaching Imperfect Competition at the Principles Level.
ERIC Educational Resources Information Center
Weber, William V.; Highfill, Jannett K.
1990-01-01
Argues that, although most economics textbooks' explanations of imperfect competition may involve three to five models, the concept can be taught using a single, simple model. Uses several business/economic examples as illustrations. (DB)
Understanding Your Vision: The "Imperfect Eye"
... Navigation Bar Home Current Issue Past Issues Feature: Vision Understanding Your Vision: The "Imperfect Eye" Past Issues / Summer 2008 Table ... are different and so are the types of vision that we have. Understanding how some of us ...
Methodological Imperfection and Formalizations of Scientific Activity
NASA Astrophysics Data System (ADS)
Svetlichny, George
1987-03-01
Any mathematical formalization of scientific activity allows for imperfections in the methodology that is formalized. These can be of three types, “dirty,” “rotten,” and “dammed.” Restricting mathematical attention to those methods that cannot be construed to be imperfect drastically reduces the class of objects that must be analyzed, and relates all other objects to these more regular ones. Examples are drawn from empirical logic.
On the perfect hexagonal packing of rods
NASA Astrophysics Data System (ADS)
Starostin, E. L.
2006-04-01
In most cases the hexagonal packing of fibrous structures or rods extremizes the energy of interaction between strands. If the strands are not straight, then it is still possible to form a perfect hexatic bundle. Conditions under which the perfect hexagonal packing of curved tubular structures may exist are formulated. Particular attention is given to closed or cycled arrangements of the rods like in the DNA toroids and spools. The closure or return constraints of the bundle result in an allowable group of automorphisms of the cross-sectional hexagonal lattice. The structure of this group is explored. Examples of open helical-like and closed toroidal-like bundles are presented. An expression for the elastic energy of a perfectly packed bundle of thin elastic rods is derived. The energy accounts for both the bending and torsional stiffnesses of the rods. It is shown that equilibria of the bundle correspond to solutions of a variational problem formulated for the curve representing the axis of the bundle. The functional involves a function of the squared curvature under the constraints on the total torsion and the length. The Euler-Lagrange equations are obtained in terms of curvature and torsion and due to the existence of the first integrals the problem is reduced to the quadrature. The three-dimensional shape of the bundle may be readily reconstructed by integration of the Ilyukhin-type equations in special cylindrical coordinates. The results are of universal nature and are applicable to various fibrous structures, in particular, to intramolecular liquid crystals formed by DNA condensed in toroids or packed inside the viral capsids. International Workshop on Biopolymers: Thermodynamics, Kinetics and Mechanics of DNA, RNA and Proteins, 30.05.2005-3.06.2005, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy.
Structural properties of hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Ooi, N.; Rajan, V.; Gottlieb, J.; Catherine, Y.; Adams, J. B.
2006-04-01
The electronic and structural properties of hexagonal boron nitride (BN) were studied using density functional theory calculations. Three different approximations for the exchange—correlation energy (the local density and two forms of the generalized gradient)—were used to calculate properties such as the bulk modulus, cohesive energy and lattice constants to determine their relative predictive abilities for this system. In general, calculations using the local density approximation produced properties slightly closer to experimental values than calculations with either generalized gradient approximations. Different stackings, or arrangements of one basal plane with respect to another, were examined to determine the equilibrium stacking(s) and it was found that the different stackings have similar cohesive energies and bulk moduli. Energy versus volume curves were calculated for each stacking using two different methods to determine their relative efficacy. Bulk moduli values obtained assuming no pressure dependence were closer to experimental values than those obtained from three common equations of state. Comparisons between the cohesive energies of hexagonal BN and cubic BN show that the cubic phase is more stable. The pressure/volume dependence of the band structure was studied for several different stackings and all showed similar behaviour, specifically a 3-4.5 eV band gap that was nearly independent of pressure in the -500 to +500 kb regime. These calculated results of the pressure/volume dependence of the band structure are the first reports for this system.
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)
2011-01-01
Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.
Kang, Joongoo; Zhang, Lijun; Wei, Su-Huai
2016-02-18
Many important layered semiconductors, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are derived from a hexagonal lattice. A single layer of such hexagonal semiconductors generally has a direct bandgap at the high-symmetry point K, whereas it becomes an indirect, optically inactive semiconductor as the number of layers increases to two or more. Here, taking hBN and MoS2 as examples, we reveal the microscopic origin of the direct-to-indirect bandgap transition of hexagonal layered materials. Our symmetry analysis and first-principles calculations show that the bandgap transition arises from the lack of the interlayer orbital couplings for the band-edge states at K, which are inherently weak because of the crystal symmetries of hexagonal layered materials. Therefore, it is necessary to judiciously break the underlying crystal symmetries to design more optically active, multilayered semiconductors from hBN or TMDs. PMID:26800573
An Explanation for Saturn's Hexagon
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-08-01
For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a
Thermal stability of hexagonal OsB2
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A; Payzant, E Andrew
2014-01-01
The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 C and cooling in vacuo down to 225 C. During the heating, the sacrificial reaction 2OsB2+3O2 2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276 426 C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.
Structural analysis of Li-intercalated hexagonal boron nitride
Sumiyoshi, A.; Hyodo, H.; Kimura, K.
2012-03-15
A structural investigation of Li-intercalated hexagonal boron nitride (Li-h-BNIC) was performed by synchrotron powder X-ray diffraction analysis and transmission electron microscopy. The host BN framework of Li-h-BNIC was expanded by Li-intercalation. The intralayer B-N bond length was increased by 2.48(1)% and the interlayer distance was expanded by 12.86(1)%. No superlattice structure of intercalated Li was observed. - Graphical abstract: XRD pattern fitting of the sample and schematic view of host h-BN lattice. Highlights: Black-Right-Pointing-Pointer Li-intercalated h-BN was investigated by synchrotron radiation powder XRD. Black-Right-Pointing-Pointer Lattice parameter of host h-BN lattice was increased by intercalation. Black-Right-Pointing-Pointer Increase ratio of B-N bond length was considerably larger than those of Li GICs.
Valley Hall Effect in Two-Dimensional Hexagonal Lattices
NASA Astrophysics Data System (ADS)
Yamamoto, Michihisa; Shimazaki, Yuya; Borzenets, Ivan V.; Tarucha, Seigo
2015-12-01
Valley is a quantum number defined for energetically degenerate but nonequivalent structures in energy bands of a crystalline material. Recent discoveries of two-dimensional (2D) layered materials have shed light on the potential use of this degree of freedom for information carriers because the valley can now be potentially manipulated in integrated 2D architectures. The valleys separated by a long distance in a momentum space are robust against external disturbance and the flow of the valley, the valley current, is nondissipative because it carries no net electronic current. Among the various 2D valley materials, graphene has by far the highest crystal quality, leading to an extremely long valley relaxation length in the bulk. In this review, we first describe the theoretical background of the valley Hall effect, which converts an electric field into a valley current. We then describe the first observation of the valley Hall effect in monolayer MoS2. Finally, we describe experiments on the generation and detection of the pure valley current in monolayer and bilayer graphene, achieved recently using the valley Hall effect and inverse valley Hall effect. While we show unambiguous evidence of a pure valley current flowing in graphene, we emphasize that the field of "valleytronics" is still in its infancy and that further theoretical and experimental investigations are necessary.
Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films
Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki; Mizuhata, Minoru
2009-09-15
Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectra showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted
Imperfect chimera states for coupled pendula.
Kapitaniak, Tomasz; Kuzma, Patrycja; Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri
2014-01-01
The phenomenon of chimera states in the systems of coupled, identical oscillators has attracted a great deal of recent theoretical and experimental interest. In such a state, different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Here, considering the coupled pendula, we find another pattern, the so-called imperfect chimera state, which is characterized by a certain number of oscillators which escape from the synchronized chimera's cluster or behave differently than most of uncorrelated pendula. The escaped elements oscillate with different average frequencies (Poincare rotation number). We show that imperfect chimera can be realized in simple experiments with mechanical oscillators, namely Huygens clock. The mathematical model of our experiment shows that the observed chimera states are controlled by elementary dynamical equations derived from Newton's laws that are ubiquitous in many physical and engineering systems. PMID:25223296
Impact of imperfect information on network attack
NASA Astrophysics Data System (ADS)
Melchionna, Andrew; Caloca, Jesus; Squires, Shane; Antonsen, Thomas M.; Ott, Edward; Girvan, Michelle
2015-03-01
This paper explores the effectiveness of network attack when the attacker has imperfect information about the network. For Erdős-Rényi networks, we observe that dynamical importance and betweenness centrality-based attacks are surprisingly robust to the presence of a moderate amount of imperfect information and are more effective compared with simpler degree-based attacks even at moderate levels of network information error. In contrast, for scale-free networks the effectiveness of attack is much less degraded by a moderate level of information error. Furthermore, in the Erdős-Rényi case the effectiveness of network attack is much more degraded by missing links as compared with the same number of false links.
Impact of imperfect information on network attack.
Melchionna, Andrew; Caloca, Jesus; Squires, Shane; Antonsen, Thomas M; Ott, Edward; Girvan, Michelle
2015-03-01
This paper explores the effectiveness of network attack when the attacker has imperfect information about the network. For Erdős-Rényi networks, we observe that dynamical importance and betweenness centrality-based attacks are surprisingly robust to the presence of a moderate amount of imperfect information and are more effective compared with simpler degree-based attacks even at moderate levels of network information error. In contrast, for scale-free networks the effectiveness of attack is much less degraded by a moderate level of information error. Furthermore, in the Erdős-Rényi case the effectiveness of network attack is much more degraded by missing links as compared with the same number of false links. PMID:25871157
Quantum metrology with imperfect states and detectors
Datta, Animesh; Zhang Lijian; Thomas-Peter, Nicholas; Smith, Brian J.; Walmsley, Ian A.; Dorner, Uwe
2011-06-15
Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this paper, we identify the major sources of imperfection of an optical sensor: input state preparation inefficiency, sensor losses, and detector inefficiency. The second of these has received much attention; we show that it is the least damaging to surpassing the standard quantum limit in a optical interferometric sensor. Further, we show that photonic states that can be prepared in the laboratory using feasible resources allow a measurement strategy using photon-number-resolving detectors that not only attain the Heisenberg limit for phase estimation in the absence of losses, but also deliver close to the maximum possible precision in realistic scenarios including losses and inefficiencies. In particular, we give bounds for the tradeoff between the three sources of imperfection that will allow true quantum-enhanced optical metrology
Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho
2014-01-15
A comprehensive study of the effects of structural imperfections in MgB{sub 2} superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB{sub 2} material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB{sub 2}, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB{sub 2}, however, even at low sintering temperature, and thus block current transport paths.
Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.
2004-01-01
An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.
Marin, E.; Tomas, R.; Bambade, P.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; Seryi, A.; White, G.; Woodley, M.; /SLAC
2011-12-09
The current status for the ATF2 Nominal and Ultra-low {beta}* lattices are presented in this paper. New lattice designs have been obtained in order to minimise the impact of the last interpretation of multipole measurements that have been included into the model. However, the new ATF2 Ultra-low design is not able to recover the expected vertical beam size at the IP with the current magnet distribution. Therefore, different quadrupole sorting have been studied. A significant gain is evident for the ATF2 Ultra-low lattice when sorting the magnets according to the skew-sextupolar components. The ATF2 Nominal lattice is also expected to benefit from the new sorting. Tuning results of the new ATF2 Ultra-low lattice under realistic imperfections are also reported.
Thermal stability of hexagonal OsB{sub 2}
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.
2014-11-15
The synthesis of novel hexagonal ReB{sub 2}-type OsB{sub 2} ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of {sup 10}B and {sup 11}B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched {sup 11}B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB{sub 2} phase was the main product of synthesis with a small quantity of Os{sub 2}B{sub 3} phase present after synthesis as an intermediate product. In the second case, where coarse crystalline {sup 11}B powder was used as a raw material, only Os{sub 2}B{sub 3} boride was synthesized mechanochemically. The thermal stability of hexagonal OsB{sub 2} powder was studied by heating under argon up to 876 °C and cooling in vacuo down to −225 °C. During the heating, the sacrificial reaction 2OsB{sub 2}+3O{sub 2}→2Os+2B{sub 2}O{sub 3} took place due to presence of O{sub 2}/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B{sub 2}O{sub 3} and precipitation of Os metal out of the OsB{sub 2} lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB{sub 2} changed significantly. The shrinkage of the a lattice parameter was recorded in 276–426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB{sub 2} lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O{sub 2}, the hexagonal OsB{sub 2} ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice
Hexagonal diamonds in meteorites: implications.
Hanneman, R E; Strong, H M; Bundy, F P
1967-02-24
A new polymorph of carbon, hexagonal diamond, has been discovered in the Canyon Diablo and Goalpara meteorites. This phase had been synthesized recently under specific high-pressure conditions in the laboratory. Our results: provide strong evidence that diamonds found in these meteorites were produced by intense shock pressures acting on crystalline graphite inclusions present within the meteorite before impact, rather than by disintegration of larger, statically grown diamonds, as some theories propose. PMID:17830485
Phase transformation of strontium hexagonal ferrite
NASA Astrophysics Data System (ADS)
Bilovol, V.; Martínez-García, R.
2015-11-01
The phase transformation of strontium hexagonal ferrite (SrFe12O19) to magnetite (Fe3O4) as main phase and strontium carbonate (SrCO3) as secondary phase is reported here. SrFe12O19 powder was obtained by a heat treatment at 250 °C under controlled oxygen flow. It was observed that the phase transformation occurred when the SrFe12O19 ferrite was heated up to 625 °C in confinement conditions. This transformation took place by a combination of three factors: the presence of stresses in the crystal lattice of SrFe12O19 due to a low synthesis temperature, the reduction of Fe3+ to Fe2+ during the heating up to 625 °C, and the similarity of the coordination spheres of the iron atoms present in the S-block of SrFe12O19 and Fe3O4. X-ray diffraction analysis confirmed the existence of strain and crystal deformation in SrFe12O19 and the absence of them in the material after the phase transformation. Dispersive X-ray absorption spectroscopy and Fe57 Mössbauer spectroscopy provided evidences of the reduction of Fe3+ to Fe2+ in the SrFe12O19 crystal.
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
Imperfect relativistic mirrors in the quantum regime
Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.
2014-05-15
The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.
Learning receptor positions from imperfectly known motions
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.
1990-01-01
An algorithm is described for learning image interpolation functions for sensor arrays whose sensor positions are somewhat disordered. The learning is based on failures of translation invariance, so it does not require knowledge of the images being presented to the visual system. Previously reported implementations of the method assumed the visual system to have precise knowledge of the translations. It is demonstrated that translation estimates computed from the imperfectly interpolated images can have enough accuracy to allow the learning process to converge to a correct interpolation.
Imperfection, practice and humility in clinical ethics.
Garchar, Kim
2012-10-01
In this essay, I provide a description of the discipline of ethics using the philosophies of Aristotle and the American pragmatist John Dewey. Specifically, I argue that ethics is an active undertaking that is ambiguous and pluralistic. I then normatively prescribe the way in which clinical ethicists ought to approach their work in medicine. Rather than endeavouring to become, or behaving as if they are, experts, clinical ethicists must be humble. They must practise ethics. That is, they must admit ethics is the study and pursuit of the good life but that this study and pursuit occurs imperfectly in the face of problematic situations. PMID:22995007
Chaos in an imperfectly premixed model combustor.
Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O
2015-02-01
This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration. PMID:25725637
Chaos in an imperfectly premixed model combustor
Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.
2015-02-15
This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.
Method for correcting imperfections on a surface
Sweatt, William C.; Weed, John W.
1999-09-07
A process for producing near perfect optical surfaces. A previously polished optical surface is measured to determine its deviations from the desired perfect surface. A multi-aperture mask is designed based on this measurement and fabricated such that deposition through the mask will correct the deviations in the surface to an acceptable level. Various mask geometries can be used: variable individual aperture sizes using a fixed grid for the apertures or fixed aperture sizes using a variable aperture spacing. The imperfections are filled in using a vacuum deposition process with a very thin thickness of material such as silicon monoxide to produce an amorphous surface that bonds well to a glass substrate.
Madelung energy of Yukawa lattices.
Pereira, P C N; Apolinario, S W S
2012-10-01
We propose a method to obtain an approximate closed form expression for the Madelung energy (ME) of Yukawa lattices. Such a method is applied for lattices of different topologies and dimensions. The obtained Madelung energies have a satisfactory accuracy for all ranges of the screening parameter κ of the Yukawa potential, and it becomes exact in the asymptotic limits κ→0 and κ→+∞. For instance, for the triangular lattice, the maximum relative error of the ME given by the method is about 0.0047. Also, satisfactory results are obtained for the one-component plasma limit. The Madelung constants of the two-dimensional hexagonal BN and square NaCl and the three-dimensional cubic NaCl crystals are estimated with a relative error of 0.004, 0.006, and 0.03, respectively. Finally, different ways to improve the method are presented and discussed. PMID:23214705
Modeling Being "Lost": Imperfect Situation Awareness
NASA Technical Reports Server (NTRS)
Middleton, Victor E.
2011-01-01
Being "lost" is an exemplar of imperfect Situation Awareness/Situation Understanding (SA/SU) -- information/knowledge that is uncertain, incomplete, and/or just wrong. Being "lost" may be a geo-spatial condition - not knowing/being wrong about where to go or how to get there. More broadly, being "lost" can serve as a metaphor for uncertainty and/or inaccuracy - not knowing/being wrong about how one fits into a larger world view, what one wants to do, or how to do it. This paper discusses using agent based modeling (ABM) to explore imperfect SA/SU, simulating geo-spatially "lost" intelligent agents trying to navigate in a virtual world. Each agent has a unique "mental map" -- its idiosyncratic view of its geo-spatial environment. Its decisions are based on this idiosyncratic view, but behavior outcomes are based on ground truth. Consequently, the rate and degree to which an agent's expectations diverge from ground truth provide measures of that agent's SA/SU.
Imperfect twinning: a clinical and ethical dilemma
Denardin, Daniela; Telles, Jorge Alberto B.; Betat, Rosilene da Silveira; Fell, Paulo Renato K.; da Cunha, André Campos; Targa, Luciano Vieira; Zen, Paulo Ricardo G.; Rosa, Rafael Fabiano M.
2013-01-01
OBJECTIVE To review the history, epidemiology, etiology, gestational aspects, diagnosis and prognosis of imperfect twinning. DATA SOURCES Scientific articles were searched in PubMed, SciELO and Lilacs databases, using the descriptors "conjoined twins", "multiple pregnancy", "ultrasound", "magnetic resonance imaging" and "prognosis". The research was not delimited to a specific period of time and was supplemented with bibliographic data from books. DATA SYNTHESIS: The description of conjoined twins is legendary. The estimated frequency is 1/45,000-200,000 births. These twins are monozygotic, monochorionic and usually monoamniotic. They can be classified by the most prominent fusion site, by the symmetry between the conjoined twins or by the sharing structure. The diagnosis can be performed in the prenatal period or after birth by different techniques, such as ultrasound, magnetic resonance imaging and echocardiography. These tests are of paramount importance for understanding the anatomy of both fetuses/children, as well as for prognosis and surgical plan determination. CONCLUSIONS Although imperfect twinning is a rare condition, the prenatal diagnosis is very important in order to evaluate the fusion site and its complexity. Hence, the evaluation of these children should be multidisciplinary, involving mainly obstetricians, pediatricians and pediatric surgeons. However, some decisions may constitute real ethical dilemmas, in which different points should be discussed and analyzed with the health team and the family. PMID:24142323
Statistical analysis of imperfection effect on cylindrical buckling response
NASA Astrophysics Data System (ADS)
Ismail, M. S.; Purbolaksono, J.; Muhammad, N.; Andriyana, A.; Liew, H. L.
2015-12-01
It is widely reported that no efficient guidelines for modelling imperfections in composite structures are available. In response, this work evaluates the imperfection factors of axially compressed Carbon Fibre Reinforced Polymer (CFRP) cylinder with different ply angles through finite element (FE) analysis. The sensitivity of imperfection factors were analysed using design of experiment: factorial design approach. From the analysis it identified three critical factors that sensitively reacted towards buckling load. Furthermore empirical equation is proposed according to each type of cylinder. Eventually, critical buckling loads estimated by empirical equation showed good agreements with FE analysis. The design of experiment methodology is useful in identifying parameters that lead to structures imperfection tolerance.
NASA Astrophysics Data System (ADS)
Barrett, Christopher Duncan
Improving the formability and crashworthiness of wrought magnesium alloys are the two biggest challenges in current magnesium technology. Magnesium is the best material candidate for enabling required improvements in fuel economy of combustion engines and increases in ranges of electric vehicles. In hexagonal closed-packed (HCP) structures, effects of grain size/morphology and crystallographic texture are particularly important. Prior research has established a general understanding of the dependences of strength and strain anisotropy on grain morphology and texture. Unfortunately, deformation, recrystallization, and grain growth strategies that control the microstructures and textures of cubic metals and alloys have not generally worked for HCPs. For example, in Magnesium, the deformation texture induced by primary forming operations (rolling, extrusion, etc.) is not randomized by recrystallization and may strengthen during grain growth. A strong texture reduces formability during secondary forming (stamping, bending, hemming etc.) Thus, the inability to randomize texture has impeded the implementation of magnesium alloys in engineering applications. When rare earth solutes are added to magnesium alloys, distinct new textures are derived. However, `rare earth texture' derivation remains insufficiently explained. Currently, it is hypothesized that unknown mechanisms of alloy processing are at work, arising from the effects of grain boundary intrinsic defect structures on microstructural evolution. This dissertation is a comprehensive attempt to identify formal methodologies of analyzing the behavior of grain boundaries in magnesium. We focus particularly on twin boundaries and asymmetric tilt grain boundaries using molecular dynamics. We begin by exploring twin nucleation in magnesium single crystals, elucidating effects of heterogeneities on twin nucleation and their relationships with concurrent slip. These efforts highlighted the necessity of imperfections to
Bornyakov, V.G.
2005-06-01
Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.
Imperfect mirror copies of the standard model
NASA Astrophysics Data System (ADS)
Berryman, Jeffrey M.; de Gouvêa, André; Hernández, Daniel; Kelly, Kevin J.
2016-08-01
Inspired by the standard model of particle physics, we discuss a mechanism for constructing chiral, anomaly-free gauge theories. The gauge symmetries and particle content of such theories are identified using subgroups and complex representations of simple anomaly-free Lie groups, such as S O (10 ) or E6. We explore, using mostly S O (10 ) and the 16 representation, several of these "imperfect copies" of the standard model, including U (1 )N theories, S U (5 )⊗U (1 ) theories, S U (4 )⊗U (1 )2 theories with 4-plets and 6-plets, and chiral S U (3 )⊗S U (2 )⊗U (1 ) . A few general properties of such theories are discussed, as is how they might shed light on nonzero neutrino masses, the dark matter puzzle, and other phenomenologically relevant questions.
Method for correcting imperfections on a surface
Sweatt, W.C.; Weed, J.W.
1999-09-07
A process for producing near perfect optical surfaces is disclosed. A previously polished optical surface is measured to determine its deviations from the desired perfect surface. A multi-aperture mask is designed based on this measurement and fabricated such that deposition through the mask will correct the deviations in the surface to an acceptable level. Various mask geometries can be used: variable individual aperture sizes using a fixed grid for the apertures or fixed aperture sizes using a variable aperture spacing. The imperfections are filled in using a vacuum deposition process with a very thin thickness of material such as silicon monoxide to produce an amorphous surface that bonds well to a glass substrate.
Lattice-gas automata for the Navier-Stokes equation
NASA Astrophysics Data System (ADS)
Frisch, U.; Hasslacher, B.; Pomeau, Y.
1986-04-01
It is shown that a class of deterministic lattice gases with discrete Boolean elements simulates the Navier-Stokes equations, and can be used to design simple, massively parallel computing machines. A hexagonal lattice gas (HLG) model consisting of a triangular lattice with hexagonal symmetry is developed, and is shown to lead to the two-dimensional Navier-Stokes equations. The three-dimensional formulation is obtained by a splitting method in which the nonlinear term in the three-dimensional Navier-Stokes equation is recasts as the sum of two terms, each containing spurious elements and each realizable on a different lattice. Freed slip and rigid boundary conditions are easily implemented. It is noted that lattice-gas models must be run at moderate Mach numbers to remain incompressible, and to avoid spurious high-order nonlinear terms. The model gives a concrete hydrodynamical example of how cellular automata can be used to simulate classical nonlinear fields.
Imperfection sensitivity of pressured buckling of biopolymer spherical shells
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ru, C. Q.
2016-06-01
Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.
The Laplacian-Energy-Like Invariants of Three Types of Lattices
Chu, Zheng-Qing; Liu, Jia-Bao; Li, Xiao-Xin
2016-01-01
This paper mainly studies the Laplacian-energy-like invariants of the modified hexagonal lattice, modified Union Jack lattice, and honeycomb lattice. By utilizing the tensor product of matrices and the diagonalization of block circulant matrices, we derive closed-form formulas expressing the Laplacian-energy-like invariants of these lattices. In addition, we obtain explicit asymptotic values of these invariants with software-aided computations of some integrals. PMID:27190675
Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS
Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang
2010-08-06
We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.
ERIC Educational Resources Information Center
Parris, Richard
2011-01-01
Given a segment that joins two lattice points in R[superscript 3], when is it possible to form a lattice cube that uses this segment as one of its twelve edges? A necessary and sufficient condition is that the length of the segment be an integer. This paper presents an algorithm for finding such a cube when the prime factors of the length are…
Use of Imperfect Calibration for Seismic Location
Myers, S C; Schultz, C A
2000-07-12
Efforts to more effectively monitor nuclear explosions include the calibration of travel times along specific paths. Benchmark events are used to improve travel-time prediction by (1) improving models, (2) determining travel times empirically, or (3) using a hybrid approach. Even velocity models that are determined using geophysical analogy (i.e. models determined without the direct use of calibration data) require validation with calibration events. Ideally, the locations and origin times of calibration events would be perfectly known. However, the existing set of perfectly known events is spatially limited and many of these events occurred prior to the installation of current monitoring stations, thus limiting their usefulness. There are, however, large numbers of well (but not perfectly) located events that are spatially distributed, and many of these events may be used for calibration. Identifying the utility and limitations of the spatially distributed set of imperfect calibration data is of paramount importance to the calibration effort. In order to develop guidelines for calibration utility, we examine the uncertainty and correlation of location parameters under several network configurations that are commonly used to produce calibration-grade locations. We then map these calibration uncertainties through location procedures with network configurations that are likely in monitoring situations. By examining the ramifications of depth and origin-time uncertainty, we expand on previous studies that focus strictly on epicenter accuracy. Particular attention is given to examples where calibration events are determined with teleseismic or local networks and monitoring is accomplished with a regional network.
NASA Astrophysics Data System (ADS)
Prentice, Joseph C. A.; Coldea, Amalia I.
2016-06-01
By solving the Boltzmann transport equation we investigate theoretically the general form of oscillations in the resistivity caused by varying the direction of an applied magnetic field for the case of quasi-two-dimensional systems on hexagonal lattices. The presence of the angular magnetoresistance oscillations can be used to map out the topology of the Fermi surface and we study how this effect varies as a function of the degree of interplane warping as well as a function of the degree of isotropic scattering. We find that the angular-dependent effect due to in-plane rotation follows the symmetry imposed by the lattice whereas for interplane rotation the degree of warping dictates the dominant features observed in simulations. Our calculations make predictions for specific angle-dependent magnetotransport signatures in magnetic fields expected for quasi-two-dimensional hexagonal compounds similar to PdCoO2 and PtCoO2.
Influence of imperfections on effective properties of cellular solids
Grenestedt, J.L.
1998-12-31
The mechanical properties of cellular solids, or solid foams, is affected by imperfections such as wavy distortions of cell walls, variations in cell wall thickness, non-uniform cell shape, etc. The present paper is focused mainly on elastic stiffnesses of closed cell cellular solids. A perfect model is first discussed and shown to predict the behavior of PVC foams well. However, this model over-estimates the stiffnesses of aluminum foams. The relatively poor properties of the aluminum foam are believed to be caused by imperfections in the cells. The main body of the paper focuses on modeling different kinds of imperfections, and analyzing their impact on foam properties.
Ballistic Transport in Graphene Antidot Lattices.
Sandner, Andreas; Preis, Tobias; Schell, Christian; Giudici, Paula; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan
2015-12-01
The bulk carrier mobility in graphene was shown to be enhanced in graphene-boron nitride heterostructures. However, nanopatterning graphene can add extra damage and drastically degrade the intrinsic properties by edge disorder. Here we show that graphene embedded into a heterostructure with hexagonal boron nitride (hBN) on both sides is protected during a nanopatterning step. In this way, we can prepare graphene-based antidot lattices where the high mobility is preserved. We report magnetotransport experiments in those antidot lattices with lattice periods down to 50 nm. We observe pronounced commensurability features stemming from ballistic orbits around one or several antidots. Due to the short lattice period in our samples, we can also explore the boundary between the classical and the quantum transport regime, as the Fermi wavelength of the electrons approaches the smallest length scale of the artificial potential. PMID:26598218
Increasing skyrmion lattice stability: theory and experiment
NASA Astrophysics Data System (ADS)
Kruchkov, Alex; White, Jonathan; Ronnow, Henrik; Zivkovic, Ivica
Magnetic skyrmions are vortices of spins, considered to be topologically protected against perturbations, and envisaged as very possible next-generation information carriers due to their nanoscale size. In chiral ferromagnets they form a two-dimensional hexagonal array - the skyrmion lattice. A key challenge is that bulk skyrmions have been restricted so far to a tiny region in the temperature-field phase diagram. In this work we address theoretically the stability of the skyrmion lattice. We demonstrate that tuning anisotropy can lead to dramatic (20 times) enhancement of the skyrmion phase volume, which has been recently revealed in our experiment.
Lattice Gas Model with Nonlocal Interactions
NASA Astrophysics Data System (ADS)
Das, Shankar P.
We analyze the nature of the hydrodynamic modes in a Lattice Gas Automata (LGA) model defined on a hexagonal lattice and having nonlocal interactions of attractive and repulsive type simultaneously. The model is similar in spirit to the liquid gas model of Appert and Zaleski [Phys. Rev. Lett. 64, 1 (1990)]. The phase diagram for the model is computed using the kinetic pressure. The dynamics is studied with a mean field type approach in the Boltzmann approximation ignoring effects of correlated collisions. We compute the transport coefficients and the speed of sound propagation. The presence of attractive interactions show increase in the transport coefficients at intermediate densities.
Gluing hexagons at three loops
NASA Astrophysics Data System (ADS)
Basso, Benjamin; Goncalves, Vasco; Komatsu, Shota; Vieira, Pedro
2016-06-01
We perform extensive three-loop tests of the hexagon bootstrap approach for structure constants in planar N = 4 SYM theory. We focus on correlators involving two BPS operators and one non-BPS operator in the so-called SL (2) sector. At three loops, such correlators receive wrapping corrections from mirror excitations flowing in either the adjacent or the opposing channel. Amusingly, we find that the first type of correction coincides exactly with the leading wrapping correction for the spectrum (divided by the one-loop anomalous dimension). We develop an efficient method for computing the second type of correction for operators with any spin. The results are in perfect agreement with the recently obtained three-loop perturbative data by Chicherin, Drummond, Heslop, Sokatchev [2] and by Eden [3]. We also derive the integrand for general multi-particle wrapping corrections, which turns out to take a remarkably simple form. As an application we estimate the loop order at which various new physical effects are expected to kick-in.
Fermionic pentagons and NMHV hexagon
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2015-05-01
We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang-Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4) R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.
Ultracold quantum gases in triangular optical lattices
NASA Astrophysics Data System (ADS)
Becker, C.; Soltan-Panahi, P.; Kronjäger, J.; Dörscher, S.; Bongs, K.; Sengstock, K.
2010-06-01
Over recent years, exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand experimental environments with non-cubic lattice geometries. In this paper, we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step, the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this, we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that, below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly, this opens up new perspectives for a lattice-driven tuning of a spin dynamics resonance occurring through the interplay of the quadratic Zeeman effect and spin-dependent interaction. Finally, we discuss further lattice configurations that can be realized with our setup.
Columnar epitaxy of hexagonal and orthorhombic silicides on Si(111)
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin
1990-01-01
Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultrahigh vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840 C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)/Si(111), with PtSi 001 line/Si 110 line type.
Triplet Pairing in Electron Systems with Hexagonal Symmetry
NASA Astrophysics Data System (ADS)
Tanaka, Akihiro; Hu, Xiao
2004-03-01
Inspired by the recently discovered superconductor Na_xCoO_2otyH_2O[1], we discuss how a novel triplet pairing state can occur from fermi surface effects/electron correlations in 2d electron systems with hexagonal symmetry[2]. This would serve as a complementary approach to studies based on the RVB picture, which basically concentrate on singlet pairing correlations. Spin and charge transports arising from the nontrivial topology (Chern numbers etc.) in k-space are investigated, and compared with the case of the square lattice. [1] K. Takada et al, Nature vol. 422, 53 (2003). [2] A. Tanaka and X. Hu, Phys. Rev. Lett., in press (cond-mat/0304409).
Activated chemoreceptor arrays remain intact and hexagonally packed
Briegel, Ariane; Beeby, Morgan; Thanbichler, Martin; Jensen, Grant J.
2013-01-01
Summary Bacterial chemoreceptors cluster into exquisitively sensitive, tunable, highly ordered, polar arrays. While these arrays serve as paradigms of cell signalling in general, it remains unclear what conformational changes transduce signals from the periplasmic tips, where attractants and repellents bind, to the cytoplasmic signalling domains. Conflicting reports support and contest the hypothesis that activation causes large changes in the packing arrangement of the arrays, up to and including their complete disassembly. Using electron cryotomography, here we show that in Caulobacter crescentus, chemoreceptor arrays in cells grown in different media and immediately after exposure to the attractant galactose all exhibit the same 12 nm hexagonal packing arrangement, array size and other structural parameters. ΔcheB and ΔcheR mutants mimicking attractant- or repellent-bound states prior to adaptation also show the same lattice structure. We conclude that signal transduction and amplification must be accomplished through only small, nanoscale conformational changes. PMID:21992450
Bayesian imperfect information analysis for clinical recurrent data
Chang, Chih-Kuang; Chang, Chi-Chang
2015-01-01
In medical research, clinical practice must often be undertaken with imperfect information from limited resources. This study applied Bayesian imperfect information-value analysis to realistic situations to produce likelihood functions and posterior distributions, to a clinical decision-making problem for recurrent events. In this study, three kinds of failure models are considered, and our methods illustrated with an analysis of imperfect information from a trial of immunotherapy in the treatment of chronic granulomatous disease. In addition, we present evidence toward a better understanding of the differing behaviors along with concomitant variables. Based on the results of simulations, the imperfect information value of the concomitant variables was evaluated and different realistic situations were compared to see which could yield more accurate results for medical decision-making. PMID:25565853
Buckling Imperfection Sensitivity of Axially Compressed Orthotropic Cylinders
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Nemeth, Michael P.
2010-01-01
Structural stability is a major consideration in the design of lightweight shell structures. However, the theoretical predictions of geometrically perfect structures often considerably over predict the buckling loads of inherently imperfect real structures. It is reasonably well understood how the shell geometry affects the imperfection sensitivity of axially compressed cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is less well understood. In the present paper, the development of an analytical model for assessing the imperfection sensitivity of axially compressed orthotropic cylinders is discussed. Results from the analytical model for four shell designs are compared with those from a general-purpose finite-element code, and good qualitative agreement is found. Reasons for discrepancies are discussed, and potential design implications of this line of research are discussed.
Quantification of the Forgiveness of Drugs to Imperfect Adherence.
Assawasuwannakit, P; Braund, R; Duffull, S B
2015-03-01
The circumstance of how sensitive therapeutic success is under imperfect adherence is driven by the property known as forgiveness. To date, no studies have considered variability in the pharmacokinetic-pharmacodynamic process in conjunction with imperfect adherence patterns in order to develop a comparative criterion to determine the forgiveness of a drug. In this study, we have proposed a criterion to quantify forgiveness; illustrated the criterion for a theoretical example and evaluated the forgiveness of a motivating example, namely warfarin. A forgiveness criterion, relative forgiveness, is defined as the number of times more likely that a target is successfully attained under perfect adherence compared to imperfect adherence; or when comparing two drugs under a standard setting of imperfect adherence. The relative forgiveness criterion may have important implications for both drug development and clinical practice since the choice of drug can account for the likely influence of its forgiveness. PMID:26225235
Predicting Sizes of Hexagonal and Gyroid Metal Nanostructures from Liquid Crystal Templating.
Asghar, Kaleem A; Rowlands, Daniel A; Elliott, Joanne M; Squires, Adam M
2015-11-24
We describe a method to predict and control the lattice parameters of hexagonal and gyroid mesoporous materials formed by liquid crystal templating. In the first part, we describe a geometric model with which the lattice parameters of different liquid crystal mesophases can be predicted as a function of their water/surfactant/oil volume fractions, based on certain geometric parameters relating to the constituent surfactant molecules. We demonstrate the application of this model to the lamellar (Lα), hexagonal (H1), and gyroid bicontinuous cubic (V1) mesophases formed by the binary Brij-56 (C16EO10)/water system and the ternary Brij-56/hexadecane/water system. In this way, we demonstrate predictable and independent control over the size of the cylinders (with hexadecane) and their spacing (with water). In the second part, we produce mesoporous platinum using as templates hexagonal and gyroid phases with different compositions and show that in each case the symmetry and lattice parameter of the metal nanostructure faithfully replicate those of the liquid crystal template, which is itself in agreement with the model. This demonstrates a rational control over the geometry, size, and spacing of pores in a mesoporous metal. PMID:26493862
Elastic interaction of point defects in cubic and hexagonal crystals
NASA Astrophysics Data System (ADS)
Kukushkin, S. A.; Osipov, A. V.; Telyatnik, R. S.
2016-05-01
The elastic interaction of two point defects in cubic and hexagonal structures has been considered. On the basis of the exact expression for the tensor Green's function of the elastic field obtained by the Lifschitz-Rozentsveig for a hexagonal medium, an exact formula for the interaction energy of two point defects has been obtained. The solution is represented as a function of the angle of their relative position on the example of semiconductors such as III-nitrides and α-SiC. For the cubic medium, the solution is found on the basis of the Lifschitz-Rozentsveig Green's tensors corrected by Ostapchuk, in the weak-anisotropy approximation. It is proven that the calculation of the interaction energy by the original Lifschitz-Rozentsveig Green's tensor leads to the opposite sign of the energy. On the example of the silicon crystal, the approximate solution is compared with the numerical solution, which is represented as an approximation by a series of spherical harmonics. The range of applicability of the continual approach is estimated by the quantum mechanical calculation of the lattice Green's function.
Precision Astronomy with Imperfect Deep Depletion CCDs
NASA Astrophysics Data System (ADS)
Stubbs, Christopher; LSST Sensor Team; PanSTARRS Team
2014-01-01
While thick CCDs do provide definite advantages in terms of increased quantum efficiency at wavelengths 700 nm<λ < 1.1 microns and reduced fringing from atmospheric emission lines, these devices also exhibit undesirable features that pose a challenge to precision determination of the positions, fluxes, and shapes of astronomical objects, and for the precision extraction of features in astronomical spectra. For example, the assumptions of a perfectly rectilinear pixel grid and of an intensity-independent point spread function become increasingly invalid as we push to higher precision measurements. Many of the effects seen in these devices arise from lateral electrical fields within the detector, that produce charge transport anomalies that have been previously misinterpreted as quantum efficiency variations. Performing simplistic flat-fielding therefore introduces systematic errors in the image processing pipeline. One measurement challenge we face is devising a combination of calibration methods and algorithms that can distinguish genuine quantum efficiency variations from charge transport effects. These device imperfections also confront spectroscopic applications, such as line centroid determination for precision radial velocity studies. Given the scientific benefits of improving both the precision and accuracy of astronomical measurements, we need to identify, characterize, and overcome these various detector artifacts. In retrospect, many of the detector features first identified in thick CCDs also afflict measurements made with more traditional CCD detectors, albeit often at a reduced level since the photocharge is subject to the perturbing influence of lateral electric fields for a shorter time interval. I provide a qualitative overview of the physical effects we think are responsible for the observed device properties, and provide some perspective for the work that lies ahead.
Novel high pressure hexagonal OsB{sub 2} by mechanochemistry
Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.
2014-07-01
Hexagonal OsB{sub 2}, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB{sub 2} begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB{sub 2} crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB{sub 2} phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from −225 °C to 1050 °C. The hexagonal OsB{sub 2} powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB{sub 2} at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. - Graphical abstract: High resolution transmission electron micrograph of hexagonal OsB{sub 2} nanocrystallite with corresponding fast Fourier transform and simulated diffraction pattern. - Highlights: • Hexagonal OsB{sub 2} has been synthesized for the first time by mechanochemical method. • Hexagonal OsB{sub 2} crystallizes in P63/mmc space group (No. 194), a=2.916 Å and c=7.376 Å. • The hexagonal structure was confirmed by a transmission electron microscope. • No phase transformation was observed after being annealed at 1050 °C for 6 days. • 20 wt% of h-OsB{sub 2} was transformed to o-OsB{sub 2} after being sintered at 1500 °C for 5 min.
Method and apparatus for evaluating multilayer objects for imperfections
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Abedin, Nurul (Inventor); Sun, Kuen J. (Inventor)
1997-01-01
A multilayer object having multiple layers arranged in a stacking direction is evaluated for imperfections such as voids, delaminations and microcracks. First, an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by, e.g., generating pulse echo signals indicative of the received acoustic wave, wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and curve fit to an exponential curve, wherein a substantial fit of approximately 80-90% indicates an absence of imperfections and a significant deviation indicates the presence of imperfections. Alternatively, the time interval between distinct groups can be measured, wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections.
Method and Apparatus for Evaluating Multilayer Objects for Imperfections
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Abedin, Nurul (Inventor); Sun, Kuen J. (Inventor)
1999-01-01
A multilayer object having multiple layers arranged in a stacking direction is evaluated for imperfections such as voids, delaminations and microcracks. First. an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by, e.g., generating pulse echo signals indicative of the received acoustic wave. wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and curve fit to an exponential curve. wherein a substantial fit of approximately 80-90% indicates an absence of imperfections and a significant deviation indicates the presence of imperfections. Alternatively, the time interval between distinct groups can be measured. wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections.
Dislocation stability in three-phase nanocomposites with imperfect interface
NASA Astrophysics Data System (ADS)
Zhao, Ying-Xin; Liu, You-Wen; Fang, Qi-Hong
2014-10-01
Interface imperfection can significantly affect the mechanical properties and failure mechanisms as well as the strength and toughness of nanocomposites. The elastic behavior of a screw dislocation in nanoscale coating with imperfect interface is studied in the three-phase composite cylinder model. The interface between inner nanoinhomogeneity and intermediate coating is assumed as perfectly bonded. The bonding between intermediate coating and outer matrix is considered to be imperfect with the assumption that interface imperfection is uniform, and a linear spring model is adopted to describe the weakness of imperfect interface. The explicit expression for image force acting on dislocation is obtained by means of a complex variable method. The analytic results indicate that inner interface effect and outer interface imperfection, simultaneously taken into account, would influence greatly image force, equilibrium position and stability of dislocation, and various critical parameters that would change dislocation stability. The weaker interface is a very strong trap for glide dislocation and, thus, a more effective barrier for slip transmission.
Duality analysis on random planar lattices.
Ohzeki, Masayuki; Fujii, Keisuke
2012-11-01
The conventional duality analysis is employed to identify a location of a critical point on a uniform lattice without any disorder in its structure. In the present study, we deal with the random planar lattice, which consists of the randomized structure based on the square lattice. We introduce the uniformly random modification by the bond dilution and contraction on a part of the unit square. The random planar lattice includes the triangular and hexagonal lattices in extreme cases of a parameter to control the structure. A modern duality analysis fashion with real-space renormalization is found to be available for estimating the location of the critical points with a wide range of the randomness parameter. As a simple test bed, we demonstrate that our method indeed gives several critical points for the cases of the Ising and Potts models and the bond-percolation thresholds on the random planar lattice. Our method leads to not only such an extension of the duality analyses on the classical statistical mechanics but also a fascinating result associated with optimal error thresholds for a class of quantum error correction code, the surface code on the random planar lattice, which is known as a skillful technique to protect the quantum state. PMID:23214752
Duality analysis on random planar lattices
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki; Fujii, Keisuke
2012-11-01
The conventional duality analysis is employed to identify a location of a critical point on a uniform lattice without any disorder in its structure. In the present study, we deal with the random planar lattice, which consists of the randomized structure based on the square lattice. We introduce the uniformly random modification by the bond dilution and contraction on a part of the unit square. The random planar lattice includes the triangular and hexagonal lattices in extreme cases of a parameter to control the structure. A modern duality analysis fashion with real-space renormalization is found to be available for estimating the location of the critical points with a wide range of the randomness parameter. As a simple test bed, we demonstrate that our method indeed gives several critical points for the cases of the Ising and Potts models and the bond-percolation thresholds on the random planar lattice. Our method leads to not only such an extension of the duality analyses on the classical statistical mechanics but also a fascinating result associated with optimal error thresholds for a class of quantum error correction code, the surface code on the random planar lattice, which is known as a skillful technique to protect the quantum state.
Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes
Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen
2014-03-01
Graphical abstract: Hexagonal Mg(OH){sub 2} nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH){sub 2} nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH){sub 2} nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH){sub 2} nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH){sub 2} nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH){sub 2} nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH){sub 2}) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH){sub 2} nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH){sub 2} nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH){sub 2} nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes.
Effect of binding of lanthanide ions on the bacteriorhodopsin hexagonal structure: An x-ray study
Griffiths, J.A.; El-Sayed, M.A.; Capel, M.
1996-07-18
The effect of the binding of trivalent lanthanide metal cations (Eu{sup 3+}, Ho{sup 3+}, and Dy{sup 3+}) on the hexagonal structure of bacteriorhodopsin (bR) is investigated at different pH using x-Ray diffraction to examine films made by slow evaporation of the corresponding regenerated bR. It is observed that the lanthanide-regenerated bR (at a ratio of 2:1 metal ion to bR) does not form a 2D structure isomorphous to that of native bR or Ca{sup 2+}-regenerated samples at low sample pH. The native bR hexagonal structure is recovered by titration of the sample with sodium hydroxide. The pH at which the hexagonal structure is recovered depends on the charge density of the lanthanide ion used for the regeneration. The higher the charge density of the ion, the higher pH at which an isomorphous lattice is formed. A model is proposed in which at normal or low pH a complex bidentate and monodentate type binding (which disrupts the lattice hexagonal structure) exists between a lanthanide ion, the O{sup -} of PO{sub 2}{sup -} groups, and/or the amino acid residues. At high pH, complexation with OH{sup -} takes place, which converts this binding to a simple monodentate type complex that leads to the recovery of the lattice structure. An equation is derived for the pH at which this conversion takes place. 48 refs., 4 figs.
Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.
2016-01-01
Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.
Bio-chemical sensor based on imperfected plastic optical fiber
NASA Astrophysics Data System (ADS)
Babchenko, Anatoly; Chernyak, Valeri; Maryles, Jonathan
2007-05-01
In this paper we report results for an intrinsic evanescent field sensor based on not-regular plastic optical fiber with polymer film containing Malachite Green MG +([PhC(C 6H 4NMe II) 3] +) as an absorption reagent, which coats the fiber's imperfected area. A theoretical model was developed which shows that changes of light in such structure result from the attenuation of light in the strait and bent imperfected fiber. In this model, the imperfected area with malachite green polymer film is replaced by a uniform layer with a complex refractive index. The changes in color and absorption characteristics of the polymer film depend on the acidic and basic environmental properties in the sensing area. Additional increase of the evanescent field interaction can be achieved by decrease the bending radius of the fiber with the coated imperfection area at the middle of the bent fiber. An imperfected plastic optical fiber with Malachite Green coating has been presented for the detection of ammonia vapor. The initial results show that depending on the sensing application demands, it is possible to design a high sensitive sensor with a relatively long response time, while when the demands require fast response times the sensor with less sensitivity can be used. In addition, the sensors' sensitivity can be calibrated in real-time by changing the bending radius.
Blue-noise halftoning for hexagonal grids.
Lau, Daniel L; Ulichney, Robert
2006-05-01
In this paper, we closely scrutinize the spatial and spectral properties of aperiodic halftoning schemes on rectangular and hexagonal sampling grids. Traditionally, hexagonal sampling grids have been shunned due to their inability to preserve the high-frequency components of blue-noise dither patterns at gray-levels near one-half, but as will be shown, only through the introduction of diagonal correlations between dots can even rectangular sampling grids preserve these frequencies. And by allowing the sampling grid to constrain the placement of dots, a particular algorithm may introduce visual artifacts just as disturbing as excess energy below the principal frequency. If, instead, the algorithm maintains radial symmetry by introducing a minimum degree of clustering, then that algorithm can maintain its grid defiance illusion fundamental to the spirit of the blue-noise model. As such, this paper shows that hexagonal grids are preferrable because they can support gray-levels near one-half with less required clustering of minority pixels and a higher principal frequency. Along with a thorough Fourier analysis of blue-noise dither patterns on both rectangular and hexagonal sampling grids, this paper also demonstrates the construction of a blue-noise dither array for hexagonal grids. PMID:16671307
Expansion of the hexagonal phase-forming region of Lu1-xScxFeO3 by containerless processing.
Masuno, Atsunobu; Ishimoto, Atsushi; Moriyoshi, Chikako; Kawaji, Hitoshi; Kuroiwa, Yoshihiro; Inoue, Hiroyuki
2015-10-01
Hexagonal Lu1-xScxFeO3 (0 ≤ x ≤ 0.8) was directly solidified from an undercooled melt by containerless processing with an aerodynamic levitation furnace. The hexagonal phase-forming region was considerably extended compared to that of the conventional solid-state reaction (x ∼ 0.5). Synchrotron X-ray diffraction measurements revealed that the crystal structure of the hexagonal phase was isomorphous to hexagonal ferroelectric RMnO3 (R = a rare earth ion) with a polar space group of P63cm. As x increased, the a-axis lattice constant decreased linearly, strengthening the antiferromagnetic interaction between the Fe(3+) ions on the a-b plane. Accordingly, the weak ferromagnetic transition temperature increased from 150 K for x = 0 to 175 K for x = 0.7. These transition temperatures were much higher than those of hexagonal Lu1-xScxMnO3. The results indicate that hexagonal Lu1-xScxFeO3 is a suitable alternative magnetic dielectric for use at higher temperatures. PMID:26376708
Arbitrary lattice symmetries via block copolymer nanomeshes
Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.
2015-01-01
Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566
Lattice Strain Defects in a Ceria Nanolayer
2016-01-01
An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu–O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state. PMID:26988695
Marginalized Particle Filter for Blind Signal Detection with Analog Imperfections
NASA Astrophysics Data System (ADS)
Yoshida, Yuki; Hayashi, Kazunori; Sakai, Hideaki; Bocquet, Wladimir
Recently, the marginalized particle filter (MPF) has been applied to blind symbol detection problems over selective fading channels. The MPF can ease the computational burden of the standard particle filter (PF) while offering better estimates compared with the standard PF. In this paper, we investigate the application of the blind MPF detector to more realistic situations where the systems suffer from analog imperfections which are non-linear signal distortion due to the inaccurate analog circuits in wireless devices. By reformulating the system model using the widely linear representation and employing the auxiliary variable resampling (AVR) technique for estimation of the imperfections, the blind MPF detector is successfully modified to cope with the analog imperfections. The effectiveness of the proposed MPF detector is demonstrated via computer simulations.
Multiwave diffraction, phase problem, and extinction in imperfect crystals
Dmitrienko, V. E.
2009-11-15
The extinction effects of multiwave diffraction in imperfect crystals have been investigated. It is shown that the presence of extinction in the direct diffraction channel may lead to errors in determining the relative phases of structural amplitudes by the multiwave diffraction method (i.e., by interference with indirect excitation). The reason is that the dependence of the reflection intensity on the structural amplitude in imperfect crystals is generally nonquadratic (as in the kinematic theory), nonlinear (as in the dynamic theory), and is not even somewhat intermediate. These effects open up new possibilities for using multiwave diffraction for the direct study of the extinction and, therefore, quantitatively characterize the imperfection of crystal structures with known values and phases of structural amplitudes.
Static Isotropic Space-Times with Radially Imperfect Fluids
NASA Astrophysics Data System (ADS)
Konopka, Tomasz
When one is solving the equations of general relativity in a symmetric sector, it is natural to consider the same symmetry for the geometry and stress-energy. This implies that for static and isotropic space-times, the most general natural stress-energy tensor is a sum of a perfect fluid and a radially imperfect fluid component. In the special situations where the perfect fluid component vanishes or is a space-time constant, the solutions to Einstein's equations can be thought of as modified Schwarzschild and Schwarzschild-de Sitter spaces. Exact solutions of this type are derived and it is shown that whereas deviations from the unmodified solutions can be made small, among the manifestations of the imperfect fluid component is a shift in angular momentum scaling for orbiting test bodies at large radius. Based on this effect, the question of whether the imperfect fluid component can feasibly describe dark matter phenomenology is addressed.
Remote preparation of W states from imperfect bipartite sources
NASA Astrophysics Data System (ADS)
Moreno, M. G. M.; Cunha, Márcio M.; Parisio, Fernando
2016-06-01
Several proposals to produce tripartite W-type entanglement are probabilistic even if no imperfections are considered in the processes. We provide a deterministic way to remotely create W states out of an EPR source. The proposal is made viable through measurements (which can be demolitive) in an appropriate three-qubit basis. The protocol becomes probabilistic only when source flaws are considered. It turns out that, even in this situation, it is robust against imperfections in two senses: (i) It is possible, after postselection, to create a pure ensemble of W states out of an EPR source containing a systematic error; (ii) If no postselection is done, the resulting mixed state has a fidelity, with respect to a pure |Wrangle , which is higher than that of the imperfect source in comparison with an ideal EPR source. This simultaneously amounts to entanglement concentration and lifting.
Micellar hexagonal phases in lyotropic liquid crystals
NASA Astrophysics Data System (ADS)
Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.
1992-09-01
The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.
Thermally induced microstrain broadening in hexagonal zinc
Lawson, Andrew C; Valdez, James A; Roberts, Joyce A; Leineweber, Andreas; Mittemeijer, E J; Kreher, W
2008-01-01
Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.
Intervalley scattering in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Cassabois, G.; Valvin, P.; Gil, B.
2016-01-01
We report photoluminescence experiments bringing the evidence for intervalley scattering in bulk hexagonal boron nitride. From a quantitative analysis of the defect-related emission band, we demonstrate that transverse optical phonons at the K point of the Brillouin zone assist inter-K valley scattering, which becomes observable because stacking faults in bulk hexagonal boron nitride provide a density of final electronic states. Time-resolved experiments highlight the different recombination dynamics of the phonon replicas implying either virtual excitonic states or real electronic states in the structural defects.
Formation of hexagonal and cubic ice during low-temperature growth
Thürmer, Konrad; Nie, Shu
2013-01-01
From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.
Hexagonal and Pentagonal Fractal Multiband Antennas
NASA Technical Reports Server (NTRS)
Tang, Philip W.; Wahid, Parveen
2005-01-01
Multiband dipole antennas based on hexagonal and pentagonal fractals have been analyzed by computational simulations and functionally demonstrated in experiments on prototypes. These antennas are capable of multiband or wide-band operation because they are subdivided into progressively smaller substructures that resonate at progressively higher frequencies by virtue of their smaller dimensions. The novelty of the present antennas lies in their specific hexagonal and pentagonal fractal configurations and the resonant frequencies associated with them. These antennas are potentially applicable to a variety of multiband and wide-band commercial wireless-communication products operating at different frequencies, including personal digital assistants, cellular telephones, pagers, satellite radios, Global Positioning System receivers, and products that combine two or more of the aforementioned functions. Perhaps the best-known prior multiband antenna based on fractal geometry is the Sierpinski triangle antenna (also known as the Sierpinski gasket), shown in the top part of the figure. In this antenna, the scale length at each iteration of the fractal is half the scale length of the preceding iteration, yielding successive resonant frequencies related by a ratio of about 2. The middle and bottom parts of the figure depict the first three iterations of the hexagonal and pentagonal fractals along with typical dipole-antenna configuration based on the second iteration. Successive resonant frequencies of the hexagonal fractal antenna have been found to be related by a ratio of about 3, and those of the pentagonal fractal antenna by a ratio of about 2.59.
Topological Properties of Electrons in Honeycomb Lattice with Detuned Hopping Energy
NASA Astrophysics Data System (ADS)
Wu, Long-Hua; Hu, Xiao
2016-04-01
Honeycomb lattice can support electronic states exhibiting Dirac energy dispersion, with graphene as the icon. We propose to derive nontrivial topology by grouping six neighboring sites of honeycomb lattice into hexagons and enhancing the inter-hexagon hopping energies over the intra-hexagon ones. We reveal that this manipulation opens a gap in the energy dispersion and drives the system into a topological state. The nontrivial topology is characterized by the index associated with a pseudo time-reversal symmetry emerging from the C6 symmetry of the hopping texture, where the angular momentum of orbitals accommodated on the hexagonal “artificial atoms” behaves as the pseudospin. The size of topological gap is proportional to the hopping-energy difference, which can be larger than typical spin-orbit couplings by orders of magnitude and potentially renders topological electronic transports available at high temperatures.
Topological Properties of Electrons in Honeycomb Lattice with Detuned Hopping Energy
Wu, Long-Hua; Hu, Xiao
2016-01-01
Honeycomb lattice can support electronic states exhibiting Dirac energy dispersion, with graphene as the icon. We propose to derive nontrivial topology by grouping six neighboring sites of honeycomb lattice into hexagons and enhancing the inter-hexagon hopping energies over the intra-hexagon ones. We reveal that this manipulation opens a gap in the energy dispersion and drives the system into a topological state. The nontrivial topology is characterized by the index associated with a pseudo time-reversal symmetry emerging from the C6 symmetry of the hopping texture, where the angular momentum of orbitals accommodated on the hexagonal “artificial atoms” behaves as the pseudospin. The size of topological gap is proportional to the hopping-energy difference, which can be larger than typical spin-orbit couplings by orders of magnitude and potentially renders topological electronic transports available at high temperatures. PMID:27076196
Defect properties of cobalt-doped hexagonal barium titanate ceramics
NASA Astrophysics Data System (ADS)
Langhammer, H. T.; Böttcher, R.; Müller, T.; Walther, T.; Ebbinghaus, S. G.
2015-07-01
X-ray diffraction (XRD) patterns, electron paramagnetic resonance (EPR) powder spectra (9 and 34 GHz) and the magnetic susceptibility of BaTiO3 + 0.04 BaO + x/2 Co2O3 (0.001 ⩽ x ⩽ 0.02) ceramics were studied to investigate the incorporation of Co ions in the BaTiO3 lattice and their valence states as well as the development of the hexagonal phase (6H modification) in dependence on doping level x and sintering temperature Ts. At Ts = 1400 °C the 6H modification begins to occur at a nominal Co concentration x of about 0.001 and for x > 0.005 the samples are completely hexagonal at room temperature. Two different EPR spectra were observed in the 6H modification of BaTiO3, which were both assigned to paramagnetic Co2+ ions located at the two crystallographically non-equivalent Ti sites in 6H-BaTiO3. The EPR g tensor values as well as the molar paramagnetic susceptibility, measured in the temperature range 5 K-300 K at a magnetic field of 9 T, were analyzed in the framework of the ligand field theory using the program CONCORD. The combination of EPR and magnetic measurements reveals that in air-sintered 6H BaTiO3, the incorporated Co occurs as a mixture of paramagnetic Co2+ and diamagnetic Co3+ ions, whereas in samples annealed in reducing atmosphere the majority of Co is in the divalent state. The occurrence of Co4+ can be excluded for all investigated samples. The sample color caused by Co2+ and Co3+ ions is beige/light yellow and dark grey/black, respectively. The majority of the Co2+ ions substitutes Ti in the exclusively corner-sharing oxygen octahedra possessing nearly cubic symmetry. The corresponding ligand field parameter B04(3) amounts to about -28 000 cm-1 (Wybourne notation, 10Dq ≈ 20 000 cm-1). In the reduced samples nearly 5% of the detected Co2+ ions occupy the Ti site in the face-sharing oxygen octahedra, which are significantly trigonally distorted. The negative sign of the obtained ligand field parameter B02 ≈ -7300 cm-1
Information Imperfections: The Achilles' Heel of Entitlement Plans
ERIC Educational Resources Information Center
Bridge, Gary
1978-01-01
Discusses some crucial questions about voucher systems in education and examines the major weakness of the voucher and entitlement proposals, i.e., information imperfections that limit the ability of individuals, especially low-income and less educated people, to choose intelligently among competing alternatives. (BR)
Modelling occurrence and abundance of species when detection is imperfect
Royle, J. Andrew; Nichols, J.D.; Kery, M.
2005-01-01
Relationships between species abundance and occupancy are of considerable interest in metapopulation biology and in macroecology. Such relationships may be described concisely using probability models that characterize variation in abundance of a species. However, estimation of the parameters of these models in most ecological problems is impaired by imperfect detection. When organisms are detected imperfectly, observed counts are biased estimates of true abundance, and this induces bias in stated occupancy or occurrence probability. In this paper we consider a class of models that enable estimation of abundance/occupancy relationships from counts of organisms that result from surveys in which detection is imperfect. Under such models, parameter estimation and inference are based on conventional likelihood methods. We provide an application of these models to geographically extensive breeding bird survey data in which alternative models of abundance are considered that include factors that influence variation in abundance and detectability. Using these models, we produce estimates of abundance and occupancy maps that honor important sources of spatial variation in avian abundance and provide clearly interpretable characterizations of abundance and occupancy adjusted for imperfect detection.
Vibration and guiding of moving media with edge weave imperfections
NASA Astrophysics Data System (ADS)
Kartik, V.; Wickert, J. A.
2006-03-01
This paper examines the steady-state-forced vibration of a moving medium that is guided by a partial elastic foundation, and where geometric imperfections on the medium's edge act as an excitation source. Such a system is of technical interest in the areas of web handling and magnetic tape transport where externally pressurized air bearing guides are sometimes used to control lateral position. The axially moving strip is modeled here as a string that is guided by elastic foundation segments, and that is subjected to traveling wave excitation as the edge's imperfection interacts with the foundation. The equation of motion for this "moving medium and moving load" system incorporates a skew-symmetric Coriolis acceleration component that arises from convection. The governing equation is cast in state-space form, with one symmetric and one skew-symmetric operator, as is characteristic of gyroscopic systems. Through modal analysis, the forced response of the system is obtained to the complex harmonic excitation associated with the interaction between the edge's weave pattern and the guides. Parameter studies are presented in the transport speed, foundation stiffness, guide placement, guide width, and imperfection wavelength. Of potential technological application, for a given wavelength of the edge's imperfection, it is possible to reduce the medium's vibration at a certain location by judiciously selecting the locations and spans of the foundation segments.
Lattice gas and lattice Boltzmann computational physics
Chen, S.
1993-05-01
Recent developments of the lattice gas automata method and its extension to the lattice Boltzmann method have provided new computational schemes for solving a variety of partial differential equations and modeling different physics systems. The lattice gas method, regarded as the simplest microscopic and kinetic approach which generates meaningful macroscopic dynamics, is fully parallel and can be easily programmed on parallel machines. In this talk, the author will review basic principles of the lattice gas and lattice Boltzmann method, its mathematical foundation and its numerical implementation. A detailed comparison of the lattice Boltzmann method with the lattice gas technique and other traditional numerical schemes, including the finite-difference scheme and the pseudo-spectral method, for solving the Navier-Stokes hydrodynamic fluid flows, will be discussed. Recent achievements of the lattice gas and the the lattice Boltzmann method and their applications in surface phenomena, spinodal decomposition and pattern formation in chemical reaction-diffusion systems will be presented.
Reconfigurable lattice mesh designs for programmable photonic processors.
Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A
2016-05-30
We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor. PMID:27410130
Helimagnons in the skyrmion lattice of MnSi
NASA Astrophysics Data System (ADS)
Janoschek, M.; Jonietz, F.; Link, P.; Pfleiderer, C.; Böni, P.
2010-01-01
In MnSi the application of a small magnetic field destabilizes the helimagnetic order in a narrow temperature interval just below the helimagnetic ordering temperature and stabilizes the formation of a hexagonal lattice of skyrmions, i.e., a lattice composed of a type of magnetic vortex lines. We have studied the skyrmion lattice in MnSi using a cold triple-axis spectrometer. Our data suggests that the skyrmion lattice represents a three-dimensional spin structure. The collective spin excitations of the skyrmion lattice are strongly reminiscent of the rich spectrum of helimagnon bands, recently shown to be a universal property of the helimagnetic state of MnSi in zero magnetic field.
ERIC Educational Resources Information Center
Scott, Paul
2006-01-01
A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…
Magnetic charges and magnetoelectricity in hexagonal rare-earth manganites and ferrites
NASA Astrophysics Data System (ADS)
Ye, Meng; Vanderbilt, David
2015-07-01
Magnetoelectric (ME) materials are of fundamental interest and show broad potential for technological applications. The common dominant contribution to the ME response is the lattice-mediated one, which is proportional to both the Born electric charge Ze and its analog, the dynamical magnetic charge Zm. Our previous study has shown that exchange striction acting on noncollinear spins induces much larger magnetic charges than those that depend on spin-orbit coupling. The hexagonal manganites R MnO3 and ferrites R FeO3 (R =Sc, Y, In, Ho-Lu) exhibit strong couplings between electric, magnetic, and structural degrees of freedom. The transition-metal ions in the basal plane antiferromagnetically coupled through super-exchange so as to form a 120∘ noncollinear spin arrangement. In this paper, we present a theoretical study of the magnetic charges, and of the spin-lattice and spin-electronic ME constants, in these hexagonal manganites and ferrites. We clarify the conditions under which exchange striction leads to enhanced Zm values and anomalously large in-plane spin-lattice ME effects.
Two-dimensional hexagonal smectic structure formed by topological defects
NASA Astrophysics Data System (ADS)
Dolganov, P. V.; Shuravin, N. S.; Fukuda, Atsuo
2016-03-01
A two-dimensional hexagonal smectic structure formed by point topological defects and intersecting defect walls was discovered. This unique structure was predicted theoretically about 30 years ago but not observed. For a long time the hexagonal structure was a challenge for experimentalists. A different type of self-organization in smectic films was found and used to form the hexagonal structure. Methods applied for building the hexagonal phase can be used for the formation of complicated liquid-crystal structures.
Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy
NASA Astrophysics Data System (ADS)
Lužnik, J.; Koželj, P.; Vrtnik, S.; Jelen, A.; Jagličić, Z.; Meden, A.; Feuerbacher, M.; Dolinšek, J.
2015-12-01
Rare earth based equimolar Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy (HEA) is a prototype of an ideal HEA, stabilized by the entropy of mixing at any temperature with random mixing of elements on the hexagonal close-packed lattice. In order to determine intrinsic properties of an ideal HEA characterized by the enormous chemical (substitutional) disorder on a weakly distorted simple lattice, we have performed measurements of its magnetic and electrical response and the specific heat. The results show that the Ho-Dy-Y-Gd-Tb hexagonal HEA exhibits a rich and complex magnetic field-temperature (H ,T ) phase diagram, as a result of competition among the periodic potential arising from the electronic band structure that favors periodic magnetic ordering, the disorder-induced local random potential that favors spin glass-type spin freezing in random directions, the Zeeman interaction with the external field that favors spin alignment along the field direction, and the thermal agitation that opposes any spin ordering. Three characteristic temperature regions were identified in the (H ,T ) phase diagram between room temperature and 2 K. Within the upper temperature region I (roughly between 300 and 75 K), thermal fluctuations average out the effect of local random pinning potential and the spin system behaves as a pure system of compositionally averaged spins, undergoing a thermodynamic phase transition to a long-range ordered helical antiferromagnetic state at the Néel temperature TN=180 K that is a compositional average of the Néel temperatures of pure Tb, Dy, and Ho metals. Region II (between 75 and 20 K) is an intermediate region where the long-range periodic spin order "melts" and the random ordering of spins in the local random potential starts to prevail. Within the low-temperature region III (below 20 K), the spins gradually freeze in a spin glass configuration. The spin glass phase appears to be specific to the rare earths containing hexagonal HEAs, sharing
Lysozyme entrapped within reverse hexagonal mesophases: physical properties and structural behavior.
Mishraki, Tehila; Libster, Dima; Aserin, Abraham; Garti, Nissim
2010-01-01
A model protein (lysozyme) was incorporated into monoolein-based reverse hexagonal (H(II)) mesophase and its structure effects were characterized by small angle X-ray scattering, ATR-FTIR spectroscopy, and rheological measurements. Modifications in molecular organization of the H(II) mesophases as well as the conformational stability of lysozyme (LSZ) as a function of pH and denaturating agent (urea) were clarified. Up to 3 wt.% LSZ can be solubilized into the H(II). The vibration FTIR analysis revealed that LSZ interacted with OH groups of glycerol monooleate (GMO) in the outer interface region, resulting in strong hydrogen bonding between the surfactant and its environment. Simultaneously, the decrease in the hydrogen-bonded carbonyl population of GMO was monitored, indicating dehydration of the monoolein carbonyls. These molecular interactions yielded a minor decrease in the lattice parameter of the systems, as detected by small angle X-ray scattering. Furthermore, LSZ was crystallized within the medium of the hexagonal structures in a single crystal form. The alpha-helix conformation of lysozyme was stabilized at high pH conditions, demonstrating greater helical structure content, compared to D(2)O solution. Moreover, the hexagonal phase decreased the unfavorable alpha-->beta transition in lysozyme, thereby increasing the stability of the protein under chemical denaturation. The rheological behavior of the hexagonal structures varied with the incorporation of LSZ, reflected in stronger elastic properties and pronounced solid-like response of the systems. The hydrogen bonding enhancement in the interface region of the structures was most likely responsible for these phenomena. The results of this study provided valuable information on the use of hexagonal systems as a carrier for incorporation and stabilization of proteins for various applications. PMID:19748240
Stability analysis of lattice Boltzmann methods
Sterling, J.D.; Chen, Shiyi
1996-01-01
The lattice Boltzmann equation describes the evolution of the velocity distribution function on a lattice in a manner that macroscopic fluid dynamical behavior is recovered. Although the equation is a derivative of lattice gas automata, it may be interpreted as a Lagrangian finite-difference method for the numerical simulation of the discrete-velocity Boltzmann equation that makes use of a BGK collision operator. As a result, it is not surprising that numericaI instability of lattice Boltzmann methods have been frequently encountered by researchers. We present an analysis of the stability of perturbations of the particle populations linearized about equilibrium values corresponding to a constant-density uniform mean flow. The linear stability depends on the following parameters: the distribution of the mass at a site between the different discrete speeds, the BGK relaxation time, the mean velocity, and the wave-number of the perturbations. This parameter space is too large to compute the complete stability characteristics. We report some stability results for a subset of the parameter space for a 7-velocity hexagonal lattice, a 9-velocity square lattice, and a 15-velocity cubic lattice. Results common to all three lattices are (1) the BGK relaxation time {tau} must be greater than 1/2 corresponding to positive shear viscosity, (2) there exists a maximum stable mean velocity for fixed values of theother parameters, and (3) as {tau} is increased from 1/2 the maximum stable velocity increases monotonically until some fixed velocity is reached which does not change for larger {tau}.
A Discourse Analysis of the Periphrastic Imperfect in the Greek New Testament Writings of Luke
ERIC Educational Resources Information Center
Johnson, Carl E.
2010-01-01
Motivated by Bloomfield's belief that linguistic variation is not without motivation, this paper seeks to determine the distinction between the morphological imperfect and periphrastic imperfect of Koine Greek within the New Testament writings of Luke. This study suggests that: (1) The periphrastic imperfect occurs only within narrative…
Nodal equivalence theory for hexagonal geometry, thermal reactor analysis
Zika, M.; Downar, T. )
1992-01-01
An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory.
Time-resolved photoluminescence study of excitons in hexagonal GaN layers grown on sapphire
NASA Astrophysics Data System (ADS)
Pau, S.; Liu, Z. X.; Kuhl, J.; Ringling, J.; Grahn, H. T.; Khan, M. A.; Sun, C. J.; Ambacher, O.; Stutzmann, M.
1998-03-01
We performed time-resolved and continuous wave photoluminescence on two samples of hexagonal GaN, one with free exciton emission and the other without. For the sample with free exciton emission, very different decay dynamics are observed between the front and backside emission. We find that the strain caused by the lattice mismatch between the sapphire substrate and the GaN film has a large influence on the population decay of the sample with free exciton emission and a minor influence on the decay properties of the sample dominated by bound exciton emission. A polariton picture is used to describe the observed behavior.
Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators
NASA Astrophysics Data System (ADS)
Gaskell, J.; Eaves, L.; Novoselov, K. S.; Mishchenko, A.; Geim, A. K.; Fromhold, T. M.; Greenaway, M. T.
2015-09-01
We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.
Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators
Gaskell, J.; Fromhold, T. M.; Greenaway, M. T.; Eaves, L.; Novoselov, K. S.; Mishchenko, A.; Geim, A. K.
2015-09-07
We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.
On vortex shedding from a hexagonal cylinder
NASA Astrophysics Data System (ADS)
Khaledi, Hatef A.; Andersson, Helge I.
2011-10-01
The unsteady wake behind a hexagonal cylinder in cross-flow is investigated numerically. The time-dependent three-dimensional Navier-Stokes equations are solved for three different Reynolds numbers Re and for two different cylinder orientations. The topology of the vortex shedding depends on the orientation and the Strouhal frequency is generally higher in the wake of a face-oriented cylinder than behind a corner-oriented cylinder. For both orientations a higher Strouhal number St is observed when Re is increased from 100 to 500 whereas St is unaffected by a further increase up to Re=1000. The distinct variation of St with the orientation of the hexagonal cylinder relative to the oncoming flow is opposite of earlier findings for square cylinder wakes which exhibited a higher St with corner orientation than with face orientation.
Multilayer hexagonal silicon forming in slit nanopore
He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying
2015-01-01
The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518
Multilayer hexagonal silicon forming in slit nanopore.
He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying
2015-01-01
The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518
Control of normal chirality at hexagonal interfaces
Haraldsen, Jason T; Fishman, Randy Scott
2010-01-01
We study the net chirality created by the Dzyaloshinkii-Moriya interaction (DMI) at the boundary between hexagonal layers of magnetic and non-magnetic materials. It is shown that another mechanism besides elastic torsion is required to understand the change in chirality observed in Dy/Y multilayers during field-cooling. The paper shows that due to the overlap between magnetic and non-magnetic atoms, interfacial steps may produce a DMI normal to the interface in magnetic heterostructures.
Saturn's North Polar Hexagon Numerical Modeling Results
NASA Astrophysics Data System (ADS)
Morales-Juberias, R.; Sayanagi, K. M.; Dowling, T. E.
2008-12-01
In 1980, Voyager images revealed the presence of a circumpolar wave at 78 degrees planetographic latitude in the northern hemisphere of Saturn. It was notable for having a dominant planetary wavenumber-six zonal mode, and for being stationary with respect to Saturn's Kilometric Radiation rotation rate measured by Voyager. The center of this hexagonal feature was coincident with the center of a sharp eastward jet with a peak speed of 100 ms-1 and it had a meridional width of about 4 degrees. This hexagonal feature was confirmed in 1991 through ground-based observations, and it was observed again in 2006 with the Cassini VIMS instrument. The latest observations highlight the longevity of the hexagon and suggest that it extends at least several bars deep into the atmosphere. We use the Explicit Planetary Isentropic Code (EPIC) to perform high-resolution numerical simulations of this unique feature. We show that a wavenumber six instability mode arises naturally from initially barotropic jets when seeded with weak random turbulence. We also discuss the properties of the wave activity on the background vertical stability, zonal wind, planetary rotation rate and adjacent vortices. Computational resources were provided by the New Mexico Computing Applications Center and New Mexico Institute of Mining and Technology and the Comparative Planetology Laboratory at the University of Louisville.
Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation
NASA Technical Reports Server (NTRS)
Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.
2014-01-01
Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.
Hexagonal boron nitride film substrate for fabrication of nanostructures
NASA Astrophysics Data System (ADS)
Lee, K. S.; Kim, Y. S.; Tosa, M.; Kasahara, A.; Yosihara, K.
2001-01-01
The fabrication of material with an atomic scale manipulation requires the suitable advanced substrate for epitaxial growth without the effect by the substrate lattice structure. Hexagonal boron nitride (h-BN) can be the advanced substrate for atomic manipulation due to van der Waals' gap with little attractive force along to c axis. We have successfully synthesized h-BN layer on the co-deposited Cu/BN film by surface segregation phenomena using helicon wave plasma enhanced radio frequency (rf) magnetron sputtering system. Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS) analysis showed that the h-BN composite segregated on the surface of Cu/BN film covered over 95% of the film annealed at 900 K for 30 min. Atomic forces microscopy (AFM) and scanning tunneling microscopy (STM) analysis showed that attractive force on the film surface is uniformly distributed to an extent of 2nN and that the h-BN surface can be a good electric insulator like sintered h-BN plate.
Noncontacting thermoelectric detection of material imperfections in metals
Peter B. Nagy; Adnan H. Nayfeh; Waseem I. Faidi; Hector Carreon; Balachander Lakshminaraya; Feng Yu; Bassam Abu-Nabah
2005-06-17
This project was aimed at developing a new noncontacting thermoelectric method for nondestructive detection of material imperfections in metals. The method is based on magnetic sensing of local thermoelectric currents around imperfections when a temperature gradient is established throughout a conducting specimen by external heating and cooling. The surrounding intact material serves as the reference electrode therefore the detection sensitivity could be very high if a sufficiently sensitive magnetometer is used in the measurements. This self-referencing, noncontacting, nondestructive inspection technique offers the following distinct advantages over conventional methods: high sensitivity to subtle variations in material properties, unique insensitivity to the size, shape, and other geometrical features of the specimen, noncontacting nature with a substantial stand-off distance, and the ability to probe relatively deep into the material. The potential applications of this method cover a very wide range from detection metallic inclusions and segregations, inhomogeneities, and tight cracks to characterization of hardening, embrittlement, fatigue, texture, and residual stresses.
Distribution of radiative crystal imperfections through a silicon ingot
Flø, A. Burud, I.; Kvaal, K.; Olsen, E.; Søndenå, R.
2013-11-15
Crystal imperfections limit the efficiency of multicrystalline silicon solar cells. Recombination through traps is more prominent in areas with high density of crystal imperfections. A method to visualize the distribution of radiative emission from Shockley Read Hall recombination in silicon is demonstrated. We use hyperspectral photoluminescence, a fast non-destructive method, to image radiatively active recombination processes on a set of 50 wafers through a silicon block. The defect related emission lines D1 and D2 may be detected together or alone. The D3 and D4 seem to be correlated if we assume that an emission at the similar energy as D3 (VID3) is caused by a separate mechanism. The content of interstitial iron (Fe{sub i}) correlates with D4. This method yields a spectral map of the inter band gap transitions, which opens up for a new way to characterize mechanisms related to loss of efficiency for solar cells processed from the block.
Parametric Multi-Level Tiling of Imperfectly Nested Loops
Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy
2009-05-18
Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.
Effects of mask imperfections on InP etching profiles
Huo, D.T.C.; Yan, M.F.; Wynn, J.D.; Wilt, D.P. )
1990-01-01
The authors have demonstrated that the quality of etch masks has a significant effect on the InP etching profiles. In particular, the authors have shown that mask imperfections can cause defective etching profiles, such as vertical sidewalls and extra mask undercutting in InP. The authors also discovered that the geometry of these defective profiles is determined by the orientation of the substrate relative to the direction of the mask imperfections. Along a {l angle}110{r angle} line mask defect, the downward etching process changes the {l angle}110{r angle} v-grooves to vertical sidewalls without extra undercutting. For v-grooves aligned along the {l angle}110{r angle} direction, defects on the mask give a significant extra undercutting without changing the etching profile.
Stability, vibration and passive damping of partially restrained imperfect columns
NASA Technical Reports Server (NTRS)
Razzaq, Z.; Voland, R. T.; Bush, H. G.; Mikulas, M. M., Jr.
1983-01-01
A theoretical and experimental study of slender tubular columns for possible use in space structures is conducted in the presence of partial rotational end restraints. Explicit formulas are derived for computing the buckling load and the lowest natural frequency of perfectly straight uniform elastic members with rotational end restraints possessing linear moment-rotation characteristics. An exact solution in the form of a transcendental equation, and a numerical solution using second-order finite-differences are also presented. The presence of an initial imperfection is also incorporated into the numerical procedure. Vibration tests are conducted on an imperfect tubular steel member in the absence of an axial load. A damping concept consisting of a string-mass assembly is explored. Three passive damping configurations involving combinations of three lead shots were investigated. The three lead shot configurations provided considerably greater damping than the single lead shot.
Coarse grain modeling of imperfect networks and gels
NASA Astrophysics Data System (ADS)
Sliozberg, Yelena; Chantawansri, Tanya; Sirk, Timothy; Andzelm, Jan; Mrozek, Randy; Lenhart, Joseph
2013-03-01
There is a strong interest in chemically and physically cross-linked entangled polymer networks and gels due to their tailorability in respect to both mechanical and structural properties. Even so, these properties are sensitive to imperfections in the polymer networks, such as dangling ends and loops. Computational modeling is a viable tool to understand the effects of these imperfections on properties in a controlled environment, in which specific defects can be systematically created and varied. In this study, we have employed generic bead-spring models of flexible chains to study a chemically and physically cross-linked network. Our results will show the importance defects, such as dangling ends and loops, on the mechanical and structural properties of these networks. We will also discuss the effects of these defects on the time-dependent elastic modulus. The simulation results qualitatively agree with experimental results and the other theoretical predictions.
Effects of instrument imperfections on quantitative scanning transmission electron microscopy.
Krause, Florian F; Schowalter, Marco; Grieb, Tim; Müller-Caspary, Knut; Mehrtens, Thorsten; Rosenauer, Andreas
2016-02-01
Several instrumental imperfections of transmission electron microscopes are characterized and their effects on the results of quantitative scanning electron microscopy (STEM) are investigated and quantified using simulations. Methods to either avoid influences of these imperfections during acquisition or to include them in reference calculations are proposed. Particularly, distortions inflicted on the diffraction pattern by an image-aberration corrector can cause severe errors of more than 20% if not accounted for. A procedure for their measurement is proposed here. Furthermore, afterglow phenomena and nonlinear behavior of the detector itself can lead to incorrect normalization of measured intensities. Single electrons accidentally impinging on the detector are another source of error but can also be exploited for threshold-less calibration of STEM images to absolute dose, incident beam current determination and measurement of the detector sensitivity. PMID:26686661
Imperfect Geometric Control and Overdamping for The Damped Wave Equation
NASA Astrophysics Data System (ADS)
Burq, Nicolas; Christianson, Hans
2015-05-01
We consider the damped wave equation on a manifold with imperfect geometric control. We show the sub-exponential energy decay estimate in (Christianson, J Funct Anal 258(3):1060-1065, 2010) is optimal in the case of one hyperbolic periodic geodesic. We show if the equation is overdamped, then the energy decays exponentially. Finally we show if the equation is overdamped but geometric control fails for one hyperbolic periodic geodesic, then nevertheless the energy decays exponentially.
Buckling of structures with uncertain imperfections - Personal perspective
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac
1998-01-01
The previous review on stochastic buckling of structures was written by Amazigo in 1976. This review summarizes some of the developments which took place in recent two decades. A brief overview is given of the effect on uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation. For the benefit of the thinking reader, the review has a critical nature. It should be noted that this manuscript has yet to be completed.
Transitional Flows in Imperfect Millimeter-Scale Channels
NASA Astrophysics Data System (ADS)
Lissandrello, Charles; Li, Le; Ekinci, Kamil L.; Yakhot, Victor
2015-11-01
The majority of workers studying transition to turbulence in pipes have been interested in the flow response to perturbations in otherwise perfect pipes. Conversely, the ``fuzzy'' problem involving inlet disturbances, pipe imperfections, and pipe roughness has not attracted as much attention. Here, we investigate both experimentally and theoretically the transition to turbulence in imperfect millimeter-scale channels. For probing the flows, we use microcantilever sensors embedded in the channel walls. We perform experiments in two nominally identical channels. We quantify growing perturbations near the channel wall by their spectra and statistical properties, including probability densities and low- and high-order moments. The different sets of imperfections in the two channels result in two random flows in which the high-order moments of the near-wall fluctuations differ by orders of magnitude. Surprisingly, however, the lowest-order statistics in both cases appear to be qualitatively similar and can be described by a proposed noisy Landau equation for a slow mode. The noise, regardless of its origin, regularizes the Landau singularity of the relaxation time and makes transitions driven by different noise sources appear similar.
NMR-based diffusion lattice imaging.
Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm
2016-03-01
Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles. PMID:27078384
NMR-based diffusion lattice imaging
NASA Astrophysics Data System (ADS)
Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm
2016-03-01
Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.
Wang, Y.; Wang, X.; Rybczynski, J.; Wang, D.Z.; Kempa, K.; Ren, Z.F.
2005-04-11
Self-assembly of polystyrene microspheres has been utilized in a two-step masking technique to prepare triangular lattices of catalytic nanodots at low cost. Subsequent triangular lattices of aligned carbon nanotubes on a silicon substrate are achieved by plasma-enhanced chemical vapor deposition. Nickel is used both in the nanodots and in the secondary mask. The triangular lattices of carbon nanotube arrays as two-dimensional photonic crystals show higher geometrical symmetry than the hexagonal lattices previously reported, enabling broader applications including negative index of refraction and subwavelength lensing effect.
Hart, W.E.; Istrail, S.
1996-08-09
This paper considers the protein structure prediction problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven extremely useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. The authors consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to explicitly represent side chains on the cubic lattice, and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. They describe algorithms for both of these models with mathematically guaranteed error bounds. In particular, the authors describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 865 of optimal in a face centered cubic lattice, and they demonstrate how this provides a 70% performance guarantee for the HP-TSSC model. This is the first algorithm in the literature for off-lattice protein structure prediction that has a rigorous performance guarantee. The analysis of the HP-TSSC model builds off of the work of Dancik and Hannenhalli who have developed a 16/30 approximation algorithm for the HP model on the hexagonal close packed lattice. Further, the analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Karplus et al. concerning the complexity of protein folding models that include side chains.
Thermodynamic properties of the magnetized Coulomb crystal lattices
NASA Astrophysics Data System (ADS)
Kozhberov, A. A.
2016-08-01
It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.
Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes
NASA Astrophysics Data System (ADS)
Lindsay, L.; Broido, D. A.
2012-01-01
We present a theory for the lattice thermal conductivity κL of single-walled boron nitride nanotubes (BNNTs) and multilayer hexagonal boron nitride (MLBN), which is based on an exact numerical solution of the phonon Boltzmann equation. Coupling between layers in MLBN and nanotube curvature in BNNTs each break a phonon scattering selection rule found in single-layer hexagonal boron nitride (SLBN), which reduces κL in these systems. We show that out-of-plane flexural phonons in MLBN and out-of-tube phonons in BNNTs provide large contributions to κL, qualitatively similar to multilayer graphene (MLG) and single-walled carbon nanotubes (SWCNTs). However, we find that the κL's in BNNTs and MLBN are considerably smaller compared to similar SWCNTs and MLG structures because of stronger anharmonic phonon scattering in the former. A large and strongly temperature-dependent isotope effect is found reflecting the interplay between anharmonic and isotope scattering phonons. Finally, we also demonstrate convergence of BNNTs into SLBN for large-diameter nanotubes and MLBN to bulk hexagonal boron nitride within a few layers.
Recursive, in-place algorithm for the hexagonal orthogonal oriented quadrature image pyramid
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1989-01-01
Pyramid image transforms have proven useful in image coding and pattern recognition. The hexagonal orthogonal oriented quadrature image pyramid (HOP), transforms an image into a set of orthogonal, oriented, odd and even bandpass subimages. It operates on a hexagonal input lattice and employs seven kernels, each of which occupies a neighborhood consisting of a point and a hexagon of six nearest neighbors. The kernels consist of one lowpass and six bandpass kernels that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The kernels are first applied to the image samples to create the first level of the pyramid, then to the lowpass coefficients to create the next level. The resulting pyramid is a compact, efficient image code. Here, a recursive, in-place algorithm for computation of the HOP transform is described. The transform may be regarded as a depth-first traversal of a tree structure. It is shown that the algorithm requires a number of operations that is on the order of the number of pixels.
Hydrothermal hexagonal SrFe12O19 ferrite powders: Phase composition, microstructure and acid washing
NASA Astrophysics Data System (ADS)
Xia, Ailin; Hu, Xuzhao; Li, Diankai; Chen, Lu; Jin, Chuangui; Zuo, Conghua; Su, Shubing
2014-03-01
A series of hexagonal m-type SrFe12O19 ferrite powders were hydrothermally synthesized, and their phase composition, microstructure and magnetic properties before/after acid washing were studied. In the synthesis of these specimens, the atomic ratio of Fe/Sr ( R F/S ) in starting materials was set to 4, 5 and 12, respectively. When R F/S = 12, the specimen has morphology of round flat cakes, not typical hexagonal plate-like structure. The results of SEM images and XRD patterns indicate that the specimen with R F/S = 12 was mostly composed of Fe2O3. When R F/S = 4 or 5, the hexagonal plate-like SrFe12O19 ferrite powders were successfully synthesized with only a small quantity of Fe2O3 and SrCO3 impurities. It is also found that acid washing can eliminate the impurities in as-synthesized specimens effectively, and also change their topography, which enhances the saturation magnetization. However, the coercivity changed irregularly after acid washing, which is ascribed to the combination of the changed morphology, introduced stress and lattice defects.
2D metamaterials with hexagonal structure: spatial resonances and near field imaging.
Zhuromskyy, O; Shamonina, E; Solymar, L
2005-11-14
The current and field distribution in a 2D metamaterial consisting of resonant elements in a hexagonal arrangement are found assuming magnetic interaction between the elements. The dispersion equation of magnetoinductive (MI) waves is derived with the aid of the direct and reciprocal lattice familiar from solid state theory. A continuous model for the current variation in the elements is introduced leading to the familiar wave equation in the form of a second order differential equation. The current distributions are shown to exhibit a series of spatial resonances for rectangular, circular and hexagonal boundaries. The axial and radial components of the resulting magnetic field are compared with previously obtained experimental results on a Swiss Roll metamaterial with hexagonal boundaries. Experimental and theoretical results are also compared for the near field image of an object in the shape of the letter M followed by a more general discussion of imaging. It is concluded that a theoretical formulation based on the propagation of MI waves can correctly describe the experimental results. PMID:19503131
Structural and magnetic properties of Ca-substituted barium W-type hexagonal hexaferrites
NASA Astrophysics Data System (ADS)
Huang, Kai; Liu, Xiansong; Feng, Shuangjiu; Zhang, Zhanjun; Yu, Jiangying; Niu, Xiaofei; Lv, Farui; Huang, Xing
2015-04-01
A series of W-type hexagonal ferrites with the composition Ba1-xCaxCo2Fe16O27 (x=0, 0.1, 0.3, 0.4 and 0.5) were synthesized using a sol-gel method. The effects of doping on structural and magnetic properties are studied by X-ray diffraction, thermal analyzer, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer, respectively. The X-ray diffraction analysis shows that the samples belong to the W-type hexagonal ferrite. The lattice constants a and c decreases as Ca contents increases. The grains exhibit well defined hexagonal shape. The saturation magnetization and the intrinsic coercive force increases with the increase of the Ca substitution amount. The real part of complex permittivity (ε‧) and imaginary part (ε″) increase with more addition of Ca2+ amount. The imaginary part of complex permittivity (μ‧) increases and the real part (μ‧‧) goes down after Ca2+ is doped. Furthermore, the Ca2+ ions doped in the ferrite improved microwave absorbency.
Wargaming in Both Rectilinear and Hexagonal Spaces
NASA Technical Reports Server (NTRS)
Hoover, Alex
2012-01-01
There are two main approaches to managing wargame entity interactions (movement, line of sight, area of effect, etc) freespace and gridded In the freespace approach, the units exist as entities in a continuous volume of (usually) Cartesian 3D space. They move in any direction (based on interaction with "terrain" that occupies the same space) and interact with each other based on references and displacements from their position in that space. In the gridded approach, space is broken up into (usually regular) shaped pieces. Units are considered to occupy the entire volume of one of these pieces, movement, line of sight, and other interactions are based on the relationships among the spaces rather than the absolute positions of the units themselves. Both approaches have advantages and drawbacks. The general issue that this discussion has addressed is that there is no "perfect" approach to implementing a wargaming battlespace. Each of them (and this extends to others not discussed) has different sets of advantages and disadvantages. Nothing will change that basic nature of the various approaches, nor would it be desirable to do so. Along with the advantages, the challenges define the feel of the game and focus the thinking of the players on certain aspects and away from others. The proposed approach to combining square and hexagonal approaches, which we will call the rhombus interface, leverages rhombuses constructed from equilateral triangles into which the hexagon can be decomposed to bridge the gap between the approaches, maintain relative consistency between the two as much as possible, and provide most of the feel of the hexagonal approach.
Solubilization of nutraceuticals into reverse hexagonal mesophases.
Amar-Yuli, Idit; Aserin, Abraham; Garti, Nissim
2008-08-21
The solubilization of four bioactive molecules with different polarities, in three reverse hexagonal (HII) systems has been investigated. The three HII systems were a typical reverse hexagonal composed of glycerol monooleate (GMO)/tricaprylin/water and two fluid hexagonal systems containing either 2.75 wt % Transcutol or ethanol as a fourth component. The phase behavior of the liquid crystalline phases in the presence of ascorbic acid, ascorbyl palmitate, D-alpha-tocopherol and D-alpha-tocopherol acetate were determined by small-angle X-ray scattering (SAXS) and optical microscopy. Differential scanning calorimetry (DSC) and Fourier-transform infrared (FT-IR) techniques were utilized to follow modifications in the thermal behavior and in the vibrations of different functional groups upon solubilizing the bioactive molecules. The nature of each guest molecule (in both geometry and polarity) together with the different HII structures (typical and fluids) determined the corresponding phase behavior, swelling or structural transformations and its location in the HII structures. Ascorbic acid was found to act as a chaotropic guest molecule, localized in the water-rich core and at the interface. The AP was also a chaotropic guest molecule with its head located in the vicinity of the GMO headgroup while its tail embedded close to the surfactant tail. D-alpha-tocopherol and D-alpha-tocopherol acetate were incorporated between the GMO tails; however, the D-alpha-tocopherol was located closer to the interface. Once Transcutol or ethanol was present and upon guest molecule incorporation, partial migration was detected. PMID:18665631
Quasiparticles near domain walls in hexagonal superconductors
NASA Astrophysics Data System (ADS)
Mukherjee, S. P.; Samokhin, K. V.
2016-02-01
We calculate the energy spectrum of quasiparticles trapped by a domain wall separating different time-reversal symmetry-breaking ground states in a hexagonal superconductor, such as UPt3. The bound-state energy is found to be strongly dependent on the gap symmetry, the domain-wall orientation, the quasiparticle's direction of semiclassical propagation, and the phase difference between the domains. We calculate the corresponding density of states and show how one can use its prominent features, in particular, the zero-energy singularity, to distinguish between different pairing symmetries.
Quasiparticles near domain walls in hexagonal superconductors
NASA Astrophysics Data System (ADS)
Mukherjee, Soumya; Samokhin, Kirill
We calculate the energy spectrum of quasiparticles trapped by a domain wall separating different time reversal symmetry-breaking ground states in a hexagonal superconductor, such as UPt3. The bound state energy is found to be strongly dependent on the gap symmetry, the domain wall orientation, the quasiparticle's direction of semiclassical propagation, and the phase difference between the domains. We calculate the corresponding density of states and show how one can use its prominent features, in particular, the zero-energy singularity, to distinguish between different pairing symmetries. Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.
Method for exfoliation of hexagonal boron nitride
NASA Technical Reports Server (NTRS)
Lin, Yi (Inventor); Connell, John W. (Inventor)
2012-01-01
A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.
Diagonal form factors and hexagon form factors
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Petrovskii, Andrei
2016-07-01
We study the heavy-heavy-light (HHL) three-point functions in the planar {N} = 4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program [1]. We prove the conjecture of Bajnok, Janik and Wereszczynski [2] on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.
Diamagnetic response in zigzag hexagonal silicene rings
NASA Astrophysics Data System (ADS)
Xu, Ning; Chen, Qiao; Tian, Hongyu; Ding, Jianwen; Liu, Junfeng
2016-09-01
Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin-orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin-orbit coupling strength and exchange field.
Hexagonal OsB2 reduction upon heating in H2 containing environment
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Payzant, E. Andrew
2014-10-23
The stability of hexagonal ReB2 type OsB2 powder upon heating under reforming gas was investigated. Pure Os metal particles were detected by powder X-ray diffraction starting at 375⁰ C and complete transformation of OsB2 to metallic Os was observed at 725⁰ C. The mechanisms of precipitation of metallic Os is proposed and changes in the lattice parameters of OsB2 upon heating are analysed in terms of the presence of oxygen or water vapour in the heating chamber. Previous studies suggested that Os atoms possess (0) valence, while B atoms possess both (+3) and ( 3) valences in the alternating boron/osmiummore » sheet structure of hexagonal (P63/mmc, No. 194) OsB2; if controllable method for Os removal from the lattice could be found, the opportunity would arise to form two-dimensional (2D) layers consisting of pure B atoms.« less
NASA Astrophysics Data System (ADS)
Cokelaer, T.
2007-11-01
Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is overefficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely, stationary phase approximation, we show that it can be used successfully with other template families (e.g., Padé resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for nonspinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO).
Cokelaer, T.
2007-11-15
Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is overefficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely, stationary phase approximation, we show that it can be used successfully with other template families (e.g., Pade resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for nonspinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO)
Imperfect pseudo-merohedral twinning in crystals of fungal fatty acid synthase
Jenni, Simon; Ban, Nenad
2009-01-01
The recent high-resolution structures of fungal fatty acid synthase (FAS) have provided new insights into the principles of fatty acid biosynthesis by large multifunctional enzymes. The crystallographic phase problem for the 2.6 MDa fungal FAS was initially solved to 5 Å resolution using two crystal forms from Thermomyces lanuginosus. Monoclinic crystals in space group P21 were obtained from orthorhombic crystals in space group P212121 by dehydration. Here, it is shown how this space-group transition induced imperfect pseudo-merohedral twinning in the monoclinic crystal, giving rise to a Moiré pattern-like interference of the two twin-related reciprocal lattices. The strategy for processing the twinned diffraction images and obtaining a quantitative analysis is presented. The twinning is also related to the packing of the molecules in the two crystal forms, which was derived from self-rotation function analysis and molecular-replacement solutions using a low-resolution electron microscopy map as a search model. PMID:19171964
Domain wall kinetics of lithium niobate single crystals near the hexagonal corner
Choi, Ju Won; Ko, Do-Kyeong; Yu, Nan Ei E-mail: jhro@pnu.edu; Kitamura, Kenji; Ro, Jung Hoon E-mail: jhro@pnu.edu
2015-03-09
A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic “asymmetric in-out domain wall motion” observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (E{sub c}) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1E{sub c} is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15E{sub c} is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.
Optical properties of Tb3+ doped KLaF4 in cubic and hexagonal symmetries
NASA Astrophysics Data System (ADS)
Ahmad, Shahzad; Das, Subrata; Nagarajan, R.; Vijaya Prakash, G.
2013-12-01
Tb3+ doped cubic and hexagonally ordered KLaF4 nano-sized crystals have been synthesized by solution based method with the simultaneous evaluation of their optical and magnetic properties. While higher amounts of Tb3+ (10%) can be doped in cubic KLaF4 lattice, only 3% of Tb3+ can be doped in hexagonal KLaF4 by this method. Cubic KLaF4:Tb3+ samples show a very strong green emission centered at 545 nm (5D4 → 7F5) on excitation with 337 nm laser, the intensity increases monotonically with Tb3+ content. The relative intensity of the excited state 5D3 violet emission is weaker than that of 5D4 emissions even at the low Tb3+ amounts. It is proposed that the 5D3 → 5D4 cross-relaxation may be responsible for the decrease in the 5D3 decay rate with increasing Tb3+ concentrations. The average emission decay lifetime of the green emission (545 nm; 5D4 → 7F5) of Tb3+ doped cubic KLaF4 samples are in the order of 1-3 ms. The absence of the characteristic emissions from 5D3 level in hexagonal KLaF4:Tb3+ phosphor suggests the pronounced non-radiative cross relaxation between the 5D3 to 5D4 energy levels. Further, these cubic KLaF4:Tb3+ samples show intense green upconversion emission when co-doped with moderate concentrations of sensitizer Yb3+ ions. Both cubic and hexagonal KLaF4:Tb3+ samples show paramagnetic behavior at room temperature with χg value ranging from 1.627 × 10-6 to 1.356 × 10-5 emu/g.
Lattice Location Determination of Ge in SiC by ALCHEMI
NASA Astrophysics Data System (ADS)
Kups, T.; Voelskow, M.; Skorupa, W.; Soueidan, M.; Ferro, G.; Pezoldt, J.
The incorporation of Ge into cubic and hexagonal silicon carbide is compared for three different doping methods: ion-implantation, molecular beam epitaxy and liquid phase epitaxy. The lattice location of Ge was determined by the transmission electron microscopy based method ALCHEMI (atomic location by channelling enhanced microanalysis). Depending on the method used for incorporation, Ge is able to occupy different silicon carbide lattice locations.
NASA Astrophysics Data System (ADS)
Karamooz Ravari, M. R.; Kadkhodaei, M.
2015-01-01
As the fabrication and characterization of cellular lattice structures are time consuming and expensive, development of simple models is vital. In this paper, a new approach is presented to model the mechanical stress-strain curve of cellular lattices with low computational efforts. To do so, first, a single strut of the lattice is modeled with its imperfections and defects. The stress-strain of a specimen fabricated with the same processing parameters as those used for the lattice is used as the base material. Then, this strut is simulated in simple tension, and its stress-strain curve is obtained. After that, a unit cell of the lattice is simulated without any imperfections, and the material parameters of the single strut are attributed to the bulk material. Using this method, the stress-strain behavior of the lattice is obtained and shown to be in a good agreement with the experimental result. Accordingly, this paper presents a computationally efficient method for modeling the mechanical properties of cellular lattices with a reasonable accuracy using the material parameters of simple tension tests. The effects of the single strut's length and its micropores on its mechanical properties are also assessed.
Nylon flocked swab severely reduces Hexagon Obti sensibility.
Frippiat, Christophe; De Roy, Gilbert; Fontaine, Louis-Marie; Dognaux, Sophie; Noel, Fabrice; Heudt, Laeticia; Lepot, Laurent
2015-02-01
Hexagon Obti immunological blood test and flocked swab are widely used in forensic laboratories. Nevertheless, up to now, no compatibility tests have been published between sampling with the ethylene oxide treated flocked swab and the Hexagon Obti blood detection strip. In this study, we investigated this compatibility. Our work shows that sampling with ethylene oxide treated flocked swab reduces by a factor of at least 100 the detection threshold of blood using the Hexagon Obti immunological test. PMID:25575014
Raman spectra and structural properties of hexagonal Yb1-xDyxMnO3 (x = 0, 0.05 and 0.1)
NASA Astrophysics Data System (ADS)
Sattibabu, Bhumireddi; Bhatnagar, Anil K.; Das, D.
2016-05-01
Single phase Yb1-xDyxMnO3 (x= 0, 0.05 and 0.1) samples are prepared by a solid state reaction method. X-ray powder diffraction shows that all samples crystallize in the hexagonal phase with P63cm space group. The structural analysis shows there is increase in lattice parameter c and cell volume of the hexagonal unit cell with Dy substitution and the average bond length between Mn-O increases. Raman spectra show that the phonon peaks of Yb1-xDyxMnO3 slightly shift to lower frequencies with doping.
Solution of an associating lattice-gas model with density anomaly on a Husimi lattice
NASA Astrophysics Data System (ADS)
Oliveira, Tiago J.; Stilck, Jürgen F.; Barbosa, Marco Aurélio A.
2010-11-01
We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.
Reliability with imperfect diagnostics. [flight-maintenance sequence
NASA Technical Reports Server (NTRS)
White, A. L.
1983-01-01
A reliability estimation method for systems that continually accumulate faults because of imperfect diagnostics is developed and an application for redundant digital avionics is presented. The present method assumes that if a fault does not appear in a short period of time, it will remain hidden until a majority of components are faulty and the system fails. A certain proportion of a component's faults are detected in a short period of time, and a description of their detection is included in the reliability model. A Markov model of failure during flight for a nonreconfigurable five-plex is presented for a sequence of one-hour flights followed by maintenance.
Security Issues of Quantum Cryptographic Systems with Imperfect Detectors
NASA Astrophysics Data System (ADS)
Burenkov, Viacheslav
The laws of quantum physics can be used to secure communications between two distant parties in a scheme called quantum key distribution (QKD), even against a technologically unlimited eavesdropper. While the theoretical security of QKD has been proved rigorously, current implementations of QKD are generally insecure. In particular, mathematical models of devices, such as detectors, do not accurately describe their reallife behaviour. Such seemingly insignificant discrepancies can compromise the security of the entire scheme, especially as novel detector technologies are being developed with little regard for potential vulnerabilities. In this thesis, we study how detector imperfections can impact the security of QKD and how to overcome such technological limitations. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Wang, Wei-Long; Gao, Ming; Ma, Zhi
2013-11-01
The one-way Faraday-Michelson system is a very useful practical quantum cryptography system where Faraday mirrors (FMs) play an important role. In this paper we analyze the security of this system against imperfect FMs. We consider the security loophole caused by imperfect FMs in Alice’s and Bob’s security zones. Then we implement a passive FM attack in this system. By changing the values of the imperfection parameters of Alice’s FMs, we calculate the quantum bit error rate between Alice and Bob induced by Eve and the probability that Eve obtains outcomes successfully. It is shown that the imperfection of one of Alice’s two FMs makes the system sensitive to an attack. Finally we give a modified key rate as a function of the FM imperfections. The security analysis indicates that both Alice’s and Bob’s imperfect FMs can compromise the secure key.
Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
NASA Astrophysics Data System (ADS)
Dai, S.; Ma, Q.; Liu, M. K.; Andersen, T.; Fei, Z.; Goldflam, M. D.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Janssen, G. C. A. M.; Zhu, S.-E.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N.
2015-08-01
Hexagonal boron nitride (h-BN) is a natural hyperbolic material, in which the dielectric constants are the same in the basal plane (ɛt ≡ ɛx = ɛy) but have opposite signs (ɛtɛz < 0) in the normal plane (ɛz). Owing to this property, finite-thickness slabs of h-BN act as multimode waveguides for the propagation of hyperbolic phonon polaritons—collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show, by direct nano-infrared imaging, that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon-phonon polaritons. The hyperbolic plasmon-phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5-2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon-phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN can be classified as an electromagnetic metamaterial as the resulting properties of these devices are not present in its constituent elements alone.
Wu, Yongfeng; Xiao, Weike
2014-02-01
We introduced a new two-dimensional (2D) hexagon technique for probing the topological structure of the universe in which we mapped regions of the sky with high and low galaxy densities onto a 2D lattice of hexagonal unit cells. We defined filled cells as corresponding to high-density regions and empty cells as corresponding to low-density regions. The numbers of filled cells and empty cells were kept the same by controlling the size of the cells. By analyzing the six sides of each hexagon, we could obtain and compare the statistical topological properties of high-density and low-density regions of the universe in order to have a better understanding of the evolution of the universe. We applied this hexagonal method to Two Micron All Sky Survey data and discovered significant topological differences between the high-density and low-density regions. Both regions had significant (>5σ) topological shifts from both the binomial distribution and the random distribution.
B{sub 27}{sup −}: Appearance of the smallest planar boron cluster containing a hexagonal vacancy
Li, Wei-Li; Piazza, Zachary A.; Wang, Lai-Sheng; Pal, Rhitankar; Zeng, Xiao Cheng
2015-05-28
Photoelectron spectroscopy and ab initio calculations have been carried out to probe the structures and chemical bonding of the B{sub 27}{sup −} cluster. Comparison between the experimental spectrum and the theoretical results reveals a two-dimensional (2D) global minimum with a triangular lattice containing a tetragonal defect (I) and two low-lying 2D isomers (II and III), each with a hexagonal vacancy. All three 2D isomers have 16 peripheral boron atoms and 11 inner boron atoms. Isomer I is shown to be mainly responsible for the observed photoelectron spectrum with isomers II and III as minor contributors. Chemical bonding analyses of these three isomers show that they all feature 16 localized peripheral B–B σ-bonds. Additionally, isomer I possesses 16 delocalized σ bonds and nine delocalized π bonds, while isomers II and III each contain 17 delocalized σ bonds and eight delocalized π bonds. It is found that the hexagonal vacancy is associated generally with an increase of delocalized σ bonds at the expense of delocalized π bonds in 2D boron clusters. The hexagonal vacancy, characteristic of borophenes, is found to be a general structural feature for mid-sized boron clusters. The current study shows that B{sub 27}{sup −} is the first boron cluster, where a hexagonal vacancy appears among the low-lying isomers accessible experimentally.
One-dimensional flows of an imperfect diatomic gas
NASA Technical Reports Server (NTRS)
1959-01-01
With the assumptions that Berthelot's equation of state accounts for molecular size and intermolecular force effects, and that changes in the vibrational heat capacities are given by a Planck term, expressions are developed for analyzing one-dimensional flows of a diatomic gas. The special cases of flow through normal and oblique shocks in free air at sea level are investigated. It is found that up to a Mach number 10 pressure ratio across a normal shock differs by less than 6 percent from its ideal gas value; whereas at Mach numbers above 4 the temperature rise is considerable below and hence the density rise is well above that predicted assuming ideal gas behavior. It is further shown that only the caloric imperfection in air has an appreciable effect on the pressures developed in the shock process considered. The effects of gaseous imperfections on oblique shock-flows are studied from the standpoint of their influence on the life and pressure drag of a flat plate operating at Mach numbers of 10 and 20. The influence is found to be small. (author)
Efficient Logistic Regression Designs Under an Imperfect Population Identifier
Albert, Paul S.; Liu, Aiyi; Nansel, Tonja
2013-01-01
Summary Motivated by actual study designs, this article considers efficient logistic regression designs where the population is identified with a binary test that is subject to diagnostic error. We consider the case where the imperfect test is obtained on all participants, while the gold standard test is measured on a small chosen subsample. Under maximum-likelihood estimation, we evaluate the optimal design in terms of sample selection as well as verification. We show that there may be substantial efficiency gains by choosing a small percentage of individuals who test negative on the imperfect test for inclusion in the sample (e.g., verifying 90% test-positive cases). We also show that a two-stage design may be a good practical alternative to a fixed design in some situations. Under optimal and nearly optimal designs, we compare maximum-likelihood and semi-parametric efficient estimators under correct and misspecified models with simulations. The methodology is illustrated with an analysis from a diabetes behavioral intervention trial. PMID:24261471
Population level impact of an imperfect prophylactic HSV-2 vaccine
Alsallaq, Ramzi A.; Schiffer, Joshua T.; Longini, Ira M.; Wald, Anna; Corey, Lawrence; Abu-Raddad, Laith J.
2010-01-01
Background The continuation of developing HSV-2 prophylactic vaccines requires parallel mathematical modeling to quantify the impact on the population of these vaccines. Methods Using mathematical modeling we derived three summary measures for the population impact of imperfect HSV-2 vaccines as a function of their efficacies in reducing susceptibility (VES), genital shedding (VEP), and infectivity during shedding (VEI). In addition, we studied the population level impact of vaccine intervention using representative vaccine efficacies. Results A vaccine with limited efficacy of reducing shedding frequency (VEP =10%) and infectivity (VEI =0%) would need to reduce susceptibility by 75% (VES =75%) to substantially reduce the sustainability of HSV-2 infection in a population. No reduction in susceptibility would be required to reach this target in a vaccine that decreased shedding by 75% (VES =0%, VEP =75%, VEI =0%). Mass vaccination using a vaccine with imperfect efficacies (VES =30%, VEP =75%, and VEI =0%) in Kisumu, Kenya in 2010 would decrease prevalence and incidence in 2020 by 7% and 30% respectively. For lower prevalence settings, vaccination is predicted to have a lower impact on prevalence. Conclusion A vaccine with substantially high efficacy of reducing HSV-2 shedding frequency would have a desirable impact at the population level. The vaccine’s short-term impact in a high prevalence setting in Africa would be a substantial decrease in incidence, whereas its immediate impact on prevalence would be small and would increase slowly over time. PMID:20351622
Weisemoeller, T.; Bertram, F.; Gevers, S.; Greuling, A.; Deiter, C.; Tobergte, H.; Neumann, M.; Wollschlaeger, J.; Giussani, A.; Schroeder, T.
2009-06-15
Films of hexagonal praseodymium sesquioxide (h-Pr{sub 2}O{sub 3}) were deposited on Si(111) by molecular beam epitaxy and thereafter annealed in 1 atm oxygen at different temperatures, ranging from 100 to 700 deg. C. The films of the samples annealed at 300 deg. C or more were transformed to PrO{sub 2} with B-oriented Fm3m structure, while films annealed at lower temperatures kept the hexagonal structure. The films are composed of PrO{sub 2} and PrO{sub 2-d}elta species, which coexist laterally and are tetragonally distorted due to the interaction at the interface between oxide film and Si substrate. Compared to PrO{sub 2}, PrO{sub 2-d}elta has the same cubic structure but with oxygen vacancies. The oxygen vacancies are partly ordered and increase the vertical lattice constant of the film, whereas the lateral lattice constant is almost identical for both species and on all samples. The latter lattice constant matches the lattice constant of the originally crystallized hexagonal praseodymium sesquioxide. That means that no long range reordering of the praseodymium atoms takes place during the phase transformation.
Robust light transport in non-Hermitian photonic lattices.
Longhi, Stefano; Gatti, Davide; Della Valle, Giuseppe
2015-01-01
Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure. PMID:26314932
Robust light transport in non-Hermitian photonic lattices
Longhi, Stefano; Gatti, Davide; Valle, Giuseppe Della
2015-01-01
Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure. PMID:26314932
Eskildsen, M.; Andersen, N.; Mortensen, K.; Bolle, C.; Lieber, C.; Oxx, S.; Sridhar, S.; Canfield, P.
1997-03-01
Small-angle neutron scattering and magnetic decoration both demonstrate a topological transition in the flux line lattice (FLL) in ErNi{sub 2}B{sub 2}C. The high-field square lattice slowly transforms into a hexagonal lattice via an area preserving [100] rhombohedral distortion below roughly 500Oe. The square FLL is aligned with the [110] direction of the tetragonal crystal, while the two domains of the hexagonal FLL are aligned with [100] and [010]. The differences in pinning for the two FLL topologies are reflected in the rf kinetic inductance. {copyright} {ital 1997} {ital The American Physical Society}
Palmer, R.B.
1987-05-01
This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.
Quantum emission from hexagonal boron nitride monolayers.
Tran, Toan Trong; Bray, Kerem; Ford, Michael J; Toth, Milos; Aharonovich, Igor
2016-01-01
Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing. PMID:26501751
Quantum emission from hexagonal boron nitride monolayers
NASA Astrophysics Data System (ADS)
Aharonovich, Igor; Tran, Toantrong; Bray, Kerem; Ford, Michael J.; Toth, Milos; MTEE Collaboration
Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Here, we demonstrate room-temperature, polarized single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. The emitters emit at the red and the near infrared spectral range and exhibit narrowband ultra bright emission (~full width at half maximum of below 10 nm with more than three million counts/s). Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.
Quantum emission from hexagonal boron nitride monolayers
NASA Astrophysics Data System (ADS)
Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor
2016-01-01
Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.
Hexagonal boron nitride and water interaction parameters
NASA Astrophysics Data System (ADS)
Wu, Yanbin; Wagner, Lucas K.; Aluru, Narayana R.
2016-04-01
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.
Hexagonal boron nitride and water interaction parameters.
Wu, Yanbin; Wagner, Lucas K; Aluru, Narayana R
2016-04-28
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems. PMID:27131542
The hexagon hypothesis: Six disruptive scenarios.
Burtles, Jim
2015-01-01
This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity. PMID:26420396
Elasto-static micropolar behavior of a chiral auxetic lattice
NASA Astrophysics Data System (ADS)
Spadoni, A.; Ruzzene, M.
2012-01-01
Auxetic materials expand when stretched, and shrink when compressed. This is the result of a negative Poisson's ratio ν. Isotropic configurations with ν≈-1 have been designed and are expected to provide increased shear stiffness G. This assumes that Young's modulus and ν can be engineered independently. In this article, a micropolar-continuum model is employed to describe the behavior of a representative auxetic structural network, the chiral lattice, in an attempt to remove the indeterminacy in its constitutive law resulting from ν=-1. While this indeterminacy is successfully removed, it is found that the shear modulus is an independent parameter and, for certain configurations, it is equal to that of the triangular lattice. This is remarkable as the chiral lattice is subject to bending deformation of its internal members, and thus is more compliant than the triangular lattice which is stretch dominated. The derived micropolar model also indicates that this unique lattice has the highest characteristic length scale lc of all known lattice topologies, as well as a negative first Lamé constant without violating bounds required for thermodynamic stability. We also find that hexagonal arrangements of deformable rings have a coupling number N=1. This is the first lattice reported in the literature for which couple-stress or Mindlin theory is necessary rather than being adopted a priori.
Structural domain walls in polar hexagonal manganites
NASA Astrophysics Data System (ADS)
Kumagai, Yu
2014-03-01
The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.
NASA Astrophysics Data System (ADS)
Nakata, Yosuke; Urade, Yoshiro; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo Wada; Kitano, Masao
2016-04-01
We investigate the supersymmetry (SUSY) structures for inductor-capacitor circuit networks on a simple regular graph and its line graph. We show that their eigenspectra must coincide (except, possibly, for the highest eigenfrequency) due to SUSY, which is derived from the topological nature of the circuits. To observe this spectra correspondence in the high-frequency range, we study spoof plasmons on metallic hexagonal and kagomé lattices. The band correspondence between them is predicted by a simulation. Using terahertz time-domain spectroscopy, we demonstrate the band correspondence of fabricated metallic hexagonal and kagomé lattices.
Exploiting imperfections in the bulk to direct assembly of surface colloids
Cavallaro, Marcello; Gharbi, Mohamed A.; Beller, Daniel A.; Čopar, Simon; Shi, Zheng; Baumgart, Tobias; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.
2013-01-01
We exploit the long-ranged elastic fields inherent to confined nematic liquid crystals (LCs) to assemble colloidal particles trapped at the LC interface into reconfigurable structures with complex symmetries and packings. Spherical colloids with homeotropic anchoring trapped at the interface between air and the nematic LC 4-cyano-4′-pentylbiphenyl create quadrupolar distortions in the director field causing particles to repel and consequently form close-packed assemblies with a triangular habit. Here, we report on complex open structures organized via interactions with defects in the bulk. Specifically, by confining the nematic LC in an array of microposts with homeotropic anchoring conditions, we cause defect rings to form at well-defined locations in the bulk of the sample. These defects source elastic deformations that direct the assembly of the interfacially trapped colloids into ring-like assemblies, which recapitulate the defect geometry even when the microposts are completely immersed in the nematic. When the surface density of the colloids is high, they form a ring near the defect and a hexagonal lattice far from it. Because topographically complex substrates are easily fabricated and LC defects are readily reconfigured, this work lays the foundation for a versatile, robust mechanism to direct assembly dynamically over large areas by controlling surface anchoring and associated bulk defect structure. PMID:24191037
Imperfect traveling chimera states induced by local synaptic gradient coupling
NASA Astrophysics Data System (ADS)
Bera, Bidesh K.; Ghosh, Dibakar; Banerjee, Tanmoy
2016-07-01
In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.
Imperfect traveling chimera states induced by local synaptic gradient coupling.
Bera, Bidesh K; Ghosh, Dibakar; Banerjee, Tanmoy
2016-07-01
In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state. PMID:27575131
Clinical trials: robust tests are wonderful for imperfect data.
Cleophas, Ton J
2015-01-01
Robust tests are tests that can handle the inclusion into a data file of some outliers without largely changing the overall test results. Despite the risk of non-Gaussian data in clinical trials, robust tests are virtually never performed. The objective of this study was to review important robust tests and to assess whether they provide better sensitivity of testing than standard tests do. In a 33 patient study of frailty scores, no significant t value was obtained (P = 0.067). The following 4 robust tests were performed: (1) z test for medians and median absolute deviations, (2) z test for Winsorized variances, (3) Mood test, and (4) z test for M-estimators with bootstrap standard errors. They produced P values of, respectively, <0.0001, 0.043, <0.0001, and 0.005. Robust tests are wonderful for imperfect clinical data because they often produce statistically significant results, whereas standard tests do not. PMID:23896742
Generalized random sign and alert delay models for imperfect maintenance.
Dijoux, Yann; Gaudoin, Olivier
2014-04-01
This paper considers the modelling of the process of Corrective and condition-based Preventive Maintenance, for complex repairable systems. In order to take into account the dependency between both types of maintenance and the possibility of imperfect maintenance, Generalized Competing Risks models have been introduced in "Doyen and Gaudoin (J Appl Probab 43:825-839, 2006)". In this paper, we study two classes of these models, the Generalized Random Sign and Generalized Alert Delay models. A Generalized Competing Risks model can be built as a generalization of a particular Usual Competing Risks model, either by using a virtual age framework or not. The models properties are studied and their parameterizations are discussed. Finally, simulation results and an application to real data are presented. PMID:23460491
Long-distance quantum key distribution with imperfect devices
Lo Piparo, Nicoló; Razavi, Mohsen
2014-12-04
Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, R{sub QKD}. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.
Casimir force induced by an imperfect Bose gas.
Napiórkowski, Marek; Piasecki, Jarosław
2011-12-01
We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential law diverges with critical exponent ν(IMP) = 1, which differs from the perfect gas case where ν(P) = 1/2. In the two-phase region, the Casimir force is long range and decays following the power law D(-3), with the same amplitude as in the perfect gas. PMID:22304038
FEL gain calculation for imperfectly matched electron beams
NASA Astrophysics Data System (ADS)
Swent, R. L.; Berryman, K. W.
1995-04-01
We present here the details of an analytical small-signal gain calculation. The analysis builds on the basic one-dimensional analytical calculation by modeling the effects of finite electron beam size and imperfect matching of the electron beam to the wiggler. The calculation uses TRANSPORT [SLAC-91, Rev. 2 (1977)] parameters to describe the electron beam in order to easily take the output of beam transport calculations and use them as the input for FEL gain calculations. The model accepts an arbitrary TRANSPORT beam and includes the effects of energy spread, beam size, betatron oscillations, and focussing in the wiggle plane. The model has allowed us to calculate the range over which our FEL can be tuned by changing the electron energy alone (i.e., without changing any magnets).
Loss-tolerant quantum cryptography with imperfect sources
NASA Astrophysics Data System (ADS)
Tamaki, Kiyoshi; Curty, Marcos; Kato, Go; Lo, Hoi-Kwong; Azuma, Koji
2014-11-01
In principle, quantum key distribution (QKD) offers unconditional security based on the laws of physics. Unfortunately, all previous QKD experiments assume perfect state preparation in their security analysis. Therefore, the generated key is not proven to be secure in the presence of unavoidable modulation errors. The key reason that modulation errors are not considered in previous QKD experiments lies in a crucial weakness of the standard Gottesman-Lo-Lütkenhaus-Preskill (GLLP) model, namely, it is not loss tolerant and Eve may in principle enhance imperfections through losses. Here, we propose a QKD protocol that is loss tolerant to state preparation flaws. Importantly, we show conclusively that the state preparation process in QKD can be much less precise than initially thought. Our method can also be applied to other quantum cryptographic protocols.
Effects of experimental imperfections on a spin counting experiment.
Zelenova, Yelena; Morgan, Steven W; Boutis, Gregory S
2013-06-01
Spin counting NMR is an experimental technique that allows a determination of the size and time evolution of networks of dipolar coupled nuclear spins. This work reports on an average Hamiltonian treatment of two spin counting sequences and compares the efficiency of the two cycles in the presence of flip errors, RF inhomogeneity, phase transients, phase errors, and offset interactions commonly present in NMR experiments. Simulations on small quantum systems performed using the two cycles reveal the effects of pulse imperfections on the resulting multiple quantum spectra, in qualitative agreement with the average Hamiltonian calculations. Experimental results on adamantane are presented, demonstrating differences in the two sequences in the presence of pulse errors. PMID:23648319
How to Introduce the Imperfection Sensitivity Concept into Design 2
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac
1998-01-01
The previous review on stochastic buckling of structures was written by Amazigo in 1976. The present review summarizes some of the developments which took place in recent two decades. A brief overview is given of the effect on uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation. For the benefit of the thinking reader, the review has a critical nature. Present essay should be viewed as a direct continuation of our previous paper (1983) with the same title. In order not to repeat what was covered there, it appears instructive to read it although not necessarily prior to dwelling on this article. Accordingly the title is appended with the serial number. It is not promised that the third review will follow since the university science, both fortunately and unfortunately, stands on three things: relevance, interest, and grants.
Yao, Xiaoyan; Dong, Shuai
2016-01-01
The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings. PMID:27229486
NASA Astrophysics Data System (ADS)
Yao, Xiaoyan; Dong, Shuai
2016-05-01
The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings.
Introducing lattice strain to graphene encapsulated in hBN
NASA Astrophysics Data System (ADS)
Tomori, Hikari; Hiraide, Rineka; Ootuka, Youiti; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu
Due to the characteristic lattice structure, lattice strain in graphene produces an effective gauge field. Theories tell that by controlling spatial variation of lattice strain, one can tailor the electronic state and transport properties of graphene. For example, under uniaxial local strain, graphene exhibits a transport gap at low energies, which is attractive for a graphene application to field effect devices. Here, we develop a method for encapsulating a strained graphene film in hexagonal boron-nitride (hBN). It is known that the graphene carrier mobility is significantly improved by the encapsulation of graphene in hBN, which has never been applied to strained graphene. We encapsulate graphene in hBN using the van der Waals assembly method. Strain is induced by sandwiching a graphene film between patterned hBN sheets. Spatial variation of strain is confirmed with micro Raman spectroscopy. Transport measurement of encapsulated strained graphene is in progress.
Correcting length-frequency distributions for imperfect detection
Breton, André R.; Hawkins, John A.; Winkelman, Dana L.
2013-01-01
Sampling gear selects for specific sizes of fish, which may bias length-frequency distributions that are commonly used to assess population size structure, recruitment patterns, growth, and survival. To properly correct for sampling biases caused by gear and other sources, length-frequency distributions need to be corrected for imperfect detection. We describe a method for adjusting length-frequency distributions when capture and recapture probabilities are a function of fish length, temporal variation, and capture history. The method is applied to a study involving the removal of Smallmouth Bass Micropterus dolomieu by boat electrofishing from a 38.6-km reach on the Yampa River, Colorado. Smallmouth Bass longer than 100 mm were marked and released alive from 2005 to 2010 on one or more electrofishing passes and removed on all other passes from the population. Using the Huggins mark–recapture model, we detected a significant effect of fish total length, previous capture history (behavior), year, pass, year×behavior, and year×pass on capture and recapture probabilities. We demonstrate how to partition the Huggins estimate of abundance into length frequencies to correct for these effects. Uncorrected length frequencies of fish removed from Little Yampa Canyon were negatively biased in every year by as much as 88% relative to mark–recapture estimates for the smallest length-class in our analysis (100–110 mm). Bias declined but remained high even for adult length-classes (≥200 mm). The pattern of bias across length-classes was variable across years. The percentage of unadjusted counts that were below the lower 95% confidence interval from our adjusted length-frequency estimates were 95, 89, 84, 78, 81, and 92% from 2005 to 2010, respectively. Length-frequency distributions are widely used in fisheries science and management. Our simple method for correcting length-frequency estimates for imperfect detection could be widely applied when mark–recapture data
Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice
NASA Astrophysics Data System (ADS)
Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig
2016-05-01
We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.
Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface.
Zhang, Ziyin; Nagy, Peter B; Hassan, Waled
2016-02-01
Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the additional nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation. PMID:26482394
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2004-01-01
The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.
Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface
NASA Astrophysics Data System (ADS)
Zhang, Ziyin; Nagy, Peter B.; Hassan, Waled
2016-02-01
Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the excess nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation.
Bootstrapping the Three-Loop Hexagon
Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP
2011-11-08
We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.
Hyperbolic phonon polaritons in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Dai, Siyuan
2015-03-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.
Fluorescent Defects in Hexagonal Boron Nitride
NASA Astrophysics Data System (ADS)
Exarhos, Annemarie L.; Oser, Kameron; Hopper, David A.; Grote, Richard R.; Bassett, Lee C.
Mono- and few-layer hexagonal boron nitride (h-BN) can host defects whose electronic states lie deep within the bandgap, similar to the nitrogen-vacancy color center in bulk diamond. Here, we study defect creation in h-BN through irradiation and thermal annealing. We employ confocal photoluminescence (PL) imaging and spectroscopy under various excitation energies on both supported and suspended h-BN to identify and characterize the emission of isolated defect centers. Polarization- and temperature-dependent measurements of the observed PL are used to map out the electronic structure of the defects, enabling optical control of fluorescent defects in h-BN. This knowledge, coupled with the spatial confinement to 2D and the unique electrical, optical, and mechanical properties of h-BN, will enable the use of these defects for quantum sensing and other applications in quantum information processing. Work supported by the ARO (W911NF-15-1-0589) and NSF MRSEC (DMR-1120901).
Hexagonal Antiprismatic Metallacarborane Clusters for Hydrogen Storage
NASA Astrophysics Data System (ADS)
Berkdemir, Cüneyt; Lin, Ping; Sofo, Jorge
2011-03-01
We investigated the adsorption properties of molecular hydrogen attached to hexagonal antiprismatic metallacarborane clusters, RuNi C2 B10 H12 and Ru 2 C2 B10 H12 , using density functional theory. These clusters have been recently synthesized using the reduction-metallation (RedMet) approach and their structures have been resolved. The hydrogen molecules are sequentially attached to these clusters until the H2 binding energies fall below 0.2 eV, which is the minimum value of ideal H2 binding energy in the range of 0.2-0.4 eV/H2 for the practical vehicle applications. We included the van der Waals interactions between metallacarborane clusters and molecular hydrogens. We also evaluated the contribution of zero point vibrational energies to the H2 binding energy. The kinetic stability of these clusters before and after hydrogen adsorption is discussed by analyzing the energy gap. The results show that RuNi C2 B10 H12 and Ru 2 C2 B10 H12 clusters can bind up to 8.5 wt % and 9.8 wt % molecular hydrogen, respectively. These results suggest that these metallacarborane clusters are potential hydrogen storage materials to meet the targets of DOE for 2015.
Janse Van Rensburg, E.J.
1996-12-31
The geometry of polygonal knots in the cubic lattice may be used to define some knot invariants. One such invariant is the minimal edge number, which is the minimum number of edges necessary (and sufficient) to construct a lattice knot of given type. In addition, one may also define the minimal (unfolded) surface number, and the minimal (unfolded) boundary number; these are the minimum number of 2-cells necessary to construct an unfolded lattice Seifert surface of a given knot type in the lattice, and the minimum number of edges necessary in a lattice knot to guarantee the existence of an unfolded lattice Seifert surface. In addition, I derive some relations amongst these invariants. 8 refs., 5 figs., 2 tabs.
Gold nanorods grown on microgels leading to hexagonal nanostructures.
Kumar, V R Rajeev; Samal, A K; Sreeprasad, T S; Pradeep, T
2007-08-14
Hexagonal patterns of gold nanorods were made by assembling gold nanorod-coated poly(N-isopropyl acrylamide) microgels. The required population of nanorods on the microgels was achieved by attaching nanoparticle seeds on the latter and growing them to nanorods. The various materials prepared were characterized by UV-vis spectroscopy and transmission electron microscopy. Similar experiments with nanoparticle-coated or prefabricated nanorod-coated microgels did not give such hexagonal patterns. We suggest that the interlocking of nanorods leads to these regular structures. This is the first report of a solution phase method for assembling nanorods into a hexagonal pattern. PMID:17637011
Defect Chaos of Oscillating Hexagons in Rotating Convection
Echebarria, Blas; Riecke, Hermann
2000-05-22
Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found. (c) 2000 The American Physical Society.
Optimized geometries for future generation optical lattice clocks
NASA Astrophysics Data System (ADS)
Krämer, S.; Ostermann, L.; Ritsch, H.
2016-04-01
Atoms deeply trapped in magic wavelength optical lattices provide a Doppler- and collision-free dense ensemble of quantum emitters ideal for high-precision spectroscopy and they are the basis of some of the best optical atomic clocks to date. However, despite their minute optical dipole moments the inherent long-range dipole-dipole interactions in such lattices still generate line shifts, dephasing and modified decay. We show that in a perfectly filled lattice line shifts and decay are resonantly enhanced depending on the lattice constant and geometry. Potentially, this yields clock shifts of many atomic linewidths and reduces the measurement by optimizing the lattice geometry. Such collective effects can be tailored to yield zero effective shifts and prolong dipole lifetimes beyond the single-atom decay. In particular, we identify dense 2D hexagonal or square lattices as the most promising configurations for an accuracy and precision well below the independent ensemble limit. This geometry should also be an ideal basis for related applications such as superradiant lasers, precision magnetometry or long-lived quantum memories.
Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal
NASA Astrophysics Data System (ADS)
Nath, R.; Dalmonte, M.; Glaetzle, A. W.; Zoller, P.; Schmidt-Kaler, F.; Gerritsma, R.
2015-06-01
We propose a trapped ion scheme en route to realize spin Hamiltonians on a Kagome lattice which, at low energies, are described by emergent {{{Z}}}2 gauge fields, and support a topological quantum spin liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin-spin interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrum of the crystal is engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal. These tailored modes can mediate spin-spin interactions between ion-qubits on a hexagonal plaquette when subject to state-dependent optical dipole forces. We discuss how these interactions can be employed to emulate a generalized Balents-Fisher-Girvin model in minimal instances of one and two plaquettes. This model is an archetypical Hamiltonian in which gauge fields are the emergent degrees of freedom on top of the classical ground state manifold. Under realistic situations, we show the emergence of a discrete Gauss’s law as well as the dynamics of a deconfined charge excitation on a gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed scheme in principle allows further scaling in a future trapped ion quantum simulator, and we conclude that our work will pave the way towards the simulation of emergent gauge theories and quantum spin liquids in trapped ion systems.
Growth and characterization of Cl-doped ZnO hexagonal nanodisks
Yousefi, Ramin; Zak, A.K.; Mahmoudian, M.R.
2011-10-15
Cl-doped ZnO nanodisks were grown on a Si(111) substrate using a thermal evaporation method. The prepared nanodisks exhibited a hexagonal shape with an average thickness of 50 nm and average diagonal of 270 nm. In addition, undoped ZnO disks with hexagonal shape were grown under the same conditions, but the sizes of these undoped ZnO disks were on the micrometer order. A possible mechanism was proposed for the growth of the Cl-doped ZnO nanodisks, and it was shown that the Cl{sup 1-} anions play a crucial role in controlling the size. X-ray diffraction and Raman spectroscopy clearly showed an extension in the crystal lattice of ZnO because of the presence of chlorine. In addition, these nanodisks produced a strong photoluminescence emission peak in the ultraviolet (UV) region and a weak peak in the green region of the electromagnetic spectrum. Furthermore, the UV peak of the Cl-doped ZnO nanodisks was blueshifted with respect to that of the undoped ZnO disks. - Graphical abstract: Cl-doped ZnO nanodisks and undoped ZnO microdisks have been grown using a thermal evaporation method. Highlights: > Cl-doped ZnO nanodisks with hexagonal shape are grown using a thermal evaporation method. > It is shown that the Cl{sup 1-} anions play a crucial role in controlling the size of the nanodisks. > XRD and Raman results showed that the Cl-doped ZnO nanodisks structure is under a biaxial stress. > UV peak of the PL spectrum is blueshifted for the Cl-doped ZnO nanodisks.
Synthesis and oxygen content dependent properties of hexagonal DyMnO{sub 3 + sub delta}.
Remsen, S.; Dabrowski, B.; Chmaissem, O.; Mais, J.; Szewczyk, A.
2011-07-01
Oxygen deficient polycrystalline samples of hexagonal P6{sub 3}cm (space group No.185) DyMnO{sub 3+{delta}} ({delta} < 0) were synthesized in Ar by intentional decomposition of its perovskite phase obtained in air. The relative stability of these phases is in accord with our previous studies of the temperature and oxygen vacancy dependent tolerance factor. Thermogravimetric measurements have shown that hexagonal samples of DyMnO{sub 3+{delta}} (0 {<=} {delta} {<=} 0.4) exhibit unusually large excess oxygen content, which readily incorporates on heating near 300 C in various partial-pressures of oxygen atmospheres. Neutron and synchrotron diffraction data show the presence of two new structural phases at {delta} {approx} 0.25 (Hex{sub 2}) and {delta} {approx} 0.40 (Hex{sub 3}). Rietveld refinements of the Hex{sub 2} phase strongly suggest it is well modeled by the R3 space group (No.146). These phases were observed to transform back to P6{sub 3}cm above {approx}350 C when material becomes stoichiometric in oxygen content ({delta} = 0). Chemical expansion of the crystal lattice corresponding to these large changes of oxygen was found to be 3.48 x 10{sup -2} mol{sup -1}. Thermal expansion of stoichiometric phases were determined to be 11.6 x 10{sup -6} and 2.1 x 10{sup -6} K{sup -1} for the P6{sub 3}cm and Hex{sub 2} phases, respectively. Our measurements also indicate that the oxygen non-stoichiometry of hexagonal RMnO{sub 3+{delta}} materials may have important influence on their multiferroic properties.
Synthesis and oxygen content dependent properties of hexagonal DyMnO[subscript 3+delta
Remsen, S.; Dabrowski, B.; Chmaissem, O.; Mais, J.; Szewczyk, A.
2011-10-28
Oxygen deficient polycrystalline samples of hexagonal P6{sub 3}cm (space group No.185) DyMnO{sub 3+{delta}} ({delta} < 0) were synthesized in Ar by intentional decomposition of its perovskite phase obtained in air. The relative stability of these phases is in accord with our previous studies of the temperature and oxygen vacancy dependent tolerance factor. Thermogravimetric measurements have shown that hexagonal samples of DyMnO{sub 3+{delta}} (0 {le} {delta} {le} 0.4) exhibit unusually large excess oxygen content, which readily incorporates on heating near 300 C in various partial-pressures of oxygen atmospheres. Neutron and synchrotron diffraction data show the presence of two new structural phases at {delta} {approx} 0.25 (Hex{sub 2}) and {delta} {approx} 0.40 (Hex{sub 3}). Rietveld refinements of the Hex{sub 2} phase strongly suggest it is well modeled by the R3 space group (No.146). These phases were observed to transform back to P6{sub 3}cm above {approx} 350 C when material becomes stoichiometric in oxygen content ({delta} = 0). Chemical expansion of the crystal lattice corresponding to these large changes of oxygen was found to be 3.48 x 10{sup -2} mol{sup -1}. Thermal expansion of stoichiometric phases were determined to be 11.6 x 10{sup -6} and 2.1 x 10{sup -6} K{sup -1} for the P6{sub 3}cm and Hex{sub 2} phases, respectively. Our measurements also indicate that the oxygen non-stoichiometry of hexagonal RMnO{sub 3+{delta}} materials may have important influence on their multiferroic properties.
Reconstruction of vortex lattices at low inductions
Sudbro, A.; Brandt, E.H. Max-Planck-Institut fuer Metallforschung, Institut fuer Physik, Heisenbergstrasse 1, D-7000 Stuttgart 80 )
1992-03-16
The nonlocal elasticity and the normal modes of an unpinned flux-line lattice (FLL) in a uniaxially anisotropic supeconductor are considered in the low-induction regime {ital b}={ital B}/{ital B}{sub {ital c}2}{much lt}1 at oblique angles {theta} between {bold B} and the {bold {cflx c}} axis. A novel feature of anisotropic superconductors is {ital strongly} {ital dispersive} {ital shear} {ital moduli} when {theta}{gt}0. Thus, the normal modes of the FLL may become soft away from the zone center, signaling a {bold k}{ne}{bold 0} {ital structural} instability of the distorted hexagonal FLL. Vortex structures of a novel type are thus possible in anisotropic superconductors.
Landau Levels in Strained Optical Lattices
NASA Astrophysics Data System (ADS)
Tian, Binbin; Endres, Manuel; Pekker, David
2015-12-01
We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudomagnetic field and result in the formation of Landau levels. We show that the pseudomagnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudomagnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.
Reported and predicted structures of Ba(Co,Nb)(1-δ)O₃ hexagonal perovskite phases.
Bradley, Kathryn A; Collins, Christopher; Dyer, Matthew S; Claridge, John B; Darling, George R; Rosseinsky, Matthew J
2014-10-21
The Extended Module Materials Assembly computational method for structure solution and prediction has been implemented for close-packed lattices. Exploring the family of B-site deficient materials in hexagonal perovskite barium cobalt niobates, it is found that the EMMA procedure returns the experimental structures as the most stable for the known compositions of Ba3CoNb2O9, Ba5Nb4O15 and Ba8CoNb6O24. The unknown compositions Ba11Co2Nb8O33 and Ba13CoNb10O39, having longer stacking sequences, are predicted to form as intergrowths of Ba3CoNb2O9 and Ba5Nb4O15, and are found to have similar stability to pure Ba3CoNb2O9 and Ba5Nb4O15, indicating that it is likely they can be synthesised. PMID:24871400
Monte Carlo study of the hetero-polytypical growth of cubic on hexagonal silicon carbide polytypes
NASA Astrophysics Data System (ADS)
Camarda, Massimo
2012-08-01
In this article we use three dimensional kinetic Monte Carlo simulations on super-lattices to study the hetero-polytypical growth of cubic silicon carbide polytype (3C-SiC) on misoriented hexagonal (4H and 6H) substrates. We analyze the quality of the 3C-SiC film varying the polytype, the miscut angle and the initial surface morphology of the substrate. We find that the use of 6H misoriented (4°-10° off) substrates, with step bunched surfaces, can strongly improve the quality of the cubic epitaxial film whereas the 3C/4H growth is affected by the generation of dislocations, due to the incommensurable periodicity of the 3C (3) and the 4H (4) polytypes. For these reasons, a proper pre-growth treatment of 6H misoriented substrates can be the key for the growth of high quality, twin free, 3C-SiC films.
Metal organic vapor phase epitaxy of hexagonal Ge-Sb-Te (GST)
NASA Astrophysics Data System (ADS)
Schuck, Martin; Rieß, Sally; Schreiber, Marcel; Mussler, Gregor; Grützmacher, Detlev; Hardtdegen, Hilde
2015-06-01
Epitaxial, hexagonal Ge-Sb-Te was grown on Si(111) substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) using the precursor digermane. The effect of reactor pressure, growth temperature and in situ pre-treatment on morphology and Ge-Sb-Te composition was studied. The composition is sensitive to reactor pressure and growth temperature. Compositional control is achieved at a reactor pressure of 50 hPa. Substrate pre-treatment affects film coalescence. The use of hydrogen and a suitable precursor pre-treatment leads to enhanced surface coverage. X-ray diffraction reveals a trigonal structure with lattice parameters close to that reported for Ge1Sb2Te4 crystallizing in the R 3 bar m phase. The composition was confirmed by energy-dispersive X-ray spectroscopy.
Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin.
Saxena, Sumit; Chaudhary, Raghvendra Pratap; Shukla, Shobha
2016-01-01
Stanene is one of most important of 2D materials due to its potential to demonstrate room temperature topological effects due to opening of spin-orbit gap. In this pursuit we report synthesis and investigation of optical properties of stanene up to few layers, a two-dimensional hexagonal structural analogue of graphene. Atomic scale morphological and elemental characterization using HRTEM equipped with SAED and EDAX detectors confirm the presence of hexagonal lattice of Sn atoms. The position of Raman peak along with the inter-planar 'd' spacing obtained from SAED for prepared samples are in good agreement with that obtained from first principles calculations and confirm that the sheets are not (111) α-Sn sheets. Further, the optical signature calculated using density functional theory at ~191 nm and ~233 nm for low buckled stanene are in qualitative agreement with the measured UV-Vis absorption spectrum. AFM measurements suggest interlayer spacing of ~0.33 nm in good agreement with that reported for epitaxial stanene sheets. No traces of oxygen were observed in the EDAX spectrum suggesting the absence of any oxidized phases. This is also confirmed by Raman measurements by comparing with oxidized stanene sheets. PMID:27492139
Preparation and characterization of hexagonal MnTe and ZnO layers
NASA Astrophysics Data System (ADS)
Przedziecka, E.; Kamiska, E.; Dynowska, E.; Butkut, R.; Dobrowolski, W.; Kpa, H.; Jakiela, R.; Aleszkiewicz, M.; Usakowska, E.; Janik, E.; Kossut, J.
2005-02-01
MnTe layers of high crystalline quality were grown on Al2O3 substrates (0001)-oriented by molecular beam epitaxy (MBE). Characterization of MnTe by X-ray diffraction (XRD) revealed a hexagonal structure of NiAs-type with lattice parameters a = 4.166 Å and c = 6.694 Å. The energy gap of MnTe, evaluated from the optical transmission spectra measured at 10 K, was found to be 1.7 eV. The Néel temperature obtained from neutron diffraction (ND) measurements was 284.1 K. ZnO:N layers were fabricated by thermal oxidation of metallic Zn and ZnTe grown by MBE on different substrates. In order to achieve p-type conductivity, the starting materials were doped by nitrogen. The XRD spectra of the oxidized samples showed peaks related to hexagonal ZnO. The Hall measurements demonstrated p-type conductivity with the hole concentration of 2.2 × 1019 cm-3 and 6.7 × 1017 cm^{-3} for ZnO:N deposited on GaAs and ZnTe, respectively.
Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin
Saxena, Sumit; Chaudhary, Raghvendra Pratap; Shukla, Shobha
2016-01-01
Stanene is one of most important of 2D materials due to its potential to demonstrate room temperature topological effects due to opening of spin-orbit gap. In this pursuit we report synthesis and investigation of optical properties of stanene up to few layers, a two-dimensional hexagonal structural analogue of graphene. Atomic scale morphological and elemental characterization using HRTEM equipped with SAED and EDAX detectors confirm the presence of hexagonal lattice of Sn atoms. The position of Raman peak along with the inter-planar ‘d’ spacing obtained from SAED for prepared samples are in good agreement with that obtained from first principles calculations and confirm that the sheets are not (111) α-Sn sheets. Further, the optical signature calculated using density functional theory at ~191 nm and ~233 nm for low buckled stanene are in qualitative agreement with the measured UV-Vis absorption spectrum. AFM measurements suggest interlayer spacing of ~0.33 nm in good agreement with that reported for epitaxial stanene sheets. No traces of oxygen were observed in the EDAX spectrum suggesting the absence of any oxidized phases. This is also confirmed by Raman measurements by comparing with oxidized stanene sheets. PMID:27492139
Structural, electronic and optical properties of hexagonal TaN compound
NASA Astrophysics Data System (ADS)
Chen, Zhongjun; Yan, Jungan; Kuang, Zhong; Chen, Taihong; Li, Dehua
2016-01-01
Structural and electronic properties of hexagonal Tantalum nitride (TaN) in CoSn and WC structures are studied using the first-principle calculations. Lattice constants and electronic band structures are in an excellent agreement with the available experimental and other theoretical values. TaN in both structures studied has a metallic nature and a strong hybridization of Ta 5d and N 2p are found from the spin density of states (DOS). Meanwhile, our LSDA+U calculations predicted a strong ferromagnetic state for CoSn-type structure and an obvious paramagnetic nature for WC-type structure. No phase transition are observed within cubic and hexagonal CoSn and WC structures under high pressures. Our results show WC-type TaN is the calculated ground-state structure among the three crystallographic structures studied under 120 GPa. Optical properties show that TaN in CoSn-type structure is a better dielectric material.
Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin
NASA Astrophysics Data System (ADS)
Saxena, Sumit; Chaudhary, Raghvendra Pratap; Shukla, Shobha
2016-08-01
Stanene is one of most important of 2D materials due to its potential to demonstrate room temperature topological effects due to opening of spin-orbit gap. In this pursuit we report synthesis and investigation of optical properties of stanene up to few layers, a two-dimensional hexagonal structural analogue of graphene. Atomic scale morphological and elemental characterization using HRTEM equipped with SAED and EDAX detectors confirm the presence of hexagonal lattice of Sn atoms. The position of Raman peak along with the inter-planar ‘d’ spacing obtained from SAED for prepared samples are in good agreement with that obtained from first principles calculations and confirm that the sheets are not (111) α-Sn sheets. Further, the optical signature calculated using density functional theory at ~191 nm and ~233 nm for low buckled stanene are in qualitative agreement with the measured UV-Vis absorption spectrum. AFM measurements suggest interlayer spacing of ~0.33 nm in good agreement with that reported for epitaxial stanene sheets. No traces of oxygen were observed in the EDAX spectrum suggesting the absence of any oxidized phases. This is also confirmed by Raman measurements by comparing with oxidized stanene sheets.
NASA Astrophysics Data System (ADS)
Salmaoui, Samiha; Sediri, Faouzi; Gharbi, Néji; Perruchot, Christian; Aeiyach, Salah; Rutkowska, Iwona A.; Kulesza, Pawel J.; Jouini, Mohamed
2011-07-01
Tungsten trioxide, unhydrated with hexagonal structure (h-WO 3), has been prepared by hydrothermal method at a temperature of 180 °C in acidified sodium tungstate solution. Thus prepared h-WO 3 has been characterized by X-ray diffraction (XRD) method and using electrochemical techniques. The morphology has been examined by scanning and transmission electron microscopies (SEM and TEM) and it is consistent with existence of nanorods of 50-70 nm diameter and up to 5 μm length. Cyclic voltammetric characterization of thin films of h-WO 3 nanorods has revealed reversible redox behaviour with charge-discharge cycling corresponding to the reversible lithium intercalation/deintercalation into the crystal lattice of the h-WO 3 nanorods. In propylene carbonate containing LiClO 4, two successive redox processes of hexagonal WO 3 nanorods are observed at the scan rate of 50 mV/s. Such behaviour shall be attributed to the presence of at least two W atoms of different surroundings in the lattice structure of h-WO 3 nanorods. On the other hand, in aqueous LiClO 4 solution, only one redox process is observed at the scan rate of 10 mV/s. The above observations can be explained in terms of differences in the diffusion of ions inside two types of channel cavities existing in the structure of the h-WO 3 nanorods. Moreover, the material can be applied as active support for the catalytic bi-metallic Pt-Ru nanoparticles during electrooxidation of ethanol in acid medium (0.5 mol dm -3 H 2SO 4).
Mandal, R.; Barman, S.; Saha, S.; Barman, A.; Otani, Y.
2015-08-07
Ferromagnetic antidot lattices are important systems for magnetic data storage and magnonic devices, and understanding their magnetization dynamics by varying their structural parameters is an important problems in magnetism. Here, we investigate the variation in spin wave spectrum in two-dimensional nanoscale Ni{sub 80}Fe{sub 20} antidot lattices with lattice symmetry. By varying the bias magnetic field values in a broadband ferromagnetic resonance spectrometer, we observed a stark variation in the spin wave spectrum with the variation of lattice symmetry. The simulated mode profiles showed further difference in the spatial nature of the modes between different lattices. While for square and rectangular lattices extended modes are observed in addition to standing spin wave modes, all modes in the hexagonal, honeycomb, and octagonal lattices are either localized or standing waves. In addition, the honeycomb and octagonal lattices showed two different types of modes confined within the honeycomb (octagonal) units and between two such consecutive units. Simulated internal magnetic fields confirm the origin of such a wide variation in the frequency and spatial nature of the spin wave modes. The tunability of spin waves with the variation of lattice symmetry is important for the design of future magnetic data storage and magnonic devices.
Stability of hexagonal patterns in Benard-Marangoni convection
Echebarria, B.; Perez-Garcia, C.
2001-06-01
Hexagonal patterns in Benard-Marangoni (BM) convection are studied within the framework of amplitude equations. Near threshold they can be described with Ginzburg-Landau equations that include spatial quadratic terms. The planform selection problem between hexagons and rolls is investigated by explicitly calculating the coefficients of the Ginzburg-Landau equations in terms of the parameters of the fluid. The results are compared with previous studies and with recent experiments. In particular, steady hexagons that arise near onset can become unstable as a result of long-wave instabilities. Within weakly nonlinear theory, a two-dimensional phase equation for long-wave perturbations is derived. This equation allows us to find stability regions for hexagon patterns in BM convection.
Optoelectronic properties of hexagonal boron nitride epilayers
NASA Astrophysics Data System (ADS)
Cao, X. K.; Majety, S.; Li, J.; Lin, J. Y.; Jiang, H. X.
2013-01-01
This paper summarizes recent progress primarily achieved in authors' laboratory on synthesizing hexagonal boron nitride (hBN) epilayers by metal organic chemical vapor deposition (MCVD) and studies of their structural and optoelectronic properties. The structural and optical properties of hBN epilayers have been characterized by x-ray diffraction (XRD) and photoluminescence (PL) studies and compared to the better understood wurtzite AIN epilayers with a comparable energy bandgap. These MOCVD grown hBN epilayers exhibit highly efficient band-edge PL emission lines centered at around 5.5 eVat room temperature. The band-edge emission of hBN is two orders of magnitude higher than that of high quality AlN epilayers. Polarization-resolved PL spectroscopy revealed that hEN epilayers are predominantly a surface emission material, in which the band-edge emission with electric field perpendicular to the c-axis (Eemi⊥c) is about 1.7 times stronger than the component along the c-axis (Eemillc). This is in contrast to AIN, in which the band edge emission is known to be polarized along the c-axis, (Eemillc). Based on the graphene optical absorption concept, the estimated band-edge absorption coefficient of hBN is about 7x105 cm-1, which is more than 3 times higher than the value for AlN (~2x105 cm-1 . The hBN epilayer based photodetectors exhibit a sharp cut-off wavelength around 230 nm, which coincides with the band-edge PL emission peak and virtually no responses in the long wavelengths. The dielectric strength of hBN epilayers exceeds that of AlN and is greater than 4.5 MV/cm based on the measured result for an hBN epilayer released from the host sapphire substrate.
Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2002-01-01
The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The results identify the effects of traditional and non-traditional initial imperfections on the non-linear response and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfect ions that are commonly discussed in the literature on thin shell buckling. The non-traditional imperfections include shell-wall thickness variations local shell-wall ply-gaps associated with the fabrication process, sheltered geometric imperfections, non-uniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity non-linear shell analysis procedure that accurately accounts for the effects of these traditional and non-traditional imperfections on the nonlinear response, and buckling loads of the shells is described. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable response characteristics.
Dirac plasmons in bipartite lattices of metallic nanoparticles
NASA Astrophysics Data System (ADS)
Jebb Sturges, Thomas; Woollacott, Claire; Weick, Guillaume; Mariani, Eros
2015-03-01
We study theoretically ‘graphene-like’ plasmonic metamaterials constituted by two-dimensional arrays of metallic nanoparticles, including perfect honeycomb structures with and without inversion symmetry, as well as generic bipartite lattices. The dipolar interactions between localized surface plasmons (LSPs) in different nanoparticles gives rise to collective plasmons (CPs) that extend over the whole lattice. We study the band structure of CPs and unveil its tunability with the orientation of the dipole moments associated with the LSPs. Depending on the dipole orientation, we identify a phase diagram of gapless or gapped phases in the CP dispersion. We show that the gapless phases in the phase diagram are characterized by CPs behaving as massless chiral Dirac particles, in analogy with electrons in graphene. When the inversion symmetry of the honeycomb structure is broken, CPs are described as gapped chiral Dirac modes with an energy-dependent Berry phase. We further relax the geometric symmetry of the honeycomb structure by analysing generic bipartite hexagonal lattices. In this case we study the evolution of the phase diagram and unveil the emergence of a sequence of topological phase transitions when one hexagonal sublattice is progressively shifted with respect to the other.
Intercalation of hexagonal boron nitride with potassium
Doll, G.L.; Speck, J.S.; Dresselhaus, G.; Dresselhaus, M.S. ); Nakamura, K.; Tanuma, S.
1989-09-15
We have performed photoluminescence, photoexcitation, and transmission electron microscopy measurements on boron nitride films grown by chemical vapor deposition and later reacted with potassium. After reaction, the potassium atoms were found to intercalate the BN host and to form a (2{times}2){ital R}0{degree} in-plane structure which is commensurate with the pristine BN lattice. Optical transitions with {similar to}2.7 eV onsets were found to occur within the {similar to}5-eV BN band gap and have been interpreted as {Gamma}-point transitions between the K(4{ital s}) band and the BN(2{ital p}) bands. The absence of an appreciable shift in the {ital E}{sub 2{ital g}{sub 2}} phonon frequency of the pristine and reacted films suggests that the charge transfer between the K and BN bands is very small.
NASA Astrophysics Data System (ADS)
Bergner, Georg; Catterall, Simon
2016-08-01
We discuss the motivations, difficulties and progress in the study of supersymmetric lattice gauge theories focusing in particular on 𝒩 = 1 and 𝒩 = 4 super-Yang-Mills in four dimensions. Brief reviews of the corresponding lattice formalisms are given and current results are presented and discussed. We conclude with a summary of the main aspects of current work and prospects for the future.
Flat Band Quastiperiodic Lattices
NASA Astrophysics Data System (ADS)
Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo
2014-03-01
Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.
Laterally closed lattice homomorphisms
NASA Astrophysics Data System (ADS)
Toumi, Mohamed Ali; Toumi, Nedra
2006-12-01
Let A and B be two Archimedean vector lattices and let be a lattice homomorphism. We call that T is laterally closed if T(D) is a maximal orthogonal system in the band generated by T(A) in B, for each maximal orthogonal system D of A. In this paper we prove that any laterally closed lattice homomorphism T of an Archimedean vector lattice A with universal completion Au into a universally complete vector lattice B can be extended to a lattice homomorphism of Au into B, which is an improvement of a result of M. Duhoux and M. Meyer [M. Duhoux and M. Meyer, Extended orthomorphisms and lateral completion of Archimedean Riesz spaces, Ann. Soc. Sci. Bruxelles 98 (1984) 3-18], who established it for the order continuous lattice homomorphism case. Moreover, if in addition Au and B are with point separating order duals (Au)' and B' respectively, then the laterally closedness property becomes a necessary and sufficient condition for any lattice homomorphism to have a similar extension to the whole Au. As an application, we give a new representation theorem for laterally closed d-algebras from which we infer the existence of d-algebra multiplications on the universal completions of d-algebras.
Björner, Anders
1987-01-01
A continuous analogue to the partition lattices is presented. This is the metric completion of the direct limit of a system of embeddings of the finite partition lattices. The construction is analogous to von Neumann's construction of a continuous geometry over a field F from the finite-dimensional projective geometries over F. PMID:16593874
Imperfect supercritical bifurcation in a three-dimensional turbulent wake
NASA Astrophysics Data System (ADS)
Cadot, Olivier; Evrard, Antoine; Pastur, Luc
2015-06-01
The turbulent wake of a square-back body exhibits a strong bimodal behavior. The wake randomly undergoes symmetry-breaking reversals between two mirror asymmetric steady modes [reflectional symmetry-breaking (RSB) modes]. The characteristic time for reversals is about 2 or 3 orders of magnitude larger than the natural time for vortex shedding. Studying the effects of the proximity of a ground wall together with the Reynolds number, it is shown that the bimodal behavior is the result of an imperfect pitchfork bifurcation. The RSB modes correspond to the two stable bifurcated branches resulting from an instability of the stable symmetric wake. An attempt to stabilize the unstable symmetric wake is investigated using a passive control technique. Although the controlled wake still exhibits strong fluctuations, the bimodal behavior is suppressed and the drag reduced. This promising experiment indicates the possible existence of an unstable solution branch corresponding to a reflectional symmetry preserved (RSP) mode. This work is encouraging to develop a control strategy based on a stabilization of this RSP mode to reduce mean drag and lateral force fluctuations.
Modeling species occurrence dynamics with multiple states and imperfect detection
MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.
2009-01-01
Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.
Sensitivity of actively damped structures to imperfections and modeling errors
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Kapania, Rakesh K.
1989-01-01
The sensitivity of actively damped response of structures with respect to errors in the structural modeling is studied. Two ways of representing errors are considered. The first approach assumes errors in the form of spatial variations (or imperfections) in the assumed mass and stiffness properties of the structures. The second approach assumes errors due to such factors as unknown joint stiffnesses, discretization errors, and nonlinearities. These errors are represented here as discrepancies between experimental and analytical mode shapes and frequencies. The actively damped system considered here is a direct-rate feedback regulator based on a number of colocated velocity sensors and force actuators. The response of the controlled structure is characterized by the eigenvalues of the closed-loop system. The effects of the modeling errors are thus presented as the sensitivity of the eigenvalues of the closed-loop system. Results are presented for two examples: (1) a three-span simply supported beam controlled by three sensors and actuators, and (2) a laboratory structure consisting of a cruciform beam supported by cables.
CD271 is an imperfect marker for melanoma initiating cells
Cheli, Yann; Bonnazi, Vanessa F.; Jacquel, Arnaud; Allegra, Maryline; Donatis, Gian Marco De; Bahadoran, Philippe; Bertolotto, Corine; Ballotti, Robert
2014-01-01
Understanding the molecular and cellular processes underlying melanoma plasticity and heterogeneity is of paramount importance to improve the efficiency of current treatment and to overcome resistance to chemotherapy drugs. The notion of plasticity and heterogeneity implies the existence of melanoma cell populations with different phenotypic and tumorigenic properties. Using melanoma cell lines and melanoma cells freshly isolated from patient biopsies, we investigated the relationship between ABCB5+, CD271+ and low-MITF, expressing populations that were reported to display melanoma initiating cell properties. Here, we showed that ABCB5+ and CD271+ populations poorly overlap. However, we found that the CD271+ population is enriched in low-MITF cells and expresses a higher level of stemness genes, such as OCT4, NANOG and NES. These features could explain the increased tumorigenicity of the CD271+ cells. The rapid conversion of CD271+ to CD271− cells in vitro demonstrates the plasticity ability of melanoma cells. Finally, we observed that the transient slow-growing population contains only CD271+ cells that are highly tumorigenic. However, the fast growing/CD271+ population exhibits a poor tumorigenic ability. Taking together, our data show that CD271 is an imperfect marker for melanoma initiating cells, but may be useful to identify melanoma cells with an increased stemness and tumorigenic potential. PMID:25105565
Many-body localization in imperfectly isolated quantum systems.
Johri, Sonika; Nandkishore, Rahul; Bhatt, R N
2015-03-20
We use numerical exact diagonalization to analyze which aspects of the many-body localization phenomenon survive in an imperfectly isolated setting, when the system of interest is weakly coupled to a thermalizing environment. We show that widely used diagnostics (such as many-body level statistics and expectation values in exact eigenstates) cease to show signatures of many-body localization above a critical coupling that is exponentially small in the size of the environment. However, we also identify alternative diagnostics for many-body localization, in the spectral functions of local operators. Diagnostics include a discrete spectrum and a hierarchy of energy gaps, including a universal gap at zero frequency. These alternative diagnostics are shown to be robust, and continue to show signatures of many-body localization as long as the coupling to the bath is weaker than the characteristic energy scales in the system. We also examine how these signatures disappear when the coupling to the environment becomes larger than the characteristic energy scales of the system. PMID:25839306
Long-distance quantum key distribution with imperfect devices
NASA Astrophysics Data System (ADS)
Lo Piparo, Nicoló; Razavi, Mohsen
2013-07-01
Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secret key generation rates per quantum memory. The two schemes under investigation are the one proposed by Duan [Nature (London)0028-083610.1038/35106500 414, 413 (2001)] and that of Sangouard [Phys. Rev. A1050-294710.1103/PhysRevA.76.050301 76, 050301 (2007)]. We consider various sources of imperfection in both protocols, such as nonzero double-photon probabilities at the sources, dark counts in detectors, and inefficiencies in the channel, photodetectors, and memories. We also consider memory decay and dephasing processes in our analysis. For the latter system, we determine the maximum value of the double-photon probability beyond which secret key distillation is not possible. We also find crossover distances for one nesting level to its subsequent one. We finally compare the two protocols in terms of their achievable secret key generation rates at their optimal settings. Our results specify regimes of operation where one system outperforms the other.
Imperfect supercritical bifurcation in a three-dimensional turbulent wake.
Cadot, Olivier; Evrard, Antoine; Pastur, Luc
2015-06-01
The turbulent wake of a square-back body exhibits a strong bimodal behavior. The wake randomly undergoes symmetry-breaking reversals between two mirror asymmetric steady modes [reflectional symmetry-breaking (RSB) modes]. The characteristic time for reversals is about 2 or 3 orders of magnitude larger than the natural time for vortex shedding. Studying the effects of the proximity of a ground wall together with the Reynolds number, it is shown that the bimodal behavior is the result of an imperfect pitchfork bifurcation. The RSB modes correspond to the two stable bifurcated branches resulting from an instability of the stable symmetric wake. An attempt to stabilize the unstable symmetric wake is investigated using a passive control technique. Although the controlled wake still exhibits strong fluctuations, the bimodal behavior is suppressed and the drag reduced. This promising experiment indicates the possible existence of an unstable solution branch corresponding to a reflectional symmetry preserved (RSP) mode. This work is encouraging to develop a control strategy based on a stabilization of this RSP mode to reduce mean drag and lateral force fluctuations. PMID:26172790
Effect of Surface Imperfections and Excrescences on the Crossflow Instability
NASA Astrophysics Data System (ADS)
Tufts, Matthew; Duncan, Glen, Jr.; Crawford, Brian; Reed, Helen; Saric, William
2012-11-01
Presented is analysis of the planned SWIFTER experiment to be flown on Texas A&M University's O-2A aircraft. Simultaneous control of the crossflow and streamwise boundary-layer instabilities is a challenge for laminar flow control on swept wings. Solving this problem is an active area of research, with a specific need to quantify the effect of surface imperfections and outer mold line excrescences on crossflow instabilities. The SWIFTER test article is a modification of a prior-tested flight model, with the additional capability of creating controlled excrescences in flight. Using a finite-element Navier-Stokes solution and a spectrally accurate boundary-layer solver, coupled with linear and nonlinear stability analyses, we show that the flow field over the test article is well suited to this study. Results are compared with flight data. The work is supported by the Air Force Research Laboratory through General Dynamics Information Technology, Inc. under sub Agreement No USAF-3446-11-50-SC-01 and the Texas A&M Supercomputing Facility.
Information Loss Associated with Imperfect Observation and Mismatched Decoding
Oizumi, Masafumi; Okada, Masato; Amari, Shun-Ichi
2011-01-01
We consider two types of causes leading to information loss when neural activities are passed and processed in the brain. One is responses of upstream neurons to stimuli being imperfectly observed by downstream neurons. The other is upstream neurons non-optimally decoding stimuli information contained in the activities of the downstream neurons. To investigate the importance of neural correlation in information processing in the brain, we specifically consider two situations. One is when neural responses are not simultaneously observed, i.e., neural correlation data is lost. This situation means that stimuli information is decoded without any specific assumption about neural correlations. The other is when stimuli information is decoded by a wrong statistical model where neural responses are assumed to be independent even when they are not. We provide the information geometric interpretation of these two types of information loss and clarify their relationship. We then concretely evaluate these types of information loss in some simple examples. Finally, we discuss use of these evaluations of information loss to elucidate the importance of correlation in neural information processing. PMID:21629857
Information loss associated with imperfect observation and mismatched decoding.
Oizumi, Masafumi; Okada, Masato; Amari, Shun-Ichi
2011-01-01
We consider two types of causes leading to information loss when neural activities are passed and processed in the brain. One is responses of upstream neurons to stimuli being imperfectly observed by downstream neurons. The other is upstream neurons non-optimally decoding stimuli information contained in the activities of the downstream neurons. To investigate the importance of neural correlation in information processing in the brain, we specifically consider two situations. One is when neural responses are not simultaneously observed, i.e., neural correlation data is lost. This situation means that stimuli information is decoded without any specific assumption about neural correlations. The other is when stimuli information is decoded by a wrong statistical model where neural responses are assumed to be independent even when they are not. We provide the information geometric interpretation of these two types of information loss and clarify their relationship. We then concretely evaluate these types of information loss in some simple examples. Finally, we discuss use of these evaluations of information loss to elucidate the importance of correlation in neural information processing. PMID:21629857
Honeycomb lattices with defects
NASA Astrophysics Data System (ADS)
Spencer, Meryl A.; Ziff, Robert M.
2016-04-01
In this paper, we introduce a variant of the honeycomb lattice in which we create defects by randomly exchanging adjacent bonds, producing a random tiling with a distribution of polygon edges. We study the percolation properties on these lattices as a function of the number of exchanged bonds using an alternative computational method. We find the site and bond percolation thresholds are consistent with other three-coordinated lattices with the same standard deviation in the degree distribution of the dual; here we can produce a continuum of lattices with a range of standard deviations in the distribution. These lattices should be useful for modeling other properties of random systems as well as percolation.
Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures
NASA Astrophysics Data System (ADS)
Toropova, Marina M.; Steeves, Craig A.
2015-08-01
Earth-orbiting satellites regularly pass from sunlight to shade and back; these transitions are typically accompanied by significant temperature changes. When adjoining parts of a satellite that are made of different materials are subjected to large temperature changes, thermal mismatch stresses arise that are a function of the temperature change and the difference in coefficients of thermal expansion (CTEs) between the two materials. These thermal stresses are linked to undesirable deformation and, through long-term cycling, fatigue and failure of the structure. This paper describes a type of anisotropic lattice that can serve as a stress-free adaptor between two materials, eliminating thermal mismatch stresses and their concomitant consequences. The lattices consist of planar nonidentical anisotropic bimaterial cells, each designed based on a virtual triangle. Physically the cells consist of a triangle made of material with higher CTE surrounded by a hexagon made of material with lower CTE. Different skew angles of the hexagon make a particular cell and the whole lattice anisotropic. The cells can be designed and combined in a lattice in such a way that one edge of the lattice has CTE that coincides with the CTE of the first part of the structure (substrate 1), while the other edge of the lattice has CTE equal to the CTE of the second part of the structure (substrate 2). If all joints between the parts of each cell, neighbouring cells, and the lattice and the substrates are pinned, the whole structure will be free of thermal stresses. This paper will discuss the fundamental principles governing such lattices, their refinement for special circumstances, and opportunities for improving the structural performance of the lattices. This will be presented coupled to a rational strategy for lattice design.
NASA Astrophysics Data System (ADS)
Muc, A.
The paper deals with the static buckling and postbuckling behavior of clamped elastic imperfect laminated shallow spherical shells subjected to uniform external pressure. Three types of initial geometrical imperfections are analyzed: two local described by a convex or a concave curve, and one global in the form of the Legendre polynomial. Applying the Rayleigh-Ritz procedure to Marguerre's equations combined with the precise prebuckling numerical analysis, reasonably accurate solutions are obtained for upper and lower buckling pressures. The effects of fiber orientations on pre- and postbuckling behavior, imperfection sensitivity, buckling loads, and modes are considered. The results for composite shells are compared with those calculated for quasi-isotropic ones.
Analysis and testing of axial compression in imperfect slender truss struts
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Georgiadis, Nicholas
1990-01-01
The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.
HEXAGON MOSAIC MAPS FOR DISPLAY OF UNIVARIATE AND BIVARIATE GEOGRAPHICAL DATA
Hexagon mosaic maps and hexagon-based ray glyph maps are presented. he phrase "hexagon mosaic map" refers to maps that use hexagons to tessellate major areas of a map such as land masses. exagon mosaic maps are similar to color-contour (isarithm) maps and show broad regional patt...
Non-random cation distribution in hexagonal Al 0.5Ga 0.5PO 4
NASA Astrophysics Data System (ADS)
Kulshreshtha, S. K.; Jayakumar, O. D.; Sudarsan, V.
2010-05-01
Based on powder X-ray diffraction and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) investigations of mixed phosphate Al 0.5Ga 0.5PO 4, prepared by co-precipitation method followed by annealing at 900 °C for 24 h, it is shown that Al 0.5Ga 0.5PO 4 phase crystallizes in hexagonal form with lattice parameter a=0.491(2) and c=1.106(4) nm. This hexagonal phase of Al 0.5Ga 0.5PO 4 is similar to that of pure GaPO 4. The 31P MAS NMR spectrum of the mixed phosphate sample consists of five peaks with systematic variation of their chemical shift values and is arising due to existence of P structural units having varying number of the Al 3+/Ga 3+ cations as the next nearest neighbors in the solid solution. Based on the intensity analysis of the component NMR spectra of Al 0.5Ga 0.5PO 4, it is inferred that the distribution of Al 3+ and Ga 3+ cations is non-random for the hexagonal Al 0.5Ga 0.5PO 4 sample although XRD patterns showed a well-defined solid solution formation.
The extended family of hexagonal molybdenum oxide
Hartl, Monika; Daemen, Luke; Lunk, J H; Hartl, H; Frisk, A T; Shendervich, I; Mauder, D; Feist, M; Eckelt, R
2009-01-01
Over the last 40 years, a large number of isostructural compounds in the system MoO{sub 3}-NH{sub 3}-H{sub 2}O have been published. The reported molecular formulae of 'hexagonal molybdenum oxide' (HEMO) varied from MoO{sub 3}, MoO{sub 3} {center_dot} 0.33NH{sub 3}, MoO{sub 3} {center_dot} nH{sub 2}O (0.09 {le} n {le} 0.69) to MoO{sub 3} {center_dot} mNH{sub 3} {center_dot} nH{sub 2}O (0.09 {le} m {le} 0.20; 0.18 {le} n {le} 0.60). Samples, prepared by the acidification route, were investigated using thermal analysis coupled on-line to a mass spectrometer for evolved gas analysis; X-ray powder diffraction; Fourier Transform Infrared, Raman and Magic-Angle-Spinning {sup 1}H-NMR spectroscopy; Incoherent Inelastic Neutron Scattering. The X-ray study of a selected monocrystal confirmed the presence of the well-known framework of edge-sharing MoO{sub 6} octahedra: Space group P6{sub 3}/m, a = 10.527(1), c =3.7245(7) {angstrom}, {gamma} = 120{sup o}. The structure of the synthesized samples can best be described by the structural formula (NH{sub 4})[Mo{sub x}{open_square}{sub 1/2+p/2}(O{sub 3x + 1/2-p/2})(OH){sub p}] {center_dot} yH{sub 2}O (x 5.9-7.1; p {approx} 0.1; y = 1.2-2.6), which is consistent with the existence of one vacancy for 12-15 molybdenum sites. The 'chimie douce' reaction of MoO{sub 3} {center_dot} 0.155NH{sub 3} {center_dot} 0.440H{sub 2}O with a 1:1 mixture of NO/NO{sub 2} at 100 C resulted in the synthesis of MoO{sub 3} {center_dot} 0.539H{sub 2}O. Tailored nano-sized molybdenum powders can be produced using HEMO as precursor.
Real-space anisotropic dielectric response in a multiferroic skyrmion lattice.
Chu, P; Xie, Y L; Zhang, Y; Chen, J P; Chen, D P; Yan, Z B; Liu, J-M
2015-01-01
A magnetic skyrmion lattice is a microstructure consisting of hexagonally aligned skyrmions. While a skyrmion as a topologically protected carrier of information promises a number of applications, an easily accessible probe of the skyrmion and skyrmion lattice at mesoscopic scale is of significance. It is known that neutron scattering, Lorentz transmission electron microscopy, and spin-resolved STM as effective probes of skyrmions have been established. In this work, we propose that the spatial contour of dielectric permittivity in a skyrmion lattice with ferromagnetic interaction and in-plane (xy) Dzyaloshinskii-Moriya (DM) interaction can be used to characterize the skyrmion lattice. The phase field and Monte Carlo simulations are employed to develop the one-to-one correspondence between the magnetic skyrmion lattice and dielectric dipole lattice, both exhibiting the hexagonal symmetry. Under excitation of in-plane electric field in the microwave range, the dielectric permittivity shows the dumbbell-like pattern with the axis perpendicular to the electric field, while it is circle-like for the electric field along the z-axis. The dependences of the spatial contour of dielectric permittivity on external magnetic field along the z-axis and dielectric frequency dispersion are discussed. PMID:25661786
Real-space anisotropic dielectric response in a multiferroic skyrmion lattice
Chu, P.; Xie, Y. L.; Zhang, Y.; Chen, J. P.; Chen, D. P.; Yan, Z. B.; Liu, J. -M.
2015-01-01
A magnetic skyrmion lattice is a microstructure consisting of hexagonally aligned skyrmions. While a skyrmion as a topologically protected carrier of information promises a number of applications, an easily accessible probe of the skyrmion and skyrmion lattice at mesoscopic scale is of significance. It is known that neutron scattering, Lorentz transmission electron microscopy, and spin-resolved STM as effective probes of skyrmions have been established. In this work, we propose that the spatial contour of dielectric permittivity in a skyrmion lattice with ferromagnetic interaction and in-plane (xy) Dzyaloshinskii-Moriya (DM) interaction can be used to characterize the skyrmion lattice. The phase field and Monte Carlo simulations are employed to develop the one-to-one correspondence between the magnetic skyrmion lattice and dielectric dipole lattice, both exhibiting the hexagonal symmetry. Under excitation of in-plane electric field in the microwave range, the dielectric permittivity shows the dumbbell-like pattern with the axis perpendicular to the electric field, while it is circle-like for the electric field along the z-axis. The dependences of the spatial contour of dielectric permittivity on external magnetic field along the z-axis and dielectric frequency dispersion are discussed. PMID:25661786
Percolation in spatial evolutionary prisoner's dilemma game on two-dimensional lattices
NASA Astrophysics Data System (ADS)
Choi, Woosik; Yook, Soon-Hyung; Kim, Yup
2015-11-01
We study the spatial evolutionary prisoner's dilemma game with updates of imitation max on triangular, hexagonal, and square lattices. We use the weak prisoner's dilemma game with a single parameter b . Due to the competition between the temptation value b and the coordination number z of the base lattice, a greater variety of percolation properties is expected to occur on the lattice with the larger z . From the numerical analysis, we find six different regimes on the triangular lattice (z =6 ). Regardless of the initial densities of cooperators and defectors, cooperators always percolate in the steady state in two regimes for small b . In these two regimes, defectors do not percolate. In two regimes for the intermediate value of b , both cooperators and defectors undergo percolation transitions. The defector always percolates in two regimes for large b . On the hexagonal lattice (z =3 ), there exist two distinctive regimes. For small b , both the cooperators and the defectors undergo percolation transitions while only defectors always percolate for large b . On the square lattice (z =4 ), there exist three regimes. Combining with the finite-size scaling analyses, we show that all the observed percolation transitions belong to the universality class of the random percolation. We also show how the detailed growth mechanism of cooperator and defector clusters decides each regime.
Courant, E.D.; Garren, A.A.
1985-10-01
A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.
Hexagonal OsB_{2} reduction upon heating in H_{2} containing environment
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Payzant, E. Andrew
2014-10-23
The stability of hexagonal ReB_{2} type OsB_{2} powder upon heating under reforming gas was investigated. Pure Os metal particles were detected by powder X-ray diffraction starting at 375⁰ C and complete transformation of OsB_{2} to metallic Os was observed at 725⁰ C. The mechanisms of precipitation of metallic Os is proposed and changes in the lattice parameters of OsB_{2} upon heating are analysed in terms of the presence of oxygen or water vapour in the heating chamber. Previous studies suggested that Os atoms possess (0) valence, while B atoms possess both (+3) and ( 3) valences in the alternating boron/osmium sheet structure of hexagonal (P63/mmc, No. 194) OsB_{2}; if controllable method for Os removal from the lattice could be found, the opportunity would arise to form two-dimensional (2D) layers consisting of pure B atoms.
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2004-01-01
The results of an experimental and numerical study of the effects of initial imperfections on the buckling response and failure of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have six different orthotropic or quasi-isotropic shell-wall laminates and two different shell-radius-to-thickness ratios. The numerical results include the effects of geometric shell-wall mid-surface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform end loads, and the effects of elastic boundary conditions. Selected cylinder parameter uncertainties were also considered. Results that illustrate the effects of imperfections and uncertainties on the nonlinear response characteristics, buckling loads and failure the shells are presented. In addition, a common failure analysis is used to predict material failures in the shells.
Understanding Your Vision: The “Imperfect Eye” | NIH MedlinePlus the Magazine
... of this page please turn Javascript on. Feature: Vision Understanding Your Vision: The “Imperfect Eye” Past Issues / Winter 2012 Table ... are different and so are the types of vision that we have. Understanding how some of us ...
Guo Yongchang; Li Lijuan; Deng Jun; Zhong Genquan
2010-05-21
The mechanical characteristics of the interface with hollow imperfections for reinforced concrete (RC) beams strengthened with Carbon-Glass fiber sheet is discussed, which is a new hybrid strengthening method. By establishing the constitutive equations of different materials, three interfacial models including imperfection dimension, imperfection location and imperfection amount are simulated using nonlinear finite element method. The shear stress and normal stress of glue layer, the first principal stress of concrete at the end of the interface and the stress distributions of different strengthening modes are analyzed. The results show that the shear stress of glue layer is sensitive for imperfection dimension and significantly increases with the imperfection dimension. However, the first principal stress of the concrete at the end of the interface marginally decreases with the imperfection dimension.
NASA Astrophysics Data System (ADS)
Yongchang, Guo; Lijuan, Li; Jun, Deng; Genquan, Zhong
2010-05-01
The mechanical characteristics of the interface with hollow imperfections for reinforced concrete (RC) beams strengthened with Carbon-Glass fiber sheet is discussed, which is a new hybrid strengthening method. By establishing the constitutive equations of different materials, three interfacial models including imperfection dimension, imperfection location and imperfection amount are simulated using nonlinear finite element method. The shear stress and normal stress of glue layer, the first principal stress of concrete at the end of the interface and the stress distributions of different strengthening modes are analyzed. The results show that the shear stress of glue layer is sensitive for imperfection dimension and significantly increases with the imperfection dimension. However, the first principal stress of the concrete at the end of the interface marginally decreases with the imperfection dimension.
EPIDEMIOLOGICAL CONSEQUENCES OF IMPERFECT VACCINES FOR IMMUNIZING INFECTIONS
MAGPANTAY, F.M.G.; RIOLO, M.A.; DE CELLÈS, M. DOMENECH; KING, A.A.; ROHANI, P.
2015-01-01
The control of some childhood diseases has proven to be difficult even in countries that maintain high vaccination coverage. This may be due to the use of imperfect vaccines and there has been much discussion on the different modes by which vaccines might fail. To understand the epidemiological implications of some of these different modes, we performed a systematic analysis of a model based on the standard SIR equations with a vaccinated component that permits vaccine failure in degree (“leakiness”), take (“all-or-nothingness”) and duration (waning of vaccine-derived immunity). The model was first considered as a system of ordinary differential equations, then extended to a system of partial differential equations to accommodate age structure. We derived analytic expressions for the steady states of the system and the final age distributions in the case of homogenous contact rates. The stability of these equilibria are determined by a threshold parameter Rp, a function of the vaccine failure parameters and the coverage p. The value of p for which Rp = 1 yields the critical vaccination ratio, a measure of herd immunity. Using this concept we can compare vaccines that confer the same level of herd immunity to the population but may fail at the individual level in different ways. For any fixed Rp > 1, the leaky model results in the highest prevalence of infection, while the all-or-nothing and waning models have the same steady state prevalence. The actual composition of a vaccine cannot be determined on the basis of steady state levels alone, however the distinctions can be made by looking at transient dynamics (such as after the onset of vaccination), the mean age of infection, the age distributions at steady state of the infected class, and the effect of age-specific contact rates. PMID:25878365
Quantum state tomography with noninstantaneous measurements, imperfections, and decoherence
NASA Astrophysics Data System (ADS)
Six, P.; Campagne-Ibarcq, Ph.; Dotsenko, I.; Sarlette, A.; Huard, B.; Rouchon, P.
2016-01-01
Tomography of a quantum state is usually based on a positive-operator-valued measure (POVM) and on their experimental statistics. Among the available reconstructions, the maximum-likelihood (MaxLike) technique is an efficient one. We propose an extension of this technique when the measurement process cannot be simply described by an instantaneous POVM. Instead, the tomography relies on a set of quantum trajectories and their measurement records. This model includes the fact that, in practice, each measurement could be corrupted by imperfections and decoherence, and could also be associated with the record of continuous-time signals over a finite amount of time. The goal is then to retrieve the quantum state that was present at the start of this measurement process. The proposed extension relies on an explicit expression of the likelihood function via the effective matrices appearing in quantum smoothing and solutions of the adjoint quantum filter. It allows us to retrieve the initial quantum state as in standard MaxLike tomography, but where the traditional POVM operators are replaced by more general ones that depend on the measurement record of each trajectory. It also provides, aside from the MaxLike estimate of the quantum state, confidence intervals for any observable. Such confidence intervals are derived, as the MaxLike estimate, from an asymptotic expansion of multidimensional Laplace integrals appearing in Bayesian mean estimation. A validation is performed on two sets of experimental data: photon(s) trapped in a microwave cavity subject to quantum nondemolition measurements relying on Rydberg atoms, and heterodyne fluorescence measurements of a superconducting qubit.
Monitoring programs need to take into account imperfect species detectability
Kery, M.; Schmid, H.
2004-01-01
Biodiversiry monitoring is important to identify biological units in need of conservation and to check the effectiveness of conservation actions. Programs generally monitor species richness and its changes (trend). Usually, no correction is made for imperfect species detectability. Instead, it is assumed that each species present has the same probability of being recorded and that there is no difference in this detectability across space and time, e.g. among observers and habitats. Consequently, species richness is determined by enumeration as the sum of species recorded. In Switzerland, the federal government has recently launched a comprehensive program that aims at detecting changes in biodiversity at all levels of biological integration. Birds are an important part of that program. Since 1999, 23 visits per breeding season are made to each of >250 1 km2 squares to map the territories of all detected breeding bird species. Here, we analyse data from three squares to illustrate the use of capture-recapture models in monitoring to obtain detectability-corrected estimates of species richness and trend. Species detectability averaged only 85%. Hence an estimated 15% of species present remained overlooked even after three visits. Within a square, changes in detectability for different years were of the same magnitude when surveys were conducted by the same observer as when they were by different observers. Estimates of trend were usually biased and community turnover was overestimated when based on enumeration. Here we use bird data as an illustration of methods. However, species detectability for any taxon is unlikely ever to be perfect or even constant across categories to be compared. Therefore, monitoring programs should correct for species detectability.
Spin-lattice coupling in iron jarosite
Buurma, A.J.C.; Handayani, I.P.; Mufti, N.; Blake, G.R.; Loosdrecht, P.H.M. van; Palstra, T.T.M.
2012-11-15
We have studied the magnetoelectric coupling of the frustrated triangular antiferromagnet iron jarosite using Raman spectroscopy, dielectric measurements and specific heat. Temperature dependent capacitance measurements show an anomaly in the dielectric constant at T{sub N}. Specific heat data indicate the presence of a low frequency Einstein mode at low temperature. Raman spectroscopy confirms the presence of a new mode below T{sub N} that can be attributed to folding of the Brillouin zone. This mode shifts and sharpens below T{sub N}. We evaluate the strength of the magnetoelectric coupling using the symmetry unrestricted biquadratic magnetoelectric terms in the free energy. - Graphical abstract: Sketch of two connected triangles formed by Fe{sup 3+} spins (red arrows) in the hexagonal basal plane of potassium iron jarosite. An applied magnetic field (H) below the antiferromagnetic ordering temperature induces shifts of the hydroxy ligands, giving rise to local electrical dipole moments (blue arrows). These electric displacements cancel out in pairwise fashion by symmetry. Ligand shifts are confined to the plane and shown by shadowing. Highlights: Black-Right-Pointing-Pointer Evidence has been found for spin-lattice coupling in iron jarosite. Black-Right-Pointing-Pointer A new optical Raman mode appears below T{sub N} and shifts with temperature. Black-Right-Pointing-Pointer The magnetodielectric coupling is mediated by superexchange. Black-Right-Pointing-Pointer Symmetry of Kagome magnetic lattice causes local electrical dipole moments to cancel.
Multi-Species Thermal Lattice Boltzmann Models
NASA Astrophysics Data System (ADS)
Wah, Darren; Vahala, George; Vahala, Linda; Pavlo, Pavol; Carter, Jonathan
1998-11-01
Thermal Lattice Boltzmann models (TLBM) are ideal for simulating nonlinear macroscopic conservation systems because of their inherent parallelizeability (nearly all operations are purely local). The TLBM solves a linear BGK-like kinetic equation so that the standard nonlinear convective terms in the standard fluid codes are now replaced by a simple shift operator (linear advection) at the kinetic level. Here we extend our previous TLBM to handle a two-species system, utilizing the models of Morse (1964),Greene (1973) and Kotelnikov & Montgomery (1997). Each kinetic equation now has 2 BGK-like relaxation terms : the first is due to self-collisions and the other is due to different- species collisions. The relaxation rates used are appropriate for electron-ion collisions. Certain constraints can be imposed on the relaxed distribution functions so that the cross-species momentum and energy evolutions relax at the rate determined from the full nonlinear Boltzmann integral collision operator. Ionization and recombination processes will also be examined. Both hexagonal and octagonal lattices are studied.
Effect of joint imperfections on static control of adaptive structures as space cranes
NASA Technical Reports Server (NTRS)
Ramesh, A. V.; Utku, Senol; Wada, B. K.; Chen, G. S.
1990-01-01
Effect of imperfections in the joints of an adaptive structure on its slow (no inertia forces) motion along a prescribed trajectory as a space crane is studied. Two mathematical models to predict the effect of joint imperfections are proposed. The two models are used to obtain estimates of the deviations of the node of the space crane to which the end-effector is attached, from its prescribed trajectory. An application of the models to a two-section space crane is given.
Effect of imperfections on static control of adaptive structures as a space crane
NASA Technical Reports Server (NTRS)
Ramesh, A. V.; Utku, S.; Wada, B. K.; Chen, G. S.
1989-01-01
Effect of imperfections in the joints of an adaptive structure on its slow (no inertia forces) motion along a prescribed trajectory as a space crane is studied. Two mathematical models to predict the effect of joint imperfections are proposed. The two models are used to obtain estimates of the deviations of the node of the space crane to which the end-effector is attached, from its prescribed trajectory. An application of the models to a two-section space crane is given.
Structural, magnetic and electrical properties of the hexagonal ferrites MFeO{sub 3} (M=Y, Yb, In)
Downie, Lewis J.; Goff, Richard J.; Kockelmann, Winfried; Forder, Sue D.; Parker, Julia E.; Morrison, Finlay D.; Lightfoot, Philip
2012-06-15
The hexagonal ferrites MFeO{sub 3} (M=Y, Yb, In) have been studied using a combination of neutron and X-ray powder diffraction, magnetic susceptibility, dielectric measurements and {sup 57}Fe Moessbauer spectroscopy. This study confirms the previously reported crystal structure of InFeO{sub 3} (YAlO{sub 3} structure type, space group P6{sub 3}/mmc), but YFeO{sub 3} and YbFeO{sub 3} both show a lowering of symmetry to at most P6{sub 3}cm (ferrielectric YMnO{sub 3} structure type). However, Moessbauer spectroscopy shows at least two distinct Fe sites for both YFeO{sub 3} and YbFeO{sub 3} and we suggest that the best model to rationalise this involves phase separation into more than one similar hexagonal YMnO{sub 3}-like phase. Rietveld analysis of the neutron diffraction data was carried out using two hexagonal phases as a simplest case scenario. In both YFeO{sub 3} and YbFeO{sub 3}, distinct dielectric anomalies are observed near 130 K and 150 K, respectively. These are tentatively correlated with weak anomalies in magnetic susceptibility and lattice parameters, for YFeO{sub 3} and YbFeO{sub 3}, respectively, which may suggest a weak magnetoelectric effect. Comparison of neutron and X-ray powder diffraction shows evidence of long-range magnetic order in both YFeO{sub 3} and YbFeO{sub 3} at low temperatures. Due to poor sample crystallinity, the compositional and structural effects underlying the phase separation and possible magnetoelectric phenomena cannot be ascertained. - Graphical abstract: Hexagonal MFeO{sub 3} (M=Y, Yb) exhibit phase separation into two YMnO{sub 3}-like phases. Variable temperature crystallographic, electrical and magnetic studies suggest weak correlations between electrical and magnetic responses and long-range magnetic order at low temperature. Highlights: Black-Right-Pointing-Pointer Multi-technique study of multiferroic hexagonal MFeO{sub 3}. Black-Right-Pointing-Pointer Phase separation into two similar hexagonal phases. Black
NASA Astrophysics Data System (ADS)
Gao, D.; Ray, A. K.
2006-04-01
The electronic and geometrical properties of bulk americium and square and hexagonal americium monolayers have been studied with the full-potential linearized augmented plane wave (FP-LAPW) method. The effects of several common approximations are examined: (1) non-spin polarization (NSP) vs. spin polarization (SP); (2) scalar-relativity (no spin-orbit coupling (NSO)) vs. full-relativity (i.e., with spin-orbit (SO) coupling included); (3) local-density approximation (LDA) vs. generalized-gradient approximation (GGA). Our results indicate that both spin polarization and spin orbit coupling play important roles in determining the geometrical and electronic properties of americium bulk and monolayers. A compression of both americium square and hexagonal monolayers compared to the americium bulk is also observed. In general, the LDA is found to underestimate the equilibrium lattice constant and give a larger total energy compared to the GGA calculations. While spin orbit coupling shows a similar effect on both square and hexagonal monolayer calculations regardless of the model, GGA versus LDA, an unusual spin polarization effect on both square and hexagonal monolayers is found in the LDA results as compared with the GGA results. The 5f delocalization transition of americium is employed to explain our observed unusual spin polarization effect. In addition, our results at the LDA level of theory indicate a possible 5f delocalization could happen in the americium surface within the same Am II (fcc crystal structure) phase, unlike the usually reported americium 5f delocalization which is associated with crystal structure change. The similarities and dissimilarities between the properties of an Am monolayer and a Pu monolayer are discussed in detail.
Development and intrinsic properties of hexagonal ferromagnetic (Zr,Ti)Fe{sub 2}
Zhang, W. Y. Skomski, R.; Sellmyer, D. J.; Li, X. Z.; Valloppilly, S.; Shield, J. E.
2014-05-07
Nanocrystalline Ti{sub 0.75}Zr{sub 0.25}Fe{sub 2+x} (x = 0-0.4) and Ti{sub 0.75−y}B{sub y}Zr{sub 0.25}Fe{sub 2.4} (y = 0-0.35) with high saturation magnetization have been fabricated by the melt-spinning technique. Nanocrystalline Ti{sub 0.75}Zr{sub 0.25}Fe{sub 2+x} consists of the hexagonal C14 Laves phase (Ti,Zr)Fe{sub 2}. Fe addition decreases the lattice parameter a and shrinks the cell volume. The antiferromagnetic Fe-Fe interactions may decrease with the increase of x, leading to a significant enhancement of saturation polarization (J{sub s}) and Curie temperature (T{sub c}). The magnetocrystalline anisotropy constant K also increases with increasing x. Excessive Fe addition (x > 0.25) may induce structural disorder which lowers the J{sub s} and T{sub c}. Nanocrystalline Ti{sub 0.75−y}B{sub y}Zr{sub 0.25}Fe{sub 2.4} is composed of hexagonal (Ti,Zr)Fe{sub 2} and Fe-rich amorphous phases with relatively high J{sub s}. The lattice parameters a, c and cell volume V are almost unchanged with the increase of y for y ≥ 0.16. Simultaneously, the T{sub c} of (Ti,Zr)Fe{sub 2} remains unchanged, indicating that B does not enter this lattice but takes part in forming the amorphous phase, in good agreement with the X-ray diffraction results. The volume fraction of the amorphous phase increases with the increase of B content and results in a large enhancement of J{sub s} up to 10.8 kG. Further B addition (y > 0.30) decreases J{sub s}, possibly due to the decrease of the J{sub s} of the amorphous phase.
Thermoelectric and Lattice Dynamical Properties of Ge2Sb2Te5
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Singh, David
2015-03-01
Ge2Sb2Te5 (GST) has been widely used as phase-change materials in optical data storage media and nonvolatile RAM devices. At elevated temperature, GST is known to undergo subsequent structural transitions from a non-conducting amorphous to (metastable) disordered cubic phase and then to a conducting hexagonal phase above 300°C. Given that hexagonal-GST has already been reported to have promising thermoelectric properties and transport properties critically depend on the bonding information, a direct correlation between its structural- and transport properties needs to be established. In this talk, we will present the evolution of thermoelectric and lattice dynamical properties of GST in different phases via first principles calculations based on density functional theory. A better understanding of the origin of low-thermal conductivity in hexagonal-GST may provide critical information for further improvement of its thermoelectric figure of merit (ZT).
NASA Astrophysics Data System (ADS)
Kapuria, S.; Kumar, Amit
2010-04-01
The work presents an analytical three-dimensional solution for simply supported angle-ply piezoelectric (hybrid) laminated cylindrical shells in cylindrical bending with interlaminar bonding imperfections, in an electro-thermomechanical loading environment. The jumps in displacements, electric potential and temperature at the imperfect interfaces are modeled using linear spring-layer model. The solution includes the case when, besides at inner and outer surfaces, electric potentials are prescribed at layer interfaces also for effective actuation/sensing. The entities for each layer are expanded in Fourier series in circumferential coordinate to satisfy the boundary conditions at the simply supported ends. The resulting ordinary differential equations in thickness coordinate with variable coefficients are solved by the modified Frobenius method. Numerical results are presented for hybrid composite and sandwich shells with varying imperfection compliance. The effect of location of imperfect interface on the response is studied for cross-ply panels while the effect of ply angle on the sensitivity towards imperfection is studied for angle-ply panels. The effect of weak bonding at actuator/sensor interface on the actuation/sensing authority is investigated. The presented results would also help assessing 2D shell theories that incorporate interlaminar bonding imperfections.
Ecological and Evolutionary Processes Drive the Origin and Maintenance of Imperfect Mimicry
Wilson, Joseph S.; Jahner, Joshua P.; Williams, Kevin A.; Forister, Matthew L.
2013-01-01
Although the forces behind the evolution of imperfect mimicry remain poorly studied, recent hypotheses suggest that relaxed selection on small-bodied individuals leads to imperfect mimicry. While evolutionary history undoubtedly affects the development of imperfect mimicry, ecological community context has largely been ignored and may be an important driver of imperfect mimicry. Here we investigate how evolutionary and ecological contexts might influence mimetic fidelity in Müllerian and Batesian mimicry systems. In Batesian hoverfly systems we find that body size is not a strong predictor of mimetic fidelity. However, in Müllerian velvet ants we find a weak positive relationship between body size and mimetic fidelity when evolutionary context is controlled for and a much stronger relationship between community diversity and mimetic fidelity. These results suggest that reduced selection on small-bodied individuals may not be a major driver of the evolution of imperfect mimicry and that other factors, such as ecological community context, should be considered when studying the evolution of imperfect mimicry. PMID:23593490
Hexagonal phase produced by hot implants in silicon
NASA Astrophysics Data System (ADS)
Servidori, M.; Cannavò, S.; Ferla, G.; La Ferla, A.; Campisano, S. U.; Rimini, E.
The damage produced by ion implantation of Kr + in <100> Si substrates at temperatures in the 250-500°C range has been investigated by channeling effect technique and by transmission electron microscopy. Among the variety of defects present after hot implants the hexagonal silicon phase has been investigated. It is located mainly at the depth where the maximum of the energy density deposited into nuclear collisions occurs. The hexagonal phase is formed at target temperatures above 350°C and at fluences higher than 2 × 10 15/cm 2. With increasing temperature the size of the hexagonal silicon particles and the critical fluence for their formation increase. The hexagonal phase is also nucleated during high current-high dose implants of P +. In all the cases the phase disappears after prolonged annealing at T⩾700°C. The experimental region fluence-temperature for the hexagonal phase existence has been determined. The formation and thermal stability of the phase is qualitatively considered according to the existing models.
NASA Astrophysics Data System (ADS)
Weidner, Carrie; Yu, Hoon; Anderson, Dana
2016-05-01
In this work, we report on progress towards performing interferometry using atoms trapped in an optical lattice. That is, we start with atoms in the ground state of an optical lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , and by a prescribed phase function ϕ(t) , transform from one atomic wavefunction to another. In this way, we implement the standard interferometric sequence of beam splitting, propagation, reflection, reverse propagation, and recombination. Through the use of optimal control techniques, we have computationally demonstrated a scalable accelerometer that provides information on the sign of the applied acceleration. Extension of this idea to a two-dimensional shaken-lattice-based gyroscope is discussed. In addition, we report on the experimental implementation of the shaken lattice system.
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Legless locomotion in lattices
NASA Astrophysics Data System (ADS)
Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.
2015-03-01
By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.
Ab initio engineering of materials with stacked hexagonal tin frameworks.
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Stabilization of 4H hexagonal phase in gold nanoribbons
Fan, Zhanxi; Bosman, Michel; Huang, Xiao; Huang, Ding; Yu, Yi; Ong, Khuong P.; Akimov, Yuriy A.; Wu, Lin; Li, Bing; Wu, Jumiati; Huang, Ying; Liu, Qing; Eng Png, Ching; Lip Gan, Chee; Yang, Peidong; Zhang, Hua
2015-01-01
Gold, silver, platinum and palladium typically crystallize with the face-centred cubic structure. Here we report the high-yield solution synthesis of gold nanoribbons in the 4H hexagonal polytype, a previously unreported metastable phase of gold. These gold nanoribbons undergo a phase transition from the original 4H hexagonal to face-centred cubic structure on ligand exchange under ambient conditions. Using monochromated electron energy-loss spectroscopy, the strong infrared plasmon absorption of single 4H gold nanoribbons is observed. Furthermore, the 4H hexagonal phases of silver, palladium and platinum can be readily stabilized through direct epitaxial growth of these metals on the 4H gold nanoribbon surface. Our findings may open up new strategies for the crystal phase-controlled synthesis of advanced noble metal nanomaterials. PMID:26216712
White-Eye Hexagonal Pattern in Dielectric Barrier Discharge
NASA Astrophysics Data System (ADS)
Zhao, Yang; Dong, Lifang; Wang, Yongjie; Fu, Hongyan; Gao, Yenan
2014-12-01
The white-eye hexagonal pattern (WEHP) is firstly observed in a dielectric barrier discharge system and its structure is investigated using a high speed framing camera and a lens-aperture photomultiplier tube system. It bifurcates from a honeycomb pattern as the applied voltage is increased. A phase diagram of the pattern types as a function of gas pressure and gas content is presented. The frames integrated 15 and 100 of voltage cycles respectively show that the WEHP is an interleaving of two hexagonal sub-structures, one of which consists of central spots and the other consists of diffusion rings. The frame corresponding to the second current pulse in each half voltage cycle indicates that the diffusion ring is composed of several filaments, which is further confirmed by the light signals of the white-eye. The results show that wall charges play an important role in the formation of the white-eye hexagonal pattern.
Ab initio engineering of materials with stacked hexagonal tin frameworks
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
New approach for direct chemical synthesis of hexagonal Co nanoparticles
NASA Astrophysics Data System (ADS)
Abel, Frank M.; Tzitzios, Vasilis; Hadjipanayis, George C.
2016-02-01
In this paper, we explore the possibility of producing hexagonal Cobalt nanoparticles, with high saturation magnetization by direct chemical synthesis. The nanoparticles were synthesized by reduction of anhydrous cobalt (II) chloride by NaBH4 in tetraglyme at temperatures in the range of 200-270 °C under a nitrogen-hydrogen atmosphere. The reactions were done at high temperatures to allow for the formation of as-made hexagonal cobalt. The size of the particles was controlled by the addition of different surfactants. The best magnetic properties so far were obtained on spherical hexagonal Co nanoparticles with an average size of 45 nm, a saturation magnetization of 143 emu/g and coercivity of 500 Oe. the saturation magnetization and coercivity were further improved by annealing the Co nanoparticles leading to saturation magnetization of 160 emu/g and coercivity of 540 Oe.
Kinematic dynamo action in square and hexagonal patterns
NASA Astrophysics Data System (ADS)
Favier, B.; Proctor, M. R. E.
2013-11-01
We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.
HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS
Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L.
2010-02-22
This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).
Ab initio engineering of materials with stacked hexagonal tin frameworks
NASA Astrophysics Data System (ADS)
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-07-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.
From the microscopic to the mesoscopic properties of lyotropic reverse hexagonal liquid crystals.
Libster, Dima; Ishai, Paul Ben; Aserin, Abraham; Shoham, Gil; Garti, Nissim
2008-03-01
In the present study we aimed to explore a correlation between the microstructural properties of the lyotropic reverse hexagonal phase (HII) of the GMO/tricaprylin/phosphatidylcholine/water system and its mesoscopic structure. The mesoscopic organization of discontinuous and anisotropic domains was examined, in the native state, using environmental scanning electron microscopy. The topography of the HII mesophases was imaged directly in their hydrated state, as a function of aqueous-phase concentration and composition, when a proline amino acid was solubilized into the systems as a kosmotropic (water-structure maker) guest molecule. The domain structures of several dozen micrometers in size, visualized in the environmental scanning electron microscopy, were found to possess fractal characteristics, indicating a discontinuous and disordered alignment of the corresponding internal water rods on the mesoscale. On the microstructural level, SAXS measurements revealed that as water content (Cw) increases the characteristic lattice parameter of the mesophases increases as well. Using the water concentration as the mass measure of the mixtures, a scaling relationship between the lattice parameter and the concentration was found to obey a power law whereby the derived fractal dimension was the relevant exponent, confirming the causal link between the microscopic and mesoscopic organizations. The topography of the HII mesophase was found to be affected by the microstructural parameters and the composition of the samples. Thermal analysis experiments involving these systems further confirmed that the behavior of water underpins both microscopical and mesoscopic features of the systems. It was shown that both the swelling of the lattice parameter and the mesoscopic domains is correlated to the bulk water concentration in the water rods. PMID:18197712
Security issues of quantum cryptographic systems with imperfect detectors
NASA Astrophysics Data System (ADS)
Burenkov, Viacheslav
The laws of quantum physics can be used to secure communications between two distant parties in a scheme called quantum key distribution (QKD), even against a technologically unlimited eavesdropper. While the theoretical security of QKD has been proved rigorously, current implementations of QKD are generally insecure. In particular, mathematical models of devices, such as detectors, do not accurately describe their real-life behaviour. Such seemingly insignificant discrepancies can compromise the security of the entire scheme, especially as novel detector technologies are being developed with little regard for potential vulnerabilities. In this thesis, we study how detector imperfections can impact the security of QKD and how to overcome such technological limitations. We first analyze the security of a high-speed QKD system with finite detector dead time tau. We show that the previously reported sifting approaches are not guaranteed to be secure in this regime. More specifically, Eve can induce a basis-dependent detection efficiency at the receiver's end. Modified key sifting schemes that are basis-independent, and thus secure in the presence of dead time and an active eavesdropper, are discussed and compared. It is shown that the maximum key generation rate is 1/(2tau) for passive basis selection, and 1/tau for active basis selection. The security analysis is also extended to the decoy state BB84 protocol. We then study a relatively new type of single-photon detector called the superconducting nanowire single-photon detector (SNSPD), and discover some unexpected behaviour. We report an afterpulsing effect present when the SNSPD is operated in the high bias current regime. In our standard set-up, the afterpulsing is most likely to occur at around 180 ns following a detection event, for both real counts and dark counts. We characterize the afterpulsing behaviour and speculate that it is not due to the SNSPD itself but rather the associated read-out circuit. We also
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo
NASA Astrophysics Data System (ADS)
Al-Hamdani, Yasmine S.; Ma, Ming; Alfè, Dario; von Lilienfeld, O. Anatole; Michaelides, Angelos
2015-05-01
Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo
Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos; Alfè, Dario; Lilienfeld, O. Anatole von
2015-05-14
Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo.
Al-Hamdani, Yasmine S; Ma, Ming; Alfè, Dario; von Lilienfeld, O Anatole; Michaelides, Angelos
2015-05-14
Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT. PMID:25978876
Backscattering by hexagonal ice crystals of cirrus clouds.
Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia
2013-08-01
Light backscattering by randomly oriented hexagonal ice crystals of cirrus clouds is considered within the framework of the physical-optics approximation. The fine angular structure of all elements of the Mueller matrix in the vicinity of the exact backward direction is first calculated and discussed. In particular, an approximate equation for the differential scattering cross section is obtained. Its simple spectral dependence is discussed. Also, a hollow of the linear depolarization ratio around the exact backward direction inherent to the long hexagonal columns is revealed. PMID:23903169
Hexagonal Pixels and Indexing Scheme for Binary Images
NASA Technical Reports Server (NTRS)
Johnson, Gordon G.
2004-01-01
A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg
Spatial heterogeneity in a lyotropic liquid crystal with hexagonal phase.
Penaloza, David P; Hori, Koichiro; Shundo, Atsuomi; Tanaka, Keiji
2012-04-21
Non-ionic surfactant hexaethylene glycol, C(12)E(6), in water self-assembles into various kinds of mesophases by varying the surfactant concentration. A spatial heterogeneity was discussed on the basis of the diffusion of probe particles dispersed in the C(12)E(6)-water solution. Interestingly, at 50 wt% C(12)E(6) where the hexagonal structure was formed, two kinds of motion of probe particles were observed: some particles normally diffused while others were restricted, indicating the existence of a heterogeneity in the physical properties. Such heterogeneity can be explained in terms of heterogeneous structures composed of hexagonal domains with isotropic-like regions. PMID:22415462
Optimization and Design of 2d Honeycomb Lattice Photonic Crystal Modulated by Liquid Crystals
NASA Astrophysics Data System (ADS)
Guo, Caihong; Zheng, Jihong; Gui, Kun; Zhang, Menghua; Zhuang, Songlin
2013-12-01
Photonic crystals (PCs) with infiltrating liquid crystals (LCs) have many potential applications because of their ability to continuously modulate the band-gaps. Using the plane-wave expansion method (PWM), we simulate the band-gap distribution of 2D honeycomb lattice PC with different pillar structures (circle, hexagonal and square pillar) and with different filling ratios, considering both when the LC is used as filling pillar material and semiconductors (Si, Ge) are used in the substrate, and when the semiconductors (Si, Ge) are pillar material and the LC is the substrate. Results show that unlike LC-based triangle lattice PC, optimized honeycomb lattice PC has the ability to generate absolute photonic band-gaps for fabricating optical switches. We provide optimization parameters for LC infiltrating honeycomb lattice PC structure based on simulation results and analysis.
Nonlinear analysis of wiggler-imperfections in free-electron lasers
Freund, H.P.; Yu, L.H.
1995-12-31
We present an analysis of the effect of wiggler imperfections in FELs using a variety of techniques. Our basic intention is to compare wiggler averaged nonlinear simulations to determine the effect of various approximations on the estimates of gain degradation due to wiggler imperfections. The fundamental assumption in the wiggler-averaged formulations is that the electrons are described by a random walk model, and an analytic representation of the orbits is made. This is fundamentally different from the approach taken for the non-wiggler-averaged formulation in which the wiggler imperfections are specified at the outset, and the orbits are integrated using a field model that is consistent with the Maxwell equations. It has been conjectured on the basis of prior studies using the non-wiggler-averaged formalism that electrons follow a {open_quotes}meander line{close_quotes} through the wiggler governed by the specific imperfections; hence, the electrons behave more as a ball-in-groove than as a random walk. This conjecture is tested by comparison of the wiggler-averaged and non-wiggler-averaged simulations. In addition, two different wiggler models are employed in the non-wiggler-averaged simulation: one based upon a parabolic pole face wiggler which is not curl and divergence free in the presence of wiggler imperfections, and a second model in which the divergence and z-component of the curl vanish identically. This will gauge the effect of inconsistencies in the wiggler model on the estimation of the effect of the imperfections. Preliminary results indicate that the inconsistency introduced by the non-vanishing curl and divergence result in an overestimation of the effect of wiggler imperfections on the orbit. The wiggler-averaged simulation is based upon the TDA code, and the non-wiggler-averaged simulation is a variant of the ARACHNE and WIGGLIN codes called MEDUSA developed to treat short-wavelength Gauss-Hermite modes.
Phononic band gap design in honeycomb lattice with combinations of auxetic and conventional core
NASA Astrophysics Data System (ADS)
Mukherjee, Sushovan; Scarpa, Fabrizio; Gopalakrishnan, S.
2016-05-01
We present a novel design of a honeycomb lattice geometry that uses a seamless combination of conventional and auxetic cores, i.e. elements showing positive and negative Poisson’s ratio. The design is aimed at tuning and improving the band structure of periodic cellular structures. The proposed cellular configurations show a significantly wide band gap at much lower frequencies compared to their pure counterparts, while still retaining their major dynamic features. Different topologies involving both auxetic inclusions in a conventional lattice and conversely hexagonal cellular inclusions in auxetic butterfly lattices are presented. For all these cases the impact of the varying degree of auxeticity on the band structure is evaluated. The proposed cellular designs may offer significant advantages in tuning high-frequency bandgap behaviour, which is relevant to phononics applications. The configurations shown in this paper may be made iso-volumetric and iso-weight to a given regular hexagonal topology, making possible to adapt the hybrid lattices to existing sandwich structures with fixed dimensions and weights. This work also features a comparative study of the wave speeds corresponding to different configurations vis-a vis those of a regular honeycomb to highlight the superior behaviour of the combined hybrid lattice.
Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice.
Matsumoto, Takao; So, Yeong-Gi; Kohno, Yuji; Sawada, Hidetaka; Ikuhara, Yuichi; Shibata, Naoya
2016-02-01
Skyrmions are topologically protected nanoscale magnetic spin entities in helical magnets. They behave like particles and tend to form hexagonal close-packed lattices, like atoms, as their stable structure. Domain boundaries in skyrmion lattices are considered to be important as they affect the dynamic properties of magnetic skyrmions. However, little is known about the fine structure of such skyrmion domain boundaries. We use differential phase contrast scanning transmission electron microscopy to directly visualize skyrmion domain boundaries in FeGe1-x Si x induced by the influence of an "edge" of a crystal grain. Similar to hexagonal close-packed atomic lattices, we find the formation of skyrmion "Σ7" domain boundary, whose orientation relationship is predicted by the coincidence site lattice theory to be geometrically stable. On the contrary, the skyrmion domain boundary core structure shows a very different structure relaxation mode. Individual skyrmions can flexibly change their size and shape to accommodate local coordination changes and free volumes formed at the domain boundary cores. Although atomic rearrangement is a common structural relaxation mode in crystalline grain boundaries, skyrmions show very unique and thus different responses to such local lattice disorders. PMID:26933690
Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice
Matsumoto, Takao; So, Yeong-Gi; Kohno, Yuji; Sawada, Hidetaka; Ikuhara, Yuichi; Shibata, Naoya
2016-01-01
Skyrmions are topologically protected nanoscale magnetic spin entities in helical magnets. They behave like particles and tend to form hexagonal close-packed lattices, like atoms, as their stable structure. Domain boundaries in skyrmion lattices are considered to be important as they affect the dynamic properties of magnetic skyrmions. However, little is known about the fine structure of such skyrmion domain boundaries. We use differential phase contrast scanning transmission electron microscopy to directly visualize skyrmion domain boundaries in FeGe1−xSix induced by the influence of an “edge” of a crystal grain. Similar to hexagonal close-packed atomic lattices, we find the formation of skyrmion “Σ7” domain boundary, whose orientation relationship is predicted by the coincidence site lattice theory to be geometrically stable. On the contrary, the skyrmion domain boundary core structure shows a very different structure relaxation mode. Individual skyrmions can flexibly change their size and shape to accommodate local coordination changes and free volumes formed at the domain boundary cores. Although atomic rearrangement is a common structural relaxation mode in crystalline grain boundaries, skyrmions show very unique and thus different responses to such local lattice disorders. PMID:26933690
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
Synthesis and photocatalytic activity of porous bismuth oxychloride hexagonal prisms.
Ding, Liyong; Chen, Huan; Wang, Qingqian; Zhou, Tengfei; Jiang, Qingqing; Yuan, Yuhong; Li, Jinlin; Hu, Juncheng
2016-01-18
Porous BiOCl hexagonal prisms have been successfully prepared through a simple solvothermal route. These novel BiOCl HPs with porous structures are assembled from nanoparticles and exhibit high activity and selectivity toward the photocatalytic aerobic oxidation of benzyl alcohol to benzaldehyde and degradation of methyl orange. PMID:26592759
Photogrammetric processing of hexagon stereo data for change detection studies
NASA Astrophysics Data System (ADS)
Padmanabha, E. Anantha; Shashivardhan Reddy, P.; Narender, B.; Muralikrishnan, S.; Dadhwal, V. K.
2014-11-01
Hexagon satellite data acquired as a part of USA Corona program has been declassified and is accessible to general public. This image data was acquired in high resolution much before the launch of civilian satellites. However the non availability of interior and exterior orientation parameters is the main bottle neck in photogrammetric processing of this data. In the present study, an attempt was made to orient and adjust Hexagon stereo pair through Rigorous Sensor Model (RSM) and Rational Function Models (RFM). The study area is part of Western Ghats in India. For rigorous sensor modelling an arbitrary camera file is generated based on the information available in the literature and few assumptions. A terrain dependent RFM was generated for the stereo data using Cartosat-1 reference data. The model accuracy achieved for both RSM and RFM was better than one pixel. DEM and orthoimage were generated with a spacing of 50 m and Ground Sampling Distance (GSD) of 6 m to carry out the change detection with a special emphasis on water bodies with reference to recent Cartosat-1 data. About 72 new water bodies covering an area of 2300 hectares (23 sq. km) were identified in Cartosat-1 orthoimage that were not present in Hexagon data. The image data from various Corona programs like Hexagon provide a rich source of information for temporal studies. However photogrammetric processing of the data is a bit tedious due to lack of information about internal sensor geometry.
Free vibration of hexagonal panels supported at discrete points
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey
1991-01-01
An analytical study to determine the structural dynamic behavior of a hexagonal panel with discrete simple supports is presented. These panels are representative of the facets of a precision reflector surface. The effects of both support point location and panel curvature on the lowest natural frequency of the panel are quantified and discussed.
Spot addressing for microarray images structured in hexagonal grids.
Giannakeas, Nikolaos; Kalatzis, Fanis; Tsipouras, Markos G; Fotiadis, Dimitrios I
2012-04-01
In this work, an efficient method for spot addressing in images, which are generated by the scanning of hexagonal structured microarrays, is proposed. Initially, the blocks of the image are separated using the projections of the image. Next, all the blocks of the image are processed separately for the detection of each spot. The spot addressing procedure begins with the detection of the high intensity objects, which are probably the spots of the image. Next, the Growing Concentric Hexagon algorithm, which uses the properties of the hexagonal grid, is introduced for the detection of the non-hybridized spots. Finally, the Voronoi diagram is applied to the centers of the detected spots for the gridding of the image. The method is evaluated using spots generated from the scanning of the Beadchip of Illumina, which is used for the detection of Single Nucleotide Polymorphisms in the human genome, and uses hexagonal structure for the location of the spots. For the evaluation, the detected centers for each of the spot in the image are compared to the centers of the annotation, obtaining up to 98% accuracy for the spot addressing procedure. PMID:21924515
Lattice Boltzmann Stokesian dynamics.
Ding, E J
2015-11-01
Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape. PMID:26651812
Latticed pentamode acoustic cloak
Chen, Yi; Liu, Xiaoning; Hu, Gengkai
2015-01-01
We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821
Lattice Boltzmann Stokesian dynamics
NASA Astrophysics Data System (ADS)
Ding, E. J.
2015-11-01
Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.
NASA Astrophysics Data System (ADS)
Autruffe, Antoine; Stenhjem Hagen, Vegard; Arnberg, Lars; Di Sabatino, Marisa
2015-02-01
Bi-crystal silicon ingots separated by near-coincident site lattice (near-CSL) grain boundaries (GBs), namely Σ9 and Σ27a, have been grown in a small scale Bridgman-type furnace at 3 μm/s. Surface observations show different microstructure developments, depending on the nature of the seed GB and initial deviation from the low energy configuration. Grain boundary structure evolution and dislocation emission sources have been assessed for both types of GBs. Topological imperfections forming at the near - Σ9 and Σ27 GBs during the growth have been found to be the major source of defect generation. These imperfections are the result of the re-arrangement of the GBs during the growth due to the seed GBs deviation from low energy configurations - i.e. Σ9{221}1/{221}2 and Σ27a{511}1/{511}2.
NASA Astrophysics Data System (ADS)
Jaggi, Chandra K.; Khanna, Aditi; Kishore, Aakanksha
2016-03-01
In order to sustain the challenges of maintaining good quality and perfect screening process, rework process becomes a rescue to compensate for the imperfections present in the production system. The proposed model attempts to explore the existing real-life situation with a more practical approach by incorporating the concept of imperfect rework as this occurs as an unavoidable problem to the firm due to irreparable disorders even in the reworked items. Hence, a production inventory model is formulated here to study the combined effect of imperfect quality items, faulty inspection process and imperfect rework process on the optimal production quantity and optimal backorder level. An analytical method is employed to maximize the expected total profit per unit time. Moreover, the results of several previous research articles namely Chiu et al (2006), Chiu et al (2005), Salameh and Hayek (2001), and classical EPQ with shortages are deduced as special cases. To demonstrate the applicability of the model, and to observe the effects of key parameters on the optimal replenishment policy, a numerical example along with a comprehensive sensitivity analysis has been presented. The pertinence of the model can be found in most of the manufacturing industries like textile, electronics, furniture, footwear, plastics etc. A production lot size model has been explored for defectives items with inspection errors and an imperfect rework process.
Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2000-01-01
The results of an experimental and numerical study of the effects of imperfections on the buckling response of unstiffened thin-walled composite cylindrical shells are presented. Results that identify the individual and combined effects of traditional initial geometric shell-wall imperfections and non-traditional shell-wall thickness variations, shell-end geometric imperfections and variations in loads applied to the ends of the shells on the shell buckling response are included. In addition, results illustrating the effects of manufacturing flaws in the form of gaps between adjacent pieces of graphite-epoxy tape in some of the laminate plies are presented in detail. The shells have been analyzed with a nonlinear finite-element analysis code that accurately accounts for these effects on the buckling and nonlinear responses of the shells. The numerical results indicate that traditional and nontraditional initial imperfections can cause a significant reduction in the buckling load of a compression-loaded composite shell. Furthermore, the results indicate that the imperfections couple in a nonlinear manner. The numerical results correlate well with the experimental results. The nonlinear analysis results are also compared to the results from a traditional linear bifurcation buckling analysis. The results suggest that the nonlinear analysis procedure can be used for determining accurate, high-fidelity design knockdown factors for shell buckling and collapse. The results can also be used to determine the effects of manufacturing tolerances on the buckling response of composite shells.
NASA Astrophysics Data System (ADS)
Denis, V.; Pelat, A.; Gautier, F.
2016-02-01
The so-called "acoustic black hole" (ABH) effect is a passive vibration control technique based on the flexural waves properties in thin structure of varying thickness. A usual implementation consists in using a plate with tapered extremity with a power-law profile, covered with a thin damping layer. The inhomogeneity of the structure leads to a decrease of flexural wave speed and an increase of their amplitude, therefore resulting in an efficient energy dissipation if damping layer is placed where the thickness is minimal. The manufacture of an efficient extremity is difficult because of the small thickness, and often generates imperfections and tearing. Moreover, previous works suggest that multiple flexural modes are propagating across the width of the ABH tip. A model of an ABH multimodal waveguide taking into account an imperfect termination is developed. It shows that an elementary imperfection can affect the reflection coefficient of the extremity and reduce it. Scattering and propagation properties of the extremity are also studied. An incident mode excites several modes that are localised in the tapered region and local resonances explain the drops in the reflection coefficient. Experimental evidence of the influence of the imperfection on the reflection coefficient is provided. A key result of the paper is that manufacturing imperfections are not detrimental to the ABH effect.
Accounting for Imperfect Detection Is Critical for Inferring Marine Turtle Nesting Population Trends
Pfaller, Joseph B.; Bjorndal, Karen A.; Chaloupka, Milani; Williams, Kristina L.; Frick, Michael G.; Bolten, Alan B.
2013-01-01
Assessments of population trends based on time-series counts of individuals are complicated by imperfect detection, which can lead to serious misinterpretations of data. Population trends of threatened marine turtles worldwide are usually based on counts of nests or nesting females. We analyze 39 years of nest-count, female-count, and capture-mark-recapture (CMR) data for nesting loggerhead turtles (Caretta caretta) on Wassaw Island, Georgia, USA. Annual counts of nests and females, not corrected for imperfect detection, yield significant, positive trends in abundance. However, multistate open robust design modeling of CMR data that accounts for changes in imperfect detection reveals that the annual abundance of nesting females has remained essentially constant over the 39-year period. The dichotomy could result from improvements in surveys or increased within-season nest-site fidelity in females, either of which would increase detection probability. For the first time in a marine turtle population, we compare results of population trend analyses that do and do not account for imperfect detection and demonstrate the potential for erroneous conclusions. Past assessments of marine turtle population trends based exclusively on count data should be interpreted with caution and re-evaluated when possible. These concerns apply equally to population assessments of all species with imperfect detection. PMID:23638041
Thermo-electro-mechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections
NASA Astrophysics Data System (ADS)
Wu, Helong; Kitipornchai, Sritawat; Yang, Jie
2016-09-01
This paper presents thermo-electro-mechanical postbuckling analysis of geometrically imperfect functionally graded carbon nanotube-reinforced composite (FG-CNTRC) hybrid beams that are integrated with surface-bonded piezoelectric actuators. The material properties of FG-CNTRCs are assumed to be temperature-dependent and graded in the thickness direction. By using a generic imperfection function, various possible imperfections with different shapes and locations in the beam are considered. The theoretical formulations are based on the first-order shear deformation beam theory with von-Kármán nonlinearity. A differential quadrature approximation based iteration process is employed to obtain the postbuckling equilibrium path of piezoelectric FG-CNTRC hybrid beams under thermo-electro-mechanical loading. Parametric studies are conducted to examine the effect of geometric imperfection, distribution pattern and volume fraction of carbon nanotubes, temperature rise, actuator voltage, beam geometry and boundary conditions on the thermo-electro-mechanical postbuckling behaviour. The results show that the thermo-electro-mechanical postbuckling is considerably affected by the imperfection mode, half-wave number, location and amplitude, as well as the temperature rise and boundary conditions. The effect of applied actuator voltage is much less pronounced but tends to be relatively more noticeable as the slenderness ratio increases.
NASA Astrophysics Data System (ADS)
Tsafack, Thierry; Piccinini, Enrico; Lee, Bong-Sub; Pop, Eric; Rudan, Massimo
2011-09-01
We present a comprehensive computational study on the properties of rock salt-like and hexagonal chalcogenide Ge2Sb2Te5 supported by experimental data. We calculate the electronic structure using density functional theory (DFT); the obtained density of states (DOS) compares favorably with experiments, and is suitable for transport analysis. Optical constants including refractive index and absorption coefficient capture major experimental features, aside from an energy shift owed to an underestimate of the bandgap that is typical of DFT calculations. We also compute the phonon DOS for the hexagonal phase, obtaining a speed of sound and thermal conductivity in good agreement with the experimental lattice contribution. The calculated heat capacity reaches ˜1.4 × 106 J/(m3 K) at high temperature, in agreement with experiments, and provides insight into the low-temperature range (<150 K), where data are unavailable.
NASA Astrophysics Data System (ADS)
Hullavarad, S. S.; Hullavarad, N. V.; Pugel, D. E.; Dhar, S.; Takeuchi, I.; Venkatesan, T.; Vispute, R. D.
2007-08-01
In this work, we describe the homo- and hetero-epitaxial growth of hexagonal and cubic MgxZn1-xO thin films on lattice matched substrates of c-Al2O3, ZnO, MgO and SrTiO3. The crystalline quality, composition and epitaxial nature of the alloy films are obtained by x-ray diffraction and Rutherford backscattering spectroscopy (RBS) techniques. The RBS channeling yields are in the range 3-8% for homoepitaxial and hetero-epitaxial thin films. The metal-semiconductor-metal and ultraviolet detectors were fabricated on hexagonal and cubic MgxZn1-xO thin films and the leakage current and UV-visible rejection ratio are correlated with the epitaxial relationship between the film and substrates.
Quantum magnetism on kagome lattice
NASA Astrophysics Data System (ADS)
Hao, Zhihao
The spin 1/2 Heisenberg antiferromagnet on kagome (a planar lattice of corner sharing triangles) is one of the most celebrated models of a strongly correlated system. Despite intensive studies, the physics of its ground state and excitations remains unsettled. Recently, researchers successfully synthesized and characterized several new materials described by this model. It is hoped that the longstanding problem can be finally resolved through combined efforts of experimentalists, material scientists and theorists. In this thesis, we present a physical picture of the low energy physics of kagome. We demonstrate that there are N/3 fermionic particles on a kagome of N sites. The motion of these particles is strongly constrained. They are bound into small bosonic states by strong pair-wise attractions. The "antiparticle" also exists and a particle-antiparticle pair can be created at energy cost 0.218J. Low energy spin 1 excitations correspond to breaking a bound state into two free particles at energy cost 0.06J. This is the physical mechanism of the kagome spin gap. Our physical picture finds several applications. The dynamical structure factor of pair-breaking processes on kagome is computed. We assume the bound states are independent thanks to their small sizes. The result agrees well with the recent inelastic neutron scattering measurement conducted on herbertsmithite, a kagome antiferromagnet. In the second application, we study the effect of Dzyaloshinskii-Moriya (DM) interaction. DM interaction is important for low energy physics on kagome since the ground state of the dominate exchange interaction is highly degenerated. Through analytical and numerical arguments, it is determined that the vacuum become unstable to creation of particle-antiparticle pairs at critical strength D of DM interaction on the sawtooth chain, a chain of corner sharing triangles. We speculate that the mechanism is behind the numerically observed quantum phase transition at finite D on
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
NASA Astrophysics Data System (ADS)
Wei, Hong-Xing; Li, Yong-Dong; Xiong, Tao; Guan, Yong
2016-09-01
The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained.
Oka, Toshihiko; Ohta, Noboru
2016-08-01
We report a method to produce two different monodomains of an inverse hexagonal II (HII) phase in capillaries. Capillaries filled with glyceryl monooleyl ether (GME) in an inverted micellar phase were soaked in water. After a week, a monodomain of the HII phase with straight cylinders was observed in a capillary with a diameter of 1.0 mm. The axis of the straight cylinders was almost parallel to the capillary axis, and the cylinders were slightly undulated. The lattice constant of the HII phase was 5.85 nm, which indicated the monodomain was fully hydrated. Another monodomain with ringed cylinders was observed in a 0.2 mm diameter capillary. The ringed cylinders aligned to the round capillary wall, where one of the ⟨10⟩ directions in the hexagonal lattice always faced the wall. The lattice constant was 4.89 nm, from which the estimated water content of the monodomain was almost the lowest reported for the HII phase. The monodomain with ringed cylinders is stabilized by the capillary wall and the low water content. This method to produce specific monodomains is expected to be of benefit for basic and applied research on the HII phase. PMID:27399256
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.
A long persistent phosphor based on recombination centers originating from Zn imperfections.
Li, Yang; Du, Xi; Sharafudeen, Kaniyarakkal; Liao, Chenxing; Qiu, Jianrong
2014-04-01
The recombination luminescence from Zn imperfections has been extensively investigated; however, there have been few reports on the long persistent luminescence of Zn imperfections as emitting centers. Here, we observed a long persistent luminescence in blue-white visible region from 6 ZnO:3 GeO2:Al2O3 phosphor with Zn imperfections as emitting centers. Persistent luminescence could be observed beyond 2h with naked eyes. The properties of traps were also elaborated by the measurements of thermo-luminescence spectra and photo-stimulated luminescence decay curves. Furthermore, a long persistent phosphor with warm white color was developed by doping Cr(3+) into 6 ZnO:3 GeO2:Al2O3 phosphor. PMID:24388995
Jiang, Wu-Gui; Zhong, Ren-Zhi; Qin, Qing H; Tong, Yong-Gang
2014-01-01
A three-dimensional (3D) representative volume element (RVE) model was developed for analyzing effective mechanical behavior of fiber-reinforced ceramic matrix composites with imperfect interfaces. In the model, the fiber is assumed to be perfectly elastic until its tensile strength, and the ceramic material is modeled by an elasto-plastic Drucker-Prager constitutive law. The RVE model is then used to study the elastic properties and the tensile strength of composites with imperfect interfaces and validated through experiments. The imperfect interfaces between the fiber and the matrix are taken into account by introducing some cohesive contact surfaces. The influences of the interface on the elastic constants and the tensile strengths are examined through these interface models. PMID:25522170
Rice, Stephen; Trafimow, David; Hunt, Gayle; Sandry, Joshua
2010-01-01
Based on previous research that violations of perfect duties cause stronger correspondent inferences than violations of imperfect ones, the authors performed four experiments to generalize this effect to trust. In Experiment 1, abstract violations of perfect duties resulted in less trust than violations of imperfect ones for specific trust scenarios. In Experiments 2 and 3, the authors experimented with different levels of abstractness of the duty violations and obtained similar effects. Experiment 4 was concerned with generalizing further--from duty violations in one situation to trust in a different situation. Although mostly consistent with the findings from Experiments 1-3, the data also demonstrated partial generalization for violations of both perfect and imperfect duties. PMID:20198814
Jiang, Wu-Gui; Zhong, Ren-Zhi; Qin, Qing H.; Tong, Yong-Gang
2014-01-01
A three-dimensional (3D) representative volume element (RVE) model was developed for analyzing effective mechanical behavior of fiber-reinforced ceramic matrix composites with imperfect interfaces. In the model, the fiber is assumed to be perfectly elastic until its tensile strength, and the ceramic material is modeled by an elasto-plastic Drucker-Prager constitutive law. The RVE model is then used to study the elastic properties and the tensile strength of composites with imperfect interfaces and validated through experiments. The imperfect interfaces between the fiber and the matrix are taken into account by introducing some cohesive contact surfaces. The influences of the interface on the elastic constants and the tensile strengths are examined through these interface models. PMID:25522170
Barber, Ramon; Zwilling, Valerie; Salichs, Miguel A.
2014-01-01
Nowadays the automobile industry is becoming more and more demanding as far as quality is concerned. Within the wide variety of processes in which this quality must be ensured, those regarding the squeezing of the auto bodywork are especially important due to the fact that the quality of the resulting product is tested manually by experts, leading to inaccuracies of all types. In this paper, an algorithm is proposed for the automated evaluation of the imperfections in the sheets of the bodywork after the squeezing process. The algorithm processes the profile signals from a retroreflective image and characterizes an imperfection. It is based on a convergence criterion that follows the line of the maximum gradient of the imperfection and gives its geometrical characteristics as a result: maximum gradient, length, width, and area. PMID:24504105
NASA Astrophysics Data System (ADS)
Singh, Kevin; Geiger, Zachary; Senaratne, Ruwan; Rajagopal, Shankari; Fujiwara, Kurt; Weld, David; Weld Group Team
2015-05-01
Quasiperiodicity is intimately involved in quantum phenomena from localization to the quantum Hall effect. Recent experimental investigation of quasiperiodic quantum effects in photonic and electronic systems have revealed intriguing connections to topological phenomena. However, such experiments have been limited by the absence of techniques for creating tunable quasiperiodic structures. We propose a new type of quasiperiodic optical lattice, constructed by intersecting a Gaussian beam with a 2D square lattice at an angle with an irrational tangent. The resulting potential, a generalization of the Fibonacci lattice, is a physical realization of the mathematical ``cut-and-project'' construction which underlies all quasiperiodic structures. Calculation of the energies and wavefunctions of atoms loaded into the proposed quasiperiodic lattice demonstrate a fractal energy spectrum and the existence of edge states. We acknowledge support from the ONR (award N00014-14-1-0805), the ARO and the PECASE program (award W911NF-14-1-0154), the AFOSR (award FA9550-12-1-0305), and the Alfred P. Sloan foundation (grant BR2013-110).
Andreas S. Kronfeld
2002-09-30
After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.
Feng Haidong; Siegel, Warren
2006-08-15
We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.
ERIC Educational Resources Information Center
Scott, Paul
2006-01-01
A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.
NASA Astrophysics Data System (ADS)
Schaich, David
2016-03-01
Lattice field theory provides a non-perturbative regularization of strongly interacting systems, which has proven crucial to the study of quantum chromodynamics among many other theories. Supersymmetry plays prominent roles in the study of physics beyond the standard model, both as an ingredient in model building and as a tool to improve our understanding of quantum field theory. Attempts to apply lattice techniques to supersymmetric field theories have a long history, but until recently these efforts have generally encountered insurmountable difficulties related to the interplay of supersymmetry with the lattice discretization of spacetime. In recent years these difficulties have been overcome for a class of theories that includes the particularly interesting case of maximally supersymmetric Yang-Mills (N = 4 SYM) in four dimensions, which is a cornerstone of AdS/CFT duality. In combination with computational advances this progress enables practical numerical investigations of N = 4 SYM on the lattice, which can address questions that are difficult or impossible to handle through perturbation theory, AdS/CFT duality, or the conformal bootstrap program. I will briefly review some of the new ideas underlying this recent progress, and present some results from ongoing large-scale numerical calculations, including comparisons with analytic predictions.
NASA Astrophysics Data System (ADS)
Weidner, Carrie; Yu, Hoon; Anderson, Dana
2015-05-01
This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.
Synchronizing spatio-temporal chaos with imperfect models: A stochastic surface growth picture
Pazó, Diego López, Juan M.; Rodríguez, Miguel A.; Gallego, Rafael
2014-12-01
We study the synchronization of two spatially extended dynamical systems where the models have imperfections. We show that the synchronization error across space can be visualized as a rough surface governed by the Kardar-Parisi-Zhang equation with both upper and lower bounding walls corresponding to nonlinearities and model discrepancies, respectively. Two types of model imperfections are considered: parameter mismatch and unresolved fast scales, finding in both cases the same qualitative results. The consistency between different setups and systems indicates that the results are generic for a wide family of spatially extended systems.
NASA Technical Reports Server (NTRS)
Librescu, L.; Stein, M.
1990-01-01
The effects of initial geometrical imperfections on the postbuckling response of flat laminated composite panels to uniaxial and biaxial compressive loading are investigated analytically. The derivation of the mathematical model on the basis of first-order transverse shear deformation theory is outlined, and numerical results for perfect and imperfect, single-layer and three-layer square plates with free-free, clamped-clamped, or free-clamped edges are presented in graphs and briefly characterized. The present approach is shown to be more accurate than analyses based on the classical Kirchhoff plate model.
NASA Astrophysics Data System (ADS)
Jiang, Bin; Yu, Binhan; Zhang, Xu; Liu, Maili; Yang, Daiwen
2015-08-01
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is a powerful NMR method to study protein dynamics on the microsecond-millisecond time scale. J-coupling, resonance offset, radio frequency field inhomogeneity, and pulse imperfection often introduce systematic errors into the measured transverse relaxation rates. Here we proposed a modified continuous wave decoupling CPMG experiment, which is more unaffected by resonance offset and pulse imperfection. We found that it is unnecessary to match the decoupling field strength with the delay between CPMG refocusing pulses, provided that decoupling field is strong enough. The performance of the scheme proposed here was shown by simulations and further demonstrated experimentally on a fatty acid binding protein.
Arghavani Nia, Borhan; Sedighi, Matin; Shahrokhi, Masoud; Moradian, Rostam
2013-11-15
A density functional theory study of structural, electronical and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. In the exchange–correlation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca{sub 3}Sb{sub 2} has an indirect gap in the Γ→N direction; while in the cubic phase there is a direct-gap at the Γ point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated. - Graphical abstract: A density functional theory study of structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. Display Omitted - Highlights: • Physical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases are investigated. • It is found that the hexagonal phase is an indirect gap semiconductor. • Ca{sub 3}Sb{sub 2} is a direct-gap semiconductor at the Γ point in the cubic phase. • By increasing pressure the semiconducting band gap and anti-symmetry gap are decreased.
Kasala, Kailash; Saravanamuttu, Kalaichelvi
2013-01-29
We report that incandescent beams patterned with amplitude depressions (dips) suffer instability in a photopolymerizable system and organize into lattices of black and bright self-trapped beams propagating respectively, through self-induced black and bright waveguides. Such optochemically organized lattices emerge when beams embedded with a hexagonal or square array of dips initiate free-radical polymerization and corresponding changes in refractive index (Δn) along their propagation paths. Under these nonlinear conditions, the dips evolve into a hexagonal or square lattice of black beams, while their bright interstitial regions become unstable and divide spontaneously into multiple filaments of light. These filaments have a characteristic diameter (d(f)) and organize into a variety of geometries, which are determined by the shape and dimensions of the bright interstices. At interstitial widths > 2d(f), filaments are randomly positioned in space, whereas at widths < 2d(f), the interstices are occupied by a single file of filaments encircling each dark channel. When the interstitial width ≈ d(f), the filaments organize into lattices with long-range hexagonal or square symmetry. By employing anisotropic interstices such as rectangles, filamentation can be selectively elicited along the long axis, leading to a lattice of filament doublets. This work demonstrates the versatility and significant potential of optochemical organization to generate complex, optically functional polymer lattices, which cannot be constructed through conventional lithography or self-assembly. Specifically, the study introduces a new generation of waveguide lattices, in which light propagation is co-operatively managed by black and bright waveguides; the former suppress local light propagation and, in this way, enhance light confinement and guidance in proximal bright waveguides. PMID:23252718
NASA Astrophysics Data System (ADS)
Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael
2013-12-01
In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.
Hexagonal boron nitride is an indirect bandgap semiconductor
NASA Astrophysics Data System (ADS)
Cassabois, G.; Valvin, P.; Gil, B.
2016-04-01
Hexagonal boron nitride is a wide bandgap semiconductor with very high thermal and chemical stability that is used in devices operating under extreme conditions. The growth of high-purity crystals has recently revealed the potential of this material for deep ultraviolet emission, with intense emission around 215 nm. In the last few years, hexagonal boron nitride has been attracting even more attention with the emergence of two-dimensional atomic crystals and van der Waals heterostructures, initiated with the discovery of graphene. Despite this growing interest and a seemingly simple structure, the basic questions of the bandgap nature and value are still controversial. Here, we resolve this long-debated issue by demonstrating evidence for an indirect bandgap at 5.955 eV by means of optical spectroscopy. We demonstrate the existence of phonon-assisted optical transitions and we measure an exciton binding energy of about 130 meV by two-photon spectroscopy.
The structure and electronic properties of hexagonal Fe2Si
NASA Astrophysics Data System (ADS)
Tang, Chi Pui; Tam, Kuan Vai; Xiong, Shi Jie; Cao, Jie; Zhang, Xiaoping
2016-06-01
On the basis of first principle calculations, we show that a hexagonal structure of Fe2Si is a ferromagnetic crystal. The result of the phonon spectra indicates that it is a stable structure. Such material exhibits a spin-polarized and half-metal-like band structure. From the calculations of generalized gradient approximation, metallic and semiconducting behaviors are observed with a direct and nearly 0 eV band gap in various spin channels. The densities of states in the vicinity of the Fermi level is mainly contributed from the d-electrons of Fe. We calculate the reflection spectrum of Fe2Si, which has minima at 275nm and 3300nm with reflectance of 0.27 and 0.49, respectively. Such results may provide a reference for the search of hexagonal Fe2Si in experiments. With this band characteristic, the material may be applied in the field of novel spintronics devices.
Melting of hexagonal skyrmion states in chiral magnets
NASA Astrophysics Data System (ADS)
Ambrose, M. C.; Stamps, R. L.
2013-05-01
Skyrmions are spiral structures observed in thin films of certain magnetic materials (Uchida et al 2006 Science 311 359-61). Of the phases allowed by the crystalline symmetries of these materials (Yi et al 2009 Phys. Rev. B 80 054416), only the hexagonally packed phases (SCh) have been observed. Here the melting of the SCh phase is investigated using Monte Carlo simulations. In addition to the usual measure of skyrmion density, chiral charge, a morphological measure is considered. In doing so it is shown that the low-temperature reduction in chiral charge is associated with a change in skyrmion profiles rather than skyrmion destruction. At higher temperatures, the loss of six-fold symmetry is associated with the appearance of elongated skyrmions that disrupt the hexagonal packing.
Electrically dependent bandgaps in graphene on hexagonal boron nitride
Kaplan, D. Swaminathan, V.; Recine, G.
2014-03-31
We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for opening and modulating a bandgap in graphene as high as several hundred meV.
Pedestrian simulations in hexagonal cell local field model
NASA Astrophysics Data System (ADS)
Leng, Biao; Wang, Jianyuan; Xiong, Zhang
2015-11-01
Pedestrian dynamics have caused wide concern over the recent years. This paper presents a local field (LF) model based on regular hexagonal cells to simulate pedestrian dynamics in scenarios such as corridors and bottlenecks. In this model, the simulation scenarios are discretized into regular hexagonal cells. The local field is a small region around pedestrian. Each pedestrian will choose his/her target cell according to the situation in his/her local field. Different walking strategies are considered in the simulation in corridor scenario and the fundamental graphs are used to verify this model. Different shapes of exit are also discussed in the bottleneck scenario. The statistics of push effect show that the smooth bottleneck exit may be more safe.
Zonal wavefront estimation using an array of hexagonal grating patterns
Pathak, Biswajit E-mail: brboruah@iitg.ernet.in; Boruah, Bosanta R. E-mail: brboruah@iitg.ernet.in
2014-10-15
Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.
Thickness-dependent bending modulus of hexagonal boron nitride nanosheets
NASA Astrophysics Data System (ADS)
Li, Chun; Bando, Yoshio; Zhi, Chunyi; Huang, Yang; Golberg, Dmitri
2009-09-01
Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 µm were measured using three-point bending tests in an atomic force microscope. BNNSs suspended on an SiO2 trench were clamped by a metal film via microfabrication based on electron beam lithography. Calculated by the plate theory of a doubly clamped plate under a concentrated load, the bending modulus of BNNSs was found to increase with the decrease of sheet thickness and approach the theoretical C33 value of a hexagonal BN single crystal in thinner sheets (thickness<50 nm). The thickness-dependent bending modulus was suggested to be due to the layer distribution of stacking faults which were also thought to be responsible for the layer-by-layer BNNS exfoliation.
Hexagonal liquid crystal lens array for 3D endoscopy.
Hassanfiroozi, Amir; Huang, Yi-Pai; Javidi, Bahram; Shieh, Han-Ping D
2015-01-26
A liquid crystal lens array with a hexagonal arrangement is investigated experimentally. The uniqueness of this study exists in the fact that using convex-ring electrode provides a smooth and controllable applied potential profile across the aperture to manage the phase profile. We observed considerable differences between flat electrode and convex-ring electrode; in particular the lens focal length is variable in a wider range from 2.5cm to infinity. This study presents several noteworthy characteristics such as low driving voltage; 30 μm cell gap and the lens is electrically switchable between 2D/3D modes. We demonstrate a hexagonal LC-lens array for capturing 3D images by using single sensor using integral imaging. PMID:25835856
Zonal wavefront estimation using an array of hexagonal grating patterns
NASA Astrophysics Data System (ADS)
Pathak, Biswajit; Boruah, Bosanta R.
2014-10-01
Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.
Hexagon OPE resummation and multi-Regge kinematics
NASA Astrophysics Data System (ADS)
Drummond, J. M.; Papathanasiou, G.
2016-02-01
We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar {N}=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the 2 → 4 Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.
A new interlayer potential for hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Akıner, Tolga; Mason, Jeremy K.; Ertürk, Hakan
2016-09-01
A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6–12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6–12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction.
A new interlayer potential for hexagonal boron nitride.
Akıner, Tolga; Mason, Jeremy K; Ertürk, Hakan
2016-09-28
A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6-12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6-12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction. PMID:27452331
Epitaxial metallic β-Nb2N films grown by MBE on hexagonal SiC substrates
NASA Astrophysics Data System (ADS)
Katzer, D. Scott; Nepal, Neeraj; Meyer, David J.; Downey, Brian P.; Wheeler, Virginia D.; Storm, David F.; Hardy, Matthew T.
2015-08-01
RF-plasma MBE was used to epitaxially grow 4- to 100-nm-thick metallic β-Nb2N thin films on hexagonal SiC substrates. When the N/Nb flux ratios are greater than one, the most critical parameter for high-quality β-Nb2N is the substrate temperature. The X-ray characterization of films grown between 775 and 850 °C demonstrates β-Nb2N phase formation. The (0002) and (21\\bar{3}1) X-ray diffraction measurements of a β-Nb2N film grown at 850 °C reveal a 0.68% lattice mismatch to the 6H-SiC substrate. This suggests that β-Nb2N can be used for high-quality metal/semiconductor heterostructures that cannot be fabricated at present.
DNA triangles and self-assembled hexagonal tilings.
Chelyapov, Nickolas; Brun, Yuriy; Gopalkrishnan, Manoj; Reishus, Dustin; Shaw, Bilal; Adleman, Leonard
2004-11-01
We have designed and constructed DNA complexes in the form of triangles. We have created hexagonal planar tilings from these triangles via self-assembly. Unlike previously reported structures self-assembled from DNA, our structures appear to involve bending of double helices. Bending helices may be a useful design option in the creation of self-assembled DNA structures. It has been suggested that DNA self-assembly may lead to novel materials and efficient computational devices. PMID:15506744
Acetone sensor based on zinc oxide hexagonal tubes
Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand
2014-04-24
In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.
Hexagons, kinks, and disorder in oscillated granular layers
Melo, F.; Umbanhowar, P.B.; Swinney, H.L.
1995-11-20
Experiments on vertically oscillated granular layers in an evacuated container reveal a sequence of well-defined pattern bifurcations as the container acceleration is increased. Period doublings of the layer center of mass motion and a standing wave instability interact to produce hexagons and more complicated patterns composed of distinct spatial domains of different relative phase separated by kinks (phase discontinuities). A simple model displays quantitative agreement with the observed transition sequence. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.
Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride
NASA Astrophysics Data System (ADS)
DaSilva, Ashley M.; Jung, Jeil; MacDonald, Allan H.
2016-07-01
In fractionally filled Landau levels there is only a small energy difference between broken translational symmetry electron-crystal states and exotic correlated quantum fluid states. We show that the spatially periodic substrate interaction associated with the long period moiré patterns present in graphene on nearly aligned hexagonal boron nitride tilts this close competition in favor of the former, explaining surprising recent experimental findings.
Lambda modes of the neutron diffusion equation in hexagonal geometry
Barrachina, T.; Ginestar, D.; Verdu, G.
2006-07-01
A nodal collocation method is proposed to compute the dominant Lambda modes of nuclear reactor core with a hexagonal geometry. This method is based on a triangular mesh and assumes that the neutronic flux can be approximated as a finite expansion in terms of Dubiner's polynomials. The method transforms the initial differential eigenvalue problem into a generalized algebraic one, from which the dominant modes of the reactor can be computed. The performance of the method is tested with two benchmark problems. (authors)
Wang, Pengfei; Gaitanaros, Stavros; Lee, Seungwoo; Bathe, Mark; Shih, William M; Ke, Yonggang
2016-06-22
Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, here we design a family of hexagonal DNA-origami tiles using computer-aided design and demonstrate successful self-assembly of micrometer-scale 2D honeycomb lattices and tubes by controlling their geometric and mechanical properties including their interconnecting strands. Our results offer insight into programmed self-assembly of low-defect supra-molecular DNA-origami 2D lattices and tubes. In addition, we demonstrate that these DNA-origami hexagon tiles and honeycomb lattices are versatile platforms for assembling optical metamaterials via programmable spatial arrangement of gold nanoparticles (AuNPs) into cluster and superlattice geometries. PMID:27224641
On the lattice parameters of silicon carbide
NASA Astrophysics Data System (ADS)
Stockmeier, M.; Müller, R.; Sakwe, S. A.; Wellmann, P. J.; Magerl, A.
2009-02-01
The thermal expansion coefficients of the hexagonal SiC polytypes 4H and 6H and with Al and N dopants have been determined for temperatures between 300 and 1770 K. Further, a set of the room temperature lattice parameters in dependence on doping with N, Al, and B has been obtained. Data for the thermal expansion were taken on a triple axis diffractometer for high energy x rays with a photon energy of 60 keV, which allows the use of large single crystals with a volume of at least 6×6×6 mm3 without the need to consider absorption. The room temperature measurements for samples with different dopants have been performed on a four-circle diffractometer. The thermal expansion coefficients along the a- and c-directions, α11 and α33, increase from 3×10-6 K-1 at 300 K to 6×10-6 K-1 at 1750 K. It is found that α11 and α33 are isotropic within 107 K-1. At high temperatures both coefficients for doped samples are ˜0.2×10-6 and 0.3×10-6 K-1 lower than for the undoped material.
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Nadler, Walder; Grassberger, Peter
2005-07-01
The scaling behavior of randomly branched polymers in a good solvent is studied in two to nine dimensions, modeled by lattice animals on simple hypercubic lattices. For the simulations, we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. We obtain high statistics of animals with up to several thousand sites in all dimension 2⩽d⩽9. The partition sum (number of different animals) and gyration radii are estimated. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and ⩾8. In addition, we present the hitherto most precise estimates for growth constants in d⩾3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy.
Lattice Boltzmann morphodynamic model
NASA Astrophysics Data System (ADS)
Zhou, Jian Guo
2014-08-01
Morphological change due to sediment transport is a common natural phenomenon in real flows. It involves complex processes of erosion and deposition such as those along beaches and in river beds, imposing a strong strain on human beings. Studying and understanding morphodynamic evolution are essential to protect living environment. Although there are conventional numerical methods like finite difference method and finite volume method for forecast of morphological change by solving flow and morphodynamic equations, the methods are too complex/inefficient to be applied to a real large scale problem. To overcome this, a lattice Boltzmann method is developed to simulate morphological evolution under flows. It provides an alternative way of studying morphodynamics at the full advantages of the lattice Boltzmann methodology. The model is verified by applications to the evolution of one and two dimensional sand dunes under shallow water flows.
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
Femtosecond laser direct writing of monocrystalline hexagonal silver prisms
Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric
2014-10-06
Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.
Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems
Chen, Yulin; Ma, Ping; Gui, Shuangying
2014-01-01
Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330
Discovery of Superconductivity in Hard Hexagonal ε-NbN
NASA Astrophysics Data System (ADS)
Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng
2016-02-01
Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.
Discovery of Superconductivity in Hard Hexagonal ε-NbN.
Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng
2016-01-01
Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318
Discovery of Superconductivity in Hard Hexagonal ε-NbN
Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng
2016-01-01
Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318
Discovery of superconductivity in hard hexagonal ε-NbN
Zou, Yongtao; Li, Qiang; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; et al
2016-02-29
Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bondingmore » in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less
Hexagonal OsB2: Sintering, microstructure and mechanical properties
Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.
2015-02-07
In this study, the metastable high pressure ReB2-type hexagonal OsB2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (~80 wt.%) and orthorhombic (~20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ±more » 112 GPa, indicating that the material is rather hard and very stiff; but, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB2 bulk ceramics.« less
Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Broido, David; Lindsay, Lucas
2012-02-01
We have calculated the lattice thermal conductivity, k, of both naturally occurring and isotopically enriched single layers of hexagonal boron nitride (h-BN) as well as bulk h-BN using an exact numerical solution of the Boltzmann transport equation for phonons [1]. Good agreement is obtained with measured bulk h-BN data [2], and the stronger phonon-phonon scattering identified in these systems explains why their k values are significantly lower than those in graphene and graphite. A reduction in such scattering in the single layer arising mainly from a symmetry-based selection rule leads to a substantial increase in k, with calculated room temperature values of more than 600 W/m-K. Additional enhancement is obtained from isotopic enrichment, which exhibits a strong peak as a function of temperature, with magnitude growing rapidly with crystallite size. [1] L. Lindsay and D. A. Broido, Phys. Rev. B 84, 155421 (2011). [2] E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, Phys. Rev. B 13, 4607 (1976).
Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng
2016-01-01
In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368
Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng
2016-01-01
In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368
Kitaev anisotropy induces mesoscopic Z2 vortex crystals in frustrated hexagonal antiferromagnets
NASA Astrophysics Data System (ADS)
Rousochatzakis, Ioannis; Rössler, Ulrich K.; van den Brink, Jeroen; Daghofer, Maria
2016-03-01
The triangular-lattice Heisenberg antiferromagnet (HAF) is known to carry topological Z2 vortex excitations which form a gas at finite temperatures. Here we show that the spin-orbit interaction, introduced via a Kitaev term in the exchange Hamiltonian, condenses these vortices into a triangular Z2 vortex crystal at zero temperature. The cores of the Z2 vortices show abrupt, soliton-like magnetization modulations and arise by a special intertwining of three honeycomb superstructures of ferromagnetic domains, one for each of the three sublattices of the 120∘ state of the pure HAF. This is an example of a nucleation transition, analogous to the spontaneous formation of magnetic domains, Abrikosov vortices in type-II superconductors, blue phases in cholesteric liquid crystals, and skyrmions in chiral helimagnets. As the mechanism relies on the interplay of geometric frustration and spin-orbital anisotropies, such vortex mesophases can materialize as a ground state property in spin-orbit coupled correlated systems with nearly hexagonal topology, as in triangular or strongly frustrated honeycomb iridates.
NASA Astrophysics Data System (ADS)
Guan, Zhen; Heinonen, Vili; Lowengrub, John; Wang, Cheng; Wise, Steven M.
2016-09-01
In this paper we construct an energy stable finite difference scheme for the amplitude expansion equations for the two-dimensional phase field crystal (PFC) model. The equations are formulated in a periodic hexagonal domain with respect to the reciprocal lattice vectors to achieve a provably unconditionally energy stable and solvable scheme. To our knowledge, this is the first such energy stable scheme for the PFC amplitude equations. The convexity of each part in the amplitude equations is analyzed, in both the semi-discrete and fully-discrete cases. Energy stability is based on a careful convexity analysis for the energy (in both the spatially continuous and discrete cases). As a result, unique solvability and unconditional energy stability are available for the resulting scheme. Moreover, we show that the scheme is point-wise stable for any time and space step sizes. An efficient multigrid solver is devised to solve the scheme, and a few numerical experiments are presented, including grain rotation and shrinkage and grain growth studies, as examples of the strength and robustness of the proposed scheme and solver.
Celli, Milva; Powers, Anna; Colognesi, Daniele; Xu, Minzhong; Bačić, Zlatko; Ulivi, Lorenzo
2013-10-28
We have performed high-resolution inelastic neutron scattering (INS) measurements on binary hydrogen clathrate hydrates exhibiting the hexagonal structure (sH). Two samples, differing only in the ortho/para fraction of hydrogen, were prepared using heavy water and methyl tert-butyl ether as the promoter in its perdeuterated form. The INS spectrum of the translation-rotation (TR) excitations of the guest H2 molecule was obtained by subtracting the very weak signal due to the D2O lattice modes. By means of a subtraction procedure, it has been possible to obtain separately the spectra of caged p-H2 and o-H2. sH clathrates are comprised of three distinct types of cages, two of which, differing in shape and size, are each occupied by one H2 molecule only. Both contribute to the measured INS spectrum which is, therefore, rather complex and challenging to assign unambiguously. To assist with the interpretation, the INS spectra are calculated accurately utilizing the quantum methodology which incorporates the coupled five-dimensional TR energy levels and wave functions of the H2 molecule confined in each type of nanocage. The computed INS spectra are highly realistic and reflect the complexity of the coupled TR dynamics of the guest H2 in the anisotropic confining environment. The simulated INS spectra of p-H2 and o-H2 in the small and medium cages are compared with the experimental data, and are indispensable for their interpretation. PMID:24182049
EBSD study of substrate-mediated growth of hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Dias, J.; Kidambi, P. R.; Hofmann, S.; Ducati, C.
2014-06-01
Hexagonal Boron Nitride (h-BN) is a promising insulating material to complement and enable graphene electronics. Given the good lattice match to graphite, graphene/h-BN heterostructures may be grown with negligible amounts of strain and defect states, resulting in high carrier mobilities approaching values for suspended graphene. Chemical vapour deposition (CVD) has emerged as one of the preferred routes for the synthesis of 2D materials for electronic applications. Here we report on the growth of h-BN by low pressure CVD, using borazine as a precursor. Electron backscattered diffraction (EBSD) in conjunction with topographic imaging in the scanning electron microscope are used to investigate the change in crystal structure and orientation of three metallic catalyst substrates: Co, Ni and Cu, by high temperature processing and the growth of nanoscale h-BN domains. The behaviour of the metal foils is interpreted in light of the prevalent growth models. EBSD and imaging conditions are optimized to allow efficient acquisitions for these composite and nanostructured specimens.
Magneto-optical and magneto-transport studies of hexagonal artificial spin ice nano-structures
NASA Astrophysics Data System (ADS)
Olivari, Simon; Esien, Kane; Read, Dan
2015-03-01
Artificial spin ice structures have attracted a great deal of attention recently and may prove to be useful analogues for frustrated magnetic systems, such as bulk spin ice materials. We will present the results of studying these structures by utilising magneto optical Kerr effect (MOKE) and magneto-transport measurements. We have fabricated hexagonal (also sometimes known as honeycomb) ASI structures from metallic ferromagnetic islands having dimensions close to 1 μm long, 100nm wide and 10nm thick. We have made electrical transport measurements of two types of structure both having similar geometry and electrically connected islands, however the first samples have magnetically connected elements forming the honeycomb networks whereas the second set of samples are formed from magnetically isolated islands. Comparing these structures allows an assessment of the relative contributions from magnetic domain wall (DW) motion and from magnetostatic interactions. The magneto-optical measurements have been made as a function of angle between the field direction and the lattice. The properties observed with NiFe and Co fabricated nanostructures are discussed in relation to the geometries described above.
NASA Astrophysics Data System (ADS)
Bhatia, M. A.; Solanki, K. N.
2013-12-01
Molecular static simulations of 190 symmetric tilt grain boundaries in hexagonal closed pack metals were used to understand the energetics of vacancy segregation, which is important for designing stable interfaces in harsh environments. Simulation results show that the local arrangements of grain boundaries and the resulting structural units have a significant influence on the magnitude of vacancy binding energies, and the site-to-site variation within each boundary is substantial. Comparing the vacancy binding energies for each site in different c/a ratio materials shows that the binding energy increases significantly with an increase in c/a ratio. For example, in the [12¯10] tilt axis, Ti and Zr with c/a = 1.5811 have a lower vacancy binding energy than the Mg with c/a = 1.6299. Furthermore, when the grain boundary energies of all 190 boundaries in all three elements are plotted against the vacancy binding energies of the same boundaries, a highly negative correlation (r = -0.7144) is revealed that has a linear fit with a proportionality constant of -25 Å2. This is significant for applications where extreme environmental damage generates lattice defects and grain boundaries act as sinks for both vacancies and interstitial atoms.
Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing
NASA Astrophysics Data System (ADS)
Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan
2015-03-01
We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.
NASA Astrophysics Data System (ADS)
Celli, Milva; Powers, Anna; Colognesi, Daniele; Xu, Minzhong; Bačić, Zlatko; Ulivi, Lorenzo
2013-10-01
We have performed high-resolution inelastic neutron scattering (INS) measurements on binary hydrogen clathrate hydrates exhibiting the hexagonal structure (sH). Two samples, differing only in the ortho/para fraction of hydrogen, were prepared using heavy water and methyl tert-butyl ether as the promoter in its perdeuterated form. The INS spectrum of the translation-rotation (TR) excitations of the guest H2 molecule was obtained by subtracting the very weak signal due to the D2O lattice modes. By means of a subtraction procedure, it has been possible to obtain separately the spectra of caged p-H2 and o-H2. sH clathrates are comprised of three distinct types of cages, two of which, differing in shape and size, are each occupied by one H2 molecule only. Both contribute to the measured INS spectrum which is, therefore, rather complex and challenging to assign unambiguously. To assist with the interpretation, the INS spectra are calculated accurately utilizing the quantum methodology which incorporates the coupled five-dimensional TR energy levels and wave functions of the H2 molecule confined in each type of nanocage. The computed INS spectra are highly realistic and reflect the complexity of the coupled TR dynamics of the guest H2 in the anisotropic confining environment. The simulated INS spectra of p-H2 and o-H2 in the small and medium cages are compared with the experimental data, and are indispensable for their interpretation.
Hexagonal ice stability and growth in the presence of glyoxal and secondary organic aerosols.
Daskalakis, Vangelis; Hadjicharalambous, Marios
2014-09-01
The presence of ice dominates the microphysics of formation of high altitude cirrus and polar stratospheric clouds, as well as the maturity of thunderstorms. We report on the hexagonal (1h) ice stability and growth in binary as well as multi-compound aerosols in atmospherically relevant conformations. The ubiquitous atmospheric trace gas glyoxal along with secondary organic aerosol (SOA) also in the presence of CO2 interacts with large ice 1h crystals of 1300-2000 water molecules. The crystals are subjected to phase transitions under superheating and supercooling conditions by Molecular Dynamics (MD) simulations. Density Functional Theory (DFT) based geometry optimization and vibrational frequency analysis are also employed for a smaller ice 1h cell of 12 water molecules. The interaction of the latter with each organic molecule reveals the extent of the mechanical stress exerted on the ordered ice structure. Full hydration of glyoxal promotes ice 1h stability and growth in wet aerosols, while partial hydration or full oxidation exerts a destabilizing effect on the ice 1h lattice. This behavior is associated with the ability of each organic phase to match the order of the ice 1h crystal. We propose that aqueous chemistry in wet aerosols may also have a strong effect on the microphysics of cloud formation. PMID:25033409
NASA Astrophysics Data System (ADS)
Ge, Supeng; Habib, Masum; Lake, Roger; Latte Team
Hexagonal boron nitride (hBN) has an atomically smooth surface free of dangling bonds, minimal lattice mismatch with graphene and a wide band gap, which makes it an ideal insulator material for graphene devices. Recently, transistor devices made with the few layers of hBN sandwiched between two layers of graphene has attracted attention since interesting phenomenon such as negative differential resistance has been observed. In experiment, the device fabrication usually gives rise to random orientation of interfaces. To have a better understanding of the effect of misorientation, we employed non-equilibrium Greens function (NEGF) method to calculate transmission across graphene/hBN/graphene hererostructures devices. We find that the rotation can cause the transmission to change by more than one order of magnitude. The resistance and current as functions of h-BN layer thickness, commensurate rotation angles, gating voltage, and bias voltage are described. Acknowledgement: This work is supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Kronfeld, A.S.; Allison, I.F.; Aubin, C.; Bernard, C.; Davies, C.T.H.; DeTar, C.; Di Pierro, M.; Freeland, E.D.; Gottlieb, Steven; Gray, A.; Gregor, E.; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Levkova, L.; Mackenzie, P.B.; Maresca, F.; Menscher, D.; Nobes, M.; Okamoto, M.; Oktay, M.B.; /Fermilab /Glasgow U. /Columbia U. /Washington U., St. Louis /Utah U. /DePaul U. /Art Inst. of Chicago /Indiana U. /Ohio State U. /Arizona U. /APS, New York /U. Pacific, Stockton /Illinois U., Urbana /Cornell U., LEPP /Simon Fraser U. /UC, Santa Barbara
2005-09-01
In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the q{sup 2} dependence of the form factor in semileptonic D {yields} K/{nu} decay, the decay constant of the D meson, and the mass of the B{sub c} meson. In this talk, we summarize these calculations, with emphasis on their (subsequent) confirmation by experiments.
Multipole plasmonic lattice solitons
Kou Yao; Ye Fangwei; Chen Xianfeng
2011-09-15
We theoretically demonstrate a variety of multipole plasmonic lattice solitons, including dipoles, quadrupoles, and necklaces, in two-dimensional metallic nanowire arrays with Kerr-type nonlinearities. Such solitons feature complex internal structures with an ultracompact mode size approaching or smaller than one wavelength. Their mode sizes and the stability characteristics are studied in detail within the framework of coupled mode theory. The conditions to form and stabilize these highly confined solitons are within the experimentally achievable range.
Imperfect or Perfect Dynamic Bipolarity? The Case of Antonymous Affective Judgments
ERIC Educational Resources Information Center
Vautier, Stephane; Steyer, Rolf; Jmel, Said; Raufaste, Eric
2005-01-01
How is affective change rated with positive adjectives such as good related to change rated with negative adjectives such as bad? Two nested perfect and imperfect forms of dynamic bipolarity are defined using latent change structural equation models based on tetrads of items. Perfect bipolarity means that latent change scores correlate -1.…
NASA Astrophysics Data System (ADS)
Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan
2014-10-01
In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].
Jiao, Da; Liu, Zengqian; Zhang, Zhenjun; Zhang, Zhefeng
2015-01-01
Despite the extensive investigation on the structure of natural biological materials, insufficient attention has been paid to the structural imperfections by which the mechanical properties of synthetic materials are dominated. In this study, the structure of bivalve Saxidomus purpuratus shell has been systematically characterized quantitatively on multiple length scales from millimeter to sub-nanometer. It is revealed that hierarchical imperfections are intrinsically involved in the crossed-lamellar structure of the shell despite its periodically packed platelets. In particular, various favorable characters which are always pursued in synthetic materials, e.g. nanotwins and low-angle misorientations, have been incorporated herein. The possible contributions of these imperfections to mechanical properties are further discussed. It is suggested that the imperfections may serve as structural adaptations, rather than detrimental defects in the real sense, to help improve the mechanical properties of natural biological materials. This study may aid in understanding the optimizing strategies of structure and properties designed by nature, and accordingly, provide inspiration for the design of synthetic materials. PMID:26198844
On Crosslinguistic Variations in Imperfective Aspect: The Case of L2 Korean
ERIC Educational Resources Information Center
Lee, EunHee; Kim, Hae-Young
2007-01-01
This article examines the acquisition of Korean imperfective markers, the progressive "-ko iss-" and the resultative "-a iss-," with a view to understanding how tense/aspect morphology expands beyond prototype associations with inherent aspects of the verbs. We hypothesized that "-a iss-" will develop later than "-ko iss-," but that the…
NASA Astrophysics Data System (ADS)
Liu, Y. Z.; Hao, Y. X.; Zhang, W.; Chen, J.; Li, S. B.
2015-07-01
The nonlinear vibration of a simply supported FGM cylindrical shell with small initial geometric imperfection under complex loads is studied. The effects of radial harmonic excitation, compressive in-plane force combined with supersonic aerodynamic and thermal loads are considered. The small initial geometric imperfection of the cylindrical shell is characterized in the form of the sine-type trigonometric functions. The effective material properties of this FGM cylindrical shell are graded in the radial direction according to a simple power law in terms of the volume fractions. Based on Reddy's third-order shear deformation theory, von Karman-type nonlinear kinematics and Hamilton's principle, the nonlinear partial differential equation that controls the shell dynamics is derived. Both axial symmetric and driven modes of the cylindrical shell deflection pattern are included. Furthermore, the equations of motion can be reduced into a set of coupled nonlinear ordinary differential equations by applying Galerkin's method. In the study of the nonlinear dynamics responses of small initial geometric imperfect FGM cylindrical shell under complex loads, the 4th order Runge-Kutta method is used to obtain time history, phase portraits, bifurcation diagrams and Poincare maps with different parameters. The effects of external loads, geometric imperfections and volume fractions on the nonlinear dynamics of the system are discussed.
Let Cinderella and Luke Skywalker Help You Teach the Passe Compose and Imperfect.
ERIC Educational Resources Information Center
Terry, Robert M.
Instructional materials for the passe compose and imperfect tenses in French use the technique of presenting familiar stories in the foreign language, written in the present tense, which students must place in the past by changing verb forms. The objective is to avoid the disadvantages of simply translating verb tenses and to allow the student to…
Free vibration of thermally loaded panels including initial imperfections and post-buckling effects
NASA Technical Reports Server (NTRS)
Murphy, K. D.; Virgin, L. N.; Rizzi, S. A.
1994-01-01
A combined theoretical and experimental approach is developed to consider the small amplitude free vibration characteristics of fully clamped panels under the influence of uniform heating. Included in this study are the effects of higher modes, in-plane boundary elasticity, initial imperfections, and post-buckling. Comparisons between theory and experiment reveal excellent agreement.
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Permanent field repair of...) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.713 Transmission lines: Permanent field repair of imperfections and damages. (a)...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Permanent field repair of...) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.713 Transmission lines: Permanent field repair of imperfections and damages. (a)...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Permanent field repair of...) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.713 Transmission lines: Permanent field repair of imperfections and damages. (a)...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Permanent field repair of...) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.713 Transmission lines: Permanent field repair of imperfections and damages. (a)...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Permanent field repair of...) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.713 Transmission lines: Permanent field repair of imperfections and damages. (a)...
A cellular automaton implementation of a quantum battle of the sexes game with imperfect information
NASA Astrophysics Data System (ADS)
Alonso-Sanz, Ramón
2015-10-01
The dynamics of a spatial quantum formulation of the iterated battle of the sexes game with imperfect information is studied in this work. The game is played with variable entangling in a cellular automata manner, i.e. with local and synchronous interaction. The effect of spatial structure is assessed in fair and unfair scenarios.
Prave, G.G.; Chudakov, V.S.; Yanusova, L.G.
1983-09-01
The authors discuss the possibility of direct optical polarization investigations of thermoelastic stresses when a laser acts on an imperfect crystal or other isotropic object possessing initial stresses. They propose an optimal method of investigating crystalline plates with surface orientations (100) and (111) with the aid of a photoelectric polariscope.
Nucleon Structure from Lattice QCD
David Richards
2007-09-05
Recent advances in lattice field theory, in computer technology and in chiral perturbation theory have enabled lattice QCD to emerge as a powerful quantitative tool in understanding hadron structure. I describe recent progress in the computation of the nucleon form factors and moments of parton distribution functions, before proceeding to describe lattice studies of the Generalized Parton Distributions (GPDs). In particular, I show how lattice studies of GPDs contribute to building a three-dimensional picture of the proton, I conclude by describing the prospects for studying the structure of resonances from lattice QCD.
Crystallographic Lattice Boltzmann Method.
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
Crystallographic Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-06-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.
Blackburn, J.C.; Kilpatrick, P.K. )
1993-04-01
The effects of added salt (CsOH, CsCl), long-chain carboxylic acid, and long-chain alcohol on the lyotropic liquid crystalline phase behavior in the cesium n-tetradecanoate (CsTD)-water system is reported. The transitional region between the hexagonal (H) and lamellar (L) phases was the compositional range of focus. Three transitional phases were observed: (i) the ribbon (R) phase, a biaxial phase consisting of cylinders of ellipsoidal cross section; (ii) the viscous isotropic (VI) phase, an isotropic phase thought to consist of interconnected rods on an Ia3d lattice; and (iii) the intermediate (Int) phase, a uniaxial anisotropic phase thought to consist of interconnected rods on a planar lattice. The effect of the additives was to decrease the interfacial curvature of the surfactant head group layer by varying head group repulsion and by varying the surfactant tail volume relative to the surfactant head group area. These changes resulted in formation of transitional phases seeming to possess curvature between that of the cylindrical H phase and the planar L phase. The ionic repulsion between carboxylate head groups was reduced by the addition of CsOH or CsCl, and resulted in destabilization of the VI phase and the formation of the anisotropic Int phase. With the addition of cosurfactants, n-tetradecanoic acid (TDA) and 1-tetradecanol (TDOH), no Int phase was observed. With 7 wt% added TDA the R phase was stabilized up to temperatures of 336 K, above the 330 K temperature limit in the binary CsTD-D[sub 2]O system. In all four systems, sufficient additive (5-10 wt%) resulted in a transition to the L phase, which was stable over a large portion of the compositional range. In order of apparently decreasing mean curvature, the phase sequence is: hexagonal, ribbon, viscous isotropic, intermediate, and lamellar.
NASA Astrophysics Data System (ADS)
Majda, Andrew J.; Qi, Di
2016-02-01
Turbulent dynamical systems with a large phase space and a high degree of instabilities are ubiquitous in climate science and engineering applications. Statistical uncertainty quantification (UQ) to the response to the change in forcing or uncertain initial data in such complex turbulent systems requires the use of imperfect models due to the lack of both physical understanding and the overwhelming computational demands of Monte Carlo simulation with a large-dimensional phase space. Thus, the systematic development of reduced low-order imperfect statistical models for UQ in turbulent dynamical systems is a grand challenge. This paper applies a recent mathematical strategy for calibrating imperfect models in a training phase and accurately predicting the response by combining information theory and linear statistical response theory in a systematic fashion. A systematic hierarchy of simple statistical imperfect closure schemes for UQ for these problems is designed and tested which are built through new local and global statistical energy conservation principles combined with statistical equilibrium fidelity. The forty mode Lorenz 96 (L-96) model which mimics forced baroclinic turbulence is utilized as a test bed for the calibration and predicting phases for the hierarchy of computationally cheap imperfect closure models both in the full phase space and in a reduced three-dimensional subspace containing the most energetic modes. In all of phase spaces, the nonlinear response of the true model is captured accurately for the mean and variance by the systematic closure model, while alternative methods based on the fluctuation-dissipation theorem alone are much less accurate. For reduced-order model for UQ in the three-dimensional subspace for L-96, the systematic low-order imperfect closure models coupled with the training strategy provide the highest predictive skill over other existing methods for general forced response yet have simple design principles based on a
Lattice QCD for parallel computers
NASA Astrophysics Data System (ADS)
Quadling, Henley Sean
Lattice QCD is an important tool in the investigation of Quantum Chromodynamics (QCD). This is particularly true at lower energies where traditional perturbative techniques fail, and where other non-perturbative theoretical efforts are not entirely satisfactory. Important features of QCD such as confinement and the masses of the low lying hadronic states have been demonstrated and calculated in lattice QCD simulations. In calculations such as these, non-lattice techniques in QCD have failed. However, despite the incredible advances in computer technology, a full solution of lattice QCD may still be in the too-distant future. Much effort is being expended in the search for ways to reduce the computational burden so that an adequate solution of lattice QCD is possible in the near future. There has been considerable progress in recent years, especially in the research of improved lattice actions. In this thesis, a new approach to lattice QCD algorithms is introduced, which results in very significant efficiency improvements. The new approach is explained in detail, evaluated and verified by comparing physics results with current lattice QCD simulations. The new sub-lattice layout methodology has been specifically designed for current and future hardware. Together with concurrent research into improved lattice actions and more efficient numerical algorithms, the very significant efficiency improvements demonstrated in this thesis can play an important role in allowing lattice QCD researchers access to much more realistic simulations. The techniques presented in this thesis also allow ambitious QCD simulations to be performed on cheap clusters of commodity computers.
Near coincidence site lattice misorientations in monoclinic zirconia
Gertsman, V.Y.; Zhilyaev, A.P.; Szpunar, J.
1996-12-01
Zirconium dioxide, ZrO{sub 2}, exists in three crystalline phases: monoclinic, tetragonal, and cubic. Calculations of the coincidence site lattice (CSL) misorientations for the last two lattices and for hexagonal ones using the methods developed represent little difficulty. However, no procedure for the determination of the CSL misorientations in the monoclinic system has been reported so far. Monoclinic zirconia has the crystallographic space group P2{sub 1}/c and the following parameters of the unit cell (e.g., 5, 6): a = 5.1490 {angstrom}, b = 5.2133 {angstrom}, c = 5.3161 {angstrom}, and {beta} = 99.228{degree}. Before discussing possible CSL misorientations in zirconia, consider a simple example based on geometric considerations. In any monoclinic crystal (with any lattice parameters) the two symmetrical boundaries along the (001) and (100) planes must have highly ordered atomic structure. The misorientation of the first boundary is descried as a rotation of either 180{degree} around the [100] direction or 180{degree} around the normal to the (001) plane. The misorientation of the second boundary is 180{degree} [001] or 180{degree} around the normal to the (100) plane. It can be shown that three-dimensional CSLs will exist in both cases if (c/a)cos{beta} is a rational number. This example justifies the following approximation of the unit cell in the monoclinic zirconia: a = b = c and cos{beta} = {minus}1/6 (i.e., {beta} = 99.594{degree}). Consider the following prismatic cell in the monoclinic crystal structure: ([1 0 1], [{bar 1} 0 1], [0 1 0]). With the above approximation, this cell is orthogonal with the ratios of the squares of the edge lengths expressed as 5:7:3. Therefore, one can apply the algorithm for calculations of the CSL misorientations in orthorhombic lattices with rational ratios of squares of the lattice periods, which is based on the general vector-quaternion method of misorientation representation.
Toward lattice fractional vector calculus
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
A Mechanical Lattice Aid for Crystallography Teaching.
ERIC Educational Resources Information Center
Amezcua-Lopez, J.; Cordero-Borboa, A. E.
1988-01-01
Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)
Investigation on the Geometric Imperfections driven Local Buckling Onset in Composite Conical Shells
NASA Astrophysics Data System (ADS)
Di Pasqua, Maria Francesca; Khakimova, Regina; Castro, Saullo G. P.; Arbelo, Mariano A.; Riccio, Aniello; Raimondo, Antonio; Degenhardt, Richard
2016-04-01
Buckling is a critical failure phenomenon for structures, and represents a threat for thin shells subjected to compressive forces. The global buckling load, for a conical structure, depends on the geometry and material properties of the shell, on the stacking sequence, on the type of applied load and on the initial geometric imperfections. Geometric imperfections, occurring inevitably during manufacturing and assembly of thin-walled composite structures, produce a reduction in the carrying load capability with respect to the design value. This is the reason why investigating these defects is of major concern in order to avoid over-conservative design structures. In this paper, the buckling behavior a conical structure with 45° semi-vertical angle is numerically investigated. The initial imperfections are taken into account by using different strategies. At first, the Single Perturbation Load Approach (SPLA), which accounts for defects in the form of a lateral load, normal to the surface, has been adopted. Then, the actual measured defects have been applied to the structure by using the Real Measured Mid-Surface Imperfections (MSI) approach. Investigations on cylindrical shells using the first strategy have already shown the occurrence of a particular phenomenon called "local snap-through", which represents a preliminary loss of stiffness. In order to better understand this phenomenon for conical shells, both the aforementioned techniques have been used to provide an exhaustive overview of the imperfections sensitiveness in conical composite shells. This study is related to part of the work performed in the frame of the European Union (EU) project DESICOS.
Investigation on the Geometric Imperfections driven Local Buckling Onset in Composite Conical Shells
NASA Astrophysics Data System (ADS)
Di Pasqua, Maria Francesca; Khakimova, Regina; Castro, Saullo G. P.; Arbelo, Mariano A.; Riccio, Aniello; Raimondo, Antonio; Degenhardt, Richard
2016-08-01
Buckling is a critical failure phenomenon for structures, and represents a threat for thin shells subjected to compressive forces. The global buckling load, for a conical structure, depends on the geometry and material properties of the shell, on the stacking sequence, on the type of applied load and on the initial geometric imperfections. Geometric imperfections, occurring inevitably during manufacturing and assembly of thin-walled composite structures, produce a reduction in the carrying load capability with respect to the design value. This is the reason why investigating these defects is of major concern in order to avoid over-conservative design structures. In this paper, the buckling behavior a conical structure with 45° semi-vertical angle is numerically investigated. The initial imperfections are taken into account by using different strategies. At first, the Single Perturbation Load Approach (SPLA), which accounts for defects in the form of a lateral load, normal to the surface, has been adopted. Then, the actual measured defects have been applied to the structure by using the Real Measured Mid-Surface Imperfections (MSI) approach. Investigations on cylindrical shells using the first strategy have already shown the occurrence of a particular phenomenon called "local snap-through", which represents a preliminary loss of stiffness. In order to better understand this phenomenon for conical shells, both the aforementioned techniques have been used to provide an exhaustive overview of the imperfections sensitiveness in conical composite shells. This study is related to part of the work performed in the frame of the European Union (EU) project DESICOS.
Uehara, Kazuhiro; Oishi, Takamichi; Hirose, Takayuki; Mizuno, Noritaka
2013-10-01
Structural control among hexagonal (trimer), rhomboidal (dimer), and infinite-chain supramolecular complexes with three different supporting ligands of ethylenediamine (en), N,N,N',N'-tetramethylethylenediamine (en*), and 1,2-bis(diphenyl)phosphinoethane (dppe) [(en)Pd(L)]3(OTf)6 1t·OTf, [(en*)Pd(L)]2(PF6)4 2d·PF6, and [(dppe)Pd(L)(OTf)2]∞ 3·OTf (OTf = trifluoromethane sulfonate; L = 1,3-bis(4-pyridylethynyl)benzene) in the solid and solution states was investigated. The encapsulation of a large Keggin-type polyoxometalate [α-PW12O40](3-) by these complexes was also examined. As the steric bulkiness of the supporting ligands increased in the order of en < en* < dppe, the hexagonal, rhomboidal, and infinite-chain structures were obtained, as confirmed by X-ray crystallography. In solution, equilibrium between the molecular hexagon (1t·OTf/2t·PF6) and the molecular rhomboid (1d·OTf/2d·PF6) was observed in the en/en* ligand systems, whereas 3·OTf with the dppe ligand did not exhibit equilibrium and instead existed as a single species. These phenomena were established by cold-spray ionization mass spectroscopy (CSI-MS) and (1)H diffusion ordered NMR spectroscopy (DOSY). The addition of the highly negatively charged Keggin-type phosphododecatungstate [α-PW12O40](3-) to a solution of 2t/2d·PF6 resulted in the encapsulation of the tungstate species in the cavity of the molecular hexagon to form {[(en*)Pd(L)]3[⊃α-PW12O40]}(PF6)3 2t·[α-PW12O40](3-), as confirmed by a combination of (1)H and (31)P DOSY and CSI-MS spectral data. PMID:24050509
Lattice Distortion Effects on the Magnetostructural Phase Transition of MnAs
NASA Astrophysics Data System (ADS)
Iikawa, F.; Brasil, M. J.; Adriano, C.; Couto, O. D.; Giles, C.; Santos, P. V.; Däweritz, L.; Rungger, I.; Sanvito, S.
2005-08-01
We present a systematic experimental and theoretical study of the first-order phase transition of epitaxially grown MnAs thin films under biaxial tensile stress. Our results give direct information on the dependence of the phase-transition temperature of MnAs films on the lattice parameters. We demonstrate that an increase of the lattice constant in the hexagonal plane raises the phase-transition temperature (Tp), while an increase of the perpendicular lattice constant lowers Tp. The results of calculations based on density functional theory are in good agreement with the experimental ones. Our findings open exciting prospects for magneto-mechanical devices, where the critical temperature for ferromagnetism can be engineered by external stress.
Lattice distortion effects on the magnetostructural phase transition of MnAs.
Iikawa, F; Brasil, M J S P; Adriano, C; Couto, O D D; Giles, C; Santos, P V; Däweritz, L; Rungger, I; Sanvito, S
2005-08-12
We present a systematic experimental and theoretical study of the first-order phase transition of epitaxially grown MnAs thin films under biaxial tensile stress. Our results give direct information on the dependence of the phase-transition temperature of MnAs films on the lattice parameters. We demonstrate that an increase of the lattice constant in the hexagonal plane raises the phase-transition temperature (T(p)), while an increase of the perpendicular lattice constant lowers T(p). The results of calculations based on density functional theory are in good agreement with the experimental ones. Our findings open exciting prospects for magneto-mechanical devices, where the critical temperature for ferromagnetism can be engineered by external stress. PMID:16196819
Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals
NASA Astrophysics Data System (ADS)
Manzin, Alessandra; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Tiberto, Paola
2016-02-01
This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features.
Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals.
Manzin, Alessandra; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Tiberto, Paola
2016-01-01
This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features. PMID:26911336
Calculation of Resonance Reaction Rates in Reactor Lattices Using Resonance Profile Tabulations.
1982-02-01
Version 00 The OZMA code solves the neutron transport equation for a reactor lattice unit cell at energies which lie in the resolved resonance regions of the lattice nuclides. Spherical, slab, cylindrical, square and hexagonal geometries can be handled. OZMA is most readily applied as a sophisticated resonance module for the HAMMER lattice code. It is more flexible and more accurate than the resonance treatments provided in HAMMER itself in the resolved resonance region. Inmore » particular, mixtures of numerous resonance nuclides can be handled simultaneously rather than by individual resonance treatments. The results obtained by OZMA can also be used as reference values against which simpler resonance treatments can be checked.« less
Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals
Manzin, Alessandra; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Tiberto, Paola
2016-01-01
This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features. PMID:26911336
VHTR Prismatic Super Lattice Model for Equilibrium Fuel Cycle Analysis
G. S. Chang
2006-09-01
The advanced Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on innovative features and passive systems. One of the VHTRs innovative features is the reliance on ceramic-coated fuel particles to retain the fission products under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel prismatic block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, if the fuel kernels are not perfect black absorbers, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced Kernel-by-Kernel (K-b-K) hexagonal super lattice model can be used to address and update the burnup dependent Dancoff effect during the EqFC analysis. The developed Prismatic Super Homogeneous Lattice Model (PSHLM) is verified by comparing the calculated burnup characteristics of the double-heterogeneous Prismatic Super Kernel-by-Kernel Lattice Model (PSK-b-KLM). This paper summarizes and compares the PSHLM and PSK-b-KLM burnup analysis study and results. This paper also discusses the coupling of a Monte-Carlo code with fuel depletion and buildup code, which provides the fuel burnup analysis tool used to produce the results of the VHTR EqFC burnup analysis.
Realization of Ground State Artificial Skyrmion Lattices at Room Temperature
NASA Astrophysics Data System (ADS)
Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew J.; Kirby, Brian J.; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Fischer, Peter; Liu, Kai
Artificial skyrmion lattices stable at ambient conditions offer a convenient and powerful platform to explore skyrmion physics and topological phenomena and motivates their inclusion in next-generation data and logic devices. In this work we present direct experimental evidence of artificial skyrmion lattices with a stable ground state at room temperature. Our approach is to pattern vortex-state Co nanodots (560 nm diameter) in hexagonal arrays on top of a Co/Pd multilayer with perpendicular magnetic anisotropy; the skyrmion state is prepared using a specific magnetic field sequence. Ion irradiation has been employed to suppress PMA in the underlayer and allow imprinting of the vortex structure from the nanodots to form skyrmion lattices, as revealed by polarized neutron reflectometry. Circularity control is realized through Co dot shape asymmetry, and confirmed by microscopy and FORC magnetometry. The vortex polarity is set during the field sequence and confirmed by magnetometry. Spin-transport studies further demonstrate a sensitivity to the skyrmion spin texture.Work supported by NSF (DMR-1008791, ECCS-1232275 and DMR-1543582)
Lattice-induced nonadiabatic frequency shifts in optical lattice clocks
Beloy, K.
2010-09-15
We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.
Single identities for lattice theory and for weakly associative lattices
McCune, W.; Padmanabhan, R.
1995-03-13
We present a single identity for the variety of all lattices that is much simpler than those previously known to us. We also show that the variety of weakly associative lattices is one-based, and we present a generalized one-based theorem for subvarieties of weakly associative lattices that can be defined with absorption laws. The automated theorem-proving program OTTER was used in substantial way to obtain the results.
NASA Astrophysics Data System (ADS)
Majeed, Abdul; Khan, Muhammad Azhar; Raheem, Faseeh ur; Hussain, Altaf; Iqbal, F.; Murtaza, Ghulam; Akhtar, Majid Niaz; Shakir, Imran; Warsi, Muhammad Farooq
2016-06-01
Rare-earth (RE=La3+, Nd3+, Gd3+, Tb3+, Dy3+) doped Ba2NiCoRExFe28-xO46 (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route, which is a fast chemistry route for obtaining nano-sized ferrite powders. These nanomaterials were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as vibrating sample magnetometer (VSM). The XRD analysis exhibited that all the samples crystallized into single X-type hexagonal phase. The crystalline size calculated by Scherrer's formula was found in the range 7-19 nm. The variations in lattice parameters elucidated the incorporation of rare-earth cations in these nanomaterials. FTIR absorption spectra of these X-type ferrites were investigated in the wave number range 500-2400 cm-1. Each spectrum exhibited absorption bands in the low wave number range, thereby confirming the X-type hexagonal structure. The enhancement in the coercivity was observed with the doping of rare-earth cations. The saturation magnetization was lowered owing to the redistribution of rare-earth cations on the octahedral site (3bVI). The higher values of coercivity (664-926 Oe) of these nanomaterials suggest their use in longitudinal recording media.
Matsuoka, H.
1985-01-01
The thermodynamic consequences of QCD are explored in the framework of lattice gauge theory. Attention is focused upon the nature of the chiral symmetry restoration transition at finite temperature and at finite baryon density, and possible strategies for identifying relevant thermodynamic phases are discussed. Some numerical results are presented on the chiral symmetry restoration in the SU(2) gauge theory at high baryon density. The results suggest that with T approx. = 110 MeV there is a second order restoration transition at the critical baryon density n/sub B//sup c/ approx. = 0.62 fm/sup -3/.
Leung, V. Y. F.; Pijn, D. R. M.; Schlatter, H.; Torralbo-Campo, L.; La Rooij, A. L.; Mulder, G. B.; Naber, J.; Soudijn, M. L.; Tauschinsky, A.; Spreeuw, R. J. C.; Abarbanel, C.; Hadad, B.; Golan, E.; Folman, R.
2014-05-15
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.
Leung, V Y F; Pijn, D R M; Schlatter, H; Torralbo-Campo, L; La Rooij, A L; Mulder, G B; Naber, J; Soudijn, M L; Tauschinsky, A; Abarbanel, C; Hadad, B; Golan, E; Folman, R; Spreeuw, R J C
2014-05-01
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation. PMID:24880348
NASA Astrophysics Data System (ADS)
Hassan, M. S.; Goggins, J.; Salawdeh, S.
2015-07-01
A numerical imperfection study is carried out on a hot rolled tubular brace member under displacement controlled amplitudes. An appropriate range of global and local imperfections is used in the finite element analyses to evaluate the initial-post buckling compressive strength, lateral storey drift, energy dissipation and mid-length lateral deformation of the brace member. The purpose of this study is to assess the impact of the geometrical imperfection on the numerical performance, and to determine an amplitude range that can be used unequivocally for numerical modelling of brace members. It is shown that the amplitude of global imperfections has an effect on the initial response, whereas the amplitude of local imperfections has influence on the resistance capacity of the brace member at higher ductility level. Based on the results, a refined range of amplitude of global and local imperfections is proposed. This range is found to have a good agreement with design standards. In addition, an already established equation to find lateral deformation is compared to results from the analyses and found that the equation with some modification can be used accurately in design. In this paper, a modification factor is proposed in the equation to find the lateral deformation to account for the imperfection amplitude in the numerical analyses of brace members.
A laboratory model of Saturn’s North Polar Hexagon
NASA Astrophysics Data System (ADS)
Barbosa Aguiar, Ana C.; Read, Peter L.; Wordsworth, Robin D.; Salter, Tara; Hiro Yamazaki, Y.
2010-04-01
A hexagonal structure has been observed at ˜76°N on Saturn since the 1980s (Godfrey, D.A. [1988]. Icarus 76, 335-356). Recent images by Cassini (Baines, K., Momary, T., Roos-Serote, M., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2007]. Geophys. Res. Abstr. 9, 02109; Baines, K., Momary, T., Fletcher, L., Kim, J., Showman, A., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2009]. Geophys. Res. Abstr. 11, 3375) have shown that the feature is still visible and largely unchanged. Its long lifespan and geometry has puzzled the planetary physics community for many years and its origin remains unclear. The measured rotation rate of the hexagon may be very close to that of the interior of the planet ( Godfrey, D.A. [1990]. Science 247, 1206-1208; Caldwell, J., Hua, X., Turgeon, B., Westphal, J.A., Barnet, C.D. [1993]. Science 206, 326-329; Sánchez-Lavega, A., Lecacheux, J., Colas, F., Laques, P. [1993]. Science 260, 329-332), leading to earlier interpretations of the pattern as a stationary planetary wave, continuously forced by a nearby vortex (Allison, M., Godfrey, D.A., Beebe, R.F. [1990]. Science 247, 1061-1063). Here we present an alternative explanation, based on an analysis of both spacecraft observations of Saturn and observations from laboratory experiments where the instability of quasi-geostrophic barotropic (vertically uniform) jets and shear layers is studied. We also present results from a barotropic linear instability analysis of the saturnian zonal wind profile, which are consistent with the presence of the hexagon in the North Pole and absence of its counter-part in the South Pole. We propose that Saturn's long-lived polygonal structures correspond to wavemodes caused by the nonlinear equilibration of barotropically unstable zonal jets.
Inter-layer potential for hexagonal boron nitride
Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor
2014-03-14
A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.
Onset of hexagons in surface-tension-driven Benard convection
NASA Technical Reports Server (NTRS)
Schatz, Michael F.; Vanhook, Stephen J.; Swift, John B.; Mccormick, William D.; Swinney, Harry L.
1994-01-01
High resolution laboratory experiments with large aspect ratio are being conducted for thin fluid layers heated from below and bounded from above by a free surface. The fluid depths are chosen sufficiently small (less than 0.06 cm) so that surface tension is the dominant driving mechanisms; the Rayleigh number is less than 5 for the results reported here. Shadowgraph visualization reveals that the primary instability leading to hexagons is slightly hysteretic (approximately 1 percent). Preliminary measurements of the convection amplitude using infrared imaging are also presented.
Superior thermal conductivity in suspended bilayer hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen
2016-05-01
We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm‑1K‑1(+141 Wm‑1K‑1/ ‑24 Wm‑1K‑1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN.
Mysterious hexagonal pyramids on the surface of Pyrobaculum cells.
Rensen, Elena; Krupovic, Mart; Prangishvili, David
2015-11-01
In attempts to induce putative temperate viruses, we UV-irradiated cells of the hyperthermophilic archaeon Pyrobaculum oguniense. Virus replication could not be detected; however, we observed the development of pyramidal structures with 6-fold symmetry on the cell surface. The hexagonal basis of the pyramids was continuous with the cellular cytoplasmic membrane and apparently grew via the gradual expansion of the 6 triangular lateral faces, ultimately protruding through the S-layer. When the base of these isosceles triangles reached approximately 200 nm in length, the pyramids opened like flower petals. The origin and function of these mysterious nanostructures remain unknown. PMID:26115814